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ABSTRACT

This document serves as a brief guide for those who want to use Fewbody through its C
interface. Looking back now on a code I wrote several years ago, if I had to do it again, yes, I
would use different naming conventions for some things, and yes, I would write it in an object-
oriented style with a modern language like Python or OCAML. But the code works, and once
you learn the data structures and the general organization it isn’t that hard to use.

Subject headings: celestial mechanics, stellar dynamics — methods: numerical

1. Introduction

The details of Fewbody are presented in Fregeau et al. (2004). You should at least skim that document
to understand what Fewbody does and what it’s used for. Although the command-line utilities that come
with Fewbody are fairly flexible, you may still want to use Fewbody through its C interface. While I strove
to keep the code organized and transparent, there are of course things I would now change thanks to the
wisdom of hindsight. For example, in one data structure one of the elements has the same name as the
structure data type name—not the best choice. But the code works and is relatively easy to use once you
understand the data structures.

To download Fewbody , head over to http://alum.mit.edu/www/fregeau/code/fewbody/. It should
be available at that address for the foreseeable future, assuming I can always find a place to host it.

2. Data Structures

The data type in which the properties of the stars and their gravitational organization is stored is called
fb hier t. The structure element .hier of this data type holds the dynamical properties of the stars,
binaries, triples, etc. Specifically, .hier is an array of fb obj ts (you can think of a fb obj t as either a
star or a bound pair), as shown in Fig. 1 for an fb hier t initialized with 4 stars. The array is filled first
with the single stars, then with the maximum possible number of binaries (2, some of which may be unused),
then with the maximum possible number of triples (1, which may be unused), and so on until all possible
hierarchies fill the array. For example, for a fb hier t initialized with N = 8, the last element of .hier would
be an octuple. Since the .hier array is maximally packed, it takes some thought to determine the index of
the first hierarchy of order n. Fortunately, this information is calculated and stored when the fb hier t is
initialized, in the structure element .hi (short for “hier index”). .hi is an array whose element n is the first
index of the hierarchy of order n. For Fig. 1, for example, the first (and only) triple has index .hi[3]=6

(remember that C uses zero-based arrays, unlike Fortran). So if our fb hier t shown in Fig. 1 is stored in a
variable called myhier, the second binary would be accessed like so: myhier.hier[myhier.hi[2]+1]. The
triple would be accessed like this: myhier.hier[myhier.hi[3]+0]. Since the index information is stored in
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.hi and doesn’t have to be remembered by the user, it is often convenient to think of .hier as arranged as
a sort of pyramid, as shown in Fig. 2. We’ll use this layout more later.

As you may have already guessed, the stars actually “sit” in memory in the single star slots. Each
higher order hierarchy contains orbital properties and points (literally, in the C sense) to two lower order
hierarchies. For example, a triple would point to a binary and a single star, and contain the orbital properties
of the “outer” binary. The binary it points to would contain the “inner” orbital properties, and point to two
single stars. This is shown on the right side of Fig. 3, with single stars shown as filled circles and higher order
hierarchies shown as open circles. Note that by construction, gravitational hierarchies are represented by
binary trees in Fewbody . Thus each fb obj t can either point to two lower order fb obj ts, or no fb obj ts
(each pointer set to NULL). This means we can’t represent the stable figure-eight orbit (Heggie 2000). Since
one has never been observed in nature and the theoretically expected formation rate is incredibly low, this
is an approximation that seems safe.

So far we have described only how the data structures can be arranged in Fewbody , but not how Fewbody
actually does things. When the fewbody() function returns (more of that later), the .hier is organized as
the set of gravitational hierarchies that are unbound from each other. So if a system of 4 stars is arranged
as a bound triple and a single star that are not bound to each other, it will look like the right side of Fig.
3. For convenience, fb hier t contains an element .obj that points to the separate hierarchies in .hier.

