

- Language Report -

-

a general purpose, higher order, pure and lazy

functional programming language

based on graph rewriting

designed for the development of

sequential, parallel and distributed

real world applications

-

- Version 1.1 -

March 1996

University of Nijmegen

Rinus Plasmeijer

Marko van Eekelen

- Language Report -

Preface
• History of Clean
• Special features of Concurrent Clean
• About this language report
• Some remarks on the Clean syntax

• Notational conventions
• How to obtain Clean
• Current state of the Clean system
• Authors and Credits
• Final Remark

History of Clean

We made the first design of the pure functional language Concurrent Clean (Brus et al., 1987;
Nöcker et al., 1991; Plasmeijer & van Eekelen, 1993) at the University of Nijmegen in 1985. An im-
plementation of this first design was ready in 1986 and run on a Dec VAX-780. Clean was originally
intended as an experimental intermediate language and deliberately kept syntactically as poor as
possible such that we could focus on the essential language and implementation issues. This strat-
egy enabled us to study and introduce new concepts (such as term graph rewriting (Barendregt et
al., 1987), lazy copying (van Eekelen et al., 1991), abstract reduction (Nöcker, 1993), uniqueness
typing (Barendsen and Smetsers, 1993) without too much implementation effort. The ideas were
tested successfully in new releases of the Clean compiler which became the first compiler for a func-
tional language in the world which could be used on very small machines (e.g. a Mac plus) produc-
ing state-of-the-art code (Smetsers et al., 1991).

The consequence was that people started to use Clean to construct large applications even though
Clean was actually not intended as a programming language. So, it became necessary to turn the
experimental intermediate language into a proper practical applicable general purpose functio-
nal programming language suited for the development of real world applications. This lan-
guage report is about this new version of Concurrent Clean (version 1.x) which currently runs on
a Mac, PowerMac, Sun and PC.

i v PREFACE

Special features of Concurrent Clean

In this new version of the language we have added those features we felt people really need to
write real programs (such as infix notation, records, higher order types, type classes, type
constructor classes and much more) based on our own experience with writing complex applications
(such as the Clean I/O system).

Many of the added language constructs are similar to those commonly found in other modern lazy
functional languages (such as Miranda (Turner, 1985), SML (Harper et al., 1986), Haskell (Hudak et
al., 1992) and Gofer (Jones, 1993)). People familiar with these languages will have no difficulty to
program in Clean and we hope that they enjoy Clean's compilation speed and the quality of the
produced code.

But, in addition to the common stuff Clean offers a couple of very special features. Of particular
importance for practical use is Clean’s uniqueness typing enabling the incorporation of destructive
updates of arbitrary objects within a pure functional framework and the creation of direct inter-
faces with the outside world.

Clean’s "unique" features have made it possible to predefine (in Clean) a sophisticated and efficient
I/O library. The Clean I/O library enables a Clean programmer to specify interactive window
based I/O applications on a very high level of abstraction by using predefined algebraic data ty-
pes. In this way one can define the kind of I/O devices one wants to use (menu, dialogue, mouse
etcetera) together with the user defined call-back functions (which take care of the event handling).
The library forms a platform independent interface to window systems which makes it pos-
sible to port window based I/O applications written in Clean to different platforms without any mo-
dification of source code.

Different kind of call-back functions and I/O definitions can be active at the same time, thus provid-
ing the possibility to combine different interactive Clean programs into a new application (a kind
of multi-tasking within the same application). The applications can be regarded as lightweight pro-
cesses which can communicate via fi les, shared state or message passing primitives
((a)synchronous message passing, remote procedure call). All this is provided in a pure, sequen-
tial functional world in which the call-back functions act as indivisible event handlers.

Clean also has concurrency primitives to create functions which can be executed in parallel. The
primitives allow the creation of arbitrary process topologies (not only divide and conquer as
usually is the case) using the lazy-copy concept (see Barendsen and Smetsers, 1993; Plasmeijer
and Van Eekelen, 1993). Communication takes place automatically when one function on one pro-
cessor demands the result being calculated on another. The concurrency primitives influence the or-
der of evaluation and the execution speed of programs. They do not effect the outcome (provided
that there is enough memory) since everything remains pure and deterministic.

The new Clean I/O library takes advantage of the concurrency possibilities of Clean such that it is
now also has become possible to develop distributed executing interactive applications
running on several PC's/workstations connected in a network. Call-back functions are no longer
indivisible. A distributed Clean application behaves non-deterministic ally influenced by the order in
which events are communicated between processes. Distributed applications can communicate via
files or message passing primitives. A distributed application can be completely developed on one
processor on which the processes will run correctly in an interleaved sequential fashion. This is
very handy for testing.

PREFACE v

In spite of all these features, the new Clean compiler can be used on small machines while it still
combines fast compilation with the generation of efficient code. The system is available on an
increasing number of platforms and operating systems (Macs, PC, Sun).

