
Documentation for the Radboud PIpeline for the

Calibration of high Angular Resolution Data (rPICARD)

Michael Janssen

January 26, 2021

Contents

1 Preface 3

2 The Basic Code Philosophy 4

3 Code Overview 5

4 MPI Scalability 6

4.1 Memory Safeguard . 6

5 Quick Start Guide 7

5.1 Usage Examples . 13

6 Overview of the Default Pipeline Steps 15

7 Input Parameters 19

7.1 Parameter Examples . 19

7.1.1 Parameters set by setup.py . 19

7.1.2 Imaging Parameters . 20

8 Command Line Arguments 23

9 Quickmode 25

10 Interactivity Capabilities 26

11 Fringe-fitting 27

11.1 Picking a Reference Station . 28

11.2 Finding the Optimal Solution Intervals . 30

11.3 The Individual Fringe-fitting steps . 31

12 ANTAB Tables: A-Priori Information for the Amplitude Calibration 34

1

https://bitbucket.org/M_Janssen/picard

13 Diagnostics 36

13.1 Jplotter . 36

14 Special Filenames 37

15 Phase-Referencing 39

16 Opacity Correction 40

17 Source Models 42

18 Flagging Algorithms 43

19 Flag Versions 44

20 Change of Calibration Strategy 45

21 Code Updates 47

22 Frequently Asked Questions 48

23 Known Issues 49

23.1 Subarrays . 51

24 Publications – for Detailed Information 52

25 Comparisons with AIPS-based Calibration 53

2

1 Preface

This documentation is a manual for the pipeline. It is not meant be a guide that explains the

methods and intricacies of radio astronomy. If the reader needs more background information, I

recommend two references: ‘Interferometry and Synthesis in Radio Astronomy’ by A. Richard

Thompson, James M. Moran, and George W. Swenson Jr. (the third edition is available

online for free) and ‘Synthesis Imaging in Radio Astronomy II’, edited by G. B. Taylor, C.

L. Carilli, and R. A. Perley (volume 180 of Astronomical Society of the Pacific Conference

Series. 1999). Additionally, the https://ui.adsabs.harvard.edu/abs/2019A%26A...626A..75J

paper can be consulted for a formal documentation of the pipeline, explaining calibration

choice made in more detail and providing more information about the basic principles of

VLBI data reduction.

This pipeline makes use of the CASA framework for radio astronomy data processing. The

purpose of the pipeline is to calibrate very long baseline interferometry (VLBI) data from

many different arrays. This became possible within CASA, thanks to a project initiated by

BlackHoleCam. This project led to the addition of new data reduction tasks to the CASA

software package, which are crucial for the processing of VLBI data.1 These tasks were

developed by Ilse van Bemmel, Mark Kettenis, and Des Small at JIVE.

1The most important new task is fringefit(), which is available since CASA 5.3.

3

http://www.springer.com/gp/book/9783319444291
https://ui.adsabs.harvard.edu/abs/2019A%26A...626A..75J
https://casa.nrao.edu/
https://blackholecam.org/
http://www.jive.eu/

2 The Basic Code Philosophy

1. No parameter is hard-coded. The user can fine-tune every knob to achieve an optimal

calibration.

2. All parameters have sensible or self-tuning default values. It will suffice to set only a

few basic parameters (path to the data and the names of the observed science target

and calibrators) to achieve a good calibration completely hands-free.

3. Every step of the pipeline will produce diagnostic plots by default, which show if the

calibration worked as intended. The plots plots are saved in special directories – it will

be evident when the pipeline was run and which set of input parameters were used.

4. Every step of the pipeline can be re-run separately and without any effort for opti-

mization (e.g., after trying different input parameters or after manually editing bad

data).

Following these points, experienced users can easily customize the pipeline to their needs,

while inexperienced users will still get good results when running the pipeline ‘blindly’ with the

default settings.2 Thanks to the many diagnostics of the pipeline, users can easily understand

how and if the calibration steps worked. If the diagnostics show that a certain step did not

work properly, then it can be re-run indefinite times without effort, allowing the user to

optimize that step and fine-tune the calibration procedure.

rPICARD is a highly modular code, with a standardized wrapper for each calibration task.

The wrapper automatically takes care of potential smoothing and plotting of calibration

solutions as set by the user via a set of standardized input parameters, on-the-fly calibration,

and the passing of any required complementary metadata from the Measurement Set (e.g.,

frequency, antenna, and scan information), in single objects. This makes it straightforward

to adjust any calibration strategy or to add new functionalities, see section 20.

2If there are no severe issues with the dataset that need to be dealt with in a special way, the pipeline
should produce perfectly calibrated data when using the default settings – thanks to self-tuning parameters
and the automatic flagging routines.

4

3 Code Overview

The code is organized into the main script picard/main picard.py, which handles the

sequential calls to the different CASA calibration tasks, and several modules in the

picard/pipe modules folder: For phase calibration, amplitude calibration, polarization

calibration, diagnostics, opacity corrections, automatic flagging, auxiliary functionalities,

and generic functionalities around the CASA calibration framework. Additional scripts from

JIVE for the amplitude calibration can be found in picard/pipe modules/JIVE scripts.

picard/picard is a wrapper around picard/main picard.py, handling a proper call to

mpicasa -c. setup.py must be used to link the pipeline to your CASA installation (saving the

PATH to your CASA binary in a your casapath.txt file). The setup script will also establish

the mpi environment for your machine and use the input template folder (section 7) to write

a first set of default input parameters to picard/input. For the docker images, setup.py

was already executed automatically.

By default, setup.py will search your whole file system for a CASA installation. Passing

-d <path> as command line argument will narrow down the search to the directory <path>

(useful if CASA is installed on a network disk or if the local file system is very big).

picard/interactive utils.py is a module that can be loaded into interactive CASA

sessions independently from the rest of the pipeline (if added to your PYTHONPATH). See

section 10.

picard/scripts/calibration contains example scripts where rPICARD is run to calibrate

data and picard/scripts/imaging contains scripts where rPICARD is run to image calibrated

data.

5

4 MPI Scalability

The pipeline makes use of the built-in MPI scalability of CASA. Some tasks (like applycal()

or flagdata() for example) are internally parallelized and will run faster if more CPU power

is available.

Fringe-fitting is the most time-consuming task. It is done on a per-scan basis; for speed-up

each scan will be fringe-fitted separately as a separate MPI job.

The setup.py script will prepare a default picard/input/mpi host file, filling it with

the maximum number of cores available on the host machine. By default, the call to mpicasa

in picard/picard reads from this mpi host file via -hostfile ${pipedir}input/mpi host file.

However, if a custom mpi host file exists in a local input folder (section 7) that the code is

told to use via the --input or -p command line arguments (section 8), the computing resources

in that host file are used instead.

A mpi host file simply contains the number of cores that are to be used per machine.

I.e., for a single machine, a single line is given with the name of the machine and the number

of cores (‘slots’) that CASA is allowed to use. For an MPI-able computing cluster, multiple

computing nodes/machines can be used by specifying the name of each node/machine together

with the number of available cores on a separate line. Another option is to use the -n command

line option (section 8) to specify the number of cores that are to be used.

4.1 Memory Safeguard

For datasets with many visibilities per scan (many baselines, long scans, large bandwidth),

it can happen that the parallelized applycal() and fringefit() steps (section 6) cause

memory starvation if the number of used CPU cores times the amount of memory needed

to calibrate a single scan3 is larger than the system’s total amount of available memory. If

rPICARD is run on a system with many cores but not a lot of RAM, the mpi memory safety

parameter in picard/input/constants.inp can be set to limit the number of scans that are

simultaneously calibrated by applycal() and to wait until enough memory is available before

submitting a fringefit() job to an MPI server. The overhead of this memory monitoring

and resource scheduling will decrease the performance a little bit.

3Different scans can contain different numbers of visibilities.

6

https://casa.nrao.edu/casadocs/@@search?SearchableText=mpi

5 Quick Start Guide

This section provides instructions on how to run the pipeline on the provided example EVN

fits-idi file in the testing folder. The purpose of doing this test is twofold:

� Test if the pipeline works as intended on your machine.

� Follow the typical actions that need to be taken when reducing a dataset with the

pipeline:

1. Pick a location on your file system where you want to work with your data (testing/).

2. Prepare a set of input parameters (section 7), starting from the picard/input file

in the pipeline folder (assuming $./picard/setup.py was done already). It is recom-

mended to have the input folder always together with the data itself. So, copy the

picard/input/*.inp files to a new input folder in your workdir (testing/input/).

There, edit the observation.inp file, setting the absolute path for the working directory.

For example, workdir = ∼/Software/picard/testing would be a typical input. Or

use workdir = $pwd to set the working directory to </path/to/input/folder>/../

(which is specified with the -- input command line argument, see below).

3. Your uv-data must be present in the working directory either as fits-idi files (or links

to these files) or as measurement set. In testing/, a single example EVN fits-idi file is

present.

4. Also, all useful metadata should be put in the workdir (or links to these files), see

section 14. An ANTAB table (section 12) must be present for the amplitude calibration.

In testing/, there is an ANTAB table example.antab, a uvflag file example.flag,

a source model file 3C84.smodel (section 17), and a file with receiver temperature

information example.trx (section 16).4

5. The fits-idi file in testing/ is an unknown dataset, so we first want to know what is in

there before setting any other input parameters. So, we run the pipeline in ‘inspection

mode’ (just loading the data and writing a listobs file, see section 8): $ picard --input

testing/input -l e. For the test case you should see something similar to listing 1 below.

6. Inspect the diagnostics folder (section 13) from the previous action, which was created

in the workdir and read the list.obs file that was created to get an overview of

the observation: Pick the best reference antenna and note down science targets and

calibrators.

7. Edit testing/input/observation.inp, defining science targets and calibrators and

testing/input/array.inp, defining array type and refant. For the test case, set

array type = EVN ; refant = ON ; science target = None and all calibrators =

3C84.
4No opacity correction is done for EVN data. The Trx file is just a dummy example here.

7

8. Make a dry run (section 9), while also making an initial flag version backup (section 19)

and without creating a new diagnostics folder this time (section 8): $ picard --input

testing/input -q -r. For the test case you should see something similar to the listing 2

below.

9. For a real dataset, you could now perform the the complete calibration: $ picard --input

<path-to-input-files>. If you know your data beforehand and the pipeline has been

verified to work on your system, you can skip actions 5,6, and 8.

Listing 1: Typical terminal output for action 5 when using the example data in testing/

===

The s ta r t−up time o f CASA may vary

depending on whether the shared l i b r a r i e s

are cached or not .

===

===

The s ta r t−up time o f CASA may vary

depending on whether the shared l i b r a r i e s

are cached or not .

===

===

The s ta r t−up time o f CASA may vary

depending on whether the shared l i b r a r i e s

are cached or not .

===

===

The s ta r t−up time o f CASA may vary

depending on whether the shared l i b r a r i e s

are cached or not .

===

IPython 5 . 1 . 0 −− An enhanced I n t e r a c t i v e Python .

IPython 5 . 1 . 0 −− An enhanced I n t e r a c t i v e Python .

IPython 5 . 1 . 0 −− An enhanced I n t e r a c t i v e Python .

IPython 5 . 1 . 0 −− An enhanced I n t e r a c t i v e Python .

CASA 5.3.0−122 −− Common Astronomy Software App l i ca t i on s

CASA 5.3.0−122 −− Common Astronomy Software App l i ca t i on s

CASA 5.3.0−122 −− Common Astronomy Software App l i ca t i on s

CASA 5.3.0−122 −− Common Astronomy Software App l i ca t i on s

. .

