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Introduction

This is the working version of the manual for the Compiler Description Language CDL3 and
its development system. This language represents the third step in an evolution process
which included the CDL1 language with its compiler-compiler [KOS74b] and the CDL2
language with its CDL2 LAB[BAYS81]. CDL3 [KB91] is an implementation language for
compilers, balancing on the borderline between grammars (in which it is easy to construct
a parser) and implementation languages (in which large software systems like compliers
can be implemented securely and efficiently).

In the computing community the term implementation stands for a major part of
the software development cycle, starting after the design phase and ending with the first
delivery of the product. Implementing large software systems is the honourable battlefield
of the professional informatician, the serious side of programming.

Implementing has the same relationship to freshman programming as war to manceu-
vers: professionalism replaces enthusiasm, collaboration is more important than individual
accomplishment, harsh exigencies come in the place of academic leisure. Even though it
is a peaceful and constructive activity, implementation projects have been known to end
in disaster, in the brutal suppression of promise and in slavery.

Implementation is the technical side of software engineering. It is a human activity and
therefore formal questions are often completely overshadowed by pragmatic considerations.
In implementation it is not important what is possible, but what is feasible with the given
human and material resources and in the time allowed.

It has long been realised that one of the important contributions to the success or
failure of an implementation project comes from the choice of the programming language
used and its support on the development hardware. By itself, the choice of a suitable
implementation language cannot guarantee success but an unsuitable language can lead
to a long and costly implementation, resulting in an unstable product, which is expensive
to maintain and has a short economic life.

The implementation language is not a panacea but an important tool, that should be
chosen with care.

CDL3 is an implementation language based on affix grammars. It rides the borderline
between syntactic formalism and programming language, and tries to combine the good
properties of both.

The control structure and data structures have been choosen such that it is extremely
easy to write deterministic parsers and transducers in CDL3. In this sense, CDL3 is a Com-
piler Description Language (hence the acronym). Its applicability is, however, not limited
to compiler construction. The language is wellsuited, more in general, for all applications
that can be characterized as syntax-directed: transduction between well-defined formalisms,
communication between processes (human and machine) adhering to well-established pro-
tocols, or interpreter-like systems, interactively obeying a set of commands.
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In this manual, we introduce CDL3 as a programming language and show by small
examples how to use it as a Software Engineering tool. Due to its powerful datastructures,
strong typing and helpful development tools, it provides a fast and secure approach to the
development of large C programs.

The manual is also a textbook on the basic concepts of programming and programming
languages. As such it is hoped to have a usefulness not limited to the implementation of
compilers in CDL3.
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Chapter 1

Algorithms

In this chapter we will deal with the algorithmic structure in-the-small of CDL3 programs,
on the algorithmic side. (The object and type aspect is described in the next chapter,
chapter 3 describes the structure-in-the-large). Before that, we will introduce some con-
cepts and terminology pertaining to programming languages in general, which is intended
to show the motivation for the particular mechanisms present in CDL. In a number of
places we give examples using a representative high-level language. No deep knowledge of
that language is required.

1.1 Concepts and terminology

This section is concerned with elements of a philosophy of programming languages rather
than with details of CDL.

Consider some program, represented as a piece of text. This text is not an amorphous
mass of symbols but consists of a hierarchy of constructs according to the syntax of the
programming language. These constructs can be broadly classified into those denoting
algorithms and those denoting objects and types. Other constructs appearing in the
syntax of the language can be considered as ancillary constructions in describing the
relationship between the algorithms involved in the program.

1.1.1 Entities

The dichotomy between algorithms on the one hand and objects and types on the other
is similar to the distinction between verbs and nouns in natural languages. It may be an
artifact of our way of thinking about the world or it may be its very basis. At any rate
it is so helpful in thinking about algorithms and so widely spread amongst programming
languages that we will turn it into dogma: the meaningful parts of any program are those
that can be classified into algorithms, objects and types. In this classification it is at first
sight somewhat disturbing to find objects and types (as classes of objects) to be discussed
in one breath but every object is an instance of some type, and many relevant properties
of individual objects are attributes of their types, and vice versa. At this point in the
present discussion there is no need to distinguish between the two. It is awkward that we
do not possess one term to denote both objects and types, but we will have to live with
that.

Algorithms, objects and types are pieces of program text, that have two important
properties:



e They either have a name or can be given one
e Upon execution of the program they possess some value internal to the computer:

— an algorithm possesses “executable code”
— an object possesses the internal representation of some value

— a type possesses a class of internal representations for its instances and a class
of operations applicable to them.

Algorithms, objects and types together we will call entities. The fact that entities can have
a name proves to be one of the keys to successful programming, abstraction. The most
convenient way to denote an entity is by its name. Indirectly this allows us to manipulate
values during execution of the program.

1.1.2 Composed and elementary entities

An entity occurring at a specific place in a program text can be either an elementary
entity or a composed entity.

We call an entity elementary if, according to the syntax and semantics of the language
and at the level of abstraction provided by the context, it cannot sensibly be decomposed
into other entities.

Thus the identifier pi bears no relationship to the identifiers p and 4: it is the name of
an elementary object, viz. a named constant. The PASCAL expression

if a > b then a else b

on the other hand is a composed algorithm for computing the maximum of a and b.

1.1.3 Abstract and concrete entities

concrete
elementary <

algorithms <
o composed
entities concrete

objects, < clementary < abstract
types composed

abstract

Figure 1.1: Taxonomy of constructs

For any programming language, we will call those elementary entities that are part of
the language the concrete entities of that language. The programmer is generally free to
add more entities to the language (by declaring them) which will then be called abstract
entities: abstract entities are those that the programmer has to define himself, concrete
entities are those defined for him and available for his use. These relations are shown in
figure 1.1.

1.1.4 Kernel of the language

The kernel of a programming language comprises



e its elementary concrete algorithms (such as: assignation, jump, selection, sub-
scription, coercions, algebraic operations and functions, input/output commands)

e its elementary concrete types (highly dependent on the language, these may be
denoted by constructions like “int” or “1..32767” or
“BIN FIXED (31)”)

e its elementary objects (in this category falls e.g. a predefined constant “pi”).

1.1.5 Construction mechanisms

We use the term construction mechanisms for the mechanisms in the language that serve
to build composed constructs out of simpler ones, viz.

e for algorithms: control structures (the canonical Dijkstra collection (while, if and
;) or e.g. LISP conditionals) as well as the function application or procedure call
notation.

e for objects and types: data structures, e.g. (in ALGOL 68) “ref m” or (in PAS-
CAL) “record ... end” or “array|l..n] of integer” as well as the associated value
constructors (e.g. in ALGOL 68: row displays and structure displays).

1.1.6 Abstraction mechanisms

Abstraction mechanisms serve to build new elementary constructs out of constructs in the
language. They usually comprise:

e declarations for algorithms (in the form of procedures, functions, subroutines, oper-
ators or macros)

e declarations for objects (such as variables, constants and arrays)

e declarations for types (abstract data types)

1.1.7 Extension mechanisms

Ezxtension mechanisms serve to borrow new elementary constructs from outside the lan-
guage. Classically they comprise libraries and macros, or even assembly code patches.
Notice that they generally serve for semantic extension only. The notion of syntactic
extension, popular in the early sixties, was less fruitful and seems to have been largely
abandoned.

A language providing built-in extension mechanisms is called an open-ended lan-
guage, due to the open-ended character of its semantics.

1.1.8 Mechanisms in CDL

The abstraction mechanisms of CDL3 are based on two-level grammars, where the first level
provides construction and abstraction mechanisms for algorithms and the second level for
objects and types.

In distinction to its predecessors, CDL3 is not a particularly open-ended language.
Its kernel comprizes integers, texts and trees composed over them, together with their
operations, as well as input/output via the C-library.
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CDL was designed deliberately to explore an extreme position. One consequence is
the fact that, in learning CDL, the familiar concepts of programming languages and of
systematic programming have to be carefully reconsidered. The extreme position taken
has proved to be fruitful in simultaneously achieving portability and efficiency [STAS0].

In the rest of this chapter we shall deal with CDL3’s construction and abstraction
mechanisms for algorithms. The next chapter will describe the mechanisms for dealing
with objects and types, as well as the kernel of the language.

1.2 Control structures

Apart from their unusually short notation, the control structures of CDL3 are rather
classical. They are: sequencing, sequential choice and grouping. It will become apparent
that the notation for the control structures is quite similar to that in PROLOG. This is no
accident, since both languages have as their origin a syntactic formalism. Indeed, it might
be said that CDL3 is a deterministic, strongly typed (and therefore highly efficient) variant
of PROLOG.

1.2.1 Sequencing

The sequential execution of algorithms is indicated by writing a comma between their
calls, which can be read: “and then”. As an example, the text

read a number, print it
strongly suggests that first a number is read, and then it is printed. In the same way,
read a number, read another number, add them, print sum

indicates four algorithms to be executed in strict order. (Of course these are abstract
algorithms, they are much too specialized to be included in any concrete programming
language).

1.2.2 The conditional

The sequential choice between two alternatives is expressed by writing a semicolon
between them. This separator can be pronounced “or else”. As an example

is minus, read number, invert it, print it;

read number, print it

might be part of some desk calculator or interpreter. The idea is that is minus is the
name of an algorithm that may either succeed (if it recognizes a minus sign in the input)
or fail (if it doesn’t). If is minus succeeds, the first alternative is taken, and otherwise
the second is taken.

1.2.3 Classification of algorithms

In CDL, all algorithms are classified into categories, depending on their influence on the
execution:

e those that can either succeed or fail viz. the predicates and tests. They can be
seen as Boolean procedures whose value is used to control the execution.
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e those that cannot fail viz. the actions and functions. They can be seen as Boolean
procedures that always return the value true.

We will meet with tests and functions later and for the time being will only deal with
actions and predicates without parameters. We will, in our examples, distinguish actions
from predicates by their names: names of predicates will start with is.

In the previous example then, is minus is a predicate whereas all others are (as their
names suggest) actions. They have an effect on either the input (reading or recognizing)
or output (printing).

1.2.4 Some syntax and semantics

The body of a procedure in CDL has the form of a group. Informally and rather incom-
pletely, its syntax and semantics can be described as follows:

A group consists of one or more alternatives separated by semicolons. An alternative
consists of zero or more members separated by commas. An alternative containing zero
members is termed an empty alternative. Only the last alternative of a group may be
empty. An empty alternative is indicated by a plus sign (success operator).

A member can be the (possibly parameterized) call of an algorithm or a guard. The
last member of an alternative can also be the success operator, the abort operator, the
failure operator or an enclosed group, i.e. a group enclosed between brackets.

The execution of an algorithm may have an effect on the values of variables and it will
either succeed or fail.

A group is executed by executing its alternatives in textual order until either an alter-
native succeeds or the last alternative has been executed. The group succeeds as soon as
an alternative succeeds, and fails if all alternatives fail.

An alternative is executed by executing its members in textual order until either a
member fails, in which case the alternative fails, or until all its members have been executed
successfully, upon which the alternative succeeds. An empty alternative always succeeds.

The execution of a member consisting of a (parameterized) algorithm call is the exe-
cution of that algorithm (with those parameters). The execution of a member consisting
of an enclosed group is the execution of that group.

The execution of a guard computes values for certain variables. A call or a guard may
either succeed or fail depending on the values of its parameters and, in case it succeeds,
may have an effect on its parameters; in case it fails, it has none.

1.2.4.1 Example

As an example, we discuss the body of some interpreter for monadic expressions of the
form

[+]|—] number

which might be programmed

is minus, read number, invert it, print it;
is plus, read number, print it;

is number, print it;

report error



Notice that is number is a predicate: it tries to recognize a number. On the other hand
read number is an action (which is programmed somewhere else, probably in terms of is
number): it will rather die than admit to not finding a number. We will program it later.

Notice also that this group as a whole cannot fail: if neither a leading plus sign nor a
leading minus sign nor a number is present, it will report an error, and thus succeed. As
such, it can be the body of some action.

1.2.5 Enclosed group

The fact that the last member of an alternative may be an enclosed group allows the
nesting of alternatives in a hierarchical fashion, e.g.:

read number,
(is plus, read number, add them, print result;
is minus, read number, subtract them, print result;
report missing operator)

This suggests an interpreter for dyadic expressions of the form
number {+|—} number

whose control graph is shown in figure 1.2.

By the control graph we mean a graph depicting the possible flow of control through
the members of a group.

read number —is plus—read number—add them—print result

is minus—read number—subtract them—print result —

report missing operator

Figure 1.2: Control graph for dyadic expression

After the action read number is called, there are three possibilities: either a plus is
present, a minus is present, or an error is reported.

Notice that only the last member of an alternative can be split in this way, it is not
applicable to preceding members, which have to be calls of algorithms or guards. Thus, a
closing bracket can not be followed by a comma in a CDL program.

Since the grouping structure can be used again within the enclosed group, the control
graph can be nested to an arbitrary depth. Due to the restriction that splitting can occur
only at the end of an alternative, the resulting control graph is still very well comprehensi-
ble, especially if suitable layout conventions are observed. The resulting control structure
is simple and powerful, and supports the strategy:

Within an alternative, as soon as you feel there is more than one possibility,
write a left bracket “(” indented on a new line, then program the alternatives
one by one before closing the group.

If the term “structured programming” has any meaning, it applies to the resulting
programming style [GRUS82].



1.2.6 Failure operator

The last member of a group may be a failure operator, written as a minus sign. Its
execution results in the failure of the current and of the folowing alternatives. Then the
current alternative fails.

Notice that (as well as for the abort operator), this does not lead to the execution of
the next alternative but to the failure of the actual procedure (or the whole program).
These facts are taken into account in the consistency check.

1.2.7 Abort operator

The last member of an alternative may be an abort operator, written as a question
mark. Its execution results in termination of the program. The abort operator is meant
for extricating the program from a hopeless situation, after having suitably reported on
that situation and having mended it as far as possible, by returning control to the operating
system. The program has no further chance to do anything whatsoever.

This may be the right thing to do in case a more subtle reaction is not possible, e.g.
for a compiler that runs out of space.

1.3 Procedure declarations

A procedure declaration serves to bind a name to a group and equip it with parameters.
It consists of a procedure heading and a procedure body, separated by a colon and
followed by a period.

The heading starts with the type and the name of the procedure. The body is a group.

As an example, we can declare an action read number, assuming the existence of is
number, as follows

ACTION read number:
is number;
report error.

Notice that read number cannot fail since report error is an action. (Whether it does
something sensible is another matter.)

Notice that the type of the procedure is not a name, but one of a small set of magic
words, written in capital letters.

We can now embark on the complete definition of a desk calculator recognizing

[number | {+|—} number]*end-of-line |* end-of-file

We will proceed in a Top-Down fashion, first postulating abstract algorithms and
then declaring them as we go along. We will describe only the algorithms and assume
that the values found are manipulated implicitly e.g. as global objects. We will leave the
consideration of objects until the next chapter.

ACTION desk calculator:
is number, rest after number, desk calculator;
is end of file;
complain and skip line, desk calculator.



ACTION rest after number:
is plus, read number, add them, rest after number;
is minus, read number, subtract them, rest after number;
is end of line, print result;
complain and skip line.

We assume the availability of suitable predicates for recognizing plus and minus signs,
digits and end-of-file, as well as actions for arithmetic and printing.

Bridging the gap, we program:

ACTION read number:
is number;
report number missing, assume zero.

A number is a nonempty sequence of digits digit digit*, which can be expressed as
PRED is number:

is digit, other digits.

ACTION other digits:
is digit, other digits;
+ .

This example is still quite unsatisfactory, because all computations take place as implied
side-effects. At this point it has become evident that we must introduce mechanisms for
manipulating objects, and for communication between algorithms.

1.3.1 Consistency of algorithms

The differentiation between algorithms that can or cannot fail, leads to consistency rules.

In a group, an alternative is executed when the previous one fails. Thus each alternative
that is not the last of a group must contain a test or a predicate in order to be able to
fail. A group can only fail if its last alternative contains a test or a predicate. When a
procedure is declared as being a test or a predicate, its body must be a group that can
fail. A function or action must have a body that cannot fail.

CDL3 differs from most programming languages in providing a tight consistency check
of programs — see Ch. 8.

1.4 Communication between algorithms

During the execution of a program, it must be possible to communicate information be-
tween algorithms. Generally speaking, programming languages provide three mechanisms
for such communication:

e input/output, which is slow, ponderous and ill-defined, suitable only for low levels
of interaction (or large quantities)

e global variables, with all their concomitant problems of unwanted access and side-
effects

e parameters and local variables, the most explicit and best defined mechanism.
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In CDL, parameters and local variables can be associated with an algorithm. Due to the
roots of this language in affix grammars [KOS71b] these are termed affizes. This term is
also used for the (global) variables, constants and types, which we will describe in the next
chapter. Each affix is denoted by a name.

1.4.1 Call with actual parameters

In calling algorithms, actual parameters can be supplied. The notation
alg ( PAR1 , PAR2 )

means that the algorithm alg is called with actual parameters PAR1 and PAR2. An actual
parameter can be a single affix or an affix expression, whose structure we will describe
later (see 2.1.2).

1.4.2 Formal parameters

In CDL, formal parameters must be specified according to their direction. Three direc-
tions are distinguished:

e input parameters, e.g. alg ( >INPAR )
Obviously, INPAR goes in.

e output parameters, e.g. alg ( OUTPAR> )
Here, OUTPAR goes out.

e transient parameters, e.g. alg ( >TRANSPAR> )
TRANSPAR goes both in and out.

Input parameters are passed by-value, i.e. upon entering the algorithm, each input param-
eter obtains a copy of the value of the corresponding actual parameter. In the body, the
input parameter is not supposed to be modified, but it is a local variable.

Output parameters are passed by-result, they are local variables whose values are copied
to the corresponding actual parameters upon leaving the algorithm successfully. Upon
failure, they are not copied.

Transient parameters are passed both by-value and by-result, in the sense given above.
This parameter mechanism resembles that of ALGOL W, rather than that of PASCAL.

The reasons for preferring call by value/result over call by-reference or call by-name
should be obvious: in an implementation language, the decoupling of calling and called
side is desirable in order to control side effects. Furthermore, (static) aliasing problem is
impossible. Thus, an implementation of CDL3 may use call-by-reference, if the hardware
makes this preferable (has good facilities for indirect addressing).

