-Language Report -

CcoORcCcHrrent

Clean

a general purpose, higher order, pure and lazy
functional programming language
based on graph rewriting
designed for the development of
sequential, parallel and distributed
real world applications

- Version 1.2 (draft) -

Copyright 1997

HILT - High Level Software Tools B.V.
and
University of Nijmegen

Rinus Plasmeijer

Marko van Eekelen

-Language Report -

((CcoORcCcHrrent

Preface

. Introduction . How to obtain CLEAN

. More information on CLEAN . Current state of the CLEAN system
About this language report . Copyright, Authors and Credits

. Some remarks on the CLEAN syntax . Final Remark

Notational conventions

Introduction

CoNCURRENT CLEAN is a practical applicable general purpose lazy pure functional programming language
suited for the development of real world applications.

CLEAN (Brus et al., 1987; Nocker et al., 1991; Plasmeijer and Van Eekelen, 1993) is well-known for its
many features and its fast compiler producing very efficient code.

CLEAN runs on a Mac, PowerMac, Sun and PC (Windows'95, WindowsNT, OS/2 and Linux).

In CLEAN we have incorporated those features we felt people really need to write real world programs
(such as records, arrays, higher order types, type classes, type constructor classes and much more) based
on our own experience with writing complex applications.

People already familiar with other functional programming languages (such as Miranda (Turner,
1985), SML (Harper et al., 1986), Haskell (Hudak et al., 1992) and Gofer/Hugs (Jones, 1993)) will
have no difficulty to program in CLeaN and we hope that they enjoy CLEAN's rich collection of fea-
tures, CLEAN's compilation speed and the quality of the produced code.

CLEAN has many features among which some very special ones. Of particular importance for practical
use is CLEAN’S uniqueness type system enabling the incorporation of destructive updates of arbitrary
objects within a pure functional framework and the creation of direct interfaces with the outside world.

CLEAN’s "unique" features have made it possible to predefine (in CLEAN) a sophisticated and efficient
I/0 library. The CLeaN 1/O library enables a CLEAN programmer to specify interactive window based 1/O
applications on a very high level of abstraction. The library forms a platform independent interface to

iv PREFACE

window systems: one can port window based 1/0 applications written in CLEAN to different platforms
without any modification of source code.

In the new I/O library version 1.0 different kind of call-back functions and 1/O definitions can be ac-
tive at the same time, thus providing the possibility to combine different interactive CLEAN programs
into a new application (a kind of multi-tasking within the same application). The applications can be
regarded as lightweight processes which can communicate via files, shared state or message passing
primitives ((a)synchronous message passing, remote procedure call). All this is provided in a pure, se-
quential functional world in which the call-back functions act as indivisible event handlers.

CLEAN also has concurrency primitives to create functions which can be executed in parallel. It is also
possible to define distributed executing interactive applications running on several PC's/workstations
connected in a network. These options are being tested and will become available in future versions of
the system.

More information on CLEAN

A book on functional programming in CLEAN is being written in collaboration with the Universities of
Utrecht, Leiden and the polytechnical Universities of Arnhem and Leeuwarden. The book contains lots
of case studies. The first draft version of this book is available on the net (www.cs.kun.nl/~clean).

The basic concepts behind CLEAN (albeit version 0.8) as well as an exploination of the implementation
techniques used can be found in Plasmeijer and Van Eekelen (Adisson-Wesley, 1993).

There are many papers on the concepts introduced by the CLEAN group (such as term graph rewriting
(Barendregt et al., 1987), lazy copying (van Eekelen et al., 1991), abstract reduction (Nocker, 1993),
uniqueness typing (Barendsen and Smetsers, 1993, 1996), CLEAN's I/O concept (Achten, 1996), Parallel
CLEAN (Kesseler, 1996) An annotated bibliography can be found in the appendix.

For the most recent information on papers and information about CLEAN please check our web pages
(www.cs.kun.nl/~clean).

About this language report

In this report the syntax and semantics of CLEAN version 1.2 are explained. We always give a motiva-
tion why we have included a certain feature. Although the report is not intended as introduction into
the language, we did our best to make it as readable as possible. Nevertheless, one sometimes has to
work through several sections spread all over the report. E.g. each predefined type is treated in Chapter
8, information on the use and creation of objects of these type can be found in Chapter 4, explanation
on what kind of pattern matching facilities are possible in Chapter 6.

At several places in this report context free syntax fragments of CLEAN are given. We sometimes repeat
fragments which are also given elsewhere just to make the description clearer (e.g. in the uniqueness
typing chapter we repeat parts of the syntax for the classical types). We hope that this is not confusing.
The complete collection of context free grammar rules are summarised in Appendix A.

Some of the features mentioned in this report are still under consideration, design and/or implementation
and therefore not yet incorporated in the current release of the CLEAN system. They should be regarded as
"possible future trends”. Perhaps they will be Kicked out, perhaps we incorporate them in slightly different
form, perhaps they will be there in full glory in the next release. We also take the liberty to make small syn-
tactic changes in future versions of the language.

Note: this manual discusses the new CLEAN 1.0 I/O library which currently is only available
on Mac’s. For a description of the CLEAN 0.8 I/O system which is available on all platforms
we support, see the draft version of new book on programming in CLEAN, available on inter-
net.

PREFACE v

Some remarks on the CLEAN syntax

The CoNCURRENT CLEAN syntax is similar to the notation found in most other modern functional lan-
guages. However, there are a couple of small syntactic differences we want to point out here for people
who don't like to read language reports.

In CLEAN the arity of a function is reflected in its type. When a function is defined its uncurried type is
specified! To avoid any confusion we want to explicitly state here that in CLEAN there is no restriction
whatsoever on the curried use of functions. However, we don't feel a need to express this in every type.
Actually, the way we express types of functions more clearly reflects the way curried functions are in-
ternally treated.

The standard map function (arity 2) is specified in CLEAN as follows:

map::(a ->b) [a] -> [b]
mep f []
map f [x:xs]

=1
=1

]

f ximap f xs]

Each predefined structure such as a list, a tuple, a record or array has its own kind of brackets: lists are
always denotated with square brackets [...], for tuples the usual parentheses are used (..., ...), curly
braces are used for records (indexed by field name) as well as for arrays (indexed by number).

In types funny symbols can appear like ., u:, *, 1 which can be ignored and left out if one is not inter-
ested in uniqueness typing or strictness.

There are only a few keywords in CLEAN leading to a heavily overloaded use of : and = symbols:

function::argstype -> restype /1 type specification of a function
function pattern | guard = rhs /1 definition of a function

sel ector = graph /1 definition of a constant/CAF/graph
function args :==rhs /1 definition of a macro

iitype args = type /1 an algebraic type definition
iitype args :== type /1 atype synonym definition

;:type args /1 an abstract type definition

Notational conventions

The following notational conventions are used in this report. Text is printed in Garamond 12pts,
| the context free syntax descriptions are given in Geneva 9pts,

exanpl es of CLEaN prograns are given in Courier 9pts,

textual explanation to the examples are given in Garamond 10pts.

» Semantical restrictions are always given in a bulleted () list-of-points. When these restrictions are
not obeyed they will almost always result in a compile-time error. In very few cases the restrictions
can only be detected at run-time (array index out-of-range, partial function called outside the do-
main).

The following notational conventions are used in the context-free syntax descriptions:

[notion] means that the presence of notion is optional

{notion} means that notion can occur zero or more times

{notion}+ means that notion occurs at least once

{notion}list means one or more occurrences of notion separated by comma's
terninals are printed in bol d 10 pts courier

symbols are printed in italic

~ is used for concatenation of notions

{notion}#£str means the longest expression not containing the string str

All CLeaN examples given in this report assume that the lay-out dependent mode has been chosen
which means that redundant semi-colons and curly braces are left out (see Section 3.6).

Vi PREFACE

How to obtain CLEAN

CoNCURRENT CLEAN and the CONCURRENT CLEAN PROGRAM DEVELOPMENT system can be used free
of charge for educational purposes only. They can be obtained

» via World Wide Web (www.cs.kun.nl/~clean) or
» via ftp (ftp.cs.kun.nl in directory pub/Clean).

It is allowed to copy the system again for educational purposes only under the condition that the whole
distribution for a certain platform is copied, including help files, this language report and the copyright
notices.

For any use of CLEAN in a commercial environment a commercial license is required, which is not free of
charge. Information about commercial licenses can be obtained by contacting Rinus Plasmeijer
(rinus@cs.kun.nl). For commercial users we supply additional utility software and give full technical
support to enable you to incorporate CLEAN and CLEAN applications successfully in your specific envi-
ronment.

CoNCURRENT CLEAN is available on several platforms. The current situation is as follows (please check
our WWW-pages regularly to see latest news):

platform Macintosh PowerMac PC PC PC Sun Sun

oper. sys. MacOS MacOS 0s/2 Windows Linux Sun0OS Solaris
6.0 7.1.2 2.0 '95/NT ELF 4.1.2 2.0

processor Motorola PowerPC Intel Intel Intel Sparc Sparc

process. type any any >= 486 >= 486 >= 486 any any

window system | MacOS MacOS 0S/2 2.0 Windows '95 Xview Xview/ Xview/

Open-Look Open-Look

Clean compiler | 1.2 1.2 11 1.2 11 1.1 11

Clean I/O lib 1.0/0.8 1.0/0.8 0.8 0.8 0.8 0.8 0.8

Clean PDS C version Clean vrs. make files Clean vrs. make files | make files make files

assembler not needed not needed not needed not needed gnu ass. Sun ass. Sun ass.

linker included included OS2 linker included gnu linker | Sunlinker Sun linker

Code gen Seq Seq Seq Seq Seq Seq Seq

RAM in PC

- minimal 4 Mb 8 Mb 8 Mb 8 Mb 8 Mb 8 Mb 8 Mb

- comfortable 8 Mb 16 Mb 16 Mb 16 Mb 16 Mb 16 Mb 16 Mb

Disk usage

- minimal 5 Mb 7 Mb 6 Mb 6 Mb 6 Mb 7 Mb 7 Mb

Available now now now soon now now now

The installation of the CLEAN compiler is rather dependent on the kind of platform one is working on.
For each platform there is a help file which should help you to install properly. On the Mac's there is a
dedicated CLEAN PROGRAMMING DEVELOPMENT SYSTEM including dedicated editor, library search faci-
lities and a project manager. There is a new version of the CLEAN Programming Development System
which is entirely written in CLEAN which we currently are porting to several platforms. For the plat-
forms without DEVELOPMENT SYSTEM one needs to use one of the standard editors available on the
platform. In that case a distribution includes make files which will do the project management. We ge-
nerate native code for all platforms.

The CLEAN compiler is set up to make parallel and distributed evaluation possible. This feature will be
made available later.

Current state of the CLEAN System

Some of the features mentioned in this report are still under consideration, design and/or implementation
and therefore not yet incorporated in the current release of the CLEAN system. They should be regarded as
"possible future trends". Perhaps they will be kicked out, perhaps we incorporate them in slightly different

PREFACE Vii

form, perhaps they will be there in full glory in the next release. We also take the liberty to make small syn-
tactic changes in future versions of the language.

Release 1.2 (Januari 1997).

- For any expression local definitions can be introduced with a let statement.

- We have introduced a new kind of let statements before a guard. Actions which have to be done in
sequence can now much more intuitively be written down in such a sequential order. These new
special let statements also have a special scope. It allows to reuse the name for a single threaded pa-
rameter. Consequence is that for instance 1/O actions can be written down in a more natural style
(it looks imperative but it is not, of course).

- Guards can be nested.

- The syntax for algebraic types has been changed for existential quantifiers. The type Voi d in no
longer a predefined type.

- Array comprehensions return arrays with unique elements.

- Multidimensial arrays can now be used in selection patterns and updates.

- Observation of unique objects is possible albeit for simple cases only (observation of objects of ba-
sic type stored in unique structures and observations made by polymorphic projection functions).
It makes it more easy to inspect unique datastructures before they are updated.

- It's no longer necessary to place parentheses around lambda expressions when they are used as ar-
guments. This is especially useful when using a monadic programming style.

- The CLeaN compiler now gives warnings for functions that are not used in a module and are not
exported. No code is generated for these functions.

- The strictness analyzer is improved for guarded function alternatives.

- Some bugs in the compiler have been removed.

- We generate slightly better code (e.g. for functions that return strict tuples).

- CLeaN’s native PowerMac (MacOS) version is now released on the net.

- The old CLEAN 1/0 examples are rewritten to make use of the new features in Clean 1.2..

- CLEAN'S 1.0 I/O LIBRARY Will soon be released on the net for Mac and PowerMac.

- New CLEAN 170 examples for the new 1.0 library are made.

- The CLeaN Program Development System has been improved.

- The language report has been updated for version 1.2 including a new chapter on 1/O. Still some
work as to be done on the chapter about uniqueness typing.

The current release of the CLEAN system has the following limitations:

- The CLeaN 1.0 I/O library is currently only available for the Mac. The CLeaN 0.8 /0O library
(albeit converted to CLeAN 1.0 syntax) is available on all platforms. For a description of the 0.8
I/0 library we refer to the draft of the new CLeaN book on the net and to the Addison-Wesley
book (Plasmeijer and Van Eekelen, 1993).

- The Class mechanism can only have one type class variable which can only be instantiated with a
flat type. Due to this restriction we had to define the overloaded array operators in a rather com-
plicated way. This gives rise to a too complex class context for overloaded array operators. We are
working on this feature.

- The code generator is improved taking user defined strictness information into account. It is not
optimal yet, under test and therefore not switched on in the current release.

- Macros are at this moment substituted in an early stage of the compilation process. This may cause
criptical error messages.

- Only simple variables can be used as array pattern.

- The arrow type constructor (->) cannot be used prefixed or used in a curried way.

- Annotations for parallelism are ignored. The distributed code generator is switched off. We are
working on it.

- Everything exported in a definition module still has to be repeated in the corresponding imple-
mentation module.

- The new CLEAN programming environment is only available for some platforms and needs impro-
vement.

Sorry for all these inconveniences, we are working hard on it.

viii PREFACE

Release 1.1 (March 1996). The syntax and semantics of classes are improved. The overload declaration
is incorporated in the class declaration. It is now also possible to combine uniqueness typing with type
(constructor) classes. Arrays can be used as an instantiation of classes. There are different kind of array
implementations for optimal efficiency (lazy, strict, unboxed). The class concept makes it possible to
define overloaded functions which can deal with all of them (although we are not yet completely happy
with the current solution). Uniqueness type attribute equations can now also be specified by the pro-
grammer. This allows the definition of higher order functions like 'bi nd" such that they can now also be
applied to possibly unique arguments without enforcing unnecessary restrictions. A string is not a basic
type anymore but has become synonym for an (unboxed) array of character (the type string is now de-
fined as type synonym in module stdstring). Curly braces are used for arrays instead of the ugly '{:'
:}" pair. Macro definitions can contain local definitions (which are substituted as well). Macros can be
applied curried. Constructors for which also functions are defined are kicked out (there were not used
very often and it complicated the compiler). The Standard Environment has slightly changed (sorry
about this inconvenience). Some operators and functions are moved to other modules to increase or-
thogonality. The priority of some operators have been changed. We also had to rename some functions
(e.g. # to si ze/l engt h and ## t0 maxi ndex) because these symbols are reserved for a handy syntax exten-
sion which will become available in the next release.

CLEAN is ported to PowerMac (MacOS) (a native version which can generate native applications), Sun
(Solaris) en PC (Linux). The CLeaN 0.8 I/O library is ported to all these platforms as well. There is a
new CLEAN programming environment (written in CLEaN). We will improve this environment (we
know it is far from perfect yet) and will port it to all the other supported platforms. Some bugs in the
compiler have been removed. Some space leaks have been removed as well. More strictness is found (in
local definitions). We generate slightly better code.

Release 1.0.3 (October 1995). Some bugs in the compiler have been removed.

Release 1.0.2 (June 1995). CLEAN is ported to PC (OS/2) and Sun (SunOS). The CLean 0.8 1/0 li-
brary is ported to these platforms as well. Some bugs in the compiler have been removed.

Release 1.0.1 (April 1995). CLeaN 1.0 release on the Mac (Motorola). Compared with the previous
public release (0.84b) many important changes have been made (there is a noticeable difference bet-
ween an intermediate language and a programming language).

The most important changes in the language are:
CLEAN has been changed from an intermediate language to a functional programming language
with a syntax in the style of Miranda, Haskell and the like;

- so, various small syntactic sugar is added (infix operators, a case construct, local function definiti-
ons, lambda-abstractions, list comprehensions, lay-out rule, etcetera);

- overloaded functions, type classes and type constructor classes can be defined;

- records and arrays are added as predefined data structure with handy operations (such as an update
operator for arrays and records, array comprehensions etc.);

- amore refined control of strictness is possible (partially strict data structures can be defined for any
type, in particular for recursive types, there is strict let construct);

- the uniqueness typing is refined (now polymorphic and inferred, observation of uniquely typed
objects is made easier);

- existentially quantified types can be defined.

Also the CLEAN I/O library has been changed:
the I/O library is improved (with respect to orthogonality, modularity, extendibility, portability);

- the I/O library is extended allowing to define interactive processes running interleaved inside one
application which can communicate via files, shared data and message passing;

- one can define interactive processes which (in the near future) can run distributed on workstations
connected via a network.

This new 1.0 1/0O library is not yet made public available in this release (1.0.1). The old 0.8 I/O library
(converted to 1.0 syntax) will be made available on all platforms.

The compiler and code generator have been extended and are partly rewritten. Furthermore,

PREFACE iX

- the code generator is improved;
- the code generator is prepared for parallel and distributed evaluation;

Compared with the 0.84 version we have made a lot of syntactic changes to the language. The com-
plete redesign of CLEAN has as consequence that CLeAN version 1.0 is not compatible with its predeces-
sors. A CLEAN application is available which can transform programs written in old CLEAN into new
CLEAN.

Copyright, Authors and Credits

CoNCURRENT CLEAN and the CONCURRENT CLEAN DEVELOPMENT SYSTEM are a product of
HILT - HIGH LEVEL SOFTWARE TOOLS B.V.,
The Netherlands.

HILT is a Dutch company owned by the CLEAN team founded to ensure excellent technical support for
commercial environments. HILT furthermore educates in functional programming and assists in mak-
ing commercial applications with CLEAN.

CLEAN, CONCURRENT CLEAN and the CONCURRENT CLEAN DEVELOPMENT SYSTEM, copyright 1996,
HILT B.V., The Netherlands.

CLEAN is a spin-off of the research performed by the research group on functional programming lan-
guages, COMPUTING SCIENCE INSTITUTE, at the UNIVERSITY OF NIJMEGEN under the supervision
of Rinus Plasmeijer.

The CONCURRENT CLEAN System is developed by:

Peter Achten: Sequential and distributed Event 1/0, 1/O library support for the Mac.
John van Groningen: CLEAN compiler,
Code generators (Mac (Motorola, PowerPC), PC (Intel), Sun (Sparc)),
Low level interfaces, all machine wizarding.

Rober Holwerda: 1/0 library support for Windows ‘95 & Windows NT.
Martin van Hintum: Program Development System (CLEAN version).
Marko Kesseler: Parallel code generator (ParSyTec (Transputer)).
Eric Nocker: Strictness analyser via abstract reduction, 1/0O library support for OS/2.
Leon Pillich: I/0O library support for the Sun.
Sjaak Smetsers: CLeaN compiler,
All type systems (including uniqueness typing and type classes),
Ron Wichers Schreur: Program Development System (C version), Testing,

Parser, Support, Porting, CLEAN 0.8 to 1.0 Conversion program,
CLEAN distribution on the net.

Rinus Plasmeijer &

Marko van Eekelen: CLEAN language design.

Rinus Plasmeijer: Overall design and implementation supervision.

Special thanks to the following people:

Christ Aarts, Steffen van Bakel, Erik Barendsen, Henk Barendregt, Pieter Hartel, Hans Koetsier, Pieter
Koopman, Ronan Sleep and all the CLEAN users who helped us to get a better system.

Many thanks to the following sponsors:

- the Dutch Technology Foundation (STW);

- the Dutch Foundation for Scientific Research (NWO);

- the International Academic Centre for Informatics (IACI);

- Kropman B.V., Installation Techniques, Nijmegen, The Netherlands;

X PREFACE

- Hitachi Advanced Research Laboratories, Japan;

- the Dutch Ministry of Science and Education (the Parallel Reduction Machine project (1984-
1987)) who initiated the CONCURRENT CLEAN research;

- Esprit Basic Research Action (project 3074, SemaGraph: the Semantics and Pragmatics of Graph
Rewriting (1989-1991));

- Esprit Basic Research Action (SemaGraph Il working group 3646 (1992-1995));

- Esprit Parallel Computing Action (project 4106, (1990-1991));

- Esprit Il (TIP-M project area 11.3.2, Tropics: TRansparent Object-oriented Parallel Information
Computing System (1989-1990)).

Final Remark

We hope that CLEAN indeed enables you to program your applications in a convenient and efficient way. We
will continue to improve the language and the system. We greatly appreciate your comments and suggestions
for further improvements.

Januari 1997

Rinus Plasmeijer and Marko van Eekelen

Affiliation: HILT COMPUTING SCIENCE INSTITUTE
High Level Software Tools B.V.

Mail address: Universitair Bedrijven Centrum, University of Nijmegen,
Toernooiveld 100, Toernooiveld 1,
6525 EC Nijmegen, 6525 ED Nijmegen,
The Netherlands. The Netherlands.

e-mail: rinus@cs.kun.nl rinus@cs.kun.nl
marko@cs.kun.nl marko@cs.kun.nl

Phone: +31 6 54346073 +31 24 3652644

Fax: +31 24 3652525 +31 24 3652525

CLEAN on internet: www.cs.kun.nl/~clean

CLEAN on ftp: ftp.cs.kun.nl in pub/Clean

Questions about CLEAN: clean@cs.kun.nl

Subscription mailing list:: clean@cs.kun.nl, subject:: subscribe

concurrent

Clean

Table of contents

Preface

Introduction

More information on Clean iv
About this language report iv
Some remarks on the Clean syntax %
Notational conventions v
How to obtain Clean Vi
Current state of the Clean System Vi
Copyright, Authors and Credits iX
Final Remark X
Table of contents Xi
Introduction 1
11 Key design rules for Clean 1
Basic semantics 3
2.1 Graph rewriting 3

2.1.1 A small example 4
2.2 Global graphs 6
Lexical structure 7
3.1 Lexical program structure 7
3.2 Literals 8
3.3 Reserved keywords and symbols 8
3.4 Symbols, identifiers and hame spaces 9
3.5 Scope of definitions overview _ _ o 10

351 Scope of definitions given in a definition module 10

3.5.2 Scope of global definitions given in an implementation module 10

3.5.3 Scope of type definitions 11

354 Scope of function / graph definitions 11

3.55 Scope within expressions 12
3.6 Lay-out rule 13
Expressions 15
4.1 Expressions 15
4.2 Applications 15
4.3 Node symbols 16
4.4 Graph variables 16
4.5 Constant values of basic type 16

Xii CONCURRENT CLEAN 1.2 LANGUAGE REPORT
4.6 Lists and list comprehensions 17
4.7 Tuples 18
4.8 Records, record selection and record update 18
4.9 Arrays, array selection and array update 19
4.10 Lambda abstraction 22
4.11 Case expression and conditional expression 22
4.12 Let expression 23
Defining constants 25
5.1 Constant graph definitions 25
511 Defining graphs in functions 26

51.2 Defining graphs on the global level 26

5.2 Selectors 26
Defining functions 29
6.1 Defining functions 29
6.2 Pattern matching 30
6.2.1 Constructor patterns 30

6.2.2 Simple Constructor patterns 31

6.2.3 Variables and wildcards in patterns 31

6.2.4 Constant values of basic type as pattern 31

6.2.5 List patterns 32

6.2.6 Tuple patterns 32

6.2.7 Record patterns 32

6.2.8 Array patterns 33

6.3 Guards 33
6.4 Function body 34
6.5 Local definitions 34
6.5.1 Where block 34

6.5.2 With block 35

6.6 Special let constructions 35
6.6.1 Strict let expression 35

6.6.2 Let-before expression 35

Process annotations (DRAFT!) 39
7.1 Process creation 39
7.2 Process communication 40
Defining types 41
8.1 Types 41
8.1.1 Basic types 42

8.1.2 Predefined abstract types 42

8.1.3 List types 42

8.14 Tuple types 42

8.1.5 Array types 43

8.1.6 Arrow types 43

8.2 Defining new types 43
8.2.1 Defining algebraic data types 44

Defining infix data constructors 44

Using higher order types 45

Defining algebraic data types with existentially quantified variables 46

Semantic restrictions on algebraic data types 46

8.2.2 Defining record types 47

8.2.3 Defining synonym types 48

8.2.4 Defining abstract data types 48

8.3 Typing functions and operators 49

CONTENTS

8.4

8.5

Typing curried functions
Typing operators
Typing partial functions
g overloaded functions and operators
Type classes
Functions defined in terms of overloaded functions
Instances of type classes defined in terms of overloaded functions
Type constructor classes
Generic instances
Default instances
Defining derived members in a class
A shorthand for defining overloaded functions
Classes defined in terms of other classes
Exporting type classes
Semantic restrictions on type classes
lly strict data structures and functions
Strict and lazy context
Functions with strict arguments
Defining data structures with strict arguments
Strictness annotations on array instances
Strictness annotations on tuple instances

—i 00 0o
B Www

RS WP

y

PPRPOONOOITRWN

— O

ti

Q

90 00 00 00 00 Y OO 00 00 0O B0 OO O 0O O OO O
GOoTOIOTE B S AS

OabhwWNEF

Defining uniqueness types

9.1
9.2
9.3
9.4
9.5

9.6

Uniqueness typing

Basic ideas behind uniqueness typing

Attribute propagation

Defining new types with uniqueness attributes
Uniqueness and sharing

9.5.1 Higher order uniqueness typing
9.5.2 Uniqueness type coercions
Combining unigueness typing and type classes
9.6.1 Constructor classes

9.6.2 Higher-order type definitions

Input / Output handling

10.1

10.2

10.3

10.4

10.5
10.6
10.7

The world according to Clean
10.1.1 I/O using the console
10.1.2 I/O on the unique world
The program state
Starting and stopping an interactive process
File /0
Event based I/0
Specifying abstract devices
Opening abstract devices and application of call back functions
Graphical user interfaces
10.4.1 Windows and dialogues
10.4.2 Keyboard
10.4.3 Mouse
10.4.4 Writing and drawing to a window
10.4.5 Controls
Defining the position of a Control (also applicable for Windows)
Defining the look of a Control
Defining the size of a Control
Timer handling
Incorporation of local state in abstract devices
Interleaved executing communicating processes
10.7.1 One-way message passing

Xiv CONCURRENT CLEAN 1.2 LANGUAGE REPORT

10.7.2 Two-way message passing 92

Defining macros 93
11.1 Defining Macros 93
Modules 95
121 Definition and implementation modules 95
12.1.1 Separate compilation 95

12.1.2 Special kind of modules 96

The main or start module 96

System definition and implementation modules 97

12.2 Importing definitions 97
12.3 Exporting definitions 98
Time and space efficiency 99
13.1 Space consumption of Clean structures 99
13.2 Size limitations 100
13.3 Lazy evaluation versus strict evaluation 100
134 Destructive updates using uniqueness typing 101
135 Graphs versus constant functions versus macros 101
13.6 The costs of overloading 102
13.7 Concurrency 102
13.8 Other efficiency issues 103
Context-free syntax description 105
Al Clean program 105
A.2 Function definition 106
A.3 Graph definition and expression 107
A5 Macro definition 108
A.6 Type definition 108
A.6 Class definition 109
A7 Symbols 109
A.8 Identifiers 109
A.9 Denotations 110
Standard library 111
B.1 Clean’'s Standard Environment 111
B.1.1 StdOverloaded: predefined overloaded operations 112

B.1.2 StdClass: predefined classes 112

B.1.3 StdBool: operations on Booleans 113

B.1.4 StdInt: operations on Integers 113

B.1.5 StdReal: operations on Reals 114

B.1.6 StdChar: operations on Characters 115

B.1.7 StdList: operations on Lists 115

B.1.8 StdCharList: operations on lists of characters 117

B.1.9 StdTuple: operations on Tuples 117

B.1.10 StdArray: operations on Arrays 117

B.1.11 StdString: operations on Strings 118

B.1.12 StdFunc: operations on polymorphic functions 118

B.1.13 StdMisc: miscellaneous functions 119

B.1.14 StdFile: File based 1/0 119

B.1.15 StdEnum: handling dot-dot expressions 120

B.2 Creating interactive processes 121
B.3 Event based I/0 123

B.3.1 Windows 123

CONTENTS

XV

B.3.2

B.3.3

B.3.4
B.3.5
B.3.6

B.3.7

B.4

StdWindowDef: the window device
StdWindowType: window types
StdWindow: window handling
Controls

StdControlDef: the control device
StdControlType: control types
StdControl: control handling

Menus

StdMenuDef: the menu device
StdMenuType: menu types

StdMenu: menu handling
StdMenultemType: menu item types
StdMenultem: menu item handling
StdQuit: quit handling
StdClipboardDef: clipboard definition
StdClipboard: clipboard handling
StdPicture: drawing in windows
StdPictureDef: data type definitions
StdFont: writing in windows
StdFontDef: data type definitions
Timers

StdTimerDef: the timer device
StdTimerType: timer types

StdTimer: timer handling

StdTime: time related operations
Receivers

StdReceiverDef: the receiver device
StdReceiverType: receiver types
StdReceiver: receiver handling
StdFileSelect: selecting files
StdIOCommon: common definitions
StdPState: access operations on the P State
Std1OState: global operations on the 10 State
StdSystem: platform dependent settings

StdProcld: operations for load distribution on Proclds

Annotated Clean Bibliography

General papers on Concurrent Clean

Papers on the underlying computational model being used
Papers on applications written in Clean

Papers on advanced 1/0

Papers on the Clean to PABC compiler

Papers on the abstract machine level

Papers on code generation

Bibliography

Index

123
124
124
127
127
128
129
130
130
131
131
132
133
133
134
134
135
138
138
139
139
139
140
140
141
141
141
142
142
144
145
147
147
148
149
149

151

151
151
152
152
153
153
153

155

157

concurrent

Clean 1

Introduction

1.1 Short summary of the features of CLEAN

In this section we summarize the key design rules and major features of CLEAN.

1.1 Key design rules for CLEAN

The most important features of CLEAN are:

- CLeaN is a lazy, pure, higher order functional programming language with explicit graph rewriting se-
mantics; one can explicitly define the sharing of structures (cyclic structures as well) in the language;

- Although CLEAN is by default a lazy language one can smoothly turn it into a strict language to ob-
tain optimal time/space behaviour: functions can be defined lazy as well as (partially) strict in their
arguments; any (recursive) data structure can be defined lazy as well as (partially) strict in any of its
arguments;

- CLEAN is a strongly typed language based on an extension of the well-known Milner / Hindley /
Mycroft type inferencing/checking scheme (Milner 1978; Hindley 1969; Mycroft 1984) including
the common polymorphic types, abstract types, algebraic types, and synonym types extended with a re-
stricted facility for existentially quantified types;

- Type classes and type constructor classes are provided to make overloaded use of functions and opera-
tors possible.

- CLeaN offers the following predefined types: integers, reals, Booleans, characters, strings, lists, tuples,
records, arrays and files;

- CLeaN’s key feature is a polymorphic uniqueness type inferencing system, a special extension of the
Milner / Hindley / Mycroft type inferencing/checking system allowing a refined control over the
single threaded use of objects; with this uniqueness type system one can influence the time and space
behaviour of programs; it can be used to incorporate destructive updates of objects within a pure
functional framework, it allows destructive transformation of state information, it enables efficient in-
terfacing to the non-functional world (to C but also to 1/0 systems like X-Windows) offering di-
rect access to file systems and operating systems;

- CLEAN is a modular language allowing separate compilation of modules; one defines implementation
modules and definition modules; there is a facility to implicitly and explicitly import definitions
from other modules;

- CLeaN offers a sophisticated 1/O library with which window based interactive applications (and the
handling of menus, dialogues, windows, mouse, keyboard, timers and events raised by sub-applicati-
ons) can be specified compactly and elegantly on a very high level of abstraction;

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Specifications of window based interactive applications can be combined such that one can create
several applications (sub-applications or light-weight processes) inside one CLEAN application. Auto-
matic switching between these sub-applications is handled in a similar way as under a multi-finder
(all low level event handling for updating windows and switching between menus is done automa-
tically); sub-applications can exchange information with each other (via files, via clipboard copy-
paste like actions using shared state components, via asynchronous message passing) but also with other
independently programmed (CLEAN or other) applications running on the same or even on a differ-
ent host system;

Sub-applications can be created on other machines which means that one can define distributed
window based interactive CLEAN applications communicating e.g. via (a)synchronous message passing
and remote procedure calls across a local area network;

Dynamic process creation is possible; processes can run interleaved or in parallel; arbitrary process to-
pologies (for instance cyclic structures) can be defined; the interprocess communication is synchro-
nous and is handled automatically simply when one function demands the evaluation of its argu-
ments being calculated by another process possibly executing on another processor;

Due to the strong typing of CLEAN and the obligation to initialise all objects being created run-
time errors can only occur in a very limited number of cases: when partial functions are called with ar-
guments out of their domain (e.g. dividing by zero), when arrays are accessed with indices out-of-
range and when not enough memory (either heap or stack space) is assigned to a CLEAN applica-
tion;

Programs written in CLEAN using the 0.8 I/O library can be ported without modification of source
code to anyone of the many platforms we support (see the Preface for an overview).

concurrent

Clean 9

Basic semantics

2.1 Graph rewriting 2.2 Global graphs

The semantics of CLEAN is based on Term Graph Rewriting Systems (Barendregt, 1987a; Plasmeijer and
Van Eekelen, 1993). This means that functions in a CLEAN program semantically work on graphs in-
stead of the usual terms. This enabled us to incorporate CLEAN’s typical features (definition of cyclic
data structures, lazy copying, uniqueness typing) which would otherwise be very difficult to give a pro-
per semantics for. However, in many cases the programmer does not need to be aware of the fact that
he/she is manipulating graphs Evaluation of a CLEAN program takes place in the same way as in other
lazy functional languages. One of the "differences” between CLEAN and other functional languages is
that when a variable occurs more than once in a function body, the semantics prescribe that the actual
argument is shared (the semantics of most other languages do not prescribe this although it is common
practice in any implementation of a functional language). Furthermore, one can label any expression to
make the definition of cyclic structures possible. So, people familiar with other functional languages
will have no problems writing CLEAN programs.

When larger applications are being written, or, when CLEAN is interfaced with the non-functional
world, or, when efficiency counts, or, when one simply wants to have a good understanding of the lan-
guage it is good to have some knowledge of the basic semantics of CLEAN which is based on term graph
rewriting. In this chapter a short introduction into the basic semantics of CLEAN is given. An extensive
treatment of the underlying semantics and the implementation techniques of CLeAN can be found in
Plasmeijer and Van Eekelen (1993).

2.1 Graph rewriting

A CLEAN program basically consists of a number of graph rewrite rules (function definitions) which spec-
ify how a given graph (the initial expression) has to be rewritten.

A graph is a set of nodes. Each node has a defining node-identifier (the node-id). A node consists of a
symbol and a (possibly empty) sequence of applied node-id's (the arguments of the symbol). Applied node-
id's can be seen as references (arcs) to nodes in the graph, as such they have a direction: from the node in
which the node-id is applied to the node of which the node-id is the defining identifier.

Each graph rewrite rule consists of a left-hand side graph (the pattern) and a right-hand side (rhs) consist-
ing of a graph (the contractum) or just a single node-id (a redirection). In CLEAN rewrite rules are not
comparing: the left-hand side (lhs) graph of a rule is a tree, i.e. each node identifier is applied only
once, so there exists exactly one path from the root to a node of this graph.

A rewrite rule defines a (partial) function. The function symbol is the root symbol of the left-hand side
graph of the rule alternatives. All other symbols that appear in rewrite rules, are constructor symbols.

The program graph is the graph that is rewritten according to the rules. Initially, this program graph is
fixed: it consists of a single node containing the symbol start, so there is no need to specify this graph
in the program explicitly. The part of the graph that matches the pattern of a certain rewrite rule is cal-

4 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

led a redex (reducible expression). A rewrite of a redex to its reduct can take place according to the right-
hand side of the corresponding rewrite rule. If the right-hand side is a contractum then the rewrite
consists of building this contractum and doing a redirection of the root of the redex to root of the
right-hand side. Otherwise, only a redirection of the root of the redex to the single node-id specified on
the right-hand side is performed. A redirection of a node-id ny to a node-id ny means that all applied
occurrences of nq are replaced by occurrences of ny (which is in reality commonly implemented by
overwriting ny with ny).

A reduction strategy is a function that makes choices out of the available redexes. A reducer is a process
that reduces redexes that are indicated by the strategy. The result of a reducer is reached as soon as the
reduction strategy does not indicate redexes any more. A graph is in normal form if none of the patterns
in the rules match any part of the graph. A graph is said to be in root normal form when the root of a
graph is not the root of a redex and can never become the root of a redex. In general it is undecidable
whether a graph is in root normal form.

A pattern partially matches a graph if firstly the symbol of the root of the pattern equals the symbol of
the root of the graph and secondly in positions where symbols in the pattern are not syntactically equal
to symbols in the graph, the corresponding sub-graph is a redex or the sub-graph itself is partially
matching a rule. A graph is in strong root normal form if the graph does not partially match any rule. It
is decidable whether or not a graph is in strong root normal form. A graph in strong root normal form
does not partially match any rule, so it is also in root normal form.

The default reduction strategy used in CLEAN is the functional reduction strategy. Reducing graphs ac-
cording to this strategy resembles very much the way execution proceeds in other lazy functional lan-
guages: in the standard lambda calculus semantics the functional strategy corresponds to normal order
reduction. On graph rewrite rules the functional strategy proceeds as follows: if there are several rewrite
rules for a particular function, the rules are tried in textual order; patterns are tested from left to right;
evaluation to strong root normal form of arguments is forced when an actual argument is matched
against a corresponding non-variable part of the pattern. A formal definition of this strategy can be
found in (Toyama et al., 1991).

2.1.1 A small example

Consider the following CLEAN program:

z (1)
Succ (Add a z) (2

Add Zero z
Add (Succ a) z

Start Add (Succ o) o
wher e

0 = Zero (3)

In CLEAN a distinction is between function definitions (graph rewriting rules) and graphs (constant def-
initions). A semantic equivalent definition of the program above is given below where this distinction is

made explicit ("=>" indicates a rewrite rule whereas "=: " is used for a constant (sub-) graph definition.
Add Zero z = z (D)
Add (Succ a) z => Succ (Add a z) (2)
Start => Add (Succ o) o
wher e
0 = Zero (3)

These rules are internally translated to a semantically equivalent set of rules in which the graph struc-
ture on both left-hand side as right-hand side of the rewrite rules has been made explicit by adding
node-id's. Using the set of rules with explicit node-id’s it will be easier to understand what the meaning
is of the rules in the graph rewriting world.

X
y

Add y z
Zero = z (1

BASIC SEMANTICS 5

X = Addy z
y = Succ a => m= Succ n

n = Add a z (2)
X = Start => m= Add no

n = Succ o

0 = Zero (3)

The fixed initial program graph that is in memory when a program starts is the following:

The initial graph in linear notation: The initial graph in pictorial notation:
@pat aRoot = @Gaph @t artNode EDataFoot=:Graph
@t ar t Node = Start

[@itartfode=: Start

To distinguish the node-id’s appearing in the rewrite rules from the node-id’s appearing in the graph
the latter always begin with a ‘@.

The initial graph is rewritten until it is in normal form. Therefore a CLEAN program must at least con-
tain a "start rule” that matches this initial graph via a pattern. The right-hand side of the start rule spec-
ifies the actual computation. In this start rule in the left-hand side the symbol start is used. However,
the symbols aaph and initial (see next section) are internal, so they cannot actually be addressed in
any rule.

The patterns in rewrite rules contain formal node-id’s. During the matching these formal nodeid’s are
mapped to the actual node-id’s of the graph. After that the following semantic actions are performed:

The start node is the only redex matching rule (3). The contractum can now be constructed:

The contractum in linear notation: The contractum in pictorial notation:
@ = Succ @ / \
= Zero

@
@E=: Succ @C=:Zero

)

All applied occurrences of @t art Node Will be replaced by occurrences of @ The graph after rewriting is
then:

The graph after rewriting: Pictorial notation:

@at aRoot = @aph @ [hataRoot=:GFraph
@t art Node = Start 1|r
A @ftartNode=: Start
@ = Zero

[a=:&dd

<N\

@E=: Succ @EC=:Zero

This completes one rewrite. All nodes that are not accessible from @pat aroot are garbage and not consi-
dered any more in the next rewrite steps. In an implementation once in a while garbage collection is
performed in order to reclaim the memory space occupied by these garbage nodes. In this example the
start node is not accessible from the data root node after the rewrite step and can be left out.

6 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

The graph after garbage collection: Pictorial notation :
@at aRoot = Qaph @ EDataRoot=:Graph
% = Add %@
= Succ .
@ = Zero Aa=:add

v N\

[@E=:8ucc [AC=:Zero

The graph accessible from @t aroot still contains a redex. It matches rule 2 yielding the expected nor-
mal form:

The final graph: Pictorial notation :

@at aRoot = Q@aph @ @DataRoot=:Graph

@ = Succ @ l

& = zero [@0=: Succ
[@C=:Zero

The fact that graphs are being used in CLEAN gives the programmer the ability to explicitly share terms
or to create cyclic structures. In this way time and space efficiency can be obtained.

2.2 Global graphs

Due to the presence of global graphs in CLEAN the initial graph in a specific CLEAN program is slightly
different from the basic semantics. In a specific CLEAN program the initial graph is defined as:

@at aRoot =: Gaph @tartNode @ obldy @ obldy ...@H obldpy
@t ar t Node =: Start

@ obldy; = Initial

@ obldy, = Initial

@obld, = Initial

The root of the initial graph will not only contain the node-id of the start node, the root of the graph
to be rewritten, but it will also contain for each global graph (see 5.1) a reference to an initial node
(initialised with the symbol 1 nitial). All references to a specific global graph will be references to its
initial node or, when it is rewritten, they will be references to its reduct.

concurrent

Clean

Lexical structure

3.1 Lexical program structure 3.4 Symbols, identifiers and name spaces
3.2 Literals 3.5 Scope of definitions overview
3.3 Reserved keywords and symbols 3.6 Lay-outrule

In this chapter the lexical structure of CLEAN is explained. It describes the kind of tokens recognised by
the scanner/parser (Sections 3.1, 3.2 and 3.3).

In Section 3.4 the symbols are summarised which are used in the context-free syntax description in the
chapters hereafter (they are written in italic in the syntax description).

An overview of the scopes induced by the language constructs of CLEAN are given in section 3.5.

As is common in modern functional languages there is a lay-out rule (off-side rule) in CLEAN which
permits the omission of braces and semicolons. This lay-out rule is described in Section 3.6. All exam-
ples in this report make use of the lay-out rule.

3.1 Lexical program structure
LexProgram = {Lexeme | {Whitespace}+ }
Lexeme = ReservedKeyword /'l see Section 3.3
| ReservedSymbol /| see Section 3.3
| ReservedChar
| Literal /'] see Section 3.2
| Identifier
Identifier = LowerCaseld
| UpperCaseld
| Funnyld
LowerCaseld = LowerCaseChar~{ldChar}
UpperCaseld = UpperCaseChar~{ldChar}
Funnyld = {SpecialChar}+
LowerCaseChar =a | b | ¢ | d | e | f | g | | i |]
| Kk | 1| m | n | o | p | aq | r | s | t
[u | v | w | x | y | z
UpperCaseChar = A | B|] €| DJ|] E | F | G| H | 1 | 3
| Kk | L | M| N | O] P | Q| R | S | T
| U | Vv | W | X | Y | Z
SpecialChar =~ | @| # | $ | % | ~ | ? | !
I + - <> &=
IdChar = LowerCaseChar
| UpperCaseChar
| Digit
[
Digit =0 | 1 | 2 | 3]| 4 | 5 | 6 | 7]| 8] 9
CharDel =
StringDel =
Whitespace = space /' aspace character
| tab /] ahorizontal tab
| newine /1 anewline char

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Comment

f ornf eed /| aformfeed
verttab /| avertical tab
Comment

/1 AnythingTilINL newl i ne
[* AnythingTill/* Comment AnythingTill*/ */
[* AnythingTill*/ */

I
|
|
AnythingTillNL = {AnyCharfnew i ne} /1 nonewline
AnythingTill/* = {AnyChart *} [l no"l*"
AnythingTill*/ = {AnyChar*/} [l no™/["
AnyChar = IdChar | ReservedChar | Special
ReservedChar =C 1)y 1 A [y 1 rr s 1 . 1 .
Special = \n | \r | \f | \b /1 newline,return,formf,backspace
|\t | \\ \ CharDel /| tab,backslash,character delete
| \StringDel /| string delete
| \{OctDigit}+ /'] octal number
| \ x{HexDigit}+ /' 1 hexadecimal number
OctDigit =0 | 212 | 2 | 3 | 4 | 5 | 6 | 7
HexDigit =0 | 1 | 2 | 3 | 4 | 5 | 6 | 7]| 8] 9
| A | B | C | D | E | F
| a | b | ¢ | d | e | f
3.2 Literals
Literal = IntegerDenot
| RealDenot
| BoolDenot
| CharDenot
| CharsDenot
| StringDenot
IntegerDenot = [Sign]~{Digit}+ /| decimal
| [Sign]~0~{OctDigit}+ /' octal
| [Sign]~0x~{HexDigit}+ /1 hexadecimal
Sign = +|- |~
RealDenot = [Sign~{Digit~}+. {~Digit}+[~E[~Sign]{~Digit}+]
BoolDenot = True | Fal se
CharDenot = CharDel~AnyCharCharDel.CharDel
CharsDenot = CharDel~{AnyCharCharDel}+.CharDel
StringDenot = StringDel~{AnyChartStringDel}~StringDel

Example (literals).

Integer (decimal):
Integer (octal):

Integer (hexadecimal):
Real:

Boolean:

Character:

String:

List of characters:

3.3

0l 1] 2| .}8|9]10 ...|-1-2| ...

00| 01| 02| .} 07| 010] ...|-01]-02] ...

0x0| Ox1| Ox2]| ..] Ox8| 0x9] OXA 0xB ...| - Ox1] - Ox2|
0. 0] 1. 5| 0. 314E10|

True | Fal se

all'b . AI'B ...

"" | "R nus"|"Mrko"| ...

[Rnus']|[' Marko']] ...

Reserved keywords and symbols

Below the symbols are listed which have a special meaning in the language. Some symbols only have a
special meaning in a certain context. Outside this context they are ordinary identifiers. In the comment
it is indicated for which context (name space) the symbol is predefined.

ReservedKeyword =

/1 in all contexts:

/* /1 begin of comment block
*/ /1 end of comment block
/1 I/ rest of line is comment

/1 begin of a type definition
in a type synonym or macro definition
/1 in a function, graph, alg. type, rec. field

= /1 labeling a graph definition
= /1 in a function definition
-> 1/ in a case expression, lambda abstraction

—_
~
~

begin of a list

LEXICAL STRUCTURE

3.4

ReservedSymbol

]
\\
<-
<-:
{
}
&

*
{}
case
cl ass
code
def aul t
definition
export
from
if
i mpl enent ati on
i nport
in
i nfix
i nfixl
i nfixr
i nst ance
| et
#
| et!
#!
nodul e
of
system
wher e
with

cons node

end of a list

begin of list or array comprehension

list gen. in list or array comprehension
array gen. in list or array comprehension
begin of a record or array, begin of a block
end of a record or array, end of a block
an update of a record or array

begin of process annotations

end of process annotations

begin of case expression

begin of type class definition

begin code block in a syst impl. module
to indicate default class instance

begin of definition module

to reveal which class instances there are
begin of symbol list for imports

begin of a conditional expression

begin of implementation module

begin of import list

end of (strict) let expression

infix indication in operator definition

infix left indication in operator definition
infix right indication in operator definition
def of instance of a type class

begin of let expression

begin of let expression (for a guard)
begin of strict let expression

begin of strict let expression (for a guard)
in module header

in case statement

begin of system module

begin of local def of a function alternative
begin of local def in a rule alternative

in type specifications:

strict type

uniqueness type variable

unboxed type

unique type

in a uniqueness type variable definition
function type constructor

list type constructor

tuple type constructors

lazy, strict, unboxed array type constr.
type Boolean

type character

type file

type integer

type process id

type real

type world

in process annotations:
followed by processor id

a parallel process to normal form
an interleaved process to normal form

Symbols, identifiers and name spaces

In the context-free syntax description given in this language report the symbols listed below are used.
The symbols are identifiers used to name modules, functions, operators, graphs, constructors, (node) va-
riables, field names, macros, types, type variables, uniqueness types, uniqueness type (constructor) vari-
ables and type classes. The convention used is that variables always start with a lowercase character

10 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

while constructors and types always start with an uppercase character. The other identifiers may either
start with an uppercase or a lowercase character.

It is allowed to use the same identifier for different purposes as long as the symbols belong to different
name spaces. Function-, operator-, constructor-, graph-, macro-symbols and node variables form one
name space. Type variables and uniqueness type variables form together another name space. All other
symbols form a name space on their own.

Under certain conditions it is allowed to use the same name for different functions and operators
(overloading, see 8.4).

Notice that for the identifiers names can be used consisting of a combination of lower and/or uppercase
characters but one can also define identifiers constructed from special characters like +, <, etc. (see 3.1).
These two kind of identifiers cannot be mixed. This makes it possible to leave out white space in ex-
pressions like a+1 (same as a + 1). See also 4.3.

ModuleSymb = LowerCaseld | UpperCaseld | Funnyld
FunctionSymb = LowerCaseld | UpperCaseld | Funnyld
ConstructorSymb = UpperCaseld | Funnyld
SelectorVariable = LowerCaseld
Variable = LowerCaseld
MacroSymb = LowerCaseld | UpperCaseld | Funnyld
FieldSymb = LowerCaseld
TypeSymb = UpperCaseld | Funnyld
TypeVariable = LowerCaseld
UniqueTypeVariable = LowerCaseld
ClassSymb = LowerCaseld | UpperCaseld | Funnyld
3.5 Scope of definitions overview

The scope is the program region in which an introduced definition (e.g. function definition, type def-
inition) and corresponding names (e.g. function name, variable name, type name, type variable name)
has a meaning. Scopes can be nested: within a scope new scopes can be defined. Within such a nested
scope new definitions can be given, new names can be introduced. As usual it is allowed in a nested
scope to re-define definitions or re-use names given in a surrounding scope. A definition given or a
name introduced in a (nested) scope has no meaning in surrounding scopes. It has a meaning for all
scopes nested within it (unless they are redefined within such a nested scope).