8

Thank you f o r us ing rPICARD v0.2.0−9−g8758686

This program w i l l automat i ca l l y c a l i b r a t e your VLBI dat s e t

− Make i t so ! −
**

Got −−input opt ion :

Reading input from

. . / t e s t i n g / input /

Reading input . . .

Found 174 parameters

Done

Changing d i r e c t o r i e s from

/home/michael / Software / Bi tbucket r epos /Picard

to

/home/michael / Software / Bi tbucket r epos / t e s t i n g / input / . . /

Writing t h i s run ’ s d i a gno s t i c s to

/home/michael / Software / Bi tbucket r epos / t e s t i n g / d i agno s t i c s 2018 −06−28 13−11−25

Warning : No va l i d WX tab l e found .

Any opac i ty at t enuat ion c a l i b r a t i o n w i l l f a i l .

Loading the data . . .

Found

[/ home/michael / Software / Bi tbucket r epos / t e s t i n g / input / . . / example EVN . IDI1]

Done

Saving i n i t i a l f l a g ve r s i on to

VLBI .ms . f l a g v e r s i o n s / f l a g s . i n i t f l a g v e r s i o n . . .

Done

Writing l i s t o b s f i l e to d i agno s t i c s 2018 −06−28 13−11−25/ l i s t . obs . . .

Done

Got − l e opt ion :

Ex i t ing now that I have wr i t t en a l i s t o b s f i l e .

Changing d i r e c t o r i e s from

/home/michael / Software / Bi tbucket r epos / t e s t i n g

to

/home/michael / Software / Bi tbucket r epos /Picard

. .

− FINISHED −

9

Now: Tea . Ear l Grey . Hot .

Waiting f o r the MPI environment wrap−up . . .

**

Listing 2: Typical terminal output for action 8 when using the example data in testing/

===

The s ta r t−up time o f CASA may vary

depending on whether the shared l i b r a r i e s

are cached or not .

===

===

The s ta r t−up time o f CASA may vary

depending on whether the shared l i b r a r i e s

are cached or not .

===

===

The s ta r t−up time o f CASA may vary

depending on whether the shared l i b r a r i e s

are cached or not .

===

===

The s ta r t−up time o f CASA may vary

depending on whether the shared l i b r a r i e s

are cached or not .

===

IPython 5 . 1 . 0 −− An enhanced I n t e r a c t i v e Python .

IPython 5 . 1 . 0 −− An enhanced I n t e r a c t i v e Python .

IPython 5 . 1 . 0 −− An enhanced I n t e r a c t i v e Python .

IPython 5 . 1 . 0 −− An enhanced I n t e r a c t i v e Python .

CASA 5.3.0−122 −− Common Astronomy Software App l i ca t i on s

CASA 5.3.0−122 −− Common Astronomy Software App l i ca t i on s

CASA 5.3.0−122 −− Common Astronomy Software App l i ca t i on s

CASA 5.3.0−122 −− Common Astronomy Software App l i ca t i on s

. .

Thank you f o r us ing rPICARD v0.2.0−9−g8758686

This program w i l l automat i ca l l y c a l i b r a t e your VLBI dat s e t

− Make i t so ! −
**

10

Got −−input opt ion :

Reading input from

. . / t e s t i n g / input /

Reading input . . .

Found 174 parameters

Done

Changing d i r e c t o r i e s from

/home/michael / Software / Bi tbucket r epos /Picard

to

/home/michael / Software / Bi tbucket r epos / t e s t i n g / input / . . /

Writing t h i s run ’ s d i a gno s t i c s to

/home/michael / Software / Bi tbucket r epos / t e s t i n g / d i agno s t i c s 2018 −06−28 13−15−19

Got −r opt ion :

Wil l en f o r e to (re) s t o r e an i n i t i a l f l a g ve r s i on o f the data .

Attaching Tsys va lue s from

/home/michael / Software / Bi tbucket r epos / t e s t i n g / input / . . / example . antab

to the (f i r s t) f i t s − i d i f i l e :

/home/michael / Software / Bi tbucket r epos / t e s t i n g / input / . . / example EVN . IDI1 . . .

Done

Warning : No va l i d WX tab l e found .

Any opac i ty at t enuat ion c a l i b r a t i o n w i l l f a i l .

Loading the data . . .

The measurement s e t VLBI .ms a l r eady e x i s t s .

I assume you want to work with the same measurement s e t again ,

but probably with a d i f f e r e n t c a l i b r a t i o n s t r a t e gy .

Therefore , I w i l l not load the f i t s − i d i f i l e s again and keep the o ld MS.

Done

Restor ing f l a g s to i n i t i a l v e r s i on from

VLBI .ms . f l a g v e r s i o n s / f l a g s . i n i t f l a g v e r s i o n . . .

Done

Writing l i s t o b s f i l e to d i agno s t i c s 2018 −06−28 13−15−19/ l i s t . obs . . .

Done

−− Determining metadata c o l l e c t i o n from sc ra t ch −−

I n i t i a l i z i n g metadata c o l l e c t i o n . . .

Warning : There i s a d i f f e r e n c e between a l l s ou r c e s a v a i l a b l e

and the ones s p e c i f i e d as c a l i b r a t o r s and s c i e n c e t a r g e t s :

s e t ([’TXCAM’ , ’3C273 ’])

This e i t h e r means you are not us ing a l l a v a i l a b l e sou r c e s

or you s p e c i f i e d sour c e s which were not observed .

Maybe due to a typo ?

11

In the former case the sour c e s not s p e c i f i e d w i l l not be proper ly c a l i b r a t e d .

In the l a t t e r case the code should e x i t with a ValueError now .

Done

Using the f o l l ow i n g scans o f the f o l l ow i ng sour c e s f o r

d i a gno s t i c p lo t s , f l a gg ing , and maybe f o r t r i a l and e r r o r f r i ng e− f i t t i n g :

[[(’ 3 C84 ’ , ’ 1 ’)] ,

[]]

Prepar ing DPFU and gain curve conver s i on f i l e based on the ANTAB tab l e

/home/michael / Software / Bi tbucket r epos / t e s t i n g / input / . . / example . antab . . .

Done

The p i p e l i n e w i l l execute the f o l l ow i ng s t ep s f o r the

EVN array in the g iven order :

a : load models o f observed sour c e s (i f p re sent)

b : use on l i n e f l a g s from i d i f i l e s (i f p re sent)

c : use f l a g s from metadata (i f p re s ent)

d : f l a g based on o u t l i e r d e t e c t i on from auto−c o r r e l a t i o n s vs time

e : f l a g based on o u t l i e r d e t e c t i on from auto−c o r r e l a t i o n s vs f requency

f : f l a g edge channe l s

0 : t a s k t s y s

1 : t a sk s c a l a r bandpa s s

2 : t a sk ga incu rve

3 : t a s k f r i n g e f i t s o l i n t c a l

4 : t a s k f r i n g e f i t s i n g l e

5 : t a s k f r i n g e f i t m u l t i c a l

6 : task complex bandpass

7 : t a s k f r i n g e f i t s o l i n t s c i

8 : t a s k f r i n g e f i t m u l t i s c i

9 : t a s k r l d e l a y

10 : t a s k r l pha s e

11 : task dterms

g : c l e a r the c a l i b r a t e d data column o f the MS from prev ious app lyca l runs

h : apply a l l e x i s t i n g t ab l e s from a l l c a l i b r a t i o n s t e p s

i : p r i n t overview o f f l a gg ed data (can be slow)

j : make d i a gno s t i c p l o t s o f c a l i b r a t e d v i s i b i l i t i e s f o r s e l e c t e d b a s e l i n e s

k : average and export the c a l i b r a t e d data

Can use quickmode [−q] to execute only a subset o f the se s t ep s .

Got −q argument without a l i s t s p e c i f i e d :

Ex i t ing now that I have shown the l i s t o f s t ep s .

Changing d i r e c t o r i e s from

/home/michael / Software / Bi tbucket r epos / t e s t i n g

to

/home/michael / Software / Bi tbucket r epos /Picard

. .

− FINISHED −
Now: Tea . Ear l Grey . Hot .

Waiting f o r the MPI environment wrap−up . . .

**

12

5.1 Usage Examples

This subsection gives some examples of things you can do with the pipeline. Here, I assume

that you have followed the above steps and that you are in a working directory, where the

data, metadata, and an input folder are present. For an explanation of the command line

arguments, see section 8.

� Only load the data and create an initial flag version:

$ picard -prq

� Make plots of uncalibrated and unflagged data, without creating a new diagnostics

folder:

$ picard -pdrq h,i,k

� Print overview of flagged data:

$ picard -pq j

� Run flagging steps to see how much data they flag:

$ picard -prq b,c,d,e,f,g,i

� Undo all flags, calibrate step 0, and make plots:

$ picard -prq 0,h,i,k

� Full run of pipeline:

$ picard -p

� Reload metadata (necessary after changing the source selection in the

input/observation.inp input file for example) without creating a new diagnostics

folder:

$ picard -pmdq

� Determine fringe solints again (assuming it is step 4 here, this can be different for

different array types set in the input/array.inp input file):

$ picard -pfq 4

� Full run of pipeline excluding step 5 (if the calibration table still exists from an earlier

run it will be applied nonetheless; in that case it may be useful to first delete the

calibration table):

$ picard -prq x,0∼4,6∼99

� Interactive imaging of a VLBI.ms.avg dataset created by rPICARD in the current working

directory. The source is 3C279:

$ mpicasa -n 3 <path-to/bin/casa>

import interactive utils

interactive utils.imager(‘3C279’)

13

� Interactive imaging of a EVN.uvfits file in the current working directory. Perform an

additional correction for the parallactic angle and allow the user to turn off interactive

imaging once a final set of CLEAN boxes are in place. The source is 3C273:

$ mpicasa -n 3 <path-to/bin/casa>

import interactive utils

interactive utils.imager(‘3C273’, ‘EVN.uvfits’, parang=True, goautomated=True)

14

6 Overview of the Default Pipeline Steps

Below, a brief overview of the basic pipeline procedures is given. For a more detailed docu-

mentation, see section 24. Actions which will potentially flag data are underlined.

� Preparation procedures. These are executed every time the pipeline is run (except

if the -h command line argument (section 8) is used.

– Start the MPI client.

– Read all input parameters from picard/input/*.inp (unless overwritten) and

store them in the inp params object, see section 7.

– Change directory to the workdir specified in picard/input/observation.inp.

– Make a diagnostics folder with the current timestamp, see section 13. Can be

turned off with the -d command line argument, see section 8.

– Write out the used input parameters in the diagnostics folder.

– Grab an ANTAB table in the workdir folder (searched for by file extensions, see

section 14). This step can be skipped for phase-only calibration, see the example

in section 9.

– Make a VLA-type gain curve table from the gain block of the ANTAB table.

Skipped if no ANTAB table is present.

– Get all fits-idi files that are to be loaded from all files with certain extensions

(section 14) in the workdir folder. Use the tsys block in the ANTAB table to attach

a SYSTEM TEMPERATURE table to the first fits-idi file and load in all files to get a

single measurement set5 if there is enough free space. Exits otherwise. This step

is skipped if a measurement set is already present.

– Make an initial backup flagversion. Can fall back to that version if the pipeline is

run again (section 19).

– Save the output of listobs() to a file in the diagnostics folder. Exit here if -l e

was passed as command line argument.

– Determine a set of MS metadata (either from scratch or by reading a previously

determined one from disk). This set contains info about the correlations, antennas,

scans, and frequency setup. Also, a few selected scans are determined for every

source. These are as uniformly distributed over the observations while scans with

the most antennas present are picked. These scans are useful for diagnostics.

– Print a quick overview of all steps and exit here in the case of a dry run (-q

command line option without a list specified, see section 8).

5Will flag visibilities which have a weight of zero.