Language gourmets may further note that CDL3 also avoids the dynamic alias problem
by restrictions on composed actual parameters.

1.4.3 Local variables

Every variable occuring in a declaration which is not a bound variable (i.e. one of the
formal parameters) or a global variable (see 3.3.1) is considered as a free variable, local
to the declaration. The consistency checks ensure that local variables obtained accidentally
through typographic mistakes will be signaled.
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1.4.4 Syntax of algorithm-headings
The heading of an algorithm consists of the following elements in order:

e the type of the procedure
e the name of the procedure

e the (optional) formal parameters

An example of a heading containing all those elements is:
ACTION enter pair ( >HEAD , >TAIL , REF> )

It suggests that a pair (HEAD and TAIL) goes in, some global data is changed and a
REF comes out. A suitable heading for a procedure entering a pair into a global list and
returning a reference to it.

1.4.5 Example: is number

Suppose we already have a
PRED is digit ( D> )
with the properties:

e if the next symbol of input is indeed a digit

— the input is advanced by one symbol
— D gets the value of the last digit read, and

— 1s digit returns true
e if the next symbol of input is not a digit

— the input is not advanced
— the value of D is not defined, and

— is digit returns false.

We call such an algorithm an exact recognizer for digits, because it not only recognizes
a digit correctly, but also recognizes a non-digit as such without any effect on the input.

We can use it to build an exact recognizer for numbers, which computes the value of
the number as a side-effect while recognizing the number.

PRED is number ( VAL> )
is digit ( VAL ),
other digits ( VAL ).

ACTION other digits ( >VAL> ):
is digit ( DIG ),
append digit to val,
other digits ( VAL );
+ .

By itself this is a rather simple piece of program, but it contains one fuzzy spot: how can
we append a digit to VAL? We must perform some (elementary) calculation and we need
yet another mechanism that is called guard.
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1.5 Guards

The guards are the elementary algorithms of CDL3. They are confrontations between vari-
ables (see 2.1.6) and expressions (see 2.1.2). A guard is enclosed between square brackets. It
expresses a condition that must be satisfied between the values of variables and constants.

In order to satisfy this condition, the execution of a guard can give to a variable a value
that is computed (join guard) or just taken from another variable (assign guard). It
can also compare the value of a variable with the value of another variable (equal guard)
and fail if they are not equal, or compare the value of a variable with a constant (split
guard) and fail if they are not equal.

1.5.1 Arithmetic guards

By arithmetic guards we mean guards involving only affixes whose domain is the whole
numbers (integers). These provide a notation for arithmetic operations.

As an example append digit to val can be replaced by the join guard:
[ 10 * VAL + DIG -> VAL ]

Completing the previous example, we obtain:

ACTION other digits ( >VAL> ):
is digit ( DIG ),
[ 10 * VAL + DIG -> VAL ],
other digits ( VAL );

Examples of guards of the other kinds:
e assign the value of DIG to VAL:

[ DIG -> VAL ]
e compare DIG and VAL:

[ VAL = DIG ]

The comparison works only between variables, comparing their instantanious values.

e compare DIG and 9:
[ DIG -> 9 ]

This is actually a split. In the general case, the value of a variable is split into its
components.

In the next chapter, we will describe the type system of CDL3 and say more about
guards.

11



1.6 Classification of algorithms revisited

An algorithm has two (independent) attributes

e whether it returns a result (does it always succeed, or may it also fail)

e whether it has a global effect

By a global effect of an algoritm is meant “a change to the observable universe upon
its successful execution”. The philosophy of effects will later be described more precisely.
For the moment we will resort to the reader’s intuition, defining a global effect as: “a side
effect otherwise than through a parameter”.

Crossing these two attributes leads to four types of algorithms:

specification ‘ can fail ‘ has a global effect

TEST yes no
PREDICATE yes yes
ACTION no yes
FUNCTION no no

Let’s give some examples of headings of algorithms illustrating each type. They are all
abstract algorithms because they do not belong to the small set of concrete algorithms
built into the laguage, but can be expressed in term of them.

e TEST equal ( >X , >Y )
to test for numerical equality.

e TEST is small letter ( >X )
to determine whether the value of X is the code of a letter in lower case (e.g. in
ASCII: between 97 and 122).

e PREDICATE is number ( VAL> )
an exact recognizer for numbers, computing their value. It has an effect on the input.

e PREDICATE can pop ( X> )
returns false if the global stack is empty; otherwise it pops an element, assigning its
value to X and returns true. The effect is on the global stack.

e ACTION push ( >S , >X )
aborts if the stack S is already full; otherwise, pushes X onto S.

e ACTION print int ( >X , >WIDTH )
prints X in WIDTH positions. The effect is on the output file.

The fourth type, FUNCTION, may at first seem superfluous: no value returned, no global
effect. One possible application is to achieve effects that the programmer deems not to
form part of the process itself, e.g. tracing

e FUNCTION trace ( >X )
the current value of X is printed on a trace file.

The major application is, however, to achieve effects solely through the parameters, as is
usually the case in computations:

12



e FUNCTION add ( >A , >B , C> )
an addition in three-address style.

e FUNCTION make ( Y> , >X )
assign X to Y.

Notice that these two functions can be expressed directly by guards.

The programmer has some degree of freedom in specifying the type of his algorithms,
but is well advised to specify as exactly as possible: The specifications form the basis for a
semantic check on side effects, checking what the programmer says he wants to do against
what he actually does [FEU78]. More about this in Chapter 8 on static semantic checks.

1.7 Exercise

The following exercise is intended to test the reader’s familiarity with the notation intro-
duced, in particular the control structures.

Consider the problem of filling a pot with marbles. We may put another marble into
the pot by means of the action add a marble, and test whether it is full by one of the
tests pot is full or pot is not full. Now write actions £ill the pot, according to
each of the two following schemas (expressed in ELAN):

1. PROC f£ill the pot:
WHILE pot is not full
REP
add a marble
ENDREP
ENDPROC;

2. PROC £ill the pot:
REP
add a marble
UNTIL pot is full
ENDREP
ENDPROC;

1.8 Syntax summary

We summarize the syntax introduced in this chapter.

procedure

4{ procedure—head }—@—{ alternatives }—@—>
formal—parameter

procedure—head

Y

4{ procedure—type }—{ nonterminal-name }
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procedure—type

. PRED ‘

FUNCTION

TEST

formal—parameter

input—parameter

output—parameter

1

transient—par ameter

input—parameter

output—parameter
S

transient—parameZer

SRS

The following rule is simplified: see 7

alternatives

alternative

@

"{ second—pass
“‘{ operator J
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group

(O —ftemais ()

member
call

4{ nonterminal-name }

parameter

parameter

variable

affix—expression

operator

failure—operator

success—operator

abort—operator

—

failure—operator

©

success—operator

®

abort—operator

©
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guard
C confrontation »

confrontation

assign

join

4{ arithmetic—expression H - H variable }7
split

4{ variable H - H arithmetic—expression }7
assign

4{ variable H - H variable}i

equal

Hvariable H = H variable}i

arithmetic— expression

arithmetic—term

arithmetic—operator

arithmetic—term

number

arithmetic—operator

—~

—~

%

o %

A
A

\
\

L

R
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name
-name

nonterminal—name

'.

embedded—space

embedded—space

o7

variable

4‘ affix—name
number

affix—name

T—{ capital—letter }—T
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Chapter 2

Objects and types

CDL3 provides the means to declare types, whose domains are tree structures, as well as
variables and constants of these types and the operations to manipulate them.

2.1 Defining affixes

2.1.1 Affixes

A nonterminal affix, composed of capital letters, denotes a type. Furthermore it may
serve as an affix variable, standing (as a name) for some object of that type. In the latter
case it may optionally be followed by a number to distinguish different instances of the
nonterminal affix, eg EXPR and EXPR1.

A terminal affix denotes a constant value of some type. It consists of small letters.
Spaces may be used to enhance readability.

A terminological remark: in the sequel, when there is no ambiguity (for example when
there is another adjective), we will simply use the word affix for a nonterminal or a
terminal affix.

2.1.2 Affix expressions

An affix expression is a sequence of affix variables and terminal affixes. It serves to
denote a tree pattern according to the metarules. Each affix variable denotes a subtree of
the corresponding type, and a terminal affix denotes a leaf.

Affix expressions are used to define possible tree patterns in a type definition or to
represent effective tree structures in the algorithms. In the latter case, it can also contain
arithmetic and text expressions.

2.1.3 Metarules

Every affix must be defined by a metarule, which consists of the nonterminal affix to be
defined followed by a double colon, a list of meta-alternatives separated by semicolons and
followed by a period. A meta-alternative is an affix expression. The semi-colons can be
read as “or”.

A metarule defines a domain which is the union of the domains of its alternatives.
The domain of an alternative is the collection of tree structures conforming to it (2.1.5).
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Examples

A list of names can be defined by:
LIST :: empty ; NAME LIST .
and a nonempty list by:
LISTP :: conc NAME LISTP ; NAME .

Notice that the marker conc is redundant, it merely serves to enhance readability.

In the next sections, we will develop a fragment of a translator of arithmetic expres-
sions. Notice that, in this example, the term expression will concern the translator being
developed, while the term affix expression will concern CDL3.

In our example, the abstract syntax tree (see 6.6) of an expression shall be either a
name denoting a variable, or an integer constant, or an expression composed of an operator
and two subtrees that are expressions:

EXPR :: var NAME ; const INT ; EXPR OP EXPR .

Notice that in each of these examples the last alternative has no marker.
OP :: plus ; minus ; mult ; div .

defines OP as an enumeration of alternatives that consists only of a marker.

We have now introduced the affixes LIST, LISTP, EXPR and OP which can be seen as
four different types.

2.1.4 Synonyms

In order to enhance readability, an affix can have a number of synonyms. They may be
stated at the beginning of a metarule, separated by commas. They may also be declared
by a synonym rule, that is an affix rule with the symbol = instead of : :.

Furthermore synonyms can be declared implicitly: an affix variable consisting of an
affix nonterminal followed by a number is a synonym for that affix nonterminal.

Examples

We can introduce E as a synonym for EXPR by:
E, EXPR :: var NAME ; const INT ; EXPR OP EXPR .

or by:
EXPR :: var NAME ; const INT ; EXPR OP EXPR .
E = EXPR .

E1l and E1789 are implicit synonyms of E, therefore of EXPR.

This mechanism can in particular be used to make ”sugared” versions of the predefined
types INT and TEXT. As an example, COUNTER = INT. introduces a name for integers to
be used as counters.

Notice that the rule:
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E :: EXPR .

does not define a synonym but defines E1 as being a new type whose domain happens to
be the same as that of EXPR (strong abstraction).

2.1.5 Conforming affix expressions

An affix expression is said to conform to a given affix if that affix expression has the
same structure as an alternative of the metarule that defines the affix or a synonymous
affix. It means that there must be the same terminal affixes in the same places and the
same affixes or synonymous affixes (or conforming subexpressions, see 2.2.2) in place of
the nonterminal affixes

Example

E1 OPO E2 conforms to EXPR.

const O plus var "x" conforms to EXPR.

2.1.6 Variables

In an algorithm declaration, an affix denotes a variable, i.e. an object of that type which
can receive a value. The set of possible values of a variable is given by the corresponding
metarule. There are global variables whose scope is a module (see 3.3.1), and formal
parameters and local variables whose scope is the rule where they are declared.

2.2 Guards

In order to build trees and to travel through them, we will use guards. In those guards,
we use affix expressions that describe the structure of the trees that we want to build or
the expected structure of the tree that we traverse.

2.2.1 Classification of guards

There are four sorts of tree guards: join, split, equal and assign.

2.2.1.1 Join guards

To build a tree we use a join guard:
[ var NAME -> EXPR ]

builds an expression tree that contains only a given variable name.
[ EXPR1 OP EXPR2 -> EXPR ]

builds an expression tree with an operator and two subexpressions.

The affix expression must conform to one of the alternatives for the affix on the right
hand side of the join guard. All variables occuring in the left hand side of the join guard
must have already a value so that the tree that is built will be completely known. Then
the guard always succeeds and as it has no hidden side effects, it is a function.
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2.2.1.2 Split guards

To explore a tree we use a split guard. This guard confronts the actual value of a variable
with an affix expression.

Examples

[ EXPR -> const INT ]

looks whether the tree which is the value of EXPR contains only a constant and assign the
value of that constant to the variable INT. The guard fails when the tree has a different
structure.

[ EXPR -> EXPR1 OP EXPR2 ]

looks whether the tree value of EXPR is an operator expression and assigns the values of its
components to EXPR1, OP and EXPR2 respectively. The guard fails if the tree has another
structure.

Since the guard can fail when a tree has several possible structures, it is a test. When
a tree has only one possible structure, the guard is a function. This is the case in the affix
rule:

VARDEF :: NAME TYPE .
The following split guard is a function:
[ VARDEF -> NAME1 TYPE1 ]

The guard has no chance to succeed if the affix expression has not a possible structure
for the variable. Then the CDL3 compiler will report an error if the affix expression does
not conform to the affix.

2.2.1.3 Assign guards

The assign guard simply gives to a variable the value of another variable.

Examples

[ EXPR -> EO ]

The two variables must be synonymous affixes, and the guard always succeeds.

2.2.1.4 Equal guards

The equal guard is used to compare the values of two variables for equality.

Examples

[ EO = EXPR ]

This sort of guard is obviously a test. The variables must be synonymous affixes and
have already a value.
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2.2.2 Subguards

The join and split guards contain an affix and a conforming affix expression. It means that
only one affix rule is concerned by a given guard. Then only one tree node is concerned
by a guard.

It can be practical to work on several tree nodes in the same guard. This is possible
by the use of subexpressions that denote subguards embedded in a guard.

2.2.2.1 Double join

To build a tree that represents the arithmetic expression 1 + EXPR, we must build an EXPR
node const 1, an OP node plus and use them to build another EXPR node:

[ const 1 plus EXPR -> EO ]

2.2.2.2 Double split

The optimisation of constant expressions may contain a test to see if a given expression is
composed of two constants linked by a plus operator. Then the sum of the two integers is
computed and gives the simplified expression:

[ E -> const INT1 plus const INT2 ] ,
[ const INT1 + INT2 -> EXPR ]

Notice also the embedded arithmetic join:

[ INT1 + INT2 -> INT ]

2.2.3 Directions in guards

The variables appearing in a guard can be seen as arguments of predefined elementary
algorithms. The direction of the corresponding formal parameters is summarized in the
following figure:

position of the variable in the guard
sort of guard | left hand side ‘ right hand side
join input output
split input output
assign input output
equal input input

In a join or split guard, the variable of the left hand side can also appear in the
expression of the right hand side. Then is has to be seen as a transient parameter.

2.2.4 Affix expressions as parameters

It is possible to use an affix expressions (rather than a single affix) as actual parameters.
In that case an implicit join will be executed just before parameter passing (for an input
parameter) or an implicit split just after it (for an output parameter), or both for a
transient parameter.

Notice that a split implies a test and therefore a call to an action or a function can
imply a test!
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Examples

Assuming the definition
ACTION expression tail (>EXPRO,EXPR>):

in the call expression tail( EXPRO plus EXPR1 , EXPR ) the evaluation of the input
parameter implies a join.

2.2.5 Type consistency

In the course of the preceeding explanations, some type conditions have already appeared:

1. in a split or join guard, the affix expression must conform to the affix;

2. in an assign or equal guard, the affixes must be synonymous.

2.3 Information flow

As seen above, the direction of the parameters in an algorithm call is known as well as
the direction of informations in a guard. This allows the compiler to check the coherency
of the affix flow according to the following CDL philosophy.

2.3.1 Defining/applying positions

An input parameter receives a value at the start of the rule. Similarly, a variable will
receive a value when passed as an output argument to a call or in an output position in a
guard. Such positions are called defining positions.

Similarly, an input argument position and the return from a rule for an output param-

eter are called applying positions.

A transient argument position must be seen as both an applying position and a defining
one. A transient formal parameter has a defining position at the start and an applying
position on return.

Example

ACTION expression ( EXPR>):
is term (EXPR1), expression tail (EXPR1, EXPR).

ACTION expression tail (>EXPRO, EXPR>):
is symbol("+"
term(EXPR1) ,
expression tail( EXPRO plus EXPR1 , EXPR ) ;
[ EXPRO -> EXPR ]

EXPRO is defined on the entrance of the rule and applied in the recursive call and in the
assign guard;

EXPR1 is defined on return from term and applied in the recursive call;

EXPR is defined on return from the recursive call or in the guard, depending on the
alternative used; it is applied on return from the rule.
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2.3.2 Affix flow rules for local variables

The CDL philosophy for the use of variables is simple: the computation takes place from
left to right, i.e. in a rule each local variable or parameter must have, in any alternative
where it appears, a defining position before any applying position. That implies that you
can not use in an alternative a value computed in a previous alternative. This is the rule
of independency of alternatives.

Example
The affix flow in the above example can be shown for the first alternative:
ACTION expression tail (>EXPRO,EXPR>):
is symbol("+"), term(EXPR1),
expression tail (EXPRO plus EXPR1,EXPR);
[ EXPRO -> EXPR ]
and for the second alternative:
ACTION expression tail (>EXPRO,EXPR>) :
is symbol("+"), term(EXPR1),
expression tail (EXPRO plus EXPR1,EXPR);

[ EXPRO -> EXPR ]

2.3.3 Consistent substitution

The grammatical origin of CDL3 explains the rule that alternatives must be independent.
In a grammar each alternative is defined independently from the others and a variable
has a meaning only for one alternative. Furthermore, a variable has only one meaning in
an alternative; for a given call, a variable represents always the same value : that is the
consistent substitution rule of two-level grammars.

A CDL3-program is L-attributed: the flow-of-information within a procedure body is
strictly left-to-right. No information can be passed from one (failed) alternative to the
next.

A major concern in writing large grammars (as in writing large programs) is the large
number of affixes to be passed explicitly from one part of the grammar to others. This
communication overhead, resulting from the explicit applicative character of grammars,
has to be overcome in order to obtain a practical notation for programming.