In the pictures in the subsections below nested scopes are indicated by nested boxes.

e Within a scope different objects of the same kind (i.e. belonging to the same name space, see 3.4)
must have different names.

3.5.1 Scope of definitions given in a definition module

The definitions of a definition module have the widest scope. All symbols that are defined in a defini-

tion module are also automatically visible (exported) to all other modules. In the latter case imports are

required to effectuate the actual scope of a symbol to the other module.

e Within one module a symbol can be defined (see 12.2) only once within the same scope and
within the same name space (see 3.4).

3.5.2 Scope of global definitions given in an implementation module

Definitions on the global (= outermost) level (see 12.1.1) have in principle as scope the implementation
module they are defined in, unless they are exported by the corresponding definition module (see
12.3).

LEXICAL STRUCTURE 11

3.5.3 Scope of type definitions

Types can only be defined on the global level (see 3.5.2). Type variables introduced on the left-hand
side of a (algebraic, record, synonym, overload, class, instance, function, graph) type definition have the
right-hand side of the type definition as scope.

i npl enent ati on nodul e XXX

s Type|vars = definition

definitions

Figure (Scope of type definitions).

3.5.4 Scope of function / graph definitions

More complex are the scope rules within function and graph definitions (see the Chapters 5 and 6).
Functions and graphs (selectors) can be defined on the global level (see 3.52). Variables introduced on
the left-hand side of a function definition (formal arguments) have a meaning in the function defini-
tion.

i npl enent ati on nodul e XXX

function|args = body

sel ector = expression

Figure (Scope of functions and graphs defined on the global level).

But, functions and graphs (selectors) can be also be defined locally. However, there is no general syn-
tactic way to introduce a new scope at any point in the program text.: new scopes can only be intro-
duced at certain points. In functional languages local definitions are by tradition defined by using let-
statements (definitions given before they are used in a certain expressio, nice for a bottom-up style of
programming) and where-blocks (definitions given afterwards, nice for a top-down style of program-
ming).

With a let statement one can define new functions and graphs which only have a meaning within a
certain expression. This is allowed in any expression on the right-hand side of a function or graph def-
inition. The same scope rule applies for a strict let expression.

| et

funct i on [AFGS = Body]

sel ector = expression
i n expression

Figure (Defining functions and graphs locally for a certain expression).

With a where block one can define functions and graphs which have meaning within every expression
appearing in a function alternative (see 6.6). It is not possible to define functions or graphs local to a
whole function definition (i.e. in scope of all function alternatives of a function definition).

function | args
| guardl=expressionl
| guard2 = expression2
wher e
sel ector = expression

funct | on [ATgs = Doy]

Figure (Defining functions and graphs locally for a function alternative).

12 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

The scope induced by a where block can sometimes be too big. In CLEAN one can also restrict the scope

of definitions to the body of a rule alternative by using a with statement.
function [args

| guardl=expressionl

with

sel ector = expression

funct i on [args = body |
| guard2 =|expression2

wth

sel ector = expression

funct i on [&7gs = body]

Figure (Defining functions and graphs locally for a rule alternative).

For expressions which have to be evaluated in a certain sequential order it is very convenient to define
these expressions before a guard in which they can be tested. This makes it possible to define selectors
(graphs) and tests on the contents of these selectors in a textual order which closely corresponds to the
order in which they are supposed to be evaluated. A special let statement is provided (keyword I et or #)
called let-before which introduces a very special scope. Each selector defined induces a new scope
(excluding the body of the selector, see the picture below) ending at the function body. One cannot use
the selectors defined in a let-before in a where block, the other way around is possible.

function|args

| gquard = expressi on

sel ect or | =_expressi on
| = expressi on |
wher e
definitions

| guard

Figure (Defining local graphs before a guard).

3.5.5 Scope within expressions

Within an expression new formal parameters can also be introduced. This can happen in a lambda ex-
pression, which is a nameless function. The formal parameters have a meaning in the corresponding

function body.
\

Figure (Introducing formal parameters via lambda expression).

New formal parameters can also be introduced in a case expression. They have a meaning in the corre-
sponding case alternative identical to the scope rules of an ordinary function definition(see also section
4.10).

case expression of

args _-> body
args -> body |

Figure (Introducing formal parameters via a case expression).

In alist and in an array comprehension new variables can be introduced when generators are specified.
Each generator can generate a selector which can be tested in a guard and used to generate the next se-
lector and finaly in the resulting expression (see the picture below).

[Bxpression }\ sel ector | <- expression
| guard
, selector | <- expression
| guard |

Figure (Introducing selectors via generators).

LEXICAL STRUCTURE 13

3.6 Lay-out rule

As is common in modern functional languages, there is a lay-out rule in CLEaN. When the definition of
the module header of a module is not ended by a semicolon a CLEAN program has become lay-out
sensitive. The lay-out rule assumes the omission of the semi-colon (*; ') that ends a definition and of the
braces (‘{" and "}") that are used to group a list of definitions. These symbols are automatically added
according to the following rules:

In lay-out sensitive mode the indentation of the first lexeme after the keywords I et, #, let!, #, of,
where, Or wi th determines the indentation that the group of definitions following the keyword has to
obey. Depending on the indentation of the first lexeme on a subsequent line the following happens. A
new definition is assumed if the lexeme starts on the same indentation (and a semicolon is inserted). A
previous definition is assumed to be continued if the lexeme is indented more. The group of definitions
ends (and a close brace is inserted) if the lexeme is indented less. Global definitions are assumed to start
in column 0.

For reasons of portability it is assumed that a tab space is set to 4 white spaces and that a non-proportional
font is used.

Example (use of lay-out rule: same example with and without using the lay-out sensitive mode).

primes :: [Int]
primes = sieve [2..]

wher e
sieve :: [Int] ->[Int]
sieve [pr:r] = [pr:sieve (filter pr r)]
filter :: Int [Int] -> [Int]
filter pr [n:r]
| nnod pr == =filter prr
| otherw se = [n:filter pr r]

primes :: [Int];
primes = sieve [2..];
wher e
{ sieve :: [Int] ->[Int];
sieve [pr:r] = [pr:sieve (filter pr r)];

filter :: Int [Int] ->[Int];

filter pr [n:r]

| nnod pr == =filter pr r;

| otherw se =[n:filter pr r];

concurrent

Clean A

Expressions

4.1 Expressions 4.8 Records, record selection and record update
4.2 Applications 4.9 Arrays, array selection and array update

4.3 Node symbols 4.10 Lambda abstraction

4.4 Variables 4.11 Case expression and conditional expression
4.5 Constant values of basic type 412 Let expression

4.6 Lists and list comprehensions

4.7 Tuples

In this chapter it is explained what kind of expressions can be written. In CLEAN, expressions are actu-
ally graph expressions which define the creation of a (sub-) graph (see 2.1).

4.1 Expressions

An expression generally expresses an application of a function or data constructor to its arguments (see
4.2). A case expression and conditional expression are added for notational convenience (see 4.11).
With a let expression new functions and graphs can be locally defined (see 4.12). One can optionally
demand the interleaved or parallel evaluation of the expression by another process or on another proces-
sor (see 7.1 and 10.5).

| Graph = [Process] GraphExpr
| GraphExpr = Application /] seed4.?2
| | CaseExpr /1 see4.11
| | LetExpr /1 see4.12
4.2 Applications
Application = {BrackGraph}+ /1 application
| GraphExpr OperatorSymbol GraphExpr /' operator application
BrackGraph = NodeSymbol /] seedg3d
| GraphVariable /1 seedd
| Basicvalue /] seedb5
| List /] seedb
| Tuple Il seed’
| Record /] seedB8
| RecordSelection /] seedB8
| Array /1 seed9
| ArraySelection /] seedd
| LambdaAbstr /] see4.10
| (GraphExpr) [l seed.?2
OperatorSymbol = FunctionSymb
| ConstructorSymb

A (graph) application or graph expression in principle consists of the application of a function or data
constructor to its (actual) arguments. Each function or data constructor can be used in a curried way and
can therefore be applied to any number (zero or more) of arguments (see 8.3 and 9.3). For convenience
and efficiency special syntax is provided to denote values of data structures of predefined type (see 4.5 -

16 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

4.9). A function can only be rewritten if it is applied to a number of arguments equal to the arity of the

function (see 6.1).

e All expressions have to be of correct type (see Chapters 8 and 9).

* All symbols that appear in an expression must have been defined somewhere within the scope in
which the expression appears (see 3.5).

Operators are special functions or constructors defined with arity two (see 8.3.2) which can be applied
in infix position. The precedence (o through 9) and fixity (i nfixI eft, infixright, infix) which can be
defined in the type definition of the operators (see 8.3) determine the priority of the operator applica-
tion in an expression. A higher precedence binds more tightly. When operators have equal precedence,
the fixity determines the priority. In an expression an ordinary function application has a very high pri-
ority (10). Only selection of record elements and array elements (see 4.8 and 4.9) binds more tightly
(12). Besides that, due to the priority, brackets can sometimes be omitted, operator applications behave
jUSt like other applications (see 4.2).
It is not allowed to apply operators with equal precedence in an expression in such a way that their
fixity conflict. So, when in a; op; ap opp a3 the operators op; and opy have the same precedence a
conflict arises when op; is defined as i nfi xr implying that the expression must be read as a op; (a
op2 a3) While opp is defined as i nfi xI implying that the expression must be read as (a1 op1 a) opp
as.
e When an operator is used in infix position both arguments have to be present. Operators can be
used in a curried way, but then they have to be used as ordinary prefix functions / constructors.
When an operator is used as prefix function c.q. constructor, it has to be surrounded by brackets.

4.3 Node symbols
| NodeSymbol = FunctionSymbol

| | ConstructorSymbol

| FunctionSymbol = FunctionSymb

| | (FunctionSymb)

| ConstructorSymbol = ConstructorSymb

| | (ConstructorSymb)

Symbols applied on zero arguments just form a syntactic unit (for non-operators no brackets needed in
this case). Besides the brackets that can be omitted they behave just like other applications (see 4.2).

4.4 Graph variables

| GraphVariable = Variable
| SelectorVariable

There are two kinds of graph variables that can occur in a graph expression: variables (introduced as

formal argument of a function, see 6.1 and 6.2) and selector variables (defined in a selector to identify

parts of a graph expression, see 5.2).

e There has to be a definition for each node variable and selector variable within in the scope of the
graphs expression.

4.5 Constant values of basic type

A graph expression can be a constant value denoting an object of predefined basic type i nt, Real , Bool OF
char . These predefined types introduced for reasons of efficiency and convenience are treated in Section
8.1.1. There is a special notation to denote a string (an unboxed array of characters, see 4.9) as well as
to denote a list of characters (see 4.6). The denotation of constant values must obey the lexical descrip-
tion given in 3.2.

= IntDenot
| RealDenot
| BoolDenot
| CharDenot

BasicValue

EXPRESSIONS 17

4.6 Lists and list comprehensions

For programming convenience several ways are offered to create a list structure including list compre-
hensions like dot-dot expression and ZF-expressions (recurrent generators are however not provided). With
a list generator one can draw elements from a list. With an array generator one can draw elements from
an array. One can define several generators in a row separated by a comma. The last generator in such a
sequence will vary first. One can also define several generators in a row separated by a ‘&’. All generators
in such a sequence will vary at the same time but the drawing of elements will stop as soon of one the
generators is exhausted. This construct can be used instead of the zip-functions which are commonly
used. Selectors are simple patterns to identify parts of a graph expression. They are explained in Section
5.3. Only those lists produced by a generator which match the specified selector are taken into account.
Guards can be used as filter in the usual way.

The scope of the selector variables introduced on the left-hand side of a generator is such that the vari-
ables can be used in the guards and other generators that follow. All variables introduced in this way
can be used in the expression before the \\ (see the picture below).

[Bxpression |\ sel ect or | <~ expression
| guard
, selector | <- expression
| guard |

] L

A special notation is provided for the frequently used list of characters (see also 3.2). The predefined
type list is treated in Section 8.1.3.

List = [[{LGraphExpr}-list [: GraphExpr]]]
| [GraphExpr [, GraphExpr]. . [GraphExpr]]
| [GraphExpr\\ {Qualifier}-list]
LGraphExpr = GraphExpr
| CharsDenot
Qualifier = Generators {|Guard}
Generators = {Generator}-list
| Generator {& Generator}
Generator = Selector <- ListExpr
| Selector <-: ArrayExpr
Selector = BrackPattern /| for brack patterns see 6.2
ListExpr = GraphExpr
ArrayExpr = GraphExpr
Guard = BooleanExpr
BooleanExpr = GraphExpr

e Alist expression must be of type list.

e Aqguard must be of type Bool .

» Dot-dot expressions are predefined on objects of type I nt, Real and car, but dot-dots can also be
applied to any user defined data structure for which the class enumeration type has been instanti-
ated (see stdq ass).

Example (various ways to define a list with the integer elements 1, 3, 5, 7, 9).

(5 [7: 09 [11111]
5,7, 9]
]

[E—y—

1.10] | nnod 2 <> 0]

Example (ZF-expression: expr 1 yields[(0, 0), (0,1), (0,2), (1,0), (1,1), (L1,2), (2,0), (2,1), (2,2,
(3,0), (3,1), (3,2)] whileexpr2yields[(0,0), (1,1), (2,2)]).expr3yields[(0,0), (1,0), (1,1),
(2,00, (21, (22, (30, (31, (32, (373)]

exprl = [(x,y) \\ x < [0..3] , ¥y < .2]]
expr2 = [(x,y) \\ x < [0..3] &y < [0..2]]
expr3 = [(x,y) \\ x < [0..3] , ¥ < .X]1

18 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Example (ZF-expression: a well-know sort).

sort :: [a] ->[a] | Od a
sort []
sort [p:ps]

sort [xX\\x<-ps|x<=p] ++ [p] ++ sort [x\\x<-ps|x>p]
Example (ZF-expression: converting an array into a list).

ArrayA = {1, 2, 3,4, 5}

ListA=[a\\ a<-: ArayA

Example (various ways to define a list with the characters* a' ," b’ and ' c¢').

4.7 Tuples

Tuples can be created that can be used to combine different (sub-)graphs into one data structure with-
out being forced to define a new type for this combination. The elements of a tuple need not be of the
same type. Tuples are in particular handy for functions that return multiple results. The predefined type
tuple is treated in Section 8.1.4.

| Tuple = (GraphExpr, {GraphExpr}-list)
Example (tuple).

("thisis atuple with",3,['elenents'])

4.8 Records, record selection and record update

A record is a tuple-like algebraic data structure that has the advantage that its elements can be selected
by field name rather then by position. An update operator for records is provided. The type of a record
has to be specified explicitly and curried use is not possible (see 8.2).

| Record = {[TypeSymb] J[RecordExpr &[{FieldSymbol = GraphExpr}-list]}
| RecordExpr = GraphExpr
| RecordSelection = RecordExpr. [TypeSymb. JFieldSymb

A new record can be created in the two ways. The first way is to explicitly define a value for each of the
fields. The order in which the record fields are specified is irrelevant, but all fields have to get a value.

The second way is to construct a new record out of an existing one (a functional record update). The re-
cord written to the left of the & (r & f = v is pronounced as: r updated with for f the value v) is the re-
cord which is used as blueprint which is of the same type as the new record to be constructed. On the
right from the & the fields are specified in which the new record differs from the old one. The other
fields are created implicitly. Notice that the functional update is not an update in the classical, destruc-
tive sense since a new record is created. The functional update of records is performed very efficient
such that we have not added support for destructive updates of records of unique type.

With a record selection one can select the value stored in the indicated field. Record selection binds

more tightly (priority 11) than application (priority 10).
The record expression must yield an object of a record type.

e The type of the record must have been defined (see 8.2.2).

e The field names used in the expression must be the same as the field names defined in the type de-
finition of the record, their types must be an instantiation of the corresponding types.

e When a record is created, all fields have to get a value (either implicitly or explicitly). This implies
that records cannot be used in a curried way.

EXPRESSIONS 19

» The type symbol of the record being created can only be left out if there is at least one field name
is specified which is not being defined in some other record.

Example (record type definition, record creation, selection and update of a record).

:: Person = { nane :: String /'l record type definition
, address i1 String
, City :: String
, cl eanuser 1 Bool
}
SonePerson :: Person /1 function creating a new record
SonePerson = { nane = "Some Body"
, address = "Sonewhere 17"
, City = " Sonet own"
, cl eanuser = Fal se
}
GetName :: Person -> String /1 selection of a record fileld

CGet Nane soneone = somreone. nane

Set User :: Person -> Person /1 function updating a record
Set User someone = { someone & cl eanuser = True }

4.9 Arrays, array selection and array update

An array is a tuple/record-like data structure in which all elements are of the same type. Instead of se-
lection by position or field name the elements of an array can be selected very efficiently in constant
time by indexing. The update of arrays is done destructively in CLEAN and therefore arrays have to be
unique (see Chapter 9) if one wants to use this feature. Arrays are very useful if time and space con-
sumption is becoming very critical (CLEAN arrays are implemented very efficiently). If efficiency is not
a big issue we recomment not to use arrays but to use lists instead: lists induce a much better pro-
gramming style. Lists are more flexible and less error prone: array elements can only be accessed via in-
dices and if you make a calculation error indices may point outside the array bounds. This is detected,
but only at run-time. In CLEAN, array indices always start with 0. More dimensional arrays (e.g. a ma-
trix) can be defined as an array of arrays.

For efficiency reasons, arrays are available in several ways: there are lazy arrays (type {a}), strict arrays
(type {!a}) and unboxed arrays for elements of basic type (e.g. type {# nt}). All these arrays are conside-
red to be of different type. By using the overloading mechanism (type constructor classes) one can still
define (overloaded) functions which work on any array. The predefined type array is treated in Section
8.1.2.

Array = {{GraphExpr}-list}
| {ArrayExpr & [{Arraylndex = GraphExpr}-list] [\ \ {Qualifier}-list]}
| {[ArrayExpr & GraphExpr\\ {Qualifier}-list}
| StringDenot

ArrayExpr = GraphExpr

Arraylndex = [{IntegerExpr}-list]

IntegerExpr = GraphExpr

ArraySelection ArrayExpr. Arraylndex

A new array can be created in a number of ways. One way is to simply list the array elements. By default
a lazy array will be created. Arrays are unique (the = or . attribute in front of the type, see Chapter 9) to
make destructive updates possible.

A lazy array is a box with pointers pointing to the array elements. One can also create a strict array
(explicitly define its type as {!Int}), which will have the property that the elements to which the array
box points will always be evaluated. One can also create an unboxed array (explicitly define its type as
{#Int}), which will have the property that the evaluated elements (which have to be of basic value) are
stored directly in the array box itself. Clearly the last one is the most efficient representation (see also
Chapter 13).

Example (creating a lazy array, strict and unboxed unique array of integers with elements 1, 3, 5, 7, 9) .

20 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

M/LazyArray :: .{Int}
M/LazyArray = {1,3,5,7, 9}

M/StrictArray :: .{!Int}
M/StrictArray = {1,3,5,7,9}

M/UnboxedArray :: .{#Int}
M/UnboxedArray = {1, 3,5,7, 9}

Example (creating a two dimensional array, in this case a unique array of unique arrays of unboxed integers) .

MatrixA :: . {.{#Int}}
Matri xA = {{1,2,3,4},{5,6,7,8}}

To make it possible to use operators such as array selection on any of these arrays (of actually different
type) a type constructor class has been defined (in st darray) which expresses that *some kind of array
structure is created”. The compiler will therefore deduce the following general type:

Array :: .(alnt) | Array a
Array = {1,3,5,7,9}

Important: We are currently making the overloading system more powerful. We hope that this will
make it possible in the future to express e.g. overloaded operators on all kinds of arrays in a more con-
venient way.

There are a number of handy functions for the creation and manipulation of arrays predefined in -
dArray (see Appendix B). These functions are overloaded (see stdArray) to be able to deal with any type
of array. The class restrictions for these functions express that "an array structure is required” contai-
ning "an array element".

Example (type of some predefined functions in St dAr r ay).

createArray o lint e ->.(ae) | Array a & ArrayBleme /1 sizeargl,a.[i] = arg2
si ze o (ae) ->1Int | Array a & ArrayEleme /1 number of elements in array

Finally one can construct a new array out of an existing one (a functional array update). Left from the &
(a & [i] = v is pronounced as: array a updated with for a.[i] the value v) the old array has to be speci-
fied which has to be of unique type to make destructive updating possible. On the right from the &
those array elements are listed in which the new array differs from the old one. The g-operator is strict
in its arguments.

Important: For reasons of efficiency we have defined the updates only on arrays which are of unique
type (*{.}), such that the update can always be done destructively (') which is semantically sound be-
cause the original unique array is known not to be used anymore (see 9.2).

Example (creating an array with the integer elements 1, 3, 5, 7, 9 using the update operator) .

5, [3]
7, [4]

{CeateArray 5 0 & [O]
{CGeateArray 5 0 & [1]

9}
5}

1, 3,

3, [0] =1, [3]
One can use an array comprehension or a list comprehension (see 4.6) to list these elements compactly in
the same spirit as with an list comprehension.

Array comprehensions can be used in combination with the update operator. Used in combination
with the update operator the original uniquely typed array is updated destructively. The combination
of array comprehensions and update operator makes it possible to selectively update array elements on
a high level of abstraction.

Example (creating an array with the integer elements 1, 3, 5, 7, 9 using the update operator in combination with array
and list comprehensions) .

2%i+1\\ i < [0..4]}

{CeateArray 5 0 & [i
& elem\\ elem<-: {1,3,5/7,9} &i < [0..4]}

{CGeateArray 50

EXPRESSIONS 21

{CeateArray 50 & elem\\ elem<-: {1,3,5,7, 9}

Array comprehensions used without update operator automatically generate a whole new array. The
size of this new array will be equal to the size of the first array or list generator from which elements are
drawn. Drawn elements which are rejected by a corresponding guard result in an undefined array ele-
ment on the corresponding position.

Example (creating an array with the integer elements 1, 3, 5, 7, 9 using array and list comprehensions) .

{elem\\ elem<-: {1,3,5,7,9}}

{elem\\ elem<- [1,3,5 7, 9]}
A string is equivalent to an unboxed array of character {#cnar}. A type synonym is defined in module
stdstring. Notice that this array is not unique, such that a destructive update of a string is not allowed.
There is special syntax to denote strings (see 3.2).

Example (some ways to define a string, i.e. an unboxed array of character).

"abc"
{"a,'b,'c}

With an array selection one can select an array element. When an object a is of type Array, the ith ele-

ment can be selected (computed) via a.[i]. Array selection is left-associative: a.[i,j,k] means

((a [i1).1i1). [kl . Array selection binds more tightly (priority 11) than application (prlorlty 10).
An array expression must be of type array.

e All elements of an array need to be of same type.

e The array expression on the left of the dot *. * and to the left of the update operator '&' should yield
an object of type unique array.

e Anarray index must be an integer value between o and the number of elements of the array-1. An
index out of this range will result in a run-time error.

e Aunique array of any type created by an overloaded function cannot be converted to a non-unique ar-
ray.

Example (array creation, selection, update). The most general types have been defined. One can of course always restrict to
a more specific type.

MArray :: llnt (Int ->e) ->.(ae) | Airay a & ArrayH eme
MArray i f ={f j \\ j < [0..i-1]}

SetArray :: *(ae) Int e ->.(ae) | Aray a & ArcrayH eme
SetArray ai v={a&l[i] =v}

CA:: Int e->.(ae) | Aray a & ArirayBEleme
CAi e =createArray i e

InvPerm:: {Int} -> .{Int}
InvPerma = {CA (size a) 0 &[a.[i]] =i \\ i < [0..maxindex a]}

ScaleArray :: e (ae) ->.(ae) | Aray a & AirayBHleme & Arith e
ScaleArray x a = {x * e \\ e <: a}

MapArray:: (a ->b) (ar a) -> .(ar b) | Array ar & AirayHHema & ArrayElem b
MapArray f a = {f e \\ e <-: a}

inner :: (ae) (ae) ->.(ae) | Aray a & ArayHeme & Arith e

inner v w
| sizev ==sizew={vi *w \\ vi <! v&w <: w
| otherw se = abort "cannot take inner product”

ToArray :: [e] ->.(ae) | Array a & AcrayBleme
ToArray list = {e \\ e < list}

ToList :: (ae) ->.[e] | Airay a & AcrayBlem e
ToList array = [e \\ e <-: array]

Example (of operations on 2 dimensional arrays generating new arrays).

22 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

maxindex n :==sizen- 1

Adj:: {{#Int}} -> . {.{#Int}}
Adj ma= { {mal[i,j] \\ i < row ndex}
\\ j <- colindex

}
wher e
row ndex = [0..nmaxi ndex ma]
colindex = [0..nmaxi ndex nma.[0]]

Mil tiply:: {{#Int}} {{#Int}} -> . {.{#Int}}

Miltiply a b = { {sum[a.[i,j]*b.[j,k] \\ j <- colindex] \\ k <- row ndex}
\\ i <- rowi ndex
}

wher e

row ndex = [0..naxindex a]
colindex = [0..maxi ndex a.[0]]

4.10 Lambda abstraction

Sometimes it can be convenient to define a tiny function in an expression "right on the spot”. For this
purpose one can use a lambda abstraction. An anonymous function is defined which can have several
formal arguments which can be patterns as common in ordinary function definitions (see Chapter 6).
However, only simple functions can be defined in this way: no guards, no rule alternatives, no local
definitions. Since the dot is already used for record and array selection a - >' is ued to separate the for-
mal arguments from the functionbody:

| LambdaAbstr = \ {Pattern} - > GraphExpr

A lambda expression introduces a new scope (see section 3.5).
\
Example (lambda expression).

AddTupl eList :: [(Int,Int)] -> [Int]
AddTupl eList list = map (\(X,y) -> x+y) list

411 Case expression and conditional expression

For programming convenience a case expression and conditional expression are added.

| CaseExpr = case GraphExpr of

| { {CaseAltDef}+ }

| | i f BrackGraph BrackGraph BrackGraph
| CaseAltDef = {Pattern}

| {LetBeforeExpression}

| {{I Guard} - > FunctionBody}+

| [LocalFunctionAltDefs]

In a case expression first the discriminating expression is evaluated after which the case alternatives are
tried in textual order. Case alternatives are similar to functionalternatives. This is not so strange because
a case expression is internally translated to a function definition (see the example below). Each alterna-
tive contains a left-hand side pattern (see 6.2) which is optionally followed by a let-before (see 6.?) and a
guard (see 6.3). When a pattern matches and the optional guard evaluates to True the corresponding al-
ternative is chosen. A new block structure (scope) is created for each case alternative (see 3.5).

case expression of
args -> body |
args -> body |

e All alternatives in the case expression must be of the same type.
When none of the patterns matches a run-time error is generated.

EXPRESSIONS 23

Example (case expression).

h x = case g x of
[hd:] -> hd
[1 -> abort "result of call g xinhis enpty"

is semantically equivalent to:

h x = nycase (g x)
wher e
nycase [hd:_]
nycase []

hd
abort "result of call g xinhis enpty"

In a conditional expression first the Boolean expression is evaluated after which either the then- or the
else-part is chosen. The conditional expression can be seen as a simple kind of case expression.

e The then- and else-part in the conditional expression must be of the same type.

e The discriminating expression must be of type Bool .

4.12 Let expression

Sometimes it is convenient to introduce local function definition or constant (graph) definitions (see
also Chapter 6) which are only visible for a certain expression. So, a let statement introduces a new

scope (see 3.5).

| et

funct on [Ergs = body]

sel ector = expression
i n expression

Such local definitions can be introduced using a let expression with the following syntax.
| LetExpresssion = let { {LocalDef}+} in GraphExpr
Example (let expression used in a list comprehension).

doubl efibs n =[let a =fibi in(a, a \\ i < [0..n]]

concurrent

Clean 5

Defining constants

5.1 Constant graph definitions 5.2 Selectors

One can give a name to a constant expression (actually a graph), such that the expression can be used
in (and shared by) other expressions. Constant graphs can be defined on a global level or locally in a
function (see 5.1). See also CLEAN’S basic semantics in Chapter 2. One can also identify certain parts of
a constant via a projection function called a selector (see 5.2).

5.1 Constant graph definitions

| GraphDef = Selector =[:] GraphExpr ;

When a graph is defined a name is given to (part) of an expression (see Chapter 4). The definition of a
graph can be compared with a definition of a constant (data) or a constant (projection) function.
However, notice that graphs are constructed according to the basic semantics of CLEAN (see Chapter 2)
which means that multiple references to the same graph will result in sharing of that graph. Recursive
references will result in cyclic graph structures. Graphs have the property that they are computed only once
and that their value is remembered within the scope they are defined in.

Graph definitions differ from constant function definitions (see 6.1). Constant function definitions are a
special form of a graph rewriting rule: multiple references to a function just means that the same defini-
tion is used such that a (constant) function will be recomputed again for each occurrence of the function
symbol made.

Syntactically the definition of a graph is distinguished from the definition of a function by the symbol
which separates left-hand side from right-hand side: "=:" is used for graphs while "=>" is used for func-
tions. However, in general the more common symbol "=" is used for both type of definitions. Generally
it is clear from the context what is meant (functions have parameters). However, constant definitions
are ambiguous (they can be a constant function definition as well as a constant graph definition).
Locally (i.e. within a function definition, see Chapter 6) constant definitions are by default taken to be
graph definitions (see also 5.1.1) and therefore shared, globally they are by default taken to be function
definitions (see 6.1) and therefore recomputed. If one wants to obtain a different behaviour one has to
explicit state the nature of the constant definition (has it to be shared or not) by using "=:" (on the
global level) or "=>" (on the local level).

Example (Graph versus constant function definition: bi gl i st 1 is a graph which is computed only once, bi gl i st2 is a
constant function which is computed every time it is applied).

biglistl = [1..10000] /1 agraph
biglist2 => [1..10000] /1 aconstant function

26 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

5.1.1 Defining graphs in functions

A constant (sub-) graph can be defined locally at several places in a function: one can name any pattern
(see 6.2), graphs can be defined in any (strict) let statement, where or with block (see Chapter 6).
Graphs defined locally will be collected by the garbage collector when they are no longer connected to
the root of the program graph (see Chapter 2).

Example (graph locally defined in a function: the graph labelled | ast is shared in the function Stri pNewl i ne and compu-
ted only once).

StripNewline :: String -> String

StripNewine "" ="

StripNew ine string

| string !! last<>'\n'" = string

| otherwi se = string%o, | ast-1)
wher e

| ast = maxi ndex string

Example (the Hamming numbers defined using a locally defined cyclic constant graph and defined by using a recursive
constant function. The first definition (ham1) is efficient because already computed numbers are reused via sharing.
The second definition (ham2) is much more inefficient because the recursive function recomputes everything).

haml :: [Int]

hanl =y
where y = [1:merge (map ((*) 2) y) (nerge (map ((*) 3) y) (map ((*) 5) y))]

han? :: [Int]
hang = [1:nerge (map ((*) 2) han®) (rmerge (map ((*) 3) hank) (map ((*) 5) han?))]

5.1.2 Defining graphs on the global level

Graphs can also be defined on a global level.

| Definition = ..
| | GraphDef

A global graph definition defines a global constant (closed) graph, i.e. a graph which has the same scope
as a global function definition. The selector variables that occur in the selectors of a global graph defi-
nition have a global scope just as globally defined functions.

Special about global graphs (in contrast with local graphs) is that they are not garbage collected during
the evaluation of the program. A global graph can be compared with a CAF (constant applicative form):
its value is computed at most once and remembered at run-time. A global graph can save execution-
time at the cost of permanent space consumption (see Chapter 13).

5.2 Selectors

A selector is a pattern which introduces one or more new selector variables implicitly defining projection
functions to identify (parts of) a graph being defined on a local or global level. One can identify the sub-
graph as a whole or one can identify its components. A selector can contain constants (also user defined
constants introduced by algebraic type definitions), variables and wildcards. With a wildcard one can
indicate that one is not interested in certain components.

| Selector = BrackPattern // for bracket patterns see 6.2

e When a selector on the left-hand side of a graph definition is not matching the graph on the right-
hand side it will result in a run-time error.

e The selector variables introduced in the selector must be different from each other and not already
be used in the same scope and name space (see 3.5 and 3.4).

e To avoid the specification of patterns which may fail at run-time, it is not allowed to test on zero
arity constructors. For instance, list used in a selector pattern need to be of form [a: _].[a] cannot

DEFINING GRAPHS 27

be used because it stands for [a:[]1] implying a test on the zero arity constructor []. If the pattern
is a record only those fields which contents one is interested in need to be in dicated in the pat-

tern.
* Arrays cannot be used as pattern in a selector.

Remark: a selector can also appear on the left-hand side of a generator in a list comprehension (see 4.6)
or array comprehension (see 4.8).

Example (use of selectors to select record elements).
:: Conplex = {re :: Real, im:: Real}
RePart:: Conplex -> Real
RePart ¢ =r

wher e
{re=r} =c

concurrent

Clean 6

Defining functions

6.1 Defining functions 6.4 Function body
6.2 Pattern matching 6.5 Local definitions
6.3 Guards 6.6 Special let constructions

In this section function definitions are treated (actually: graph rewrite rules). Operator definitions are re-
garded as special kind of function definitions (see 6.1 and 8.3). A function can be preceded by a defini-
tion of its type (see Chapter 8). The body of a function consists of a root expression(see 6.4). With
help of patterns (see 6.2) and guards (see 6.3) a distinction can be made between several alternative
definitions for a function. Functions and graphs can be defined locally in a function definition (see
6.5). For programming convenience (forcing evaluation, observation of unique objects and threading
of sequencial operations) special let constructions are provided (see 6.6).

6.1 Defining functions
FunctionDef = [FunctionTypeDef] DefOfFunction /'l see Chapter 8 for typing functions
DefOfFunction = {FunctionAltDef}+
FunctionAltDef = FunctionSymbol {Pattern} /'l see 6.2 for patterns

{LetBeforeExpression} /'l see6.6
{{l Guard} =[>] FunctionBody}+ /'] see 6.3 for guards
[LocalFunctionAltDefs] /] see6.5
FunctionSymbol = FunctionSymb /1 ordinary function
| (FunctionSymb) /'] operator function
FunctionBody = [StrictLet] /] see6.6
RootExpression ; /] see6.4
[LocalFunctionDefs] /] see6.5

A function definition consist of one or more definitions of function alternatives (rewrite rules) which are

tried in textual order. On the left-hand side of such a function alternative a pattern can be specified

which can serve a whole sequence of guarded function bodies (called the rule alternatives). The root ex-

pression (see 6.4) of a particular rule alternative is chosen for evaluation when

+ the pattern on the left-hand side matches the corresponding actual arguments of the function ap-
plication (see 6.2) and

+ the optional guard (see 6.3) specified on the right-hand side evaluates to Tr ue.

e Function definitions are only allowed in implementation modules (see 12.1).

e Itisrequired that the function alternatives are textually grouped together (separated by semi-co-
lons when the lay-out dependent mode is not chosen).

e Each alternative of a function must start with the same function symbol.

e The function name must in principle be different from other names in the same name space and
same scope (see 3.4). However, it is possible to overload functions and operators (see 8.4).

e A function has a fixed arity, so in each rule the same number of formal arguments must be speci-
fied. Functions can be applied to any number of arguments though, as usual in higher order func-
tional languages (see 4.2 and 9.3).

Example (function definition).

30 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

nodul e exanpl e /1 module header
i nport Stdlnt /1 implicit import
map :: (a->b) [a] ->[b] /1 definition of the function nap

mp f list = [f e\\ e < list]

square :: Int -> Int /1 definition of the function squar e
square X = X * X

Start :: [Int] /1 definition of the Start rule
Start = map square [1..1000]

Constant definitions on the global level are by default taken to be function definitions (see 5.1.2). By
using "=: " instead of "=" one can indicate that a constant graph (CAF) is defined instead of a function.

An operator is a function with arity two which can be used as infix operator (brackets are left out) or as

ordinary prefix function (the operator name preceding its arguments has to be surrounded by brackets).

e When an operator is used in infix position both arguments have to be present. Operators can be
used in a curried way, but then they have to be used as ordinary prefix functions (see also 4.3).

Example (operator definition).
(++) infixr 0 :: [a] [a] ->[a]
(++) [] =y

l'y
(++) [x:xs] Iy [x:xs ++ 1y]

9:: (a->b) (c->a) ->(c ->Dhb)
x ->f (g x)

An operator has a precedence (o through 9, default 9) and a fixity (i nfixI , i nfixr Or justinfix, default
infixl). This is defined in its type (see 8.3.2). See also Section 4.3.

6.2 Pattern matching

In this section the different kind of formal arguments (patterns) that can be specified on the left-hand
side of a function definition (rewrite rule definition) are described. A pattern generally consists of some
data constructor with its optional arguments which on their turn can contain sub-patterns (see 6.2.1). A
node-id variable can be attached to a pattern which makes it possible to identify (label) the whole pat-
tern as well as its contents. Bracketed patterns are formal arguments that form a syntactic unit (see 6.2.2
-6.2.6).

Pattern = [Variable =:] BrackPattern

BrackPattern = ConstructorSymbol /] see6.2.2
| PatternVariable /] see6.2.3
| BasicValuePattern Il see6.2.4
| ListPattern /1 see6.2.5
| TuplePattern /] see6.2.6
| RecordPattern /] see6.2.7
| ArrayPattern /] see6.2.8
| (GraphPattern) /1 see6.2.1

e Itis possible that the specified patterns turn a function into a partial function (see 8.3.3). When a
partial function is applied outside the domain for which the function is defined it will result into a
run-time error. A compile time warning is generated that such a situation might arise.

6.2.1 Constructor patterns
| GraphPattern = ConstructorSymbol {Pattern} /I Constructor pattern

| GraphPattern ConstructorSymb GraphPattern /' Constructor operator
| | Pattern /| a pattern in brackets

A constructor pattern (see above) consists of a data constructor (see 8.2.1) with its optional arguments
which on its turn can contain sub-patterns. A constructor pattern forces evaluation of the corresponding

DEFINING FUNCTIONS 31

actual argument to strong root normal form since the strategy has to determine whether the actual ar-
gument indeed is equal to the specified constructor.
e the data constructor must have been defined in an algebraic data type definition (see 8.2.1).

Example (algebraic data type definition and constructor pattern in function definition).

::Tree a = Node a (Tree a) (Tree a)

| NI
Mrror :: (Tree a) -> Tree a
Mrror (Node e left right) Node e (Mrror right) (Mrror |eft)

Mrror NI N |

Constructors with arity two (see 6.1, see 8.2.1) can also be defined as infix constructors (or constructor

operator). In a pattern match they can be written down in infix position as well .

* When a constructor operator is used in infix position in a pattern match both arguments have to
be present. Constructor operators can occur in a curried way, but then they have to be used as or-
dinary prefix constructors (see also 6.2.1 and 4.3).

Example (algebraic type definition and constructor pattern in function definition).

::Tree2 a = (/\) infixl 0 (Tree a) (Tree a)
| Value a
Mrror :: (Tree2 a) -> Tree2 a

Mrror (left/\right) Mrror right/\Mrror |eft

Mrror |eaf | eaf
6.2.2 Simple Constructor patterns
| ConstructorSymbol = ConstructorSymb
| | (ConstructorSymb)

Constructor symbols without arguments just form a syntactic unit (for non-operators no brackets needed
in this case). Besides the brackets that can be omitted they behave just like other constructor patterns
(see 6.2.1).

6.2.3 Variables and wildcards in patterns

A pattern variable can be a (node) variable or a wildcard.

| PatternVariable = Variable

A node variable matches on any concrete value of the corresponding actual argument and therefore it
does not force evaluation of this argument. A wildcard is an anonymous node variable ("_") one can use
to indicate that the corresponding argument is not used in the right-hand side of the rewrite rule. All
lower case identifiers in a graph pattern are (node) variables. The formal arguments of a function and
the function body are contained in a new scope.

funct i on[&rgs = body]

e All variable symbols introduced at the left-hand side of a function definition must have different
names.

Example (use of pattern variables).
Conpl ex :== (!Real , ! Real) /1 synonym type def

real part :: Conplex -> Real
real part (re,_) =re

6.2.4 Constant values of basic type as pattern

32 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

| BasicValuePattern = BasicValue

A constant value of predefined basic type I nt, Real , Bool Or char (see 8.1) can be specified as pattern.
e The denotation of such a value must obey the syntactic description given in 3.2.

Example (use of basic values as pattern).

nfib:: Int ->1Int

nfib0 =1

nfib 1 =1

nfibn=1+nfib (n-1) * nfib (n-2)

6.2.5 List patterns

An object of the predefined algebraic type list (see 8.1.3) can be specified as pattern.

| ListPattern
| LGraphPattern
I

[[LGraphPattern}-list [: GraphPattern]]]
GraphPattern
CharsDenot

Notice that only simple list patterns can be specified on the left-hand side (one cannot use a dot-dot
expression or list comprehension to define a list pattern).

Example (use of list patterns, use of guards, use of variables to identify patterns and sub-patterns; ner ge merges two
(sorted) lists into one (sorted) list).

nmerge :: [Int] [Int] -> [Int]
=f

merge f []
nerge [] s =s
nmerge f=[x:xs] s=:[y:ys]
| x<y = [x: merge xs s]
| x==y =nerge f ys
| otherw se = [y:merge f ys]
6.2.6 Tuple patterns

An object of the predefined algebraic type tuple (see 8.1.4) can be specified as pattern.

| TuplePattern = (GraphPattern, {GraphPattern}-list)

6.2.7 Record patterns

An object of type record (see 8.2.2) can be specified as pattern. Only those fields which contents one
would like to use in the right-hand side need to be mentioned in the pattern.

| RecordPattern = {[TypeSymb]] {FieldSymbol [= GraphPattern]}-list}

e The type of the record must have been defined in a record type definition (see 8.2.2).

e The field names specified in the pattern must be identical to the field names specified in the corre-
sponding type.

e The type of the record need not to be given if at least one of the field names specified in the pat-
tern unambiguously identifies the type of the record being used.

Example (use of record patterns).

::Tree a = Node (RecTree a)
| Leaf a
::RecTree a = { elem :: a
, left :. Tree a
, right 1 Tree a
}
Mrror :: (Tree a) -> Tree a

Mrror (Node tree=:{left=l,right=r}) = Node {tree & left=r,right=l}

DEFINING FUNCTIONS 33

Mrror |eaf = | eaf
Example (the first alternative of function M rror defined in another equivalent way).
Mrror (Node tree) = Node {tree & left=tree.right,right=tree.left}

or
Mrror (Node tree=:{left,right}) = Node {tree & left=right,right=left}

6.2.8 Array patterns

An object of type array (see 8.1.5) can be specified as pattern. Notice that only simple array patterns
can be specified on the left-hand side (one cannot use array comprehensions). Only those array ele-
ments which contents one would like to use in the right-hand side need to be mentioned in the pat-
tern.

| ArrayPattern
I

e All array elements of an array need to be of same type.
* Anarray index must be an integer value between o and the number of elements of the array-1. Ac-
cessing an array with an index out of this range will result in a run-time error.

= {{GraphPattern}-list}
| {{Arraylndex = Variable}-list}
| StringDenot

It is allowed in the pattern to use an index expression in terms of the other formal arguments (of type
I'nt) passed to the function to make a flexible array access possible.

Example (use of array patterns).
Swep :: !lnt llint !*(ae) ->.(ae) | Aray a & AirayBHeme
Swep i j a=:{[i]=ai,[j]=aj} ={a &[i]=aj,[j]=ai}

6.3 Guards

| Guard = BooleanExpr

A guard is a Boolean expression attached to a rule alternative that can be regarded as generalisation of
the pattern matching mechanism: the alternative only matches when the patterns defined on the left
hand-side match and its (optional) guard evaluates to True (see 6.1). Otherwise the next alternative is
tried. Pattern matching always takes place before the guards are evaluated.

The guards are tried in textual order. The alternative corresponding to the first guard that yields True

will be evaluated. A right-hand side without a guard can be regarded to have a guard that always evalu-

ates to True (the ‘otherwise’ or ‘default’ case). In st dBool otherwise is predefined as synonym for True for

people who like to emphasize the default option.

e Only the last rule alternative of a function alternative can have no guard.

e |tis possible that the guards turn the function into a partial function (see 8.3.3). When a partial
function is applied outside the domain for which the function is defined it will result into a run-
time error. At compile time this cannot be detected.

Example (function definition with guards).

filter :: Int [Int] -> [Int]
filter pr [n:str]
| nnmod pr == 0 filter pr str

[n:filter pr str]

Example (equivalent definition).

filter :: Int [Int] -> [Int]
filter pr [n:str]
| nnmod pr == filter pr str

| otherw se [n:filter pr str]

34 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

6.4 Function body

The main body of a function is called the root expression. It is either a variable (in the case of a redirec-
tion) or a graph expression (in the case a contractum graph is constructed) (see CLEAN’S basic semantics
in Chapter 2).

| RootExpression = GraphExpr
Example (y is the root expression referring to a cyclic graph).
ham:: [Int]

ham =y
where y = [1:merge (map ((*) 2) y) (nerge (map ((*) 3) y) (map ((*) 5) y))]

6.5 Local definitions

In a function definition one can locally define graphs and functions. One way to do this is by using a
let expression (see 4.12) with which one can introduce graphs and functions before they are used in an
expression.

Example (use of a let expression).

ham:: [Int]
ham = let y = [L:nerge (map ((*) 2) y) (nmerge (map ((*) 3) y) (map ((*) 5) y))]
iny

The let expression has the disadvantage that the scope of the new definitions is restricted to one specific
expression. Sometimes one would like to define local definitions with a wider scope. With a where block
(see 6.5.1) one can define functions and graphs which have meaning within every expression appearing
in a function alternative. One can also restrict the scope of definitions to the body of one rule alternative
by using a with statement (see 6.5.2).

6.5.1 Where block

At the end of each function alternative one can locally define functions and graphs in a where block.

| LocalFunctionAltDefs = [where] { {LocalDef}+}
| LocalDef = GraphDef
| FunctionDef

Functions and graphs (selectors) defined in a where block can be used anywhere in the corresponding
function alternative (i.e. in all guards and rule alternatives following a pattern, see 6.1) as indicated in
the following picture showing the scope of a where block.

function | args
| guardl=expressionl
| guard2 = expression2
wher e
sel ector = expression

funct | on [args = Tony

Example (local functions defined in a where block).

primes :: [Int]

prines = sieve [2..]

wher e
sieve :: [Int] ->[Int] /1 local function def
sieve [pr:r] = [pr:sieve (filter pr r)]
filter :: Int [Int] -> [Int] /1 local function def
filter pr [n:r]
| nnod pr == =filter prr
| otherw se = [n:filter pr r]

DEFINING FUNCTIONS 35

6.5.2 With block

One can also locally define functions and graphs at the end of each guarded rule alternative using a
with block.

| LocalFunctionDefs = [wth]{ {LocalDef}+}
| LocalDef = GraphDef
| FunctionDef

Functions and graphs (selectors) defined in a with block can only be used in the corresponding rule al-
ternative as indicated in the following picture showing the scope of a with block.

function [@rgs
| guardl=expressionl
with
sel ector = expression

funct on [ags = body |

| guard2 =|expression2
wth
sel ector = expression

funct i on [&7gS = body]

6.6 Special let constructions

In addition to ordinary let expressions there are also special let expressions with which one can locally
define graphs (but not functions). These special let expressions are introduced for very specific reasons.

6.6.1 Strict let expression

Although CLeaN is by default a lazy language one can force evaluation in several ways. By forcing
evaluation one generally obtains a more time- and space-efficient program (see 13.3). Forcing
evaluation can influence the termination behaviour of the program (a terminating program may be
turned into a non-terminating program). See also Section 8.5.

The nicest way to force evaluation is by defining (partially) strict data structures (see 8.5). But it can
also be handy to force evaluation on ad-hoc basis. This can be done by annotating function arguments
as being strict (see 8.5.2). Another way to force evaluation is by using a strict let expression. The strict let
expression looks similar to an ordinary let expression albeit that only graphs can be defined in a strict let
expression which will be evaluated to strong root normal form before the root expression is being
evaluated (see 6.5). To ensure that evaluation indeed takes place, strict let expressions can only be used
before the root expression. The order in which the graphs in the let expression will be evaluated is
undefined. The scope introduced by a strict let expression is the same as with an ordinary let expression.

Strict let expressions can be used to force unique objects in a strict context such that they can be obser-
ved before they are destructively updated (see 13.6).

| StrictLet = let! { {GraphDef}+} in
Example (let! expression forcing evaluation).
SquareArrayEH em:: *{Int} Int -> .{Int}

SquareArrayHema i = let! e = a.[i]
in{a &[i]=e*e}

6.6.2 Let-before expression

Many of the functions for input and output in the CLeaN 1/O library are state transition functions.
Such a state is often passed from one function to another in a single threaded way (see Chapter 10) to
force a specific order of evaluation. This is certainly the case when the state is of unique type. The

36 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

threading parameter has to be renamed to distinghuish its different versions. The following example
shows a typical example:

Example (use of state transition functions. The uniquely typed state file is passed from one function to another involving a
number of renamings: file, filel, file2)

readchars :: *File -> ([Char], *File)
readchars file

| not ok = ([],filel)
| otherw se = ([char:chars], file2)
wher e

freadc file
readchars filel

(ok, char, filel)
(chars,file2)

This explicit renaming of threaded parameters not only looks very ugly, these kind of definitions are
sometimes also hard to read as well (in which order do things happen? which state is passed in which
situation?). We have to admit: an imperative style of programming is much more easier to read when
things have to happen in a certain order such as is the case when doing I/O. Thta is why we have
introduced let-before expressions.

Let-before expressions are special let expressions which can be defined before a guard or function body.
In this way one can specify sequencial actions in the order in which they suppose to happen. Let-before
expressions have the following syntax:

| LetBeforeExpression = Lets {GraphDef}+
| Lets = Let|#|Let!|#!

The form with the exclamation mark forces the evaluation of the node-ids that appear in the left-hand
sides of the definitions (see strict let-statements, section 6.6.1). Instead of the keyword 1 et the #-
symbol is often used because it looks nice in combination with the | -symbol used for guards.