15

� Run steps part 1. These are executed before the actual calibration tasks. Quickmode

(-q) can be used to perform only a subset of these steps. More information on the

underlined flagging steps can be found in section 18.

(a) Look for model files of the observed sources (searched for by file extensions, see

section 14) and load them into the MODEL DATA column of the measurement set as

described in section 17.

(b) Apply flag tables attached to the fits-idi files.

(c) Look for files with certain flag extensions (section 14) in the workdir folder and

apply the flags stored in these files (if necessary convert uvflag to casa flag format).

(d) Automatic flagging algorithm based on outliers in the autocorrelation vs time

data.

(e) Automatic flagging algorithm based on outliers in the autocorrelation vs frequency

data.

(f) Flag edge channels.

(g) Flag start and end segments of scans (quacking).

� Calibration tasks. Perform incremental on-the-fly calibration (for every task, the

calibration solutions from all previous steps are applied on the fly where applicable),

potentially smooth the solutions, and save plots of the calibration results to the diag-

nostics folder for every step. Quickmode (-q) can be used to perform only a subset of

these tasks. The steps below are examples for a polarization continuum VLBA dataset.

For other observations the steps may be different (see picard/main picard.py and

picard/input/observation.inp).

(0) Generate an accor() calibration table. Corrects amplitude errors introduced by

faulty sampler thresholds. The corrections are estimated by scaling the auto-

correlations to unity. Not required for EVN data which has this correction already

applied.

(1) Generate a scalar bandpass() calibration table. It uses the autocorrelations to

calibrate the amplitude frequency response of every station.

(2) Generate a tsys calibration table. If necessary, correct for the opacity-induced

source attenuation, using all available trec files for better fits (section 14 and

section 16).

(3) Generate a gc calibration table. The system temperature and gain curve informa-

tion are used to multiply the correlation coefficients in the raw data with system

equivalent flux densities (SEFDs) to have the visibilities scaled to units of Jansky.

See section 12.

16

(4) Generate a single-band fringefit() calibration table to correct for

instrumental effects. The instrumental phase and delay calibration is done

by fringe-fitting every scan of the sources set via calibrators instrphase

in picard/input/observation.inp (unless an explicit list of scans is given

in picard/input/array finetune.inp) and then interpolating across scans

between all solutions which have a high enough SNR (the threshold is defined in

picard/input/array finetune.inp). By default, scans will be fringe-fitter over

their entire duration in this step. The basic principle of fringe-fitting is outlined

in section 11.

(5) Determine optimal fringefit() solution intervals for every scan on a calibrator

source (either from scratch or by reading in previously determined solints from

disk). This is done by looking at the distributions of SNR vs solution interval on

every baseline to the reference station and taking the shortest solint within the

coherence time that still yields to detections on all baselines.

(6) Generate a multi-band fringefit() calibration table for the calibrator sources.

Write out the same SNR-weighted average of RPC+LCP rates for both polar-

izations and smooth the multi-band delays in time (per scan and per antenna).

Optimal solution intervals obtained from the previous step are used here.

(7) Generate a complex bandpass() calibration table. Corrects for the phase response

over the bandpass for every antenna. (An amplitude correction is also possible,

but not recommended, because this is already done by the scalar bandpass. See

picard/input/array finetune.inp for details.)

(8) Generate a RL delay calibration table using gaincal(). Calibrates the delay differ-

ences between the RCP and LCP receivers. Necessary for polarization experiments.

(9) Generate a RL phase calibration table using polcal(). Calibrates the RL phase

for polarization experiments. The absolute RL phase establishes the EVPA of the

source.

(10) Generate a D-terms calibration table using polcal(). Corrects for the instrumental

leakage between the RCP and LCP feeds of every station.

(11) Generate a multi-band fringefit() calibration table for the science targets on

scan-based solution interval with open search windows to take out the bulk delay

and rate offsets of each scan.

(12) Determine optimal fringefit() solution intervals for all scans on science targets,

with the same method as outlined for the calibrator sources above.

(13) Generate another multi-band fringefit() calibration table for the science targets.

As opposed to the previous fringe-fit step, where the bulk delay and rate offsets

are taken out, this step solves for residual intra-scan atmospheric phase distortions

on the short optimal solution intervals determined by the previous step. Typically,

17

narrow search windows are used here. Same post-processing as for the calibrator

sources multi-band fringefit() step (see above).

� Run steps part 2. These are executed after the calibration tasks. Quickmode (-q) can

be used to perform only a subset of these steps.

(h) Clear all existing calibrated data from previous applycal() runs.

(i) Run applycal(), using the tables generated by all calibration steps. Flags all

uncalibrated data (e.g., if no fringes were found in a scan).

(j) Write the amount of flagged data to a file in the diagnostics folder.

(k) Save plots for a set of calibrated visibilities in the diagnostics folder.

(l) Take the calibrated data and average it into a new MS. Then, create uvfits files

per source from the calibrated and averaged data.

18

7 Input Parameters

By default, input parameters are read from all *.inp files in the picard/input folder. They

are stored in a single object inp params, which is passed around in the code. A small de-

scription is given for each input parameter in the input files. One should definitely set the

parameters in observation.inp each time the pipeline is run for a new VLBI experiment.

For different arrays, different frequencies, or different calibration strategies, array.inp should

be edited. Usually constants.inp can be left as the default. For a-typical calibration strate-

gies or severe issues in the dataset which require non-standard calibration methods, the

array finetune.inp parameters can be adjusted. New input values can easily be added as

name of parameter = value of parameter.

Multiple values can be separated by a semicolon, so that name of parameter becomes an

array within the code. If not given as string, numbers are recognized as floats if they contain

a decimal point and as integers otherwise. Booleans and strings are trivially recognized.

value of parameter can then easily be accessed as inp params.name of parameter in the

code. For readability, lines can be continued with a backslash (\) character before a new line.

With the --input or -p command line arguments, a set of input parameters can be read

from any directory, instead of the default picard/input folder (section 8).

The idea behind the input files is that users can keep and modify their own set of inputs.

Therefore, picard/input has been added to .gitignore. However, an up to date developer’s

copy of the input files are kept as template in the repository’s input template folder. If

these files are updated, then users will have to adjust their own input files accordingly, as

described in section 21.

Additionally, rPICARD determines a set of ancillary or ‘internal’ metadata derived from

the MS data itself. This data is stored in a single object for quick access from the different

calibration modules. The stored information is about the polarization, frequency setup, data

integration time, stations, scans, and observed sources.

7.1 Parameter Examples

Here, more detailed information is given about some of the input parameters mentioned in

https://ui.adsabs.harvard.edu/abs/2019A%26A...626A..75J.

7.1.1 Parameters set by setup.py

The code uses the following prioritized reference station lists for the phase calibration by

default:

1. EHT: ALMA, LMT, APEX, SMT, IRAM30m, SPT

2. GMVA: ALMA, Effelsberg, IRAM30m, Los Alamos, Fort Davis, Pie Town, Kitt Peak

3. VLBA: Los Alamos, Fort Davis, Pie Town, Kitt Peak

19

https://ui.adsabs.harvard.edu/abs/2019A%26A...626A..75J

4. EVN: Effelsberg, Yebes, Medicina, Noto

The user could alter these lists based on the actual performance of the stations in an ob-

servations. The most important effects that need to be taken into account are weather and

technical issues. These will become evident from the diagnostic output of the pipeline; most

importantly from plots of system temperatures.

The following default search ranges are used when looking for fringes to calibrate atmo-

spherically induced in-scan phase fluctuations:

1. EHT: 2 s – 30 s

2. GMVA: 2 s – 180 s

3. VLBA: 30 s – 400 s

4. EVN: 60 s – 400 s

Depending on the overall weather conditions, exact observing frequency, and source brightness,

the user could adjust these search ranges. The best indicator is the number of fringe-non

detections within the search windows, which are reported in the diagnostic plots for the fringe-

fit solution interval searches. It is possible to specify different search ranges for calibrator

sources and science targets. In the mm regime, rPICARD will try a few longer solution intervals

to get detections for stations in scans outside of the ranges given above. For the EHT, 60 s

and 120 s are tried. For the GMVA, 240 s and 300 s are tried.

For both the list of reference stations and phase calibration solution intervals, new lists

of solution intervals for other arrays can easily be added.

7.1.2 Imaging Parameters

Table 1 gives a brief overview of the important parameters for rPICARD imager.

Table 1: Description of the most important rPICARD imager parameters and how they are up-
dated in each imaging plus self-calibration iteration. For more information about the tclean pa-
rameter, see https://casa.nrao.edu/casadocs-devel/stable/global-task-list/task_
tclean/about.

Parameter Name Default Description

cellsize None Size of an image pixel. If not set, CASA will

determine it based on the longest baseline.

imsize None Size of the image in pixels. If not set, CASA will

determine it based on the field of view.

niter0 500 Initial value for the maximum number of

CLEAN iterations.

20

 https://casa.nrao.edu/casadocs-devel/stable/global-task-list/task_tclean/about
 https://casa.nrao.edu/casadocs-devel/stable/global-task-list/task_tclean/about

cleaniterations ‘shallow’ Parameter to update the tclean niter parameter,

starting from the niter0 parameter. If set to

‘constant’, niter will not be updated and for

‘shallow’, niter will be increased by niter0 after

each iteration.

gain 0.1 The CLEAN gain (fraction of source flux

subtracted frm residual image).

multiscale [0,2,6] Pixel sizes for multi-scale deconvolution.

nterms 1 Number of Taylor coefficients in the spectral

model for multi-frequency deconvolution.

robust 0.5 Briggs weighting robustness parameter (Briggs,

D. S. 1995, 27, 1444).

threshold ‘auto’ Stop cleaning when the residual peak flux

reaches this value. The default (‘auto’) uses the

point source sensitivity determined from the

data by the CASA imager tool.

nsigma 3.0 CLEAN stopping criterion based on the median

absolute deviation.

startmod sc 0 Do an initial phase self-calibration to a point

source to align phases. The timescale can be set

in seconds. The default (0) is to use the data

integration time tint.

timeavg False Can average the data in time after startmod sc.

phase only selfcal [300s,10s] A list of phase-only self-calibration steps to be

done before the amplitude self-calibration and

after startmod sc and timeavg.

startsolint 10 hours The starting solution interval for the amplitude

calibration.

solint denominator 2 The factor by which the amplitude

self-calibration timescale Tamp is lowered after

each iteration.

N sciter 0 Maximum number of self-calibration iterations.

The default (0) is to stop when Tamp reaches tint.

If set to −1, only the phases will be

self-calibrated. If set to −2, a single image

without self-calibration will be made.

minsnr sc phase 3.0 The SNR cut for phase self-calibration solutions.

minsnr sc amp 5.0 The SNR cut for amplitude self-calibration

solutions.

21

flag last sc True Flag data for which no self-calibration solutions

are obtained in the last iteration.

amp selfcal ants False Can define a subset of station for which

amplitude self-calibration is to be done. The

default is to obtain solutions for all stations.

station constraints None Can constrain the range for amplitude

self-calibration gains.

station weights None Can modify the data weighting of specific

antennas.

uvrange sc None Can constrain the u-v range for which amplitude

self-calibration solutions are obtained.

uvzero mod None Can anchor the large scale flux in the model

visibilities to a specified zero-spacing source flux

density up to a maximum u-v range.

mask None Can supply files with CLEAN box masks for the

source that are to be used for different

iterations.

interactive True Build CLEAN boxes interactively in tclean.

goautomated False Option to set interactive to False at runtime for

a final set of CLEAN boxes.

usemask ‘auto-multithresh’ Enable the tclean CLEAN auto-boxing

capabilities (see text).

22

8 Command Line Arguments

The available command line arguments for picard are

[-p,--input <new-input-folder>] [-f] [-m] [-l (e)] [-q (<list>)] [-r (a)] [-d] [-s] [-n <#cores>]

[-i] [-h]. They are all optional.