That is why we introduced also transient parameters, which may seem to violate the
consistent substitution rule. Consider:

b
ACTION p (>X;, X3>):

X1, X9), b (X9, X
a(‘1_,f2)7 (U)

Purely as a shorthand for such pairs of parameters, winding their way through the
calls, we also admit transient parameters, written
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ACTION p (>X>): a(X), b(X).

Example

the previous rule can have a transient parameter that carries the tree being built:

ACTION expression tail (>EXPR>):
is symbol("+")
term(EXPR1) ,
[ EXPR plus EXPR1 -> EXPR ] ,
expression tail (EXPR) ;

2.3.4 Modifying input parameters

An input parameter can be modified, but as its value is not passed on return from the
procedure, this modification will not affect the corresponding argument. Thus an input
parameter can be seen as a local variable initialized by the value that is passed when
calling the procedure.

2.3.5 Global variables

Similar rules are to be applied to global variables (see 3.3.1): they must get a value be-
fore being used, and you must not use in an alternative a value computed in a previous
alternative.

The initialisation of global variables is not checked, but the module prelude facilitates
its placing (see 3.3.4). The alternative independance is enforced by the prohibition of
defects (see 4.2.3): you must not modify a global variable when the actual alternative can
still fail.

2.4 Predefined types

2.4.1 Integers

We already introduced in the previous chapter integer variables. The concrete type INT
might have been defined in term of trees storing the unary representation or of some other
representation of the natural numbers. But then the definition of the arithmetic operations
would have to be done in term of tree operations and that would not allow us to use the
simplicity offered by the hardware. So the type integer is predefined in CDL3 and we can
use the usual arithmetic expressions.

Example

To complete the example of the previous chapter, VAL and DIG have to be defined as
synonymous of INT.

VAL, DIG = INT .
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2.4.2 Texts

Similarly, the concrete type TEXT could have been defined as a list of characters. But the
concatenation would then have been a very slow operation. Therefore there is a predefined
type TEXT with affix expressions that have a special meaning: an affix expression that
contains only text variables and constants separated by plus signs (+) will be executed as
a concatenation of the texts.

Example

NAME = TEXT .

defines an affix that can be used for text variables.
[ NAMEO + ".log" -> NAME ]

concatenates the value of NAMEO and the suffix ".1log" and puts the result in NAME.

2.5 More on type checks

The conformity check of an affix expression versus a nonterminal affix is a strong type
check. It means that when an affix is expected we must put precisely that affix, a synonym
or an expression conforming to that affix.

As a normal meta-rule (::) does not define a symetrical relation, we must declare
precisely what we want to allow. With the meta-rules:

E, EXPR :: var NAME ; const CONST ; EXPR OP EXPR .
CONST :: INT.

const CONST conforms to EXPR and const INT also does because INT conforms to CONST.

But with the meta-rules:

E, EXPR :: var NAME ; const INT ; EXPR OP EXPR .
CONST :: INT.

const INT conforms to EXPR but const CONST does not.

In this case it is possible to force CONST as being temporaryly considered as a synonym
of its right hand-side INT by prefixing it by an exclamation point. Then const !CONST
conforms to EXPR.

2.6 Example: Association lists

As an example, we shall show how to define an abstract data type in CDL3.

By an association list we mean a set of pairs <KEY, ELEMENT>, such a pair indicating
that the ELEMENT is associated with the KEY. A set of pairs is either empty or it is composed
of a pair and another set.

This (recursive) definition of association list can be expressed straightforwardly in
CDL3:

ALIST :: empty ;
KEY ELEMENT and ALIST.
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The terminal affix and is not really necessary, it has been interpolated in order to enhance
the readability of the affix expression for human eyes. It should be noticed that this
embellishment is not paid for by extra storage: in the internal representation of ALISTs it
will not be present.

As types for both KEY and ELEMENT we take texts:
KEY, ELEMENT :: TEXT.

We now implement the operations necessary to obtain the conventional datatype ALIST.

Denotation of the empty list and test for emptyness are particularly simple:

FUNCTION empty list(ALIST>):
[empty->ALIST] .

TEST is empty list(>ALIST):
[ALIST->empty] .

The access operations are tests, due to the fact that the list may be empty.

TEST head (>ALIST,KEY>,ELEMENT>):
[ALIST-> KEY ELEMENT and ALIST].

TEST tail (>ALIST>):
[ALIST-> KEY ELEMENT and ALIST].

The operation for entering a pair into an association list will

1. add the pair, if no pair with the given key is present, or

2. replace the element associated with this key by the new one, if the key is already
present.

It ensures in this way that keys are unique.

FUNCTION enter (>ALIST>,>KEY,>ELEMENT):
[ALIST->KEY1 ELEMENT1 and ALIST1],
([KEY=KEY1],
[KEY ELEMENT and ALIST1->ALIST];
enter (ALIST1,KEY,ELEMENT),
[KEY1 ELEMENT1 and ALIST1->ALIST]);
[KEY ELEMENT and ALIST->ALIST].

The operation to search in a list for the element with a given key should

1. return the element wanted, in case it is present in the list

2. fail, in case it is not present.

This can be expressed much better in CDL3 than in more conventional algorithmic lan-
guages:
TEST is in 1ist (>ALIST,>KEY,ELEMENT>):
[ALIST->KEY1 ELEMENT and ALIST1],

([KEY=KEY1];
is in 1list(ALIST1,KEY,ELEMENT)).
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We also add an operation to delete the element with a given key (if present):

FUNCTION delete from 1list(>ALIST>,>KEY):
[ALIST->KEY1 ELEMENT1 and ALIST],
([KEY=KEY1];
delete from 1list(ALIST,KEY),

[KEY1 ELEMENT1 and ALIST->ALIST]);
+.

Notice the use of an empty alternative, indicated by +.

Exercises

1. Improve this rather rudimentary implementation by realising the set as an ordered
list.

2. improve it still more, by realising the set as a search tree (an ordered binary tree).
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Chapter 3

Modules

In this chapter we describe the structure-in-the-large (see [DRE75]) of CDL3. Due to the
presence of modules with interfaces, the language is eminently suitable for the Bottom-
UP programming style, involving the programming of abstract datatypes (ADT’s),
as well as modular programming.

In this chapter, we will focus on the distinction between concrete and abstract data-
types, and the implementation of ADT’s in CDL3. We will introduce a further concrete
datatype, the array, which allows the efficient implementation of ADT’s and give a number
of typical examples.

3.1 Abstract and concrete datatypes

By a datatype (or type, for short) we mean a collection of values together with a number
of operations on them.

Large data structures, of which in general only one instance exists (such as the symbol
table in a compiler) are made visible only as a set of access algorithms. Objects of which
more than one instance exists are either small (in the sense that they can conveniently fit
into one word) or they are components of a larger data structure and access to them may
well be provided through a small object (e.g. a pointer into a table).

Take stacks, as an example: preferably, the number of stacks used in a program should
be at most two (for obvious engineering reasons). If we are in a situation where we have
to deal with more than two stacks, it is just as much work to implement n stacks as it
is to implement three: we may build an administration suitable for dynamically creating
and manipulating any desired number of stacks, or even a stack of stacks, involving quite
some hidden memory management. Each individual stack we will access through a pointer
(either to its top or to some control block). Again the interface to such a data structure
involves only access algorithms and small objects, which will conveniently fit within an
affix.

In the sequel we will give a number of examples to elucidate this philosophy of data
structures and its consequences.
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3.2 Abstract datatypes

3.2.1 domain

3.2.2 denotation

3.2.3 construction or building-operation
3.2.4 acces-operation

3.2.5 representation-independence

3.2.6 signature
3.3 Modules in CDL3

Uncritically introducing a notation for global variables on top of the grammatical for-
malism is unsatisfactory, both from a formal viewpoint and from Software Engineering
considerations.

In CDL3 a module is considered as an abstract data type that has precisely one
instance. Since there is only one instance of it, the module need never be passed explicitly
as a parameter.

The signature of the module is determined by its interface. The interface of a module
specifies all its exported procedures and types, as well as the modules which will be used
by this module.

As an instance of an abstract datatype, a module can contain local state information,
in the form of global variables.
3.3.1 global variables

In CDL3, global variables can only be introduced in separate modules.

A module consists of one structured object (a special affix expression comprizing all
its global variables) and the definitions of procedures and types to handle this object. The
global variables are invisible transient parameters to all the procedures exported by the
module and recursively of the procedures that call those procedures. Their introduction
again serves to get rid of stereotypical parameters, and gain some security in the bargain.

example

MODULE lexico = buffered LINE.

The module has one global variable, named LINE.

3.3.2 interfaces

A module defines some exported meta-rules and procedures whose left-hand sides are
given in a specification-list.
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example

DEFINES TEST ahead (>TEXT),
PRED is (>TEXT),
ACTION should be (>TEXT),
IDF,
PRED is identifier (IDF>),
TEST is end of source.

The modules exports five procedures and a type. Notice that, since is identifier has a
parameter of type IDF (a synonym for INT), we must also export that type, otherwise it
would be impossible to call this rule.

3.3.3 import
To import the procedures and types defines by a module we simply write that we use

that module.

example

Any module needing something from the module lexico will contain the line

USES lexico.

3.3.4 Preludes and postludes

A module may have special procedures, the preludes, interludes and postludes of the
module, which will be called respectively at the begining, before the second pass (see 7.4.1)
and at the end of the execution of the program.

The introduction of preludes and postludes allows to factor out the initializations and
finalizations from the program. The programmer need not worry globally about propagat-
ing and calling initializations and finalizations, and can concentrate on the main algorithm
(separation of concerns).

Notice that the global variables are implicit parameters (respectively output, transient,
input) of the preludes, interludes and postludes.
3.3.5 root module

The root (main procedure) is contained in a root module. Normally this module begins
by ROOT followed by the name of the root. This root must not fail and must not have
parameters.

example

The root module of the interpreter (see 6.3.2) begins by

ROOT program.

The CDL3 compiler is called with the name of the root module as a parameter. By
means of the USES section, it finds which modules must be compiled together with the
root module.
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3.4 Example: lexical module

As a simple example of a module, just to show the notation used, we will provide a set of
lexical analysis procedures for parsing-like purposes.

MODULE lexico = buffered LINE.

DEFINES TEST ahead (>TEXT),
PRED is (>TEXT),
ACTION should be (>TEXT),
IDF,
PRED is identifier (IDF>),
TEST is end of source.

No other modules are used by this one, so there is no USES-part.

LINE, IDF = TEXT.

PRELUDE read buffer:
read line(LINE), skip layout;
[ "" -> LINE ].

The predefined PREDICATE read line(TEXT>) attempts to read one line of text from the
input file (usually standard in) and will fail at the end of the file. The line will end on
a new-line character, according to UNIX conventions. Therefore LINE can only obtain an
empty value through an explicit assignation, used here to indicate that an end-of-file has
been found.

TEST is end of source:
[LINE > " u]

TEST ahead (>TEXT):
is prefiX(TEXT, LINE, LINE1).

PRED is (>TEXT):
is prefix(TEXT, LINE, LINE), skip layout.

The TEST is prefix (> TEXT1, >TEXT, TEXT2>) is a predefined operation, which suc-
ceeds if the value of TEXT1 is a prefix of TEXT, and yields the rest of TEXT as TEXT2; a
conditional dis-concatenation.

ACTION should be (>TEXT):
is (TEXT);
write (TEXT + " expected").

The concatenated texts are written to standard out.
ACTION skip layout:
iS (u n) ;

is prefix("\n", LINE, LINE), read buffer;
+.

L, D = TEXT.
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Some more synonyms for TEXT.

PRED is identifier (L+IDF>):
is letter(L), identifier tail(IDF).

ACTION identifier tail (IDF>):
is letter (L), identifier tail(IDF), [ L+IDF ->IDF ];
is digit (D), identifier tail(IDF), [ D+IDF ->IDF ];
skip layout, [ "" -> IDF ].

PRED is letter(L>):
prefix(LINE, 1, L, LINE1l), between(L, "a", "z"),
[LINE1 -> LINE].

The predefined function TEST prefix(>TEXT, >INT, TEXT1>, TEXT2>) puts the first
INT characters of TEXT into TEXT1 and the rest into TEXT2. The TEST between (>TEXT,
>TEXT1, >TEXT2) checks whether the value of TEXT lies between that of the other two
(inclusive).

PRED is digit(D>):
prefix(LINE, 1, D, LINE1l), between(D, "O", "9"),
[LINE1 -> LINE].

3.5 The ARRAY constructor

In CDL3, arrayss are introduced as a changeable mapping from integers to affixes.
This provides a convenient mechanism for the construction of datastructures, in which the
integers play the role of pointers.

3.5.1 Array declaration

A global variable can be declared as an array i.e. a collection of affixes of the same type
that are accessed via an integer index. This feature is allowed only for global variables,
i.e., it cannot be used for free variables or parameters. To declare an array, just put {}
after its name in the global variables list.

Example

MODULE graph = NODE{ } ACTIVE{ }.
DEFINES NODE, ARC, NODENR,
blabla.

NAME = TEXT.

NODE :: node NAME ARCS.
ARCS :: ARC ARCS; empty.
ARC :: arc NAME to NODENR.
NODENR :: INT.

ACTIVE:: yes;no.
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3.5.2 Length of an array

An array has at each moment a number of elements, its length, which is initially zero.
Each element is numbered by an index >= 1 and <= the length of the array, and is of
the parameter type of the array.

An array is automatically extended at the high-index end whenever we initialise an
element that did not exist before (whose index is > the length of the array).

There is no a priori limit on the number of elements of an array (implementation as a
logarithmic list).
3.5.3 access

The element with a given index INT can be accessed by

ARR{INT}

3.6 Examples

3.6.1 A binary tree

The nodes of a binary tree are put in an array: the successors of the node at position NR
are put in positions 2 NR and 2 NR + 1.

MODULE tree=NODE { }.

DEFINES KEY,
ACTION enter (>KEY),
TEST find (>KEY).

KEY = TEXT.

NR = INT.

NODE :: empty;
KEY.

Notice that the type NODE is not exported.

PRELUDE empty tree:
[ empty->NODE{1} ].

ACTION enter (>KEY):
enter (1, KEY).

ACTION enter (>NR, >KEY):
[ NODE{NR}->KEY1 ],
([ KEY=KEY1 ];
before (KEY, KEY1),
enter (NR*2, KEY);
enter (NR*2+1, KEY));
[ NODE{NR}->empty ],
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[ KEY->NODE{NR} 1],
[ empty->NODE{2*NR} 1],

[ empty->NODE{2*NR+1} 1;
v.

Notice that the children of a node at the front of the tree obtain welldefined (empty)
values. The algorithm is written such that it can never acces an uninitialized element of
the array. The third alternative (abort) is therefore logically superfluous, but it is included
as a safeguard against possible stupid modifications by others in the future.

TEST find (>KEY):
find (1, KEY).

TEST find (>NR, >KEY):
[ NODE{NR}->KEY1 ],
([ KEY=KEY1 ];
before (KEY, KEY1),
(find (NR*2, KEY);
-);
find (NR*2+1, KEY));
[ NODE{NR}->empty ],

b

7.

A small driver to exercise our search tree:

ROOT index.
USES tree.

ACTION index:
write (">"),
read line (TEXT),
do (TEXT),
index;
+.

ACTION do (>TEXT):

is prefix ("+", TEXT, KEY),
enter (KEY);

find (TEXT),
write ("Found "),
write (TEXT);

write ("Could not find "),
write (TEXT).
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Chapter 4
Syntax-Driven programming

In this chapter we will be concerned with the construction of parsing procedures in CDL3.
In this way we will illustrate the notion of syntax-driven programming.

4.1 Context-Free Grammars and their notation

We start out from the well-known BNF notation for Context-Free grammars. A grammar
for a fragment of the English language might, in this notation, look like

(sentence) ::= (subject) (verb) (object)
(subject) ::= the man | the dog

(verb) ::= bit

(object) ::= the man | the dog | his wife

This grammar consists of four rules. The words enclosed between angled brackets are the
nonterminal symbols, serving as names for concepts. Words occurring without such
brackets are to be taken literally, they are called terminal symbols. The curious sign ::=
separates the left-hand side from the right-hand side of a rule. A right-hand side consists
of one or more alternatives, separated by a vertical bar. an alternative is a sequence of
members. Productions of one same left-hand side can be taken together, separating the
alternative right-hand sides by a vertical bar.

Given a BNF grammar for some language, we can generate sentences of the language,
check whether a given string is a sentence of that language, determine the structure of a
sentence and depict its structure.

4.1.1 Generating

Following this grammar, we can generate sentences like: “the man bit the man” or “the
dog bit the man”.

Starting from the nonterminal symbol (sentence), we repeatedly substitute for some
nonterminal symbol one of its alternatives (doing one derivation step), e.g.:

(sentence)
— (subject) (verb) (object)
— the man (verb) (object)
— the man bit (object)
— the man bit the man
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This generation process stops when there is no further nonterminal symbol to be substi-
tuted for. We have then derived from the initial symbol (sentence) by repeated derivation
steps according to the grammar a sequence of (zero or more) terminal symbols, a sen-
tence.

At any point in the generation process we have a string of terminal and nonterminal
symbols (a sentential form) from which we may choose any nonterminal for the next
derivation step. The order in which derivation steps are performed is immaterial. In the
example we have always chosen the leftmost nonterminal (it is a leftmost derivation).

4.1.2 Drawing syntactic structures

A pictorial representation of the derivation of a sentence, in the form of a tree whose root
is the initial symbol, whose nodes are marked with nonterminal symbols and whose arcs
represent the derivation applied, is called a syntax tree or parse tree. A simple example
is shown in figure 4.1.

(sentence)

TN

(subject) (verb) (object)

the man bit his wife

Figure 4.1: A syntax tree

Notice that the syntax tree abstracts away from the derivation order. All possible
orders lead to the same syntax tree.

4.1.3 Analysis

The reverse of the derivation process is called analysis. We can try to recognize whether
a given sequence of symbols is a sentence. Furthermore, if it is a sentence, we can parse
it to build a syntax tree, according to the rules of the grammar. Obviously, recognition
is a less ambitious process than parsing, since it gives only a yes/no answer and does not
attempt to build up a syntax tree. In the next section we will introduce a simple and
well-known parsing technique.