Let-before expressions have a special scope rule to obtain an imperative programming look. The
variables in the left-hand side of these definitions do not appear in the scope of the right-hand side of
that definition, but they do appear in the scope of the other definitions that follow (including the root
expression, excluding local definitions in where blocks. This is shown in the following picture:

functionlargs
sel ector|= expressi on

| guard = expressi on

sel ect or | =_expr essi on
| guard = expressi on

where
definitions

Note that the scope of variables in the let before expressions does not extent to the definitions in the
where expression of the alternative. The reverse is true however: definitions in the where expression can
be used in the let before expressions.

Example (use of let before expressions, short notation, re-using names taking use of the special scope of the let before)

readchars :: *File -> ([Char], *File)
readchars file

(ok, char,file)
| not ok

(chars,file)
= ([char:chars], file)

freadc file

([1.file)

readchars file

Example (equivalent definition renaming threaded parameters)

readchars :: *File -> ([Char], *File)
readchars file

(ok, char, filel)
| not ok

(chars, file2)

freadc file
([1.filel)
readchars filel

DEFINING FUNCTIONS 37

= ([char:chars], file2)
Example (equivalent definition, using keyword | et instead of #)

readchars :: *File -> ([Char], *File)
readchars file

let (ok,char,file)
| not ok

let (chars,file)

= ([char:chars], file)

freadc file

([1.file)

readchars file

The notation can also be dangerous: the same name is used on different spots while the meaning of the
name is not always the same (one has to take the scope into account which changes from definition to
definition). However, the notation is rather safe when it is used to thread parameters of unique type.
The type system will spot it when such parameters are not used in a correct single threaded manner.
We do not recommend the use of let before expressions to adopt a imperative programming style for
other cases.

Example (abuse of let before expression)

exchange :: (a, b) -> (b, a)
exchange (X, V)

tenmp = X
X =y
y = tenp

= (x, y)

concurrent

Clean 7

Process annotations (DRAFT !)

7.1 Process creation 7.2 Process communication

UNDER CONSTRUCTION. NOT SUPPORTED IN CURRENT RELEASE. SORRY !
There are two ways of creating processes in CLEAN.

One way is by creating interactive applications. These interactive "processes” actually consist of a col-
lection of call-back functions which are applied automatically when certain events occur. The call-back
functions are applied by the 1/O system sequentially one after another. Hence, scheduling takes place
by the I/0O system on the level of call-back functions which perform a state transition in an indivisible
action. Interactive processes are explained in Chapter 10 on 1/0O.

In CoNCURRENT CLEAN one can also create "real” processes which are executed interleaved in an un-
defined order or which are executed in parallel on a multi-processor architecture or on a network of
processors. These CLEAN processes are generally used to speed-up the program or to obtain a specific
distribution of parts of the program across a network of processors (e.g. of the interactive processes !).
Interleaved or parallel executing processes can be created by adding process annotations (Plasmeijer and
van Eekelen, 1993) to function applications. The annotations only influence the order of evaluation,
the program remains a pure functional program, no non-deterministic effects are introduced. The orig-
inal semantics of the process annotations as explained in the CLeaN book are modified to be able to
deal with uniqueness typing (Kesseler, 1995). CLEAN processes are lightweight processes which run very
efficient. Time-slicing, scheduling and communication is controlled by the CLEAN run-time system.
Arbitrary process topologies can be created (e.g. cyclic process topologies) beyond the divide (fork) and
conquer parallelism generally offered.

7.1 Process creation

If an application being evaluated contains an argument which is attributed with an process annotation
({*1*} or {*P+}) the corresponding argument will be evaluated by a new reduction process. This new re-
ducer can run interleaved or in parallel with the original reduction process. The original process contin-
ues with the evaluation in the ordinary reduction order independently. The new reducer will evaluate
the expression following the functional strategy until a normal form is reached.

The creation of a new process will in theory not influence the termination behaviour of the program. It
will influence the time and space consumption of the program which might cause run-time problems
when resources are exhausted.

| Process = {* | *}
| {* P[at ProcldExpr]*}
| ProcldExpr = GraphExpr

With the {*1+} annotation a new interleaved reducer is created on the same processor that reduces the
annotated graph expression to normal form (following the functional strategy). Such an interleaved re-

40 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

ducer dies when this normal form is reached. However, during the evaluation of this result other reduc-
ers may have been created.

With the {*P+} annotation a new parallel reducer is created. This reducer is preferably located on a diffe-
rent processor working on a lazy copy of the corresponding sub-graph. Reducers that are located on
different processors run in parallel with each other. The {*pP} annotations can be extended with a loca-
tion directive at | ocation, Where I ocat i on is an expression of predefined type procl d indicating the pro-
cessor on which the parallel process has to be created. In the library stdproci d (see Appendix B.3)
functions are given that yield an object of this type.

When there are several local annotations specified in a contractum, the order in which they have to be
effectuated is in principle depth-first with respect to the sub-graph structure.

7.2 Process communication

A reducer can demand the evaluation of a sub-graph located on another processor. Such a demand al-

ways takes place via a communication channel (a lazy copy node, see Plasmeijer and Van Eekelen, 1993).

- if the sub-graph the channel is referring to is not in strong root normal form, there will be a redu-
cer process on the other processor (it will be already there or it will be created lazily) that will take
care of the evaluation to root normal form. The demanding process is locked (suspended) until the
root-normal form is reached.

- if the sub-graph the channel is referring to is in strong root normal form, a lazy copy of this sub-
graph is made on the processor such that it can be inspected by the demanding reducer. Only that
part of the graph expression which is in strong root normal form is copied (in one or more
chunks) to the demanding processor. Such a copy is an ordinary graph which can contain shared
parts, it can be cyclic and it can refer to other parts of the graph stored on another processor.
Those parts of the graph which are not in root normal form will not be copied. They are lazy co-
pied in the same way (this might induce the creation of new lazy reduction processes) whenever
there is a new demand for them.

- areducer will be locked (suspended) if it wants to reduce a redex that is already being reduced by
some other reducer. A locked reducer can continue when the redex has been reduced to strong
root normal form.

So, process communication takes place automatically and there will always be a serving process that will
reduce the demanding information to root normal form before it is shipped.

Example (hierarchical process topology creation).

fib:: Int ->1Int

fib0o =1

fib1=1

fibn

| n>threshold = fib (n-1) + {*P*} fib (n-2)
| n>2 =fib (n-1) +fib (n-2)
wher e

threshold = 10

Example (pipeline of processes; the sieve of Eratosthenes is a classical example in which parallel sieving processes are created
dynamically in a pipeline).

Start :: [Int]
Start = primes
wher e
primes :: [Int]
prinmes = sieve {*P*} [2..]

sieve :: [Int] ->[Int]

sieve [] =]
sieve [pr:str] = [pr:{*P*} sieve (filter pr str)]
filter :: Int [Int] -> [Int]

filter pr str =[n\\ n < str | nnmod pr <> 0]

concHHrrent

Clean 3

Defining types

8.1 Types 8.4 Typing overloaded functions and operators
8.2 Defining new types 8.5 Partially strict data structures and functions
8.3 Typing functions and operators

CLEAN is a strongly typed language. The basic type system of CLEAN is based on the classical polymor-
phic Milner/Hindley/Mycroft (Milner 1978; Hindley 1969, Mycroft, 1984) type system. This type
system is adapted for graph rewriting systems and extended with basic types, (possibly existentially
quantified) algebraic types, record types, abstract types and synonym types. These types are explained in the
Sections 8.1, 8.2 and 8.3.

In CLEAN each classical type is furthermore extended with uniqueness type attributes. This very special
and important extension is explained in Chapter 9.

CLeaN allows functions and operators to be overloaded. Type classes and type constructor classes are pro-
vided (which look similar to Haskell (Hudak et al. , 1992) and Gofer (Jones, 1993) although they have
slightly different semantics) with which a restricted context can be imposed on a type variable in a type
specification. This is explained in Section 8.4.

In CLEAN types can be attributed with strictness information (see Section 8.5). In this way one can de-
fine data structures which (partially) will be evaluated eager instead of lazy as is by default the case in
CLEAN. In this way one can even turn CLEAN into a strict language instead of a lazy one.

8.1 Types

CLEAN is a strongly typed language: every object (graph) and function (graph rewrite rule) in CLEAN has
a type. The types of functions can be explicitly specified by the programmer or they can be inferred auto-
matically (see 8.3.5). Types can be formed by taking instances of type constructors which have been de-
fined explicitly as algebraic type (see 8.2.1), record type (see 8.2.2), synonym type (see 8.2.3), abstract type
(see 8.2.4) or by taken instances of a predefined type (see 8.1.1 - 8.1.6). A type instance from a given type
is obtained by uniformly substituting a type for a type variable. A type instance can be preceded by a
uniqueness type attribute. This is further explained in Section 9.1.

Type = {BrackType}+

BrackType = [UnqTypeAttrib] SimpleType

SimpleType = TypeConstructor /1l see8.2,84
| TypeVariable
| BasicType /1 see8.1l.1
| PredefAbstrType /] see8.1.2
| ListType /] see8.1.3
| TupleType /1 see8.1.4
| ArrayType /] see8.15
| ArrowType /] see8.1.6
| (Type)

42 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

8.1.1 Basic types

Basic types are algebraic types (see 8.2) which are predefined for reasons of efficiency and convenience:
Int (for 32 bits integer values), real (for 64 bit double precision floating point values), tar (for 8 bits
ASCII character values) and ool (for 8 bits Boolean values). For programming convenience special
syntax is introduced to denote constant values (data constructors) of these predefined types (see Section
3.2). Functions to create and manipulate objects of basic types can be found in the CLEAN library (as
indicated below).

| BasicType = Int /1 see Stdint.dcl

| | Real /1 see StdReal . dcl

| | Cnhar /1 see StdChar. dcl

| | Bool /1 see StdBool . dcl

8.1.2 Predefined abstract types

As is explained in Section 8.2.4, Abstract data types are types of which the actual definition is hidden. In
CLEAN the types verid, File and Procl d are predefined abstract data types. They are recognised by the
compiler and treated specially, either for efficiency or because they play a special role in the language.
Since the actual definition is hidden it is not possible to denotate constant values of these predefined
abstract types. There are functions predefined in the CLEAN library for the creation and manipulation
of these predefined abstract data types. Some functions work (only) on unique objects (see Chapter 9).

An object of type *veri d (* indicates that the world is unique, see 9.1) is automatically created when a
program is started. This object is optionally given as argument to the start function (see 12.2 and
10.1). With this object efficient interfacing with the outside world (which is indeed unique) is made
possible (see Chapter 10).

An object of type File or *Fil e can be created by means of the functions defined in stdFi | el O (see Ap-
pendix B.5.1). It makes direct manipulation of persistent data possible (see 10.2). The type Fil e is pre-
defined for reasons of efficiency: CLEAN Fi | es are directly coupled to concrete files.

An object of type Procl d can be created by means of the functions defined in stdprocl d (see Appendix
B.3.1). These objects are used in process annotations to allow process creation on an indicated proces-
sor (see Chapter 7) in a network topology.

| PredefAbstrType = Vrld /1 see Stdverl d. dcl
| | File /1 seeStdFilelQdcl
| | Procld /1 see StdProcld. dcl
8.1.3 List types

A list is an algebraic data type predefined just for programming convenience. A list can contain an infi-
nite number of elements. All elements must be of the same type. Lists are very often used in functional
languages and therefore the usual syntactic sugar is provided for the creation and manipulation of lists
(dot-dot expressions, list comprehensions) while there is also special syntax for list of characters. (see 4.6
and 6.2.5)

Lists cannot be annotated as strict or spine strict. To create such lists a new algebraic data type has to
be defined with appropriate strictness annotations (see 8.5.3).

| ListType = [Type]

8.1.4 Tuple types

A tuple is an algebraic data type predefined for reasons of programming convenience and efficiency (see
13.3). Tuples have as advantage that they allow to bundle a finite number of objects of arbitrary type
into a new object without being forced to define a new algebraic type for such a new object (see 4.7
and 6.2.5). This is in particular handy for functions that return several values.

DEFINING TYPES 43

The tuple arguments can optionally be annotated as being strict (see 8.5.1). This can be used to in-
crease the efficiency of a program (see 13.3). The compiler will automatically take care of the conver-
sion between lazy and strict tuples where needed (see 8.5.4).

| TupleType = ([Strict] Type, {[Strict] Type}-list)

8.1.5 Array types

An array is an algebraic data type predefined for reasons of efficiency. Arrays contain a finite number of
elements that all have to be of the same type. An array has as property that its elements can be accessed
via indexing in constant time. An array index must be an integer value between o and the number of el-
ements of the array-1. Destructive updates of array elements is possible thanks to uniqueness typing.
For programming convenience special syntax is provided for the creation, selection and updating of ar-
ray elements (array comprehensions) while there is also special syntax for strings (i.e. unboxed arrays of
characters) (see 4.9 and 6.2.8). Arrays have as disadvantage that their use increases the possibility of a
run-time error (indices that might get out-of-range). Again, see 4.9 and 6.2.8.

To obtain optimal efficiency in time and space, arrays are implemented different depending on the
concrete type of the array elements. By default an array is implemented as a lazy array (type {a}), i.e. an
array consists of a contiguous block of memory containing pointers to the array elements. The same re-
presentation is chosen if strict arrays (define its type as {! a}) are being used. For elements of basic type
an unboxed array (define its type as {#a}) can be used. In that latter case the pointers are replaced by the
array elements themselves. Lazy, strict and unboxed arrays are regarded by the CLEAN compiler as ob-
jects of different types. However, most predefined operations on arrays are overloaded such that they
can be used on lazy, on strict as well as on unboxed arrays.

| ArrayType = {[Strict] Type}
| | {#BasicType}

8.1.6 Arrow types

The arrow type is used for function objects (these functions have at least arity one). One can use the
Cartesian product (uncurried version) to denote the function type (see 8.3) to obtain a compact nota-
tion. Curried functions applications and types are automatically converted to their uncurried equivalent
versions (see 8.3.1).

| ArrowType = ({BrackType}+ - > Type)
Example (of an arrow type).

((ab->c) [a] [b] ->[c])

being equivalent with:;

((a->b->c) ->[a] ->[b] ->[c])

8.2 Defining new types

New types can be defined in an implementation as well as in a definition module. Types can only be
defined on the global level. Abstract types can only be defined in a definition module hiding the actual

implementation in the corresponding implementation module (see 8.2.4 and Chapter 11).
Definition ImportDef

TypeDef

ClassDef

FunctionDef

GraphDef

MacroDef

AlgebraicTypeDef /1 see8.2land9.2.1

RecordTypeDef /1 see8.2.2and9.2.2

SynonymTypeDef /] see8.23and9.2.3

AbstractTypeDef /1 see8.2.4and9.2.4

TypeDef

44 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

| FunctionDef = [FunctionTypeDef] DefOfFunction /] see8.3and9.3

| ClassDef = TypeClassDef /1 see8.4and9.4

| | TypelnstanceDef /] see8.4and9.4

| | TypeClassinstanceExportDef /] see8.4

8.2.1 Defining algebraic data types

With an algebraic data type one assigns a new type constructor (a new type) to a newly introduced data
structure. The data structure consists of a new constant value(called the data constructor) which can have
zero or more arguments (of any type). Every data constructor must unambiguously have been
(pre)defined in an algebraic data type definition. Several data constructors can be introduced in one al-
gebraic data type definition which makes it possible to define alternative data structures of the same al-
gebraic data type. The data constructors can, just like functions, be used in a curried way. Also type
constructors can be used in a curried way, albeit only in the type world of course.

Polymorphic algebraic data types can be defined by adding (possibly existentially quantified, see below)
type variables to the type constructors on the left-hand side of the algebraic data type definition. The
arguments of the data constructor in a type definition are type instances of types (that are defined or
are being defined).

Types can be preceded by uniqueness type attributes (see 9.2). The arguments of a defined data con-
structor can optionally be annotated as being strict (see 8.5).

AlgebraicTypeDef = ::TypelLhs = ConstructorDef {|ConstructorDef} ;

TypelLhs = [*]TypeConstructor {[*] TypeVariable}

TypeConstructor = TypeSymb

ConstructorDef [QuantifiedVariables :] ConstructorSymb {[Strict] BrackType}

[QuantifiedVariables :] (ConstructorSymb) [Fix][Prec] {[Strict] BrackType}

QuantifiedVariables {E. TypeVariable}+

Fix i nfixl
i nfixr
i nfix

Prec Digit

Example (algebraic type definition and its use).
::Day = Mn | Tue | Wd | Thu | Fri | Sat | Sun

::Tree a = NIl Tree
| NodeTree a (Tree a) (Tree a)

MTree :: (Tree Int) /] constant function yielding a Tr ee of I nt
M/Tree = NodeTree 1 Nl Tree N | Tree

An algebraic data type definition can be seen as the specification of a grammar in which is specified
what legal data objects are of that specific type. All data constructors being defined must therefore have
different names, to make type inferencing possible. Notice that the other CLEAN types (basic, list, tuple,
array, record, abstract types) can be regarded as special cases of an algebraic type.

Defining infix data constructors

Constructors with two arguments can be defined as infix constructor, in a similar way as function opera-
tors (with fixity (infixI, infixr orjustinfix, default infixi)and precedence (o through 9, default 9).
Infix constructors can also be used in prefix position when they are surrounded by brackets (see 6.1).

Example (algebraic type defining an infix data constructor, function on this type; notice that one cannot use a ": * because
this character is already reserved).

c:List a = (\) infixr 5 a (List a)
| NI

Head :: (List a) -> a

DEFINING TYPES 45

Head (x\xs) = x

Using higher order types

In an algebraic type definition ordinary types can be used (such as a basic type, e.g. Int, or a list type,
e.g. [Int], or an instantiation of a user defined type, e.g. Tree Int), but one can also use higher order ty-
pes. Higher order types can be constructed by curried applications of the type constructors. Higher or-
der types can be applied in the type world in a similar way as higher order functions in the function
world. The use of higher order types increases the flexibility with which algebraic types can be defined.
Higher order types play an important role in combination with type classes (see 8.4).

Type = {BrackType}+
BrackType = [UnqTypeAttrib] SimpleType
SimpleType = TypeConstructor
| TypeVariable
| BasicType
| PredefAbstrType
| ListType
| TupleType
| ArrayType
| ArrowType
| (Type)
TypeConstructor = TypeSymb /1 auser defined type
| T[] /] list type
| ({1 /1 tuple type (arity >= 2)
| {} /'l lazy array type
| {'} /] strict array type
| {# /' unboxed array type
| (->) /1 an arrow type

Predefined types can also be used in curried way. To make this possible all predefined types can be
written down in prefix notation as well, as follows:

[1 a is equivalent with [a]

(,) ab is equivalent with (a, b)

(,,) abc is equivalent with (a, b, ¢) and so on for n-tuples

{} a is equivalent with {a}

{1} a is equivalent with {!a}

{#} a is equivalent with {#a}

(-> a is equivalent with (a -> b)

Of course, one needs to ensure that all types are applied in a correct way. To be able to specify the rules
that indicate whether a type itself is correct, we introduce the notion of kind. A kind can be seen as the
“type of a type’. In our case, the kind of a type expresses the number of type arguments this type may
have. The kind x stands for any so-called first-order type: a type expecting no forther arguments ((i nt,
Bool , [Int], etcetera). The kind x -> x stands for a type that can be be applied to a (first-order) type,
which then yields another first-order type, x -> x -> x expecting two type arguments of, and so on.

Int, Bool, [Int], Tree [Int]
[], Tree, (,) Int, (->) a, {}
E)5 (->)

XX X X

>
->
>

X X X

> X
> X->X

In CLEAN each top level type should have kind x. A top level type is a type that occurs either as an argu-
ment or result type of a function or as argument type of a data constructor (in some algebraic type de-
finition). The rule for determining the kinds of the type variables (which can be of any order) are fairly
simple: The kind of a type variable directly follows from its use. If a variable has no arguments, its kind
is x. Otherwise, its kind corresponds to the number of arguments to whch the variable is applied. The
kind of type variable determines its possible instantiations, i.e. it can only be instantiated with a type
which is of the same kind as the type variable itself.

Example (algebraic type using higher order types; the type variable t in the definition of Tree2 s of kind X -> X. Tree2 is
instantiated with a list (also of kind X - > X) in the definition of MyTree2).

:Tree2 t = NI Tree

46 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

| NodeTree (t Int) (Tree2 t) (Tree2 t)

M/Tree2 :: Tree2 []
M/Tree2 = NodeTree [1,2,3] NITree NI Tree

Defining algebraic data types with existentially quantified variables

An algebraic type definition may contain existentially quantified type variables (or, for short, existential
type variables) (Laufer 1992). These special variables are indicated by preceding them with "g.". Exis-
tential types are useful if one wants to create (recursive) data structures in which objects of different ty-
pes are being stored (e.g. a list with elements of different types).

Example (existential type definitions and theis use). In this example a list-like structure is defined in which functions can be
stored. The functions in this structure can be applied one after another in a pipe-line fashion. Each function in the pi-
peline can yield a result of arbitrary type which is exactly of the type required by the next function in the pipe-line. The
first function in the pipeline expects type a, the last will yield type b. Hence, the function composed in this way is a
function of type a -> b. The recursive function Appl yPi pe happens to be an example of a recursive function which
type cannot be inferred (with the Milner type system), however its specified type can be checked (with the Mycroft type
system).

::Pipe ab = Drect (a->b)
| E via: Indirect (a ->via) (Pipe viab)

ApplyPipe :: (Pipeab) a->b
Appl yPi pe (D rect func) val = func val
Appl yPi pe (Indirect func pipes) val = Appl yPi pe pi pes (func val)

Start = ApplyPipe (Indirect toReal (Indirect exp (Direct tolnt))) 3

To ensure correctness of typing, there is a limitation imposed on the use of existentially quantified data

structures.

e Once a data structure containing existentially quantified parts is created the type of these compo-
nents are forgotten. This means that, in general, if such a data structured is passed to another
function it is statically impossible to determine the actual types of those components: it can be of
any type. Therefore, a function having an existentially quantified data structure as input is not al-
lowed to make specific type assumptions on the parts that correspond to the existential type vari-
ables. This implies that one can only instantiate an existential type variable with a concrete type
when the object is created.

Counter Example (lllegal use of an object with existentially quantified components; the concrete type of the components of
the Pi pe are unknown).

Appl Func :: (Pipe Int b) -> ??
Appl Func (Indirect func pipes) = func 3

Semantic restrictions on algebraic data types

Other semantic restrictions on algebraic data types:

e The name of a type must be different from other names in the same scope (see 3.5) and name
space (see 3.4).

e All type variables on the left-hand side must be different.

e All type variables used on the right-hand side are bound, i.e. must be introduced on the left-hand
side of the algebraic type being defined.

e A data constructor can only be defined once within the same scope and name space. So, each data
constructor unambiguously identifies its type to make type inferrencing possible.

e When a data constructor is used in infix position both arguments have to be present. Data con-
structors can be used in a curried way in the function world, but then they have to be used as ordi-
nary prefix constructors.

e Type constructors can be used in a curried way in the type world; to use predefined bracket-like
type constructors (for lists, tuples, arrays) in a curried way they must be used in prefix notation.

e The right-hand side of an algebraic data type definition should yield a type of kind x, all argu-
ments of the data constructor being defined should be of kind x as well.

DEFINING TYPES 47

* Atype can only be instantiated with a type that is of the same kind.
* Anexistentially quantified type variable specified in an algebraic type can only be instantiated with
a concrete type (= not a type variable) when a data structure of this type is created.

8.2.2 Defining record types

A record type is basically an algebraic data type in which exactly one constructor is defined. Special
about records is

- that a field name is attached to each of the arguments of the data constructor;

e that records cannot be used in a curried way.

Compared with ordinary algebraic data structures the use of records gives a lot of notational conve-
nience because the field names enable selection by field name instead of selection by position. When a re-
cord is created all arguments of the constructor have to be defined but one can specify the arguments in
any order (see 4.8). Furthermore, when pattern matching is performed on a record, one only has to
mention those fields one is interested in (see 6.2.6). A record can be created via a functional update (see
4.8). In that case one only has to specify the values for those fields which differ from the old record.
Matching and creation of records can hence be specified in CLEAN in such a way that after a change in
the structure of a record only those functions have to be changed which are explicitly referring to the
changed fields.

Existential type variables (see 8.2.1) are allowed in record types (as in any other type). The arguments
of the constructor can optionally be annotated as being strict (see 8.5). The optional uniqueness attri-
butes are treated in 9.2.

| RecordTypeDef = ::TypelLhs = {{FieldSymbol : : [Strict] Type}-list} ;

As data constructor for a record the name of the record type is used internally.

» The semantic restrictions which apply for algebraic data types also hold for record types.

e The field names inside one record all have to be different. It is allowed to use the same field name
in different records.

Example (record definition).
:: Conpl ex = {re i: Real

, im ;. Real
}

The combination of existential type variables in record types are of use for an object oriented style of
programming.

Example (using existentially quantified records to create object of same type but which can have different representations).

1. (j ect = Ex:
{ state :: X
, get tooX -> Int
, set X Int ->x
}

CeateChjectl :: (hject
Ceate(hjectl = {state =[], get = nyget, set = nyset}

wher e
nyget :: [Int] -> Int
nyget [i:is] =i
nyget [] =0

nyset :: [Int] Int -> [Int]
nyset is i =[i:is]

Ceate(hject2 = {state = 0.0, get = nyget, set = nyset}
wher e

nyget :: Real -> Int

nyget r =tolnt r

48 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

nyset :: Real Int -> Real
nyset r i =r + toReal i

Get :: (hject -> Int
Get {state,get} = get state

Set :: (phject Int -> (hject
Set o=:{state,set} i = {0 & state = set state i}

Start :: [(bject]
Start = map (Set 3) [Oeatelhj ectl, Createlhjectl]

8.2.3 Defining synonym types

Synonym types permit the programmer to introduce new type names for an existing type.

| SynonymTypeDef = ::TypeLhs:==Type;
» For the left-hand side the same restrictions hold as for algebraic types (see 8.2.1).
* Cyclic definitions of synonym types (e.g.::Tab :==Gab; ::Ga b :== T a b) are not allowed.
Example (type synonym definition).
::Qperator a:=—aa->a
map2 :: (Qperator a) [4] [a] ->[q]
map2 op [] [] =[]
map2 op [fl:rl] [f2:r2] =[op f1 f2 :map2 op rl r2]
Start :: Int
Start = map2 (*) [2,3,4,5] [7,8,9, 10]

8.2.4 Defining abstract data types

A type can be exported by defining the type in a CLEAN definition module (see Chapter 11). For soft-
ware engineering reasons it sometimes better only to export the name of a type but not its concrete de-
finition (the right-hand side of the type definition). The type then becomes an abstract data type. In
CLEAN this is done by specifying only the left-hand-side of a type in the definition module while the
concrete definition (the right-hand side of the type definition) is hidden in the implementation mod-
ule. So, CLEAN'S module structure is used to hide the actual implementation. When one wants to do
something useful with objects of abstract types one needs to export functions that can create and mani-
pulate objects of this type as well.
Abstract data type definitions are only allowed in definition modules, the concrete definition has
to be given in the corresponding implementation module.
e The left-hand side of the concrete type should be identical to (modulo alpha conversion for varia-
ble names) the left-hand side of the abstract type definition (inclusive strictness and unigqueness
type attributes).

| AbstractTypeDef = ::TypelLhs:
Example (abstract data type).

definition nodul e stack

c:Stack a

Empt y il (Stack a)

i sEnpty (Stack a) -> Bool
Top o (Stack a) -> a

Push i a(Stack a) -> Stack a

Pop i (Stack a) -> Stack a

DEFINING TYPES 49

i npl ement ati on nodul e stack

::Stack a == [4q]

Enpty :: (Stack a)

Enpty =[]

isEmpty :: (Stack a) -> Bool
isEmpty [] = True

isEnpty s = Fal se

Top :: (Stack a) -> a
Top [e:s] = e

Push :: a (Stack a) -> Stack a
Push e s = [e:s]

Pop :: (Stack a) -> Stack a
Pop [e:s] =s

8.3 Typing functions and operators

Although one is in general not obligated to explicitly specify the type of a function (the CLean compiler
can infer the type) the explicit specification of the type is highly recommended to increase the readability
of the program.

FunctionDef = [FunctionTypeDef] DefOfFunction
FunctionTypeDef = FunctionSymb : : FunctionType ;
| (FunctionSymb) [Fix][Prec] [: : FunctionType] ;
Fix = infixl
| infixr
| infix
Prec = Digit
FunctionType = [{[Strict] BrackType}+ - >] Type [ClassContext] [UnqTypeUnEqualities]

An explicit specification is required when a function is exported, or when the programmer wants to im-
pose additional restrictions on the application of the function (e.g. a more restricted type can be speci-
fied, strictness information can be added as explained in Section 8.5, a class context for the type varia-
bles can be defined as explained in Section 8.4, uniqueness information can be added as explained in
Section 9.3). The CLEAN type system uses a combination of Milner/Mycroft type assignment. This has
as consequence that the type system in some rare cases is not capable to infer the type of a function
(using the Milner/Hindley system) although it will approve a given type (using the Mycroft system; see
Plasmeijer and Van Eekelen, 1993; see also the example in 8.2.1).

The Cartesian product is used for the specification of the function type. Cartesian product is denoted

by juxtaposition of the bracketed argument types. For the case of a single argument the brackets can be

left out. In type specifications the binding priority of the application of type constructors is higher than

the binding of the arrow - >. To indicate that one defines an operator the function name is on the left-

hand side surrounded by brackets.

e The function symbol before the double colon should be the same as the function symbol of the
corresponding rewrite rule.

e The arity of the functions has to correspond with the number of arguments of which the Cartesian
product is taken. So, in CLEAN one can tell the arity of the function by its type.

Example (arity of a function reflected in type).
map 1 (a->b) [a]

->
mep f [] = [l
mp f [x:xs] = [f

[b] /1 map has arity 2
X @ map f xs]

domap :: ((a->b) [a] ->[Db]) /1 domap has arity zero
donmap = map

50 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

e The arguments and the result types of a function should be of kind x.

* In the specification of a type of a locally defined function one cannot refer to a type variable intro-
duced in the type specification of a surrounding function (there is not yet a scope rule on types de-
fined). The type of such a local function can therefore not yet be specified by the programmer.
However, the type will be inferred and checked (after it is lifted by the compiler to the global le-
vel) by the type system.

Counter example (illegal type specification). The function g returns a tuple. The type of the first tuple element is the same
as the type of the polymorphic argument of f . Such a dependency (here indicated by "»" cannot be specified yet.

f:: a->(aa)

f x =g x

wher e
/Il g:: b->("ab)
gy =(xy)

8.3.1 Typing curried functions

In CLeaN all symbols (functions and constructors) are defined with fixed arity. However, in a applica-
tion it is of course allowed to apply them to an arbitrary number of arguments. A curried application of
a function is an application of a function with a number of arguments which is less than its arity (note
that in CLEAN the arity of a function can be derived from its type). With the aid of the predefined in-
ternal function _apa curried function applied on the required number of arguments is transformed
into an equivalent uncurried function application.

The type axiom's of the CLEAN type system include for all s defined with arity n the equivalence of
sii(t1->(to->(.(tp->tr).)) Withs::tq to ..t -> ty.

8.3.2 Typing operators

An operator is a function with arity two that can be used in infix position. An operator can be defined by
enclosing the operator name between parentheses in the left-hand-side of the function definition. An
operator has a precedence (o through 9, default 9) and a fixity (i nfixI, i nfixr Or just infix, default in-
fixl). A higher precedence binds more tightly. When operators have equal precedence, the fixity de-
termines the priority. In an expression an ordinary function application always has the highest priority
(10) See also Section 4.3 and 6.1.
The type of an operator must obey the requirements as defined for typing functions with arity
two.
» If the operator is explicitly typed the operator name should also be put between parentheses in the
type rule.
e When an infix operator is enclosed between parentheses it can be applied as a prefix function. Pos-
sible recursive definitions of the newly defined operator on the right-hand-side also follow this
convention.

Example (an operator definition and its type).

infix 8:: (x->y) (z->x%) ->(z ->Yy) /1 function composition

(o)
(o) f g=\x->f (g Xx)

8.3.3 Typing partial functions

Patterns and guards imply a condition that has to be fulfilled before a rewrite rule can be applied (see

6.2 and 6.3). This makes it possible to define partial functions, functions which are not defined for all

possible values of the specified type.

* When a partial function is applied to a value outside the domain for which the function is defined
it will result into a run-time error.

The compiler gives a warning when functions are defined which might be partial.

DEFINING TYPES 51

With the abort expression (see StdMisc.dcl) one can change any partial function into a total function
(the abort expression can have any type). The abort expression can be used to give a user-defined run-
time error message

Example (use of abort to make a function total).

fac :: Int -> Int
fac O =1
fac n
| n>=1 =n* fac (n - 1)
| otherwi se = abort "fac called with a negative nunber"
8.4 Typing overloaded functions and operators

The names of the functions one defines generally all have to be different within the same scope and
name space (see 3.4). However, it is sometimes very convenient to overload certain functions and opera-
tors (e.g. +, -, ==), i.e. use identical names for different functions or operators that perform similar tasks
albeit on objects of different types.

In principle it is possible to simulate a kind of overloading by using records. One simply defines a re-
cord (see 8.2.2) in which a collection of functions are stored that somehow belong to each other. Now
the field name of the record can be used as (overloaded) synonym for any concrete function stored on
the corresponding position. The record can be regarded as a kind of dictionary in which the concrete
function can be looked up.

Example (the use of a dictionary record to simulate overloading/type classes). sum i st can use the field name add as syno-
nym for any concrete function obeying the type as specified in the record definition. The operators +., +*, -. and - *
are assumed to be predefined primitives operators for addition and subtraction on the basic types Real and I nt .

tAith a = { add > aa->a

, subtract :: aa->a

}
ArithReal = { add = (+.), subtract = (-.) }
Arithint ={ add = (+"), subtract = (-*) }
sumist :: (Arith a) [a] [a] -> [4]
sumist arith [x:xs] [y:ys] [arith.add x y:sumist arith xs ys]
sunlist arith x y [1

Start = sumist Arithint [1..10] [11..20]

A disadvantage of such a dictionary record is that it is syntactically not so nice (e.g. one explicitly has to
pass the record to the appropriate function) and that one has to pay a huge price for efficiency (due to
the use of higher order functions) as well. CLEAN's overloading system as introduced below enables the
CLEAN system to automatically create and add dictionaries as argument to the appropriate function de-
finitions and function applications. To avoid efficiency loss the CLean compiler will substitute the in-
tended concrete function for the overloaded function application where possible. In worst case however
CLEAN's overloading system will indeed have to generate a dictionary record which is then automati-
cally passed as additional parameter to the appropriate function.

8.4.1 Type classes

In a type class definition one gives a name to a set of overloaded functions (this is similar to the definition
of a type of the dictionary record as explained above). For each overloaded function or operator which is
a member of the class the overloaded name and its overloaded type is specified. A special overloaded type
variable indicates how the different instantiations of the class can vary from each other.

| TypeClassDef = cl ass ClassSymb TypeVariable [ClassContext]

| [wher e] { {ClassMemberDef}+ }]

| | class FunctionSymb TypeVariable : : FunctionType;

| | class (FunctionSymb) [Fix][Prec] TypeVariable : : FunctionType;

52 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

| ClassMemberDef = FunctionTypeDef
| [MacroDef]

Example (definition of a type class; in this case the class named Ari t h contains two overloaded operators).

class Arith a

wher e
(+) infixl 6:: aa->a
(-) infixl 6:: aa->a

With an instance declaration an instance of a given class can be defined (this is similar to the creation of
a dictionary record). When the instance is made it has to be specified for which concrete type an instance
is created. For each overloaded function in the class a concrete function or operator has to be defined.
The type of a concrete function must exactly match the corresponding overloaded type after uniform
substitution of the concrete type for the overloaded function type in the type class definition.

| TypeClassinstanceDef | instance ClassSymb [BrackType [default] [ClassContext]]
| [[wher e] { {DefOfFunction}+ }]

Example (definition of an instance of a type class Ari t h for type I nt). Notice that the type of the concrete functions can be
deduced by substituting the concrete type for the overloaded type variable in the corresponding class definition. One is
not obliged to repeat the type of the concrete functions instantiated (nor the fixity or associativity in the case of opera-

tors) .
instance Arith Int
wher e
(+) :: Int Int -> Int

(¥) xy=x+y

(-) :: Int Int ->Int
(-) xy=x-"y

Example (definition of an instance of a type class Ari t h for type Real).

instance Arith Real
wher e
(+) xvy +.
(-) xvy -

X+ y
X -.y

One can define as many instances of a class as one likes. Instances can be added later on in any module.
* When an instance of a class is defined a concrete definition has to be given for all the class mem-
bers.

8.4.2 Functions defined in terms of overloaded functions

When an overloaded name is encountered in an expression, the compiler will determine which of the
corresponding concrete functions/operators is meant by looking at the concrete type of the expression.
This type is used to determine which concrete function to apply. All instances of the overloaded type
variable of a certain class (with exception of the default instance, see below) must therefore not overlap
(being not unifyable) with each other and they all have to be of flat type (see the restrictions mentioned
in 8.4.11). If it is clear from the type of the expression which one of the concrete instantiations is me-
ant the compiler will in principle substitute the concrete function for the overloaded one, such that no
efficiency is lost.

Example (substitution of a concrete function for an overloaded one). given the definitions above the function
incn=n+1
will be internally transformed into

incn=n+1

However, it is very well possible that the compiler, given the type of the expression, cannot decide
which one of the corresponding concrete functions to apply. The new function then becomes overloa-
ded as well.

DEFINING TYPES 53

For instance, the function
add x y = x +y

becomes overloaded as well because anyone of the concrete instances can be applied. Consequently, add can be ap-
plied to arguments of any type as well, as long as addition (+) is defined on them.

This has as consequence that an additional restriction must be imposed on the type of such an expres-
sion. A class context has to be added to the function type to express that the function can only be ap-
plied provided that the appropriate type classes have been instantiated (in fact one specifies the type of
the dictionary record which has to be passed to the function in worst case). Such a context can also be
regarded as an additional restriction imposed on a type variable, introducing a kind of bounded poly-
morphism.

| FunctionType

[{[Strict] BrackType}+ - >] Type [ClassContext] [UngTypeUnEqualities]
| ClassContext

| ClassSymb-list TypeVariable {& ClassSymb-list TypeVariable }

Example (use of a class context to impose a restriction on the instantiation of type variable). The function add can be ap-
plied on arguments of any type under the condition that an instance of the class Ari t h is defined on them.

add :: aa->a| Aitha
add x y = x +y

CLEAN’s type system can infer contexts automatically. If a type class is specified as restricted context the

type system will check the correctness of the specification (as always a type specification can be more
restrictive than is deduced by the compiler).

8.4.3 Instances of type classes defined in terms of overloaded functions

The concrete functions defined in a class instance definition can also be defined in terms of (other)
overloaded functions. This is reflected in the type of the instantiated functions. Both the concrete type
and the context the class instantiation (and its members) is depending on need to be specified.

Example (instance declaration of which type is depending on the same type class). The function + on lists can be defined in
terms of the overloaded operator + on the list elements. With this definition + is defined not only on lists, but also on a
list of lists etcetera.

instance Arith [a] | Arith a /1 onlists
wher e
(+) infixl 6 :: [a] [&a] -
(+) [x:xs] [y:ys] [
(9 _ _ [

(-) infixl 6 :: [a] [a] ->[a] | Arith a
gg [x:xs] [y:ys] H(- yixs - ys]

Example (Equality class).

>[a] | Arith a
X + y:Xs + ys]
]

class Eq a
wher e
(==) infix 2 :: a a -> Bool
i nstance Eg [a] | Eg a /1 onlists
wher e

(==) infix 2 :: [a] [a] -> Bool | Eq a
(=) [x:xs] [y:ys] X ==Yy & Xs == ys
(=) [l [] True

(= _ _ Fal se

8.4.4 Type constructor classes

The CLEAN type system offers the possibility to use higher order types (see 8.2.1). This makes it possi-
ble to define type constructor classes (similar to constructor classes as introduced in Gofer, Jones (1993)).

54 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

In that case the overloaded type variable of the type class is not of kind x, but of higher order, e.g. x ->
X, X -> X -> X, etcetera. This offers the possibility to define overloaded functions which can be instan-
tiated with type constructors of higher order (as usual, the overloaded type variable and a concrete in-
stantiation of this type variable need to be of the same kind). This makes it possible to overload more
complex functions like map and the like.

Example (definition of a type constructor class). The class Funct or including the overloaded function nap which varies in
type variable f of kind X -> X).

class Functor f
wher e
map :: (a->b) (f a ->(f b)

Example (instantiation of a type constructor class). An instantiation of the well-known function map applied on lists ([] is
of kind X -> X), and a map function defined on Tree's (Tree is of kind X -> X).

i nstance Functor []

wher e
mep :: (a->b) [a] ->[b]
map f [x:xs] [f x: map f xs]
map f [] []

::Tree a = (/\) infixl O (Tree a) (Tree a)
| Leaf a

i nstance Functor Tree

wher e
map :: (a->b) (Tree a) -> (Tree b)
map f (1/\r) = mpf | /\ map fr
map f (Leaf a) = Leaf (f a)
8.4.5 Generic instances

It is possible to specify a generic instance (in that case a type variable is specified as instance for the over-
loaded type variable in the instance declaration) which will be taken when none of the other defined
instances happens to be applicable. Since such a function must work for any instance the type of the
generic instance must be equivalent to the type of the overloaded function. Therefore it can only per-
form very general tasks.

Example (defining a generic instance). In this example any two objects of arbitrary type can be compared with each other
but they are by default unequal unless specified otherwise.

i nstance Eq a /' generic instance for Eq
wher e

(=) infix 2 :: a a -> Bool

(==) xy = False

8.4.6 Default instances

It is possible that a CLEAN expression using overloaded functions is internally ambiguously overloaded.

e The problem can occur when an overloaded function is used which has on overloaded type in
which the overloaded type variable only appears on the right-hand side of the - >. If such a func-
tion is applied in such a way that the overloaded type does not appear in the resulting type of the
application, any of the available instances of the overloaded function can be used. In that case the
system cannot determine which instance to take, such that a type error is given.

Counter example (ambiguous overloaded expression). The function body of f is ambiguously overloaded which results in a
type error. It is not possible to determine whether its argument should be converted to an I nt or to a Bool .

class Read a :: a -> String

class Wite a :: String -> a

instance Read Int, Bool /1 export of class instance, see 8.4.10
i nstance Wite Int, Bool

DEFINING TYPES 55

f:: String -> String
f x = Wite (Read x) /1 ! This results in a type error !

One can solve such an ambiguity by splitting up the expression in parts that are typed explicitly such
that it becomes clear which of the instances should be used.

f:: String -> String
f x = Wite (MRead x)
wher e
MRead :: Int -> String
M/Read x = Read X

Another way to solve the ambiguity is to mark one of the instances as the default instance (indicated by
the keyword def aul t in the instance declaration) which will be taken in the case an ambiguously over-
loaded expression is encountered.

Example (default instance declaration to be used to solve ambiguities). The function body of f is ambiguously overloaded.
Due to the default instance specified the argument is converted to an I nt .

class Read a :: a -> String
class Wite a :: String -> a
instance Read Int default, Bool
instance Wite Int default, Bool

f:: String -> String
f x = Wite (Read x)

8.4.7 Defining derived members in a class

The members of a class consists of a set of functions or operators which logically belong to each other.
It is often the case that the effect of some members (derived members) can be expressed in others. For
instance, <> can be regarded as synonym for not (==). For software engineering (the fixed relation is
made explicit) and efficiency (one does not need to include such derived members in the dictionary re-
cord) it is good to make this relation explicit. In CLEAN the existing macro facilities are used for this
purpose.

Example (Classes with macro definitions to specify derived members).

class Eq a
wher e
(==) infix 2 :: a a -> Bool

(<>) infix 2:: aa-> Bool | Eq a
(<>) x y :==not (x ==y)

class Od a
wher e
(<) infix 2 :: aa -> Bool

(> infix2:: aa-> Bool | Od a
(> Xy :==y<x

(<=) infix 2:: aa-> Bool | Od a
(<5) xy :==not (y<x)

(>) infix 2:: aa-> Bool | Od a
(>3) xy :==not (x<y)

nmn:: aa->a| Od a
mnxy:=if (xy) xvy

mx :: aa->a| Oda
mx X y :==if (x<y) y X

56 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

8.4.8 A shorthand for defining overloaded functions

A class definition seems sometimes a bit overdone when a class actually only consists of one member.
Special syntax is provided for this case.

| TypeClassDef = cl ass ClassSymb TypeVariable [ClassContext]

| [[wher e] {{ClassMemberDef}+ }]

| | class FunctionSymb TypeVariable: : FunctionType;

| | class (FunctionSymb) [Fix][Prec] TypeVariable: : FunctionType;

Example (defining an overloaded function/operator).
class (+) infixl 6a:: aa->a
which is shorthand for:
class + a

wher e
(+) infixl 6:: aa->a

The instantiation of such a simple one member class is done in a similar way as with ordinary classes,
using the name of the overloaded function as class name (see the syntax definition for instantiation).

Example (instantiations of an overloaded function/operator).
instance + Int

wher e
(9 xy=x+y

8.4.9 Classes defined in terms of other classes

In the definition of a class one can optionally specify that other classes which already have been defined
elsewhere are included. The classes to include are specified as context after the overloaded type variable.
It is not needed (but it is allowed) to define new members in the class body of the new class. In this
way one can give a new name to a collection of existing classes creating a hierarchy of classes (cyclic de-
pendencies are forbidden). Since one and the same class can be included in several other classes, one
can combine classes in different kinds of meaningful ways. For an example have a closer look at the
CLeAN standard library (see e.g. st dover| oaded and St dd ass)

Example (defining classes in terms of existing classes). The class Ari t h consists of the class +and - .
class (+) infixl 6a:: aa->a
class (-) infixl 6a:: aa->a

class Arith a| +- a

8.4.10 Exporting type classes

To export a class one simply repeats the class definition in the definition module (see Chapter 12). To
export an instantiation of a class one simply repeats the instance definition in the definition module,
however without revealing the concrete implementation. This can only be specified in the implementa-
tion module.

Example (Exporting classes and instances).
definition modul e exanpl e
class Eq a /'l the class Eqis exported
wher e

(==) infix 2 :: a a -> Bool

i nstance Eq [a] | BEg a /1 aninstance of Eq on lists is exported
i nstance Eq a /1 ageneric instance of Eq is exported

DEFINING TYPES 57

For reasons of efficiency the compiler will always try to make specialised efficient versions of functions
which have become overloaded (see above). In principle one version is made for each possible concrete
application. However, when an overloaded function is exported it is unknown with which concrete in-
stances the function will be applied. So, a record is constructed in which the concrete function is stored
as is explained in the introduction of this section. This approach can be very inefficient, especially in
comparison to a specialised version for instantiations of basic type. The compiler can generate much
better code for other modules if it is informed about the instances known in the implementation mod-
ule. The compiler is unaware of such information (it only inspects definition modules in case of sepa-
rate compilation). The information should therefore be provided in the corresponding definition mo-
dule. To make this possible a special export definition is provided. It is recommended to add such an
export definition if speed matters, leaf it out when it does not matter or when a small code size matters
more. The export definition will only have an effect for instances of basic type (for these types it can
really help to have a special version) .

| TypeClassinstanceExportDef
| = export ClassSymb BasicType- list;

Example (Exporting class instances).

export Eq Int, Real

8.4.11 Semantic restrictions on type classes

Semantic restrictions:

When aclass is instantiated a concrete definition must be given for each of the members in the
class (not for derived members).

e The type of a concrete function or operator must exactly match the overloaded type after uniform
substitution of the overloaded type variable by the concrete type as specified in the corresponding
type instance declaration.

e The overloaded type variable and the concrete type must be of the same kind.

e Atype instance of an overloaded type must be a flat type, i.e. a type of the form T a; ...ap Where aj
are type variables which are all different.

« All instances other than the default instance of a given overloaded type must differ from each other
(be ununifyable with each other).

e Itis not allowed to use a type synonym as instance.

e The start rule cannot have an overloaded type.

» If adefault instance is specified the type of the corresponding concrete default function must be
identical to the type of the overloaded function or operator.

» For the specification of derived members in a class the same restrictions hold as for defining ma-
Cros.

e Arrestricted context can only be imposed on one of the type variables appearing in the type of the
expression.

e The specification of the concrete functions can only be given in implementation modules.

8.5 Partially strict data structures and functions

CLEAN uses by default a lazy evaluation strategy: a redex is only evaluated when it is needed to compute
the final result. But it is generally much more efficient to calculate arguments in advance (see 13.3 and
Nocker & Smetsers, 1990, 1993). It gives the possibility to manipulate objects unboxed (e.g. in a regis-
ters instead of in a nodes of the graph). Therefore it is possible in CLEAN In a type definition to anno-
tate the arguments of a function (see 8.3) and of a data constructor (see 8.2) to be strict. This will force the
evaluation the arguments to strong root normal form when the function or data structure is used in a
strict context (see below). The compiler is capable of deriving strictness information for the arguments
of functions, so generally there is no need for the programmer to specify these kind of strictness explic-

itly.

When a strict annotated argument is put in a strict context while the argument is defined in terms of
another strict annotated data structure the latter is put in a strict context as well and therefore also eval-
uated. So, one can change the default lazy semantics of CLEAN into a (hyper) strict semantics as de-

58 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

manded. The type system will check the consistency of types and ensure that the specified strictness is
maintained.

One has to be careful though. When strictness annotations are put on arguments representing infinite compu-
tations or infinite data structures the program the termination behaviour of the program might change. It is
only safe to put strictness annotations in the case that the function or data constructor is known to be strict in
the corresponding argument which means that the evaluation of that argument in advance does not change
the termination behaviour of the program. The compiler is not able to check this.

| Strict = |

8.5.1 Strict and lazy context

Each graph expression on the right-hand side of a rewrite rule is considered to be either strict
(appearing in a strict context: it has to be evaluated to strong root normal form) or lazy (appearing in a
lazy context: not yet to be evaluated to strong root normal form). The following rules specify whether or
not a particular graph expression is lazy or strict:

+ anon-variable pattern is strict;

an expression in a guard is strict;

the expressions specified in a strict let expression are strict;

the root expression is strict;

the arguments of a function or data constructor in a strict context are strict when these arguments
are being annotated as strict in the type definition of that function or data constructor;

+ all the other nodes are lazy.

+ + + +

Evaluation will happen in the following order: patterns, guard, expressions in a strict let expression,
root expression (see also 6.1 and 9.3.4).

8.5.2 Functions with strict arguments

In the type definition of a function the arguments can optionally be annotated as being strict. In rea-
soning about functions it will always be true that the corresponding arguments will be in strong root
normal form (see 2.1) before the rewriting of the function takes place.