� With --input, the pipeline will look for *.inp files and a mpi host file in

new-input-folder instead of the default picard/input/ folder (section 7). If the

shorter -p is used instead, the code will look for an input/ or input template/

folder in the current working directory to use as new-input-folder. With this, every

dataset can have a custom set of input parameters (as it should be), while using the

appropriate computational resources.

� -f overwrites the inp params.fringe params load parameter, forcing it to False: If

there is an already stored set of optimal fringe-fitting parameters, then it will not be

loaded and instead be determined again from scratch. The fringe-fitting parameters

contain the information for each scan, which refant to pick and the optimal fringe-fit

solution interval.

� -m overwrites the inp params.ms metadata load parameter, forcing it to False: If

there is an already stored set of metadata from the measurement set, then it will not

be loaded and instead be determined again from scratch. Typically, this should be

used when the science targets or calibrators in picard/input/observation.inp or

num selected scans in picard/input/constants.inp are altered.

� -l (e) overwrites the default behaviour, where the listobs() task is not run again if

a listobs file already exists. With -l, the pipeline will enforce to run listobs() again

instead of quickly copying over an old file. Normally, running listobs() takes some

time and should not be done multiple times unless the MS changed internally (after

running split() for example). If not only -l is passed as command line argument, but

-l e, the pipeline will exit after writing the listobs file (‘inspection only’). This is useful

if you do not know the names of the sources in the fits-idi files (section 5).

� -q, the ‘quickmode’, is explained in section 9.

� -r, an extra option for the handing of flag versions for the quickmode, is explained in

section 19.

� -d overwrites the default behaviour, where all diagnostics (section 13) are stored in a

new folder with the current datetime attached to its name for this run. With -d, the

diagnostics folder that was last modified (typically, this should be the one from the

previous run) will be used. This is useful when you are running the pipeline step by

step using -q : combined with -d, all diagnostics will still go in the same directory then.

If the same step is executed again in this mode, the diagnostics from the previous run

will be overwritten.

23

� If -s is given, all calibration tables that were generated from previous runs and that

would have been applied for the array type6 of this run are deleted before any new

calibration tasks are executed (section 6).

� With -n, the pipeline will not use the mpi host file file to establish the MPI environ-

ment (section 4). Instead, <#cores> (must be some integer number > 1) CPU cores

will be used for this run.

� -i activates the interactive/supervised mode. The pipeline will operate at the user’s

pace, waiting for a keypress for every step – either to execute the step or to exit at this

stage. This is useful if the user wants to examine the results from every step before

advancing. The module presented in section 10 offers a suite of functions that can be

used to post-process calibration solutions from several pipeline steps in an interactive

CASA shell before continuing to the next step.

� -h (or --h, -help, --help): Print help message and exit.

The order of the command line arguments is irrelevant, for example:

$ picard -m -q 1,3∼5,b,e -r a --input /data/VLBI/VLBA/M87/2008/input/ -f

and

$ picard --input /data/VLBI/VLBA/M87/2008/input/ -f -m -r a -q e,1,b,3∼5

are equivalent. The only constraint is that the list after -q must consist of comma separated

characters without spaces (section 9).

Single-hyphen arguments can be combined as usual: -fmdq ... will be expanded into -f -m

-d -q ... for example.

6The array type is specified in picard/input/array.inp (section 7) and defines which calibration steps
are executed according to the array specific steps defined in picard/main picard.py.

24

9 Quickmode

Quickmode (-q) can be used to re-run certain steps of the pipeline.

—————————————————————————————————

Pass -q <list> to picard (see also section 8). For example:

$ picard -q 1∼4,6,b,c,e,d

No spaces are allowed in <list> and it must consist of comma separated values. A ∼ can

be used to indicate a range of numbers; the example above is interpreted as 1,2,3,4,6,b,c,e,d.

If x is given, it is interpreted as a,b,c,d,e,f,g,h,i,j,k,l,m,n... (for the lazy).

Information about which steps correspond to which number and letter are printed for

every run of the pipeline. If -q is used without a list specified: $ picard -q,

the pipeline will exit after the information about steps is printed and not perform any

calibration (dry run). Only the preparation procedures (section 6) are executed. A dry run is

meant for testing and to quickly see which steps are executed in which order.

Rationale:

For multiple runs of the pipeline on the same dataset, one can quickly redo cer-

tain steps after adjusting calibration parameters in picard/input/array.inp or

picard/input/array finetunes.inp (section 7 and section 20). Or, a subset of steps can

be executed, then the user can manually edit the calibration tables (flag delay outliers in

the single-band fringefit() table for example, see section 10) or flag visibilities and then

run the remaining steps (see also the -i command line option, section 8). Note that, if you

are re-running single steps, all other previous existing calibration tables will still be applied

on-the-fly and they will still all be applied with applycal() as described in section 6. If this

is not what you want, then you can either use the -s command line option (section 8) or to

move the old calibration tables to a different place.

Another pathway would be to run the pipeline in the standard mode, then image the

exported data and save source models to disk (with CASA tclean() for example, see sec-

tion 10). These can then be read in by a subsequent run of the pipeline (section 17). Then,

one can for example redo the fringe-fitting step with the model using

$ picard -q <fringe-fit step number> -r a7

Or, quickmode can be used to exclude the amplitude calibrations steps, when no ANTAB

table (section 12) is present8, or to first do the phase calibration steps and the amplitude

calibration steps at the end (see also section 20 on how to do that in a more systematic way).

Also, quickmode can be used to plot uncalibrated visibility data. In the default pipeline

run (section 6), one of the last steps (after the calibration tables have been applied) is to

plot visibility data. If you want to plot uncalibrated data, quickmode can be used to run the

clearcal() and plotting step without applycal():

$ picard -q <clearcal step number>,<plotting step number> -r

7See section 19 for the meaning of -r a.
8In that case it is necessary to set pass missing antab = True in picard/input/constants.inp.

25

10 Interactivity Capabilities

picard/interactive utils.py contains functions that are independent from the rest of the

pipeline. The functions can be imported in an interactive CASA shell if the module is added

to your PYTHONPATH.

The following functionalities are currently implemented:

� An interactive flagging GUI based on the CASA plotcal() task for a quick and easy

post-processing of calibration solutions for:

– Single-band fringefit() calibration tables.

– Multi-band fringefit() calibration tables.

– bandpass() calibration tables.

� An imager that uses CASA’s multi-scale, multi-frequency tclean() image reconstruc-

tion algorithm together with self-calibration loops to make images of the observed

sources, creating FITS files. It requires an interactive mpicasa session, which can be

started with

$ mpicasa -n <number of cores> path to casa/casa [casa options]

� A function to concatenate UVFITS files (useful when comparing CASA data with

products from the EHT HOPS pipeline).

26

11 Fringe-fitting

Correlators employ sophisticated geometric models and make use of clock searches when they

let the signals from a pair of two antennas interfere – i.e. cross multiplying their signals to

form baseline-based visibilities. However, the correlator models are never perfect – in almost

every case residual delays (phase slopes versus frequency) and rates (phase slopes versus

time) will still be present in the data. These have to be taken out in post-processing, using a

technique that is called ‘fringe-fitting’ (otherwise there will be large coherence losses when

averaging in time and frequency).

The CASA fringefit() task will FFT the visibilities versus frequency and versus time

and find the baseline-based residual delays and rates from the FFT peaks. These are global-

ized (going from baseline quantities to station solutions) with a least squares approach and

referenced to a common reference antenna.

Typically, the first step is to align the phases across the separate frequency windows (IFs

or spectral windows) by fringe-fitting each window individually, referenced to the same fre-

quency.9 The signal must be strong in each window, so a bright source should be used. Rates

are zeroed and the phase plus delay solutions will be applied to all scans. This procedure

is called ‘instrumental phase and delay calibration’. In the code, the method for the instru-

mental phase and delay calibration can be specified in picard/input/array finetune.inp

(section 7), as explained in the comments for the different parameters. One can either se-

lect specific scans or fringe-fit all scans on the instrumental phase calibrator specified in

picard/input/observation.inp. Next, one can either fringe-fit over scan durations, give a

specific solution interval, or use the estimated optimal solution interval for each scan (see

subsection 11.2 below). For the two latter cases, one should make use of the smoothing options

in picard/input/array finetune.inp to obtain single solutions per scan to correct for this

instrumental effect. It is recommended to integrate over scan durations. Lastly, one can set

which solutions are to be used. First an SNR cut is made (can be set by the user, the default

is 10). From the remaining solutions one can either select only a single solution (with the

highest SNR) per station and spectral window that is to be applied to the whole dataset. Or

interpolate across scans between all solutions that made the initial SNR cut. This could be

used if there are drifts in the electronics during very long observing sessions or when recording

equipment was restarted during a run for example.

Once the phases are aligned (coherent) across the whole frequency band, fringefit()

can run over the whole band for a higher signal to noise ratio – so the weaker sources can be

fringe-fitted as well. For high frequencies, a source is not detected if you cannot find fringes

on it. At lower frequencies it is possible to transfer phases from a bright nearby calibrator, so

that weaker sources can be detected (at lower frequencies the troposphere does not distort

the phases that much, so that solutions derived from another part of the sky can be used).

Phase-referencing with this pipeline is explained in section 15.

9At high frequency observations it may be necessary to take out the fast phase rotations beforehand. In
CASA it is possible to do that with fringefit() using combine=‘spw’ as the FFT will be done over the
whole band, which is very sensitive.

27

11.1 Picking a Reference Station

The refant and refant minvaliddata parameters in picard/input/array.inp and

picard/input/array finetune.inp respectively determine which reference station will be

used for which scan. The refant parameter gives a prioritized list of antennas as options for

the reference stations. For each scan, the first antenna in the refant list which has a fraction

of valid data (number of unflagged visibilities over the number of flagged visibilities) larger

than refant minvaliddata, unless less than 15 % of additional valid data was gained with

respect to a station higher up in the refant priority list. If none of the refant antennas

makes this cut-off, the one antenna with the most valid data from that list is picked as

refant.

For each scan, fringes are referenced to the refant of that scan. In the end, all fringe

solutions will be re-referenced to a common refant with the CASA rerefant task. For polar-

ization experiments, low values for refant minvaliddata should be used to avoid frequent

re-referencing. Also, if there is a single central and sensitive station is present in the array,

this station should be first in the refant list and refant minvaliddata could be set to a

low number to ensure that this best station is picked most of the time.

Within scans, rPICARD has the option to perform an exhaustive fringe search. The corre-

lated signal power is usually a strong function of baseline length for resolved sources – the

shorter the baseline length, the higher the SNR. For global 3 mm observations for example,

picking Effelsberg as reference station may yield detections to all other European stations

and to the GBT across the Atlantic, but not to each individual VLBA station. However,

fringes may be present between the GBT and the VLBA. So both the European and the

North American stations can be calibrated by performing two fringe-fits – one with Effels-

berg as reference and one with GBT as reference, where all fringe solutions to the GBT are

re-referenced to Effelsberg using the phase, delay, and rate relation between the two stations

from the Effelsberg-GBT fringe detection in the first fringe-fit run. A generalized version of

this process is implemented in rPICARD. The algorithm will go through each scan s in the

observation and do the following:

1. Fringe-fit the data using the primary refant Ps. This refant is determined based on the

amount of valid data in each scan, see above. Store all fringes with insufficient SNR in

a list N = {non-detections} and make a static copy NP of that list to keep track of the

non-detections to the primary reference station.

2. Compute the list of secondary reference stations Ss: If we denote all possible reference

stations, set by the refant parameter in picard/input/array.inp, as R, the secondary

refants for a particular scan are Ss = {R} − {Ps}.