4.2 Recursive Descent parsing

Assume the following grammar, consisting of only one rule:
(sentence) ::= a (sentence) | b (sentence) | #
This grammar generates the infinite language

L = {#, a#,b#, ab#,ba#, aa#, ...}

A naive recognizer for this language can be obtained by writing a CDL3 predicate:
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PRED is sentence:
is letter a symbol, is sentence;
is letter b symbol, is sentence;
is hash symbol.

This can be seen as a procedure yielding a Boolean value, which calls upon three other
procedures (is letter a symbol, is letter b symbol, is hash symbol) which each
recognize the symbol that their name suggests: is letter a symbol should have a real-
ization like

if next character of input="a"
then increment input pointer and yield true
else yield false

An input sentence like ab# would be recognized in the following fashion (in this trace
the > sign before a name denotes calling the procedure of that name; the + sign denotes
returning successfully, the - sign denotes returning with false).

> is sentence
> is letter a symbol
+ is letter a symbol a
> is sentence
> is letter a symbol
- is letter a symbol
is letter b symbol
is letter b symbol b
is sentence
> is letter a symbol
- is letter a symbol
> is letter b symbol
- is letter b symbol
> is hash symbol
+ is hash symbol #
+ is sentence
+ is sentence

vV + Vv

+ is sentence

This simple example might lead one to believe that any Context-Free grammar can
be recognized by a (recursive) combination of recognizers. This, unfortunately, is not the
case.

Let us follow a trace of calls for the input abx#

> sentence
> is letter a symbol
+ is letter a symbol a
> is sentence
> is letter a symbol
- is letter a symbol
is letter b symbol
is letter b symbol b
is sentence
> is letter a symbol
- is letter a symbol
> is letter b symbol
- is letter b symbol
> is hash symbol
- is hash symbol

vV + Vv
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- is sentence
- is sentence
- 1is sentence

The recognizer fails, as indeed it should, but a and b have been read. Why is this a
problem?

4.2.1 Backtracking

Some terminology: A predicate x is a recognizer for some nonterminal if, in case the
input starts with a terminal production of that nonterminal, the predicate will consume
that production from the input and return true, whereas otherwise it returns false.

An exact recognizer is a recognizer that, upon returning false, leaves the input as it
was.

Assume the following, even simpler grammar
(x) ==ab]c

Obviously,
L(z) = {ab,c}

We assume that we possess exact recognizers for a, b and c and construct the correspond-
ing recognizer

PRED x : a, b; c.
This naive recognizer will unfortunately recognize the language
L'(z) = {ab, c,ac}

which was obviously not our intention.

Two possible solutions offer themselves:

e The first is to use a different type of parser, which performs explicit backtracking
to reset the input. It could work schematically as follows

PRED x:
a, ( b; backtrack over a, c ); c.

Such a backtrack parser may however be extremely inefficient and, what is worse,
for many grammars it may still allow unintended parsings. Better parsing strategies
are available,but we will not pursue this possibility here.

e To introduce error productions.

Upon looking more closely at the problem, we notice that once an a has been recog-
nized, a b should always follow. If a b does not follow, we know the input is incorrect.
We will report this fact to the outside world by adding an error production :

PRED x :
a, (b; report error); c .

We will therefore be constructing recognizers with three possible outcomes:
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e If it returns true without giving an error message, it has successfully recognized a
sentence.

e If it returns false, it has not succeeded in recognizing a sentence and we know for
sure that there was no sentence to recognize.

e If it returns true after having given an error message, it has successfully recognized
an incorrect input as incorrect, which is equivalent to the second case.

A more fundamental way of looking upon this solution is to notice that we have extended
the language with the collection of all erroneous strings, and that all erroneous strings will
be reported as such.

We actually have now a three-valued recognizer. Of course the second and third alter-
native can easily be combined to give a two-valued exact recognizer.

4.2.2 Constructing a recursive descent recognizer

Let us extend the previous grammar with error productions.

PRED is sentence:
is letter a symbol,
( is sentence;
error ("Incorrect sentence") );
is letter b symbol,
( is sentence;
error ("Incorrect sentence") );
is hash symbol.

We will distinguish two styles of recognizers. The previous example is a recognition pred-
icate, with its error productions it is rather complicated. Another style for expressing the
same is in the form of recognising predicates (whose name will conventionally start
with is) and recognising actions (whose name will start with should be).

ACTION should be sentence:
is letter a symbol, should be sentence;
is letter b symbol, should be sentence;
is hash symbol;
error ("Incorrect sentence").

The second procedure is a recognizer for the language we intended. For incorrect input it
gives an error message (upon which the state of the input is immaterial).

The recognition procedures obtained in this way form a recursive descent parser,
which will work correctly for all CF grammars satisfying the so-called LL(1) restriction
[ASUS86|, which can be summarized as follows:

1. Each alternative of a rule should have a different one-symbol look-ahead (so that
the choice between alternatives can always be made on the basis of the next symbol
of input).

2. Only one of the alternatives of a rule may have an empty terminal production (since
this always succeeds) and this alternative should come last.
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Given a CF grammar satisfying the LL(1) property, it can be turned into a recursive
descent recognizer by doing the following recognizer construction:

e specify the root of the grammar as ACTION

e specify each rule having a nonfailing alternative (producing empty or calling only
actions) as ACTION

e specify the remaining rules as PREDICATE
e put the resulting CDL3 program through the translator

e make a suitable error production for each defect reported

until all defects have been eliminated.

This process is so simple that no further compiler generation tool is necessary to
construct recursive descent parsers for LL(1) grammars in CDL3.

4.2.3 When is an error production necessary?

For the sake of the discussion, assume a production rule
(x) i= ... (p) ...

with its corresponding recognizer

PRED is x : ... , is p,

In this alternative is p is a predicate. Obviously, before this predicate we can allow only
tests and functions, since they have no side effects. After this predicate, we cannot allow
the alternative to fail, so we can allow only actions or functions. At any rate, there may
never be two predicates in one alternative, because that is sure to lead to a backtrack
situation.

Let us give the name activity to any change in the observable environment. Of course
what constitutes the observable environment (global variables, files or output media) is a
matter of arbitrary human decision. In the context of parsing, the activity we are mainly
interested in is the consumption of the input.

We will use the term effect for an activity upon success and the term defect for an
activity upon failure. The backtrack philosophy of CDL3 is very simple: all defects are
forbidden!

There is, as it were, a positive trace along which all intended computations lie. There
should be no activities other than on this positive trace through the computation.

4.3 Sketch of a small interpreter

As an exercise we will sketch the structure of a small interpreter. In this process we will
introduce other CDL3 constructs, so that the original syntactic motivation of the language
becomes clear.

The interpreter will serve to recognize and execute straight-line programs in a toy
language with the following syntax:

44



(program) ::= (statement sequence) .

(statement sequence) ::= (statement) ; (statement sequence) | (statement)
(statement) ::= (assignation) | (write command)

(assignation) ::= (variable) = (expression)

(variable) :==a |b|c|d|e|f]g|h|i]jlk|]l]|m|

nfolplalrfsftlulv|w]|x]|y]|z
(write command) ::= ! (variable)

The syntax of (expression) will be dealt with later (in 4.3.3). The semantics of this toy
language will be described as we develop this example.

In order to construct an interpreter for the language, we start out by constructing a
recognizer for (program)s.

4.3.1 Constructing the recognizer

We obtain the recognizer by applying the construction algorithm given in 4.2.2 to the
above grammar:

ACTION should be program:
should be statement sequence, should be end symbol.

ACTION should be statement sequence:
is statement sequence;
error ("Incorrect statement"), 7.

Notice that we do not give a message “Incorrect statement sequence”; although this would
be technically correct it is psychologically preferable to report a “smaller” error.

We have to apply left factorization to the rule for (is statement sequence), taking
out the common left-factor (is statement):

PRED is statement sequence:
is statement,
(is semicolon symbol, should be statement sequence;
+).

PRED is statement:
is assignation;
is write command.

PRED is assignation:
is variable, should be equals symbol,
should be expression.

PRED is write command:
is write symbol, should be variable.

In a next step we will turn this recognizer into the driver of the interpreter by extend-
ing it with some actions which perform the desired interpretation as a side effect of the
recognition process. But first we make a digression about the appropriate reading strategy
for the input.
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4.3.2 Reading ahead

We will have to implement a number of procedures which read and recognize part of
the input. At each position of the input different symbols may stand, indicating different
syntactic constructions. The recognition routines will have to read those symbols in order
to look at them.

It is not a good idea to let each recognition procedure read a symbol, only to find out
in many cases that it cannot use this symbol. We will make use of a module (to be defined
later) which encapsulates a systematic read-ahead method, using a buffer which at any
point in time contains the first nonconsumed symbol of the input. Whenever a symbol is
recognized, the next symbol of the input is read into this variable. This look-ahead buffer
will be provided with the following interface:

e TEST ahead (>SYMB)
succeeds iff the buffer contains the symbol SYMB

e PRED is (>SYMB)
like ahead, but upon success also reads a new symbol from input and stores this in
the buffer

e ACTION should be (>SYMB)
like is, but gives an error message in case the look-ahead fails.

Using these procedures, the recognizers for the lexical symbols in the example (in 6.2)
can be written: the procedures

PRED is semicolon symbol:
iS (n ; n) .

ACTION should be equals symbol:
should be ("=").

and similarly for the others.

4.3.3 Syntax of expressions

The interpreter deals with expressions, that have to be read and whose value has to be
computed. We will assume the following syntax for expressions, similar to the one in
PASCAL but somewhat simplified.

(expression) ::= (expression) (plusminus) (term) | (term)
(plusminus) 1= + | —

(term) ::= (term) (timesby) (factor) | (factor)

(timesby) = X | +

(factor) ::= (variable) | (constant) | ( (expression) )

The straightforward transliteration of the syntax rule for (expression) into a recognition
predicate leads to

PRED is expression:
is expression, is plusminus, is term;
is term.
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We immediately notice two places which give rise to defects, which we can solve by using
actions rather than predicates.

But there is a more serious flaw. Due to the left-recursion, this procedure will loop
endlessly! In fact the grammar in this form does not satisfy the LL(1) restriction.

In order to overcome this problem, we shall now introduce a standard technique from
the field of Compiler Construction for the elimination of left-recursion.

4.3.3.1 Left-recursion elimination

Consider the left-recursive syntax rule

(sy ni=(s)a|b

and the language generated by it:
L(s) = {b,ba, baa,baaa, ...}

There is an obvious regularity to this language, which tells us that we can generate the
same language by means of the two rules

(s) :=Db (s)
(87) n=a(s) |

which are no longer left-recursive. The second grammar is weakly equivalent to the first
one, in the sense that it describes the same language but does not necessarily assign the
same syntax trees. Every left recursion can be eliminated from a CF grammar by this
transformation, albeit in some cases at the price of a serious increase in the size of the
grammar.

Let’s now attempt to remove the left-recursion from the syntax rule for (expression).

4.3.3.2 Application to expressions

Applying the previous transformation, we can rewrite the rule for (expression) to two rules

(expression) ::= (term) (expression tail)
(expression tail) ::= (plusminus) (term) (expression tail) |

which together describe the same language. The rule for (expression tail) is right-recursive,
but this causes no problem in recognition. A similar transformation is to be applied to
(term), introducing a (term tail). The resulting grammar is now indeed of type LL(1).

4.3.3.3 Why is expression left-recursive?

A naive person might find attempt the following way to replace the left-recursion in
(expression) by right-recursion: Consider the syntax rule

(expression) ::= (expression) (plusminus) (term) | (term)
Exchange two members and we have right-recursion

(expression) ::= (term) (plusminus) (expression) | (term)
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expression

\
expression
/ \
term term expression
plusminus plusminus term
factor factor factor
3 - 3 - 3

Figure 4.2: right-recursive syntax tree

and the language is precisely the same!

The language may be the same but the syntax trees are definitely not the same.
And if the semantics follows the syntactic structure, in the sense that the value of the
expression is recursively expressed in terms of the values of its parts (the principle of
compositionality), then the two interpretations may lead to different results.

Consider as an example the expression 3 —3—3. According to the original left-recursive
syntax, its value is that of (3—3)—3, i.e. minus three; according to the naive right-recursive
syntax it is 3 — (3 — 3), i.e. plus three! The first interpretation is the intended one.

expression
/
expression
/ \
expression term term

term  plusminus plusminus
factor factor factor

3 - 3 - 3

Figure 4.3: left-recursive syntax tree

It appears that we must demand from our left-recursion elimination that it preserves
compositionality. We will presently show for the non-naive left-recursion elimination rule
that this can be achieved.
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4.3.4 Recognizer for expression

The transliteration of the first rule of the transformed grammar into a recognition predicate
leads to

PRED is expression:
is term, is expression tail.

This rule contains a defect, which can best be solved by attempting to turn it (and most
of the other rules) into recognition actions rather than predicates. Each action will be
invoked in a situation where it should succeed if the input is correct. Furthermore, there
are optional parts which may be present. The task of protesting against incorrect input is
delegated as far down as possible.

ACTION should be expression:
should be term, may be expression tail.

ACTION may be expression tail:
is plusminus, should be term, may be expression tail; +.

The second rule may (by folding the last two members of the first alternative) be simplified
into

ACTION may be expression tail:
is plusminus, should be expression; +.

The transliteration of the remaining syntax rules is as follows:

PRED is plusminus:
is (ll+"); is (ll_ll).

ACTION should be term:
should be factor, may be term tail.

ACTION may be term tail:
is times by, should be term; +.

PRED is timesby:
is (ll*"); is (ll/ll).

ACTION should be factor:
is variable;
is constant;
is ("("), should be expression, should be (")");
error ("Incorrect expression").

Notice that only one explicit error production is introduced.

We have now obtained a recursive descent recognizer for expressions from the original
CF grammar by systematically applying rules for turning each rule into a recognition
procedure, giving it a suitable type and eliminating defects by left-factorization and the
introduction of error alternatives.
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Chapter 5

Example: A text editor

As an example combining syntax-driven programming with modular design, we shall de-
velop a simple text editor. We choose this particular example because an editor is a typical
interpreter, with a user interface which can be implemented as a collection of semantic
actions (performing table administration, I/O etc.) controlled by the syntactic structure
of the input.

5.1 The user interface

The task is to design and implement a very simple editor. The editor is line oriented, and
deals with a text consisting of lines, each line containing a number and an entry. Lines
should be kept in the order of increasing line numbers.

The editor has four types of commands:

e The insert-command| <numb>=<entry><RET> ‘ where

<numb> is some positive integer (the line number),
= gerves as a separator, and

<entry> is some sequence of characters, ending on
<RET> the end-of-line character.

Effect: If a line with line number <numb> is present in the text, it is overwritten with
this <entry>. Otherwise, a line with number numb and this entry is inserted.

e the delete-command| d<numb><RET> | where

d is the letter d, and

<numb> is a line number.

Effect: The line with number <numb> is deleted from the text if present, otherwise
an error is reported.

e the list-command| 1<RET> | where 1 is the letter I

Effect: All lines of the text are listed in the order of increasing line number.

e the quit-command| q<RET> | where q is the letter q.

Effect: The editor halts, nothing is saved.
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This editor is so crude that nobody would like to work with it, but in its design some
important issues are addressed which, due to its simplicity, are not smothered by irrelevant
complexity and detail.

5.2 Top-Down exploration

We shall first make a Top-Down exploration to find the elements of the problem. At the
highest level of abstraction, the editor is a simple interpreter which reads one command
line at a time and executes it, until it finds the quit-command. We have to take into
account something which is customarily left out in the problem specification, viz. the fact
that human users of an interface make errors. We therefore have to include error treatment
and deal with such issues as the skipping of blanks.

ACTION edit:
skip blanks,

(is insert command, edit;
is delete command, edit;
is list command, edit;
is quit command;
incorrect command, edit).

Notice that we have introduced one error alternative.

The above algorithmic structure is somewhat harder to achieve in languages with
conventional control structures than inCDL3. In case the reader feels put off by the many
right-recursions in this procedure, she may be happy to learn that all right-recursions will
be resolved by the implementation ofCDL3.

In realizing the various commands, we shall try to separate the recognition of a com-
mand from its execution, the two phases communicating through affixes. This principle is
clearly shown in the following procedure.

PRED is insert command:
is number (NUMBER),
skip blanks,
should be equals sign,
get line(TEXT),
store (NUMBER, TEXT) .

In the true Top-Down style, for as far as we can not make use of standard operations, as
we go along we shall postulate operations to be defined later.

PRED is delete command:
is delete symbol,
skip blanks,
(is number (NUMBER) ,
delete (NUMBER),
skip rest of line;
incorrect deletion command) .

ACTION incorrect deletion command:
screen("Line number expected\n"),
skip rest of line.
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The action skip rest of line is used here to deal with the possibility that, after the
deletion command but before the end of line, some rubbish will have to be skipped. We
might have chosen another convention instead, like allowing more than one command per
line.

PRED is list command:
is list symbol,
list,
skip rest of line.

PRED is quit command:
is quit symbol.

ACTION incorrect command:
screen("(Q)uit, (D)elete, (L)ist or insert command expected\n"),
skip rest of line.

5.3 Subdivision into modules

We have been inventing new elementary actions and predicates as we went along. We shall
now classify these as belonging to two different modules: a module symbol recognition
to deal with the recognition of symbols and a module data management to deal with the
storage and retrieval of data.

The abstract operations for input/output are:

ACTION skip blanks

ACTION get line(TEXT>)

PRED is delete symbol

PRED is list symbol

PRED is quit symbol

ACTION should be equals sign
PRED is number (INT>)

ACTION skip rest of line

Those dealing with data management are:

ACTION store(>NUMBER,>TEXT),
TEST get (>NUMBER, TEXT>),
ACTION delete(>NUMBER),
ACTION list.

We shall define all those operations in appropriate modules. The program as it stands can
be turned into a module in its own right, by prefixing it with

MODULE editor.
DEFINES ACTION edit.
USES transput,

data management.
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5.4 Symbol recognition

The module symbol recognition will serve as an interface to the standardtransput (=
input/output) (see appendix B) which supplies capabilities for line-oriented file transput,
as well as interactive character-oriented transput from the keyboard and to the screen.

Based on those capabilities, the module will have to provide the recognition- and
reading operations introduced above.

MODULE symbolrecognition.
DEFINES ACTION skip blanks,
ACTION get 1line(TEXT>),
PRED is delete symbol,
PRED is list symbol,
PRED is quit symbol,
ACTION should be equals sign,
PRED is number (INT>),
ACTION skip rest of linme.
USES inout.