For completeness, let’s go through all the pieces of the fb hier t data type. (You can follow along
by looking at fewbody.h from your source distribution.) We’ve already described .hier, .hi, and .obj.
.narr[n] gives the number of hierarchies of order n. For example, for Fig. 3, we have .narr[2]=1,
.narr[3]=1, and .narr[4]=0. .nstar gives the current number of single stars, and would be 4 in this
example. .nobj gives the number of used elements in the .obj array, and would be 2 in this example.
Finally, .nstarinit is the number of stars that was used to initialize the fb hier t. .nstar can be less
than .nstarinit if stars have collided and merged.

Let’s talk about the fb obj t data type. This is the data type that makes up .hier and .obj in
fb hier t. It represents either a node or a leaf in a gravitational binary tree. Since physically it represents
a star or a bound pair of somethings, it’s name is meant to evoke a generic gravitational “object”. If you
take a look at the definition of this data type in fewbody.h, you’ll see this structure has many elements.
Most notably, it has an array of two pointers to other fb obj ts in the element .obj. If these pointers are
NULL the object is a single star. If they both point to something it’s a bound pair of somethings. (If only one
pointer is set something went terribly wrong.) The total number of stars contained in all lower levels of the
tree can be found in the element .n. It should be evident directly from the data type definition that there
are elements that describe dynamical properties (mass, position, velocity), single star specific quantities
(radius, internal energy, internal angular momentum), and quantities that are only used when the fb obj t

represents a bound pair (semi-major axis, eccentricity, angular momentum unit vector, Runge-Lenz vector,
orbital reference time, and mean anomaly). .ncoll is an element specific to single stars, and tells you how
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Fig. 1.— The element .hier of the fb hier t data type is an array of fb obj ts. This is an example for a
fb hier t initialized with 4 stars.
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Fig. 2.— It is often convenient to think of the .hier element as arranged in a sort of pyramid.
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Fig. 3.— The stars are arranged in hierarchies, as shown on the right side of this figure. The .obj element
of fb hier t is an array that points to the separate hierarchies in the system. Each hierarchy pointed to in
.obj is gravitationally unbound from the other hierarchies. So in this example there are separately a triple
and a single star that are unbound from each other.
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many stellar mergers this star represents. If it is 1 there have been no mergers, if it is n there have been
n−1 mergers. .ncoll is the used length of the .id array, which contains the unique user-assigned identifiers
of all the stars that have merged in this star.

3. Basic Usage

Although the source for the command line utilities that come with Fewbody may appear complicated,
there are in fact just a few things that need to be set to have Fewbody evolve a system. First, a fb hier t has
to be initialized with the desired number of stars; let’s say we have one called myhier. Then the properties of
the single stars have to be set in myhier.hier. Note that the units used (for lengths, masses, time, etc.) can
be any units you like, as long as it is a system of units in which the gravitational constant G = 1. You may
make use of the fb units t data type for this purpose, if you wish. Next, you must set some parameters in
a fb input t—we’ll call it myinput—which include integration parameters and tolerances, and the stopping
time of the calculation. Then you’re ready to run Fewbody . If we call our time variable t, then we run
Fewbody like this:

myretval = fewbody(myinput, &myhier, &t);

where myretval will contain output information from Fewbody in the fb ret t type. The time t will be
updated with the time at the end of the calculation, and myhier will be returned with the gravitational
organization of the N -body system at the end of the calculation. As we will see below, myhier can be
traversed using a variety of techniques to get the hierarchical organization of the system, extract values, etc.