3. If no non-detections are found in step 1, or when no detections are found between Ps

and any station in Ss, the algorithm will go to step 6.

4. For each station ss in Ss:

28

(a) Fringe-fit the data using ss as reference station and gather all stations, which can

be connected to ss via fringe detections, in a list called fs.

(b) Compute the connections to other reference stations as c1 = R∩ fs and to stations

not yet connected as c2 = N ∩ fs.

(c) If

|c1| ≥ 2 (1)

or

|c1| ≥ 1 ∧ |c2| ≥ 1 , (2)

ss is added to a list U of useful secondary reference stations as

U(ss) ≡ [U1(ss), U2(ss)] = [c1, c2]. The entries of U are referred to as ‘sub-clusters’

in the code.

(d) Update the list of non-detections: N → {N}−{c2}. Go to step 5 when N is empty.

5. Connect all sub-clusters:

(a) The c1 entries in each U determine which ss can be connected. All entries are

discarded for which no path – via any combination of multiple c1 connections –

can be established to Ps. If that leaves U empty, the algorithm will go to step 6.

(b) For each station np in NP – if it is in any c2 of U – the shortest path through c1

connections, along the prioritized list of reference stations, is stored as

Es = {[np, Ps ← x1 ← x2 ← ...← xM] | np ∈ NP ∩ U2 and xi ∈ U1} . (3)

These Es paths determine the exhaustive fringe search for each scan s employed

by rPICARD. In the notation above, fringes for np are obtained from a xM reference

station, which can be connected to Ps via a chain of other secondary reference

stations xj 6=M .

6. The FFT delay and rate solutions and their SNR of all fringe-fit steps in this exhaustive

fringe search process are stored as diagnostic output in csv ASCII format by the pipeline

(section 13 and section 14). This information is usful to get a quick overview of all detec-

tions and non-detections in the dataset and to identify gross residual post-correlation

delay and rate errors.

In the above process, each fringe-fit is performed over full scan durations and

only FFTs are computed to determined detections, the least-squares is skipped.

SNR cuts for non-detections are based on 1.2×fringe minSNR mb long sci for

science targets and fringe minSNR sb instrumental for calibrator sources from

picard/input/array finetune.inp (subsection 11.3). The SNR simply set limits for

scan-based SNR thresholds below which an exhaustive fringe search needs to be employed –

no data will be flagged in this step. rPICARD does the reference station search and exhaustive

29

fringe search before any other phase calibration steps. In all subsequent fringe-fit runs, all

fringe solutions are re-referenced according to the Es paths. That is, for every fringe-fit of

a scan s, the phase, delay, and rate solutions are re-referenced for every calibration table

entry of np in Es. Along the re-referencing chain, all flags are accumulated – if a single fringe

along the chain fails, a flag will be written for the final re-referenced fringe as well. It should

be noted that fringe solutions have uncertainties S due to the thermal noise in the system.

The total uncertainty along a re-referencing chain grows as

Stotal =

√√√√ M∑
i=1

S2
i , (4)

where each Si represents the fringe solutions uncertainty of a specific station xi along the

chain. Considering current VLBI arrays, maybe one or two secondary reference stations

xM are typically chosen for an exhaustive fringe search and they will have direct connec-

tions to Ps in most cases. The fringe exhaustive refant search depth parameter in

picard/input/array finetune.inp can be set to control the maximum depth of the ex-

haustive fringe search or to disable it completely.

In the future, a FFT baseline stacking functionality will be added to the fringefit task,

which will achieve similar results as the exhaustive fringe search.

11.2 Finding the Optimal Solution Intervals

Optimal fringe-fit solution intervals should be long enough to have enough SNR for a de-

tection and short enough to capture atmospheric phase fluctuations. This is done first in

the task fringefit solint cal step for the calibrator sources and for the science targets

in a later task fringefit solint sci step, where solutions derived from calibrator scans

for instrumental effects like a phase bandpass and delay plus phase offsets between spectral

windows can be applied on-the-fly.

The method used is to just run the FFT (not the globalization) for many different

solints for every scan and all baselines. First, a minimum detection SNR threshold is set

in picard/input/array finetune.inp (the default is 5.5). For all baselines that make it

above this threshold, the smallest solint that yields an SNR above the minimum is stored.

From that collection the longest solint is picked – this is the minimum solint to have all

possible detections on the different baselines. If fft solint estimation=sqrt is set in

picard/input/array finetune.inp, the smallest solint that yields detections is taken as

starting from which the expected coherent increase in SNR (by the square root of the solution

interval) is compared to the actual increase in SNR from the FFT for each baseline. Once

the actual SNR drops below the expected parabolic increase, the solint corresponding to

that breaking point is taken as the coherence time on that baseline for that scan. Finally,

the smallest number from the collection of all coherence times on each baselines per scan

is taken as the optimal solution interval. Currently, a simpler and more robust method is

30

Figure 1: Example of diagnostic plots from a fringe-fit solution interval optimization procedure.
Left: The number of detections within a specific scan for the KP–BR baseline for different
solution intervals. It can be seen how the total number of detections goes down, as less solutions
can be found within a fixed scan duration for longer segmentation times. Right: The change in
FFT SNR for different solution intervals. The minimum, median, and maximum SNR from all
solution segments for each specific integration time are plotted for the polarization with the
smaller overall SNR. The horizontal red line marks a detection threshold of SNR = 5.5 and
the vertical red line marks the minimum solution interval to have detections on all possible
baselines, which was driven by a different baseline with a lower SNR.

implemented as default (fft solint estimation=1.01), where baselines are ignored if their

SNRs do not increase with solint after a few iterations and the stopping criterion is set by

SNR > threshold. The determined optimal scan-based solints will be used for all subsequent

global fringe-fitting steps. There is the additional option to fringe-fit certain scans again with

different (typically longer) solints, if there are non-detections on certain baselines – see the

fringe solint mb reiterate parameter in picard/input/array.inp.

All related data and plots from this optimization procedure are saved in the diagnostics

(section 13) folder. An example is shown in Figure 1.

Dictionaries of the determined solution intervals and reference stations (subsection 11.1)

are stored on disk. For re-runs of fringe-fitting steps, these parameters are loaded and used

again, unless the -f command line option is set (section 8).

11.3 The Individual Fringe-fitting steps

Table 2 gives an overview of the different fringe-fitting steps implemented in rPICARD to-

gether with their main input parameter options, which are in picard/input/array.inp and

picard/input/array finetune.inp.

Science targets are first fringe-fitted on very long timescales to maximize the chance of

getting a detection with the phase calibration.task fringefit multi sci long step.

This is not done for the brighter calibrators to save computational time. Each solution interval

search following the method introduced in subsection 11.2 is done with the appropriate FFT

windows. For example, narrow fringe search windows are used for the calibration of intra-scan

atmospheric residual effects after the phase calibration.task fringefit multi sci long

31

step for the science targets. If the fringe SNR cutoff float Perr parameter in

picard/input/constants.inp is set to True, the min SNR fringe detection threshold is

lowered based on a reduction of the probability of false detection if narrow search windows

are used.

32

T
ab

le
2:

O
ve

rv
ie

w
fr

in
ge

-fi
tt

in
g

st
ep

s
an

d
m

ai
n

in
p
u
t

p
ar

am
et

er
s

in
p
i
c
a
r
d
/
i
n
p
u
t
/
a
r
r
a
y
.
i
n
p

an
d
p
i
c
a
r
d
/
i
n
p
u
t
/
a
r
r
a
y
f
i
n
e
t
u
n
e
.
i
n
p
.

F
u
n
ct

io
n
a

se
ar

ch
w

in
d
ow

sb
so

li
n
tc

m
in

S
N

R
d

st
ep

d
es

cr
ip

ti
on

s
o
l
i
n
t
c
a
l

i
n
i
t
i
a
l

N
A

m
b
s
h
o
r
t
F
F
T

S
ol

in
t

es
ti

m
at

io
n

fo
ll
ow

in
g

th
e

su
b
se

ct
io

n
11

.2
m

et
h
o
d

fo
r

ca
li
b
ra

to
rs

.

m
u
l
t
i
c
a
l
c
o
h
e
r
e

i
n
i
t
i
a
l

m
b
c
o
h
e
r

m
b
c
o
h
e
r

‘C
oh

er
en

ce
’

ca
li
b
ra

ti
on

fo
r

th
e

ca
li
b
ra

to
rs

on
su

b
se

ct
io

n
11

.2
ti

m
es

ca
le

s,
w

h
er

e
in

tr
a-

sc
an

p
h
as

es
an

d
ra

te
s

ar
e

so
lv

ed
b

ef
or

e
d

oi
n

g
th

e
in

st
ru

m
en

ta
l

p
h

as
e

an
d

d
el

ay
ca

li
b

ra
ti

on
.

T
h

is
is

d
on

e
on

ly
at

h
ig

h
fr

eq
u
en

ci
es

.

s
i
n
g
l
e

i
n
i
t
i
a
l

s
b
i
n
s
t
r
u
m
e
n
t
a
l

s
b
i
n
s
t
r
u
m
e
n
t
a
l

In
st

ru
m

en
ta

l
p
h
as

e
an

d
d
el

ay
ca

li
b
ra

ti
on

.

m
u
l
t
i
c
a
l
s
h
o
r
t
e

i
n
i
t
i
a
l

m
b
s
h
o
r
t

m
b
s
h
o
r
t
c
a
l

M
u
lt

i-
b
an

d
fr

in
ge

-fi
t

on
su

b
se

ct
io

n
11

.2
ti

m
es

ca
le

s,
so

lv
in

g
fo

r
p
h
as

es
,

ra
te

s,
an

d
d
el

ay
s

fo
r

ca
li
b
ra

to
r

so
u
rc

es
.

N
o

lo
n
g

in
te

gr
at

io
n

li
ke

m
u
l
t
i
s
o
l
i
n
t
s
c
i

is
d
on

e
fo

r
th

e
ca

li
b
ra

to
rs

to
sa

ve
co

m
p
u
ta

ti
on

al
ti

m
e

–
th

e
ca

li
b
ra

to
r

so
u
rc

es
sh

ou
ld

b
e

b
ri

gh
t

en
ou

gh
th

at
th

is
is

n
ot

n
ec

es
sa

ry
.

m
u
l
t
i
s
c
i
l
o
n
g

i
n
i
t
i
a
l

m
b
l
o
n
g

m
b
l
o
n
g
s
c
i

M
u
lt

i-
b
an

d
fr

in
ge

-fi
t

on
lo

n
g

ti
m

es
ca

le
s

fo
r

th
e

sc
ie

n
ce

ta
rg

et
s.

T
h
is

w
il
l

d
et

er
m

in
e

if
a

so
u
rc

e
ca

n
b

e
d
et

ec
te

d
or

n
ot

.

m
u
l
t
i
s
o
l
i
n
t
s
c
i

m
b
s
c
i
s
h
o
r
t

N
A

m
b
s
h
o
r
t
F
F
T

S
ol

in
t

es
ti

m
at

io
n

fo
ll
ow

in
g

th
e

su
b
se

ct
io

n
11

.2
m

et
h
o
d

fo
r

sc
ie

n
ce

ta
rg

et
s.

m
u
l
t
i
s
c
i
s
h
o
r
t
e

m
b
s
c
i
s
h
o
r
t

m
b
s
h
o
r
t

m
b
s
h
o
r
t
s
c
i

R
es

id
u
al

m
u
lt

i-
b
an

d
fr

in
ge

-fi
t

on
su

b
se

ct
io

n
11

.2
ti

m
es

ca
le

s,
so

lv
in

g
fo

r
re

si
d
u
al

(a
ft

er
m
u
l
t
i
s
c
i
l
o
n
g
)

in
tr

a-
sc

an
p
h
as

e,
ra

te
,

an
d

d
el

ay
va

ri
at

io
n
s

fo
r

sc
ie

n
ce

ta
rg

et
s.