ACTION get line(TEXT>):
is symbol("\n"),

[n "_>TEXT] ;
is end of file,
[n "_>TEXT] ;

is any char (TEXT),
get line(TEXT1),
[ TEXT+TEXT1->TEXT ].

PRED is delete symbol:
is symbol("d").

PRED is list symbol:
is symbol("1").

PRED is quit symbol:
is symbol("q").

PRED is number (INT>):
ahead("0","9"),
rest number, get(TEXT),
(decbin(TEXT, INT) ;
[0->INT]).

ACTION rest number:
ahead("0","9"),
rest number;

+.

ACTION skip blanks:
is symbol(" "),
skip blanks;
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is symbol("\t"),
skip blanks;
+.

ACTION should be equals sign:
is symbol("=").

ACTION skip rest of line:
is end of file;
is symbol("\n");
is any char(TEXT),
skip rest of line.

5.5 Data management

The module data management serves to supply the storage and retrieval of numbered
lines, as well as their printing. For the latter purpose it is also based on inout.

MODULE datamanagement=TABLE.

DEFINES NUMBER,
ACTION store (>NUMBER,>TEXT),
TEST get (>NUMBER, TEXT>),
ACTION delete(>NUMBER),
ACTION list.

USES inout.

The central datastructure, which is a global variable of the module, is an ordered list of
<NUMBER, TEXT> pairs.

TABLE :: empty;
NUMBER TEXT and TABLE.
NUMBER:: INT.

PRELUDE clear table:
[empty->TABLE] .

ACTION store(>NUMBER,>TEXT) :
store (TABLE,NUMBER, TEXT) .

TEST get (>NUMBER, TEXT>) :
get (TABLE,NUMBER, TEXT) .

ACTION delete(>NUMBER) :
delete (TABLE,NUMBER) .

ACTION store(>TABLE1>,>NUMBER,>TEXT) :
[TABLE1->empty],
[NUMBER TEXT and TABLE1->TABLE1];
[TABLE1->NUMBER1 TEXT1 and TABLE2],
( [NUMBER=NUMBER1],
[NUMBER1 TEXT and TABLE2->TABLE1];
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less (NUMBER,NUMBER1) ,

store (TABLE2,NUMBER, TEXT) ,

[NUMBER1 TEXT1 and TABLE2->TABLE1];
[NUMBER TEXT and TABLE1->TABLE1]).

TEST get (>TABLE1,>NUMBER, TEXT>) :
[TABLE1->NUMBER1 TEXT and TABLE2],
( [NUMBER=NUMBER1] ;
less (NUMBER, NUMBER1) ,
get (TABLE2, NUMBER,, TEXT)) .

Deleting the element with a given key has no effect if that key was already present.

ACTION delete(>TABLE1>,>NUMBER) :
[TABLE1->NUMBER1 TEXT and TABLE2],
( [NUMBER=NUMBER1] ,
[TABLE2->TABLE1] ;
less (NUMBER,NUMBER1),
delete (TABLE2,NUMBER),
[NUMBER1 TEXT and TABLE2->TABLE1];
screen(I cannot delete the line number "),
screen int (NUMBER),
screen("\n")).

ACTION 1list:
1list (TABLE).

ACTION 1ist(>TABLE1):
[TABLE1->NUMBER TEXT and TABLE2],
1ist (TABLE2),
screen int (NUMBER),
screen(":",TEXT,"\n");

5.6 Conclusion

The intention of this example was to show the design strategy leading to a structure of
modules, each with their specific tasks. A more complete and realistic example is given in
Appendix C.3.
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Chapter 6

Transducer construction

By itself a recognizer is a very uninteresting algorithm, and rather useless because it only
(at best) answers with yes or no. While our computer is going through the tremendous
effort of recognizing expressions, it might just as well do something useful: perform some
computation or produce some output.

The program can then be seen as an interpreter, a special case of a transducer as
it is called in formal language theory [ASUS6].

6.1 Transducers

Transducers are a formalization of string-to-string mapping expressed in the form of gram-
mars. They can be described and classified in numerous ways.

6.1.1 Simultaneous Grammars

The simplest form of transducer is what we shall call a simultaneous grammar: CF
grammar with two alphabets V;,, and V,,; of terminal symbols, called the input- and
output vocabulary.

The grammar is an ordinary CF grammar over V; = V;,, | Vot and as such describes a
set string. Each such string consists of (zero or more) symbols of either alphabet; reading
only the input-symbols one obtains an input-string; reading only the output-symbols gives
the corresponding output string.

As an example we take a variant of the Fibonacci grammar describing all possible
ways a string of n a’s can be split up into pairs or single a’s. We use the convention of
underlining an input terminal and overlining an output terminal.

S:

Writing 5 for a single a and p for a pair, the following nondeterministic simultaneous
grammar

S:

-
-
-

1= 1=
LQ V|
o
&z

o7



associates with the input aaaa the strings
SSSS SSP SPS PSS pp.

A simultaneous grammar can only transducer sequences of input symbols to sequences
of output symbols in a combinatorial fashion. For more general transductions we need
more freedom, especially in the ordering of translated constituents.

6.1.2 CF transducers

A CF transducer consists of a Context Free grammar in which each alternative alt is
equipped with a (possible empty) transduction part trans ;.

The following conventions shall be used:

e In principle we indicate, next to each alternative and separated from it by a slash /,
its transduction part.

e In the transduction part all the nonterminals of the alternative may be used (in any
order), as well as (output) terminal symbols.

e the translation of a nonterminal consists of the translations of the members of its
transduction part, in that order.

e A nonterminal in the transduction part denotes the translation of the same non-
terminal in the alternative. In case of multiple occurrences of a nonterminal in an
alternative, the various occurrences may be distinguished by a number as suffix.

e An output terminal symbol translates to that symbol.

e Input terminal symbols have no translation (unless a similar output terminal is
explicitly given in the transduction part).

e If the translation of an alternative consists merely of the translations of its members,
in that order, we omit the transduction part (to save writing).

Some examples:
1. In the CF transducer formalism the Fibonacci transducer can be expressed as

S:a, S/ "s" S ;
a, a, S/ "p" S ;

2. As a more complicated example we give a grammar describing a well-known proof-
reading convention: the use of text inversions like |abc|def|, which should be cor-
rected to def abe.

The input grammar describes strings of characters in which subsequences of the form
< ... | ... > may appear; in transducing such an inversion, the segments to the
left and to the right of the | are to be interchanged.

sentence:

character, sentence;
inversion, sentence;
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character:
llall / IIall ; Ilbll / IIbII \ldots .

inversion: "<" textl "|" text2 ">" / text2 textl.

3. The production of a parse tree can be seen as a canonical transduction to labeled
brackets:

sentence:
subject, verb, object /
"sentence: (" subject "," verb "," object ")".

4. As a further example we shall sketch how to generate, instead of a parse tree, a
semantic representation in the form of frames. In a highly simplified grammar for
English:

descriptive sentence:
subject, copula, predicate / predicate" ("subject")\n";
subject, verb, {object} /
"actor(" subject") action(" verb ") victim(" object ")\n".

Notice that the copula obtains no translation.

6.1.3 Invertible transductions

Under certain restrictions (the most important being that each nonterminal in the left-
hand side appears precisely once in the right-hand side) we obtain an invertible trans-
ducer: by interchanging left- and right-hand side the inverse transduction is obtained. A
similar property holds for pure PROLOG.

The inverse transduction may be deterministic where the original transduction is not
(as in the Fibonacci transducer) or nondeterministic where the original is not (in case
different inputs transduce to the same output). It is very useful for a transducer to be
invertible, because it can the be used for translation in the other direction and for para-
phrasing output sentences (e.g. semantical frames). The GwWB will check whether a given
transducer is invertible.

6.2 Interpreting expressions

Keeping in mind that we are building an interpreter, we will try to compute the value of
the expression recognized as a side-effect of the recognition process.

We equip each of our recognizing predicates and actions with one output parameter,
which will return the value computed. This value is going to be an integer.

V, VAL = INT.

In recognizing an expression, we shall first recognize a (term), obtaining a value which
we shall pass to the (expression tail) in order to be able to compute the value of the
(expression) in a compositional way.

ACTION should be expression (VAL>):
should be term (VAL), may be expression tail (VAL).
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The successfull recognition of a (plusminus) shall tell us which operator it was.

OP :: plus ; minus; times; div.

PRED is plusminus (OP>):
is ("+"), [ plus -> 0P ];
is ("-"), [ minus -> 0P ].

Between the members of the original syntax, we insert semantic actions, i.e. calls on
actions that serve to operate on affix values during the recognition process.

ACTION may be expression tail (>VAL>):
is plusminus (OP),
should be term (V),
compute (VAL, 0P, V),
may be expression tail (VAL);
+.

The semantic action compute (>VAL>, >0P, >V), which has to perform the actual compu-
tation, will be defined later. Observe that compositionality is preserved in this formulation.

ACTION should be term (VAL>):
should be factor (VAL), may be term tail (VAL).

ACTION may be term tail (>VAL>):
is timesby (0OP),
should be factor (V),
compute (VAL, 0P, V),
may be term tail (VAL);

PRED is timesby (0OP>):
is ("x"), [ times -> OP ];
is ("/"), [ div -> 0P ].

ACTION should be factor (VAL>):
is variable (VAL);
is constant (VAL);
is ("("), should be expression (VAL), should be (")");
error ("Incorrect expression").

This last recognition action is not quite correct, because it must be such that it also yields
a value in error situations: VAL may not obtain an undefined value. For lack of better we
choose for zero.

ACTION should be factor (VAL>):
is variable (VAL);
is constant (VAL);
is ("("), should be expression (VAL), should be (")");
error ("Incorrect expression"), [ O -> VAL ].

60



6.3 Adding static semantics

In the field of compiler construction, the term static semantics is used for that part of
the semantics of a programming language that is independent of the input but depends
only on the program, and therefore can be dealt with at compile time. In particular,
this holds for the identification of names, the attribution of types to the constructs of the
program and the related consistency checks (context conditions).

While interpreting its input, our interpreter will perform computations over a certain
semantical domain. We will first define an appropriate semantic domain and the operations
over it, then add the calls of the semantic actions and percolate the necessary information
to the places where it is used or modified.

6.3.1 Choice of semantic domain

For our toy language, the semantics will be very simple: there are 26 variables, each
named by a small letter, which initially possess an undefined value. A variable can obtain
an integer as value, by means of an assignation. The write-command prints the current
value of the variable. The current value of variables will also be needed in the computation
of the value of an expression.

We can realize this semantical domain as a variable list, a list of pairs <name, value>,
containing only those names which have a defined value. In fact, this VLIST is just an
association list as described in 2.6.

VLIST :: empty; NAME VAL and VLIST.
NAME :: TEXT.
VAL :: INT.

There will be one such VLIST passed in and out every recognition procedure in the driver.
The operations on it shall be

FUNCTION empty list (VLIST>) create an empty variable list
FUNCTION take value (>VLIST, >NAME, VAL>) value lookup
FUNCTION assign (>VLIST>, >NAME, >VAL) value modification.

We can obtain these by taking a modified copy of the operations defined in 2.6.

FUNCTION empty list (VLIST>):
[empty -> VLIST].

FUNCTION assign (>VLIST>, >NAME, >VAL):
[VLIST -> NAME1 VAL1 and VLIST1],
( [NAME=NAME1] ,
[NAME VAL and VLIST1 -> VLIST];
assign (VLIST1, NAME, VAL),
[NAME1 VAL1 and VLIST1 -> VLIST]);
[NAME VAL and empty -> VLIST].

TEST take value (>VLIST, >NAME, VAL>):
[VLIST -> NAME1 VAL and VLIST1],
([NAME=NAME1] ;
take value (VLIST1, NAME, VAL));
error ( "Variable " + NAME + " undefined"), 7.
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6.3.2 Completing the interpreter

We will now modify the recognizer described in 4.3.1 so that during recognition it will
call the necessary semantic actions to perform computations, keep up the variable list and
print results. To that end, the interpreter should start out with an empty variable list,
which is modified by assignations and consulted in certain places. This variable list must
be percolated (as a parameter) to all places where it is needed.

ACTION should be program:
empty list (VLIST),
should be statement sequence (VLIST),
should be end symbol.

PRED is statement sequence (>VLIST>):
is statement (VLIST),
(is semicolon symbol, should be statement sequence (VLIST);
+).

ACTION should be statement sequence (>VLIST>):
is statement sequence (VLIST);
error ("incorrect statement"), 7.

PRED is statement (>VLIST>):
is assignation (VLIST);
is write command (VLIST).

PRED is assignation (>VLIST>):
is variable (NAME),
should be equals symbol,
should be expression (VLIST, VAL),
assign (VLIST, NAME, VAL).

PRED is write command (>VLIST):
is write symbol, should be variable (NAME),
take value (VLIST, NAME, VAL),
print (VAL).

Similarly, the varable list must be percolated to the recognizer for expressions (notice that
should be expression has obtained an extra parameter), to arrive at its use in:

ACTION should be factor (>VLIST, VAL>):
is variable (VLIST, VAL);
is constant (VAL);
is ("("), should be expression (VLIST, VAL), should be (")");
error ("Incorrect expression"), [ O -> VAL ].

We have to provide some further procedures, such as is variable (NAME>) but we
leave their definition to the reader. Notice that the affix VLIST is passed in and out of
practically each procedure. This makes it a good candidate for replacement by a global
variable (see 3.3.1).

This completes our outline of the syntax-driven design and implementation of a simple
interpreter.

62



6.4 Precedence directed parsing

If we have more operators, we may of course continue in the same style, adding one
recognition procedure for each priority level. On the other hand it is better to exploit the
priorities of operators to make a simple general recognition scheme.

We assume the operators to have the conventional priorities, as shown in figure 6.1.

priority | operators

1 := (left-associative!)

2 OR

3 AND

4 = #

5 < > < >
6 + —

7 * / DIV

8 %ok

9 monadic operators

Figure 6.1: priorities of operators

In this priority system, a (term) has priority 6 and a (factor) priority 7.

Let us look at one operator in the middle of an expression, the * in
a2 —bxcw2+d

How far do the operands of that multiplication extend? The operands are obviously those
expressions immediately to the left and to the right of the operator whose operators have
a priority not lower than that of the multiplication.

In a hybrid of mathematical and CDL notation we might write:
expression : expry,.
expr; : expry 1, (op;, expr;; ). for 0<i<max—1

eXpry,qz © Primary.

Notice that this formulation is non-deterministic (it is a specification rather than an al-
gorithm). It is possible to eliminate the non-determinism and the left-recursion to obtain
the following formulation in CDL3:

PRED is expression:
is expr of priority (0).

P, PRIO = INT.
MAX = 10.

PRED is expr of priority (>PRIO):
[ PRIO = MAX 1,
( (is primary; -);
is expr of priority (PRIO + 1),
may be expr tail of priority (PRIO).
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ACTION may be expr tail of priority (>PRIO):
is operator (PRIO, 0OP),
should be expr of priority (PRIO + 1),
may be expr tail of priority (PRIO);

ACTION should be expr of priority (>PRIO):
is expr of priority (PRIO);
error ("expression expected").

Upon recognition of an operator, its priority has to be deduced:

PRED is operator (>PRIO, OP>):
operator ahead (P, OP), [ P = PRIO ], next symbol.

TEST operator ahead (PRIO>, 0OP>):
can be operator code (SYMB), [ SYMB -> 0P ],
get priority (OP, PRIO).

We have in this generalization captured all possible levels of priority, of course at the
expense of somewhat more computing effort. The extra effort comes from the fact that we
do not exploit the priority of the following operator directly, but try all possible higher
priority operators.

A more intelligent and final version is the following
PRED is expr of priority (>PRIO):
is primary,
may be expression tail (PRIO).

NEXTP = PRIO.

ACTION may be expression tail (>PRIO):
operator ahead (NEXTP, OP),
([ PRIDO < NEXTP ], next symbol,
should be expr of priority (NEXTP + 1),
may be expression tail (PRIO);
+ )3

This is also much more compact than the original formulation.

6.5 Translation

The next step beyond recognition (4.3.4) and interpretation (6.3.2) is translation and the
related problem of syntax tree construction.

6.5.1 Translation of expressions

We will now look at the problem of translating expressions into the so-called reverse
Polish form [ASUS6].
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We define the reverse Polish form of an expression as follows: Let e be an expression
and P(e) its reverse Polish form. Then P(z) is defined by

e If z is a variable or a constant then P(z) = z.

e If x is e; ® es where e; and eg are subexpressions and ® is an operator, then P(x) =
P(ey) P(e2) ®.

As an example, the translation of
a+5%xb—(44c)xd

into reverse Polish form is
adbbx*x +4c + dx —

Notice that in the reverse Polish form no brackets are needed. That is an important reason
for introducing it. There is an obvious relationship between the reverse Polish form of an
expression and a program for a stack computer: The operations *, + and - find both their
operands on the stack and replace them by the result of the operation.

How then can we generate this reverse Polish form from the original infix expression?
The definition of the reverse Polish form shows that every simple element (variable,
constant) is translated by itself. In the translation of a composed expression, the transla-

tions of the subexpressions are in the same order as the original subexpressions, while the
operator must be put at the end of the translation.

Then we can output the simple elements as soon as they are read, while an operator
must be kept in some variable and output after the translation of its second operand.

We start out from the recognizer in 4.3.4 and modify it so that it outputs the reverse
Polish form as a side effect of the recognition process.

e Upon recognition of a factor, it is immediately output (produced).

e Upon recognition of an operator, nothing is output until both operands have been
recognized (and produced) and only then is the operator produced.

ACTION should be expression :
should be term,
may be expression tail,

OP :: plus ; minus; times; div.
ACTION may be expression tail:
plus minus (OP), should be expression, produce (OP);

+.

ACTION should be term :
should be factor,
may be term tail.

ACTION may be term tail:
is times by (OP), should be term, produce (OP);
+.

VAR, CONST :: TEXT.
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PRED should be factor :
is variable (VAR), produce (VAR);
is constant (CONST), produce (CONST);
is open symbol, should be expression,
should be close symbol.

By adding suitable actions produce we obtain a from infix expressions into reverse Polish
form.