Example (a function with strict annotated arguments).

Acker :: !Int !Int -> Int

Acker 0] = inc j

Acker i 0 = Acker (dec i) 1
ij o=

Acker i j Acker (dec i) (Acker i (dec j))

The CLEaN compiler includes a fast and clever strictness analyser which is based on abstract reduction
(Nocker, 1993). The compiler can derive the strictness of the function arguments in many cases, such
as for the example above. Therefore there is generally no need to add strictness annotations to the type
of a function by hand. When a function is exported from a module (see Chapter 12), its type has to be
specified in the definition module. To obtain optimal efficiency, the programmer should also include
the strictness information to the type definition in the definition module. One can ask the compiler to

print out the types with the derived strictness information and paste this into the definition module.

8.5.3 Defining data structures with strict arguments

It is very hard for a strictness analyser to deduce strictness of data structures since this is highly depend-
ing on the way the data structure is being used (the CLeaN compiler will do its best though). Functio-
nal programs will generally run much more efficient when strict data structures are being used instead
of lazy ones. If the inefficiency of your program becomes problematic one can think of changing lazy
data structures into strict ones by hand.

In the type definition of a constructor (in an algebraic data type definition or in a the definition of a re-
cord type) the arguments of the data constructor can optionally be annotated as being strict. In reason-

DEFINING TYPES 59

ing about objects of such a type it will always be true that the annotated argument will be in strong
root normal form when the object is examined. Whenever a new object is created in a strict context,
the compiler will take care of the evaluation of the strict annotated arguments. When the new object is
created in a lazy context, the compiler will insert code that will take care of the evaluation whenever the
object is put into a strict context. If one makes a data structure strict in a certain argument, it is better
not define infinite instances of such a data structure to avoid non-termination.

So, in a type definition one can define a data constructor to be strict in zero or more of its arguments.
Strictness is a property of data structure which is specified in its type. In general (with the exceptions of
tuples) one cannot arbitrary mix strict and non-strict data structures because they are considered to be
of different type. So, e.g. if one wants to use list with strict elements or a spine strict list one has to de-
fine new algebraic data types (with different data constructors). One cannot simply use the predefined
notation for lists because these lists are lazy lists.

Example (list with a strict elements). The list element will be evaluated when the Cons node is put in a strict context .

ciList a = Cons !'a (List a)
| NI

Example (spine strict list).

c:List2 a = Cons2 a ! (List2 a)
| N2

Example (a complex number as record type with strict components).

:: Conpl ex = { re:: !Real,
im:: !'Real }

(+) infixl 6 :: ! Conplex !Conplex -> Conpl ex
(+) {re=rl,inFil} {re=r2,in¥i2} = {re=rl+r2,inFi 1+ 2}

8.5.4 Strictness annotations on array instances

For reasons of efficiency there are different types of arrays predefined. One can define a lazy array
(default, of type {a}), a strict array (explicitly type the array as {!a}), and an unboxed one (explicitly
type the array as {#a} , works only on elements of basic value). When put in a strict context, all the ele-
ments of a strict array will be evaluated automatically. As usual one has to take care that the elements
do not represent an infinite computation. Lazy, strict and unboxed arrays are regarded to be of differ-
ent type even if the array elements are of the same type. So, in principle one cannot offer e.g. a strict ar-
ray to a function demanding a lazy one, and the other way around. Both will give rise to a type error.
However, by using the overloading mechanism one can define functions which work on any kind of ar-
ray (see 4.9).

Example (strict and non-strict arrays). ArrayA is a strict one and ArrayB is a lazy one. The function Scal e expects a lazy
one and can therefore only be applied on a lazy array. If one wants to define a function which works on any kind of ar-
ray of Reals, one has to define an overloaded function (see 4.9) like Scal e2.

ArrayA :: {Real }
ArrayA = {1.0,2.0,3.0}

ArrayB :: {!Real }
ArrayB = {1.0,2.0, 3.0}

Scale :: {Real} Real -> *{Real}
Scal e lazy _array factor = {factor * e \\ e <-: lazy_array}

Scale?2 :: (a Real) Real -> *(a Real) | Array a
Scal e2 any_array factor = {factor * e \\ e <-: any_array}

60 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

8.5.5 Strictness annotations on tuple instances

Tuples are predefined algebraic data structures that make it possible to combine several results of arbi-
trary type into one structure. One can define strict tuples, in the same way as defining strict arrays.
This can be done by putting strictness annotations in the type instance on the tuple elements that one
would like to make strict. When the corresponding tuple is put into a strict context the tuple and the
strict annotated tuple elements will be evaluated.

Strictness annotation can be put on any tuple element of any tuple instance. Such an instance can oc-
cur in any type definition (also in a synonym type). The meaning of these annotated synonym types
can be explained with the aid of a simple program transformation with which all occurrences of these
synonym types are replaced by their right-hand sides (of course, annotations included).

As with arrays, strict and lazy tuples are actually regarded to be of different type. However, unlike is the
case with arrays, the compiler will automatically convert strict tuples into lazy ones, and the other way
around. This is done for programming convenience. Due to the complexity of this automatic transfor-
mation, the conversion is done for tuples only! For the programmer it means that he can freely mix
strict and lazy tuples. The type system will not complain when a strict tuple is offered while a lazy tuple
is required. The compiler will automatically insert code to convert non-strict tuples into strict version
and backwards whenever this is needed.

Example (a complex number as tuple type with strict components).
::Conplex :== (!Real,!Real)

(+) infixl 6 :: ! Conplex !Conplex -> Conpl ex
(+) (rl,i1) (r2,i2) = (r1+4r2,i1+i 2)

which is equivalent to

(+) infixl 6 :: !(!Real,!Real) !(!Real,!Real) -> (!Real,!Real)
(+) (rl,i1) (r2,i2) = (rl+r2,il+i2)

when for instance G is defined as
G:: Int -> (Real, Real)
than the following application is approved by the type system:

Start =G1+ G2

concurrent

Clean 9

Defining uniqueness types

9.1 Uniqueness typing 9.5 Uniqueness and sharing

9.2 Basic ideas behind uniqueness typing 9.6 Combining uniqueness typing and type classes
9.3 Attribute propagation

9.3 Defining new types with uniqueness attributes

Although CLEAN is purely functional, operations with side-effects (1/0 operations, for instance) are
permitted. To achieve this without violating the semantics, the classical types are supplied with so cal-
led uniqueness attributes. If an argument of a function is indicated as unique, it is guaranteed that at
run-time the corresponding actual object is local, i.e. there are no other references to it. Clearly, a de-
structive update of such a “unique object” can be performed safely.

The uniqueness type system makes it possible to define direct interfaces with an operating system, a file
system (updating persistent data), with GUI's libraries, it allows to create arrays, records or user defined
data structures that can be updated destructively. The time and space behaviour of a functional pro-
gram therefore greatly benefits from the uniqueness typing (see 13.6).

Uniqueness types are deduced automatically. Type attributes are polymorphic: attribute variables and
inequalities on these variables can be used to indicate relations between and restrictions on the corres-
ponding concrete attribute values.

Sometimes the inferred type attributes give some extra information on the run-time behaviour of a
function. The uniqueness type system is a transparent extension of classical typing which means that if
one is not interested in the uniqueness information one can simply ignore it.

9.1 Unigueness typing

Since the uniqueness typing is a rather complex matter we explain this type system and the motivation
behind it in more detail. The first section (9.1) explains the basic motivation for and ideas behind uni-
queness typing. Section 9.2 focusses on the so-called uniqueness propagation property of (algebraic)
type constructors. Thenwe show how new data structures can be defined containing unique objects
(section 9.3). Sharing may destroy locality properties of objects. In section 9.4 we describe the effect of
sharing on uniqueness types. In order to maintain referential transparency, it appears that function ty-
pes have to treated specially. The last section (9.5) describes the combination of uniqueness typing and
overloading. Especially, the subsections on constructor classes and higher-oder type definitions are very
complex: we suggest that the reader skips these sections at first instance.

9.2 Basic ideas behind uniqueness typing

The uniqueness typing is an extension of classical Milner/Mycroft typing. In the uniqueness type system
uniqueness type attributes are attached to the classical types (see Chapter 8). Uniqueness type attributes
appear in the type specifications of functions (see 9.3) but are also permitted in the definitions of new
data types (see 9.2). A classical type can be prefixed by one of the following uniqueness type attributes:

{BrackType}+
[TypeAttrib] SimpleType

| Type
| BrackType
| UnqTypeAttrib

/'l type attribute "unique"

62 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

| | Attribvariable: /'] atype attribute variable
| | . /1 an anonymous type attribute variable

The basic idea behind uniqueness typing is the following. Suppose a function, say F, has a unique ar-

gument (an argument with type *s, for some s). This attribute imposes an additional restriction on

applications of F.

- It is guaranteed F will have private ("unique™) access to this particular argument (see Barendsen
and Smetsers, 1993; Plasmeijer and Van Eekelen, 1993): the object will have a reference count of
11 at the moment it is inspected by the function. It is important to know that there can be more
than 1 reference to the object before this specific access takes place. If a uniquely typed argument
is not used to construct the function result it will become garbage (the reference has dropped to
zero). Due to the fact that this analysis is performed statically the object can be garbage collected
(see Chapter 2) at compile-time. It is harmless to reuse the space occupied by the argument to
create the function result. In other words: it is allowed to update the unique object destructively
without any consequences for referential transparency.

Example: the I/0O library function fwri t ec is used to write a character to a file yielding a new file as result. In general it is
semantically not allowed to overwrite the argument file with the given character to construct the resulting file. Howe-
ver, by demanding the argument file to be unique by specifying

fwitec :: Char *File -> *File

it is guaranteed by the type system that f wr i t ec has private access to the file such that overwriting the file can be
done without violating the functional semantics of the program. The resulting file is unique as well and can therefore
be passed as continuation to another call of e.g. f wr i t ec to make further writing possible.

WiteABC :: *File -> *File
WiteABCtofile = fwitec 'c' (fwitec 'b" (fwitec 'a' tofile))

Observe that a unique file is passed in a single threaded way (as a kind of unique token) from one
function to another where each function can safely modify the file knowing that is has private ac-
cess to that file. One can make these intermediate files more vissible by by writing the wi t eABC

as follows.

WiteABC tofile = file3

wher e
filel =fwitec 'a tofile
file2 =fwitec 'b" filel
file3 =fwitec 'c' file2

or, alternatively (to avoid the explicit numbering of the files),

WiteABC tofile
file =fwitec 'a' tofile
file =fwitec 'b' file
= fwitec 'c' file

The type system makes it possible to make no distinction between a CLeAN file and a physical file
of the real world: file 1/O can be treated as efficiently as in imperative languages.

The uniqueness typing prevents writing while other readers/writers are active. E.g. one cannot ap-
ply fwri t ec to a file being used elsewhere

For instance, the following expression is not approved by the type system:

(file, fwitec "a' file)

- Function arguments with no uniqueness attributes are considered as “non-unique”: there are no
reference requirements for these arguments. The function is only allowed to have read access (as
usual in a functional language) even if in some of the function applications to actual argument ap-
pears to have reference count 1.

1 Note that it is very natural in Clean to speak about references due to the underlying graph rewriting
semantics of the language: it is always clear when objects are being shared or when cyclic structures are
being created.

DEFINING UNIQUENESS TYPES 63

freadc :: File -> (Char, File)

The function f r eadc can be applied to both a unique as well as non-unique file. This is fine since the function only
wants read access on the file. The type indicates that the result is always a non-unique file. Such as file can be passed for
further reading, but not for further writing.

- To indicate that functions don’t change uniqueness properties of arguments, one can use attribute
variables. The most simple example is the identity functions that can be typed as follows:

id:: wa->ua

Here a is an ordinary type variable, whereas u is an attribute variable. If id is applied to an unique
object the result is also unique (in that case u is instantiated with the concrete attribute *). Of
course, ifid is applied to a non-unique object, the result remains non-unique. As with ordinary
type variables, attribute variables should be instantiated uniformly.

A more interesting example is the function freadc which is typed as

freadc :: u:File -> u:(Char, u:File)

Again freadc can be applied to both unique and non-unique files. In the first case the resulting
file is also unique and can, for example, be used for further reading or writing. Moreover, observe
that not only the resulting file is attributed, but also the tuple containing that file and the charac-
ter that has been read. This is due to the so called uniqueness propagation rule; see below.

To summarize, uniqueness typing makes it possible to update objects destructively within a purely

functional language. For the development of real world applications (which manipulate files, windows,
arrays, databases, states etc.) this is an indispensable property.

9.3 Attribute propagation

Having explained the general ideas of uniqueness typing, we can now focus on some details of this ty-
ping system.

If a unique object is stored in a data structure, the data structure itself becomes unique as well. This
uniqueness propagation rule prevents that unique objects are shared indirectly via the data structure in
which these objects are stored. To explain this form of hidden sharing, consider the following defini-
tion of the function head

head :: [*a] -> *a
head [hd:tl1] = hd

The pattern causes head to have access to the “deeper” arguments hd and tl. Note that head does not
have any uniqueness requirements on its direct list argument. This means that in an application of head
the list might be shared, as can be seen in the following function heads

heads list = (head list, head list)

If one wants to formulate uniqueness requirements on, for instance, the hd argument of head, it is not
sufficient to attribute the corresponding type variable a with *; the surrounding list itself should also be-
come unique. One can easily see that, without this additional requirement the heads example with type

heads :: [*a] -> (*a,*a)
heads list = (head list, head list)

is still valid although it delivers the same object twice. By making the list itself unique, (so the type op
head becomes head :: *[*a] -> *a) the function is rejected. In general one could say that uniqueness propa-
gates outwards.

64 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Some of the readers will have noticed that, by using attribute variables, one can assign a more general
uniqueness type to head:

head :: u:[u:a] -> ua

The above propagation rule imposes additional (implicit) restrictions on the attributes appearing in
type specifications of functions.

Another explicit way of indicating restrictions on attributes is by using coercion statements. These state-
ments consist of attribute variable inequalities of the form u<=v. The idea is that attribute substitutions
are only allowed if the resulting attribute inequalities are valid, i.e. not resulting in an equality of the
form

‘non-unique £ unique’.

The use of coercion statements is illustrated by the next example in which the uniqueness type of the
well-known append function is shown.

append :: v:i[u:a]l w[u:a] -> x:[u:d], [v<=u, w<=u, x<=u, w<=x]

The first three coercion statements express the uniqueness propagation for lists: if the elements a are
unique (by choosing * for u) these statements force v,w and x to be instantiated with = also. (Note that u
<=+ Iff u =) The statement w<=x expresses that the spine uniqueness of append’s result depends only on
the spine attribute w of the second argument.

In CLEAN it is permitted to omit attribute variables and attribute inequalities that arise from propaga-
tion properties; these will be added automatically by the type system. As a consequence, the following
type for append is also valid.

append :: [ura] wlua]l ->x:[ua], [we=x]

Of course, it is always allowed to specify a more specific type (by instantiating type or attribute varia-
bles). All types given below are valid types for append.

append :: [uwa] x:[ura]l -> x:[u:a],
append :: *[*Int] *[*Int] -> *[*Int],
append :: [a] *[a] -> *[a].

To make types more readable, CLEAN offers the possibility to use anonymous attribute variables. These
can be used as a shorthand for indicating attribute variables of which the actual names are not essential.
This allows us to specify the type for append as follows.

append :: [.a] w[.a] ->x:[.4a], [we=x]

The type system of CLeaN will substitute real attribute variables for the anonymous ones. Each dot
gives rise to a new attribute variable except for the dots attached to type variables: type variables are at-
tributed uniformly in the sense that all occurrences of the same type variable will obtain the same at-
tribute. In the above example this means that all dots are replaced by one and the same new attribute
variable.

9.4 Defining new types with unigueness attributes

Although one mostly uses uniqueness attributes in type specifications of functions, they are also allo-
wed in the definition of new data types.

| AlgebraicTypeDef = ::TypelLhs = ConstructorDef {|ConstructorDef} ;

|

| TypelLhs = [*]TypeConstructor {[*] TypeVariable}

| TypeConstructor = TypeSymb

|

| ConstructorDef = [QuantifiedVariables :] ConstructorSymb {[Strict] BrackType}
I

| [QuantifiedVariables :] (ConstructorSymb) [Fix][Prec] {[Strict] BrackType}

DEFINING UNIQUENESS TYPES 65

| QuantifiedVariables
| BrackType
| UnqTypeAttrib

{E. TypeVariable}+
[UngTypeAttrib] SimpleType
* |

As can be inferred from the syntax, the attributes that are actually allowed in data type definitions are
“’and ‘. ’; attribute variables are not permitted. The (unique) * attribute can be used at any subtype
whereas the (anonymous) . attribute is restricted to non-variable positions.

If no uniqueness attributes are specified, this does not mean that one can only build non-unique in-
stances of such a data type. Attributes not explicitly specified by the programmer are added automati-
cally by the type system. To explain this standard uniqueness attribution mechanism, first remember
that the types of data constructors are not specified by the programmer but derived from their corres-
ponding data type definition. For example, the (classical) definition of the Li st type

;. List a=0Cons a (List a) | NI

leads to the following types for its data constructors.

Cons :: a (List a) -> List a
NIl :: List a

To be able to create unique instances of data types, the standard attribution of CLEAN will derive ap-

propriate uniqueness variants for the types of the corresponding data constructors. Such a uniqueness

variant is obtained via a consistent attribution of all types and subtypes appearing in a data type defini-

tion. Here, consistency means that such an attribution obeys the following rules (assume that we have a

type definition for some type T).

» Attributes that are explicitly specified are adopted.

» Each (unattributed) type variable and each occurrence of T will receive an attribute variable. This
is done in a uniform way: equal variables will receive equal attributes, and all occurrence of T are
also equally attributed.

e Attribute variables are added at non-variable positions if they are required by the propagation pro-
perties of the corresponding type constructor. The attribute variable that is chosen depends on the
argument types of this constructor: the attribution scheme takes the attribute variable of first ar-
gument appearing on a propagating position (see example below).

« All occurrences of the . attribute are replaced by the attribute variable assigned to the occurrences
of T.

Examples
For Cons the standard attribution leads to the type
Cons :: u:a v:(List ura) -> v:List ura, [v<=u]
The type of N I becomes
NI :: v:List ura, [v<=u]
Consider the following Tree definition
;0 Tree a = Node a [Tree a]
The type of the data constructor Node is
Node :: u:a v:[v:Tree u:a] -> v:Tree u:a, [v<=U]
Changing the Tr ee type definition as follows
:: Tree a = Node a .[Tree a]

results in the same type for Node (remember that the . attribute stands for the attribute assigned to the occurrences of
Tree).

Another Tr ee variant.

66 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

:: Tree *a = Node *a [Tree *a]
leading to
Node :: *a *[*Tree *a] -> *Tree *a
Note that, due to propagation, all subtypes have become unique.

Next, we will formalize the notion of uniqueness propagation. We say that an argument of a type con-
structor, say T, is propagating if the corresponding type variable appears on a propagating position in
one of the types used in the right-hand side of T’s definition. A propagating position are characterized
by the fact that they it is not surrounded by an arrow type or by a type constructor with non-propagat-
ing arguments. Observe that the definition of propagation is cyclic: a general way to solve this problem
is via a fixedpoint construction; see also ???.

Example (propagation rule). Consider the (record) type definition for (oj ect .
hject ab :: { state :: a, fun:: b ->a}

The argument a is propagating. Since b does not appear on a propagating position inside this definition, Cbj ect is not
propagating in its second argument.

9.5 Uniqueness and sharing

The type inference system of CLeaN will derive uniqueness information after the classical Mil-
ner/Mycroft types of functions have been inferred (see 8.3). As explained in Section 9.1, a function
may require a non-unique object, a unique object or a possibly unique object. Uniqueness of the result
of a function will depend on the attributes of its arguments and how the result is constructed. Until
now, we distinguished objects with reference count 1 from objects with a larger reference count: only
the former are might be unique (depending on the uniqueness type of the object itself). In practice,
however, one can be more liberal if one takes the evaluation order into account. The idea is that mul-
tiple reference to an (unique) object are harmless if one knows that only one of the references will be
present at the moment it is accessed destructively. This has been used in the following function.

AppendAorB:: *File -> *File
AppendAorB file
| fc=="a' = fwritec 'a’ file
= fwritec 'b" file
where
(fc,nf) = freadc file

When the right-hand side of AppendAor B is evaluated, the guard is determined first (so access from
freadc to fil e is not unique), and subsequently one of the alternatives is chosen and evaluated. De-
pending on cond, either the reference from the first f wri t ec application to function fi | e or that of the
second application is left and therefore unique.

For this reason, the uniqueness type system uses a kind of sharing analysis. This sharing analysis is input
for the uniqueness type system itself to check uniqueness type consistency (see 9.3.5). The analysis will
label each reference in the right-hand side of a function definition as read-only (if destructive access
might be dangerous) or write-permitted (otherwise). Objects accessed via a read-only reference are al-
ways non-unique. On the other hand, uniqueness of objects accessed via a reference labeled with write-
permitted solely depend on the types of the objects themselves.

Before describing the labeling mechanism of CLEAN we mention that the “lifetime” of references is de-

termined on a syntactical basis. For this reason we classify references to the same expression in a func-

tion definition (say for f) according to their estimated run-time use, as alternative, observing and paral-

lel.

- Two references are alternative if they belong to different alternatives of f . Note that alternatives
are distinguished by patterns (including case expressions) or by guards.

- Avreference r is observing w.r.t. a reference r ’ if the expression containing r* is either (1) guarded
by an expression or (2) preceded by a strict let expression containing r .

- Otherwise, references are in parallel.

DEFINING UNIQUENESS TYPES 67

The rules used by the sharing analysis to label each reference are the following.

- Avreference, say r, to a certain object is labeled with read-only if there exist another reference, say
r’, to the same object such that either r is observing w.r.tr’ orr andr’ are in parallel.

- Multiple references to cyclic structures are always labeled as read-only.

- All other references are labeled with write-permitted.

Unfortunately, there is still a subtlety that has to be dealt with. Observing references belonging to the
second category (strict let expressions) do not always vanish totally after the expression containing the
reference has been evaluated: further analysis appears to be necessary to ensure their disappearance.
More concretely, Suppose e[r] denotes the expression containing r . If the type of e[r] is a basic type
then, after evaluation, e[r] will be reference-free. In particular, it does not contain the reference r
anymore. However, If the type of e[r] is not a basic type it is assumed that, after evaluation, e[r]
might still refer to r. But even in the latter case a further refinement is possible. The idea is, depending
on e[r], to correct the type of the object to which r refers partially in such way that only the parts of
this object that are still shared lose their uniqueness.

Consider, for example, the following rule
fl =
let!
x = hd (hd I)

(x, 1)

in

Clearly, x and I share a common substructure; x is even part of | . But the whole “spine” of I (of type
[[...]1]) does not contain any new external references. Thus, if I was spine-unique originally, it re-
mains spine unique in the result of f . Apparently, the access to | only affected part of | ’s structure.
More technically, the type of | itself is corrected to take the partial access on | into account. In the
previous example, x, regarded as a functionon| hastype[[a]] -> a. Intf’s definition the part of I ’s
type corresponding to the variable a is mode non-unique. This is clearly reflected in the derived type
for f, being

f:rruw[w([al] -> (a,v:[x:[a]l]), [w<=X, u<=yvV]

In CLEAN this principle has been generalized: If the strict let expression e[r] regarded as a function on
r has type

T(... a...) ->a
Then the a-part of the type of the object to which r refers becomes non-unique; the rest of the type re-

mains unaffected. If the type of e[r] is not of the indicated form, r is not considered as an observing
reference (w.r.t. some reference r’), but, instead, as in parallel with r’ .

9.5.1 Higher order uniqueness typing

Higher-order functions give rise to partial (often called Curried) applications, i.e. applications in which
the actual number of arguments is less than the arity of the corresponding symbol. If these partial ap-
plications contain unique sub-expressions one has to be careful. Consider, for example the following
the function f wri t ec with type

fwitec :: *File Char -> *File
in the application

fwitec unifile

(assuming that uni fi | e returns a unique file). Clearly, the type of this application is of the form
o: (Char -> *File). The question is: what kind of attribute is o? Is it a variable, is it * is it not uni-

68 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

que. Before making a decision, one should notice that it is dangerous to allow the above application to
be shared. For example, if the expressionfwritec unifil eis passed to a function

WiteAB wite fun = (wite_fun ‘a, wite_fun 'b")

Then the argument of f wri t ec is not longer unique at the moment one of the two write operations
take place. Apparently, the fwritec unifile expression is essentially unique: its reference count
should never become greater than 1. To prevent such an essentially unique expression from being co-
pied, CLEAN considers the - > type constructor in combination with the * attribute as special: it is not
permitted to discard its uniqueness. Now, the question about the attribute o can be answered: it is set
to*. If witeABIs typed as follows

WiteAB :: (Char -> u:File) -> (u:File, u:File)
WiteAB wite fun = (wite_fun ‘a, wite_fun ‘b")

the expression WiteAB (fwitec unifile) isrejected by the type system because it does not allow
the argument of type *(Char -> *Fil e) to be coerced to (Char -> u:File).One can easily see
that it is impossible to type Wi t eAB in such a way that the expression becomes typable.

To define data structures containing Curried applications it is often convenient to use the (anonymous)
. attribute. Example

:: (hject ab={ state :: a, fun:: .(b->a) }

new :: * (bject *File Char
new = { state = unifile, fun = fwitec unifile }

By adding an attribute variable to the function type in the definition of bj ect , it is possible to store
unique functions in this data structure. This is shown by the funcion new. Since new contains an es-
sentially unique expression it becomes essentially unique itself. So, new can never loose its uniqueness,
and hence, it can only be used in a context in which a unique object is demanded.

Determining the type of a Curried application of a function (or data constructor) is somewhat more
involved if the type of that function contains attribute variables instead of concrete attributes. Mostly,
these variables will result in additional coercion statements. as can be seen in the example below.

Prepend :: u:[.a] [.a] -> v:[.4d], [u<=v]
Prepend a b = Append b a

PrependList :: u:[.a] ->w([.a] ->v:[.a]), [u<=v, w<=u]
PrependLi st a = Prepend a

Some explanation is in place. The expression (Pr ependLi st sone_| i st) yields a function that, when
applied to another list, say ot her _I i st, delivers a new list extended consisting of the concatenation of
ot her_Iist andsome_li st. Let’s call this final result new I i st. If new_I i st should be unique (i.e.
v becomes *) then, because of the coercion statement u<=v the attribute u also becomes *. But, ifu =
* then also w = *, for, w<=u. This implies that (arrow) type of the original expression (Pr ependLi st
some_| i st) becomes unique, and hence this expression is cannot be shared. The general rule for de-
termining the uniqueness type of Curried variants of (function or data) symbols can be found in ???

9.5.2 Unigueness type coercions

As said before, offering a unique object to a function which requires a non-unique argument is safe
(unless we are dealing with unique arrow types; see above). The technical tool to express this is via a co-
ercion (subtype) relation based on the ordering

‘unique’ £ ‘non-unique’

on attributes. Roughly, the validity of s £ s’ depends subtype-wise on the validity of uEu’ with u,u’
attributes in s,s’. One has, for example

DEFINING UNIQUENESS TYPES 69

ufvi[wint]] Ew:[v:[w:Int]] iffufuw ,vEv ,wEw.

However, a few refinements are necessary. Firstly, the uniqueness constraints expressed in terms of co-
ercion statements (on attribute variables) have to be taken into account. Secondly, the coercion restric-
tion on arrow types should be handled correctly. And thirdly, due to the so-called contravariance of - >
in its first argument we have that

u(s->s)E ut->t)ifftEs,s’£t’

Since - > may appear in the definitions of algebraic type constructors, these constructors may inherit
the co- and contravariant subtyping behaviour with respect to their arguments. We can classify the
‘sign’ of the arguments of each type constructor as + (positive, covariant), - (negative, contravariant) or
top (both positive and negative). In general this is done by analysing the (possible mutually recursive)
algebraic type definitions by a fixedpoint construction, with basis sign(- >) = (-,+).

Example: a has sign T, b has sign + in

c:FunList ab = FunCons (a, a -> b) (FunList a b)
| FunN |

This leads to the following coercion rules

- Attributes of two corresponding type variables as well as of two corresponding arrow types must be
equal.

- Thesign classification of each type constructor is obeyed. If, for instance, the sign of T’s argument
IS negative, then

TSETsS'iffs’£s

- Inall other cases, the validity of a coercion relation depends on the validity of u £ u’, where u,u’

are attributes of the two corresponding subtypes.

The presence of sharing inherently causes a (possibly unique) object to become non-unique, if it is ac-
cessed via a read-only reference. In CLEAN this is achieved by a type correction operation which con-
verts each unique type S to its smallest non-unique supertype, simply by making the outermost at-
tribute of S non-unique. Note that this operation fails if S is a function type.

9.6 Combining uniqueness typing and type classes

An overloaded function actually stands for a collection of real functions. The types of these real functi-
ons are obtained from the type of the overloaded function by substituting the corresponding instance
type for the class variable. These instance types may contain uniqueness information, and, due to the
propagation requirement, the above-mentioned substitution might give rise to uniqueness attributes

overloaded type specification.
Consider, for instance, the identity class

classida:: a->a

If we want to define an instance of i d for lists, say i dL, which leaves uniqueness of the list elements in-
tact, the (fully expanded) type of i dL becomes

class idL vi[u:a]l -> v:[u:a]

However, as said before, the type specification of such an instance is not specified completely: it is deri-
ved from the overloaded type in combination with the instance type (i.e.[...] in this particular ex-
ample).

In CLEAN we require that the type specification of an overloaded operator anticipates on attributes ari-
sing from uniqueness propagation, that is, the uniqueness attribute of the class variable should be cho-
sen in such a way that for any instance type this “class attribute’ does not conflict with the correspond-
ing uniqueness attribute(s) in the fully expanded type of this instance. In the above example this means
that the type of i d becomes

70 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

classida:: a->a
Another possibility is
class ida:: *a->*a

However, the latter version of i d will be more restrictive in its use, since it will always require that its
argument is unique.

9.6.1 Constructor classes

The combination of uniqueness typing and constructor classes (with their higher-order class variables)
introduces another difficulty. Consider, for example, the overloaded map function.

class mp m:: (a->b) (ma) ->mb

Suppose we would add (distinct) attribute variables to the type variables a and b (to allow “unique in-
stances’ of map)

class mp m:: (.a->.b) (m.a) ->m.b

The question that arises is: Which attributes should be added to the two applications of the class vari-
able n? Clearly, this depends on the actual instance type filled in for m E.g., if mis instantiated with a
propagating type constructor (like []), the attributes of the applications of mare either attribute varia-
bles or the concrete attribute ‘unique’. Otherwise, one can chose anything.

Example
i nstance map []
wher e
mpfl =[fx// x< 1]
Ta=C(Int -> a)
instance map T

wher e
mp f (Cg) =C(f og)

In this example, the respective expanded type of the both instances are
map :: (uwa->vib) wlual ->x:[vib], w<=u, X <=V

mp :: (wa->v:b) (Tua) ->Tv:b

The type system of CLEAN requires that a possible propagation attribute is explicitly indicated in the
type specification of the overloaded function. In order to obtain versions of map producing spine uni-
que data structures, its overloaded type should be specified as follows:

class map m:: (.a ->.b) .(m.a) ->.(m.b)

This type will provide that for an application like
map inc [1,2, 3]

indeed yields a spine unique list.

Observe that if you would omit the (anonymous) attribute variable of the second argument, the input
data structure cannot contain unique data on propagating positions, e.g. one could not use such a ver-
sion of map for mapping a destructive write operator on a list of unique files.

DEFINING UNIQUENESS TYPES 71

In fact, the propagation rule is used to translate uniqueness properties of objects into uniqueness prop-
erties of the data structures in which these objects are stored. As said before, in some cases the actual
data structures are unknown.

Consider the following function

DoubleMap f | = (map f |, map f 1)

The type of this function is something like

DoubleMap :: (.a ->.b) (m.a) ->(.(m.b), .(m.b))

Clearly, I is duplicated. However, this does not necessarily mean that a cannot be unique anymore. If,
for instance, mis instantiated with a non-propagating type constructor (like T as defined on the previ-
ous page) then uniqueness of a is still permitted. On the other hand, if mis instantiated with a propa-
gating type constructor, a unique instantiation of a should be disapproved. In CLEAN, the type system
“remembers’ sharing of objects (like I in the above example) by making the corresponding type attri-
bute non-unique. Thus, the given type for Doubl eMap is exactly the type inferred by CLEAN’S type sys-
tem. If one tries to instantiate mwith a propagating type constructor, and, at the same type, a with
some unique type, this will fail.

The presence of higher-order class variables, not only influences propagation properties of types, but
also the coercion relation between types. These type coercions depend on the sign classification of type
constructors. The problem with higher-order polymorphism is that in some cases the actual type con-
structors substituted for the higher order type variables are unknown, and therefore one cannot decide
whether coercions in which higher-order type variable are involved, are valid.

Consider the functions

doubl e x = (X, Xx)
dmf | = double (nap f I)

Here, map’s result (of type . (m . a)) is coerced to the non-unique supertype (m . a) . However, this is
only allowed if mis instantiated with type constructors that have no coercion restrictions. E.g., if one
tries to substitute *w i t eFun for m where

WiteFun a = C.(a -> *File)

this should fail, for, *w i t eFun is essentially unique. The to solve this problem is to restrict coercion
properties of type variable applications (m s) to

u:(ms) Eui(mt) iffs£t &&t £s

A slightly modified version of this solution has been adopted in CLEAN. For convenience, we have
added the following refinement. The instances of type constructors classes are restricted to type con-
structors with no coercion restrictions. Moreover, it is assumed that these type constructors are
uniqueness propagating. This means that the wi t eFun cannot be used as an instance for map.
Consequently, our coercion relation we can be more liberal if it involves such class variable applica-
tions.

Overruling this requirement can be done adding the anonymous attribute . the class variable. E.g.

class mp .m:: (.a->.b) .(m.a) ->.(m.b)

Now
i nstance nap WiteFun
wher e
nap ..

72 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

is valid, but the coercions in which (parts of) map’s type are involved are now restricted as explained
above.

To see the difference between the two indicated variants of constructor variables, we slightly modify
map’s type.

class mp m:: (.a->.b) *(m.a) ->.(m.b)

Without overruling the instance requirement for mthe type of dm(dmas given on the previous page)
becomes.

dm:: (.a->.b) *(m.a) ->.(mb, mb)

Observe that the attribute of disappeared due to the fact that each type constructor substituted for mis
assumed to be propagating.

If one explicitly indicates that there are no instance restriction for the class variable m(by attributing m
with .), the function dmbecomes untypable.

9.6.2 Higher-order type definitions

We will describe the effect of uniqueness typing on type definitions containing higher-order type vari-
ables. At it turns out, this combination introduces a number of difficulties which would make a full
description very complex. But even after skipping a lot of details we have to warn the reader that some
of the remaining parts are still hard to understand.

As mentioned earlier, two properties of newly defined type constructor concerning uniqueness typing
are important, namely, propagation and sign classification. One can probably image that, when dealing
with higher-order types the determination on these properties becomes more involved. Consider, for
example, the following type definition.

Tma=C(ma)

The question whether T is propagating in its second argument cannot be decided by examining this
definition only; it depends on the actual instantiation of the (higher-order) type variable m If mis in-
stantiated with a propagating type constructor, like [], then T becomes propagating in its second ar-
gument as well. Actually, propagation is not only a property of type constructors, but also of types
themselves, particularly of “partial types’ For example, the partial type [] is propagating in its (only)
argument (Note that the number of arguments a partial type expects, directly follows from the kinds of
the type constructors that have been used). The type T [] is also propagating in its argument, so is the

type T ((,) Int)).

The analysis in CLEAN that determines propagation properties of (partial) types has been split into two
phases. During the first phase, new type definitions are examined in order to determine the propaga-
tion dependencies between the arguments of each new type constructor. To explain the idea, we return
to our previous example.

Tma=C(ma)

First observe that the propagation of the type variable mis not interesting because mdoes not stand for
“real data’ (which is always of kind *). We associate the propagation of min T with the position(s) of
the occurrence(s) of mis applications. So in general, T is propagating in a higher-order variable mif one
of mis applications appears on a propagating position in the definition of T. Moreover, for each higher
order type variable, we determine the propagation properties of all first order type variables in the fol-
lowing way: mis propagating in a, where mand a are higher-order respectively first-order type variables
of T, if a appears on a propagating position in one of ms applications. In the above example, mis prop-
agating in a, since a is on a propagating position in the application (m a). During the second phase,
the propagation properties of (partial) types are determined using the results of the first phase. This
(roughly) proceeds as follows. Consider the type T s for some (partial) type s, and T as defined earlier.
First, determine (recursively) the propagation of s. Then the type T s is propagating if (1) s is propa-

DEFINING UNIQUENESS TYPES 73

gating, (2) T is propagating in m and moreover (3) mis propagating in a (the second argument of the
type constructor). With T as defined above, (2) and (3) are fulfilled. Thus, for example T [] is propa-
gating and therefore also T (T []). Now define

T2 a=Q (a->Int)
The T T2 is not propagating.
The adjusted uniqueness propagation rule (see also ...) becomes:

- Let s,t be two uniqueness types. Suppose s has attribute u. Then, if t is propagating the applica-
tion (t s) should have an attribute v such that v £ u.

Some of the readers might have inferred that this propagation rule is a ‘higher-order’ generalization of
the old ‘first-order’ propagation rule.

As to the sign classification, we restrict ourselves to the remark that that sign analysis used in CLEAN is
adjusted in a similar way as described above for the propagation case.

Example

Tma=C((ma) ->Int)

The sign classification of T if (-,"). Here ™ denotes the fact the a is neither directly used on a positive
nor on a negative position. The sign classification of mw.r.t. a is +. The partial type T [] has sign -,
which e.g. implies that

T[] Int £T]] *Int

The type T T2 (with T2 as defined on the previous page) has sign +, so
TT2Int 3T T2 *Int

It will be clear that combining uniqueness typing with higher-order types is far from trivial: the de-
scription given above is complex and moreover incomplete. However explaining all the details of this
combination is far beyond the scope of the reference manual

concurrent

Clean 10

Input / Output handling

10.1 The world according to CLEAN 10.5 Timer handling
10.2 File l/O 10.6 Incorporation of local state in abstract devices
10.3 Event based I/O 10.7 Interleaved executing communicating processes

10.4 Graphical user interfaces

In this Chapter the new CLEAN 1/0 system version 1.0 is described. This system is currently available
only on a limited number of platforms (see the Preface).

On other systems the CLEAN 1/O system version 0.8 is distributed. On all platforms the CLean 0.8 I/0
library (albeit converted to CLeAN 1.0 syntax) is available. For a description of the 0.8 1/O library we
refer to the draft of the new CLEAN book on the net or to the Addison-Wesley book (Plasmeijer and
Van Eekelen, 1993).

CLEAN’s Uniqueness Type System makes it possible to update objects destructively. As explained in
Section 9.1 one can use this property to create CLEAN functions which have direct read and write access
on files. In the same way one can define functions for all communication with the outside world: for
file 1/0, window based 1/0, communication with the operating system, interface with C etc.

Since we want CLEAN programmers to write programs on a high level of abstraction in a declarative
style, we wanted to offer more than just an interface to C. We do not want to burden the programmer
with the low level details of how 1/O is handled on a specific platform. To make this possible a sophis-
ticated 1/0 system has been predefined in CLEAN. It provides a way for the programmer to specify in-
teractive programs on such a way that window based interactive programs can be developed very easily.
All low-level event handling and window management is handled automatically. The specification is
platform independent. Programs can be ported to other machines without modification of code while
the resulting program will obey the specific look and feel offered by the underlying operating system.
Although the 1/O system cannot support everything one can imagine, it is powerful enough for most
applications. The I/O system can also be extended or modified easily by the (system) programmer to
support wishes we did not think of.

I/0 handling in CLEAN is done via an explicit multiple environment passing scheme to enforce the cor-
rect order of evaluation (see 10.1) while destructive updateability in a pure functional language is re-
alised by using unigueness typing (see Chapter 9).

Files can be directly accessed for reading and writing (see 10.2). Graphical User Interfaces can be speci-
fied by defining abstract devices using a predefined algebraic data type (see 10.3 and 10.4). Timers can
be defined to perform time dependent actions (see 10.5).

The system offers the possibility to combine (independently developed) interactive applications
(processes) into one new CLEAN application. The different sub-applications are executed in an interlea-
ved manner (see 10.7). One can switch between these sub-applications (like in a multi-finder) and ex-
change information between them. Sub-applications can communicate via files (e.g. via copy-pasting),
via shared global states or via message passing (see 10.7).

It is in principle also possible to create sub-applications running on a different processor. In this way
distributed applications can be made running in parallel on different machines connected via a net-
work. Such distributed programs can be tested and developed on one processor and with one change in

76 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

the code and a recompilation turned into the desired distributed version. This is one of the future ex-
tensions of the 1/0 library and is not yet available.

10.1 The world according to CLEAN

CLEAN programs can run in two modes.

10.1.1 1/0 using the console

The first mode is a console mode. It is chosen when the start rule is defined as a nullary function.

Start :: Typed StartFunction
Start = ... /1 initial expression

In the console mode, that part of the initial expression (indicated by the right-hand side of the start

rule) which is in root normal form (also called the head normal form or root stable form), is printed as
soon as possible. The console mode can be used for instance to test functions.

10.1.2 I/O on the unique world

The second mode is the world mode. It is chosen when the optional additional parameter (which is of
type *ver i d) is added to the start rule and delivered as result.

Start :: *World -> *Wrld
Start w= ... /1 initial expression returning a changed world

The world which is given to the initial expression is an abstract data structure, an abstract world of type
*wr | d which models the concrete physical world as seen from the program. The abstract world can in
principle contain anything we want, anything what is of importance for a functional program to inter-
act during execution with the concrete world. The world can be seen as a state and modifications of the
world can be realised via state transition functions defined on the world or a part of the world. By requi-
ring that these state transition functions work on a unique world the modifications of the abstract
world can directly be realized in the real physical world, without loss of efficiency and without losing
referential transparency (see Chapter 9).

The concrete way in which one can handle the world in CLEAN is determined by the system program-
mer. One way to handle the world is by using the predefined CLeaN I/O library which can be regarded
as a platform independent mini operating system. It makes it possible to do file I/O, window based
1/0O, dynamic process creation and process communication in a pure functional language in an efficient
way.

The program state

For programming convenience the world is further refined in the CLeaN 1/O system as follows.

Figure (the world according to CLEAN).

cuba world

In the CLEAN 1/O system the abstract world is divided into unique abstract sub-worlds. Such an ab-
stract sub-world models a part of the real world which has as property that it can be manipulated inde-
pendently from another part: one can modify one without influencing another.

INPUT / OUTPUT HANDLING 77

- Animportant sub-world is the file system (of type *Files) for performing file 1/O (see 9.2). This
idea of sub-worlds can be further refined as required, e.g. one can retrieve a file of type *Fi 1 e from
the file system. With the hierarchy of sub-worlds we can guarantee that things happen in a certain
order. E.g. to open a file one first needs the uniquely typed file system, to re-open a file one first
has to close it.

- Another important sub-world is the 1/O state (of type *1cstate | p) which contains, amongst oth-
ers, the event queue in which all events intended for the CLeaN application are being stored. The
IOState is an abstract data type on which all kinds of operations are defined to handle event driven
(window-based) I/O. The abstract data type is parametrised with the type of the local process state
and the public process state (see hereafter).

But, of course, an application does not only manipulate the world, it probably has to manipulate its

own data (the program dependent state) as well. It is explained in section 10.7 that a CLEAN application

can consist of several interactive processes. For this reason the program dependent state is split-up into

two categories:

» Each interactive process has its own local process state containing information which is private for
each process.

e With the public process state interactive processes which belong to the same group (see 10.7) can
exchange information.

Writing an interactive CLEAN program means writing state transition functions which manipulate the
abstract world and the program dependent states. The four states introduced above are the states on
which all top level state transition functions in CLeaN work. These states are collected in one record,
the process state which is of the following type:

*PState | ocal public /1 the unique state of an interactive process
= { pLocal 21 Ilocal /'l the local (and private) data of the process
pPublic :: !public /1 the data shared with other processes
/1 in the same group
pFi | es o I*Files /1 the unique state of the file system
plCetate :: !*ICstate local public

/1 the unique state of the event I/O system

Starting and stopping an interactive process

The first thing which generally happens in a CLEAN program is to create an interactive process with the
function oeni 0. The function geni OIis called a process control function. Such a function takes care of all
low level event handling in the following way.

- First the initial process state is constructed from a specified initial local process state, an initial shared
process state and the initial world. The process control function will fetch the initial event queue and
file system from this world.

- The process control function accepts a list of initial state transition functions which are applied
one after another on the initial process state. This list typically contains state transition functions
with which abstract devices are specified (see 10.3) and opened (see 10.4 - 10.6). These descriptions
are stored by the process control function in the 10State.

- Now the process control function will repeatedly examine the event queue to see if there is an
event on top of the queue matching a description given in one of the stored abstract device specifi-
cations. When a matching event is found the corresponding state transition function stored in the
description (see again 10.3) is applied to the current process state of the program thus yielding a
new process state.

- This way of dealing with events continues until finally the predefined state transition function
Qi t1ois applied to the 1OState component of the process state after which the process control
function (and the interactive process) terminates. From the final process state the final event queue
and file system are restored into the world.

So, in an interactive process state transition functions defined by the programmer are repeatedly applied
to the evolving process state until the final process state has been reached.

The function oenl 0is of following type.

78 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Qenl O :: (1Cef .1 .p) (.I,.p) *World -> *Wrld
ICef | p
= { ioDeflnit :: InitlO1 p // initial actions of the process
, i oDef About :: String /1 name of the process
}
InitlO1 p == [(PState | p) -> (PState | p)]

QuIitlO, the state transition function which stops an interactive process has type:
QitlO:: !(ICstate .1 .p) -> ICetate .1 .p
Example (a program just starting and stopping an interactive process while doing nothing).
nmodul e Start AndSt op
UnUsed = Unlsed /'l Singleton value for unused settings
Start :: *Wrld -> *Wrld
Start world = Qpenl Ot hi sprocess (hUsed, Unsed) world
wher e
thisprocess = { ioDeflnit =] stop]

, 1oDef About = "Tiny Process" }
stop pstate = { pstate & plCétate = Quitl O pstate. pl Cstate }

10.2 File I/O

In the process state the file system of type *Fi I es is stored. This unique file system gives access to all
files in the world visible to the program. One can open writeable files (they therefore are of type *File)
or files that are read only (they have type File).

e Afile can be opened writeable only if the file is not already open (run-time error). A writeable file
can be closed and re-opened later on. A file which is opened as read-only can be opened as many
times as one likes, but it cannot be closed (and hence it cannot be re-opened as a writeable file).
Read-only files are closed automatically by the 1/0 system when the application terminates or have
become garbage.

e When a writeable file becomes shared (loosing its uniqueness property) it can only be used for fur-
ther reading (it gets the same status as files which are initially opened as read-only).

One can find the predefined functions working on the file system and on the files in this file system in
the module stdFile.

Example (functions to open and close files). See also St dFi | e.

fopen :: !String !'Mde !'*Files -> (!Bool,!*File,!*Files) /1 open awriteable file
fclose :: I*File I*Files -> (!Bool, 1*Files) /1 open a writeable file
sfopen :: !'String !'Int !*Files -> (!Bool,!File, !*Files) /'l open aread-only file

File 1/0O is handled very efficiently because the uniqueness typing allows direct access to the actual file.
There is no limitation on the kind of file handling which is allowed (e.g. seeks are possible).

fwitec :: !Char !'*File -> *File /1 directly writes a character into the file
sfreadc :: !File -> (!Bool,!Char,!File) /1 directly reads a character from the file

Example (a program that copies a file called " aap” to a file called "noot ™). It uses the file system from the process state.
This file system is used to open the source and the destination file. The source file is only being read (indicated by
FReadDat a), S0 it does not have to be unique. The destination file is being written (Fwi t eDat a) and therefore this
file must be unique. The file being written is closed explicitly. Files which are opened read-only are closed automatically
by the system (it keeps track of the amount of references to such a file). Notice that the process state is uniquely used
everywhere due to the uniqueness of the file system and 10State.

nodul e copyfil e

inport Stdenv, StdEventlO

INPUT / OUTPUT HANDLING 79

Unlsed = Unlksed /1 Singleton value for unused settings

Start :: *Wrld -> *Wrld

Start world

= enlO{ iobeflnit =] DoCopyFile]
, i oDef About = "Copyi ng Process"
} (Wnlsed, Unsed) worl d

DoCopyFile :: *(PState .| .p) -> *PState .| .p
DoCopyFil e state
= {state & pFiles = nfiles, plCetate = Quitl O state. pl C&t at e}
wher e
nfiles = CopyFile "aap" "noot" state.pFiles

CopyFile :: String String *Files -> *Files
CopyFil e source dest files

(open,sfile,files) = sfopen source FReadData files

| not open = abort "Source file could not be opened.\n"

(open,dfile, files) = fopen dest FWiteText files

| not open = abort "Destination file coul d not be opened.\n"
(close, files) = fclose (CopyCneFile sfile dfile) files

| not cl ose = abort "Destination file coul d not be cl osed.\n"
| ot herwi se =files

CopyneFile :: File *File -> *File
CopyCneFil e sfile dfile
(ok,char,sfile)

| not ok

| ot herwi se

sfreadc sfile
dfile
CopyneFile sfile (fwitec char dfile)

10.3 Event based I/O

The 1/O state (see st devent |) is an abstract data type which reflects the current state of the event based
I/O performed by the program. We already explained that the | cst at e contains the event queue which
has been retrieved from the world (see 10.1.2). In this queue all events are being stored that have been
generated by the user (by clicking the mouse, pressing keys and buttons etc.) and by the operating sys-
tem (timer events) while the application is running. Instead of offering low level functions to fetch
events from the queue we have chosen to handle all low-level events automatically via CLEAN functions
predefined in the CLEAN event I/O library such that a CLEAN programmer only has to deal with the
high-level event handling.

A CLEAN programmer using the CLEAN I/O system has to define abstract devices, an abstraction of the
concrete devices (such as Graphical User Interfaces components) as they can be found on modern compu-
ter systems. Examples of abstract devices are: windows (including dialogues) for window based event 1/0O
(see 10.4), timers (for time driven events, see 10.5) and receivers (for events generated by using message
passing primitives, see 10.7). A device can be composed of device components which on their turn can be
refined further. For instance, each window can have a keyboard (see 10.4.2) and a mouse (see 10.4.3) as
component and can furthermore have several controls (buttons and the like, see 10.4.4). A menu is
composed out of sub-menus, menu items and so on.