T
y
p
ic

al
ly

,
n
ar

ro
w

se
ar

ch
w

in
d
ow

s
ar

e
u
se

d
fo

r
th

e
re

si
d
u
al

s.
a

A
ll

fu
n
ct

io
n

n
am

es
h
av

e
a
p
h
a
s
e
c
a
l
i
b
r
a
t
i
o
n
.
t
a
s
k
f
r
i
n
g
e
f
i
t

p
re

fi
x
.

b
A

ll
F

F
T

se
ar

ch
w

in
d
ow

in
p
u
t

p
ar

am
et

er
s

h
av

e
a
f
r
i
n
g
e
*
w
i
n
d
o
w

p
re

fi
x
.

c
A

ll
fr

in
ge

-fi
t

so
lu

ti
on

in
te

rv
al

p
ar

am
et

er
s

h
av

e
a
f
r
i
n
g
e
s
o
l
i
n
t

p
re

fi
x
.

d
A

ll
fr

in
ge

-fi
t

S
N

R
th

re
sh

ol
d

p
ar

am
et

er
s

h
av

e
a
f
r
i
n
g
e
m
i
n
S
N
R

p
re

fi
x
.

e
If

fo
r

so
m

e
st

at
io

n
s

n
o

fr
in

ge
s

ar
e

fo
u
n
d

w
it

h
in

th
e

so
li
n
t

ra
n
ge

s
fo

r
th

es
e

st
ep

s,
th

es
e

st
at

io
n
s

ar
e

fr
in

ge
-fi

tt
ed

ag
ai

n
on

lo
n
ge

r
ti

m
es

ca
le

s,
gi

ve
n

b
y

th
e
f
r
i
n
g
e
s
o
l
i
n
t
m
b
r
e
i
t
e
r
a
t
e

p
ar

am
et

er
in

p
i
c
a
r
d
/
i
n
p
u
t
/
a
r
r
a
y
.
i
n
p
.

33

12 ANTAB Tables: A-Priori Information for the Am-

plitude Calibration

You should get ANTAB tables from the observatories. They contain information about the

DPFU, gain curve, and Tsys measurements from every station during the run. In the list

below, specific information about ANTAB tables for different arrays is provided. You should

put the ANTAB table (or a link to it) in your working directory (section 14).

1. EHT: You should have received an ANTAB table with you data. If not, then please

contact me. If you want to calibrate the sidebands tgether, you may want to edit the

INDEX rows of the ANTAB table.

2. GMVA: You should have received an ANTAB tables stations with you data. If not,

then you could contact Thomas Krichbaum. Otherwise, you may find your metadata

here.

3. VLBA: SYSTEM TEMPERATURE tables should already be attached to your fits-idi files.

Also a GAIN CURVE extension should be attached as well. If not, you will still need an

ANTAB table with DPFU and gain curve information per station. In that case, you

should compile your own ANTAB table using entries from the vlba gains.key file.

Instructions on where to find that file on the public NRAO ftp server are outlined

here. You will need to select DPFU and POLY entries from every station for the right

frequency range and observing time. Moreover, you will have to adjust the format a

little bit (switch <stationcode> with GAIN, to get the format outlined below).

4. EVN: You should have received an ANTAB table with your data. If not, you will find

one on the EVN archive under your experiment code.

A detailed description of the ANTAB format can be found here. In the simplest form, an

ANTAB table looks like this:

1) First, the gain group – a single line for each station giving the DPFU and gain curve:

GAIN <s ta t ioncode> <mount−type> DPFU = <rcp>, <lcp> POLY = <a0>, <a1>, <a2>, <a3>, . . . /

Here, <mount-type> is typically ALTAZ, <rcp> and <lcp> are the DPFU values for the

RCP and LCP receiver, and <ai> are the polynomial coefficients of the gain curve.

2.1) Second, the Tsys group – blocks of system temperature with columns per IF (spw)

and rows for the time spacing. For each station a block starts with

TSYS <s ta t ioncode> INDEX = ‘ i1 ’ , ‘ i2 ’ , ‘ i3 ’ , . . . /

Where, the ‘ij’ assign columns to RCP, LCP and IFs (spws).

2.2) Next, the Tsys values for the station block are given; one line for every timestamp:

<UT−day> <UT−time> <T1> <T2> <T3> . . .

34

mailto:M.Janssen@astro.ru.nl
mailto:tkrichbaum@mpifr-bonn.mpg.de
http://www.vlba.nrao.edu/astro/VOBS/astronomy
https://science.nrao.edu/facilities/vlba/calibration-and-tools/caliblogs
http://archive.jive.nl/scripts/listarch.php
http://www.aips.nrao.edu/cgi-bin/ZXHLP2.PL?ANTAB

With <UT-day> in the ddd format, <UT-time> in a hh:mm.mm format, and <Tj> the

Tsys values in Kelvin assigned by ij to a receiver and IF (spw).

2.3) Lastly, a station block is terminated with a / and the next one can start:

/

TSYS <next s ta t ioncode> INDEX = . . . /

. . .

The ANTAB table formatting requirements are more strict for CASA than for AIPS. Every

entry must be on a single line with keys and keyvalues written in the order shown above.

Example:

GAIN AA ELEV DPFU = 1.0 POLY = 1.0 /

GAIN AP ELEV DPFU = 0.02478 , 0 .02521 POLY = 0.95515 , 0 .0022795 , −2.8953E−05 /

GAIN AZ ALTAZ DPFU = 0.01683 , 0 .01681 POLY = 0.727089 , 0 .947364E−02, −0.822152E−04 /

GAIN PV ELEV DPFU = 0.127 POLY = 0.36029 , 0 .026008 , −0.00026431 /

TSYS PV INDEX = ’R2 ’ , ’L2 ’ , ’R1 ’ , ’L1 ’ /

141 03 : 00 . 317 131 .89 142 .49 132 .70 142 .70

141 03 : 01 . 867 132 .07 142 .76 132 .77 142 .76

! . . . and so on (exc lamation mark = comment char)

/

TSYS AZ INDEX = ’L1 ’ , ’L2 ’ , ’R1 ’ , ’R2 ’ /

141 03 : 01 . 456 122 .24 291 .24 117 .59 332 .75

141 03 : 02 . 956 122 .18 292 .14 117 .66 331 .82

! . . . and so on

/

! . . . idem f o r the other s t a t i o n b locks

The amplitude calibration scales visibilities formed from voltages in the correlator to a

physical scale in Jansky (Jy). The system equivalent flux density of a single telescope is given

as

SEFD =
Tsys · exp(τ)

DPFU · gc
. (5)

Where Tsys is the system noise temperature in Kelvin (function of time), τ is the opacity

(section 16), DPFU is the telescope gain in Kelvin per Jansky (the DPFU depends on the

effective geometric area of the dish; it is mostly constant – differences may occur between

day and night time), and gc is the normalized gain curve, which describes the variation of

the antenna gain with elevation.

If a calibrated correlation coefficient (visibility amplitude) on a baseline between stations

1 and 2 is given by r1,2, then the correlated flux density S1,2 in Jy will be

S1,2 = r1,2
√

SEFD1 · SEFD2 , (6)

where SEFDi is the system equivalent flux density of station i given by Equation 5.

35

13 Diagnostics

By default, the code produces logs and many diagnostic plots from the different calibration

steps, unless these options are turned off in picard/input/array finetune.inp (section 7).

The diagnostics are stored in a folder in inp params.workdir that also has the current

datetime (UTC) attached to its name.10 This and the fact that also the input parameters

are logged, make it easy to run the pipeline several times on the same dataset with different

input parameters and to compare the results.

For every run of the pipeline, rPICARD writes the usual casa.log file with the datetime

attached. Moreover, (because of the talkative nature of mpicasa), stderr is redirected to a

mpi and err.out file with the current datetime attached as well. If the pipeline finishes

properly, both casa.log and mpi and err.out are moved over to the diagnostics folder of

the run. If for some reason the pipeline crashes (not terminating with a - FINISHED - print

to the terminal), both files are kept in the directory where rPICARD was called from. They

can be examined to find the reason for the crash.

Moreover, the command line call with the used command line arguments (section 8) are

saved to a file in the diagnostics folder (as specified in picard/input/constants.inp, see

section 7) for every run. If the -d command line argument is used (writing incrementally to

the same diagnostics folder), all incremental calls are appended to the same file.

13.1 Jplotter

By default, the code will produce plots of (calibrated) visibilities as one of the last steps

(section 6). The recommendation is to use Harro Verkouter’s jplotter program (See

README.md) as it is faster and produces plots with a better layout than the alternative

standard CASA plotms() tool. Moreover, jplotter does not require X-forwarding when

saving plots directly to disk (it is unclear why this seems to be the case for plotms()...) and

it has a simple and intuitive syntax exemplified in the make jplotter plot() function in

picard/pipe modules/diagnostics.py.

The jplotter figures made by rPICARD will show amplitudes and phases as a function of

time (averaged over frequency) and as a function of frequency (averaged over scan durations)

for each baseline. Different correlations (RR, LL and if specified also RL, LR) will be depicted

with different colors. Unflagged datapoints are shown as dots. Fully flagged datapoints are

plotted as crosses.

10Unless -d is used, see section 8.

36

14 Special Filenames

For the default input parameters, the pipeline will recursively search the workdir specified

in picard/input/observation.inp (section 7) for files with certain extensions.11 These

extensions are defined in picard/input/constants.inp:

1. flagfile extensions: All files with these extensions are used as metadata flag files.

2. antab extensions: A file which has one of these extensions is used as ANTAB metadata,

see section 12.

3. fitsidi extensions: All files with these extensions are used as fits-idi input files.

4. modelfile extensions: All files with these extensions are used as models for the

observed sources, see section 17.

5. trecfile extensions: All files with these extensions are used to look for Trx (receiver

temperature) info per station, see section 16.

6. weatherfile extensions: A file which has one of these extensions is used as weather

metadata, needed for section 16. Such an external file should only be necessary for data

from the GMVA.

7. antenna mount corrections file: If this file exists, it will be used to overwrite an-

tenna’s mount types in the MS. This is only necessary if erroneous mount types are

written in the fits-idi input files.

The other special filenames used by the pipeline in the working directory are:

1. ms name in picard/input/observation.inp: Name of the measurement set.

2. gc dpfu fromidi file in picard/input/constants.inp: Name of the file that will be

created to convert DPFUs and gain curves from a GAIN CURVE FITS-IDI extension

into an ANTAB ASCII file.

3. gc conversion file in picard/input/constants.inp: Name of the file that will be

created to make a VLA-type gain curve from the ANTAB data.

4. store optimal fringe params in picard/input/constants.inp: Files (with addi-

tional .sci and .cal extensions) that will be created to store fringe-fit parameters.

5. store scan refants in picard/input/constants.inp: Files (with additional .sci and

.cal extensions) that will be created to store dictionaries with the chosen reference

station for each scan.

11Links will also be followed.

37

6. diag fringe overview in picard/input/constants.inp: Files (with additional .sci

and .cal extensions) that will show an overview of FFT-fringes for all scans across all

baselines to all reference stations used (including secondary ones, subsection 11.1).

7. store ms metadata in picard/input/observation.inp: Name of the file that will be

created to store internal (ancillary) metadata.

8. diagdir in picard/input/observation.inp: Name of the diagnostics folder that will

be created with the UTC time attached to its name.

9. diag * in picard/input/observation.inp: Name of several files that will be created

in the diagnostics folder.

10. calib * in picard/input/array finetune.inp: These parameters contain names for

the calibration tables that will be created. For phase-referencing, tables with a .phaseref

extension will also be created.