6.6 Generating an abstract syntax tree

We shall now describe how to construct a syntax tree, containing all the information about
the structure of the analysed expression.

In fact, the tree produced need not be precisely the syntax tree according to the syntax
of expression 4.3.3 because it need not contain a node for each rule used in the parsing
process: some nonterminals (like term and factor) are not necessary or even useful for the
understanding of the expression. Also some of the terminal symbols (the brackets) need
not be present in the tree, since the information they convey is already expressed in the
structure of the tree. We need a condensed version of the syntax tree, often called an
abstract syntax tree (AST).

First we describe the structure of the abstract syntax tree, by means of one or more
affix-rules.

EXPR :: var NAME ; const INT ; EXPR OP EXPR .
OP :: plus ; minus ; mult ; div .

Next we construct a transducer from the (original) concrete syntax to an abstract syntax
tree.

ACTION should be expression (EXPR>):
should be term (EXPR), may be expression tail (EXPR).

ACTION may be expression tail (>EXPR>):
is plusminus (0OP),
should be term (EXPR1),
[ EXPR1 OP EXPR -> EXPR ]

may be expression tail (EXPR);
+.

ACTION should be term (EXPR>):
should be factor (EXPR), may be term tail (EXPR).

ACTION may be term tail (>EXPR>):
is times by (OP),
should be factor (EXPR1),
[ EXPR1 OP EXPR -> EXPR ]

may be term tail (EXPR);
+.

ACTION should be factor (EXPR>):
is variable (NAME), [ var NAME -> EXPR];
is constant (INT), [ const INT -> EXPR];
is ("("), should be expression (EXPR), should be (")");
error ("Incorrect expression").
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Notice e.g. that two expressions that differ only by redundant parentheses have the
same abstract syntax tree, as is proper because they have the same meaning.

6.7 Conclusion

In this chapter we have illustrated the notion of syntax-directed programming, touching
upon some subjects from the field of compiler construction (parsing, semantic actions,
transducers).

Our “methodology” for the syntax-directed construction of one-pass two-level trans-
ducers (syntax-driven programming) can be summarized as follows:

e construct the input recogniser

— deduce a context-free grammar of the input language

eliminate left-recursion

— eliminate left-factors

— turn every rule into a parsing predicate or (preferably) action.
e describe the static semantics

— introduce affixes to store information deduced from the input text (sym-
bol table, typing information)

— insert semantic actions or tests collecting and using this information (for
identification, typing, etc.).

e describe the output language

— deduce a context-free grammar of the output language

— add affixes and semantic actions for generating the output language.
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Chapter 7

Multipass transducers

In 6.7 we have shown how to systematically construct a two-level transducer from a given
input language to a certain output language. How much work can be done by such a
transducer?

Due to the presence of the affix level and the operations, the CDL3 formalism has the
computing power of the Turing machine. Anything can be done in one transduction step.
From a methodological point of view, the more interesting question is how to program
some intended transduction safely and correctly. Rather than doing this in one, maybe
very complicated step, in e.g. compiler construction it is good engineering practice to do the
transduction in steps, each of which is described by a relatively straightforward transducer.
Two techniques for constructing such multi-pass transducers can be distinguished:

1. In a composed transducer, the output of one transducer (an intermediate lan-
guage) is input to the next.

2. In coupled transducers, the output affixes of one transducer are the input affixes
of the following transducer. This is the more familiar case (for ‘transducer’ read
‘procedure’).

In fact, by considering the output and input languages as special affixes, it can be seen
that these two techniques amount to the same thing. The output of one transducer must
be reparsed by the next, which may choose to parse it differently than it was constructed.

In this chapter we will deal with multi-pass transducers, introducing a novel mecha-
nism, the second pass, which is unique to CDL3.

7.1 Multipass attribute evaluation

The CDL3 executor, among other tasks, keeps track of the calls and the returns of proce-
dures. In fact, the call stack can be seen to contain a representation of (part of ) the concrete
syntax tree. We will call that representation an implicit tree because the programmer
can use it without explicitly building it.

Note that the parameters of the production rules are semantic attributes that are
evaluated during the parse, from left to right. For evaluating attributes with a complicated
interdependence, a single pass over the input text is in many cases not enough, because
during the tree decoration one may need information to be extracted from the text that is
still to follow. Therefore it is customary to extract an abstract syntax tree in the first pass
and then perform various passes over the AST to complete its decoration with attributes.
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Although this technique can be expressed prefectly well inCDL3, the language offers
another solution for delayed computations: during its (first) pass over the input the
CDL3 executor keeps the implicit tree for as far as this is needed to perform delayed
computations during a second pass.

A general mechanism for delaying computations is quite complicated and costly. How-
ever, for many applications, a two-pass approach is adequate:

1. in the first pass, which follows the (concrete) syntax tree, information is collected

2. in the second, which follows the implicit tree, the information collected is used.

In this way, the implicit tree serves instead of the abstract syntax tree, and the programmer
is freed from the task of building (and reparsing) the AST.

Many applications fit into this very simple paradigm. That is why we chose to base
our language on 2-pass L-attributed Affix Grammars.

We shall introduce the two-pass mechanism in the course of the following example.

7.2 A two-pass transducer

As a running example we will develop a compiler for a simple programming language
with block-structure, where names can be applied before being defined. This is a classical
problem in compilation because in practically every programming language you find some
kind of forward reference (e.g. forward goto or block structure).

7.2.1 The input syntax

The concrete syntax of our model language is:
program:
block.
block:
"begin", units, "end".
units:
unit, ";", units; unit.
unit:
application; definition; block.

Notice that blocks may be nested.

application:

"apply", identifier.
definition:

"define", identifier.

On this language we shall first impose the classical context conditions of block structure,
viz.:

1. An identifier may not be defined twice in the same block;

2. Each applied occurrence of an identifier must have some defining occurrence, to be
found by searching for the smallest block surrounding the application which contains
a definition for that identifier.

70



Note that according to those rules, an application may come textually before the corre-
sponding definition. The identification can not be performed in one pass over the program,
but it can in two.

We shall construct a transducer from this language to some form of code, with a
non-trivial semantics.

7.2.2 The input recognizer

The above syntax is LL(1), apart from one left-factor which is easily eliminated, so con-
structing the input recognizer is straightforward.

ACTION program:
block.
ACTION block:
"begin", units, "end".
ACTION units:
unit, units tail.
ACTION units tail:
"s", units; + .
ACTION unit:
application; definition; block.
PRED application:
"apply", identifier.
PRED definition:
"define", identifier.

7.2.3 The environment table

We shall collect the declarations of one block into an affix RANGE, which shall be a linear
list of definitions (DEFs). A DEF associates a name (IDF) with a blocknumber BNO (the
nesting level) and an offset OFFSET (a number within that block). These attributes will be
used in the code generation.

RANGE:: empty; RANGE DEF.

DEF:: where IDF has OFFSET in BNO.
IDF:: TEXT.

BNO, OFFSET:: INT.

7.2.4 Collecting the declarations

We now extend the input recognizer with semantic actions to compute the RANGEs.

ACTION program:
block(0).

ACTION block(>BNO):
should be token("begin"),
[ O -> OFFSET 1],
[ empty -> RANGE ],
units(BNO, OFFSET, RANGE),
should be token("end").

R:: RANGE.
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ACTION units(>BNO, >OFFSET>, >R>):
application, units tail(BNO, OFFSET, R);
definition(BNO, OFFSET, R), units tail(BNO, OFFSET, R);
block(BNO+1), units tail (BNO, OFFSET, R).

ACTION units tail(>BNO, >OFFSET>, >R>):
is token(";"), units(BNO, OFFSET, R); +.

PRED application:
is token("apply"),
( is identifier(IDF);
error("identifier expected")).

The information available is sufficient to check the first context condition (no multiple
declarations).

PRED definition(>BNO, >OFFSET>, >R>):
is token("define"),
( is identifier(IDF),
( found(IDF, R, OFFSET1, BNO1),
error("multiple definition for "+IDF);
[ R where IDF has OFFSET in BNO -> R ],

[ OFFSET + 1 -> OFFSET ]);

error("identifier expected")).

TEST found(>IDF, >ENV, OFFSET>, BNO>):
[ ENV -> conc ENV RANGE ],

( found(IDF, RANGE, OFFSET, BNO);

found (IDF, ENV, OFFSET, BNO) ).

In order to also check the second context condition, which may involve forward referencing,
we now introduce the mechanism of the second pass.

7.3 The second pass

It is time to introduce the syntax and semantics of the second pass.

7.3.1 Second pass members

Each alternative in a production rule may end with some members that are to be called
during the second pass. In the text of the alternative, these members are separated from
the first pass members by a slash.

7.3.2 Second pass parameters

The second pass members can also use second pass parameters, that are parameters
whose values cannot be known during the first pass but will be known during the second
pass. In the heading of procedures, these parameters are separated from the others by a
slash. Of course, the second pass can also make free use of the first pass parameters and
local variables as well as the global variables.

Notice that a second pass parameter cannot have the same name as a first pass pa-
rameter, so that we cannot overwrite a first pass parameter when coming to the second
pass of a procedure.

72



7.3.3 The environment table

The collection of all declarations which can be applied at a certain point in the program
will be found in an environment ENV, which is composed out of RANGEs.

ENV:: conc ENV RANGE; empty.

The application rule will, in the second pass, look for a definition in an environment
containing all the names available at this place. This environment cannot be known before
the end of the analysis because it contains all names defined in the surrounding blocks,
therefore in the most external block.

PRED application(/ >ENV):
is token("apply"),
( is identifier (IDF)/
( found(IDF, ENV, OFFSET, BNO) ;
error ("missing definition for "+IDF+"\n") );
error("identifier expected")).

The previous procedure gets its ENV as a second pass input parameter.

TEST found(>IDF, >RANGE, OFFSET>, BNO>):
[ RANGE -> RANGE1 DEF ],
( [ DEF -> where IDF1 has OFFSET in BNO],
[ IDF1 = IDF ];
found (IDF, RANGE1, OFFSET, BNO) ).

7.4 Order of the execution, affix flow

The second pass of a rule z is executed after the second passes of all the rules xz; that
are called by = during its first pass. The second passes of the x; are executed in the same
order as their first passes.

This can be seem restrictive, especially when you want to prepare some values just
before calling the second passes of x;. This can be achieved by calling at the beginning of
the first pass a rule with an empty first pass, as in the following procedure.

example

The affix flow between first and second pass (1) and in the second pass (|) is shown by
the figure:

ACTION block (>BNO / >ENV) :
is token("begin"), 1
[ 0 -> OFFSET ], !
[ empty -> RANGE ], 1
begin of units(BNO/ OFFSET, RANGE, ENV1, ENV),
T T !

units(BNO, OFFSET, RANGE/ ENV1),
should be token("end");
error ("begin expected\n"),
skip to end.
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ACTION begin of units (>BNO /> OFFSET, >RANGE, ENV1>, >ENV ):
/ [ conc ENV RANGE -> ENV1 ];

7.4.1 Interludes

The interludes (see 3.3.4) are executed between the first and the second pass. When there
are several interludes in the same or in different modules, the order of their executions is
undefined, so that the behavior of an interlude must not depend on the result of another
one.

7.5 Failure and second pass

A failure during the first pass indicates that the actual alternative is not the right one. The
failure guides the parsing process and therefore the building of the syntax tree. During
the second pass only the successful parts of the syntax tree are traversed. In the second
pass, no failure is allowed.

Remember that a failure must never give rise to a defect, nor can it cause information
to be transferred to another alternative.

7.6 More passes

The second pass elements can be guards (that do not fail) or calls of functions or actions.
These called rules can call some other rules, building the tree of the calls needed to
compute the second pass results. The resulting implicit syntax tree has the same status as
the normal one and can be travelled a second time. This is simply done by calling during
the second pass rules that have a second pass. This is not really a third pass on the syntax
tree but a second pass on a subtree that was not built during the first pass, and therefore
that was not ready for the normal second pass.

7.7 Generating code

We now extend our example transducer to generate instructions for an abstract machine,
dealing with a simple form of storage management. It has the following instructions:

reserve bn, length allocate a storage area of length length for block number

apply bn, offset access the storage location corresponding to the variable
in block bn with offset offset

unreserve bn, length release the storage area with this bn and length.

Although not very realistic, these instructions are meant to capture the essence of
storage management.

We first define the output language to which we want to transduce (on the affix level):
CODE :: empty; CODE INSTR.
INSTR :: reserve BNO OFFSET;

apply BNO OFFSET;
unreserve BNO OFFSET.
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We now add the second-pass affix CODE to those procedures that will generate one or more
INSTR codes.

7.8 Complete example

Using the module lexico shown in chapter 3.3, the root module is the following

ROOT program.

USES lexico.

RANGE:: empty; RANGE DEF.

R=RANGE.

DEF:: where IDF has OFFSET in BNO.
BNO, OFFSET:: INT.

IDF:: TEXT.

ENV:: conc ENV RANGE; empty.

CODE :: empty; CODE INSTR.

INSTR :: reserve BNO OFFSET;
apply BNO OFFSET;
unreserve BNO OFFSET.

ACTION program:
[ empty -> CODE ],
[ empty -> ENV 1],
block(0/ ENV , CODE).

ACTION block(>BNO/ >ENV , >CODE>):
is token("begin"),
[ O -> OFFSET 1],
[ empty -> RANGE ],
begin of units(BNO/ OFFSET, RANGE, ENV1, CODE, ENV),
units(BNO, OFFSET, RANGE/ ENV1, CODE),
should be token("end")/
[ CODE unreserve BNO OFFSET -> CODE ];
error ("begin expected\n"),
skip to end.

ACTION begin of units(>BNO
/> OFFSET, >RANGE, ENV1>, >CODE>, >ENV):
/ [ conc ENV RANGE -> ENV1 ],
[ CODE reserve BNO OFFSET -> CODE ].

ACTION units(>BNO, >OFFSET>, >RANGE>/ >ENV, >CODE>):
application(/ ENV , CODE),
units tail(BNO, OFFSET, RANGE/ ENV, CODE);
definition(BNO+1, OFFSET, RANGE),
units tail(BNO, OFFSET, RANGE/ ENV, CODE);
block(BNO+1/ ENV , CODE),
units tail(BNO, OFFSET, RANGE/ ENV, CODE).

ACTION units tail(>BNO, >OFFSET>, >R>/ >ENV , >CODE>):
is token(";"),

units(BNO, OFFSET, R/ ENV , CODE);
+ .
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PRED application(/ >ENV , >CODE>):
is token("apply"),
( is identifier (IDF)/
( found(IDF, ENV, OFFSET, BNO) ,
[CODE apply BNO OFFSET -> CODE];
error ("missing definition for "+IDF+"\n") );
error("identifier expected")).

PRED definition(>BNO, >OFFSET>, >R>):
is token("define"),
( is identifier(IDF) ,
( found(IDF, R, OFFSET1, BNO1),
error("multiple definition for "+IDF+"\n");
[R where IDF has OFFSET in BNO -> R],
[ OFFSET+1->0FFSET] );
error("identifier expected")).

7.9 conclusion

For many transductions the two-pass paradigm (first pass: recognize; second pass: gener-
ate) is quite adequate. For others it may be insufficient. There may still be situations where
an explicit syntax tree is necessary, for instance when we want to compare two parts of the
parse tree. A typical example is type checking where we have to compare the declaration
of objects with the instructions where they are used. In this case, we must build during
the first pass an abstract tree of the declarations known as the symbol table.
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Chapter 8

Static semantic checks

In this chapter we discuss one of the more interesting aspects of the CDL3 technology, viz.
the semantic checks performed by the compiler. This chapter is a rewritten and expanded
version of [FEU78| on CDL2.

8.1 Introduction

By a static semantic check we mean the investigation of the plausibility of a syntac-
tically correct program, based on an analysis of the flow-of-control and flow-of-data in the
program, verifying those semantic properties of the program that can be verified statically,
i.e. by inspecting the program without actually executing it.

This check may (classically) answer such questions as:

e do all applied identifiers have a defining occurrence?
e are, in all assignations, the types of source and destination compatible?

e is the value referred to by a reference compatible with the use made of it?
but for not so classical languages it may also determine:

e do all variables have defined values upon being used?
e are various parts of the program free from side effects upon one another?

e is the (concurrent) program guaranteed to be free of deadlocks?

and other questions pertaining to the execution of the program but (under specific condi-
tions) answerable at compile time.

Such a static semantic check attempts to catch semantic errors which would otherwise
be detected only dynamically, with the intention of

e shortening the test phase and the whole implementation process
e increasing the reliability of the product, and
e improving maintainability.
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In the extreme case, static semantic checking should eliminate all incorrect programs,
but we will argue that even a partial check can already be of enormous value.

In this chapter, we will be concerned with the feasibility of static semantic checking,
and with those aspects of the design of a language that affect the effectiveness and the
efficiency of such a check.

In particular, we will discuss the question how such a check can be made for an lan-
guage, i.e. a language which allows in its programs the application of algorithms, objects
and types defined outside the framework of the language itself. The techniques described
here are not new, but both their actual feasibility and the particular design choices made
in the implementation language CDL3 may be of interest.

8.2 Semantic checks

We are concerned with the investigation by the compiler of the plausibility of syntactically
correct programs, taking into account only those properties of the program which can be
analyzed statically, i.e. without actually executing it.

Such a check is by no means the same as a proof of the correctness of the program,
which would necessitate checking the program against some specification. In most cases,
no suitable specification is available. The program can however be checked against itself: it
can be checked for the absence of contradictions and blatant impossibilities, by exploiting
the redundancy present in programs. What then constitutes useful redundancy?

8.2.1 Useful redundancy

The prime example of redundancy in programming languages is the presence of manda-
tory declarations, including type specifications.

Although such declarations are technically not necessary (declarations by default as
in FORTRAN or dynamic typing as APL can be implemented just as well) they provide for
redundancy, allowing:

e the detection of most spelling errors in identifiers which, in languages with default
declarations, might lead to surprising program behaviour whose cause may be hard
to find by testing

e the static attribution of a type to objects, allowing the prohibition of assignations
to unsuitable variables and of the applications of unsuitable operations.

That is, declarations introduce useful redundancy. Redundancy is not useful when it
cannot be checked, (like e.g. comments), when it is not mandatory (like the optional goto
symbol in ALGOL 68) or when it serves merely to check whether the programmer at one
place in his program can repeat what he has said at another, as e.g. the destination list
in an assigned goto in FORTRAN.