4. An Example

How about an example showing the minimum amount of setup needed to start a Fewbody run? For this
example, let’s assume we have 5 stars that we want to initialize with given positions and velocities, and see
what the outcome is. Units are often a subtle and tricky thing. Let’s initialize everything in cgs units, then
define our units with a routine we write. Fewbody will do the normalization for us. I assume you’re familiar
enough with C to properly prototype all functions, include the appropriate headers, etc. Here we go:

#include <stdio.h>

#include <stddef.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <time.h>

#include <getopt.h>

#include <gsl/gsl_errno.h>

#include <gsl/gsl_rng.h>

#include "../fewbody.h"

int calc_units(fb_hier_t hier, fb_units_t *units)

{
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/* mass unit is total system mass */

units->m = hier.hier[hier.hi[1]+0].m + hier.hier[hier.hi[1]+1].m + \

hier.hier[hier.hi[1]+2].m + hier.hier[hier.hi[1]+3].m + \

hier.hier[hier.hi[1]+4].m;

/* length unit is one AU */

units->l = FB_CONST_AU;

/* everything else is derived */

units->E = FB_CONST_G * fb_sqr(units->m) / units->l;

units->v = sqrt(units->E/units->m);

units->t = units->l / units->v;

return(0);

}

int main(int argc, char *argv[])

{

int j;

double t;

fb_hier_t hier;

fb_input_t input;

fb_ret_t retval;

fb_units_t units;

char string1[FB_MAX_STRING_LENGTH], string2[FB_MAX_STRING_LENGTH];

/* set input parameters */

input.ks = 0; /* turn K-S regularization off */

input.tstop = 1.0e4; /* stopping time in units of units.t */

input.Dflag = 0; /* don’t output dynamical info to stdout */

input.dt = 0.0; /* irrelevant when Dflag=0 */

input.tcpustop = 120.0; /* stopping CPU time in seconds */

input.absacc = 1.0e-9; /* integrator absolute accuracy */

input.relacc = 1.0e-9; /* integrator relative accuracy */

input.ncount = 500; /* number of integration steps between calls to fb_classify() */

input.tidaltol = 1.0e-6; /* tidal perturbation required to force numerical */

/* integration of a binary node */

input.fexp = 1.0; /* radius expansion factor of merger products */

fb_debug = 0;

/* initialize a few things */

t = 0.0;

hier.nstarinit = 5;

hier.nstar = 5;

fb_malloc_hier(&hier);

fb_init_hier(&hier);

/* set stellar properties */

for (j=0; j<hier.nstar; j++) {



– 6 –

hier.hier[hier.hi[1]+j].ncoll = 1;

hier.hier[hier.hi[1]+j].id[0] = j;

snprintf(hier.hier[hier.hi[1]+j].idstring, FB_MAX_STRING_LENGTH, "%d", j);

hier.hier[hier.hi[1]+j].n = 1;

hier.hier[hier.hi[1]+j].obj[0] = NULL;

hier.hier[hier.hi[1]+j].obj[1] = NULL;

hier.hier[hier.hi[1]+j].Eint = 0.0;

hier.hier[hier.hi[1]+j].Lint[0] = 0.0;

hier.hier[hier.hi[1]+j].Lint[1] = 0.0;

hier.hier[hier.hi[1]+j].Lint[2] = 0.0;

hier.hier[hier.hi[1]+j].R = 1.0e-3 * FB_CONST_RSUN;

hier.hier[hier.hi[1]+j].m = FB_CONST_MSUN;

hier.hier[hier.hi[1]+j].x[2] = 0.0; /* everything in x-y plane */

hier.hier[hier.hi[1]+j].v[2] = 0.0;

}

/* set some positions and velocities */

hier.hier[hier.hi[1]+0].x[0] = 10.0 * FB_CONST_AU;

hier.hier[hier.hi[1]+0].x[1] = 0.0 * FB_CONST_AU;

hier.hier[hier.hi[1]+0].v[0] = 10.0e5;

hier.hier[hier.hi[1]+0].v[1] = 0.0;

hier.hier[hier.hi[1]+1].x[0] = 10.0 * FB_CONST_AU;

hier.hier[hier.hi[1]+1].x[1] = 10.0 * FB_CONST_AU;

hier.hier[hier.hi[1]+0].v[0] = -10.0e5;

hier.hier[hier.hi[1]+0].v[1] = 0.0;