38

15 Phase-Referencing

Phase-referencing is enabled if calibrators phaseref in picard/input/observation.inp

(section 7) is set. For every science target, there must be a corresponding

calirbators phaseref source specified. An extra (.phaseref) table from the phase-

referencing calibrators is created where all flagged(failed) solutions are removed and all

solutions are smoothed my a median filter on a per-scan, per-antenna, per-spw basis.

The fringe solutions from this phaseref table will be transferred to the science targets. If

phaseref ff science = True in picard/input/observation.inp, a fringe-fit is also done

on the science targets after the solutions from the phase-referencing sources have been

applied. This can be done if the science targets are strong enough to be fringe-fitted for

residual phases/rates/delays. Else, set phaseref ff science = False.

39

16 Opacity Correction

At high observing frequencies (> 15 GHz), it is necessary to correct for the attenuation of

the source caused by the atmospheric opacity τ . This correction can be applied by raising

the system temperature: Tsys → Tsys exp(τ). If the system temperature is measured with a

chopper, then this correction is already applied and no further post-processing is necessary.

This is the case for data from the EHT array for example. For other arrays, like the VLBA

and GMVA, it is necessary to perform this correction.

The pipeline can solve for the opacity by solving the (approximate) Tsys equation for τ :

Tsys = Trx + (1− e−τ)Tatm ⇔ τ = − log

(
1− Tsys − Trx

Tatm

)
. (7)

Here, Tatm is the mean atmospheric temperature and Trx is the receiver temperature. The

equation should be evaluated separately for RCP and LCP receivers.

For Equation 7, Tatm must be estimated from the available weather (WX) data in the

WEATHER subtable of the measurement set. Users can easily add their favourite weather models

in the opacity correction.py module of the pipeline. Currently available are the accurate

and recommended Pardo et al. model and the simple weather model from Altshuler, Falcone,

and Wulfsberg (1968): ‘Atmospheric effects on propagation at millimeter wavelengths’12.

The other unknown is the receiver temperature Trx. By default, the code will estimate

Trx from an extrapolation of a Tsys vs airmass fit to zero airmass. The opac corr airm max

parameter in picard/input/array finetune.inp can be set to exclude low elevation (high

airmass) data from the fit. The fit may not be reliable if the atmospheric conditions change

significantly over the course of the observations. By default, plots of the fits are made which

can be inspected. Also, the pipeline will print warnings if there seems to be problems with

the Trx fits.

There are two possible failure modes, both of which are typically caused by faulty estimates

of Trx:

1) Trx < min (Tsys).
13 This can occur when the weather was bad during high elevation

observations. If this happens, the code will try to guess a new value for Trx, based on the

min (Tsys) measurement while assuming that τ = 0.05 and Tamb = 273.15 K locally.

2) (Tsys − Trx) /Tatm > 1. This can occur when the fit underestimated Trx or when Tatm is

erroneously small. This typically takes place when Tsys is large – i.e. at low elevations with a

high opacity. If this happens, the code will assume τ = 1 instead of using Equation 7.

Additionally, whenever τ exceeds 1.0 at a certain time for a certain source, the code will

use the previously determined value for the opacity.

The Trx values determined from fits as described above can be overwritten by values

manually entered in a trec file (section 14). Obviously, this should be done when observatories

provided accurate Trx values. Otherwise, the pipeline will print warnings if problems with

12Here, Tatm is estimated from the ambient temperature Tamb, which is measured by the local telescope
weather station, as: Tatm = 1.12Tamb − 50 K.

13Tsys below 2.73 K are regarded as invalid and will be ignored.

40

http://cab.inta-csic.es/users/jrpardo/class_atm.html

the opacity correction are encountered. In that case, the user should definitely inspect the

diagnostic plots for the Trx fits. For problematic fits, a better receiver temperature estimate

can generally be obtained by looking at the fits and guessing what Trx should be.

Once, a trec file has been written with improved estimates, quickmode (section 9) can

be used to re-run task tsys add exptau().

The trec files should be ASCII and contain lines with the following format:

<station code> <receiver> <Trx value in K>

For example:

BR RCP 113 .5

BR LCP 110 .5

GB RCP 65 .5

KP LCP 111.5

KP RCP 97 .8

41

17 Source Models

CASA will store source models in a MODEL DATA data column of the MS. For many calibration

solvers, the data is divided by the model. Having a reliable source model therefore helps with

the calibration.

By default, the pipeline will look for files with modelfile extensions in the

workdir (section 14). For every <source> in the data, the pipeline will search for

<source>.<modelfile extension> files and use them as source model for that source.

An optimal calibration strategy would be to run the pipeline, make first images from the

products (using CASA’s tclean() task for example, see section 10), save the resulting source

models (modelfiles are automatically generated by tclean()), and run the pipeline again.

This second run will then automatically make use of the determined source models for an

optimized calibration (e.g., fringefit() or polcal()). Then, new images can be made with

the improved calibration.

42

18 Flagging Algorithms

By default the code will first look through any available metadata from flagging information.

Then, the edges of the bandpasses will be flagged as specified in picard/input/flagging.inp

(section 7). See also section 6 and section 19.

Additionally, two experimental flagging algorithms are implemented, which worked sat-

isfactorily for the EHT array. However, they have not been tested thoroughly for any other

array. It is noteworthy that the options in picard/input/flagging.inp allow for flagging

dry runs, where no written flags are actually applied. Every flagging step will write the flags

to files specified in picard/input/flagging.inp.

fg autocorr vs freq() looks for outliers in frequency space (channel outliers in station’s

bandpasses). It will flag outliers based on the difference in amplitude values between individual

(or groups of) channels compared to the median derivative in the autocorrelation frequency

spectrum.

fg autocorr vs time() looks at the station based frequency-averaged autocorrelation

spectrum as a function of time and flags around integrations whose amplitude differs by too

much from the median amplitude per scan.

Both algorithms are described in more detail in the function’s docstrings in

picard/pipe modules/flagging algorithm.py.

43

19 Flag Versions

By default, the pipeline will save an initial blank flag version when run for the first time.

Following section 6, there are multiple steps (marked by being underlined) which will write

flags. Moreover, when the calibration is applied with applycal() at the end of the pipeline,

all uncalibrated data will be flagged, while a backup is saved.

In quickmode (-q) (section 9), the current flag status is used by default. If the pipeline is

run not in quickmode, the flags are saved/reverted to the initial blank version by default.

These default approaches are overwritten with the -r command line option. Using just

-r, flags are saved/reverted to the initial version even in quickmode. Using -r a, flags are

reverted to the latest flag version from applycal(), i.e. the flags before applycal() flagged

any data. Ergo, this version should contain flags from the explicit flagging steps of the pipeline

exclusively.

Whenever -q is used to redo certain calibration tasks14 of the pipeline, it is recommended

to use -r a, to have the flags from the flagging algorithms applied, while ignoring flags from

previous applycal() runs.

14Every time the pipeline is run, all steps are printed to the terminal. The steps which are enumerated by
numbers (and not letters) are the tasks. This convention is also adopted for the list in section 6. Moreover,
all tasks follow the naming convention task ∗ when printed to the terminal.

44

20 Change of Calibration Strategy

A new calibration strategy (for a different telescope for example) can easily be implemented

by adding a new block for inp params.array type in the main file of the pipeline, ide-

ally with a customized picard/input/array finetune.inp file (section 7). Of course, it is

also possible to change the order of calibration steps in picard/main picard.py. For ex-

ample, the amplitude calibration steps could be done after fringe-fitting. Generally – for

any calibration task – all calibration tables (if written successfully) from the previous steps

will be applied on-the-fly where applicable.15 A new calibration task can be defined in any

module and if it obeys to the convention task taskname()↔calib taskname outlined in

picard/input/array finetune.inp, it can be wrapped in calibration.go calibrate()

for on-the-fly calibration, potential smoothing, and generation of diagnostic plots.

Example:

Let’s say you have developed a method to refine the bandpass calibration, which you want

to apply after the standard bandpass calibration. Then you should do the following:

1. Add a custom module, let’s say my functions.py in the pipe modules folder. Add any

required imports to that module.

2. Put your code in a function in that module, obeying the naming convention

task taskname() – let’s say we call it task super bandpass(). Make sure

that the function returns True after successful execution. The task must take

inp params, ms metadata, caltable, fly calib tables, fly calib interp,

fly calib gainfd, mpi client as non-default arguments and any additional

number of default arguments to overwrite parameters if necessary. Any user-defined

input parameter must be defined in a picard/input/*.inp file – let’s say you add a

normalize super bandpass = True parameter to a picard/input/my inputs.inp

file, which you can then retrieve as inp params.normalize super bandpass in

task super bandpass(). ms metadata can be used to retrieve any kind of re-

quired meta data (see the diagnostics.py module). fly calib tables and

fly calib interp are the calibration tables from all previous calibration steps (see 3.

below), that should be applied on-the-fly (which is trivial for CASA tasks). caltable

is the name of the calibration table that will be written by task super bandpass()

(see 4. below).

3. Import my functions.py in main picard.py and add

my functions.task super bandpass to all calibration steps for the ar-

rays for which this calibration is to be done. Remember that the order within

all calibration steps matters – the steps are executed in sequence while applying

the calibration tables from previous steps on-the-fly.

15For some tasks like accor(), on-the-fly calibration is ignored. Also, the multi-band fringe-fitting is split
between science targets and calibrators.

45

4. Add the mandatory input parameters to the “Block of calibration parameters for

each calibration step” in picard/input/array finetune.inp. You have to add it

as calib super bandpass = ... to define the name of the output calibration table,

together with smoothing, diagnostics, and interpolation options for the calibration so-

lutions.

46

21 Code Updates

To always have the latest version of the code, running git pull should suffice.

As described under ‘Versioning’ in the README.md file, no additional action is required

when pulling changes that go along with minor updates or patches.

For major updates, either README.md changed since a new recommended CASA version

became available (run ./setup.py again in this case), or the files in input template (section 7)

are updated (then git diff should be examined – you will have to adapt your local input files

to the changes).

47

22 Frequently Asked Questions

1. Why are you doing a scalar bandpass?

The scalar bandpass is used to accurately correct for the amplitude bandpass. Cor-

rections from the complex bandpass are limited by the SNR of the cross-correlations

and therefore, data from all scans of the specified calibrator sources are aggregated for

the calibration task. If a scalar bandpass correction has been performed, the complex

bandpass is used to correct only the phases. The scalar bandpass calibration should

be skipped in the presence of strong RFI that has not been flagged. Additional con-

figuration options are available with the solvemode scalar bandpass parameter in

picard/input/array finetune.inp, e.g., one can choose to not obtain solutions scan

or to skip the scalar bandpass entirely.

2. What is the difference between the VLBAhi and VLBAlo options for the array type

input parameter?

When VLBAhi is selected, an additional opacity correction is performed (section 16). For

VLBAlo, the natively measured system temperatures are applied directly. I recommend

to use VLBAhi for observing frequencies above 15 GHz, and VLBAlo below.

3. What is the difference between the input and input template folders?

This is described in section 3 and section 7.

48

23 Known Issues

1. Issue: CASA aborts with the message that a ∼/.matplotlib path does not exist or

that a ∼/.matplotlib/tex.cache file does already exist.

Solution: Start CASA or rPICARD again.

2. Issue: ‘UnboundLocalError’ when initializing the metadata collection.

Possible solution: Verify that all sources set in the observation.inp input file are

actually present in the data, especially when working with a subset of the data created

with the CASA split() task.

3. Issue: ‘IOError: Too many open files’.

Context: In the CASA MPI implementation, the MS is split into several sub-MSs. The

number of sub-MSs created are limited by the number N of files that can be opened

at the same time (c.f. N = $ ulimit -n) when the data is loaded. If N changes (data

copied to different system or someone changed the system settings), the above IOError

can occur.