Redundancy is useful when it serves to specify abstractly the intention of the program-
mer, in such a way that it can be checked against his concrete actions elsewhere in the
program.

In designing a programming language, useful redundancy should be introduced sys-
tematically. As an example, we will discuss the redundancies introduced into CDL3.

In the next sections we will discuss some limitations and problems in static checking.
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8.2.2 Incompleteness of a static semantic check

A static semantic check can in general not be complete: the compiler knows only the
static properties of the program and will therefore have to make worst-case assumptions
(“if something can go wrong, it will”).

In the first place, the knowledge of the flow-of-control may be insufficient. As an ex-
ample, consider the following piece of program:

if (p* p)mod4 =2 then
begin var a : real; {uninitialized!}
print(a) end

It is not reasonable to demand from the compiler that it knows that the square of an
integer number modulo four can assume only the values 0 or 1 (did you know it?), and that
therefore the condition always yields false. The semantic check should report a potential
error, even though the clever programmer might have known that the error cannot occur.

In competently written programs, such cleverness should be infrequent, and since the
behaviour of programs depends critically on their input, we will have to assume that all
paths through a program are taken, and therefore have to report all potential errors.
We will take the point of view that programs which are not demonstrably correct are in
error. This may be unjust, especially for some tricky programs. But from an engineering
standpoint it makes good sense, since a program which is not obviously correct may be a
source of pitfalls in maintenance. A serious program, like Caesar’s wife, should be above
suspicion.

Apart from the lack of knowledge about the dynamic flow of control, another reason for

incompleteness of static semantic checks may be the lack of knowledge about the identity
of variables.

In order to answer e.g. the question “does each variable have a defined value upon
being used”, the compiler has to know what variables are assigned to. We will term a
variable x an alias for a variable y if an assignment to y affects the value of z, as in the
ALGOL 68 program

begin real z;
procedure f(y); y :=0;
procedure p; f(z);
procedure t(z); z;
t(p);
print(x)

end

Whether questions about identity of variables are statically decidable depends on the
presence in the language of such alias-makers as the FORTRAN EQUIVALENCE statement, the
PASCAL pointer assignment or the ALGOL 68 identity declarations of the form

ref amode x =y
To make matters worse, aliasing may be dynamic as in
ref amode = = y1[i

making it under circumstances impossible to decide statically whether the array y1 has
been properly initialized. The systematic avoidance of any dangerous aliasing has been
the primary design goal of the language EUCLID [LAM77]. In [LANT73] it is discussed in
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the context of ALGOL 60 how the presence or absence of certain language properties may
affect the static decidability of specific properties of programs; in particular this article
shows the necessity of full specification of formal parameters.

8.2.3 Incompleteness caused by open-endedness

Open-endedness of the language is another cause of incompleteness of the static semantic
checks. Fundamentally, the semantics of borrowed algorithms is outside the scope of the
check, and any knowledge about the effect of such algorithms has to be introduced ex-
plicitly by a specification which is the responsibility of the programmer. Without such a
specification, it would be impossible to write meaningful programs. The correctness of the
specification itself cannot be decided within the framework of the language, but has to be
taken on trust.

As an example, the specification of a library routine

proc (real) real sin = fromlib("ASIN")

allows a modicum of security in calling that routine, provided the specification adequately
and correctly captures the relevant properties of the corresponding library routine. It is
definitely more revealing than just

EXTERNAL FUNCTION ASIN
or even

EXTERNAL ASIN
In designing an open-ended language, the necessary redundancy has to be carefully
tailored in, in order to minimize the unavoidable risks.

Specifications of a borrowed algorithm may include:

e its logical effect, given in the form of logical relationships or algebraic axioms (not
pursued in this paper)

e the type of its result
e the number, order and types of its parameters

e its calling mode (e.g. an algorithm borrowed form PL/1 may have to be called differ-
ently than one borrowed form LISP)

e the presence or absence of side-effects.

The obvious way to include such specifications into a language is to demand the writing
of a heading for each algorithm to be borrowed.

Whether the semantics of the algorithm borrowed fits the heading is lastly the respon-
sibility of the programmer writing the algorithm, who will have to program in a disciplined
fashion.

Open-endedness should be used to introduce a small number of primitives, whose
relevant properties are specified as precisely as possible, and not for the promiscuous spread
of code inserts all over the program, demanded by ill-informed assembly programmers as a
precondition for reluctantly writing their programs in a systems implementation language.
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8.3 Static semantic checking in CDL3: a case study

The basis for the semantic checking possibilities in CDL3 are the concise specifications of
attributes of each algorithm with regards to its result, its global effect and its parameters.

8.3.1 Specification of the result

The body of an algorithm may be structured such that the algorithm always returns true
(it always succeeds), or it may be such that it can also return false (it may fail). The
programmer specifies for each algorithm whether it (according to her) may fail. On the
basis of this redundancy, a double check is made:

e The body of each procedure is checked against its specification

e All calls of a procedure are checked against its specification.

8.3.2 Specification of the global effect

Let us define as the environment of a program the set of all its global variables, arrays and
input/output files. A change to this environment is termed an activity. Any algorithm may
perform an activity upon success, a so-called effect, or upon failure, which we then call a
defect. As a consequence of the idea of considering all procedures as parsing procedures,
we consider defects as unwanted side-effects. In CDL3 defects are forbidden and effects
must be specified explicitly.

In connection with the result attribute, we distinguish four classes of algorithms:

test: failure possible, no effect
predicate: failure possible, effect
Sfunction: failure impossible, no effect

action: failure impossible, effect

8.3.3 Specification of parameters

In CDL3, all parameters are passed via a copy/restore-mechanism, i.e. on each call, local
variables are set up, which may be initialized with the value of the corresponding actual
parameter (copy) and whose value may be passed to the corresponding actual parameter
after elaboration of the procedure (restore). The restoring takes place only after successful
elaboration of the algorithm. Upon failure, no restoring is done.

Each parameter is specified to have one of the following four directions:

inherited: copied, not restored
derived: not copied, restored upon success
transient: copied, restored upon success

free: not copied, not restored (local variable).

It should be noted that in CDL3 only simple variables and constants can be used as
actual parameters: neither arrays nor procedures can be passed as parameters. These
limitations ensure that the alias problem for simple variables is decidable.
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8.3.4 Visibility rules

There are just two scope levels in CDL3 on which affixes may be declared. On the module
level the (global) variables, constants and arrays are declared, whose scope is the module.

On the algorithm level, affixes are declared whose scope is the algorithm. There is no
nesting of procedure declarations, no passing of procedures as parameters, and no block
structure within procedures.

8.4 Local semantic check

The local semantic check deals with one procedure at a time, checking its body against
its heading, i.e. checking the programmer’s actions against his intentions.

The body of the procedure is represented by its control graph (1.2.5). For every affix
and every node of the graph an abstract value is calculated denoting properties of the
values the affix may take at execution time upon reaching the node. The environment and
changes to that environment are modeled by one pseudo affix with the value global.

8.4.1 The control graph

The nodes of the control graph are the members of the body of the procedure, i.e. calls
for algorithms, guards and control operators. If the member may succeed of fail, two edges
leave the member, on labelled ¢ and one labelled f (the true-edge and the false-edge). If
the member cannot fail, it is only left by a true-edge. All members of one alternative are
interconnected sequentially by their true-edges, while each false-edge points to the first
member of the next alternative. The true-edge of the last member of each alternative
points to the true exit, while the false-edges of all members of the last alternative point
to the false exit. This structure may be modified by the use of the control operators for
repetition and leave and by grouping.

Each member corresponds to a node in the graph. The node corresponding to the
member reached upon entering the rule is called the entrance. The true-successor of a
member m is the node pointed to by m’s true-edge, its false-successor is the node pointed
to by its false-edge.

8.4.2 Abstract values

The abstract value of an affix denotes properties of the set of values the affix may take
at execution time. The properties we are interested in are:

e is the value undefined?

e is the value obtained by copying the actual parameter before elaboration of the rule
(value inherited from caller)?

e is the value obtained by some call in the body of the algorithm (value derived from
called), and if so, by which call?

Since some paths through the program graph may join, more than one of the cases
above may in general occur at a node. Thus the abstract values are modeled by sets which
are constructed by union from the following elementary abstract values:

{undef, inherited, der,, | m member of the procedure }
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We say a value is assigned to an affix ¢ by some member m if m has that affix at
a derived or transient position. A value is assigned to the pseudo affix modeling the
environment if m has some global variable at a derived or transient position or if m is a
call for an action or predicate (thus, all global variables are lumped together).

An affix is used by a member m if m has the affix at an inherited or transient position.
An affix is used by the true exit if it has the type derived or transient. The pseudo affix is
used by every node. The calculation of the abstract values AV may then proceed iteratively
as follows, using well-known techniques (see e.g. [COUT77]).

1. For all nodes n and for all affixes a: AV (a,n) := 0.

2. For all affixes a with type free or derived: AV (a, entrance) := {undef}
For all affixes @ with type inherited, transient and global:
AV (a, entrance) := {inherited }.

3. We now have to walk through the graph starting at the entrance and performing
calculations of the abstract values at each node. In the case of loops, parts of the
graph will have to be considered more than once; the walk ends, if in a step no

abstract value is changed. Termination of the algorithm is guaranteed by the fact
that abstract values are only changed by the addition of elements.

Upon passing a member m the following calculations have to be done for every affix
a:

AV (a, falsesucc(m)) := AV (a,m) U AV (a, falsesucc(m))
a is not assigned to by m

AV (a, truesucc(m)) := AV (a,m) U AV (a, truesucc(m))
a is assigned to by m

AV (a, truesucc(m)) := der,, U AV (a, truesucc(m))

8.4.3 Conditions on the use of abstract values

Using the abstract values calculated above and some additional information obtainable
from the graph, the following conditions are checked:

e no undefined value may be used, neither by using it as input parameter to a call nor
by restoring it upon success. If a node n uses an affix a, then

{undef} N AV (a,n) =0
!
The sign < is to be read as “must be”, and # as “must not be”.

e every value that is not undefined should be used somewhere, otherwise its computa-
tion was superfluous.

We may model this by constructing for each affix a possibly used abstract value PAV ,
which is the union of all abstract values of the affix omitting {undef }. Then we can
construct the used abstract value UAV as the union of all abstract values which are
used.

PAV (a) := Up(AV (a,n)) \ {undef }
UAV (a) := Up(AV(a,n)) | n uses a
PAV (a) = UAV (a)
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e no value, that has been created by an assignment in one alternative, may be passed to
any alternative following it (independence of alternatives within a procedure body).

AV (a,n) N{dery, | mis in a previous alternative} i

e a transient affix must obtain a value somewhere. For all affixes a with type transient:
AV (a, trueexit) ;:é {inherited }

e 1o activity may be performed upon failure (defect). For the pseudo affix global:
AV (global, falseexit) = {inherited }

e if the procedure has one of the types ACTION or PREDICATE, it must have an effect.
For the pseudo affix global:

!
AV (global, trueexit) # {inherited }

e if the procedure has one of the types FUNCTION or TEST, it must not have an effect.
AV (global, trueexit) = {inherited }

8.5 Global semantic check

Due to the large amount of time and space which would be necessary for a complete
analysis, the control over the use of global variables has not been made as tight as the
control over affixes. It is NOT YET checked, whether undefined values of global variables
may be used somewhere.

8.5.1 Control over initialization

Some languages (e.g. BCPL) force the programmer to initialize all global variables when
declaring them. For CDL3, this does not seem to be the right way, since the variables may
then only be initialized by constants or by previously defined variables.

Firstly, this is sensitive to the specific order of the declarations, which we would like
to avoid. Secondly, even though for some kinds of variables the static initialization may
work (initialize with zero or nil), for others they make no sense (how to initialize a global
variable that is to hold some attribute of the current element of a huge data structure?).

Even if in such a case the programmer initializes the variable with an “impossible” value
and checks for that, he has to perform run-time tests in order to find out if there exists some
path in his program leading to the use of this “impossible” value. The compiler can carry
a big part of this work on its shoulders, by testing statically whether a variable may be
used without initialization — provided the language does not enforce static initialization
in those cases where this makes no sense.

8.5.2 Applicability to CDL3
CDL3 has some properties that simplify a global check:

e the impossibility of exporting variables from one module to another decreases the
number of global variables to be treated at any one time.

e most of the variables — at least those used throughout the program — are initialized
in the prelude part and thus need not be considered in the main part of the program.
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e the control structures of CDL3 are such that the control graph is reducible [ALL70,
LAMT77] and therefore easily analyzable and optimizable.

e the structure of CDL3 programs as a hierarchy of small procedures gives rise to a
rather efficient “Bottom-Up” analysis hardly applicable to languages with a more
complicated structure.

e due to the copy/restore parameter mechanism and the absence of formal procedures,
the alias problem is for simple variables decidable, so that the flow of data can easily
be analyzed.

8.5.3 The method

For every procedure, it is possible to calculate the set of variables that must be initialized
before calling it. Let us call this set the use of the procedure. It is also possible to calculate
the set of variables that are initialized by the procedure: this is the set of global variables
that obtain values on all possible paths through its body to the success exit, but which
are not contained in its use. This set is called the yield of the procedure.

If we calculate these two sets for all procedures, including a quasi-procedure constructed
from the prelude, root and postlude-calls of the program, all variables which are in the
use of the prelude are used somewhere without initialization.

We can improve this algorithm by performing the calculation just for the first prelude
call and then disregarding the variables which are in the yield of that prelude call. Re-
peating these steps for all prelude, root and postlude-calls, we get a decreasing number of
variables for each step. Since our experience shows that most of the global variables are
initialized in the prelude-part, the analysis of roots, which contain most of the procedures,
does not have to consider many variables.

The global check could be extended to keep track of not only the defined and undefined
values, but also of the range of a (defined) value. The mechanism should not be greatly
different (see [COU77, KIL73]).

8.5.4 Separate compilation

Within the framework of our checks, it is especially interesting if some exported algorithm
uses variables, which have to be initialized by either another exported algorithm or by
some prelude or root call. The conditions that have to be fulfilled between modules are
simple as long as no mutual intermodule communication is allowed, e.g. if the modules
form a hierarchy. Having completely unrestricted communication between modules, the
conditions obtain such a complexity that they may hardly be checked.

As long as we compile the importing and exporting modules together, it is possible to
check globally that no uninitialized variables are used.

When separately compiling these two modules we have a problem — in compiling the
defining module we do not know the order of the calls; in compiling the applying module
we do not know the restrictions on the order of calls. This problem may be aleviated by
transforming the global variables to local parameters. The normal static semantic checks
can then be applied to ensure the globals are properly initialized. The major drawback
here is that changing the globals of a module might trigger the analysis of other modules
that are seemingly unrelated.
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8.6 Semantic check results

In using implementation languages, the presence of a static semantic check can catch a
great many errors which would otherwise be found only by run-time tests.

Of the semantic checks for CDL3 described here, the local check has been in use since
early 1976. The global check is in use in the CDL2 LAB, where the whole program is
accessible.

After initial resistance from our (quite conservative) users, and improvements to its
human engineering, the semantic checker has come to be accepted as an extremely useful
production tool. One reason why each CDL3 program is now routinely checked, is the speed
at which the check is performed. The local check needs about 16 seconds of CPU time for
a 5000 lines program on an IBM/370-158. This contrasts favourably to the 0.3 to 0.5 seconds
per FORTRAN statement mentioned for a similar (but weaker) checker implemented on a
CDC 6400 by Fosdic and Osterweil [FOS76], which in that form seems hardly applicable to
large programs.

The methods described are of value to implementation languages in general. Some
properties seem to be essential for the application of the checks:

e the copy/restore parameter mechanism and the absence of procedures as param-
eters are necessary (even though not sufficient) for solving the alias-problem and
simplifying the checks on data flow

e tight visibility control and a simplified block structure enhance the perspicuity of
the program and reduce the complexity of the calculations involved in the checks

e in designing an open-ended implementation language, useful redundancy should care-
fully be introduced.
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Appendix A

Syntax of CDL3

In this chapter a Context-Free grammar of CDL3 is given, introducing terminology for
speaking about the most important constituents of a program. In the form of remarks
between the syntax rules, the semantics of the various constructs is discussed.

A.1 Syntactic abbreviations

In order to keep this syntax short and concise, we make use of a number of conventions
for omitting redundant rules. For example, in the grammar we shall need the concept of
a list of module names, with a syntax rule like

module-name-list:
module-name;
module-name, comma-token, module-name-list.

But we shall also have member-list, with a similar rule; and there will be still more
forms of lists. We therefore introduce the convention that for any notion of the form N-list
(in which N stands for some word) we can assume

al) N-list: N; N, comma-token, N-list.

Applied to the word member, this leads to

member-list:
member;
member, comma-token, member-list.

Of course this is just a device to increase the abstraction level and enhance the read-
ability of the grammar.

Further abbreviations are:
a2) N-option: N; .
Something that is optional may be left out.

a3) N-sequence: N; N, N-sequence.
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A sequence of things consists of one or more of those things, one after another. Notice
the difference: in an N-list there is a separator, the comma-token, between two consecutive
elements, but there is no separator in an N-sequence.

a4) N-pack: open-token, N-list, close-token.

A pack is a list enclosed between parentheses.

In this appendix the names of syntactic constructs will be written in sans serif font,
using some spelling variations (like primaries rather than primarys) for linguistic reasons.

A.2 Programs and modules

A program consists of zero or more modules, followed by the main-module. Each module
may use objects defined by previous modules and may define objects for use in subsequent
modules.

program: module-sequence-option, main-module.

A module consists of a module-body, preceded by a module-head and module interface.

module:
module-head, module-interface, control, module-body.

The module-head specifies the name of the module and its module variables. Due to
the current language implementation the module name must be restricted to at most 8
characters.

module-head:
"MODULE", module-name, module-variables-option,

The module-variables, if any, are specified as one special affix alternative. The variables
mentioned in this part are visible in the whole module.

module-variables: " =", affix-alternative.

The main-module of a program is its last module, the one that contains the root of the
program.

main-module: root, uses-part-option, module-body.