Specifying abstract devices

Abstract devices are specified in CLEAN by means of predefined algebraic data types (see Section 8.2.1)

and type constructor classes (see Section 8.4). With these types actually a special kind of declarative device

specification language is offered in which the programmer can define the relevant properties of the con-

crete devices that are being used on a high level of abstraction. The algebraic specification of a device or

device component generally consists of:

- a constructor with a meaningful name to indicate the desired device/device component (e.g. Menu
indicates that a menu is wanted);

- the definition of a very limited number of non-optional attributes (e.g. each menu must have a
Tit1 e which is of type stri ng);

80 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

- if applicable the definition of the sub-components (e.g. a menu can contain menu-items, a sub-
menu etc.) which are defined in the same declarative style;

- astate transition function (called the call back function) to be applied on the current process state
when the device (component) is triggered by a corresponding event (e.g. one can trigger an ab-
stract menu element by selection of the corresponding concrete menu element with the mouse);

- alist in which one can specify the optional attributes (a default value is chosen when an optional
parameter is not specified);

The algebraic type instances are glued together to form abstract device (component) definitions.
Because the components have different type constructors the glue is provided by type constructor
combinators. These have been predefined in the library (see StdlOCommon).

T+ tlt2c=(:+) infixr 9 (tlc) (t2 c)
ListNoLS 't ¢ = ListNoLS [t c]
N | NoLS ¢ = NINoLS

Given two expressions e1 and eo of respective types t; and to on some context of type ¢, then (e1 :+: e2)
is an expression of type (:+: t1 to ¢). Given an arbitrary number of expressions e;...e, of type t on some
context of type ¢, then (ListNoLS [e1...en]) is an expression of type (ListNoLS t ¢). Finally, the expres-
sion NiINoLS fits in every context ¢ and has type (NilNoLS c). The following two examples show how
algebraic types are used to define and compose abstract device (components).

Example (The predefined algebraic types to define a menu). Constructors are displayed bol d. Note that the variable min
Menu and SubMenu is a type constructor variable. Legal instances of mare instances of the class Menultems (which are
Menul t emand MenuSepar at or).

Menu mps = Menu Title (mps) [MenuAttribute ps]
SubMenu m ps = SubMenu Title (mps) [MenuAttribute ps]
Menul t em ps = Menultem Title [MenuAttri bute ps]
MenuSepar at or ps = MenuSepar at or

MenuAttribute ps /| Default:

= Menuld Id /1 nold

| MenuSel ect State SelectState /1 menu(item) Able

| MenuAl t Key I ndex /1 no AltKey

/1 Attributes ignored by (sub)menus:

| MenuShor t Key Char /'l no Shortkey

| MenuMar kSt at e Mar kSt at e /1 NoMark

| MenuFunct i on (1 CFunction ps) /1 1

I

MenuMbdsFuncti on (Mbdsl GFunction ps) // MenuFunction

An abstract device specification can be seen as a declarative specification which is interpreted by process
control functions like gpenl 0to generate the demanded action on the screen.

Example (Concrete instantiation of Menu and its appearance on the screen of an Apple Macintosh). The call back functions
new, open, cl ose ,save, and saveAs need to be declared in the program. As an example we show the call back func-
tion of the Quit item. The library function appPl Oapplies an 10State transition function to the 10State component of
the process state. Consequently, when "Quit" is chosen from the menu the process will be terminated. This example
shows the close relation between the specification and the actual appearance on the screen. Notice that the specification
is not static but dynamic: any expression which yields an instance of Menu will do.

INPUT / OUTPUT HANDLING 81

Close 2N

Save 35

Save As...

Ouit 30
Menu "File"
(Li st NoLS
[Menul t em " New' [MenuShortKey 'n', MenuFunction new]
, Menul t em " Qpen.." [MenuShortKey 'o', MenuFunction open]
, Menul t em " d ose" [MenuShortKey 'w, MenuFunction close, MenuSel ect State Unabl e]
]
1+ MenuSepar at or
:+: ListNoLS
[Menul t em " Save" [MenuShortKey 's', MenuFunction save, MenuSelectState Unable]
, Menul tem "Save As..!" [MenuFunction saveAs, MenuSel ect State Unabl e]
]
1+ MenuSepar at or
i+ Menultem "Quit" [MenuShortKey 'q', MenuFunction (appPlO QitlO]

)]

The specification method is constructed in such a way that not more has to be specified as strictly nec-
essary. Due to the high-level of abstraction the specification can be platform independent. The I/O li-
brary can in the future easily be extended by adding more optional attributes and abstract device type
constructors without affecting existing programs.

Opening abstract devices and application of call back functions

For each abstract device a special open function has been predefined. It is a process or 1/O state transi-
tion function which stores the algebraic description of the device into the 10State and activates the cor-
responding concrete devices (if they are specified as active) and draws them on the screen (if they have a
visual representation).

82 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Figure (what is stored in the 10OState).

o= Tite =FF i

Hello world Open
Close

[&@ Ouit

For instance, with the function orenvenu @ menu description like the one given above results in the cre-
ation of that menu for the program.

cl ass Menus nuef /1 The Menus class to create menus
wher e
QpenMenu :: !Iint !'(ndef (PState .1 .p)) !(1Cstate .1 .p) -> I Cstate .| .p

i nstance Menus (Menu n) | MenuHl ements m // A Menu of MenuElements m is a proper Menus instance

The function gpenl o will recursively examine the event queue to see if there is an event on top of the
queue matching the stored abstract device specifications. If this is the case, the corresponding call back
function specified in the algebraic specification is called by applying it to the current process state. A
call back function is a user-defined state transition function defined on the process state, generally of

type:
Cal | BackFunc :: Info (PState .| .p) -> PState .l .p

The first parameter depends on the kind of call back function. For instance, a call back function invo-
ked by a mouse click will also get information on the current position of the mouse. All call back func-
tions get the actual value of their arguments automatically from the 1/0 system. When evaluation of a
call back function has reached head normal form in every process state component, control (and the
process state) is given back such that the next call back function can be determined (with the new pro-
cess state as returned by the previous call back function) given the next event in the event queue. So,
the process states are used to pass information from one call back function to another. A process termi-
nates when the function qui t1 0is applied on the 10 state.

Each call back function can of course change the process state but it can also change the definitions or

the attributes of the devices and the device components stored in the /O state. Each of them can be
modified dynamically (that is why they all can have a special label for identification).

10.4 Graphical user interfaces

In this section we explain how graphical user interfaces like windows (including dialogues) can be crea-
ted and manipulated. A window device (See St dw ndowbDef) gives a view on a picture (again a unique ab-
stract object) on which a set of drawing and text handling functions is defined (see 10.4.4). Each window
can have a keyboard (see 10.4.2) and a mouse (see 10.4.3) as component and can furthermore contain
several controls (buttons and the like, see 10.4.5). There is a special lay-out language to control the lay-
out of controls and windows (see 10.4.5).

INPUT / OUTPUT HANDLING 83

10.4.1 Windows and dialogues

Windows are the basic medium through which interactive applications and users communicate. An ap-
plication can have an arbitrary number of open windows. Of these windows at most one is active. The
active window is the window to which all keyboard events are directed. Applications can display any-
thing in a window: a window gives a view on an arbitrary picture. Windows are also used to structure
user input to applications: a window may accept keyboard and/or mouse input. Controls (e.g. slider
controls) can be put into the window such that very complicated windows can be defined.

Figure (components of a simple window).

SlI=——————— lintitled glﬂ;i

Windowlose Wi dow Litla

Slidey Contrnl

Window Pictre

WindowFasiza

Windows can be opened with the function genw ndow. The optional window-id attribute is required to
change window settings dynamically (e.g. to close a window, see further st dwndow in the appendix).

cl ass Wndows wdef

wher e
QpenW ndow oo Mint '(wdef (PState .1 .p)) !(ICstate .1 .p) -> 1 C8tate .1 .p
Qpenhbdal Wndow : : I'(wdef (PState .1 .p)) !(PState .| .p) -> PState .| .p
i nstance Wndows (W ndow C) | Gontrols c
i nstance Wndows (D al ogW ndow c) | Controls c
d oseW ndow o lid ! (1Cstate .1 .p) -> 1 Cstate .| .p
W ndow c ps = Wndow Title (c ps) [WndowAttribute ps]

D al ogWndow ¢ ps = DialogWndow Title (¢ ps) [WndowAttribute ps]

A window is either a basic window (wWndow) or a dialogue window (bi al ogwW ndow). Although their defi-
nitions can be equal, dialogue windows may adapt their behaviour conforming to the look-and-feel of
the current platform. Windows can simply be opened (penwndow) or modally (Qenmdal W ndow).
Modal windows force the user of the program to complete the interaction with that window. Ofcourse,
when a modal window is active, new modal windows may be opened for which the same rules apply.
Also new none-modal windows may be opened, but they become active only when all modal windows
have been closed.

There are a lot of optional window attributes, we only specify a few here (see st dwndowdef for a com-
plete list). With the attributes one can attach special call back functions, e.g. to handle mouse clicks in
the window, how a window should be positioned (see 10.4.6) how to handle keyboard keys being pres-
sed, what to do when a window is requested to be closed etc. Below we explain keyboard (10.4.2) and
mouse handling (10.4.3).

84 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Inside a window controls such as buttons can be positioned (Control Definitions). Controls are treated
in section 10.4.6.

10.4.2 Keyboard

A keyboard function is a call back function which can optionally be attached to a window as window
attribute.

WndowAttri bute ps /1 Default:

| WndovxKey Sel ect State (KeyFunction ps) // no keyboard

Sel ect State = Able | UWnable

In this way one can define a function to handle the response to those keyboard events that are not
captured by the window’s controls or other interface elements. All keyboard events are directed to the
active window (of which there is only one). The keyboar dst at e contains all information needed for the
call back function to handle the event: which key was pressed or released and which of the modifier
keys were being held down at that occasion.

KeyFunction ps :== KeyboardState -> ps -> ps
Keyboar dSt at e
= { keyCode 1o Char
, keySt at e 1o IKeyState
, keyModifiers:: !'Mdifiers
}
KeySt at e
= Keylp
| KeyDown
| KeySti | | Down
Modi fiers
= { shiftDown :: !Bool
, opti onDown :: !Bool
, commandDown :: ! Bool
, control Down :: ! Bool
}
10.4.3 Mouse

A MuseFunct i on is a call back function which can optionally be attached to a window as window attri-
bute.

WndowAttribute ps /1 Default:

| W ndowMbuse Sel ect State (MuseFunction ps) /1 no mouse input

The muse function defines the response of the window to mouse events in the window’s content (see
also controls in 10.3.6 to handle the clicks on buttons and so on). The Musest at e contains information
about the mouse event: the position of the pointer (in picture domain co-ordinates), whether it was a
click, a double-click, a triple-click, or the mouse button was still down, or a release of the mouse but-
ton and which modifier keys (shift, option etc.) were being held down.

MouseFunction ps : == MouseState -> ps -> ps
MouseSt at e
= { nousePos ;. !Point

, mouseBut t on .. lButtonState

, mouseMbdi fiers :: !Mdifiers
ButtonState

But t onUp

But t onDown

|
| But t onDoubl eDown
| But t onTr i pl eDown

INPUT / OUTPUT HANDLING 85

| ButtonStill Down

10.4.4 Writing and drawing to a window

To draw in a window the library module st dw ndow contains the function oraw nw ndow:
Drawl nWndow :: Id [DrawFunction] (1Cstate .1 .p) -> I Cstate .| .p

DrawFunction :== *Picture -> *Picture

This function takes a list of orawrunct i ons and applies them to the indicated window in order of ap-
pearance in the list. Drawing functions are predefined in the library module st dri cture. Like all other
interface components Pictures also have optional attributes, and type constructor classes are used to
draw (or fill) figures:

SetPenPos :: !Point !*Picture -> *Picture /1 Set the current position of the picture’s pen
SetPenFont :: !Font !*Picture -> *Picture /'l Set the current font used for drawing text

class Drawabl es figure

wher e
Draw :: Ifigure !'*Picture -> *Picture
DrawAt :: !Point !figure !*Picture -> *Picture

i nstance Drawabl es {#Char}

Font handling (useful when texts have to be drawn in a window) is performed by functions from the li-
brary module st dFont .

Example (a function that draws a string in a window at a certain position)
DrawstringlnWndow. : Id Point String (I Cstate .| .p) -> ICstate .1 .p
Drawst ri ngl nWndow id pos string io = Draw nWndow id [Set PenPos pos

, Draw string
] io

10.4.5 Controls

Besides that one can draw figures and text in the picture of a window one can also put controls such as
buttons into a given window. Controls can be radio buttons (a number of options of which only one is
valid, all options are displayed), check boxes (a number of options which can be turned on and off, all
options are displayed), pop-up menus (a number of options of which only one is valid and displayed at a
time), slider bars (a control allowing a user to set a value in a specific range), text fields (the text can only
be changed by the program during the interaction), editable text fields (the displayed text can be
changed by the user or the program during the interaction), buttons (with or without customised look),
and even user-defined controls (controls of which the look and feel is specified completely by the pro-
grammer, see stdcontrol s). Finally, any group of controls can be combined to form a new control us-
ing a CompoundControl.

86 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Figure (controls in a window).

- I
I——————ameSelp——————————
; i

_|.Your Name: |Player 1| Level: |Easy |
_ |, Sound |<] E
[] Music

\4

|l]k| |Eance|| Help
A

A
| |

Radi oCont r ol ps = Radi oCont rol Text Li ne MarkState [Control Attribute ps]
CheckCont rol ps = CheckCont rol Text Li ne MarkState [Control Attribute ps]
PopWCont r ol ps = PopUWdCont r ol [PopWpltemps] Index [Control Attribute ps]
SliderControl ps = SiderControl Drection Length SiderState

(SliderAction ps) [Control Attribute ps]
Text Cont r ol ps = Text Contr ol Text Li ne [Control Attribute ps]
Edi t Cont r ol ps = Edit Control TextLine Wdth NrLines [Control Attribute ps]
But t onCont r ol ps = ButtonControl Text Li ne [Control Attribute ps]
Qust omButtonControl ps = CQustonButtonControl Size Control Look [Control Attribute ps]
Qust onCont r ol ps = CQust onCont r ol Size Control Look [Control Attribute ps]
ConpoundControl ¢ ps = ConpoundControl (c ps) [Control Attribute ps]

Defining the position of a Control (also applicable for Windows)

Control Attribute ps /1 Default:

| Control Pos |tenPos /1 (R ghtTo previous, zero)

In the attributes of controls (Cont rol Pos) or windows (W ndowros) one can define that they have to be
positioned in a certain way. For this purpose a platform independent lay-out language has been defined
as follows:

I t enPos
1== I temoc
, | tenCr f set
)
I temoc
/1 Relative to corner:
= LeftTop | R ght Top | Lef t Bottom | R ght Bot t om
/1 Relative in next line:
| Left [Cent er | R ght
/1 Relative to other item:
| LeftdF Id | RghtTo Id | Above Id | Bel ow Id
/1 Relative to previous item:
| Left fPrev | R ght ToPrev | AbovePrev | Bel owPr ev
I tendr f set

. == \ect or

INPUT / OUTPUT HANDLING 87

Vect or
= {vx::!int,vy::!Int}

A position consists of a location (1 t emLoc) and an offset (I t encf f set).

- When this location is Left Top, R ght Top, Left Bott om OF R ght Bot t omthe item is placed at the indi-
cated corner in the window. When the window is resizable the control will optionally be resized
and moved as well.

- When this location is Left, Center Or R ght the item is placed left-aligned, centred, or right-
aligned, beneath all items defined earlier in the list.

- When this position is Left &, R ght To, Bel ow, Or Above the item is placed relative to the item with
the indicated id. When that id is not the id of an item that is defined earlier in the list of items, the
item is placed beneath the line-oriented items defined earlier, left-aligned. A group of items refer-
ing to each other is handled as one new composite item with the layout position of the root item.

- When this position is Left O Prev, R ght ToPrev, Bel owPrev, OF AbovePrev the item is placed relative
to the previous occuring item in the list of items in the same way as with Left &, R ght To, Bel ow, OF
Above.

- With the itencf fset an item can be shifted relatively on the indicated position with the (possibly
negative) offset specified.

Compound controls, as all controls, can have a layout attribute as well. They are handled as one single
layout item. The controls inside a compound control are being layed out locally.

Defining the look of a Control

The look of controls is defined as follows: system controls have a predefined look (these are Radi o-,
Check-, Poplp-, Text -, Edit-, Button-, and Slider-Control §). Customised controls (cust onBut t on- and
Qust om Cont rol §) are drawn by their program defined cont r ol Look functions. The control Look function
of a ConpoundCont rol is drawn first (if it has one), after which the looks of its control elements in left-to-
right and depth-first order follow. The backgrounds of controls are not erased by the system, thus en-
abling controls to define local backgrounds.

Defining the size of a Control

When a window is resizeable one would sometimes like to resize the controls in it as well. For this pur-
pose controls can use the cont rol Resi ze attribute.

Control Attribute ps /1 Default:
| Cont r ol Resi ze Cont r ol Resi zeFuncti on /1 no resize
| Control M ni nunti ze S ze /'l zero

Cont r ol Resi zeFuncti on

== Size -> /1 current control size
Size -> /! current window size
Size -> /] new window size
S ze /1 new control size

The control resize function determines the new size of a control given the current control size, the cur-
rent window size, and the new window size. The minimum size of a control can be set with the attri-
bute cont rol M ni munsi ze. The minimum size of a compound control is the minimum surrounding rect-
angle of its component controls (as a compound is allowed to occupy more space than the total of its
component controls).

Computation rules for the new layout are as follows: Controls are either resizeable or fixed size. Resize-
able controls are Edit -, i der -, Qust omr, and Conpound- Cont rol s. Fixed size controls are all other con-
trols. If a fixed size control has a cont rol Resi ze attribute then this is ignored. Resizing a window of size
curWSize to newWSize involves the following recomputation of control sizes: fixed size controls do not
change in size, as well as resizeable controls without cont r ol Resi ze attribute. A resizeable control of size
curCSize with first ControlResize attribute f obtains the new size f curCSize curWSize newWSize =
{w,h}. If the result value is smaller than the minimum size the control will be hidden, otherwise its new
size will be {w,h}. When all sizes have been computed for all controls then the layout will be recalcu-

88 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

lated. The result of this recalculation is the same as if the window is opened with the new sizes of the
controls. This method retains the control layout of a window.

10.5 Timer handling

With the timer device (see st dTi mer Def) @ program can be synchronised: a call back function can be eva-
luated every time a certain time interval has expended. The Ti mer I nterval is defined as a number of
ticks. The number of ticks per second depends on the operating system. A macro Ti cksPer Second i$
available in the library module stdTi ner . When a time interval is set less than one, a timer event is gen-
erated as fast as possible. Several timers can be opened.

class Tiners tdef

wher e

QoenTiner :: !(tdef (PState .| .p)) !(ICstate .| .p) ->1Cstate .| .p

i nstance QpenTi ner Ti ner

d oseTi ner o tid !(1Cstate .1 .p) -> I Cstate .l .p
Ti mer ps = Timer Timerinterval [TimerAttribute ps]
Timerinterval :==Int
TinerAttribute ps /1 Default:
= Timerld Id /1 nold
| Ti ner Sel ect Sel ect State /1 timer Able
| Ti mer Functi on (Ti mer Function ps) [_x->X
TimerFunction ps :== N Interval s->ps->ps
N Interval s c==Int

The Ti ner Funct i on is the type of the call back function which is called each time the specified timer in-
terval has passed. The NG I nterval s parameter contains the number of times the interval has passed
since the last time the timer function was called. This parameter is required because the program might
be busy with the evaluation of some call back function. Each call back function is an indivisible action
which turns over control to the process control function when the head normal form is reached on each
of the components of the process state. Such an evaluation might of course take more time than one
timer interval. In that case the NI nterval s Will be greater than one. It is guaranteed however, that
each timer gets its turn some time, provided that no non-terminating event handlers have been defined.
When the Ti mer i nterval of a timer is less than one, the timer function of this timer will be called as of-
ten as possible. The N & I nterval s argument of the timer function will then always be one.

10.6 Incorporation of local state in abstract devices

In the previous sections we have shown how abstract device components can be defined by algebraic
types and glued by type constructor combinators. The resulting definitions define components that op-
erate on the same process state context. To enhance modular programming the 1/O library allows each
component to have its private local state of arbitrary type. Again type constructor combinators are used
to glue components that operate on the same or different local state, and to encapsulate local state from
external access. In this section we first show how algebraic types are used to define components with
and without local state, and second we show which type constructor combinators are used to glue these
components.

As an example of how local state is incorporated in abstract device component definitions we recon-
sider the case of menus (Section 10.3). The first four definitions below define menu (components)
without local state. For each such type constructor with name T we introduce a new type constructor
by appending ‘Ls after T. So, for the type constructor Menu we obtain venuLs. The same is done for the
algebraic data constructors. For each new type constructor we increase its arity by inserting the type
variable I s before the last type variable ps. This new variable will correspond with the type of the local
state of the component. So, the type constructor MenuLS mps becomes MenuLS mi s ps. The types of the
call back functions (which are usually collected in the attribute list) change from ps ® ps to (I s,ps) ®
(1's,ps). Finally, if a type constructor has a type constructor variable then it is assumed that this variable

INPUT / OUTPUT HANDLING 89

has the same arity. So the type constructor variable min the types MenuLs and subMenuLs is parameterised
with I s and ps.

/1 Menu(item) definitions without local state:

Menu m ps = Menu Title (m ps) [MenuAttribute ps]
SubMenu m ps = SubMenu Title (m ps) [MenuAttri bute ps 1]
Menul t em ps = Menultem Title [MenuAttribute ps]
MenuSepar at or ps = MenuSepar at or

/1 Menu(item) definitions with local state:

MenuLS mls ps = MenuL,S Is Title (mls ps) [MenuAttribute *(Is, ps)]
SubMenuLS mls ps = SubMenuL,S Title (mls ps) [MenuAttribute *(Is, ps)]
Menul t enlS Is ps = MenultenlS Title [MenuAttribute *(Is, ps)]
MenuSeparatorLS |'s ps = MenuSepar at or LS

To glue type constructors with local state we need to extend the set of type constructor combinators
that we introduced in Section 10.3 in a similar way. For each type constructor combinator we intro-
duce a new type constructor combinator with increased arity to represent the local state type. The new
type constructor combinators are :~:, ListLS, and NilLS for :+:, ListNoLS, and NilNoLS respectively.
With these combinators we can compose arbitrary abstract device component definitions that have lo-
cal state.

T+ t1t2 c=(:+) infixr 9 (t1 ©c¢) (t2 ©¢)
Li st NoLS t ¢ = ListNoLS [t c]

N | NoLS ¢ = NINoLS

1~ tl1t21 ¢ =(:~) infixr 9 (t11 ¢) (t21 c¢)
ListL,S t | c = ListLS [t | c]

NILS Il ¢ =NILS

With these combinators we can compose arbitrary abstract device component definitions that either
have or do not have local state. To be able to glue components with or without local state, or different
types of local state the following type constructor combinators complete the set of combinators.

LS t I ¢c=1S (t ¢

NoLS t c=EI : {introL,S :: .I, introbDef :: t .I c}
ExtendLSt | ¢ = EI1l: {extendLS:: .11, extendDef:: t *(.11,1) c}
ChangeLS't | ¢ = EIl1l {changeLS:: .11, changeDef:: t .I1 c}

Given an expression e of type t on some context of type c, then (LS €) is an expression of type (LSt c)
for an arbitrary local state of type | and same context of type c. Given an expression e of type t on some
local state of type | and context of type ¢ and a value v of type |, then the expression {introLS=v, in-
troDef=¢} encapsulates the local state and is of type (NoLS t ¢). Given an expression e of type t on a local
state pair of type (I11,I) and context of type ¢ and a value v of type 11, then the expression {extendLS=v,
extendDef=e} encapsulates the first local state component and is of type (ExtendLS t | ¢). Given an ex-
pression e of type t on a local state of type 11 and context of type ¢ and a value of type |1, then the ex-
pression {changeLS=v, changeDef=e} switches from local state and is of type (ChangeLS t | c).

10.7 Interleaved executing communicating processes

Imagine that one has written two interactive CLEAN applications, an editor and a compiler for a pro-
gramming language. Each of these applications will have its own devices (windows, dialogues, menus,
timers) and own program state to remember application specific information. Assume that one wants
to combine both interactive applications into a new one, for instance to make a programming environ-
ment for that language. The CLEAN I/O system makes this possible and, when applications are structu-
red in the right way, one can even reuse the original source code without any modification.

A CLEAN program can consist of several interactive processes which can be created dynamically. Each
process defines its own user interface, timers and so on with corresponding call back functions. One
can switch between these sub-applications and exchange information between them (like in a multi-
finder). Again the CLEAN I/O system will take care of all low-level event handling, activation/de-activa-

90 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

tion of windows, the switching between menu-bars depending on which application is active and so on.
Each call back function remains an indivisible action which will turn over the control to the process
control function when the head normal form is reached on each of the components of the process state.
S0, on one processor the interactive processes will run interleaved with each other. The 1/0O system will
call one call back function after another, depending on which application is active and which event is
raised.

Figure (process groups and processes and how they can communicate via the process state and file system).

-,
O

O

Each interactive application can store its private information in its local process state. Several processes
can form a process group. There can be several groups. Processes in the same group can exchange infor-
mation via their shared process state (see 10.1.2). Since call back functions are indivisible it is guaranteed
that only one process at a time can have access to a shared process state. All applications (whether they
are in the same group or not) can communicate via files. Since files are uniquely attributed it means
that a particular file can only be opened for writing by one (sub-) application at the time. It is good to
realise that CLEAN applications can also communicate with other (non-CLeAN) applications running on
the computer system in the same way. This means that CLeAN applications can be smoothly incorpora-
ted in the real world.

InitlOl p :==[.1CFunction (PState | p)]

Qpenl O o r(rapef 1 o.p) (L1, .p) !*world -> *Wrld

Newl O o (raoef 1 p) (1, .p) !(ICstate .IT .p’) ->ICstate .1 .p
NewSubl O :: !(I1CDef .1 .p) (.1, .p) !'(ICState .1° .p°) ->I1C8tate .1~ .p
Sharel O ol (1cef L1 oLp) I(ICstate .1° .p) ->ICstate .1 .p
ShareSublO :: !(1CDef .1 .p) .| I(ICstate .1° .p) ->I1Cstate .1 .p

Initially an interactive CLEAN program has only one group with one process (created with cenl 0). Any
process can dynamically create new processes using the other process control functions shown above. A
new interactive process in the same process group can be created by applying sharel oon the | cstate.
The process control function shar esubl 0 also adds a new interactive process to the same process group,
but allows the graphical user interface to be shared. This means that to the user it seems as if the win-
dows and menus of the newly created process merge with the windows and menus of the parent pro-
cess. With the function New 0any process can create a new group initially consisting of one interactive
process. The function Newsubl 0 does the same, but analogous to shar esubl 0 also allows the graphical
user interface elements to be shared with the windows and menus of the parent process.

INPUT / OUTPUT HANDLING 91

10.7.1 One-way message passing

We have seen that processes in the same group can communicate via the shared process state and that
all processes can communicate via files obtained from the files system. Interactive CLEAN processes can
also communicate with each other via message passing.

In the CLEAN system messages are considered to be abstract events. Conform the event 1/O paradigm of
abstract event handling by abstract devices (see 10.3), message events are dealt with by a new abstract
device, the receiver device. There is no restriction on the type of messages, every typeable expression can
be subject to message passing. The type system is applied to enforce type-safe message passing: it is im-
possible for a correctly typed interactive program to send messages of the wrong type.

R d ness

class R ds environnent

wher e
enRId :: !'*env -> (! (!Rd ness,!*Rd mess),!*env) // Create a one-way receiver id

instance Rids Wrld
instance Rds (ICstate .1 .p)

Crucial in achieving type-safe message passing are the special abstract receiver identification values of
type R d. Receiver ids can be generated from a unique World environment and a unique 10State envi-
ronment. To create a receiver that accepts messages of some type a one needs to create a unique (Rd a)
first. The library function R dt ol d coercesa Rd to I d.

cl ass Receivers rdef

wher e
penRecei ver o I*(RdAd m !(rdef m(PState .1 .p)) !(ICstate .1 .p) -> I Cstate .| .p
ReopenReceiver :: ! (Rdn) !(rdef m(PState .| .p)) !(ICstate .| .p) ->1Cstate .| .p

i nstance Recei vers Recei ver

d oseRecei ver o lid ' (1Cstate .1 .p) -> 1C8tate .1 .p
Recei ver m ps = Recei ver (Recei ver Function m ps)
[Recei verAttribute ps 1]

ReceiverLS |'s mps = ReceiverLS I's (ReceiverFunction m*(ls,ps))
[ReceiverAttribute *(Is,ps)]

Recei ver Function mps : == m-> ps -> ps
Recei verAttribute ps /1 Default:
= ReceiverSelect SelectState /'l receiver Able

Interactive processes can dynamically open and close an arbitrary number of receivers with the functi-
ons GpenRecei ver and A oseRecei ver . When a receiver is created the type of message it can receive is
fixed. Sending a message actually means that an event of appropriate type is raised and put into the
event queue in the 10State. Due to the message type parameter of R d it is guaranteed that only cor-
rectly typed messages can be send and that they can only go to the correct receiver.

SendReport

= SendC

| SendUnknownPr ocess

| SendUnknownRecei ver
| SendUnabl eRecei ver

| SendDead| ock

SendCont ps :== SendReport -> ps -> ps

ASyncSend :: !'(Rd ness) ness !(ptional (SendCont (PState .1 .p))) !(PState .l .p)
-> PState .|l .p

SyncSend :: !(Rd mess) nmess ! (ptional (SendCont (PState .|l .p))) !(PState .1 .p)
-> PState .1 .p

92 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Interactive processes can send messages in an asynchronous or synchronous way (with Asyncsend and
SyncSend respectively). Both functions require the receivers identification value of type R d m Neither
function has an effect in case the corresponding receiver does not exist anymore (because the receiver
has been closed or the receiving process has been terminated). ASyncSend is purely asynchronous. sync-
send blocks the sending interactive process until the indicated receiver accepts the message. Program-
mers must be aware that syncsend involves a context-switch. In case that there are several interactive
processes in the process group it can be possible that after a syncsend the shared process state compo-
nent may be changed by another process in the group. In case the system detects a potential deadlock
situation, message passing is halted and the sendDeadl ock SendReport alternative is applied to the op-
tional sendcont inuation.

10.7.2 Two-way message passing

In addition to one-way message passing the Clean I/O library also provides synchronous two-way mes-
sage passing. This is done analogous to one-way message passing, but now using receivers that accept a
message of some type a and respond with a message of some type b. Sending a message is similar to
one-way synchronous message passing, except that a response value of type b is returned in the
Send2Cont inuation function.

R2ld ness resp

class R ds environnent

wher e

penrR2ld :: !*env -> (I (IR2Id mr,!*R2Id mr),!*env) /'l Create a two-way receiver id
:: Receiver2 mr ps
= Receiver2 (Recei ver 2Function mr ps) [ReceiverAttribute ps]

:: Receiver2LS Is mr ps
= Receiver2LS | s (Receiver2Function mr *(Is,ps)) [ReceiverAttribute *(Is,ps)]

Recei ver 2Function mr ps :== m-> ps -> (r, ps)

cl ass Recei ver2s rdef

wher e
QpenReceiver2 :: !*(RId mr) !(rdef mr (PState .1 .p))
I(ICstate .1 .p) -> I Cstate .1 .p
ReopenReceiver2 :: ! (RId mr) !(rdef mr (PState .l .p))
I(ICstate .1 .p) -> | Cstate .1 .p
i nstance Recei ver2s Recei ver?2
Send2Cont r ps :== (SendReport, ptional r) -> ps -> ps
SyncSend2 :: !(R2ld ness resp) mess ! (Qptional (Send2Cont resp (PState .1 .p)))

I(PState .1 .p) -> PState .l .p

concurrent

Clean 11

Defining macros

11.1 Defining Macros

In this chapter macros are treated. Macros are rewrite rules which are applied at compile time which
can be used to define constants, create in-line substitutions, rename functions etc.

11.1 Defining Macros

At compile time the right-hand side of the macro definition will be substituted for every occurrence of
the left-hand side. The substitution process is guaranteed to terminate. With a macro definition one
can, for instance, assign a name to a constant such that it can be used as pattern on the left-hand side.
Furthermore, the use of macros can speed up a CLEAN program since due to the inline substitution less
function calls need to be done. A disadvantage is that more code will be generated when
(parameterised) macros are used instead of non-recursive functions.

MacroDef
MacroFixityDef

| [MacroFixityDef] DefOfMacro
|

| DefOfMacro

I

(FunctionSymb) [Fix][Prec] ;
FunctionSymbol {Variable} : == FunctionBody;
[LocalFunctionAltDefs]

The formal arguments of a macro are not allowed to contain constants: only variables are allowed as
formal argument. A macro rule always consists of a single alternative.
e Macro definitions are not allowed to be cyclic to ensure that the substitution process terminates.

Example (macros):

Bl ack =1
Wi te =0
::Color:==Int
Invert :: Color -> Color

Invert Black = Wite
Invert Wite = Bl ack

Example (example: macro to write (a?b) for lists instead of [a: b] and its use in the function map).

(?) infixr 5

(?) ht :=Th:t]

mp :: (a->b) [a] ->[b]
map f (x?xs) =f x ? map f xs
mep f [] =11

Macros can contain local function definitions. These definitions will also be substituted inline. In this
way complicated substitutions can be achieved resulting in efficient code.

94 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Example (example: macros can be used to speed up frequently used functions. See for instance the definition of the function
fol dl in StdList).

foldl opr | :==fold r |
wher e
foldl r [] =r
foldl r [a:x] =foldl (opr a) x

sumlist =foldl (+) O list

After substitution of the macro f ol dl a very efficient function sumwill be generated by the compiler:
sumlist = foldl O list

wher e

foldl r [] =r
foldl r [a:x] =foldl ((+) r a) x

The expansion of the macros takes place before type checking. Type specifications of macro rules is not
possible. When operators are defined as macros, fixity and associativity can be defined.

concurrent

Clean 19

Modules

12.1 Definition and implementation modules 12.2 Importing definitions
12.3 Exporting definitions

A CLEAN program is composed of modules to enable separate compilation and to provide a facility to
hide actual implementations of types and functions.

12.1 Definition and implementation modules

The CLeaN module system is inspired by the module system of Modula-2 (Wirth, 1982). Like in Mod-
ula2, a CLEaN program consists of a collection of definition modules and implementation modules. An
implementation module and a definition module correspond to each other if the names of the two mo-
dules are the same. The basic idea is that the definitions given in an implementation module only have
a meaning in the module in which they are defined (see Section 3.5) unless these definitions are expor-
ted by putting them into the corresponding definition module (see section 4.4). In that case they also
have a meaning in those other modules in which the definitions are imported (see Section 4.3).

CLEANProgram
Module

{Module}+

DefinitionModule
ImplementationModule

defi ni ti on nodul e ModuleSymb ;

DefinitionModule

{Definition}
| systemnodul e ModuleSymb ;
{Definition}
ImplementationModule = [i npl enent ati on] modul e ModuleSymb ;
{Definition}

e Each CLeaN module has to be put in a separate file.

e The name of a module (i.e. the module name) should be the same as the name of the file (minus
the suffix) in which the module is stored.

e A definition module should have as .dcl as suffix, an implementation module should have as .icl as
suffix.

e A definition module can have at most one corresponding implementation module.

e Every implementation module (except the main module, see 11.1.2) must have a corresponding
definition module.

12.1.1 Separate compilation

So, if you want to export a definition, you simply repeat the definition in the corresponding definition
module. For some kind of definitions in the implementation module it is only allowed to repeat a cer-
tain part of it in the definition module (generally the type). The idea is to hide the actual implementa-
tion from the outside world. The is good for software engineering reasons while another advantage is
that an implementation module can be recompiled separately without a need to recompile other modu-
les. Recompilation of other modules is only necessary when a definition module is changed. All modu-

96 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

les depending on the changed module have to be recompiled as well. Implementations of functions,
graphs and class instances are therefore only allowed in implementation modules. They are exported by
only specifying their type definition in the definition module. Also the right-hand side of any type def-
inition can remain hidden. In this way an abstract data type is created (see 8.2.4).

Definition = ImportDef

| TypeDef

| ClassDef

| FunctionDef
| GraphDef

| MacroDef

Example (definition module):

definition nmodul e Li st Qperations

:: conpl ex /] abstract type definition

re :: conplex -> Real /1 type of function taking the real part of a complex number
im:: conplex -> Real /'l type of function taking the imaginary part of a complex
nkconpl ex :: Real Real -> Conpl ex /'l type of function making a complex number

Example (corresponding implementation module):
i npl ement ati on modul e Li st Qper ati ons
c:conplex :== (!Real,!Real) /1 type synonym

re :: conplex -> Real /'l type of function followed by its implementation
re (frst,_) = frst

im:: conplex -> Real
im(_,scnd) = scnd

nkconpl ex :: Real Real -> Conpl ex
nkconpl ex frst scnd = (frst, scnd)

12.1.2 Special kind of modules

The main or start module

The main or start module is the top-most module (root module) of a CLEAN program.
e Only in the main module one can leave out the keyword i npl enent ati on in the module header. In
that case the implementation module does not need to have a corresponding definition module.

Evaluation of a CLEAN program consists of the evaluation of the application defined in the right-hand
side of the start rule to normal form. The right-hand side of the start rule is regarded to be the initial
expression to be computed. The definition of the left-hand side consists of the symbol start with one
optional argument (of type *ver 1 d), which is the environment parameter that is necessary to perform
I/O actions (see Chapter 10). One can of course add a Start rule to any module. This can be handy for
testing functions defined in such a module: to evaluate such a Start rule simply generate an application
with the module as root and execute it.

e Inthe main module a start rule has to be defined.

Example (a very tiny CLEAN program):
nodul e hell o

Start = "Hello Wrld!"

MODULES 97

System definition and implementation modules

System modules are special modules. A system definition module indicates that the corresponding im-
plementation module is a system implementation module which does not contain ordinary CLEAN rules.
In system implementation modules it is allowed to define foreign functions: the bodies of these foreign
functions are written in another language than CLEAN. System implementation modules make it possi-
ble to create interfaces to operating systems, to file systems or to increase execution speed of heavily
used functions or complex data structures. Typically, predefined function and operators for arithmetic
and File 1/0 are implemented as system modules.

System implementation modules may use machine code, C-code, abstract machine code (PABC-code)
or code written in any other language. What exact is allowed is dependent from the CLean compiler
used and the platform for which code is generated. The keyword code is reserved to make it possible to
write CLEAN programs in a foreign language. This is not treated in this reference manual.

When one writes system implementation modules one has to be very careful because the correctness of

the functions can no longer be checked by the CLean compiler. Therefore, the programmer is now res-

ponsible for the following:

I The function must be correctly typed.

' When a function destructively updates one of its (sub-)arguments, the corresponding type of the
arguments should have the uniqueness type attribute. Furthermore, those arguments must be
strict.

12.2 Importing definitions

Via an import statement a definition exported by a definition module (see 11.3) can be imported into a
(definition or implementation) module. A symbol is said to be defined in a module if it either is implici-
tly defined (i.e. imported from another module) or when it is explicitly defined (i.e. in a definition in the

module itself).
ImportDef i mport {ModuleSymb}-list ;

fromModuleSymb i nport {ImportSymbols}-list ;

FunctionSymb

ConstructorSymb

SelectorVariable

FieldSymb

MacroSymb

TypeSymb

ClassSymb

ImportSymbols

There are two kind of import statements, explicit imports and implicit imports.

Explicit imports are import statements in which the definitions to import are explicitly specified. The
symbol names uniquely identifying the definitions to import are listed together with the name of the
module to import them from.

Explicit imports can be used to avoid unintended name clashes that can occur via implicit imports.

Implicit imports are import statements in which only the module name to import from is mentioned. In
this case all symbols that are exported from that module are imported and also all symbols that on their
turn are imported in the mentioned definition module, and so on. So, all related definitions from vari-
ous modules can be imported with one single import. This opens the possibility for definition modules
to serve as a kind of "pass-through' module (see for instance the definition module st denv specified be-
low). With such a module one can import a complete environment with one simple statement. Hence,
it is meaningful to have definition modules with import statements but without any definitions and
without a corresponding implementation module. With an implicit import only those symbols are im-
ported which are not already explicitly defined in the importing module.

Example (implicit import): all (arithmetic) rules which are predefined can be imported easily with one import statement:

98

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

i nport StdeEnv

importing implicitly all definitions imported by the definition module 'StdEnv' which is defined below (note that de-
finition module ' StdEnv' does not have a corresponding implementation module) :

definition nmodul e StdEnv

i nport
StdBool, StdChar, Stdint, StdReal, StdString

If a symbol is explicitly defined it cannot be imported from another module as well.
A symbol can be imported more than once only if those imports refer to the same definition.

A module depends on another module if it imports a symbol from that other module.

12.3

Cyclic dependencies of definition modules are prohibited, i.e. if a definition module M1 depends
on another definition module M» then M3 is not allowed to depend on M.

Exporting definitions

The definitions given in an implementation module only have a meaning in the module in which they
are defined (see Section 3.5) unless these definitions are exported by putting them into the correspond-
ing definition module. In that case they also have a meaning in those other modules in which the defi-
nitions are imported (see Section 12.2).

The definitions given in a definition module have to be repeated in the corresponding implemen-
tation module. In the implementation module all definitions have to get an appropriate imple-
mentation as well (this holds for functions, abstract data types, class instances).

An abstract type definition is exported by specifying the left-hand side of a type rule in the defini-
tion module. In the corresponding implementation module the abstract type has to be defined
again but then right-hand side has to be defined as well. It can be either an algebraic type, record
type or synonym type definition. For such an abstract data type only the name of the type is ex-
ported but not its definition.

A function, global graph or class instance is exported by repeating the type header in the definition
module. For optimal efficiency it is recommended also to specify strictness annotations (see 8.5).
For library functions it is recommended also to specify the uniqueness type attributes (see Chapter
9). The implementation of the function, graph, class instance has to be given in the implementa-
tion module.

concurrent

Clean 13

Time and space efficiency

13.1 Space consumption of CLEAN structures 13.5 Graphs versus constant functions versus ma-
13.2 Size limitations cros

13.3 Lazy evaluation versus strict evaluation 13.6 The costs of overloading

13.4 Destructive updates using uniqueness typing 13.7 Concurrency

13.8 Other efficiency issues

Programming in a functional language means that one should focus on algorithms and without worry-
ing about all kinds of efficiency details. However, when large applications are being written it may hap-
pen that this attitude results in a program which is unacceptably inefficient in time and/or space.

There are several ways in which a CLEAN programmer can improve the time/space behaviour of a pro-
gram. In this chapter we give some suggestions how this can be done. No new language constructs are
introduced here. We just give some additional information about the space and time behaviour of the
data structures and language constructs introduced in the previous chapters. Most of this information is
highly implementation dependent. So, in reality it might be slightly different. Yet we think that the in-
formation given in this chapter might be of practical use for writing big applications.

13.1 Space consumption of CLEAN structures

In this section we give a rough indication of the space occupied by CLEAN data structures. In this con-
text it is important to know that in general the occupied space will depend on whether these data struc-
tures appear in a strict or appear in a lazy context (see Section 8.5). Data structures in a lazy context are
passed via references on the A-stack which point to nodes stored in the heap (see Plasmeijer and Van
Eekelen, 1993). Data structures of the basic types (I nt, Real , Char Of Bool) in a strict context are stored
on the B-stack or in registers. This is also the case for these strict basic types when they are part of a re-
cord or tuple in a strict context. Data structures living on the B-stack are passed unboxed. They consume
less space (because they are not part of a node) and can be treated much more efficiently. When a
function is called in a lazy context its data structures are passed in a node (boxed). The amount of space
occupied is now also depending on the arity of the function.

In the table below the amount of space consumed in the different situations is summarised (for the lazy
as well as for the strict context). For the size of the elements one can take the size consumed in a strict
context.

Type Arity | Lazy context (bytes) Strict context (bytes) Comment

I nt, Bool - 8 4

I nt (O£n£32), |- - 4 node is shared
Char

Real - 12 8

Smal | Record n 4 + Ssize elenents | Ssize el enents total length£12

Large Record n 8 + Ssize elenents | Ssize el enents

100 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Tupl e 2 12 Ssi ze el enents
>2 8 + 4*n Ssize el enents
{a} n 20 + 4*n 12 + 4*n
Il nt n 20 + 4*n 12 + 4*n
! Bool , ! Char n 20 + 4*ciel (n/4) 12 + 4*ciel (n/4)
! Real n 20 + 8*n 12 + 8*n
! Tupl e, 'Record |n 20 + size rec/tup*n |12 + size rec/tup*n
Hnf 0 - 4 +size node node is shared
1 8 4+size node
2 12 4 +size node also for [a]
>2 8 + 4*n 4+size node
Poi nter to node - 4 4
Functi on 0,1,2]12
>3 4 + 4*n
13.2 Size limitations

There are some implementation dependent restrictions which play a role when large programs are be-

ing written. Here they come:

- the arity of functions and constructors has to be £ 32. This also holds for the number of elements
in predefined data structures like a tuple or record. There is however no restriction on the number
of elements in an array (besides restrictions imposed on the amount of memory on the machine).

- the number of files which can be open at the same time has to be £ 16.

- the code size of an implementation module has to be £ 32K (Macintosh only caused by limitations
of the linker on the Mac).

13.3 Lazy evaluation versus strict evaluation

As one can deduce from the table above strict data structures generally consume less space than lazy
data structures. Furthermore, unboxed elements can be put on a stack or kept in registers which also
has a positive influence on the evaluation speed. In general one can say that strictness gives a much
better space and time behaviour of the program. However, CLEAN is by default a lazy functional lan-
guage because laziness gives notational advantages.

Lazy evaluation has the following advantages (+) / disadvantages (-) compared with eager (strict) evalua-

tion:

+ an expression is only evaluated when its value is needed to produce the result (normal form) of the
Start expression ;

+ one can work with infinite data structures (e.g. [1..]);

+ only those computations which contribute to the final result are computed (for some algorithms
this is a clear advantage while it generally gives a greater expressive freedom);

- itisunknown when a lazy expression will be computed (disadvantage for debugging, for control-
ling evaluation order);

- strict evaluation is in general much more efficient, in particular for objects of basic types, non-re-
cursive types and tuples and records which are composed of such types;

-/+ in general a strict expression (e.g. 2 + 3 + 4) takes less space than a lazy one, however, sometimes
the other way around (e.g. [1..1000]);

Example (functions with strict arguments of basic type are more efficient).

Ackerman :: Int Int -> Int

Ackerman 0 j =inc j

Ackerman i 0 = Ackerman (dec i) 1

Ackerman i j = Ackerman (dec i) (Ackerman i (dec j))

TIME AND SPACE EFFICIENCY 101

The computation of Acker man 3 7 takes 14.8 seconds + 0.1 seconds for garbage collection on an old fashion Ma-
cll (5Mb heap). When both arguments are annotated as strict it will take 1.5 seconds + 0.0 seconds garbage collec-
tion. The gain is one order of magnitude. Instead of rewriting graphs the calculation is performed using stacks and
registers where possible. The speed is comparable with a recursive call in highly optimised C or with the speed obtai-
nable when the function was programmed directly in assembly.

So, lazy evaluation gives a notational freedom but it can cost space and time. In CLEAN the default lazy

evaluation can therefore be turned into eager evaluation in several ways:

+ One can define (partially) strict data structures (see 8.5.3). Whenever such a data structure occurs
in a strict context (see 8.5.1), its strict components will be evaluated. Warning: infinite data structu-
res thus defined will cause non-termination when put into a strict context.

+ The CLEAN compiler has a built-in strictness analyser based on abstract reduction (N&cker, 1993)
(it can be optionally turned off). The analyser searches for strict arguments of a function and an-
notate them as strict (see 8.5.1). In this way lazy arguments are automatically turned into strict
ones. This optimisation does not influence the termination behaviour of the program. It appears
that the analyser can find much information. The analysis itself is quite fast.

+ The strictness analyser cannot find all strict arguments. Therefore one can also manually annotate
a function as being strict in a certain argument or in its result (see 8.5.1). Warning: when the corres-
ponding expression is non-terminating the annotation will invoke a non-terminating evaluation when
such a function is being evaluated.

+ The order of evaluation in a function body can be influenced with a strict let expression (see 6.4).
Again this may lead to non-termination.

13.4 Destructive updates using unigueness typing

In principle it is possible to update a uniquely typed function argument (*) destructively when the ar-
gument does not reappear in the function result (see Chapter 9). Performing destructive updates is only
sensible when information is stored in nodes (and hence not for elements of basic type (Int, Real , thar
or Bool) in a strict context because they are stored on the B-stack or in registers).

Destructive updates of important predefined data structures such arrays, records and files of course can
have a big influence on the space and time behaviour (a new node does not have to be claimed and fil-
led, the garbage collector is invoked less often and the locality of memory references is increased) of
programs. So, applications written using these data structures uniquely can run much more efficient in
less memory.

In principle it is possible that user-defined unique data structures are also destructively updated by the
CLEAN system : the space being occupied by a function argument of unique type can be reused destruc-
tively to construct the function result when (part of) this result is of the same type. So, a more space
and time efficient program can be obtained by turning heavily used data structures into unique data
structures. This is not just a matter of changing the uniqueness type attributes (like turning a lazy data
structure into a strict one). A unique data structure also has to be used in a “single threaded” way (see
Chapter 9). This means that one might have to restructure parts of the program to maintain the unicity
of objects.

The compiler will do compile-time garbage collection for user defined unique data-structures only in
certain cases. In that case run-time garbage collection time is reduced. It might even drop to zero. It
also possible that you gain even more then just garbage collection time due to better cache behaviour.

Bad news: this feasture is under test and switched of in the current release. You have to wait till the
next version of the CLEAN system.

13.5 Graphs versus constant functions versus macros

With a macro definition constants and simple functions can be textually substituted at compile time
(see Chapter 10). This saves a function call and makes basic blocks larger (see Plasmeijer and Van Eeke-
len, 1993) such that better code can be generated. A disadvantage is that also more code will be genera-
ted. Inline substitution is also one of the regular optimisations performed by a compiler. To avoid code
explosion a compiler will generally not substitute big functions. Macros give the programmer a possi-

102 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

bility to control the substitution process to get an optimal trade-off between the efficiency of code and
the size of the code.