Solution: Raise N to the number used when the data was loaded.

4. Issue: ‘fatal: Not a git repository: ...’.

Solution: Use git pull instead of downloading a tarball of the repository.

5. Issue: ‘no array in row x of column MODEL DATA’.

Context: This can happen when a source model is used. The CASA MPI implementa-

tion seems to handle source models incorrectly in some cases.

Solution: Load the data again after setting MS partitioning = None in

picard/input/constants.inp.

6. Issue: rPICARD aborts with a message about ‘ORTE was unable to reliably start one or

more daemons...’

Solution: Verify that your input/mpi host file is correct and that all servers can be

reached.

7. Issue: ‘Exception: MPI is not enabled’.

Solution: Run rPICARD with -n N cores, where N cores ≥ 2.

8. The pipeline starts in a home folder of a different machine and may complain that no

input files can be found.

Solution: 1) Verify your mpi host file (section 4). Is the current machine that you

want to use in there?

Or 2): Run rPICARD with -n N cores, where N cores ≥ 2.

9. Issue when using docker or singularity: ‘All nodes which are allocated for this job are

already filled.’

Solution: Run rPICARD with -n N cores, where N cores ≥ 2.

49

10. Issue: Docker complains about permissions or other obscure errors.

Solution: Use root-less docker without root/sudo. It is available starting with docker

version 19.03.

11. Issue when using docker or singularity: ‘KeyError: ’getpwuid(): uid not found’

Context: This can happen when there is a mismatch between user information on the

local system and docker.

Solution #1: Use singularity instead of docker.

Solution #2: Also pass –env HOME=/data –user $(id -u) -v /etc/passwd:/etc/passwd

to docker run (see README).

If that does not work (can happen for macOS):

Solution #3: It could be that the user information is not actually stored in the

/etc/passwd file on your local system. For macOS, user information can be retrieved

with the dscl or nidump commands and a custom passwd file can be created with

the information about the user. That file can then be shared with docker by using

-v passwd:/etc/passwd instead of -v /etc/passwd:/etc/passwd for docker run.

12. Issue when using singularity for rPICARD or for the generation of diagnostic plots with

jplotter: ‘Unknown image format/type’.

Solution: Run the plotting command again. If that does not help, upgrade your singu-

larity installation to version 3.x.x.

13. Issue: When processing data with docker or singularity containers, software from the

host system, as specified in the PATH, are used instead of the software from inside the

containers.

Solution: Set the environment variable PYTHONNOUSERSITE=1.

14. Issue: Trying to plot the solutions in a calibration table does not work and this message

is printed: ‘Note: Either your CalTable pre-dates name-based selection, or does not (yet)

support selection, or the MS associated with this cal table does not exist. All antennas,

fields, spws are being selected for plotting.’

Context: Calibration tables are directly associated with the MS that they were obtained

from.

Solution: You will need to retain the original data structure on your file system. By

default this is a working directory where the MS is present and the calibration table

resides inside a calibration tables/ subfolder.

15. Issue: Antenna names are ‘unknown’ in an exported UVFITS file.

Context: Sometimes the CASA exportuvfits() code messes up station names.

Solution: Run the export data step again.

16. The flux density calibration gains and/or system temperatures from an ANTAB table

are not applied [to some antennas].

Context: The formatting restrictions for ANTAB tables are more strict for CASA

50

https://github.com/haavee/jiveplot

compared to AIPS.

Solution: Make sure that the ANTAB format follows exactly the file format exemplified

in section 12.

17. Issue: ‘TypeError: nan to num() takes exactly 1 argument (2 given)’, ‘Invalid rgb arg’,

or a raised AttributeError about a colormap when rPICARD is generating diagnostic

plots.

Solution: Upgrade to the CASA version given in the README file.

18. Issue: Python OS Errors occur and no new terminals can be opened.

Context: When mpicasa is killed, zombie /tmp/CASA MPIServer processes can be left

over.

Solution: Verify that no instance of rPICARD is running and kill all zombies with

$ pkill -f /tmp/CASA MPIServer .

19. Issue: The imager of picard/interactive utils.py (section 10) crashes with errors

related to the tclean task (e.g., ‘TypeError: Exception from task tclean’).

Context: There may be compatibility issues with newer versions of CASA.

Solution: Try again with an older CASA version, for example CASA 5.6.

23.1 Subarrays

Subarrays are not yet fully supported in CASA. If scans overlap in time, the calibration

solutions from one scan can influence the other. In this case, the recommendation is to split

out the antennas from the different subarrays into new measurement sets and process these

individually. If necessary, a join phase calibration can be done beforehand on overlapping

scans for calibration purposes. The phae calibration table should be applied to the data and

the corrected data should then be split out.

51

24 Publications – for Detailed Information

� Paper describing the pipeline in detail:

https://ui.adsabs.harvard.edu/abs/2019A%26A...626A..75J.

The DOI is https://doi.org/10.1051/0004-6361/201935181. This paper contains plots

which illustrate the secondary reference antenna selection for the exhaustive fringe search

(subsection 11.1), the fringe-fit solution interval optimization search (subsection 11.2),

and the opacity correction (section 16) for example. Please cite this paper when you

are using the pipeline. The software is also on ascl: https://ascl.net/1905.015.

52

https://ui.adsabs.harvard.edu/abs/2019A%26A...626A..75J
https://doi.org/10.1051/0004-6361/201935181
https://ascl.net/1905.015

25 Comparisons with AIPS-based Calibration

Appendix A of https://ui.adsabs.harvard.edu/abs/2019A%26A...626A..75J shows some com-

parisons between an rPICARD-based calibration and a calibration using standard AIPS cali-

bration methods. Here, some additional information regarding this comparison is given.

Figure 2 shows examples of uncalibrated data from the VLBA BW0106 M87 experiment.

Uncorrected post-correlation delays are clearly visible. Figure 3 shows the same data after

calibration by rPICARD. Edge channels are flagged, delays are taken out, bandpasses are

flattened, and the phase scatter has been reduced as atmospheric phase variations have been

calibrated. There is still some phase scatter present in the Owens Valley – St. Croix baseline

due to the SNR-limited timescales on which intra-scan phase variations can be corrected

for. The low SNR is also reflected in the amplitudes which are affected by decoherence from

the scan-average. The data corresponding to Figure 3 after the standard AIPS calibration is

shown in Figures Figure 4 and Figure 5, separately for the RR and LL. The AIPS calibrated

data is in good agreement with the rPICARD calibrate data.

53

https://ui.adsabs.harvard.edu/abs/2019A%26A...626A..75J

Figure 2: Unprocessed raw data of M87. Scan-averaged phases and amplitudes are shown
for the two spectral windows in the dataset as a function of frequency for the parallel-hand
correlations (color-coded) of two baselines (Kitt Peak – Mauna Kea in the top panel and
Owens Valley – St. Croix in the bottom panel). The plots were made with jplotter as part of
the diagnostics automatically generated by rPICARD.

54

https://github.com/haavee/jiveplot

Figure 3: rPICARD’s pipeline processed data of M87. Scan-averaged phases and amplitudes
are shown for the two spectral windows in the dataset as a function of frequency for the
parallel-hand correlations (color-coded) of two baselines (Kitt Peak – Mauna Kea in the top
panel and Owens Valley – St. Croix in the bottom panel). Crosses indicate flagged data. The
plots were made with jplotter as part of the diagnostics automatically generated by rPICARD.

55

https://github.com/haavee/jiveplot

IF 1(RR)

 Channels
50 100 150 200

500

450

400

350

300

250

IF 2(RR)

50 100 150 200

20
10
0

-10
-20
-30

Plot file version 141 created 20-JAN-2019 20:36:33
3 3.UVDATA.1
Freq = 43.0403 GHz, Bw = 128.000 MH Calibrated with CL # 7 and BP # 1 (BP mode 1)

Lower frame: Milli Ampl Jy Top frame: Phas deg
Vector averaged cross-power spectrum Baseline: KP (04) - MK (06)
Timerange: 01/02:05:32 to 01/02:17:28

KP - MK 4 - 6

Ph
as

e
[d

eg
]

A
m

pl
itu

de
 [m

Jy
]

Channel

IF 1(LL)

 Channels
50 100 150 200

450

400

350

300

250

200 IF 2(LL)

50 100 150 200

20
10
0

-10
-20
-30

Plot file version 142 created 20-JAN-2019 20:36:33
3 3.UVDATA.1
Freq = 43.0403 GHz, Bw = 128.000 MH Calibrated with CL # 7 and BP # 1 (BP mode 1)

Lower frame: Milli Ampl Jy Top frame: Phas deg
Vector averaged cross-power spectrum Baseline: KP (04) - MK (06)
Timerange: 01/02:05:32 to 01/02:17:28

KP - MK 4 - 6

Ph
as

e
[d

eg
]

A
m

pl
itu

de
 [m

Jy
]

Channel

Figure 4: AIPS processed data of M87 corresponding to the data shown in the top panel (KP-
MK baseline) of Fig. 3. The AIPS data is shown separately for the RR and LL correlations
in the top and bottom panels respectively as a function of frequency channel here.

56

IF 1(RR)

 Channels
50 100 150 200

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0 IF 2(RR)

50 100 150 200

100

0

-100

Plot file version 177 created 20-JAN-2019 20:36:36
3 3.UVDATA.1
Freq = 43.0403 GHz, Bw = 128.000 MH Calibrated with CL # 7 and BP # 1 (BP mode 1)

Lower frame: Ampl Jy Top frame: Phas deg
Vector averaged cross-power spectrum Baseline: OV (08) - SC (10)
Timerange: 01/02:05:32 to 01/02:17:28

OV - SC 8 - 10

Ph
as

e
[d

eg
]

A
m

pl
itu

de
 [J

y]

Channel

IF 1(LL)

 Channels
50 100 150 200

900

800

700

600

500

400

300

200

100

0 IF 2(LL)

50 100 150 200

100

0

-100

-200

Plot file version 178 created 20-JAN-2019 20:36:36
3 3.UVDATA.1
Freq = 43.0403 GHz, Bw = 128.000 MH Calibrated with CL # 7 and BP # 1 (BP mode 1)

Lower frame: Milli Ampl Jy Top frame: Phas deg
Vector averaged cross-power spectrum Baseline: OV (08) - SC (10)
Timerange: 01/02:05:32 to 01/02:17:28

OV - SC 8 - 10

Channel

Ph
as

e
[d

eg
]

A
m

pl
itu

de
 [m

Jy
]

Figure 5: AIPS processed data of M87 corresponding to the data shown in the bottom panel
(OV-SC baseline) of Fig. 3. The AIPS data is shown separately for the RR and LL correlations
in the top and bottom panels respectively as a function of frequency channel here.

57

	Preface
	The Basic Code Philosophy
	Code Overview
	MPI Scalability
	Memory Safeguard

	Quick Start Guide
	Usage Examples

	Overview of the Default Pipeline Steps
	Input Parameters
	Parameter Examples
	Parameters set by setup.py
	Imaging Parameters

	Command Line Arguments
	Quickmode
	Interactivity Capabilities
	Fringe-fitting
	Picking a Reference Station
	Finding the Optimal Solution Intervals
	The Individual Fringe-fitting steps

	ANTAB Tables: A-Priori Information for the Amplitude Calibration
	Diagnostics
	Jplotter

	Special Filenames
	Phase-Referencing
	Opacity Correction
	Source Models
	Flagging Algorithms
	Flag Versions
	Change of Calibration Strategy
	Code Updates
	Frequently Asked Questions
	Known Issues
	Subarrays

	Publications – for Detailed Information
	Comparisons with AIPS-based Calibration