The root must be a nonterminal with arity zero that must be defined later in the
main-module.

root: "ROOT", nonterminal-name,

A.2.1 Module interface

The module-interface consists of two parts, each of which can be empty.

module-interface: defines-part-option, uses-part-option.
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The defines-part comprizes a specification for every object, defined in the module, that
is exported to subsequent modules.

defines-part: "DEFINES", object-specification-list, ".".

object-specification: affix-name; procedure-head.

The uses-part gives the names of all modules whose exported objects are imported in
this module.

uses-part: "USES", module-name-list, ".".

A.2.2 Module control

The control gives a list of procedures that are to be executed at a specific moment.
control:

control-procedure-sequence-option.

control-procedure:
control-procedure-head, ":"”, alternatives,

control-procedure-head:
control-type, nonterminal-name.

control-type:
"PRELUDE";
"INTERLUDE";
"POSTLUDE".

A prelude (resp. interlude,postlude) is a special action that is executed at the start of
the execution (resp. between the first and second pass, at the end of the execution).

A.2.3 Module body

The body of a module consists of a sequence of definitions. Their order is irrelevant.

module-body: definition-sequence.

definition: procedure; affix-rule.

A.3 Procedures

The definition of one nonterminal name (nonterminal for short) consists of one or more
procedures with that nonterminal as head. The various procedures making up one definition
need not have the same arity (= number of parameters).

procedure: procedure-head, ":", alternatives, ".".
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A.3.1 Rule head

procedure-head:
procedure-type, nonterminal-name, formal-parameter-pack-option.

The procedure-type defines whether a procedure can fail (test or predicate) or not
(function or action) and whether it has global effects (predicate or action) or not (test or
function).

procedure-type:
"ACTION";
"PRED";
"FUNCTION";
"TEST".

The character(s) > indicates the direction of each formal parameter.

formal-parameter:
input-parameter;
output-parameter;
transient-parameter.

input-parameter: " >", variable.

output-parameter: variable, " >".

transient-parameter: " >", variable, " >".

A.3.2 Alternatives

The alternatives of a procedure are tried in textual order until the success of one of them
or the failure of all of them.

alternatives:
alternative;

alternative, ";", alternatives.

alternative:
member-list, second-pass-option;
second-pass;
succes-operator;
member-list, ",”, group;
member-list, ",", operator.

The members of an alternative and the optional group or operator are tried in textual
order until the success of all of them or the failure of one of them.
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group:
"(", alternatives, ")".

A group is in fact a shorthand for the introduction of an anonymous new procedure.
An alternative may specify a second-pass.

A.3.3 Second pass

The execution of a second-pass is delayed until the end of the first pass of the root. It must
not fail.

second-pass:
" /", member-list, second-pass-group-option.

second-pass-group:
"(", second-pass-alternatives, ")".

second-pass-alternatives:
second-pass-alternative;

second-pass-alternative, ";", second-pass-alternatives.

second-pass-alternative:
member-list, second-pass-group-option;
member-list, operator;
succes-operator.

A.3.4 Members

member:
call;
guard.

call: nonterminal-name, parameter-pack-option.

parameter: variable; affix-expression.

When a parameter is an affix-expression it implies a join or a split.

operator:
failure-operator;
success-operator;
abort-operator;
exit-operator.
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failure-operator:
success-operator: " +".
abort-operator: " 7".
exit-operator: " 1"

A.3.5 Guards

guard: "[", confrontation, "]".

confrontation:
join;
split;
assign;
equal.

join:
affix-expression, "—>", variable.

A join gives a value to a variable, this value is a tree built according to the affix
expression.

split:
variable, "—>", affix-expression.

A split succeeds if and only if the value of its variable conforms to the tree pattern
given by the affix expression; upon success it gives values to the variables appearing in this
affix expression.

assign:
variable, "—>", variable.

equal:
variable, " =", variable.

An assign copies a value into another variable while an equal tests the equality of two
variables.

A.3.6 Affix expressions
An expression denotes a tree-pattern, which can be used to build (join) or to split a tree

(split).

affix-expression: term-sequence.
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term:
variable;
meta-terminal;
arithmetic-expression;
text-expression.

arithmetic-expression:
arithmetic-term;
arithmetic-term, arithmetic-operator, arithmetic-expression.

arithmetic-term: variable; number.

arithmetic-operator:

T addition

" substraction
nE multiplication
"% division
"%%"; modulo,
<< left-shift,
"> right-shift
"&" bitwise and
" bitwise or

" aAn

bitwise exclusive or

The arithmetic-operators are all dyadic: INT x INT — INT.

text-expression:
text-term;
text-term, " +", text-expression.

Here the + denotes the concatenation of texts.

text-term: variable; text-constant.

A.4 Metarules

A metarule serves to specify some domain as the disjunct union of the domains of its
meta-alternatives and binds it to one or more affix names specified in its meta rule head.

meta-rule: meta-rule-head, "::", affix-alternatives,
meta-rule-head: affix-name-list.

affix-alternatives:
affix-alternative:
affix-alternative, ;" affix-alternatives.
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affix-alternative: meta-element-sequence.

Each affix alternative specifies a tree-pattern, a tuple of meta-elements.

meta-element: affix-name; meta-terminal.

A.5 Lexical conventions

A.5.1 Names

module-name: letter-sequence.
nonterminal-name: name.

affix-name: capital-letter-sequence.

The optional number in a variable serves to distinguish different instances of affixes
with the same domain.

variable: affix-name, number-option.
Names of nonterminal are formed from small letters, and may contain embedded spaces.

name:
name, embedded-space, small-letter-sequence;
small-letter-sequence.

The two forms of embedded space are equivalent.

embedded-space: " " ;
letter: small-letter; capital-letter.
”Z”

small-letter: "a"; "b"; ...

capital-letter: "A"; "B"; ...; "Z".

A.5.2 Constants

number: digit-sequence.

digit: "0"; "17; "2"; "3"; "4"; "5 "6, T, "8, "9,
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text-constant: double-quote, string-without-quotes, double-quote.

Text constants are written between quotes. Within a quoted text, a quote can be
denoted by \". The sequence \n denotes an end-of-line character, a backslash is denoted

by \\.

meta-terminal: small-letter-sequence.

A.5.3 Comments

A comment starts with a comment-symbol # and comprizes the rest of the input line or upto
the next comment-symbol on the same input line. As usual, comments carry no meaning,
as well as extra spaces and carriage returns..
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Appendix B

The predefined module predef.k3

The module whose defines-part follows is included whenever a program is compiled (no
USES specification is needed). The procedures described here are in fact written in C
using the standard C-libraries. Refer to their documentation for more details.

FORMAT :: FORMAT TEXT;
FORMAT INT;
TEXT;
INT.

You can work on any number of input or output files. The text given when opening a file
is its pathname following the Unix notation.

TEST open input file (>TEXT,FILE>)
PRED read line (>FILE,TEXT>)
PRED read char (>FILE,TEXT>)
PRED read char (>FILE,INT>)

The read line routine reads a line from the FILE. Reading stops after an end-of-file marker
or a newline. If a newline is read, it is stored in the TEXT. The read char reads a single
character from the FILE. Depending on the type of the second parameter is returned as a
TEXT or INT.

The formatted version of write takes a list of integers and texts and writes them on
the given file.

TEST open output file (>TEXT,FILE>)
ACTION write (>FILE,>TEXT)

ACTION write (>FILE,>INT)

ACTION write char (>FILE,>INT)

ACTION formatted write (>FILE,>FORMAT)
FUNCTION formatted trace (>FILE,>FORMAT)

The trace function writes on a file but its hides effect (function instead of action) so that
you can use it for tracing alternatives that will fail afterwards.

ACTION close (>FILE)
PRED seek (>FILE,>INT)

The standard files are implicitly used by these functions:

PRED open standard output (FILE>)
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PRED open standard error (FILE>)
PRED open standard input (FILE>)

PRED read line (TEXT>)
PRED read char (TEXT>)
PRED read char (INT>)
ACTION write (>TEXT)

ACTION write (>INT)

FUNCTION trace (>TEXT)
FUNCTION trace (>INT)

The trace functions hide their effect on the standard error.

Arithmetic comparisons:

TEST less (>INT,>INT1)
TEST lesseq (>INT,>INT1)
TEST greater (>INT,>INT1)
TEST greatereq (>INT,>INT1)

Text operations

FUNCTION length (>TEXT,INT>)

FUNCTION extract (>TEXT,>INT1,>INT2,TEXT1>)
TEST is subtext (>TEXT,>INT>,>TEXT1)

TEST asciicode (>TEXT,>INT1,INT2>)

The extract function puts into TEXT1 the INT2 - INT1 characters starting at position INT1
in TEXT. If INT2 < INT1, an empty text is returned. The test is subtext looks whether
TEXT at position INT contains TEXT1. Upon success it adds the length of TEXT1 to INT.
The test asciicode returns the ascii value of the character at position INT1 in TEXT in
INT2 if this character is present.

The following procedures test a character in a text.

TEST between (>TEXT,>INT,>TEXT1,>TEXT2)
TEST not between (>TEXT,>INT,>TEXT1,>TEXT2)

Both between and not between check if character INT in TEXT is between respectively not
between the characters in TEXT1 and TEXT2. The ordering is according the ASCII table.
The first character in a TEXT has index 0.

Texts may be compared with

TEST before (>TEXT,>TEXT1)
TEST is prefix (>TEXT,>TEXT1,TEXT2>)
TEST prefix (>TEXT,>INT,TEXT1>,TEXT2>)

is prefix looks for TEXT at the beginning of TEXT1. If it is present the remainder is put
into TEXT2. prefix cuts TEXT into two parts: INT characters are put into TEXT1, the
remainder is put into TEXT2.

The following procedures convert INTs in TEXTs and vice versa.

FUNCTION bindec (>INT,TEXT>)
TEST decbin (>TEXT,INT>)
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The following procedure is useful to create hash indexes in arrays.
FUNCTION hash (>TEXT,>INT1,INT2>)

The function hash gives to INT2 a value between 0 and INT1-1, depending on the TEXT.

The following procedures are standard Unix functions.

TEST command arg (>INT,TEXT>)

FUNCTION exit (>INT)

TEST get from environment (>TEXT1,TEXT2>)
FUNCTION time (INT>)

PRED execute (>TEXT)

TEST file date (>TEXT,INT>)

The test command arg gives, if it exists, the INTth argument of the command line. The
function exit exits with return code INT. The test get from environment gets the value
(if defined) of the environment variable whose name is TEXT1 in the Unix environment.
The function time returns the current time in seconds since 1 January 1970. The predicate
execute hands its argument to the command interpreter sh for execution. The test file date
gives the date of last modification of a file (if it exists).
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Appendix C

Exercises

C.1 Exercise 1

purposes:
e get acquainted with the local implementation of CDL3

e get experience in programming-in-the-small

Exercise 1a

input: a stream of characters, ending on a period

task: copy input to output, up to and including the period.

From the predefined procedures you can use:

e PRED read char(TEXT>) that gives one character read from the standard input

e ACTION write char(>TEXT) that writes one character on the standard output

Exercise 1b

input: a stream of characters, ending on a period

task: copy input to output in reverse order, up to and including the period.

Do not make use of global variables or composed types.

C.2 Exercise 2

purposes:
e further experience in programming-in-the-small

e first experience in programming-in-the-large.
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Exercise 2a

Write a procedure with two integer parameters print (>INT, >WIDTH) that prints INT in
WIDTH columns, with a minus-sign in the first column iff INT is negative. Overflow of the
width will have to be dealt with (it is better to spoil the layout than to loose information).

Examples of the intended output (width=3), with vertical bars inserted to delimit the
three columns:

+3 | 3l

-3 | -3l

+114  |114]
+9276 92716
-987  |-98|7

In spite of the fact that this is a very small exercise, please implement the program as two
modules, printing and driver.

Exercise 2b

A number consists of one or more digits, possibly preceded by layout characters.

Add to the program a module reading, implementing buffered reading of lines from
the keyboard, exporting at least the following operations:

TEST ahead (>TEXT)
PRED is (>TEXT)

ACT should be (>TEXT)
PRED is number (VAL>)
PRED is plus

PRED is minus

ACT skip layout

Exercise 2c¢

Extend the test driver so that it forms a desk-calculator of your own design, with a user
interface including prompts, error messages etc.
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C.3 Final exercise: a navigational database

This final exercise will be concerned with the design and implementation of a small navi-
gational database.

Its possibilities are so limited and consequently its structure is so simple that it might
perhaps better be called a “databox”. Yet it shows a number of realistic traits and is
suitable for generalization to a quite useful system.

C.3.1 Description of the system

The semantic universe we are talking about consists of entities, between which certain
relations hold. We will introduce commands to establish relations and to delete them. In
this process, entities may be added.

This semantic universe can be modeled as a directed labeled ordered graph, in which
the entities are represented by the nodes (each node having a unique name, so that nodes
with the same name must be the same node) and relations are represented by directed
arcs (each arc having a name.)

Relations will be left-unique, i.e. all outgoing arcs of a node will differ in name, and
arcs with the same name going out from one node must be the same arc. Names will be
of form

letter { letter | digit | — }*

using the dash as a visible space within the names.

Initially, the graph consists solely of one node, the starting node of the graph, labeled
Start node.

A session is a dialogue, consisting of commands in one direction (input) and information
displays in the other direction (output), in which the graph can be examined and modified.
From one session to the next the graph may be preserved as a data file.

C.3.2 Navigation

We wish to provide commands for navigating over the graph structure of the database,
following arcs by giving their name and in this way traversing various nodes. In this
navigation it is very important that the user should at all points know where she is.
Therefore we will, after each command, prompt the user by giving the name of the current
node. The farther we are away from the starting node, the deeper we will indent this node,
in this way emphasising the following of an arc and the return to a previous node.

Initially, the current node is the starting node and the indentation will be, e.g. twenty
positions.

C.3.3 The data manipulation language

We will start by describing an interactive data manipulation language for examining and
modifying the database. The commands of the database manipulation language will be in
free format style (that is, spaces will serve to separate the elements of a command), with
one command per line. We will distinguish the following commands, which all consist of a
single character, possibly followed by one or two names:
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+ selector target

The add-command consists of a plus-sign followed by two names, the name of the
selector and the name of the target. It adds the relation (current node, selector,
target) to the contents of the database, provided the current node does not yet
have an outgoing arc named selector. In case the target name is one which has not
appeared before, it is added to the universe of entities.

The list-command consists of a single equal-sign. It lists the names of all outgoing
arcs of the current node (all “selectors”).

> selector

The follow-command consists of a greater-sign followed by the name of the selector
to be followed. If the current node has an outgoing arc of the name selector to
some target node, the indentation is increased, by e.g. four spaces, and that target
node is made the current node.

The return-command consists of a less-sign. It makes the previous node, i.e. the
node from which we reached the current node, the current node and decreases the
indentation. If there is no previous node the dialogue halts after writing the results
of our work into a file and displaying the current storage utilization.

C.3.4 Example session

In order to illustrate both the intended user interface and the commands we will give
an example session. The program identifies itself and then ask whether we want to load
an existing database possibly saved in a previous session. Here, we decide not to load a
database and the program inquires the name of the starting node.

Info System
Start node
?
We type the name of the start node

? William

From now on, whenever the program wants to read input, it displays the name of the
current node and prompts with a question mark on a new line for further input, e.g.

William
Just now the current node is still the start node. We now add an arc to this node by
the command
? + wife Mary
The system responds with
William
and we continue with adding a second relation
? + daughter Julia

William
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Note that the current node still is our start node. We have now obtained the following
information in the database:
Mary

wife
William
daughter

Julia

Figure C.1: Situation after two add commands

We give the list-command in order to see what relations we have established and obtain:

wife
daughter
William
Following the daughter-relation we change the current node

? > daughter
Julia

and continue adding two relations

? + husband John

Julia
? + daughter Cassandra

Julia

If we attempt to add a second relation named daughter, this will be reported as an
error, e.g.

? + daughter Alexandra
Selector not unique, ignored
Julia

But we can add

? + father William
Julia

If we follow the father-relation
? > father
we arrive again at the node William, but now at a deeper level.
William

We return by successive commands to the root

Julia
William
At the root, an additional return-command brings us out of the program
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? <
Storage for text= 46
Number of work cells left= 98

reporting the amount of storage used by the added relations and writing all information
entered so far to a file.

C.3.5 Reading and saving the database

The database obviously needs a mechanism for storing the results of a session until the
start of a next session. It would of course be possible to keep and update the contents of
the database on a file, but is also sufficient to keep it in memory during a session but to
read it from file at the start of the session and write it to a file at the end of the session.

Of course the contents of the database could be dumped in some numeric form but
the following scheme is more attractive. At the end of the session, the current contents of
the database is written onto a file in the form of a sequence of commands which, when
executed, reconstruct the current contents of the database.

Programming this is a nice exercise in recursion. For this approach to work, the input
strategy must be such that input takes place initially from a file and changes to the
keyboard upon meeting the end of that file.

The technique described is useful in many different situations and surprisingly easy to
implement.

C.3.6 Possible extensions

It is not hard to suggest a number of sensible extensions to the database just described
that make it a lot more interesting and possibly even useful.
Obviously a delete command is missing, with a syntax like

- selector

to delete the relationship with that selector from the current node. It is not difficult
to add, but it is not immediately clear what to do if, through the deletion of a relation,
some entity becomes unreachable. The easiest solution is to simply leave the entity in the
text table, since there is no point in explicitly removing it.

Similarly, it might be useful to add a command for jumping immediately to a node
with a specific name, e.g. in the form

! name

meaning: jump immediately to the node of that name (note that, because of the reading
strategy followed, once the command has been read a node of that name exists, even if
there is no arc leading to or from it.)

Further extensions are of course possible, bringing the database nearer to a real life
System:

e it is possible to impose on each node a type, like integer, real, text or table (with a
certain structure), so that different forms of information can be kept in the database.

e it is possible to impose an a-priori structure on the database by fixing the number
of fields and the names of the selectors a node can have. One attractive technique is
to equip the database with a description of its contents in the form of a context-free
grammar.
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e we can also generalize this database for simultaneous access by many people, using
some form of lockouts for safe simultaneous update. And we can distribute it over
many computers. The sky is the limit.

The small database described is a good starting point for experiments in the construc-
tion of all kinds of software, not only databases — The reader is invited to exercise her
own phantasy.
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