The difference between a graph and a constant function is that multiple references to a graph will result
in sharing of that graph (see Chapter 5) while multiple reference to a (constant) function will result in
equally many function calls (see Chapter 6). Graphs have the property that they are computed only once
(call by need) and that their value is remembered within the scope they are defined in. A constant
function is evaluated each time it is applied. A graph saves execution-time at the cost of space con-
sumption. A constant function saves space at the cost of execution time. So, use graphs when the com-
putation is time-consuming while the space consumption is small and constant functions in the other
case.

13.6 The costs of overloading

In Section 8.4 the overloading mechanism of CLEAN is treated. The use of overloading and type classes
certainly gives a lot of notational convenience. However, one should be aware of the time and space
costs that might be caused by using overloading and type classes.

When an overloaded function is used in such a way that the system can replace the overloaded function
by the concrete one, no overhead is introduced (see Section 8.4).

Overloading can cause code explosion. When in a certain function another overloaded function is ap-
plied in such a way that the type system cannot deduce which concrete instance of the overloaded
function has to be used the system will in principle generate several versions of the function: one version
is made for each of the concrete (combination of) instances possible. In principle special versions will
only be generated for instantiations of basic types. Although the system avoids to generate versions that
are not being used, code explosion might occur when all versions are being used or when the system
simply cannot tell which versions are used. The latter can be the case when such functions are being
exported to other modules.

Overloading can cause inefficiency. Instances which are recursively defined in terms of the class itself
can lead to an infinite amount of concrete instances. New instances can also be declared in modules
that import the overloaded function. To handle all these cases the system will generate one special ver-
sion of the overloaded function which is parametrised with a type class record (see the introduction of
8.4). In such cases overloading is implemented by using records as a dictionary in which the concrete
function is looked up. This means that the record is used to store higher order functions. Calling such
a higher function in this way is much more inefficient than a direct call of the corresponding concrete
function. One can avoid unnecessary efficiency loss as follows. When an overloaded function is expor-
ted it is advised also to export the concrete instances of the overloaded functions. The concrete names
of the functions need not to be exported. The system needs only to know which concrete instances al-
ready exist.

13.7 Concurrency

The process annotations of CLEAN are designed to make parallel evaluation on loosely coupled parallel
machine architectures possible. A loosely coupled parallel architecture is defined as a multi-processor sys-
tem which consists of a number of self-contained computers, i.e. sparsely connected processors each
with private memory. An important property of such systems is that for each processor it is more effi-
cient to access objects located in its own local memory than to use the communication medium to ac-
cess remote objects. In order to achieve an efficient implementation it is necessary to map the computa-
tion graph to the physical processing elements in such a way that the communication overhead due to
the exchanging of information is relatively small. Therefore, the graph to be rewritten has to be divided
into a number of sub-graphs (grains) indicating the parts of the program graph that can be reduced in
parallel. A real speed-up on parallel architectures can only be achieved if redexes that yield a sufficient
large amount of computation, are evaluated in parallel while the intermediate links are sparsely used
(coarse grain parallelism).

TIME AND SPACE EFFICIENCY 103

13.8

Other efficiency issues

Here are some additional suggestions how to make your program more efficient:

+
+
+

+ + + + + +

Transform a recursive function to a tail-recursive function where possible.

Accumulate results in parameters instead of in right-hand side results.

When functions return multiple results put these results in a strict tuple (can be indicated in the
type).

Use macros for constant expressions instead of CAF's or functions.

Export the strictness information to other modules (the compiler will warn you if you don't).
Selections in a lazy context can better be transformed to functions which do a pattern match.
Higher order functions are nice but very inefficient, it is much better to use first order functions.
Constructors of high arity are inefficient.

Increase the heap space in the case that the garbage collector is going bananas.

concurrent

Clean A

Context-free syntax description

A.1 CLEAN program
A.2 Function definition

A.6 Class definition
A.7 Symbols

A.3 Graph definition and expression A.8 Identifiers

A.4 Macro definition
A.5 Type definition

A.9 Denotations

In this chapter the context-free syntax of CLEAN is given. In Section A.1 the construction of a CLEAN
program out of definition and implementation modules is given. Hereafter the syntax for, respectively,
defining functions (Section A.2), graphs (Section A.3,A.4), macros (Section A.4) and types (Section
A.5) is presented. Overloading is treated in Section A.6. These sections have some production rules in
common which are collected in Section A.7,A.8 and A.9.

Notice that the lay-out rule (see Section 3.6) permits the omission of the semi-colon (*; ') which ends a
definition and of the braces ('{" and "} ") which are used to group a list of definitions. The description of
the identifiers and literals can be found in Section 3.4.

The following notational conventions are used in the context-free syntax descriptions:

[notion]
{notion}
{notion}+
{notion}list
terninals
terninal s
symbols

{notion}#£str

A.l

means that the presence of notion is optional

means that notion can occur zero or more times

means that notion occurs at least once

means one or more occurrences of notion separated by comma's

are printed in bol d 10 pts couri er

that can be left out in lay-out mode are printed in out | i ned courier

are printed in italic and represent identifiers and literals (see also Section 3.4)
is used for concatenation of notions

means the longest expression not containing the string str

CLEAN program

CLEANProgram
Module

DefinitionModule

ImplementationModule

Definition

ImportDef

{Module}+

DefinitionModule

ImplementationModule

def i ni ti on modul e ModuleSymb ;
{Definition}

syst emnodul e ModuleSymb ;
{Definition}

[i mpl enent at i on] nodul e ModuleSymb ;
{Definition}

ImportDef
TypeDef
ClassDef
FunctionDef
GraphDef
MacroDef

= inport {ModuleSymb}-list ;
| fromModuleSymb i nport {ImportSymbols}-list ;

106

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

ImportSymbols

FunctionSymb
ConstructorSymb
SelectorVariable
FieldSymb
MacroSymb
TypeSymb
ClassSymb

Function definition

FunctionDef
FunctionTypeDef
FunctionType
ClassContext
UngTypeUnEqualities

DefOfFunction
FunctionAltDef

Pattern
BrackPattern

GraphPattern

PatternVariable

BasicValuePattern
ListPattern
LGraphPattern
TuplePattern
RecordPattern

ArrayPattern

LetBeforeExpression
Lets

Guard
BooleanExpr

FunctionBody

StrictLet
RootExpression

LocalFunctionDefs

[FunctionTypeDef] DefOfFunction

FunctionSymb : : FunctionType ;

(FunctionSymb) [Fix][Prec] [: : FunctionType] ;

[{[Strict] BrackType}+ - >] Type [ClassContext] [UnqTypeUnEqualities]
| ClassSymb-list TypeVariable {& ClassSymb-list TypeVariable }

, [{{UniqueTypeVariable}+ <= UniqueTypeVariable}-list]

{FunctionAltDef}+
FunctionSymbol {Pattern}
{LetBeforeExpression}

{{I| Guard}=[>] FunctionBody}+
[LocalFunctionAltDefs]

[Variable =:] BrackPattern
ConstructorSymbol
PatternVariable
BasicValuePattern
ListPattern

TuplePattern

RecordPattern

ArrayPattern

(GraphPattern)
ConstructorSymbol {Pattern}
GraphPattern ConstructorSymb GraphPattern
Pattern

Variable

BasicValue

[[LGraphPattern}-list [: GraphPattern]]]
GraphPattern

CharsDenot

(GraphPattern, {GraphPattern}-list)

{[TypeSymb|] {FieldSymbol [= GraphPattern]}-list}
{{GraphPattern}-list}

{{Arraylndex = Variable}-list}

StringDenot

Lets {GraphDef}+
Let | # | Let! | #!

BooleanExpr
GraphExpr

{StrictLet}
RootExpression ;
[LocalFunctionDefs]

let! { {GraphDef}+} i n
GraphExpr

[wi t h] { {LocalDef}+ }

CONTEXT-FREE SYNTAX DESCRIPTION

107

LocalDef

LocalFunctionAltDefs

GraphDef
FunctionDef
[wher e] { {LocalDef}+ }

ArraySelection
LambdaAbstr

CaseExpr

CaseAltDef

ArrayExpr. Arraylndex
\ {Pattern} - > GraphExpr

case GraphExpr of

{ {CaseAltDef}+ }

i f BrackGraph BrackGraph BrackGraph
{Pattern}

{LetBeforeExpression}

{{| Guard} - > FunctionBody}+

A.3 Graph definition and expression
GraphDef = Selector =[:] GraphExpr ;
Selector = BrackPattern
Graph = [Process] GraphExpr
GraphExpr = Application
| CaseExpr
| LetExpr
Application = {BrackGraph}+
| GraphExpr OperatorSymbol GraphExpr
BrackGraph = NodeSymbol
| GraphVariable
| BasicValue
| List
| Tuple
| Record
| RecordSelection
| Array
| ArraySelection
| LambdaAbstr
| (GraphExpr)
GraphVariable = Variable
| SelectorVariable
BasicValue = IntDenot
| RealDenot
| BoolDenot
| CharDenot
List = [[{LGraphExpr}-list [: GraphExpr]]]
| [GraphExpr [, GraphExpr]. . [GraphExpr]]
| [GraphExpr\\ {Qualifier}-list]
LGraphExpr = GraphExpr
| CharsDenot
Qualifier = Generators {|Guard}
Generators = {Generator}-list
| Generator {& Generator}
Generator = Selector <- ListExpr
| Selector <-: ArrayExpr
ListExpr = GraphExpr
ArrayExpr = GraphExpr
| Tuple = (GraphExpr, {GraphExpr}-list)
Record = {[TypeSymb]]J[RecordExpr &[{FieldSymbol = GraphExpr}-list]}
RecordSelection = RecordExpr. [TypeSymb. JFieldSymb
RecordExpr = GraphExpr
Array = {{GraphExpr}-list}
| {ArrayExpr & [{Arraylndex = GraphExpr}-list] [\ \ {Qualifier}-list]}
| {[ArrayExpr & GraphExpr\\ {Qualifier}-list}
| StringDenot
Arraylndex = [{IntegerExpr}-list]

108

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

LetExpresssion

[LocalFunctionAltDefs]

let { {LocalDef}+} i n GraphExpr

| Process = {*1*}
| | {* P[at ProcldExpr] *}
| ProcldExpr = GraphExpr
A.5 Macro definition
| MacroDef = [MacroFixityDef] DefOfMacro
| MacroFixityDef = (FunctionSymb) [Fix][Prec];
| DefOfMacro = FunctionSymbol {Variable} : == FunctionBody;
| [LocalFunctionAltDefs]
A.6 Type definition
TypeDef = AlgebraicTypeDef
| RecordTypeDef
| SynonymTypeDef
| AbstractTypeDef
AlgebraicTypeDef = ::TypelLhs = ConstructorDef {|ConstructorDef} ;
RecordTypeDef = ::TypelLhs = {{FieldSymbol : : [Strict] Type}-list};
SynonymTypeDef = ::TypeLhs:==Type;
AbstractTypeDef = ::TypelLhs;
TypelLhs = [*]TypeConstructor {[*] TypeVariable}
TypeConstructor = TypeSymb
UngTypeAttrib = *
| UniqueTypeVariable:
| .
ConstructorDef [QuantifiedVariables :] ConstructorSymb {[Strict] BrackType}

QuantifiedVariables

Fix
Prec
Strict

Type
BrackType
SimpleType

TypeConstructor

BasicType

PredefAbstrType

[QuantifiedVariables :] (ConstructorSymb) [Fix][Prec] {[Strict] BrackType}

{E. TypeVariable}+
i nfixl

i nfixr

infix

Digit

1

{BrackType}+
[UnqTypeAttrib] SimpleType
TypeConstructor
TypeVariable
BasicType
PredefAbstrType
ListType
TupleType
ArrayType
ArrowType
(Type)

TypeSymb

[]
({1
{1
{'}
{#
(->)

I nt
Real
Char
Bool
Wrl d
File
Procl d

CONTEXT-FREE SYNTAX DESCRIPTION 109
| ListType = [Type]
| TupleType = ([Strict] Type, {[Strict] Type}-list)
| ArrayType = {[Strict] Type}
| | {#BasicType}
| ArrowType = ({BrackType}+ - > Type)
A.6 Class definition
ClassDef = TypeClassDef
| TypeClassinstanceDef
| TypeClassinstanceExportDef
TypeClassDef = cl ass ClassSymb TypeVariable [ClassContext]

ClassMemberDef

TypeClassinstanceDef

TypeClassinstanceExportDef

[[wher e] { {ClassMemberDef}+ }]
cl ass FunctionSymb TypeVariable: : FunctionType;
cl ass (FunctionSymb) [Fix][Prec] TypeVariable: : FunctionType;

FunctionTypeDef
[MacroDef];

i nst ance ClassSymb [BrackType [default] [ClassContext]]
[[wher e] { {DefOfFunction}+ }]

export ClassSymb BasicType- list;

A.7 Symbols
NodeSymbol = FunctionSymbol
| ConstructorSymbol
FunctionSymbol = FunctionSymb
| (FunctionSymb)
ConstructorSymbol
= ConstructorSymb
| (ConstructorSymb)
OperatorSymbol = FunctionSymb
| ConstructorSymb
ModuleSymb = LowerCaseld | UpperCaseld | Funnyld
FunctionSymb = LowerCaseld | UpperCaseld | Funnyld
ConstructorSymb = UpperCaseld | Funnyld
SelectorVariable = LowerCaseld
Variable = LowerCaseld
MacroSymb = LowerCaseld | UpperCaseld | Funnyld
FieldSymb = LowerCaseld
TypeSymb = UpperCaseld | Funnyld
TypeVariable = LowerCaseld
UniqueTypeVariable = LowerCaseld
ClassSymb = LowerCaseld | UpperCaseld | Funnyld
A.8 Identifiers
LowerCaseld = LowerCaseChar~{IldChar}
UpperCaseld = UpperCaseChar~{IldChar}
.ib.Funnyld; = {SpecialChar}+
LowerCaseChar =a | b | ¢ | d | e | f | g9 | h | i |]
| k |V | m | n | o | p | a | r | s | t
o | v | w | x | vy | z
UpperCaseChar = A | B|] €| DJ| E | F | G| H | I | 3
| Kk | L | M| N | O P | Q| R | S | T
| U | Vv | W | X | Y | Z
SpecialChar =~ | @ | # | $ | % | ~ | ? | !
I + -0 <0 > 1 v\ 0 01 & =
IdChar = LowerCaseChar
| UpperCaseChar
I

Digit

110 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

A.9 Denotations
IntegerDenot = [Sign]~{Digit}+ /'] decimal
| [Sign]~0~{OctDigit}+ /| octal
| [Sign]~0x~{HexDigit}+ /' | hexadecimal
Sign = +|- |~
RealDenot = [Sign~[Digit~}+. {~Digit}+[~E[~Sign]{~Digit}+]
BoolDenot = True | Fal se
CharDenot = CharDel~AnyCharCharDel.CharDel
CharsDenot = CharDel~{AnyCharfCharDel}+.CharDel
StringDenot = StringDel~{AnyCharfStringDel}~StringDel
AnyChar = IdChar | ReservedChar | Special
ReservedChar =C 1)y A [y 0 1 1 5 1 |
Special = \n | \r | \f | \b // newlinereturn,formf,backspace
|\t |\ \ CharDel /| tab,backslash,character delete
| \StringDel /'] string delete
| \{OctDigit}+ /| octal number
| \ x{HexDigit}+ /1 hexadecimal number
Digit =0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
OctDigit =0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
HexDigit =0 | 1 | 2 | 3]| 4 | 5 | 6 | 7 | 8] 9
| A | B | C | D | E | F
| a | b | ¢ | d | e | f
CharDel

StringDel

concurrent

Clean B

Standard library

B.1 CLEAN’s Standard Environment B.3 Event based I/O
B.2 Creating interactive processes B.4 Operations for parallel evaluation

The standard library of CLEAN not only contains the well-known functions for arithmetic and mani-
pulation of lists, arrays and the like, but there is also a lot of support for file 1/0 and window based
I/0. The new CLeaN 1.0 I/O library makes the specification and combination of interactive programs
possible on a very high level of abstraction. Notice that this new I/O library is not yet available on all
platforms. The old CLeaN 0.8 library has been converted to CLEAN 1.0 syntax and is available on all
platforms.

In the CLEAN library there are many modules. Modules which names start with std... are the topmost
interface modules of the library to be used by CLEAN programmers. In this appendix we have printed
the names of types, constructors, functions, type-classes in bold to assist the reader in finding a defini-
tion.

The types of the functions in Std... are as general as possible and therefore include uniqueness type in-
formation (the funny dots and u: etc. in the types). For reasons of efficiency also the strictness infor-
mation derived by the strictness analyser is exported (the exclamation marks in the types). For most
programmers this information will often be of no importance, and if this is the case, simply ignore
these funny marks.

B.1 CLEAN'’s Standard Environment

CLEAN Standard Environment imports all definitions exported by the mentioned modules:
definition nmodul e StdEnv

i nport
St dOver | oaded,
St dd ass,

St dBool ,
Stdlnt,

St dReal ,
St dChar,

St dLi st,

St dChar Li st,
St dTupl e,

St dArray,
StdString,
St dFunc,

St dM sc,

StdFil e,
St dEnum

Below you find a summary of all the infix operators which are defined in these modules:

112

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Qper at or Associ ativity Pr ecedence Defined in Description

" bi nd’ none 0 St dFunc nonadi ¢ bi nd

1= left 1 StdString repl ace

| right 2 St dBool Bool ean or

&& ri ght 3 St dBool Bool ean and

<> none 4 Stdd ass Not equal

> none 4 St dd ass QG eater than

<= none 4 Stdd ass Smal l er than or equal to

>= none 4 Stdd ass Qeater than or equal to

== none 4 St dOver | oaded Equal s

< none 4 St dOver | oaded Smal | er than

++ ri ght 5 StdLi st Concatenate |ists

+++ ri ght 5 St dOver | oaded Concat enat e

+ | eft 6 St dOver | oaded Add

- |l eft 6 St dOver | oaded Subst ract

bi t or | eft 6 St dl nt Bi tw se or

bi t xor | eft 6 St dl nt Bi twi se xor

bi t and |l eft 6 St dl nt Bi tw se and

* left 7 St dOver | oaded Mul tiply

/ none 7 St dOver | oaded D vi de

<< none 7 St dl nt Shift left

>> none 7 Stdint Shift right

nod none 7 St di nt Modul o

rem none 7 St dl nt Remai nder

A right 8 St dOver | oaded Exponent

! | eft 9 StdLi st Li st subscri pt

o] ri ght 9 St dFunc Functi on composition

% | eft 9 St dOver | oaded Sice
B.1.1 StdOverloaded: predefined overloaded operations
definition nodul e StdOver| oaded
class (+) infixl 6 a la la -> a /1 Add argl to arg2
class (-) infixl 6 a la la -> a /1 Subtract arg2 fromargl
class zero a a Il Zero (unit element for addition)
class (*) infixl 7 a la la -> a /1 Multiply argl with arg2
class (/) infix 7 a la la -> a I D vide argl by arg2
cl ass one a a [l One (unit element for multiplication)
class (*) infixr 8 a la la -> a /1 argl to the power of arg2
cl ass abs a la -> a /1 Absol ute val ue
cl ass sign a la -> Int /1 1 (pos value) -1 (neg value) 0 (if zero)
class ~ a la -> a /1 -al
class (=9 infix 4 a la la -> Bool /1 True if argl is equal to arg2
class (<) infix 4 a la la -> Bool /1 True if argl is less than arg2
class tolnt a la -> Int /1 Convert into Int
class toChar a la -> Char /1 Convert into Char
cl ass toBool a la -> Bool /1 Convert into Bool
cl ass toReal a la -> Real /1 Convert into Real
class toString a la -> String /1 Convert into String
class fromnt a Il nt ->a /1 Convert fromlnt
class fronthar a I Char ->a /1 Convert from Char
cl ass fronBool a ! Bool ->a /1 Convert from Bool
class fronReal a | Real ->a /1 Convert from Real
class fronBtring a 1String -> a /1 Convert fromString
class length m I(ma) - > | nt /1 Nunber of elements in arg

/1 used for list like structures
I (linear tine)

class (9 infixl 9 a lat!t(!Int,!Int) ->a /1 Slice a part fromargl
class (+++) infixr 5 a la la ->a /1 Append args
B.1.2 StdClass: predefined classes

STANDARD LIBRARY

113

definition nodul e Stdd ass

i nport StdOver| oaded

from StdBool inport not
class PlusMn a | + -,
class MiltDiv a | *, /,

class Arith a |

one a

Zero a

PlusMn, MultDv, abs, sign, ~

class IncDec a | +, - one , zero a
wher e
inc :: la->a | +, one a
inc x :== x + one
dec :: la->a | -, one a
dec x :== X - one
class Enum a | <, IncDec a
class Eq a | ==
wher e
(<> infix 4:: lala -> Bool | Eq a
(<>) xy :==not (x ==1y)
class Od a | <a
wher e
(> infix 4:: 'a'a -> Bool ad a
(» xy :==y<x
(<=) infix 4::!'a'!a -> Bool ada
(<=) xy == not (y<x)
(>3 infix 4::!'a'a -> Bool ada
(>=) xy :==not (x<y)
mn::lala->a| Oda
mnxy :==if (x<y) xy
mx::!lala->a| Oda
mx Xy =if (x<y) y x
B.1.3 StdBool: operations on Booleans
syst em nodul e St dBool
i nport St dOver | oaded
i nstance == Bool
i nst ance t oBool Bool
i nstance toString Bool
i nstance fronBool Bool
i nstance fronBool {#Char} [l String :== {#Char}
/1 Additional Logical Operators:
not I Bool -> Bool /[l Not argl
(n infixr 2 ! Bool Bool -> Bool /1 Conditional or of argl and arg2
(&&) infixr 3 ! Bool Bool -> Bool /1 Conditional and of argl and arg2
11 M scel | aneous:
ot herwi se : == True /1 To be used in guards
B.1.4 StdiInt: operations on Integers

system nodul e Stdl nt

i nport St dOver | oaded

i nstance +
i nstance -

i nstance zero

I nt
I nt
I nt

114 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

i nstance * I nt
i nstance / I nt
i nst ance one I nt
i nstance * I nt
i nstance abs I nt
i nstance sign I nt
i nstance ~ I nt
i nstance == I nt
i nstance < I nt
i nstance tol nt I nt
i nstance toChar I nt
i nstance toReal I nt
i

nstance toString Int

nst ance fromn nt I nt

nst ance fromnt Char

nst ance fromn nt Real

nstance from nt {#Char} [l String :== {#Char}

/1 Additional functions for integer arithnetic:

(nod) infix 7 o Mnt Mint -> Int /1 argl nmodul o arg2

(rem infix 7 o Hnt Mint -> Int /1 remainder after division

gcd o Mnt Mint -> Int I/l Qeatest comon divider

Icm oo Int Mint -> Int I Least common multiple

/'l Test on Integers:

i sEven oo lint -> Bool [l True if argl is an even nunber
i sQdd oo int -> Bool /1 True if argl is an odd nunber

/1l Qperators on Bits:

(bitor) infix 6 =:: !Int !Int -> Int I Bitwise O of argl and arg2

(bitand) infix 6 :: !Int 'Int -> Int I Bitwi se And of argl and arg2

(bitxor) infix 6 =:: !Int !Int -> Int I Exclusive-O argl with mask arg2

(<9 infix 7 :: !lnt !int -> Int [/ Shift argl to the left arg2 bit places
(>>) infix 7 :: !lnt 'Int -> Int /[l Shift argl to the right arg2 bit pl aces
bi t not 2o Hint -> Int /1 (ne's conpl ement of argl

B.1.5 StdReal: operations on Reals
syst em nodul e St dReal

i nport St dOver | oaded

i nstance + Real

i nstance - Real

i nstance zero Real

i nstance * Real

i nstance / Real

i nst ance one Real

i nstance * Real

i nstance abs Real

i nstance sign Real

i nstance ~ Real

i nstance == Real

i nstance < Real

i nstance tolnt Real

i nst ance toReal Real

instance toString Real

instance fronReal Int

i nstance fronReal Real

instance fronReal {#Char} /[l String :== {#Char}

/1 Logarithm cal Functions:

STANDARD LIBRARY 115

I'n i IReal -> Real I Logarithm base e

| 0g10 ;. 'Real -> Real I Logarit hm base 10

exp i: IReal -> Real I/l e to to the power

sqrt :: IReal -> Real /1 Sguare root

/1 Trigononetrical Functions:

sin i IReal -> Real /1 Sinus

cos :: IReal -> Real /1 Cosinus

tan i 'Real -> Redl /1l Tangens

asi n :: TReal -> Real I/l Arc Sinus

acos i IReal -> Real /1 Arc Cosinus

at an :: TReal -> Real /1 Arc Tangus

/1 Additional conversion:

entier:: !Real -> Int /1 Cconvert Real into Int by taking entier
B.1.6 StdChar: operations on Characters
syst em nodul e St dChar

i nport St dOver | oaded

i nstance + Char

i nstance - Char

i nstance zero Char

i nstance one Char

i nstance == Char

i nstance < Char

i nstance tolnt Char

i nst ance toChar Char

instance toString Char

instance fronChar Int

i nstance fronChar Char

instance fronthar {#Char} [l String :== {#Char}

/1 Additional conversions:

di gtol nt :o 1Char -> Int /1 Convert Dgit into Int

t oUpper :: IChar -> Char /1 Convert Char into an uppercase Char

t oLower :: 1Char -> Qhar /1 Convert Char into a |owercase Char

/] Tests on Characters:

i SAsci i ;. !'Char -> Bool /1 True if argl is an ASA | character

i sCont rol :: I'Char -> Bool /1 True if argl is a control character

i sPrint :: 1'Char -> Bool [l True if argl is a printable character

i sSpace :: I'Char -> Bool [l True if argl is a space, tab etc

i sUpper :: 1'Char -> Bool /[l True if argl is an uppercase character

i sLower :: I'Char -> Bool /1 True if argl is a |owercase character

i sAl pha :: 1'Char -> Bool [l True if arglis a letter

isDgit ;1 IChar -> Bool [l True if arglis a digit

i sAl phanum :: 1Char -> Bool /[l True if argl is an al phanunerical character
B.1.7 StdList: operations on Lists
definition modul e StdLi st

i nport Stdd ass

i nstance == [a] | Eg a

i nstance < [a] | Od a

instance toString [a] | ToChar a /1 Convert [e to Char] into String
instance frongtring [a] | FromChar a /1 Convert String into [Char to €]
i nstance | ength [1

i nstance % [4a]

116

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

/] List Qperators:

@) infixl 9 :: [.a] Int ->.a

(+4) infixr 5 If.a] wf[.a] ->uw[.a]
flatten 'T.[a]] ->[a]

i SEnpty I[.a] -> Bool

/1 List breaking or permuting functions:

hd o 1[.a] ->.a

tl rtuf.al -> uf.a]

| ast o 1[.a] ->.a

t ake o lint [.a] ->[.4a]

drop Int tu:[.a] ->u:[.qa]

takeWiil e (a -> .Bool) !.[a] >.[]
dropWii | e (a -> .Booal) lu: [a] ->u:[a]
filter (a->.Bool) !.[a] >.[]

i nsert (aa->.Bool) alu:[a] ->u:[a]
renove |Int'u[a] -> u[.a]

reverse [a] -> [a]

span : !(a->.Bool) lu:[a] -> (.[a],u: [a]) 11
splitAt |Intu[a] ->([al,u:[.a])
/Il Ceating lists:

nap (.a->.b) !'[.a] ->[.b]
iterate (a->a) a->.[q

i ndexLi st I'.[a] ->[Int]

epeat n o lint a->.[4q]

r epeat ra->[4q]

unzi p '{(a,b)] ->([a],[b])

zi p2 '[.a] [.b] ->[(.a .b)]

zip '('[.a],[.b]) ->[(.a,.b)]

di ag2 I.[a] .[b] ->[.(a,b)]

di ag3 .[a] .[b] .[c] ->[.(a/b,c)]
/1 Fol di ng and scanni ng:

fol dl o (ha->.(.b->.3)) '.al!l[.b] ->.a
fol dr >t (ha->.(.b->.b)) '.b![.a ->.b

/1 for efficiency reasons, foldl
/1 so that applications of these functions wll

[/l foldl :: (.a->.(.b->.a) l.al![.b] ->.a
foldl opr | :==fold r |
wher e
foldl r [] =r
foldl r [a:x] =fold (opr a) x
/1 foldr .(> . (.b->.b)) '.b![.a] ->.b
foldr op r | ——foldr rl
wher e
foldr r []
foldr r [a:x] =op a (foldr r x)
scan :: (a->.(.b->a)) al[.b] ->.[q]

/1 (n Bool eans

and :: !'[.Bool] -> Bool
or 22 I[.Bool] -> Bool
any :: (.a->.Bool) ![.a] -> Bool
all :: (.a->.Bool) ![.a] -> Bool

/1 \Wen ordering is defined on list el ements

maxLi st 1 [a] ->a |
m nLi st SR Y| ->a |
sort lu:[a] ->u[a] |
ner ge I.[a] 'u:[4d] -> u:[a] |

/1 Wen equality is defined on |ist elenents

Q000
cooo

i sMenber al.[q] -> .Bool | Eq a
r enoveMenber s u: [a] .[a] ->uwla | BEga
r enoveDup I.[a] .[4a] | BEq a
limt I.[a] ->a | BEq a

11
11

/1l Get nth elenent of the |ist

/1 Append args

[/ el ++ el ++ ... ++ en

T

I/l Head of the |ist

/1 Tail of the list

/1 Last element of the |ist

/1 Take first argl elemof the Ilist

/[l Drop first argl elemfromthe |ist

/] Take el ements while pred hol ds

I/l Drop elements while pred hol ds

/1l Drop all elenents not satisfying pred
/1 Insert arg2 when pred arg2 el em hol ds
I Renove arg2!argl fromli st

/'l Reverse the |ist

(takeWile list,dropWile list)
(take n list,drop n list)

/1 f e0, f el, f e2,...

/1 a,f af (f a,...

I O0..length list - 1]r

/1 e0,e0,...,e0] of length n
I e0, e, ...

I ([a0,al,...],[bO,b1,...])
I (a0, b0), (a1, b1), ...

I (a0, b0), (a1, b1), ...

I (a0, b0), (a1, b0), (a0, bl), ...
/1 (a0, b0, c0), (a1, bo, c0), ...
op(...(op (op (op r e0) el)...en)

op e0 (op el(...(op r en)...)

and folr are defined as nacros,
be inlined !

/1 op(...(op (op (opr e0) el)...en)
/[l op e0 (op el(...(opr en)...)
[l [r,opr e0,op (opr e0) el,...
Il e0 & el ... & en
[l e0 || el... || en
/1 True, if ei is True for sone i
[l True, if ei is True for all i
a [/ Maxi mum el emrent of |i st
a [/ M ni mrum el enent of i st
a [// Sort the list
a [/l Merge two sorted lists giving a sorted |ist
I Is element in |ist
/1l Renmove arg2s fromlist argl
/1 Renove all duplicates fromlist
I [...,a4@]

STANDARD LIBRARY 117

/1 Qverloaded definition of sum product, average

sum o V. [a] ->a | +, zero a /1 sumof list elements, sum[] = zero

prod ::1.[a] ->a | *, one a /1 product of list elements, prod [] = one

avg o V.[a ->a | / , IncDec a /1 average of list elenents, avg [] gives error!
B.1.8 StdCharList: operations on lists of characters

definition nodul e StdCharlLi st

I Functions for outlining

cjustify o bnt !'[.Char] -> .[Char] [/l Center [Char] in field with width argl
ljustify o int !'[.Char] -> .[Char] [l Left justify [Char] in field with width argl
rjustify o nt !'[.Char] -> [Char] /1 Right justify [Char] in field with width argln
flatLines 2o [u:Char]] -> [u: Char] /1 Concatenate by addi ng new i nes
nkLi nes :o [Char] -> [[Char]] /1 Split in lines renoving new ines
spaces o loint -> . [Char] /1 Make [Char] containing n space characters
B.1.9 StdTuple: operations on Tuples
definition nmodul e StdTupl e
inport Stdd ass
i nstance == (a, b) | Eqa&EDb
i nstance == (a,b,c) | Eqg a &Egb & Eq c
i nstance < (a, b) | Oda&Odb
i nstance < (a,b,c) | Gda&CGdb&Odc
fst :: I(l.a,.b) ->.a /1 t1 of (t1,t2)
snd :: !(.a!.b) ->.b /1 t2 of (t1,t2)
fst3 o I(l.a,.b,.c) -> .a /1 t1 of (t1,t2,t3)
snd3 o I(.a,!.b,.c) ->.b [l t2 of (t1,t2,t3)
t hd3 o 1(.a, .bl.c) ->.c /1 t3 of (t1,t2,t3)
app2 o1 (.(.a->.b),.(.c ->.d)) !(.a,.c) ->(.b,.d) /[l f (a,b) = (f a,f b)
app3 o !1(.(.a->.b),.(.c ->.d),.(.e ->.f)) I'(.a,.c,.€) ->(.b,.d,.f

Il f (a,b,c) =(f a,f b, f c)
curry o l.((.a,.b) ->.c) .a.b->.c Il fab =f (ab)
uncurry :: l.(.a->.(.b->.c)) !(.a .b) ->.cC Il f (a,b) =fab
B.1.10 StdArray: operations on Arrays

definition nodul e StdArray
inport _SystenmArray
system nodul e _SystenArray

/*

\Mr ni ng:

1) Arrays currently get a special treatment in the CLEAN conpiler.
This neans that you shoul dn't rename the functions decl ared here,
and that you shouldn't nake other instances of Array

2) The structure of this nodule will change in a future rel ease

*/

class Array a

wher e
sel ect ol (a.e) llnt -> .e | select_u e
usel ect ol uw(ae) lInt -> (e, ! u:(ae)) | uselect_u e
si ze o .(a.e) ->1Int | size_u e
usi ze ol uw(a.e) ->(Mnt, ! u:(a .e)) | usize u e
updat e o !1* (a.e) !lnt .e->* (a.e) | update_u e

createArray o lint e ->* (ae) | createArray_u e

118

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

i nstance Array {} default, {'}, {#

class ArrayEleme | select_u, uselect_u, size_u, usize_u, update u, createArray_u,
defaul t Arrayval ue e
/1 Qperation on unboxed arrays
class select_u e ! { #.e} !Int -> .e
class uselect_u e ctw{ #e}llnt ->(le, ! u{ #e})
class size_u e N { #.e} ->1Int
class usize u e b w{ #e} ->Int, ! u{ #e1})
class update_u e P *{ #e} llnt l.e->*{ #.e}
class createArray u e Iint 'e ->*{ #e }
i nstance sel ect_u a, Int, Real, Char, Bool, File
i nstance usel ect _u a, Int, Real, Char, Bool, File
i nstance size_ u a, Int, Real, Char, Bool, File
i nstance usize u a, Int, Real, Char, Bool, File
i nstance update_u a, Int, Real, Char, Bool, File
instance createArray_u a, Int, Real, Char, Bool, File
cl ass defaultArrayvalue e :: .e
instance defaultArrayvalue Int, Real, Char, Bool, File, a
B.1.11 StdString: operations on Strings
system nodul e StdsString
i nport St dOver | oaded
String : == {#Char}
i nstance == {#Char}
i nstance < {#Char}
i nstance toString {#Char}
i nstance tolnt {#Char}
i nst ance toReal {#Char}
i nstance frongtring {#Char}
i nstance % {#Char}
i nstance +++ {#Char}
/] additional operator
(:=3) infixl 1 :: I'String !(!Int,!Char) -> String /1 non-destructive update of the i-th el ement
B.1.12 StdFunc: operations on polymorphic functions

definition nodul e StdFunc

/1 Some d assical Functions

| l.a->.a /1 ldentity function

K l.a.b->.a /1 Konstant function

S .(a->.(.b->.(a->.¢))) .ba->.c [/ distribution function

flip .(.a->.(.b->.¢)) .b.a->.c /1 Fip argunents

(o) infixr 9 u(.a->.b) u(.c->.a ->u(.c ->.h) /1 Function conposition

twice '(.a->.a) .a ->.a I f (f x)

whi | e !(a->.Bool) (a->a) a-> a /1 while (p x) (f x) else x

unti | !(a->.Bool) (a->a) a-> a [l until (p x) x else (f x)

iter 'I'nt (.a->.a) .a->.a [f (f..(f x)..)

/1 Some handy functions for transform ng uni que states:

::St sa:=s ->(a-5)

seq '[.(.s ->.s)] .s ->.s [l fn-1 (..(f1 (fO x))..)

seqLi st '[St .s .a] .s ->([.4a],.s) [l fn-1 (..(f1 (fO x))..)
/1 monadi c style:

STANDARD LIBRARY 119

(Cbind) :: w(St .s.a) vi(.a->.(St .s.b) ->u(St .s .b), [u<=v, u<=w
return wa->u (st .s ua)

B.1.13 StdMisc: miscellaneous functions

system nodul e StdM sc

abort (o 1String -> . a /1l stop reduction, print argunent and core dunp
undef ioo.a /Il fatal error, stop reduction.
B.1.14 StdFile: File based 1/O

systemnodul e StdFile
inport StdString

I Fil e nodes synonyns

FReadText == 0 /1 Read froma text file
FWit eText =1 /1 Wite to a text file
FAppendText == 2 /1 Append to an existing text file
FReadDat a == 3 /1 Read froma data file
FWiteData == 4 /1 Wite to a data file
FAppendDat a =5 /1 Append to an existing data file

/1 Seek modes synonyns

FSeek Set =0 I New position is the seek of fset
FSeekCQur =1 I New position is the current position plus the seek of fset
FSeekEnd == 2 I New position is the size of the file plus the seek of fset

*Files
/1 Qpening and dosing a File fromthe FileSystem
openfiles::!*Wrld -> (! *Files,!*Wrld)
closefiles::!*Files I *Wrld -> *Wrld

fopen::!String !Int !*Files -> (!Bool,!*File,!*Files)
/* Qpens a file for the first tine in a certain node (read, wite or append, text or data).
The Bool ean out put paraneter reports success or failure. */

fclose::!*File I*Files -> (!Bool,!*Files)

freopen::!'*File !Int -> (!Bool,!*File)
/* Re-opens an open file in a possibly different node.
The Bool ean indi cates whether the file was successfully cl osed before reopening. */

I Reading froma File:

freadc::!*File -> (!Bool,!Char,!*File)
/* Reads a character froma text file or a byte froma datafile.
The Bool ean i ndi cates succes or failure */

freadi::!*File -> (!Bool,!Int,!*File)

/* Reads an Integer froma textfile by skipping spaces, tabs and new i nes and
then reading digits, which may be preceeded by a plus or ninus sign.
Froma datafile FReadl will just read four bytes (a CLEAN Int). */

freadr::!'*File -> (!Bool,!Real,!*File)

/* Reads a Real froma textfile by skipping spaces, tabs and new ines and then
reading a character representation of a Real nunber.
Froma datafile FReadR wi Il just read eight bytes (a CLEAN Real). */

freads:: ! *File !Int -> (!'String,!*File)

/* Reads n characters froma text or data file, which are returned as a String.
If the file doesn't contain n characters the file will be read to the end
of the file. An enpty String is returned if no characters can be read. */

freadline :: !'*File -> (!String,!*File)
/* Reads a line froma textfile. (including a newine character, except for the |ast
i ne) FReadLi ne cannot be used on data files. */

/1 Witing to a File:

120 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

fwitec :: !Char !'*File -> *File
/* Wites a character to a textfile.
To a datafile fwitec wites one byte (a CLEAN CHAR.

fwitei ::!lnt I*File -> *File
/* Wites an Integer (its textual representation) to a text file.
To a datafile FWitel wites four bytes (a CLEAN Int).

fwiter ::!Real !'*File -> *File
/* Wites a Real (its textual representation) to a text file.
To a datafile FWiteR wites eight bytes (a CLEAN Real).

fwites ::!String '*File -> *File

/* Wites a String to a text or data file. */

/1 Testing:

fend ::!*File -> (!Bool,!*File)

/* Tests for end-of-file. */

ferror ::!*File -> (!Bool,!*File)

/* Has an error occurred during previous file |I/O operations? */

f posi tion o I*File -> (lInt, ! *File)

/* returns the current position of the file polnter as an Integer.
This position can be used |ater on for the FSeek function. */

fseek ::!*File llnt IInt -> (!Bool,!*File)

/* Move to a different position in the file, the first Integer argunent is the offset,

the second argunent is a seek node. (see above). True is returned if successful. */
11 Predefined files.

stdio ::!*Files -> (!*File, ! *Files)
/* Qpen the 'Console' for reading and witing. */

stderr ::*File
/* Qpen the '"Errors' file for witing only. May be opened nore than once. */

/1 Qpening and reading Shared Fil es:

sfopen ::!String !Int !'*Files -> (!Bool,!File ! *Files)

/* Wth SFQpen a file can be opened for reading nore than once.
Onh a file opened by SFQpen only the operations begi nning with SF can be used.
The SF... operations work just |ike the corresponding F... operations.
They can't be used for files opened with FCpen or FRe(pen. */

sfreadc :: IFile -> (!Bool,!Char,!File)
sfreadi o !File -> (!Bool,!Int,!File)
sfreadr :: IFile -> (!Bool,!Real,!File)
sfreads o IFile llnt ->(lString,!FiIe)
sfreadline o IFile -> (!String,!File)

sfseek o IFile!lnt !'Int -> (!Bool,!File)
sfend :: IFile -> Bool

sfposition c: IFile ->1Int

/* The functions SFEnd and SFPosition work |ike FEnd and FPosition, but don't return a
new file on which other operations can continue. They can be used for files opened
with SFpen or after FShare, and in guards for files opened with FOpen or FReCpen. */

/1 Convert a *File into:

fshare o I*File -> File

/[* Change a file so that fromnowit can only be used with SF... operations. */

B.1.15 StdEnum: handling dot-dot expressions

The definitions listed in st denumare used by the CLEan compiler to handle dot-dot expressions. Dot-
dot expressions can be used for objects of type I nt, char and Real . Dot-dot expressions can also be used
of objects of arbitrary user-defined types provided that the indicated classes have been instantiated for
objects of that type.

definition nmodul e StdEnum

i nport _Syst enEnum

STANDARD LIBRARY

121

/*
This nodul e nust be inported if dotdot expressions are used
[from..] -> fromfrom
[from.. to] -> _fromto fromto
[from then ..] -> fromthen fromthen
[from then ..] -> fromthen_to fromthen to
*/

syst em nodul e _Syst enEnum

from Stdd ass inport Enum
from StdBool inport not

from roa ->[4a] | I'ncDec , Od a
fromto cr lala -> [a] | Enuma
fromthen roa a -> [4a] | Enuma
fromthen_to :: lala'la -> [a] | Enuma
Iltegab -=not (b < a)

mnus a b :==a-b

i npl ement ati on nodul e _Syst enEnum

i nport St dEnv

Ilteq ab :==not (b < a)
nmnus ab:==a->b
from:: a->[a] | IncDec, Od a
fromn =[n| _from(inc n)]
fromto :: la'la->[a] | Ehuma
fromto n e

n<=e =[n| _fromto (inc n) e]
| otherw se =]
fromthen :: a->[a]l | Ehuma

a
fromthen nl1 n2 = [nl | _fromby n2 (n2-nl)]
wher e

fromby :: aa->[a] | Euma

fromby ns =[n| _fromby (n+s) s]

fromthen_to : !lalala->[a] | Enuma
fromthen to nl n2 e

| n1 <= n2 = _fromby_to nl (n2-nl) e
| otherwi se = fromby down_to nl (n2-nl) e
wher e
fromby to :: 'lala'la->[a] | Ehuma
fromby tons e
n<=e =[n| _fromby to (n+s) s e]
| otherw se =]
fromby down_to :: 'a'lala->[a] | Enuma
fromby down tons e
| n>=e =[n| _fromby down_to (n+s) s €]
| otherwise =11
fromto :: !Int !'Int -> [Int]
fromto n e
n<=e =[n| fromto (inc n) €]
| otherwi se =[]1B1.15
B.2

Creating interactive processes

definition nodul e StdEventl O

InitlO1l p

== [.ICrunction (PState | p)]

1Cef | p

= { ioDeflnit :: .InitlOI p /1 The initial actions of the process
i oDef About :: String /1 The nane of the process

}

122 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

/1 Starting an interactive process:

Qenl O :: 1 (1CDef .1 .p) (.1,.p) '*Vorld ->*Wrld

/* OpenlOstarts an interactive process specified by the | Cef argunent. The program state
argunent consisting of a local and public part serves as initial programstate. |If the
interactive process has been successfully created, the functions in InitlO are eval uated
fromleft-to-right. This is followed by the further evaluation of the interactive
process. In the cause of the eval uati on many new processes can be created and terninated.
The interactive process created by QpenlOis the root process. penl Otermnates as
soon as all interactive processes (including the root process) have term nated. (penl O
returns the final world, consisting of the final file systemand the event stream */

New O :: '(l1Qpef .I .p) (.1,.p) !(ICetate .I° .p’) ->1Cstate .1° .p

/* If the interactive process is active, New O starts a new interactive process that wll
run interleaved with the current interactive processes. The new interactive process is
specified by the | CDef argument. Oreation of the new interactive process is done as in
Qpenl Q The functions in InitlOare evaluated fromleft-to-right before any abstract
event handl er of the new interactive process is evaluated. The new interactive process
becones the active process (so the current interactive process is deactivated).
If the interactive process is inactive, New O does nothing. */

SharelO :: I'(1Cef .1 .p) .1 I(ICstate .1° .p) ->ICstate .1 .p

/* 1f the interactive process is active, SharelOstarts a new interactive process that will
run interleaved with the current interactive processes. The new interactive process is
specified by the 1 CDef argurment. Creation of the newinteractive process is done as in
enl Q The functions in InitlOare evaluated fromleft-to-right before any abstract
event handl er of the new interactive process is evaluated. The new interactive process
becorres the active process (so the current interactive process is deactivated). The new
interactive process can communicate with all interactive processes by means of the file
systemor by nessage passing. The new interactive process can communicate with all
interactive processes of the process group of the interactive process that spawned it by
means of the public program state conponent.

If the interactive process is inactive, Sharel O does nothing. */

NewSubl O :: '(1CDef .1 .p) (.I,.p) !(ICstate .1° .p°) ->I1Cstate .1~ .p

/* |If the interactive process is active, NewSubl O starts a new interactive subprocess that
will runinterleaved with the current interactive processes. The new interactive
subprocess is specified by the | CDef argunment. Creation of the new interactive subprocess
is done as in New Q
A subprocess differs fromthe interactive processes created above by sharing the user
interface of its parent process. Logically, all its abstract devices are private to the
subprocess, but to the user they will appear to be nerged with the abstract devices of
the parent process. Inter-process conmmuni cation proceeds as usual. Every interactive
process (including subprocesses) can create further subprocesses. This results in a tree
of subprocesses, all of which are subordinate to the top interactive process. (See al so
the notes of termnation at QuitlQ)

If the interactive process is inactive, NewSubl O does nothing. */

ShareSublO :: !(1CDef .I .p) .l !(ICBtate .1 .p) -> 1CBtate .1~ .p

/* 1f the interactive process is active, NewSubl O starts a new interactive subprocess that
will runinterleaved with the current interactive processes. The new interactive
subprocess is specified by the | CDef argunment. Creation of the new interactive subprocess
is done as in SharelQ
A subprocess differs fromthe interactive processes created above by sharing the user
interface of its parent process. Logically, all its abstract devices are private to the
subprocess, but to the user they will appear to be nerged with the abstract devices of
the parent process. Inter-process communi cation proceeds as usual. Every interactive
process (including subprocesses) can create further subprocesses. This results in a tree
of subprocesses, all of which are subordinate to the top interactive process. (See al so
the notes of termnation at QuitlQ)

If the interactive process is inactive, NewSubl O does nothing. */

Qitlo o 1(1C8tate .1 .p) -> 1C8tate .1 .p
/* QitlOrenoves all abstract devices that are held in the interactive process. |f the

interactive process has subprocesses then these will also be quitted recursively. As a
result evaluation of this interactive process including all subprocesses will terninate. */

STANDARD LIBRARY 123

H del O cr I(ICstate .1 .p) -> 1 C8tate .1 .p
Showl O o1 (1Cstate .1 .p) -> 1C8tate .1 .p

/* If the interactive process is active, Hdel O hides the interactive process, and Show O
nmakes it visible. Note that hiding an interactive process does NOT disabl e the process
but sinply nakes it invisible.

If the interactive process is inactive, Hdel Oand Show O do not hing. */

Request1 O :: I'String !(ICstate .1 .p) -> | Cstate .1 .p

/* If the interactive process is inactive, RequestlO alerts the user that the interactive
process needs to becone active. If the string argunent is not enpty, then this alert wll
consist of a notice displaying the string. An interactive process can issue an arbitrary
nunber of requests.