hier.hier[hier.hi[1]+2].x[0] = -30.0 * FB_CONST_AU;

hier.hier[hier.hi[1]+2].x[1] = -5.0 * FB_CONST_AU;

hier.hier[hier.hi[1]+0].v[0] = 0.0;

hier.hier[hier.hi[1]+0].v[1] = 5.0e5;

hier.hier[hier.hi[1]+3].x[0] = 0.0 * FB_CONST_AU;

hier.hier[hier.hi[1]+3].x[1] = 27.0 * FB_CONST_AU;

hier.hier[hier.hi[1]+0].v[0] = -5.0e5;

hier.hier[hier.hi[1]+0].v[1] = -4.0e5;

hier.hier[hier.hi[1]+4].x[0] = 10.0 * FB_CONST_AU;

hier.hier[hier.hi[1]+4].x[1] = -32.0 * FB_CONST_AU;

hier.hier[hier.hi[1]+0].v[0] = 5.0e5;

hier.hier[hier.hi[1]+0].v[1] = -1.0e5;

/* set units with our own routine, then normalize */

calc_units(hier, &units);

fb_normalize(&hier, units);
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/* call Fewbody to evolve system */

retval = fewbody(input, &hier, &t);

/* all the rest is parsing the output */

if (retval.retval == 1) {

fprintf(stderr, "encounter complete.\n");

} else {

fprintf(stderr, "encounter NOT complete.\n");

}

fprintf(stderr, "final configuration: %s (%s)\n",

fb_sprint_hier(hier, string1),

fb_sprint_hier_hr(hier, string2));

fprintf(stderr, "t_final=%.6g (%.6g yr) t_cpu=%.6g s\n", \

t, t*units.t/FB_CONST_YR, retval.tcpu);

fprintf(stderr, "DeltaL/L0=%.6g DeltaL=%.6g\n", retval.DeltaLfrac, retval.DeltaL);

fprintf(stderr, "DeltaE/E0=%.6g DeltaE=%.6g\n", retval.DeltaEfrac, retval.DeltaE);

fprintf(stderr, "Rmin=%.6g (%.6g RSUN) Rmin_i=%d Rmin_j=%d\n", \

retval.Rmin, retval.Rmin*units.l/FB_CONST_RSUN, retval.Rmin_i, retval.Rmin_j);

fprintf(stderr, "Nosc=%d (%s)\n", retval.Nosc,

(retval.Nosc>=1?"resonance":"non-resonance"));

fprintf(stderr, "orbital parameters of outermost binaries:\n");

for (j=0; j<hier.nobj; j++) {

if (hier.obj[j]->n >= 2) {

fprintf(stderr, "j=%d a=%.6g AU e=%.6g\n", j,

hier.obj[j]->a * units.l / FB_CONST_AU, hier.obj[j]->e);

}

}

fb_free_hier(hier);

return(0);

}

And here is the output of this code on my machine (it may differ from machine to machine due to
round-off error and the inherent chaos in the N -body problem):

encounter NOT complete.

final configuration: nstar=5 nobj=1: [[[0 2] [1 3]] 4] (quintuple)

t_final=10000.9 (711.854 yr) t_cpu=0.47 s

DeltaL/L0=3.60588e-08 DeltaL=1.08282e-09

DeltaE/E0=-2.94682e-07 DeltaE=3.94031e-09

Rmin=0.000125687 (0.0270158 RSUN) Rmin_i=2 Rmin_j=4

Nosc=0 (non-resonance)



– 8 –

orbital parameters of outermost binaries:

j=0 a=19.1876 AU e=0.744792

My hope is that the code example above answers more questions than it raises. It may seem verbose,
but I encourage you to read through it line by line, as I have tried to comment the important parts.

5. Another Example

Suppose you want to do something more advanced with Fewbody . Suppose you have evolved a system
with a fairly large number of stars, and want to find the relative inclination in any triples that result. Here’s
how you might do something like this:

for (j=0; j<hier.nobj; j++) {

if (hier.obj[j]->n == 3) {

/* determine which element is inner binary */

if (hier.obj[j]->obj[0]->n == 1) {

is = 0;

ib = 1;

} else {

is = 1;

ib = 0;

}

/* calculate outer angular momentum */

fb_cross(hier.obj[j]->obj[0]->x, hier.obj[j]->obj[0]->v, l0);

fb_cross(hier.obj[j]->obj[1]->x, hier.obj[j]->obj[1]->v, l1);

for (i=0; i<3; i++) {

Lout[i] = hier.obj[j]->obj[0]->m * l0[i] + hier.obj[j]->obj[1]->m * l1[i];

}

/* calculate inner angular momentum */

fb_cross(hier.obj[j]->obj[ib]->obj[0]->x, hier.obj[j]->obj[ib]->obj[0]->v, l0);

fb_cross(hier.obj[j]->obj[ib]->obj[1]->x, hier.obj[j]->obj[ib]->obj[1]->v, l1);

for (i=0; i<3; i++) {

Lin[i] = hier.obj[j]->obj[ib]->obj[0]->m * l0[i] +

hier.obj[j]->obj[ib]->obj[1]->m * l1[i];

}

/* acos returns a value between 0 and PI */

inc = acos(fb_dot(Lin, Lout)/(fb_mod(Lin)*fb_mod(Lout)));

fprintf(stderr, "j=%d inc=%g radians\n", j, inc);

}

}
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6. The Functional Interface

By request, I have created a rudimentary functional interface to Fewbody , which uses function calls to
access and set elements of a fb hier t, traverse its structure, etc. The functions are essentially shortcuts to
using the arrays defined in the data types. Here’s one self-explanatory example from fewbody ui.c:

int fbui_make_pair(fb_obj_t *parentobj, fb_obj_t *obj1, fb_obj_t *obj2)

{

parentobj->obj[0] = obj1;

parentobj->obj[1] = obj2;

return(0);

}

And you use it like this:

fbui_make_pair(fbui_hierarchy_binary(&hier, 0),

fbui_hierarchy_single(&hier, 1),

fbui_hierarchy_single(&hier, 2));

I have created a full example of how to use the functional interface in the file binsingle simple.c.
Please have a look at it to see how this interface is used in practice. In it you will also notice some other
useful utilities provided by Fewbody , including a routine to randomly orient a binary (when you don’t care
about orientation, phase, etc., and want to average over them in an ensemble of scattering calculations), and
a routine to bring a pair of objects in from infinity along a hyperbolic orbit to the point where you want to
start numerical integration (this is very useful for scattering experiments).

7. Appendix

For completeness, this section provides details on Fewbody data types, in the form of tables. The other
Fewbody data types are documented fairly well in fewbody.h.
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.ncoll length of .id array

.id array of stellar ids

.idstring object id in string form

.m mass

.R radius (stars only)

.Eint internal energy (stars only)

.Lint internal angular momentum (stars only)

.x position vector

.v velocity vector

.n number of leaves below and including this node in tree

.obj array of two pointers to child nodes

.a semi-major axis (bound pairs only)

.e eccentricity (bound pairs only)

.Lhat angular momentum unit vector (bound pairs only)

.Ahat Runge-Lenz vector (bound pairs only)

.t orbital reference time (bound pairs only)

.mean anom orbital mean anomaly (bound pairs only)

Fig. 4.— fb obj t, the basic data type for stars and bound pairs of somethings.

.nstarinit number of stars used to initialize fb hier t

.nstar current number of stars

.nobj number of separate, bound hierarchies—used length of obj array

.hi array of first indices for a given hierarchy order in .hier

.narr array containing number of hierarchies of given order

.hier array of fb obj ts holding gravitational organization of system

.obj array of pointers to separate, bound hierarchies in .hier

Fig. 5.— fb hier t, the basic data type for gravitational hierarchies.