If the interactive process is active, Request!lO does nothing. */

B.3 Event based I/O

B.3.1 Windows

StdWindowDef: the window device

definition nodul e StdW ndowDef

i nport St dl CCommon
from StdPicture inport DrawFunction, Picture

W ndow c ps = Wndow Title (c ps) [WndowAttribute ps]
W ndowLS c |s ps = Wndow.S Is Title (c Is ps) [WndowAttribute *(Is, ps)]
D al ogWndow c ps = D al ogW ndow Title (c ps) [WndowAttribute ps |

D al ogWndow,S c Is ps = D alogWndowS Is Title (c Is ps) [WndowAttribute *(Is, ps)]

W ndowFr ane : == Rectangl e
WndowAttri bute ps /1 Default:
/1 Attributes for all w ndows:
= Wndow d | /1 noid
W ndowPos | t enPos /1 system dependent
W ndowsSi ze Si ze /'l screen size
Wndow t enBSpace Size /1 system dependent
W ndowCk Id /1 no default (Quston)ButtonControl
W ndowCancel Id /1 no cancel (Quston)ButtonControl
W ndowsSt andBy /1 syst em dependent
W ndowH de [/ initially visible
W ndowd ose (1 CFunction ps) I/ user can't close w ndow
W ndowUpdat e (Updat eFunct i on ps) /1 no update actions
/1 Attributes for D al ogWndows only:
| W ndowMar gi n Si ze /1 system dependent
/1 Attributes for Wndows only:
| WndowSel ect State Sel ect State Il Able
| W ndowDorai n Pi ct ur eDonai n /1 {cornerl=zero,
/1 corner2={max range, max range}}
WndowQri gi n Poi nt /1 Left top of picture domain
W ndowl ni t Dr aw [DrawFuncti on] /1 No initial draw ng in w ndow
W ndowM ni nunSi ze S ze /1 syst em dependent
W ndowResi ze (W ndowResi zeFuncti on ps) /1 fixed size
W ndowAct i vat e (1 CGFunction ps) /11
WndowDeactivate (1CFunction ps) /11
W ndowMbuse Sel ect State (MuseFunction ps) // no nouse i nput
W ndowkey Sel ect State (KeyFunction ps) // no keyboard i nput
W ndowCur sor Qur sor Shape /1 no change of cursor
W ndowResi zeFuncti on ps
;== WndowFr arme -> /1 old w ndow frane
W ndowFr ane - > /1 new wi ndow frane
ps -> ps
Qur sor Shape
= StandardQursor
| BusyCQur sor
| | BeanCur sor
| O ossCQur sor
I

Fat O ossQur sor

124 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Arr owQur sor
| H ddenCur sor

StdWindowType: window types

definition modul e St dW ndowType
i nport StdOver! oaded

W ndowType
i nstance == W ndowType
i nstance toString WndowType
W ndowType ;. WndowType
W ndowLSType 1 WndowType
D al ogWndowType :: WndowType

D al ogW ndowLSType :: WndowType

StdWindow: window handling

definition nodul e StdW ndow

i nport St dl CComon

i nport St dW ndowbef

i nport St dW ndowType

i nport StdControl

from iostate inport |CState, PState, Files
from StdPicture inport DrawFunction, Picture

/1 Functions applied to non-existent wi ndows or unknown ids have no effect.

cl ass Wndows wdef

wher e
QpenW ndow oo Mint (wdef (PState .1 .p)) !(1Cstate .1 .p) -> 1 CState .1 .p
Qpenhbdal W ndow : : I'(wdef (PState .1 .p)) !(PState .| .p) -> PState .| .p

i nstance Wndows (W ndow c) | Controls ¢
i nstance Wndows (W ndowLS cls) | Control sLS c
i nstance Wndows (D alogWndow c¢) | Controls ¢
i nstance Wndows (D al ogWndow,S c |s) | Control sLS c

/* 1f the interactive process is active, Qpen(Mdal)Wndow opens the given w ndow.
penhbdal W ndow:
al ways opens a wi ndow at the front-nost position.
penW ndow:
opens a w ndow behi nd the wi ndow i ndi cated by the integer index.
Index value 1 indicates the top-nost w ndow
| ndex val ue Mindicates the bottomnost nodal window, if there are Mnodal w ndows.
I ndex value N indicates the bottommost window, if there are N w ndows.
If index<M then the new wi ndow i s added behi nd t he bottom nost nodal w ndow
(at index M.
If index>N then the new w ndow i s added behi nd the bottom nost w ndow (at index N).
In case a windoww th the same Id is already open then that w ndow will be activated.
In case the w ndow does not have an Id, it will obtain an Id which is fresh with respect
to the current set of windows. The Id can be reused after closing this w ndow
CpenhMbdal W ndow t er mi nat es when:
t he wi ndow has been cl osed (by nmeans of d oseWndow), or
the process has been terninated (by nmeans of QiitlOQ, or
anot her wi ndow wi th the sane Id has been acti vated.
If the interactive process is inactive, (pen(Mdal)Wndow does nothing. */

d oseW ndow o lid !(I1Cstate .1 .p) -> 1Cstate .l .p

/* 1f the interactive process is active, and the indicated windowis not an inactive
nmodal wi ndow, then O oseWndow cl oses the indi cated w ndow.
In case the Id was generated by QpenWndow, it nay now becone reusabl e for new w ndows.
If the interactive process is inactive, doseWndow does nothing. */

QpenControl s :: 11d (cdef (PState .1 .p)) !(PState .| .p) -> PState .1 .p
| Controls cdef

STANDARD LIBRARY 125

d oseControl s 2ood [1d] I(PState .| .p) -> PState .1 .p

/* (OpenControls adds the given controls argunent to the indicated window The |ayout of the
new control structure is the same as when the w ndow woul d be opened gi ven the argument
controls appended to its current controls, and its current size.

d oseControl s renoves the controls with the given Ids fromthe indicated wi ndow The
layout of the remaining control structure does not change. The wi ndow is not resized.

*/

Control Si zes : I'(cdef .ps) !(Optional Size) !'(Optional Size) !(ICstate .1 .p)
-> (I[Size],!ICstate .1 .p) | Controls cdef

Control LSS zes :: I(cdef .lIs .ps) !I(Qptional Size) !'(Optional Size) !(ICstate .1 .p)
-> (I[Size],!ICstate .1 .p) | Control sLS cdef

/* Control (LS) S zes cal cul ates the sizes of the given control definitions in the size as
they woul d be opened as el ements of a w ndow
The ptional Size argunents are the prefered nargins and item spaces respectively (see
al so the (Wndow Control)Margin and (Wndow Control)ltenBpace attributes). If None is

specified, the default values for the margins and item spaces are used. */

H deW ndows I1d] I(lICstate .1 .p) -> |Cetate .1 .p

ShowW ndows 111d] I(lCstate .1 .p) -> I Cetate .1 .p

Get H ddenW ndows I(lICstate .1 .p) -> (![Id],!ICetate .| .p)

Get ShownW ndows I(lICstate .1 .p) -> (![Id],!ICstate .| .p)

/* 1f the interactive process is active, (H de/ Show) Wndows hi des/ shows the indicated
W ndows.
If the interactive process is inactive, (H de/Show)Wndows does not hi ng.
Get (H dden/ Shown) Wndows yi el ds the list of currently visible/invisible w ndows. */

Act i vat eW ndow 2o lid I(ICstate .| .p) -> ICstate .1 .p

/* 1f the interactive process is active, ActivateWndow makes the w ndow with the given
Id the active window In case the Id is unknown ActivateWndow has no effect.
If the interactive process is inactive, ActivateWndow does not hi ng. */

Get Act i veW ndow v I(lICstate .1 .p) -> (!Optional Id, !'ICstate .1 .p)

/* GetActiveWndow returns the Id of the window that currently has the input focus of
the interactive process. None is returned if there is no such w ndow. */

St ackW ndow o lidtid ' (ICstate .1 .p) -> ICetate .1 .p

/* |If the process is active, StackWndow idl id2 places the window w th idl behind the
window with id2. If id2 indicates a nodal w ndow, then the wi ndowwith idl is placed
behi nd the | ast nodal w ndow
If idl or id2 is unknown, or idl indicates a nodal wi ndow, or the process is inactive,

St ackW ndow does not hi ng. */
Get W ndowst ack N I(1Cstate .1 .p) -> (!'[(1d, WndowType)],!ICstate .| .p)
Get Wndows St ack vl I(lICstate .1 .p) -> (![I1d], IICetate .1 .p)
Get D al ogsSt ack i '(ICstate .1 .p) -> (![Id], IICstate .1 .p)

/[* GetWndowstack returns the Ids and WndowTypes of all currently open w ndows (including
the hi dden wi ndows), in the current stacking order (the head el ement Id indicates the
t op- nost wi ndow) .
Get (Wndows/ Di al ogs) Stack is equal to Get WndowsStack, restricted to Wndow(LS) Type and
D al ogW ndow(LS) Type. */

Get Def aul t Mar gi ns v I(ICstate .1 .p) -> (!Size, IlCstate .1 .p)
Get Def aul t 1t enBpaces :: '(ICstate .1 .p) -> (!Size, IICetate .1 .p)
Get W ndowMar gi n o lid I(lICstate .1 .p) -> (! Optional Size,!lICstate .| .p)
Get Wndow t enBpace d I(ICstate .1 .p) -> (!Optional Size,!ICstate .| .p)

/* GetDefaul t (Margins/ltenBpaces) yield the default values for the margins and item spaces.
Get WndowMargin yields the current nargin of the indicated windowif this windowis a
D al ogWndow. In case the windowis not a D al ogWndow, or does not exist, None is
yi el ded.
Get Wndowl t enSpace yi el ds the current itemspace of the indicated window In case the
wi ndow does not exist, None is returned. */

126 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Enabl eW ndow 'nd I(ICstate .| .p) ->ICstate .| .p
D sabl eW ndow 'nd I(ICBtate .1 .p) -> 1 C8tate .1 .p
Enabl eW ndowMbuse 2o lid I(ICstate .1 .p) ->IC8tate .l .p
D sabl eWndowwuse :: !lId I(1CBtate .1 .p) -> 1 Cstate .1 .p
Enabl eW ndowkey ootid I(ICstate .| .p) ->IC8tate .l .p
D sabl eW ndowkey I'd I(ICstate .1 .p) ->ICstate .1 .p
[* (En/ D s)abl eWndow (en/dis)ables input handling of nouse and keyboard.

(En/ D s) abl eW ndowMbuse (en/dis)abl es input handl i ng of nouse.

(En/ D s) abl eWndowkey (en/dis)ables input handling of keyboard.

For all involved conponents, disabling a conponent overrides the SelectStates of its
el ements, whi ch becone unsel ectabl e. Enabling a di sabl ed conponent re-establishes the
Sel ect States of its el enments.

The functions have no effect in case of invalid Ids or D al ogW ndows. */
Get WndowSel ect State o lid I(1Cstate .1 .p) -> (! Optional SelectState,!1CState .1 .p)
Get WndowMbuseSel ect State :: !ld ! (1Cstate .1 .p) -> (! Optional SelectState,!ICstate .1 .p)
Get WndowKeySel ect Stat e s lid ! (ICstate .1 .p) -> (!Optional SelectState,!ICstate .| .p)

/* GetWndowSel ect State yields the current Sel ectState of the indicated w ndow.
Get Wndow(Mouse/ Key) Sel ect St at e
yields the current SelectState of the nouse/ keyboard of the
i ndi cat ed wi ndow.

The functions return None in case of invalid Ids or D al ogW ndows. */
Dr awl nW ndow :: 1ld '[DrawFunction] !(ICstate .I .p) -> ICstate .1 .p
/1 Draw in the window (behind all Controls). Invalid Ids have no effect.
Set W ndowPos :: lld !'ltenPos I (1Cstate .1 .p) -> ICstate .1 .p

/* If the interactive process is active, SetWndowPos pl aces the wi ndow to the indicated
position. If the ItenPos argunent refers to the Id of an unknown w ndow (in case of
Lef t O / R ght To/ Above/ Bel ow), Set WndowPos has no effect. Set WndowPos al so has no effect
if the windowis noved of the screen, if the Id is unknown, or if the interactive process
is inactive. */

Get W ndowPos o lid (1Cstate .1 .p) -> (! Optional ItenOfset,!ICetate .| .p)
/* GetWndowPos returns the current itemoffset position of the indicated w ndow.
The correspondi ng ItenPos is (LeftTop,of fset). None is returned in case the w ndow
does not exi st.
MoveW ndowFr ane 22 1ld Vector !'(PState .1 .p) -> PState .1 .p

/* MoveW ndowFr ane noves the orientation of the w ndow over the given vector, and updates
the window if necessary. The wi ndow frame is not moved outside the PictureDomain of the

w ndow,
In case of unknown Id, or of D al ogWndows, MyveW ndowFrane has no effect. */
Get W ndowFr ane oo tid I(lICstate .1 .p) -> (!WndowFrane, ! Cstate .1 .p)

/* GetWndowFrame returns the currently visible frame of the windowin terns of the
Pi ctureDonain. Note that in case of a D al oandow Get W ndowFr are = ((0 0), si ze).
In case the id is unknown, the WndowFrane result = ((0,0),(0,0)).

Set Pi ct ur eDonai n 22 1ld PictureDomain ! (PState .1 .p) -> PState .1 .p

/* 1f the interactive process is active, SetPictureDomain resets the current PictureDonain
of the indicated w ndow, and updates the wi ndow if necessary. In case the new
PictureDonmain is smaller than the current WndowFrane, the windowis resized to fit the
new domai n exactly. The window frane is nmoved only if it gets outside the new
Pi ct ur eDonai n.

In case of unknown Ids, of D al ogWndows, or of inactive processes, SetPictureDonain has
no effect. */

Get Pi ct ur eDomai n o lid '(1Cstate .1 .p) -> (! Optional PictureDomain,!ICstate .| .p)

/* GetPictureDonmain returns the current PictureDonain of the indicated w ndow.
None is returned in case the windowis a D al ogWndow(LS), or if the id is unknown. */

STANDARD LIBRARY

127

SetWndowM nimunBize :: !ld Size !(PState .| .p) -> PState .1 .p

/* 1f the interactive process is active, Set WndowM ni nunSi ze sets the m ni numsize
of the indicated wi ndow as given. The new mninumsize is not allowed to exceed the
di mensi ons of the current PictureDomain of the w ndow and the screen. The wi ndow is
resized and updated if the current size of either edge of the windowis smaller than

t he new m ni num si ze.

In case of unknown Ids, of D al ogWndows, of invalid value, or of inactive processes,

Set WndowM ni munSi ze has no effect. */

Get WndowM nimunSize :: !ld I(lCstate .1 .p) -> (!Optional Size,!ICstate .| .p)

/* GetWndowM ni nunSi ze yields the current value of the mninumsize of the indicated

window None is returned if the windowis a D al ogWndow(LS), or does not exist.

Set WndowS ze :: 1ld Size '(PState .| .p) -> PState .1 .p

*/

/* 1f the interactive process is active, SetWndowSi ze sets the size of the indicated w ndow
as given, and updates the wi ndow if necessary. The size is fit between the nini mumsize
and the PictureDonmai n of the wi ndow, and the di nensions of the screen.

In case of unknown lds, of D al ogWndows, or of inactive processes,

Set WndowSi ze has no

ef fect. */
Get WndowsSi ze N o I(lICstate .1 .p) -> (!Size !ICstate .1 .p)
/[* GetWndowSi ze yields the current size of the w ndow frame of the indicated w ndow

If the wi ndow does not exist, {0,0} is returned. */
Set WndowTi tl e I'ld Title ! (ICetate .| .p) ->1C8tate .| .p
Set W ndowCk o lid 1d I(ICstate .1 .p) -> I Cstate .1 .p
Set W ndowCancel o lid Id I(lICstate .1 .p) ->1Cstate .1 .p
Set W ndowQur sor 22 1l1d Qursor Shape

I(ICstate .1 .p) -> | Cstate .1 .p

Get WndowTi tl e ootid I(ICstate .| .p) -> (!Title, IlCstate .1 .p)
Get W ndowCk 2o lid I(lICstate .1 .p) -> (! Optional Id, IICetate .| .p)
Get W ndowCancel :lid I(ICstate .| .p) -> (!Optional Id, IlCstate .1 .p)
Get W ndowQur sor I'd I(lICstate .1 .p) -> (! Optional CQursorShape,!lCstate .| .p)
/* These functions set the indicated attributes. Invalid Ids have no effect. If the

i ndi cat ed wi ndow does not have the corresponding attribute then it obtains the new

attribute. */
B.3.2 Controls

StdControlDef: the control device

definition nodul e StdControl Def

i nport St dl CComon

[Control Attribute
[Control Attribute
[Control Attribute
[Control Attribute

(SliderAction ps) [Control Attribute

(SliderAction *(Is,ps)) [Control Attribute

[Control Attribute
[Control Attribute
[Control Attribute
[Control Attri bute
[Control Attribute
[Control Attri bute
[Control Attribute

from StdPicture i nport DrawFunction, Picture
Radi oCont r ol ps = Radi oContr ol Text Li ne MarkState
Radi oControl LS |s ps = RadioControl LS TextLine MarkState
CheckControl ps = CheckCont rol Text Li ne MarkState
CheckControl LS |s ps = CheckControl LS TextLine MarkState
PopWCont r ol ps = PopUdCont r ol [PopWpl t em ps] Index [Control Attribute
PopWControl LS |s ps = PopUpControl LS [PopWpltem*(ls,ps)] Index [Control Attribute
Sl i der Cont r ol ps = SiderControl Drection Length SliderState
SliderControlLS Is ps = SliderControl LS Direction Length SliderState
Text Cont r ol ps = Text Control Text Li ne
TextControlLS |Is ps = TextControl LS TextLine
Edi t Cont r ol ps = Edit Control Text Li ne Wdth NrLines
EditControlLS |s ps = EditControl LS TextLine Wdth NLines
But t onCont r ol ps = ButtonControl Text Li ne
ButtonControl LS I's ps = ButtonControl LS TextLine
Qust onBut tonControl ps = Qust onBut t onCont r ol Si ze Control Look
Qust onBut t onCont rol LS | S ps

= CQustonButtonControl LS Size Control Look
Qust omCont r ol ps = Qust omCont r ol Si ze Control Look

[Control Attribute
[Control Attri bute

ps]
*(I's, PS)%

*(I's, PS)%
*(I's,ps)]

ps |
*(Is, PS)%
*(I's, PS)%
*(I's, PS)%

*(I's,ps)]
ps]

*(I's,ps)]
ps |

128

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Qust onont rol LS I's ps = QustonControl LS Si ze Control Look [Control Attribute *(Is,ps)]
ConpoundCont r ol c ps = ConpoundContr ol (c ps) [Control Attribute ps |
ConpoundControl LS ¢ |'s ps = ConpoundControl LS (c |Is ps) [Control Attribute *(Is,ps)]
Text Li ne ;== String
N Li nes c==Int
Wdt h c==Int
Lengt h == Int
PopUpl t em ps :== (TextLine, |ICFunction ps)
Cont r ol Look == SelectState -> Size -> [DrawFuncti on]
SliderAction ps :== SliderMve ->ps ->ps
SliderState
= { sliderMn 'Int
, sliderMax :: !Int
, sliderThunb :: !Int
}
Sl i der Move
= SiderlncSnall
| Sl i der DecSnal |
| SliderlncLarge
| Sl i der DeclLar ge
| Si der Thunb Int
D rection
= Horizontal
| Verti cal
OontroIAttrlbute ps /] Defaul t:
Control I d I d /1 noid
Cont r ol Pos I t enPos /1 (R ght To previous, zero)
Control S ze Si ze /1 systemderived/ overrul ed
Control M ni nunti ze Size Il zero
Cont r ol Resi ze Cont r ol Resi zeFuncti on /'l no resize
Control Sel ect State SelectState /1 control Able
Cont rol H de [l initially visible
Cont rol Functi on (1 CFunction ps) // |
Cont r ol ModsFuncti on (Mbdsl GFuncti on ps) // Control Function
Cont r ol Mouse Sel ect State (MuseFunction ps) // no nouse input/overrul ed
Cont r ol Key Select State (KeyFunction ps) // no keyboard input/overrul ed
/1 For ConpoundControls only
Cont r ol Look Cont r ol Look /1 control is transparant
Control |t enBpace Si ze /'l syst em dependent
Control Margi n Si ze /'l system dependent
Cont r ol Resi zeFuncti on
== Size -> /1l current control size
Size -> /1 old wi ndow si ze
Size -> Il new wi ndow si ze
Si ze /'l new control size

StdControlType: control types

definition modul e StdControl Type

i nport StdOverl oaded

Cont r ol Type

i nstance == Cont r ol Type

i nstance toString Control Type

Radi oCont r ol Type Cont rol Type
Radi oCont r ol LSType Cont r ol Type
CheckCont r ol Type Cont rol Type
CheckCont r ol LSType Cont r ol Type
PopWpCont r ol Type Cont rol Type
PopWCont r ol LSType Cont r ol Type
Sl i der Cont r ol Type Gont rol Type
Sl i der Cont r ol LSType Cont r ol Type
Text Cont r ol Type Cont rol Type
Text Cont r ol LSType Cont r ol Type
Edi t Contr ol Type Cont rol Type
Edi t Cont r ol LSType Cont r ol Type
But t onCont r ol Type Cont rol Type
But t onCont r ol LSType Cont r ol Type
Cust onBut t onCont r ol Type Cont rol Type

STANDARD LIBRARY 129

Qust onBut t onCont r ol LSType :: Control Type

Qust omCont r ol Type ;1 Control Type
Qust omCont r ol LSType :: Control Type
ConpoundCont r ol Type ;. Control Type
ConpoundCont r ol LSType :: Control Type

StdControl: control handling

definition nodul e StdControl

/* Module StdControl specifies all functions on controls.
Changing controls in a window requires a *Wstate.
Readi ng the status of controls requires a Wtate. */

i nport St dl CCommon

i nport StdContr ol Def

i nport StdControl Type

from iostate inport ICstate

from StdPicture inport DrawFunction, Picture

Wt at e
Get W ndow o tid (1Cstate .1 .p) -> (! Optional Watate, !'ICstate .1 .p)
/[* GetWndow returns a read-only Watate for the indicated w ndow
In case the indicated window does not exist None is returned. */
Set W ndow :o Mid I'[ICRunction *Watate] !(ICstate .1 .p) -> I Cstate .l .p
/* Apply the control changing functions to the current state of the indicated w ndow
In case the indicated wi ndow does not exi st nothi ng happens. */

/1 Functions applied to unknown Ids have no effect.

ShowControl s IT1d] I*Wetate -> *Wpt ate
H deControl s IT1d] I*Wotate -> *Wst ate
Enabl eControl s IT1d] I*Wetate -> *Watate
D sabl eControl s IT1d] I*Wotate -> *Wstate
Mar kCheckControl s IT1d] I*Wetate -> *Wat ate
Unnar kCheckControl s IT1d] I*Wetate -> *Wstate
Sel ect Radi oCont r ol ootid I*Wetate -> *Wat ate
Unsel ect Radi oCont r ol 'd I*Wstate -> *Wotate
Sel ect PopUpl t em I'ld !l ndex I*Wetate -> *Wbt ate
Set Control Texts ! (Id,Strlng)] I*Wotate -> *Wstate
Set Cont r ol Looks I'[(1d, Bool , Contr ol Look)] I*Wetate -> *Wbt ate
Set S i der States ! (Id,SIlderState >SliderState)] !'*Wstate -> *Watate
Set S i der Thunbs I[(1d, Int)] I*Wetate -> *Wbt ate

/* Functions that change the state of controls.

- Set Control Texts sets the text of the indicated (Radi o/ Check/ Text/Edit/Button)Control (LS)s.

- Set Cont r ol Looks applied to a ConpoundControl turns it into a non-transparant ConpoundControl .
Setting the Control Look only redraws the indicated controls if the correspondi ng
Bool ean i s True.

- SetSliderStates applies the function to the current SliderState of the indicated
SliderControl and redraws the settings if necessary.

- Set Sli der Thunbs sets the new thunb val ue of the indicated SliderControl and redraws

the settings if necessary. */
Dr awl nCont r ol :o Md !'[DrawFuncti on] I*Wotate -> *Wdtate
/* Drawin a (Quston(Button)/Conmpound)Control. |If the ConpoundControl is transparant
then this operation has no effect. */
Get Cont r ol Types i IWetate -> [(Control Type, Qoti onal)1
Get ConpoundTypes o ld 'Watate -> [(Control Type, Ootional 1d)]

/[* GetControl Types vyields the list of Control Types of the conponent controls of this
w ndow,
Get ConpoundTypes yields the list of Control Types of the conponent controls of this
GonpoundControl. For both functions (One id) Is yielded if the conponent control has a
(Controlld id) attribute, and None ot herwi se. Conponent controls are not coll ected
recursively through GConpoundControls.
If the indicated ConpoundControl is not a CompoundControl, then [] is yielded. */

130 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Get Cont r ol Layout s 2o 1[1d] 'Wetate -> [(Bool, (Optional ItenPos,|tentfset))]

/1 (None, {0, 0})
Get Control S zes '[1d] 'Wstate -> [(Bool, Size)] /1 {0, 0}
Get Control Sel ect States [Id] 'Wtate -> [(Bool, Sel ect State)] /1 Able
Get Cont r ol Showst at es '[1d] 'Wstate -> [(Bool, Bool)] /1 Fal se
Get Control Texts IT1d] 'Wstate -> [(Bool ,Qptional String)] /1 None
Get Cont r ol N Li nes 2o 1[1d] '"Wstate -> [(Bool , Qpti onal N Lines)] /1 None
Get Cont r ol Looks 2o [Id] 'Wetate -> [(Bool, Optional Control Look)] /1 None
GetControl Mninuntizes :: ![Id] !Wstate -> [(Bool, Optional Size)] /'l None
Get Cont r ol Resi zes '[Id] 'Wtate -> [(Bool, Optional Control Resi zeFunction)] // None
Get PopUWpl t ens IT1d] '"Wstate -> [(Bool , Qptional [TextLine])] /1 None
Get Sel ect edPopUpl t erns 2o [1d] 'Wetate -> [(Bool, Optional |ndex)] /1 None
Get Sel ect edRadi oControl s:: 'Watate -> [1d] 11 1]
CGet Sel ect edCheckControl s:: IWetate -> [Id I []
Get Radi oCont r ol Mar ks :1[1d] 'Wetate -> [(Bool, Optional Bool)] /1 None
Get CheckCont r ol Mar ks '[1d] 'Wstate -> [(Bool, Qptional Bool)] /1 None
GetSliderDirections :1[1d] 'Wetate -> [(Bool,ptional Direction)] /'l None
Get Sider States 2o [Id] 'Wetate -> [(Bool, Optional SiderState)] /1 None
Get Control |t enBpaces 2 1[1d] '"Wetate -> [(Bool, Optional Size)] /1 None
Get Cont r ol Mar gi ns I[Id] 'Wtate -> [(Bool,tional Size)] /1 None

/* Functions that return the current state of controls.
The result list is of equal length as the argument 1d list. Each result list element
corresponds in order with the argument Id list. O each el ement the first Bool ean result
is False in case of invalid Ids (if so dummy values are returned - see comment).

- Get Control Layout s yields (Ohe Control Pos) if the indicated control had a
Control Pos attribute and None otherw se. The ItenCffset offset
is the exact current |location of the indicated control
(Left Top, of fset).

- Get Control ShowStates yields True if the indicated control is visible, and Fal se
ot herwi se.

- Get Control Texts yields (One text) of the indicated (Radi o/ Check/ Text/Edit/
Button) Control (LS).

If the control is not such a control, then None is yiel ded.

- Get Contr ol Nr Li nes yields (One nrlines) of the indicated EditControl (LS). If the
control is not such a control, then None is vyielded.

- Get Cont r ol Looks yields the Control Look of the indicated (CQustoni QustonButton/
Conpound) Control (LS).

If the control is not such a control, or it is a transparant
ConpoundControl (LS), then None is yi el ded.

- Get PopUWpl t ens yields the TextLines of the indicated PopUControl. If the
control is not such a control, then None is vyielded.

- Get Sel ect edPopWpl tens yi el ds the I ndex of the indicated PopUpControl. If the control
is not such a control, then None is yiel ded.

- Get Radi oControl Marks yields (Cne True) if the indicated Radi oControl is sel ected,
and ((ne Fal se) ot herwi se.

If the control is not such a control, then None is yiel ded.

- Get CheckControl Marks yields (Cne True) if the indicated CheckControl is checked, and
(One Fal se) ot herw se.

If the control is not such a control, then None is yiel ded.

- GetSiderDrections yields (Che Drection) of the indicated SiderControl (LS).
If the control is not such a control, then None is yiel ded.

- Get SliderStates yields (One SliderState) of the indicated SiderControl (LS).
If the control is not such a control, then None is yiel ded.

- Get Control I tenBpaces yields (Che Size) of the indicated ConpoundControl (LS).

If the control is not such a control, then None is yiel ded.

- Get Cont r ol Mar gi ns yields (he Size) of the indicated ConpoundControl (LS).

If the control is not such a control, then None is yiel ded.

Important: controls with no Controlld attribute, or illegal ids, can not be found in the
Wt at e! */
B.3.3 Menus

StdMenuDef: the menu device

definition nodul e StdMenuDef

i nport Stdl CCommon

Menu m ps = Menu Title (m ps) [MenuAttri bute ps 1]
MenuLS mls ps = MenuL,S Is Title (mls ps) [MenuAttribute *(Is, ps)]
SubMenu m ps = SubMenu Title (m ps) [MenuAttribute ps

]
SubMenuLS mls ps = SubMenuLS Title (mls ps) [MenuAttribute *(Is,ps)]

STANDARD LIBRARY 131

Menul t em ps = Menultem Title [MenuAttribute ps 1]
Menul t enLS Is ps = Menultem S Title [MenuAttribute *(Is, ps)]
MenuSepar at or ps = MenuSepar at or

MenuSeparatorLS |'s ps = MenuSepar at or LS

ManuAttrlbute ps /1l Default:

= Menuld Id /1 no Id

| MenuSel ect State SelectState /1 menu(iten) Able

| MenuAl t Key | ndex /1 no AltKey

/1l Attributes ignored by (sub)nenus:

| MenuShor t Key Char /1 no ShortKey

| MenuMar kSt at e Mar kSt at e /1 NoMar k

| MenuFunct i on (1 CFuncti on ps) /1 |

| MenuMbdsFunction (Mddsl Crunction ps) // MenuFunction

StdMenuType: menu types

definition modul e StdMenuType
MenuType

i nstance == MenuType

i nstance toString MenuType

MenuType :: MenuType

MenuLSType :: MenuType

StdMenu: menu handling

definition modul e St dMenu

i nport St dMenuDef

i nport StdMenuType

from iostate inport |Ctate, PState, Files

/1 Qperations on unknown | ds are ignored.

cl ass Menus nuef

wher e
QpenMenu :: !int !'(ndef (PState .1 .p)) !(1Cstate .1 .p) -> I Cstate .| .p
i nstance Menus (Menu) | MenuBEl ements m

i nstance Menus (MenuLS m1s) | MenuHE enentsLS m

/* Qpen the given nenu definition for this interactive process behind the menu indicated by
the integer index.
In case a nenu with the sane Id is already open then nothi ng happens.
In case the nmenu does not have an Id, it will obtain an Id which is fresh with respect to
the current set of menus. The Id can be reused after closing this menu.
The index of a menu starts fromone for the first present menu.
If the index is negative or zero, then the new nenu is added before the first nenu.
If the index exceeds the nunber of menus, then the new nenu is added behind the | ast

nmenu. */
d oseMenu A o I(ICstate .1 .p) -> ICstate .1 .p
/* dose the given menu (and all of its elements including submenus).
penhenul t ens od int (m(PState .1 .p)) !(1Cstate .1 .p) -> 1 Cstate .1 .p

| MenuEl ements m

/* Add menu el ements to the indicated (sub)nenu.
QpenMenul tens adds nenu el ements after the itemwth the specified index. The index of a
menu el enent starts fromone for the first nenu element in the (sub)menu. If the index is
negative or zero, then the new nenu el ements are added before the first nenu el ement of
the (sub)nmenu. If the index exceeds the nunber of menu el enents in the (sub)menu, then
the new nenu el enents are added behind the |ast menu el enent of the (sub)nenu.
No menu el enents are added if the indicated (sub)menu does not exist. */

d oseMenul t ens I
I

d] I(ICstate .1 .p) -> | Cstate .1 .p
d oseMenul ndexl tens :: !

I
d![Int] I(ICstate .1 .p) -> ICstate .1 .p

132 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

/* dose menu el ements.

d oseMenul t ens:
closes nmenu el erents by their Id.

d oseMenul ndexl t ens:
cl oses nenu el ements of the indicated (sub)nenu by their indices. Anal ogous to
QpenMenul tens, indices range fromone to the nunber of menu el enents in a (sub)menu.
Invalid indices (less than one or larger than the nunber of menu el enents of the
(sub) nmenu) are ignored.

d osing a subnenu closes all of its elements including subnenus. */

Enabl eMenuSyst em il I(ICstate .1 .p) -> I Cstate .1 .p
D sabl eMenuSystem :: I(ICstate .1 .p) -> I Cstate .1 .p

/* Enabl e/ di sabl e the menu systemof this process. Wen the nenu systemis enabl ed the
previously sel ectabl e nenus and nenu itens will becone sel ectabl e agai n. Enabl e/ di sabl e
operations on the nenu(el ement)s of a disabled menu systemtake effect when the nenu
systemis re-enabl ed.

Enabl eMenuSystem has no effect in case this process has a nodal w ndow */

ICstate .1 .p) -> 1Cstate .1 .p

Enabl eMenus o[1d] 1(
oo d] I(ICstate .1 .p) -> | Cstate .1 .p

D sabl eMenus

[* Enabl e/ di sabl e i ndi vi dual nenus.
D sabling a nenu overrides the SelectStates of its elenents, which becone unsel ectabl e.
Enabl i ng a di sabl ed nenu re-establishes the Sel ect States of its el enents.
Enabl e/ di sabl e operations on the el ements of a disabled nenu take effect when the

menu i s re-enabl ed. */
Get MenuSel ect State :: !'ld I(lICstate .1 .p) -> (!Optional SelectState,!ICstate .1 .p)
/* GetMenuSel ectState yields the current SelectState of the indicated nenu.
In case the menu does not exist, None is returned. */
Get Menus N I(lCstate .1 .p) -> ('[(1d, MenuType)],!ICstate .1 .p)
/* GetMenus yields the Ids and MenuTypes of the current set of nenus of this interactive
process. */
Get MenuPos ootid I(lCstate .1 .p) -> (! Optional Index,!ICstate .1 .p)

/* GetMenuPos yields the index position of the indicated nenu in the current |list of nenus.
In case the nenu does not exist, None is returned. */

Get MenuAl t Key ootid I(lICstate .1 .p) -> (! Optional Index,!ICstate .1 .p)

/* GetMenuAl tKey yields the MenuAl t Key index of the indicated menu. In case the nenu does
not exist, or does not have this attribute set, None is returned. */

Set MenuTitl e o Md ITitle !'(ICetate .1 .p) -> 1Cstate .| .

Get MenuTitl e oohid I(lCstate .1 .p) -> (! Optional Title, ICstate .1 .p)

/* SetMenuTitle sets the title of the indicated nenu.
In case the nenu does not exist, nothing happens.
GetMenuTitle retrieves the current title of the indicated nenu.
In case the nenu does not exist, None is returned. */

StdMenultemType: menu item types

definition nodul e StdMenul t enType
Menul t enType

i nstance == Menul t emTlype
i nstance toString MenultenType
SubMenuType ;. Menul tenType
SubMenuLSType 11 Menul t emType

Menul t emType 1 Menul tenType

STANDARD LIBRARY 133

Menul t enLSType 11 Menul t enType
MenuSepar at or Type 1 Menul t emType
MenuSepar at or LSType :: Menul t enType

StdMenultem: menu item handling

definition nodul e StdMenul tem

/*

Modul e StdMenultem specifies all functions on nenu itens.

Changing menu itens in a menu requires a *Mbtate.

Reading the status of menu itens requires a Mstate. */

i nport St dMenuDef
i nport StdMenul t enfType
from iostate inport IC8tate, PState, Files

Mt at e

Get Menu o lid ! (1Cstate .1 .p) -> (!Optional Mstate, !ICstate .1 .p)

/*

GetMenu returns a read-only Mstate for the indicated nenu.
In case the indicated nenu does not exist None is returned. */

Set Menu :o Md !'[ICFunction *Mtate] !(I1Cstate .1 .p) -> I Cetate .| .p

/*

Enabl eMenul t ens '
D sabl eMenul t ens S |
Mar kMenul t ens S|
Unnar kMenul t ens S|

'

Apply the nenu itemchanging functions to the current state of the indicated nenu.

Invalid lIds are ignored. */

d] I*MBtate -> *Mstate
d] I*MBtate -> *Mstate
d] I*MBtate -> *Mstate
d] I*MBtate -> *Mstate
Id,

Set Menul tenTitles Title)] !'*MBtate -> *Mbtate

/* Enabl e/ di sabl e, nmark/unmark, and set titles of nenu itens (including SubMenultens). */
Get Menul t enTypes o IMBtate -> [(Menul tenType, Qotional 1d)]

Get SubMenul t enTTypes o id !'MBtate -> [(Menul t emType, Qoti onal)]

/*

Get Menul t enTypes yields the list of MenultenTypes of all nenu itens of this menu.
Get SubMenul t enTypes yiel ds the list of MenultenTypes of all menu itens of this SubMenu.
For both functions (Onhe id) is yielded if the itemhas a (Menuld id) attribute, and None

otherwi se. lIds are not collected recursively through SubMenus. */
/1 Val ues in case Bool ==Fal se
Get Menul tenBel ect States:: ![1d] !'Mstate -> [(Bool, Select State)] // Able
Get Menul t enMar ks % '[1d] 'Mstate -> [(Bool, Bool)] /'l Fal se
Get Menul tenTitles 2o 1[1d] 'Metate -> [(Bool, String)] /"
Get Menul t enhor t Key '[Id] 'Mstate -> [(Bool, Char)] /1 toChar O
Get Menul t enAl t Key '[Id] 'Mstate -> [(Bool, | ndex)] /Il 0

/*

*/

Functions that return the current state of menu itens.

The result list is of equal length as the argument Id |ist.

Each result list elenent corresponds in order with the argunent Id |ist.
C each elenent the first Boolean result is False in case of invalid ids
(if so dummy val ues are returned - see comment).

StdQuit: quit handling

definition nodul e StdQuit

from Stdl QConmon i nport | GFuncti on
from iostate inport |CState, PState, Files

/*

MenuQui t

ps = MenuQuit (ps ->(Bool,
MenuQitLS I's ps

MenuQui tLS ((I's, ps)->(Bool, (Is, Bsgg)

MenuQuit and MenuQuitLS define the abstract event handl ers that respond to quit events.
In case of a quit event, the function argunent is applied to the current process state.

134 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

If the Boolean result is True, then the interactive process is quitted by the I/O system
If the Boolean result is False,then the interactive process is not quitted. */

/1 Qpening and closing quit definition (as nenu el ements):

i nstance MenuH enent s MenuQui t

i nstance MenuEl enent sSLS MenuQui tLS

/1 Enabling, disabling quit event handling:

EnableQuit :: !(ICState .1 .p) -> | Cstate .1 .p

D sableQuit :: !(ICstate .1 .p) ->|Cstate .1 .p

StdClipboardDef: clipboard definition

definition modul e Stdd i pboar dDef

from St dl CCommon i nport | GFunction

MenuQut ps = MenuQut (1 GFunction ps)
MenuCopy ps = MenuCopy (1 GFunction ps)
MenuPast e ps = MenuPaste (I CFunction ps)

MenuQutLS |'s ps
MenuCopyLS |s ps
MenuPastelLS | s ps

MenuQutLS (I CGFunction *(Is, ps))
MenuCopyLS (1 CFunction *(Is, ps))
MenuPast eLS (I GFunction *(Is, ps))

StdClipboard: clipboard handling

definition nmodul e Stdd i pboard

i nport StdOver| oaded

i nport Stdd i pboar dDef

from iostate inport |C8tate, PState, Files

/1 Qpening and cl osing clipboard definitions (as nenu el ements):
i nstance MenuH enent s MenuQut

i nstance MenuHE enent s MenuCopy

i nstance MenuHE enent s MenuPast e

i nstance MenuH enent sLS MenuCut LS

i nstance MenuHE enent sLS MenuCopyLS

i nstance MenuE enent sSLS MenuPast eLS

/1 Reading and witing the value of the selection to the clipboard:

class dipboard data

wher e
Setd i pboard 1 data I(ICstate .1 .p) ->|Cstate .1 .p
Get d i pboard :: 1 dipboardType !(1Cstate .1 .p) -> (! Optional data,!lCstate .| .p)
tod i pboardType :: !data -> di pboar dType

i nstance dipboard {#Char}

/* Setdipboard sets the given value of the current selection. In case of a cut/copy
event this value will be stored (and only then evaluated!) in the
cl i pboar d.

Getd i pboard gets the current content of the clipboard (which nmay be different from
the value 'set' by Setdipboard). The Qi pboardType argunent indicates
the type of the requested clipboard content. If the clipboard is enpty or
does not contain a data itemof the requested type, None is returned.

tod i pboardType yields the i pboardType of an instance of the Qi pboard class. */

Q eard i pboard o I(ICstate .1 .p) -> ICstate .1 .p

/* Qeardipboard removes the sel ection value set by Setdipboard. */

d i pboardHasChanged :: !(ICstate .1 .p) -> (!Bool, !ICstate .1 .p)

STANDARD LIBRARY

135

/* dipboardHasChanged holds if the current content of the clipboard is different fromthe
*/

| ast access to the clipboard.

/1 The type tag of clipboard data itens:

d i pboar dType

i nstance == d i pboar dType

B.3.4

StdPicture: drawing in windows

definition nodule StdPicture

from picture inport Picture

i nport Stdl CCommon, StdFont, StdPicturebDef

/* Attribute functions.
*/

GetPicture
CetPictureAttributes
SetPictureAttributes

/1 Pen position attributes:

Set PenPos ;1 1Point
Get PenPos e
cl ass MovePenPos figure :: !figure

!'*Picture -> (!Picture, ! *Picture)
! Picture -> [PictureAttribute]

'[PictureAttribute] !'*Picture -> *Picture

I*Picture -> *Picture
I Picture -> Point

!*Picture -> *Picture

/1 Move the pen position as nuch as when draw ng the figure.

i nst ance MovePenPos Poi nt
i nst ance MovePenPos Vect or
i nst ance MovePenPos Qurve

/] PenSize attributes:
Set PenSi ze oo tint
Get PenSi ze 1

Set Def aul t PenSi ze ol
/1 SetDefaul tPenSi ze = SetPenSi ze 1

/] Colour attributes:
Set PenCol our .. ' Col our
Cet PenCol our s

Set Def aul t PenCol our

/1 Set Def aul t PenCol our = Set PenCol our Bl ackCol our

// Font attributes:
Set PenFont ;. lFont
Cet PenFont e

Set Def aul t PenFont

/* Drawi ng functions.

I*Picture -> *Picture
I Picture -> Int

!*Picture -> *Picture

!*Picture -> *Picture
I Picture -> Col our

I*Picture -> *Picture

I*Picture -> *Picture
| Picture -> Font

!*Picture -> *Picture

These functions are divided into the foll owi ng cl asses:

Drawabl es: Draw 'line-oriented'
DrawAt 'line-oriented
Fillables: Fill "area-oriented
Fill A 'area-oriented

figures at the current pen position.
figures at the argunent pen position.
figures at the current pen position.
figures at the argunent pen position.

dips: apply a list of drawing functions within a clipping area(s).

dip takes the base point of the area to be the current
dipAt takes the base point of the area to be the argunent pen position.

*
/
cl ass Drawabl es figure
wher e
Draw :: Ifigure
DrawAt :: !'Point !figure
class Fillables figure
wher e
Fill o 'figure
FillA :: !'Point !figure

class dips area
wher e

I*Picture -> *Picture
I *Picture -> *Picture

I*Picture -> *Picture
I*Picture -> *Picture

pen position.

136 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

Aip :: larea [DrawFunction] !*Picture -> *Picture
AipAt :: !'Point larea [DrawrFunction] !*Picture -> *Picture

Dr awFuncti on
== *Picture -> *Picture

/* (Draw Hlitel/ Xor)Picture applies the given drawi ng functions to the given picture in
left-to-right order. When drawing i s done, all picture attributes are set to the
attribute values of the original picture.

DrawPicture is sinply the seq of the drawi ng functions.

HlitePicture takes care that the drawi ng functions operate in the appropriate platform
"hilite' nmode. This node is usually used for drawi ng sel ections.

Xor Pi cture takes care that the drawi ng functions operate in the appropriate platform
"xor' node. When drawing in xor node it is guaranteed that draw ng the same
figure tw ce does not change the picture.

*/

DrawPi cture :: I[DrawFunction] !*Picture -> *Picture
HlitePicture :: ![DrawFunction] !*Picture -> *Picture
Xor Pi cture :: [DrawFunction] !*Picture -> *Picture

/* (Draw H litel/ Xor)segPicture applies the given drawing functions to the given picture in

left-to-right order.

Picture attributes are not reset after draw ng.

DrawseqPicture is sinply the seq of the draw ng functions.

HlitesegPicture takes care that the draw ng functions operate in the appropriate
platform'hilite' mode. This node is usually used for draw ng
sel ecti ons.

Xor seqPi cture takes care that the draw ng functions operate in the appropriate
platform'xor' node. When drawing in xor nmode it is guaranteed that
drawi ng the sane figure twi ce does not change the picture.

*/

DrawseqgPicture :: ![DrawFunction] !*Picture -> *Picture
HlitesegPicture :: ![DrawFunction] !*Picture -> *Picture
Xor segPi cture :: ![DrawFunction] !*Picture -> *Picture

/* Drawing within in a clipping area:
*/

instance dips Box /1 Qip within a box

instance dips Rectangle /1 Aip within arectangle (AipA _r p=dipr p)
instance dips Pol ygon /1 Aip within a polygon

instance Aips [figure] | Aips figure // Aip within the union of figures

/* Point draw ng operations:
Dr awPoi nt plots a point at the current pen position p and nmoves to p+1, 0}
DrawPoi nt At plots a point at the argunent pen position, but retains the pen position.

*/
Dr awPoi nt o I *Picture -> *Picture
Dr awPoi nt At ;. !'Point '*Picture -> *Picture

/* Point connecting draw ng operations:
Dr awToPoi nt draws a |ine between the current pen position to the argunent point which
becones the new pen position.
DrawToPoi nt At draws a |ine between the two argument points, but retains the pen position.

*/
Dr awToPoi nt ;. !'Point '*Picture -> *Picture
Dr awToPoi nt At ;. !'Point !Point *Picture -> *Picture

/* Text draw ng operations:
Picture is an instance of the Fonts class (see StdFont).

Text is drawn fromthe baseline at the y coordinate of the pen.
Draw text: Draws the text starting at the current pen position.
The new pen position is directly after the drawn text including spacing.
DrawAt p text: Draws the text starting at p.
*/
i nstance Fonts Picture

i nstance Drawabl es Char
i nstance Drawabl es {#Char}

/* VMector draw ng operations:

STANDARD LIBRARY

137

*/

Dr aw V: Draws a line fromthe current pen position pen to pen+v.
DrawAt p v: Draws a line fromp to p+v.

i nstance Drawabl es Vect or

/*

*/

Oval draw ng operations:
An OQval o is a transforned unit circle
with hori zontal radius rx o.oval _rx
verti cal radius ry o.oval _ry

Let (x,y) be a point on the unit circle:

then (x*,y’) = (x*rx,y*ry) is a point on o.
Let (x,y) be a point on o:

then (x',y") = (x/rx,y/ry) is a point on the unit circle.

Dr aw 0: Draws an oval with the current pen position being the center of the oval.
DrawAt p o: Draws an oval with p being the center of the oval.
Fill o: Fills an oval with the current pen position being the center of the oval.

FillA po: Fills an oval with p being the center of the oval.
None of these functions change the pen position.

i nstance Drawabl es Oval
instance Fill abl es Oval

/*

*/

Qurve drawi ng operations:
A Qurve c is aslice of an oval o
with start angle a c.curve_from
end angle b c.curve_to
direction d c. curve_cl ockwi se
The angl es are taken in radi ans (counter-cl ockw se).

If d holds then the drawing direction is clockw se, otherw se drawi ng occurs counter-

cl ockwi se.

Dr aw c: Draws a curve with the starting angle a at the current pen position.
The pen position ends at ending angle b.

DrawAt p c: Draws a curve with the starting angle a at p.

Fill c: Fills the figure obtained by connecting the endpoints of the drawn curve
(Draw c) with the center of the curve oval.
The pen position ends at ending angle b.

FillA pc: Fills the figure obtained by connecting the endpoi nts of the drawn curve
(DrawAt p c) with the center of the curve oval.

i nstance Drawabl es Qurve
instance Fillables Qurve

/*

*/

Box drawi ng operati ons:
A Box b is a horizontally oriented rectangl e

with width w b. box_w
hei ght h b. box_h
In case w==0 (h==0), the Box col |l apses to a vertical (horizontal) vector.
In case w==0 and h==0, the Box col | apses to a point.
Dr aw b: Draws a box with left-top corner at the current pen position p and

ri ght _bottomcorner at p+(w h).
DrawAt p b: Draws a box with left-top corner at p and right-bottomcorner at p+(w h).
Fill b: Fills a box with left-top corner at the current pen position p and

ri ght_bottom corner at p+(w h).
FillA pb: Fills a box with left-top corner at p and right-bottomcorner at p+(w h).
None of these functions change the pen position.

i nst ance Drawabl es Box
instance Fill abl es Box

/*

*/

Rect angl e drawi ng operati ons:
A Rectangle r is a horizontally oriented rectangl e

with width w abs (r.cornerl.x-r.corner2.Xx)

height h abs (r.cornerl.y-r.corner2.y)
In case w==0 (h==0), the Rectangl e col |l apses to a vertical (horizontal) vector.
In case w==0 and h==0, the Rectangl e col | apses to a point.
Draw r: Draws a rectangl e with diagonal corners r.cornerl and r.corner?2.
DrawAt p r=Drawr
Fill r: Fills a rectangle with diagonal corners r.cornerl and r.corner2.

FillA pr=FlIlr
None of these functions change the pen position.

i nstance Drawabl es Rectangl e
instance Fill abl es Rectangle

138

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

/* Pol ygon draw ng operations:
A Polygon pis a figure

wth shape p. pol ygon_shape

A polygon p at a point base is drawn as foll ows:

DrawPi cture [Set PenPos base: nap Draw shape] ++] DrawToPoi nt base]

None of these functions change the pen position.

*/
i nstance Drawabl es Pol ygon
i nstance Fill abl es Pol ygon

StdPictureDef: data type definitions

definition nodul e StdPicturebDef

i nport Stdl QCommon, St dFont

/1 The predefined figures that can be drawn:
1 Box
= { box_w 'l nt I
, box_h Il nt /1
}
Oval /1
= { oval _rx Int I
, oval _ry Il nt /1
}
Qurve /1
= { curve_oval 1 Oval I
, curve_from ! Real /1
, curve_to 11 I Real /1
, curve_cl ockwi se :: ! Bool /1
}
Pol ygon /1
= { pol ygon_shape I'[Vector] //
}
/1 The picture attributes:
:: PictureAttribute 11
= PicturePenS ze | nt I/
Pi ct ur ePenPos Poi nt /1
Pi ct ur ePenCol our Col our 11
Pi ct ur ePenFont Font 11
Col our
= R3Ol our REB
Bl ack | Wite
DarkGey | Mediun@ey | LightQey //
Red | Geen | Blue
Cyan | Magenta | Yellow
RB
= { r:: Int /1
, g:: Int /1
, b:: Int /1
}
Bl ackR&B : == {r=M nR@®B, g=M nREB, b=M nRGB}
Wi t eREB : == {r=MaxR3B, g=MaxREB, b=NMaxREB}
MNREB :==0
MaxR@B == 255
PI ;== 3. 1415926535898
B.3.5

// Abox is a horizontally oriented rectangle with a width and hei ght

The width of the box
The hei ght of the box

An oval is a transformed unit circle
The hori zontal radius
The verti cal radi us

Acurve is a slice of an oval
The source oval

Starting angle (in radians)
Ending angle (in radians)
Direction: True iff clockw se

A polygon is outlined by a list of vectors
The shape of the pol ygon

Defaul t:

1

zero

Bl ack

Def aul t Font

75% 50% and 25% Bl ack

The contribution of red
The contribution of green
The contribution of blue

StdFont: writing in windows

definition nodul e StdFont

i nport St dFont Def
from font inport Font

class Fonts environnent
wher e
penFont
penDef aul t Font
enD al ogFont

! Font Def

I'*environnent -> (!(!Bool,!Font),!*environnent)

I'*environnment -> (!Font,
I *environnment -> (!Font,

I'*envi ronnent)
I *envi ronnent)

STANDARD LIBRARY 139

Get Font Nanes s I'*envi ronment -> (![Font Nang], I *envi r onrent)
Get Font Styl es - | Font Narre ! *environment -> (![FontStyle], !*environnent)
Get Font Si zes :: !int !'Int !'Font Narre !*environnent -> (![FontSize], I *envi r onrent)

i nstance Fonts Wrld

/*

QpenFont creates the font as specified by the name, the stylistic
variations and size. In case there are no FontStyles ([]), the font
is selected without stylistic variations (i.e. in plain style).
The Bool ean result is True in case this font is avail abl e and needn't
be scaled. In case the font is not available, the default font is
chosen in the indicated style and size.

QpenDef aul t Font returns the default font that applications can use. This
font is set inthe initial Picture of a new w ndow

QpenD al ogFont returns the font used by the systemto present infornation
in dialog windows (e.g. TextControls), menus and so on.

Get Font Nares returns the FontNames of all available fonts.
GetFont Styles returns the FontStyles of all available styles of a particul ar Font Nare.
CGet Font Si zes returns all FontS zes of a particular FontNane that are avail abl e

wi t hout scaling. The sizes inspected are inclusive between the two
Integer argunents. (The Integer arguments need not be ordered; negative
val ues are set to zero.)

In case the requested font is unavailable, the styles or sizes of the default font

are returned. */

Cet Font Def ;. 'Font -> Font Def

/*

Get Font Def returns the nane, stylistic variations and size of the
argurent Font. */

Get Font Char Wdt h o1 Char IFont -> Int

Get Font CharWdths :: ![Char] IFont -> [Int]

GetFont StringWdth :: ! String !Font -> Int

GetFont StringWdths :: ![String] !Font -> [Int]

/* GetFont CharWdth(s) (GetFontStringWdth(s)) return the width(s) in terms of pixels

of given character(s) (string(s)) for a particular Font. */

Get Font Metri cs :: !Font -> FontMetrics

/*

Get Font Metrics yields the metrics of a given Font in terns of pixels.
FontMetrics is a record which defines the nmetrics of a font:
- fAscent is the height of the top nost character neasured fromthe base
- fDescent is the height of the bottom nost character measured fromthe base
- fLeading is the vertical distance between two |ines of the sane font
- fMaxWdth is the width of the w dest character including spacing
The full height of a line is fAscent+f Descent +f Leadi ng. */

StdFontDef: data type definitions

definition nodul e StdFont Def

Font Def
= { f Nane : ' Font Nane
, fStyles ;. [Font Styl e]
, fS ze : Font S ze
}
Font Metri cs
= { f Ascent 2ot
, fDescent :: !lInt
, fLeading :: !Int
, fMaxWdth :: !lnt
FontName :== String
FontStyle :== String
FontSize :==Int
B.3.6 Timers

StdTimerDef: the timer device

140 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

definition nodul e StdTi ner Def

i nport St dl CCommon

Ti rer ps = Tiner Tinerinterval [TinerAttribute ps 1]
TinmerLS Is ps = TinmerLS |Is Tinerinterval [TinerAttribute *(Is, ps)]
Timerinterval :==Int

TinerAttribute ps /] Default:

= Timerld I d /1 no Id

| Ti ner Sel ect Sel ect State Il timer Able

| Ti mer Functi on (Ti mer Function ps) /1 _ x->x

Timer Function ps :== NI nterval s->ps->ps

N Interval s c==Int

StdTimerType: timer types

definition modul e StdTi ner Type
i nport StdOver! oaded

Ti ner Type
i nstance == Ti mer Type
i nstance toString Ti ner Type
Timer Type :: TinmerType
Ti mer LSType :: Ti mer Type

StdTimer: timer handling

definition nodul e StdTi mer

i nport StdTi mer Def
i nport StdTi mer Type
from iostate inport |1Cstate, PState, Files

Ti cksPer Second : == 60

class Tiners tdef
wher e
QpenTi ner 1o 1(tdef (PState .| .p)) !(ICstate .| .p) -> 1Cstate .| .p

i nstance QpenTi ner Ti ner
i nstance penTi ner (TinerLS |s)

/* Qpen a newtimer with or without a local state. This function has no effect in case
the interactive process already contains a timer with the same Id. Negative
Tinmerintervals are set to zero.

In case the tiner does not have an Id, it will obtain an Id which is fresh with
respect to the current set of tiners. The Id can be reused after closing this timer.

*/

d oseTi ner o lid (1Cstate .l .p) -> 1Cstate .1 .p

/* dose the tiner with the indicated Id. */

Get Ti mer s i I(1Cstate .1 .p) -> ([(1d, TinerType)], IlCstate .1 .p)
[* GetTiners returns the Ids and TinerTypes of all currently open timers. */
Enabl eTi ner Cetate .1 .p) -> ICetate .1 .p

oohd Il
D sabl eTi ner o tid !(1Cstate .1 .p) -> I Cstate .| .
GetTimerSelectState :: !'Id ! (ICstate .1 .p) -> (! Optional SelectState,!ICstate .1 .p)
/* (En/Dis)ableTimer (en/dis)able the indicated tiner.

GetTimerSelectState yields the SelectState of the indicated timer. If the tiner does not
exi st, then None is yiel ded. */

STANDARD LIBRARY 141

Set Ti mer | nt er val o ld !'Timerinterval !(1Cstate .1 .p) -> I Cstate .1 .p
Get Ti ner | nt er val Iid !'(ICstate .1 .p) -> (!Optional Tinerinterval,!ICstate .1 .p)

/* Set the Tinerinterval of the indicated tiner. Negative Tinerintervals are set to zero.

GetTimerinterval yields the Timerinterval of the indicated timer. If the tiner does not
exi st, then None is yiel ded. */

StdTime: time related operations

definition nodul e StdTine

fromiostate inport ICstate

Poi nt & Ti e
= { hours :: !Int // hours (0-23)
, mnutes :: !Int // mnutes (0-59)
, seconds :: !Int // seconds (0-59)
}
Dat e
= { year oo tint /] year
, month :: !Int // month (1-12)
, day o tint // day (1-31)
, dayNr :: !lint // day of week (1-7, Sunday=1, Saturday=7)
}
Wi t oohnt ox -> X
/* VW4t n x suspends the evaluation of x modally for n ticks.
If n<=0, then x is evaluated i medi atel y. */
class Time environnent
wher e
GetBlinkinterval :: !*environnent -> (!lInt, I *envi ronnent)
GetQurrentTine :: !*environment -> (!PointCfTime, !*environment)
GetQurrentDate :: !*environnment -> (!Date, I *envi ronnent)

i nstance Tine Vrld
instance Tine (ICstate .1 .p)

/* GetBlinklnterval returns the tine interval in ticks that shoul d el apse between blinks of
e.g. acursor. This interval nay be changed by the user while the interactive process is
r unni ng!
GetQurrentTime returns the current Pointf Ti ne.
GetCQurrentDate returns the current Date.

*/

B.3.7 Receivers

StdReceiverDef: the receiver device

definition nodul e StdRecei ver Def

i nport St dl CCommon

;. Receiver m ps
= Recei ver (Recei verFunction m ps) [ReceiverAttribute ps]
:: ReceiverLS Is m ps
= ReceiverLS |s (ReceiverFunction m *(1s,ps)) [ReceiverAttribute *(Is,ps)]
:: Receiver2 mresp ps
= Receiver2 (Recel ver 2Function mresp ps) [ReceiverAttribute ps 1]

:: Receiver2LS |'s mresp ps
= Receiver2LS |Is (Recelver2Function mresp *(Is,ps)) [ReceiverAttribute *(Is,ps)]

Recei ver Function m ps :== m-> ps -> ps
Recei ver 2Function mresp ps :== m-> ps -> (resp, ps)
Recei verAttribute ps // Default:

= Recei verSel ect SelectState // receiver Able

142 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

StdReceiverType: receiver types

definition nodul e St dRecei ver Type
i nport StdOverl oaded

Recei ver Type

i nstance == Recei ver Type
i nstance toString Receiver Type
Recei ver Type ;. Recei ver Type
Recei ver LSType :: ReceiverType
Recei ver 2Type ;. Recei ver Type

Recei ver 2LSType :: Recei ver Type

StdReceiver: receiver handling

definition nodul e StdRecei ver

i nport St dRecei ver Def
i nport St dRecei ver Type
from iostate inport PState, ICstate, Files

/] The identification of a Receiver:
;. Rd ness
R2ld ness resp

class R ds environnent

wher e
QpenRd :: !*environment -> (! (!'Rd ness, '*Rid rmess), I *envi ronnent)
/] Oreate a one-way receiver id
penR2ld :: !'*environnment -> (! (!'R2ld ness resp,!*R2ld ness resp), ! *envi ronnent)

/] Oreate a two-way receiver id

instance Rids Wrld

instance Rids (ICstate .1 .p)
instance == (R d mess)

i nstance == (R2ld mess resp)
Ridtold :: (Rd mess) -> 1d
R2ldtold :: (R2Id mess resp) -> Id

/1 Qperations on the Recei verDevi ce.
/1 Qpen one-way receivers:

cl ass Recei vers rdef

wher e
penRecei ver o I*(RdAd m !'(rdef m(PState .1 .p)) !(ICstate .1 .p) -> | Cstate .l .p
ReopenReceiver :: ! (Rdn !(rdef m(PState .1 .p)) !(ICstate .| .p) ->1C8tate .1 .p

i nstance Receivers Receiver
i nstance Receivers (ReceiverLS |s)

/* QpenRecei ver opens the given receiver and binds the unique Rd to this receiver. The
shareable R d has to be used to send nmessages to this receiver.

ReopenRecei ver first closes the receiver with the given Rid, and then opens a new
receiver with the given receiver definition. In case the receiver was not
found, nothing happens. The new recei ver can again be sent messages to via
the given R d.

*/

/1 Qpen two-way receivers:

cl ass Recei ver2s rdef

wher e
penReceiver2 ::!'*(R2Id mr) !(rdef mr (PState .| .p)) !(ICstate .1 .p)-> ICstate .1 .p
ReopenRecei ver2::! (R2Id mr) !(rdef mr (PState .| .p)) !(ICstate .| .p)-> ICstate .1 .p

i nstance Receiver2s Receiver?2

STANDARD LIBRARY 143

i nstance Recei ver2s (Receiver2LS |s)

/* (penReceiver2 opens the given receiver and binds the unique R2Id to this receiver. The
shareabl e R21d has to be used to send messages to this receiver.
ReopenRecei ver2 first closes the receiver with the given RId, and then opens a new
receiver with the given receiver definition. In case the receiver was not
found, nothing happens. The new recei ver can again be sent messages to
via the given R2ld.

*/

d oseRecei ver o lid !(1CBtate .1 .p) -> 1 CBtate .1 .p

/* dose the indicated one-way or two-way receiver. Invalid Ids have no effect. */

Get Recei vers o I(lICstate .1 .p) -> (!'[(1d, ReceiverType)], !ICstate .| .p)

/* GetReceivers returns the Ids and ReceiverTypes of all currently open one-way and two-way receivers
of this interactive process.

*/

Enabl eRecei vers o I[1d] '(1Cstate .1 . p) -> |Cetate .| .p

D sabl eRecei ver s 2o 1[1d] !'(1Cstate .1 .p) -> ICstate .1 .p
[

CGet Recei ver Sel ect State :: d !(lICstate .1 .p) -> (!Optional SelectState,!lICstate .1 .p)
/* (En/ D s)abl eRecei vers (en/dis)able the indicated one-way and two-way receivers.
Note that this inplies that in case of synchronous nessage passing nessages can fail
(see the cooments of SyncSend and SyncSend2 below). Invalid Ids have no effect.
CGet Recei ver Sel ect State yields the current SelectState of the indicated receiver.
} In case the receiver does not exist, None is returned.
*

/1 Inter-process conmunication:

/1l Continuation report for process communication:
;1 SendReport

= SendC

| SendUnknownPr ocess

| SendUnknownRecei ver

| SendUnabl eRecei ver
I

SendDead| ock
SendCont ps : == SendReport ->ps -> ps
Send2Cont r ps :== (SendReport, Qptional r) -> ps -> ps
ASyncSend :: !'(Rd mess) mess !((ptional (SendCont (PState .1 .p))) !(PState .1 .p)
-> PState .l .p

/* ASyncSend posts a message to the receiver indicated by the argunent Rid. In case the
i ndi cated recei ver belongs to this process, the nessage is sinply buffered.
ASyncSend i s asynchronous: the nessage will at sone point be received by the indicated
recei ver/ process.
The ptional SendCont-inuation is always applied as fol | ows:
- SendCk: No exceptional situation has occurred. The message has been sent.
Note that even though the nessage has been sent, it cannot be
guaranteed that the message will actually be handl ed by the indicated
recei ver because it mght becone cl osed, forever disabled, or flooded with
synchr onous nessages.
- SendUnknownPr ocess:
The indicated interactive process does not exist, therefore the
recei ver al so does not exist.
- SendUnknownRecei ver:
The indicated recei ver does not exist, although the interactive
process that created it does exist.
- SendUnabl eRecei ver:
Does not occur: the nessage is always buffered, regardl ess whether the
indicated receiver is Able or Uhable. Note that in case the receiver never
becomes Abl e, the nessage will not be handl ed.
- SendDead| ock:
Does not occur.
By default, the SendCont-inuation is _ ps->ps.
*
/

SyncSend :: !'(Rd mess) mess ! (ptional (SendCont (PState .1 .p))) !(PState .1 .p)
-> PState .| .
/* SyncSend posts a message to the receiver indicated by the argunent Rid. In case the

144 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

i ndi cated recei ver belongs to the current process, the correspondi ng Recei ver Functi on

is applied directly to the message argument and current process state.

SyncSend i s synchronous: this interactive process bl ocks eval uation until the indicated

recei ver has received the nessage.

The ptional SendCont-inuation is always applied as fol | ows:

- SendCk: No exceptional situation has occurred. The message has been sent and handl ed
by the i ndicated receiver.

- SendUnknownPr ocess:
The indicated interactive process does not exist, therefore the receiver
al so does not exist.

- SendUnknownRecei ver :
The indicated recei ver does not exist, although the interactive process that
created it does exist.

- SendUnabl eRecei ver:
The addressee exists, but its ReceiverSelect attribute is Unable. Message
passing is halted. The message is not sent.

- SendDead| ock:
The addressee is involved in a synchronous, cyclic comunication wth
the current process. Bl ocking the current process would result in a deadl ock
situation. Message passing is halted to circunvent the deadl ock.
The nessage i s not sent.

} By default, the SendCont-inuation is _ ps->ps.
*

SyncSend2: : ! (R2Id ness resp) ness ! (ptional (Send2Cont resp (PState .1 .p))) !(PState .1 .p)
-> PState .1 .p
/* SyncSend2 posts a message to the receiver indicated by the argunent R2Id. In case the
i ndi cated recei ver belongs to the current process, the correspondi ng Recei ver 2Functi on
is applied directly to the message argurment and current process state.
SyncSend2 is synchronous: this interactive process blocks until the indicated
recei ver has received the nessage.
The Qptional Send2Cont-inuation is always applied as fol | ows:
- SendCk: No exceptional situation has occurred. The message has been sent and handl ed
by the i1 ndicated receiver.
- SendUnknownPr ocess:
The indicated interactive process does not exist, therefore the receiver
al so does not exist.
- SendUnknownRecei ver:
The indicated receiver does not exist, although the interactive process that
created it does exist.
- SendUnabl eRecei ver:
The addressee exists, but its ReceiverSelect attribute is Unable. Message
passing is halted. The message is not sent.
- SendDead| ock:
The addressee is involved in a synchronous, cyclic commnication with
the current process. Bl ocking the current process would result in a deadl ock
situation. Message passing is halted to circunvent the deadl ock.
The nessage i s not sent.
By default, the Send2Cont-inuation is _ ps->ps. If the SendReport==SendCk,
(One response) of the receiver is passed as an argument of the Send2Cont-inuation. In all
ot her cases, this value is None.
*
/

B.3.8 StdFileSelect: selecting files

definition nodul e StdFil eSel ect

fromStdString inport String
fromStdPState inport PState, |Cstate, Files
from Stdl CCommon inport (ptional, One, None

/* Wth the functions defined in this nmodul e standard file sel ector dial ogs can be opened,
whi ch provide a user-friendly way to select input or output files. The | ay-out of these

di al ogs depends on the (version of the) operating system */

class FileSel ect environnent

wher e
SelectlnputFile :: I*environment -> (! Qptional String,!*environment)
SelectQutputFile:: !'String !String !*environnent -> (! Qotional String,!*environnent)

i nstance FileSelect Wrld
instance FileSelect (PState .1 .p)

/* SelectlnputFile opens a dialog windowin which the user can traverse the file system
to select an existing file. If a file has been selected, the String
result contains the conpl ete pathname of the selected file. If the
user has not selected a file, None is returned.

STANDARD LIBRARY 145

Sel ect Qut put Fi | e opens a di al og wi ndow i n which the user can specify the nane of a file
towitetoin acertain directory. The first argument is the pronpt
of the dialog (default: "Save As:"), the second argunment is the default
filename. When a file with the indicated name already exists in the
indicated directory a confirmdialog will be opened. The String result
contai ns the conpl ete pathname of the selected file in case a fil ename
is confirmed. If no filenane has been confirnmed, None is returned. */

B.3.9 StdlIOCommon: common definitions

definition nodul e Stdl OComon

i nport StdOver| oaded
from StdString inport String

from id inport Id, told, ==, toString
/* Ceneral type constructors for conposing context-dependent data structures. */
L+ t1t2 c=(:+) infixr 9 (t1 ¢) (t2 ¢
T~ t1t21 ¢ =(:~) infixr 9 (t11 c) (t21 c)
Li st NoLS t c = ListNoLS [t c]
N | NoLS ¢ = NI NoLS
ListLS t | ¢ =ListLS [t | c]
N ILS | ¢ =NILS
LS t | ¢ =LS (t c)
NoLS t c=EI : {introL,S:: .I, introDef :: t .I c}
Ext endLS t I ¢c =EI1 {extendLS:: .11, extendDef:: t *(.11,1) c}
ChangelLsS t I ¢ =EIL1lL {changeLS:: .11, changeDef:: t .I1 c}
I ndex == Int
Title i== String
S ze = {w::lInt,h::!l'Int}
i nstance == Sze // Equality on Size
i nst ance zero Size /I Zero ({w=0, h=0})
Vect or = {vx::lIint,vy::!Int}
i nst ance == Vector // Equality on Vector
i nst ance + Vector // Add argl to arg2 (v1+v2={vx=vl. x+v2. vX, vy=vl. vy+v2. vy})
i nst ance - Vector // Subtract arg2 fromargl (v1-v2={vx=vl.Xx-v2.vx, vy=vl. vy-v2.vy})
i nstance zero Vector // Zero (unit element for addition, {vx=0,vy=0})

SelectState = Able | Unable

Mar kSt at e Mark | NoMark
Enabl ed ;. ISelectState -> Bool /1l select == Able
Mar ked ;. I'MarkState -> Bool [l mark == Mark
Mar kSwi t ch o IMarkState -> MarkState // Mark -> NoMark; NoMark -> Mark
i nst ance == SelectState // Equality on SelectState
i nstance == MarkState // Equality on MarkState
Keyboar dSt at e
= { keyCode 11 1 Char
, keySt at e 11 IKeyState
, keyModifiers:: !'Mdifiers
}
KeySt at e
= Keylp
| KeyDown
| KeySti | | Down

i nst ance == KeyState // Equality on KeyState

146

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

MouseSt at e
= { nmousePos
, nmouseBut t on
, nmousehModi fiers ::

}
ButtonState
But t onUp
But t onDown
But t onDoubl eDown
But t onTri pl eDown
ButtonSti | | Down

i nst ance == ButtonState // Equality on ButtonState
/* Mdifiers indicates the meta keys that have been pressed (True) or not (False).
Modi fiers
= { shi f t Down ! Bool
, opti onDown :: !Bool
, commandDown :: ! Bool
, control Down :: ! Bool
}
/* Frequently occuring data types: */
Poi nt
= { X Il nt
, y I'lnt
Rect angl e
= { cornerl :: !Point
, corner2 :: !Point
i nst ance == Point /1 Equality on Point
i nst ance + Poi nt /1l Add argl to arg2 (p1+p2={x=pl. x+p2. X, y=
i nst ance - Poi nt /1 Subtract arg2 fromargl (pl-p2={x=pl. x-p2. X,y
i nst ance zero Point /1 Zero (unit element for addition, {x=0,y=0})
i nst ance == Rectangle // Equality on Rectangle

Rect angl eS ze

Pi ct ur eDonai n
Updat eAr ea

: == Rectangl e
: == [Rect angl €]

/*
I t enPos

== I tenloc
, ItenCr f set
)
emnmLoc
Rel ative to corner:
Left Top
R ght Top
Lef t Bott om
R ght Bott om
Rel ative in next |ine:
Left
Cent er
R ght
Rel ative t
Left Cf I
I
I
I

It
11
Il

/1 other item
R ght To
Above
Bel ow
Rel ative to previous item
Left f Prev

R ght ToPr ev

AbovePr ev

Bel owPr ev

tenCr f set

Vect or

(0]
d
d
d
d

/1

! Poi nt
lButtonState
I'Mdifiers

The | ayout | anguage used for w ndows and control s.

IRectangle -> Size // The size of the Rectangle

*/

*/

STANDARD LIBRARY 147

i nst ance == ItenLoc // Equality on Itenioc
/* Atributes for interactive processes. */
IQAttribute ps

= |QActivate (ICFunction ps)
| CDeactivate (1 CFunction ps)

| Ol p (1 GFunction ps)
/* Frequently used function types. */
I GFunct i on ps :== ps -> ps
Mbdsl CFunction ps :== Modifiers ->ps ->ps
Updat eFunction ps :== Updat eArea ->ps -> ps
MbuseFunction ps :== MuseState ->ps ->ps
KeyFunct i on ps :== KeyboardState -> ps -> ps
/* Optional type. */
otional x
= (e x
| None
hasQption :: !(Qptional .x) -> Bool
gettion :: !'(Ootional .x) -> .x
B.3.10 StdPState: access operations on the P State

definition nodul e StdPState

fromiostate inport PState, ICBtate, Files
from Stdl OCommon i nport | GFunction
from St dFunc inport St

/1 Coercing PState conponent operations to PState operations.

appListPIO :: ![.ICFunction (ICstate .| .p)] !(PState .1 .p) -> PState .1 .p
appListPFs :: ![.I1CFunction Files] I(PState .1 .p) -> PState .l .p
appListPLoc :: ![.ICFunction .I] I(PState .1 .p) -> PState .1 .p
appListPPub :: ![.ICFunction .p] I(PState .1 .p) -> PState .| .p
appPl O '.(ICFunction (ICstate .1 .p)) !(PState .1 .p) -> PState .| .p
appPFs 1. (I CFunction Files) I(PState .1 .p) -> PState .1 .p
appPLoc '.(ICFunction .1I) I(PState .1 .p) -> PState .| .p
appPPub I. (I CFunction .p) I(PState .1 .p) -> PState .1 .p

/1 Accessing PState conponent operations.

accListPIO :: I[.St (ICstate .1 .p) .X] I'(PState .1 .p) -> (![.x], !PState .1 .p)
accListPFs :: ![.St Files . X] I(PState .1 .p) -> (!'[.x], !PState .1 .p)
accListPLoc :: !'[.St .1 . X] I'(PState .1 .p) -> (![.x], !PState .1 .p)
accListPPub :: I'[.St .p . X] I'(PState .1 .p) -> (!'[.x], !PState .1 .p)
accPl O 1.(St (ICstate .1 .p) .x) I(PState .1 .p) -> (!.x, IPState .1 .p)
accPFs o (St Files . X) I'(PState .1 .p) -> (!.x, IPState .| .p)
accPLoc (st .l . X) I'(PState .1 .p) -> (!.x, IPState .1 .p)
accPPub (st .p . X) I(PState .1 .p) -> (!.x, IPState .1 .p)
B.3.11 StdlOState: global operations on the 10 State

definition nodule Stdl Cstate

i nport StdFont, StdW ndowDef
from iostate inport PState, ICstate, Files

/1 1Cstate is an environment instance of the class Fonts (see StdFont).

instance Fonts (I CState .| .p)

/1 Emt the alert sound.
Beep v I(ICstate .1 .p) ->1Cstate .1 .p

148 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

/* 1f the interactive process is active, Beep enits a sound alert.
If the interactive process is inactive, Beep does nothing. */

/1 Qperations on the global cursor:

Set Qur sor ;o lQursorShape ! (1 Cstate .1 .p) -> 1Cstate .| .

/* Set the shape of the cursor globally. This shape overrules the | ocal cursor shapes of
w ndows. */

Reset Qur sor D I(ICstate .1 .p) ->ICstate .| .p
/* Undoes the effect of SetCQursor. */

CbscureQursor :: I(ICstate .1 .p) ->ICstate .1 .p
/* (CbscureQursor hides the cursor until the nouse is noved. */
/1 Qperations on the Doubl eDownDi st ance:

Set Doubl eDownDi stance :: !Int !(ICstate .1 .p) -> 1 Cstate .1 .p

/* Set the nmaxi mumdi stance the nouse is allowed to nove to generate a
But t onDoubl e(Tri pl €) Down button state. Negative values are set to zero. */

/1 Qperations on the attributes of an interaction:

Setl QActivate :: !(ICFunction (PState .1 .p)) !(ICstate .1 .p) -> I1Cstate .1 .p

Set| CDeactivate :: ! (I Crunction (PState .1 .p)) !(ICstate .1 .p) -> | Cstate .1 .p

Set | GHel p :: I (ICFunction (PState .1 .p)) !(ICstate .| .p) -> ICstate .l .p

/* Set the | QActivate, |CDeactivate, |CHelp attribute of the interactive process. */
B.3.12 StdSystem: platform dependent settings
definition nmodul e StdSystem

i nport St dl CComon

/'l Keyboard constants.

WoKey :== "\036' I/ Arrow up

DownKey 1== "\ 037" [/ Arrow down

Lef t Key 1=="\034' /Il Arrow left

R ght Key ;== "\ 035 /Il Arrow right

PgUpKey (== "\013 I/ Page up

PgDownKey c== "\ 014 !/ Page down

Begi nKey :=="\001 /1 Begin of text

EndKey 1== "\ 004 // End of text

BackSpKey :=="\010 /| Backspace

Del Key == \17T /1 Delete

TabKey == "\011 /1 Tab

Ret ur nKey ;== "\ 015 // Return

Ent er Key :=="\003 /1l Enter

EscapeKey ;== "\ 033 /|l Escape

Hel pKey ;== "\ 005 /1 Help

/1 File constants.

DrSeparator :==":" /| Separator between folder- and filenames in a pat hname
/1 Constants to check which of the Mdifiers is down.

Shiftnly : == {shi ft Down=True, optionDown=Fal se, commandDown=Fal se, cont r ol Down=Fal se}
OotionOnly == {shiftDown=Fal se, opti onDown=True, comrandDown=Fal se, contr ol Down=Fal se}
CommandOnly : == {shi ft Down=Fal se, opti onDown=Fal se, commandDown=Tr ue, contr ol Down=Fal se}
Control Only : == {shiftDown=Fal se, opti onDown=Fal se, commandDown=Fal se, cont r ol Down=Tr ue }

/* The functions HonePath and ApplicationPath prefix the filename given to themwth the
full pathnanes of the 'hone' and 'application' directory. These functions have been added
for conmpatibility with the Sun version of the dean system In the 'home' directory
settings-files (containing preferences, options etc.) should be stored. In the
application' directory (i.e. the directory in which the application resides) files that
are used read-only by the application (such as help files) should be stored. On the
Maci nt osh these functions just return the filenane given to them which nmeans that the
file will be stored in the sane fol der as the application. */

HorePat h ;o 1String -> String

STANDARD LIBRARY 149

ApplicationPath :: !'String -> String

/* Screen resol ution functions.
h(rminch) convert millineters/inches into pixels, horizontally.

v(mmiinch) convert mllineters/inches into pixels, vertically. */
mmper i nch == 25.4
hrmm i JReal ->Int
vmm :: JReal ->Int
hi nch :: IReal -> Int
vi nch :: IReal ->Int

/* Maxi mum ranges of wi ndow Pi ct ur eDomai ns:
MaxScrol | WndowSi ze yi el ds the range at which scrollbars are inactive.
MaxFi xedW ndowSi ze vyields the range at which the w ndow does not change into a

Scrol | Wndow.
x|
MaxScrol | WndowSi ze :: Size
MaxFi xedW ndowS ze :: Size
B.4 Operations for parallel evaluation

B.4.1 StdProcld: operations for load distribution on Proclds

concurrent

Clean C

Annotated C.. Bibliography

Below follows an annotated bibliography for people who want to know more about CONCURRENT
CLEAN, its underlying concepts and its implementation. Many of these papers are available from our
ftp site

General papers on CONCURRENT CLEAN

- Rinus Plasmeijer and Marko van Eekelen (1993). Functional Programming and Parallel Graph
Rewriting. Addison Wesley, ISBN 0-201-41663-8.

Basic book on CLEAN. Introduction in functional programming using Miranda; CLEAN (version 0.8);

Underlying model of computation (lambda-calculus, term rewriting systems, graph rewriting systems);

Type systems; Strictness analysis; Implementation techniques using CLEAN as intermediate language;
Abstract machines; Code generation for both sequential and parallel architectures.

- Rinus Plasmeijer (1994). ‘The CoNcURRENT CLEAN Development System’. University of Nijme-
gen.

Manual on the use of CLEAN’S programming environment on the Mac. This information can also be
obtained by printing out the help file from the Mac distribution.

- Eric Nocker, Sjaak Smetsers, Marko van Eekelen, Rinus Plasmeijer (1991). ‘CONCURRENT
CLEAN’. In Aarts, E.H.L., J. van Leeuwen, M. Rem (EdSs.), Proceedings of the Conference on Paral-
lel Architectures and Languages Europe (PARLE'91), Vol I, Eindhoven, The Netherlands, LNCS
505, Springer Verlag, June 1991, 202-219.

Gives a short overview of the features of CONCURRENT CLEAN (version 0.7) as well as of its implemen-
tation.

- Tom Brus, Marko van Eekelen, Maarten van Leer, Rinus Plasmeijer (1987). ‘CLEAN - A Lan-
guage for Functional Graph Rewriting’. Proc. of the Third International Conference on Functional
Programming Languages and Computer Architecture (FPCA '87), Portland, Oregon, USA, LNCS
274, Springer Verlag, 364-384.

First paper on CLEAN.

Papers on the underlying computational model being used

- Henk Barendregt, Marko van Eekelen, John Glauert, Richard Kennaway, Rinus Plasmeijer, Ro-
nan Sleep (1987). ‘Term Graph Rewriting’. Proceedings of Parallel Architectures and Languages
Europe (PARLE), part 11, Eindhoven, The Netherlands. LNCS 259, Springer Verlag, 141-158.

Basic paper on Term Graph Rewriting, the computational model CLEAN is based upon.

- Ronan Sleep, Rinus Plasmeijer and Marko van Eekelen (1993). Term Graph Rewriting - Theory
and Practice. John Wiley & Sons.

Collection of theoretical papers by various authors on properties of Term Graph Rewriting systems.

152 CONCURRENT CLEAN 1.2 LANGUAGE REPORT

- Yoshihito Toyama, Sjaak Smetsers, Marko van Eekelen and Rinus Plasmeijer (1993). ‘The func-
tional strategy and transitive term rewriting systems’. In: Term Graph Rewriting, ed. Sleep, Plas-
meijer and van Eekelen, John Wiley.

- Marko van Eekelen, Rinus Plasmeijer, Sjaak Smetsers (1991). ‘Parallel Graph Rewriting on Loo-
sely Coupled Machine Architectures’. In Kaplan, S. and M. Okada (Eds.) Proc. of the 2nd Int.
Worksh. on Conditional and Typed Rewriting Systems (CTRS'90), 1990. Montreal, Canada, LNCS
516, Springer Verlag, 354-370.

Explains parallel Graph Rewriting and the concept of lazy copying.

- Erik Barendsen and Sjaak Smetsers (1993). ‘Extending Graph Rewriting with Copying’. In: Proc.
of the Seminar on Graph Transformations in Computer Science, ed. B. Courcelle, H. Ehrig, G. Ro-
zenberg and H.J. Schneider, Dagstuhl, Wadern, Springer-Verlag, Berlin, LNCS 776, Springer
Verlag, pp 51-70.

Formal semantics of (lazy) copying.

- Steffen van Bakel, Simon Brock and Sjaak Smetsers (1992). ‘Partial type assignment in left-linear
applicative term rewriting systems’. In: Proc. of the CAAP'92, ed. J.C. Raoult, Rennes, France,
LNCS 581, Springer Verlag, pp. 300-321.

Formal treatment of the "classical” type system of CONCURRENT CLEAN.

- Erik Barendsen and Sjaak Smetsers (1993). ‘Conventional and Uniqueness Typing in Graph
Rewrite Systems (extended abstract)’. In: Proc. of the 13th Conference on the Foundations of Soft-
ware Technology & Theoretical Computer Science, ed. R.K. Shyamasundar, Bombay, India, LNCS
761, Springer Verlag, pp. 41-51.

Formal treatment of CLEAN’s Uniqueness Type System used to guarantee single-threaded use of ob-

jects.

Papers on applications written in CLEAN

- Walter de Hoon, Luc Rutten and Marko van Eekelen (1994). ‘Implementing a Functional
Spreadsheet in CLEAN’. Journal of Functional Programming, 5, 3, pp. 383-414.
About a spreadsheet written in CLEAN. As spreadsheet language also a CLEAN-like functional language is

chosen which is being interpreted by a theorem prover. One can do symbolic evaluation to verify prop-
erties of the spreadsheet.

Papers on advanced I/O

- Peter Achten, John van Groningen and Rinus Plasmeijer (1992). ‘High-level specification of 1/0
in functional languages’. In: Proc. of the Glasgow workshop on Functional programming, ed. J. Lau-
nchbury and P. Sansom, Ayr, Scotland, Springer-Verlag, Workshops in Computing, pp. 1-17.

Introduction in CLEAN’S Event 1/O.

- Peter Achten and Rinus Plasmeijer (1995). ‘The Ins and Outs of CONCURRENT CLEAN I/O’.
Journal of Functional Programming, 5, 1, pp. 81-110.

Explains the concepts behind CLeaN’s Event 1/0 and how they can be used to define interactive win-
dow-based applications on a high-level of abstraction.

- Peter Achten and Rinus Plasmeijer (1994). ‘A framework for Deterministically Interleaved Inter-
active Programs in the Functional Programming Language CLEAN’. In: Proc. of the CSN'94, Com-
puting Science, to appear.

Explains how one can create several interleaved executing interactive CLEAN processes inside one inter-

active pure functional CLEAN application which can communicate via a shared state as well as via asyn-

chronous message passing.

ANNOTATED CLEAN BIBLIOGRAPHY 153

Papers on the CLEAN to PABC compiler

- Eric Nocker and Sjaak Smetsers (1993). ‘Partially strict non-recursive data types’. Journal of
Functional Programming, 3, 2, pp. 191-215.

Introduces partially strict data structures as available in CoONCURRENT CLEAN and explains why and
how they improve efficiency.

- Eric Nocker (1993). ‘Strictness analysis using abstract reduction’. In: Proc. of the 6th Conference
on Functional Programming Languages and Computer Architectures, ed. Arvind, Copenhagen,
ACM Press, pp. 255-265.

Explains the efficient and powerful strictness analysis method incorporated in CLEAN.

Papers on the abstract machine level

- Pieter Koopman, Marko van Eekelen, Eric Ndcker, Sjaak Smetsers, Rinus Plasmeijer (1990).
‘The ABC-machine: A Sequential Stack-based Abstract Machine For Graph Rewriting’. Proc of
the Sec. Intern. Workshop on Implementation of Functional Languages on Parallel Architectures, pp.
297-321, Technical Report no. 90-16, October 1990, University of Nijmegen.

Explains the sequential version of the PABC-machine and gives some information about the compila-
tion of CLEAN to (abstract) ABC-machine code.

Papers on code generation

- Sjaak Smetsers, Eric Nocker, John van Groningen, Rinus Plasmeijer (1991). ‘Generating Effi-
cient Code for Lazy Functional Languages’. In Hughes, J. (Ed.), Proc. of the Fifth International
Conference on Functional Programming Languages and Computer Architecture (FPCA '91), USA,
LNCS 523, Springer Verlag, 592-618.

Explains some optimisations that are used for the generation of efficient machine code.

- John van Groningen , Eric Nocker and Sjaak Smetsers (1991) ‘Efficient heap management in the
concrete ABC machine’ in Proc. of Third International Workshop on Implementation of Func-
tional Languages on Parallel Architectures, University of Southampton, UK 1991, Technical Re-
port Series CSTR91-07.

Explains the heap management (garbage collection) techniques used for the implementation of

CoNCURRENT CLEAN on concrete machines.

- Marko Kesseler (1991). ‘Implementing the ABC machine on transputers’. In: Proc. of the 3rd In-
ternational Workshop on Implementation of Functional Languages on Parallel Architectures, ed. H.
Glaser and P. Hartel, Southampton, University of Southampton, Technical Report 91-07, pp.
147-192.

- Richard Goldsmith, Dave McBurney and Ronan Sleep (1993). ‘Parallel execution of Con-
CURRENT CLEAN on ZAPP’. In: Term Graph Rewriting, ed. Sleep, Plasmeijer and van Eekelen,
John Wiley.

The papers explain different ways to achieve a parallel implementation of CONCURRENT CLEAN 0N a

MIMD machine with distributed memory.

- Marko Kesseler (1994). ‘Reducing Graph Copying Costs - Time to Wrap it up’. In: Proc. of the
First International Symposium on Parallel Symbolic Computation, PASCO '94, ed. Hoon Hong,
Hagenberg/Linz, Austria, World Scientific, Lecture notes Series on Computing, 5, 5, pp. 244-
254.

Explains how to generate efficient code for a multi-processor Transputer system.

concurrent

Clean D

Bibliography

Barendregt, H.P. (1984). The Lambda-Calculus, its Syntax and Semantics. North—Holland.

Bird, R.S. and P. Wadler (1988). Introduction to Functional Programming. Prentice Hall.

Harper, R., D. MacQueen and R. Milner (1986). ‘Standard ML’. Edinburgh University, Internal re-
port ECS-LFCS-86-2.

Hindley R. (1969). The principle type scheme of an object in combinatory logic. Trans. of the Ameri-
can Math. Soc., 146, 29-60.

Hudak, P., S. Peyton Jones, Ph. Wadler, B. Boutel, J. Fairbairn, J. Fasel, K. Hammond, J. Hughes,
Th. Johnsson, D. Kieburtz, R. Nikhil, W. Partain and J. Peterson (1992). ‘Report on the pro-
gramming language Haskell’. ACM SigPlan notices, 27, 5, pp. 1-164.

Jones, M.P. (1993). Gofer - Gofer 2.21 release notes. Yale University.

Milner, R.A. (1978). ‘Theory of type polymorphism in programming’. Journal of Computer and System
Sciences, 17, 3, 348-375.

Mycroft A. (1984). Polymorphic type schemes and recursive definitions. In Proc. International Confer-
ence on Programming, Toulouse (Paul M. and Robinet B., eds.), LNCS 167, Springer Verlag,
217-2309.

Turner, D.A. (1985). ‘Miranda: a non-strict functional language with polymorphic types’. In: Proc. of
the Conference on Functional Programming Languages and Computer Architecture, ed. J.P. Jouan-
naud, Nancy, France. LNCS 201, Springer Verlag, 1-16.

concurrent

Clean E

Index

Emboldened terms indicate where a term has been defined in the text. A term starting with an upper-
case character generally refers to an identifier in the syntactic description or to a predefined function or

operator in the library.

A BooleanExpr 17, 106
boxing 59, 99
BrackPattern 30, 106
abort 52 '
abstract data type 49 BrackType 41, 45
predefined 42

AbstractTypeDef 49, 108
Acker 60 CAF 26
actual node-id 5 cartesian product 43, 50
algebraic data type 44 case 11, 22
algebraic data type definition 31 case expression 22
AlgebraicTypeDef 44, 65, 108 CaseAltDef 22, 107
anonymous uniqueness type variable 65 CaseExpr 22, 107
AnyChar 10, 110 Char 11, 17, 32, 42
AnythingTill*/ 10 CharDel 9
AnythingTill/* 10 CharDenot 10, 110
AnythingTilINL 10 CharsDenot 10, 110
AP 51 class 11, 53, 57, 109
Application 15, 16, 107 ClassContext 54, 106
Arith 52 ClassDef 109
arity of a function 50, 51 ClassSymb 12, 109
array 17, 19, 33, 43, 107 CLEANProgram 95, 105
array comprehension 20 code 11, 97
array generator 17 coercion 70, 72
array index 21, 43 Comment 10
array pattern 33 comparing 3
array selection 21 conditional expression 22
ArrayA ={1,2,3,4,5} 18 console mode 76
ArrayExpr 17, 107 constant applicative form 26
ArrayIndex 19 constant function 25
ArrayPattern 33, 106 constant value 17, 32, 44
ArraySelection 19, 107 constructor
ArrayType 43, 108 of zero arity 31
arrow type 43 constructor operator 31
ArrowType 44, 108 constructor pattern 31
ASCII 42 constructor symbol 4

B ConstructorDef 65, 108

basic type 17, 32, 42
BasicType 42
BasicValue 17, 107
BasicValuePattern 106
block structure 22
Bool 11, 17, 32, 42
BoolDenot 10, 110

ConstructorSymb 12, 109
ConstructorSymbol 16, 31
ConstructorSymbol 109
context

lazy 60

strict 60
context-switch 90, 91
contractum 3, 25, 34

158

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

contravariant 70
curried application 51
curried type 43
currying 15

cyclic graph 25

data constructor 30, 31, 44

data structure 44

DataRoot 7

default 11

default attribute 70

defined symbol 97
explicitly 97
implicitly 97

definition 11, 26, 44, 95, 96, 105
global 12

definition module 49, 95

DefinitionModule 95, 105

DefOfFunction 29

demanded type 72

depending module 98

dictionary 52

Digit 9, 110

directed arc 3

dot-dot expression 17

E. 46
enumeration type 17
essentially unique 67, 71
evaluation

interleaved 15

parallel 15
existential algebraic data type definition 46
existential type 47
existentially quantified type 42
existentially quantified variable 46
export 11, 12
expression 15

initial 3

fac 52

False 10, 110

field name 18, 19, 33, 47

FieldSymb 12, 109

File 11, 42

filter 34

Fix 44, 50, 108

fixity 16, 30, 51

flat type 59

foreign function 97

formal argument 16

formal arguments 30

formal node-id 5

from 11, 97

function 4
arity of a 51
constant 25
curried application of a 51
partial 4, 51
total 52

function alternative 29
function composition 51
function definition 3, 29
function object 43

function symbol 4

function type 50

functional array update 20
functional record update 18
functional reduction strategy 4
FunctionAltDef 29, 106
FunctionBody 29
FunctionDef 29, 50, 106
FunctionSymb 12, 109
FunctionSymbol 16, 29, 109
FunctionType 50, 54, 106
FunctionTypeDef 50, 106
Funnyld 9

garbage collection 26
garbage collector 26
generator 17, 107

array 17

list 17
global definition 12
global graph 7
global graph definition 26
graph 3, 7, 15, 107
graph definition 25
graph expression 34
graph rewrite rule 3
GraphDef 25
GraphExpr 15
GraphPattern 31, 106
GraphVariable 16, 107
guard 17, 29, 33, 34, 106
guarded function body 29

ham 26, 35

ham1 26

Haskell iv

head normal form 76
HexDigit 10, 110
Hindley 41

111
1/10

window 83
IdChar 9, 109
Identifier 9, 11
if 11
implementation 11, 95, 105
implementation module 49, 95
import 11, 97
import statement 97
ImportDef 97, 106
ImportSymbols 97, 106
in11, 34
index 33
infix 11, 30, 45, 51
infix constructor 31, 45

INDEX 159
infixl 11, 30, 45, 51 negative position 70
infixr 11, 30, 45, 51 nfib 32
Initial 5, 7 node 3
initial expression 3, 76, 96 node variable 32
instance 11, 53 node-id 3
Int11, 17, 32, 42 actual 5
IntegerDenot 10, 109 applied 3
IntegerExpr 19 formal 5
Intel vii node-id variable 30
node-identifier 3
NodeSymbol 16, 109
non-unique 70
keyword 10 normal form 4
@)
LgmbdaAbstr 23,107 object oriented programming 48
Léaufer 46 bservi f 69
lay-out rule 13 ODSErVINg rererence
OctDigit 10
lazy context 60 £11 22
lazy evaluation 59 Oﬁ ,dt 7
lazy semantics 59 operator 16, 30, 51, 108
left hand-side of a graph 3 P oAl
++ 30, 67
let! 11, 34
030,51
Lexeme 9 der of evaluation 69
LexProgram 9 (())rsg ot evaluation
LGraphExpr 17, 107 o+ Vil "
LGraphPattern 32, 106 otherwise
i o overloaded 53
inLxvil loading 12
list 17, 32, 42, 107 overloading P

list comprehension 17

list list generator 17

list of characters 17

list pattern 32

ListExpr 17, 107

ListPattern 32, 106

ListType 43, 108

Literal 10

local definition 29, 35

local function definition 35
local graph definition 26

local process state 89

LocalDef 35, 106
LocalFunctionAltDefs 35, 107
LocalFunctionDefs 35, 106
loosely coupled parallel architecture 103
LowerCaseChar 9, 109
LowerCaseld 9, 109

MacOS vii

macro definition 93
MacroFixityDef 93, 108
MacroSymb 12, 109
map 30, 50, 72
merge 32

Milner 41

Miranda iv

module 11, 95, 105
ModuleSymb 12, 109
Motorola vii

name space 10, 12

P11
partial function 4, 31, 34, 51
partial match 4
pass-through module 98
pattern 3, 30, 106

array 33

bracket 30

constructor 31

list 32

of basic type 32

record 33

tuple 32
pattern match 34
pattern variable 31
patterns 29
PatternVariable 31, 106
plain basic type 69
polymorphic algebraic data type 44
position

negative 70

of an argument 70

positive 70
positive position 70
possibly unique 65, 71
PowerPC vii
Prec 45, 50, 108
precedence 16, 30, 51
PredefAbstrType 42, 108
primes 14, 35
process annotation 11
process group 89
Procld 11, 42
ProcldExpr 107

160

CONCURRENT CLEAN 1.2 LANGUAGE REPORT

program 3

program graph 4

projection function 26

propagation property for curried functions 71
propagation rule 66

Qualifier 17, 107

Real 11, 17, 32, 42
RealDenot 10, 110
receiver device 90

record 18, 33, 107
record pattern 33

record selection 19
record type 47
RecordExpr 18, 107
RecordPattern 33, 106
RecordSelection 18, 107
RecordTypeDef 48, 108
redex 4

redirection 3

redirection of a node 4
reducer 4

reducible expression 4
reduct 4

reduction strategy 4
reference 3

Remote Procedure Call (SendRPC) 90
Remote Procedure Call process 90
ReservedChar 10, 110
ReservedKeyword 10
ReservedSymbol 11
rewrite of a redex 4
right hand-side of a graph 3
root expression 29, 34
root normal form 4, 76
root stable form 76
RootExpression 35, 106
RPC process 90

rule alternative 29, 34

scope 12, 22, 26
selection

by field name 48

by index 19

by position 48
Selector 17, 26, 107
selector variable 16, 26
SelectorVariable 12, 109
semantics

lazy 59

strict 59
sharing 25
sharing analysis 68
sharing consistent 72
sieve 14, 35
Sign 10, 70, 110
SimpleType 41, 45, 108
SML iv
Solaris vii

sort 18

Special 10, 110

SpecialChar 9, 109

stack 49

Start 5, 7, 96

start rule 5

StartNode 7

state transition function 77

Strict 108

strict context 60

strict let expression 29, 34

strict semantics 59

StrictLet 34, 106

strictness annotation 59

StringDel 9, 110

StringDenot 10, 110

strong root normal form 4, 34, 69

strong type system 41

strongly typed language 41

sub-graph 5, 35

sub-pattern 31

subtyping 70

SunOS vii

symbol 3, 10, 11
arguments of a 3

synonym type 49

SynonymTypeDef 49, 108

system 11, 95, 105

system definition module 97

system implementation module 97

Term Graph Rewriting 3
terminal vii, 105
total function 52
tree 3
True 10, 110
tuple 18, 32, 43, 107
tuple pattern 32
TuplePattern 32, 106
TupleType 43, 108
type 41, 45, 63, 108
abstract data 49
algebraic data 44
array 43
arrow 43
basic 42
context 53
curried 43
existential 47
explicitly specified 41
flat 59
inferred 41, 50
list 17, 42
of a function 50
of partial function 51
record 47
synonym 49
tuple 43
variable 44
type class 53
definition of 53
member of 53
type instance 41

INDEX

161

type specification 11

type variable 44

TypeConstructor 44, 108
TypeConstructor = TypeSymb 108
TypeDef 44, 108

TypeLhs 44, 65, 108

TypeSymb 12, 109

TypeVariable 12, 109

unboxing 59, 99
unique 64
uniqueness type 63
correctness 72
polymorphic 65
uniqueness type attribute 41, 63, 70
uniqueness type inferencing mechanism 72
uniqueness type specification 72
uniqueness type variable 71
anonymous 71
bound 71
free 71
UnqTypeAttrib 63
update of a record
destructive 18
update of an array
destructive 20
UpperCaseChar 9, 109
UpperCaseld 9, 109

Variable 12, 16, 109
existentially quantified 46
node 32
node-id 30
pattern 31
selector 16, 26
type 44

where 11, 35
where block 29, 35
Whitespace 9
wildcard 26, 32
Windows 95 vii
with 11, 35
with block 29, 35
World 11, 42
abstract 76
concrete physical 76
world mode 76

Xview vii

zero arity symbol 16
ZF-expression 17