About this language report

In this report the syntax and semantics of Clean version 1.1 are explained. Although the report is
not intended as introduction into the language, we did our best to make it as readable as possible.
People already familiar with functional programming will have no problems to develop their applica-
tions in Clean. A quick introduction in functional programming, in Clean (albeit version 0.8) as well as
in the underlying implementation techniques can be found in Plasmeijer and Van Eekelen (Adisson-
Wesley, 1993). A quick intro in Clean version 1.1 can be found on the net. Together with the
Universities of Utrecht and Leiden and the polytechnical Universities of Arnhem and Leeuwarden
we are working on a new book on Functional Programming in Clean 1.1 which contains lots of case
stud ies. The f i rs t dra f t vers ion o f chapters o f th is book are ava i lab le on the net
(www.cs.kun.nl/~clean). For people who like to have more information about Clean’s I/O system
(the version 0.8 which is available on all platforms) these chapters are highly recommended.

In this report we always motivate why we have included a certain feature. These explanations oc-
cur at several locations. E.g. for each predefined data structure a basic motivation for its introduction
is given in Chapter 8, information on the use and creation of objects of these type can be found in
Chapter 4, explanation on what kind of pattern matching facilities are possible in Chapter 6.

At several places in this report context free syntax fragments of Clean are given. We sometimes
repeat fragments which are also given elsewhere just to make the description clearer (e.g. in the
uniqueness typing chapter we repeat parts of the syntax for the classical types). We hope that
this is not confusing. The complete collection of context free grammar rules are summarised in Ap-
pendix A.

Some of the features mentioned in this report are still under consideration, design and/or
implementation and therefore not yet incorporated in the current release of the Clean
system. They should be regarded as "possible future trends". Perhaps they will be kicked
out, perhaps we incorporate them in slightly different form, perhaps they will be there in
full glory in the next release. We also take the liberty to make small syntactic changes in
future versions of the language.

The following Chapters in this language report are still under construction and should be
ignored:
Chapter 7: Process annotations
Chapter 10: Input / Output handling
For a description of the Clean 0.8 I/O system, see Chapter II.4 of the new Clean book,
available on internet.
Chapter 9: Defining uniqueness types, needs to be updated.

Some remarks on the Clean syntax

The Concurrent Clean syntax is similar to the notation found in most other modern functional langua-
ges. However, compared with Miranda and Haskell there are a couple of small syntactic differences
we want to point out here for people who don't like to read language reports.

In Clean the arity of a function is reflected in its type. When a function is defined its uncurried type is
specified! To avoid any confusion we want to explicitly state here that in Clean there is no restric-
tion whatsoever on the curried use of functions. However, we don't feel a need to express this in

v i PREFACE

every type. Actually, the way we express types of functions more clearly reflects the way curried
functions are internally treated.

The standard map function (arity 2) is specified in Clean as follows:

map::(a -> b) [a] -> [b]
map f [] = []
map f [x:xs] = [f x:map f xs]

Each predefined structure such as a list, a tuple, a record or array has its own kind of brackets: lists
are always denotated with square brackets […], for tuples the usual parentheses are used
(…,…), curly braces are used for records (indexed by field name) as well as for arrays (indexed
by number).

In types funny symbols can appear like ., u:, *, ! which can be ignored and left out if one is not
interested in uniqueness typing or strictness.

There are only a few keywords in Clean leading to a heavily overloaded use of : and = symbols:

function::argstype -> restype // type specification of a function
function pattern | guard = rhs // definition of a function

selector = graph // definition of a constant/ CAF/graph

::type args = type // an algebraic type definition
::type args :== type // a type synonym definition
::type args // an abstract type definition

macro args :== rhs // a macro definition

With a good editor it should be relatively easy to transform a Miranda or Haskell program into Clean.

Notational conventions

The following notational conventions are used in this report. Text is printed in Helvetica 11pts,
the context free syntax descriptions are given in Geneva 9pts,
examples of Clean programs are given in Courier 10pts,
textual explanation to the examples are given in Helvetica 10pts.

• Semantical restrictions are always given in a bulleted (•) list-of-points. When these restrictions
are not obeyed they will almost always result in a compile-time error. In very few cases the re-
strictions can only be detected at run-time (array index out-of-range, partial function called out-
side the domain).

The following notational conventions are used in the context-free syntax descriptions:

[notion] means that the presence of notion is optional
{notion} means that notion can occur zero or more times
{notion}+ means that notion occurs at least once
{notion}- l ist means one or more occurrences of notion separated by comma's
terminals are printed in bold 1 0 pts courier
symbols are printed in italic
~ is used for concatenation of notions
{notion}/~str means the longest expression not containing the string str

All Clean examples given in this report assume that the lay-out dependent mode has been chosen
which means that redundant semi-colons and curly braces are left out (see Section 3.6).

PREFACE vi i

How to obtain Clean

Concurrent Clean and the Concurrent Clean Program Development system can be used free of
charge for educational purposes only. They can be obtained

• via World Wide Web (www.cs.kun.nl/~clean) or
• via ftp (ftp.cs.kun.nl in directory pub/Clean).

It is allowed to copy the system again for educational purposes only under the condition that the
whole distribution for a certain platform is copied, including help files, this language report and the
copyright notices.

For any commercial use of Clean a commercial license is required, which is not free of charge. Infor-
mation about commercial licenses can be obtained by contacting Rinus Plasmeijer (rinus@cs.kun.nl).
For commercial users we supply additional utility software and give full technical support to assist
you to incorporate Clean and Clean applications in your specific environment.

Concurrent Clean is available on several platforms. The current situation is as follows (please
check our WWW-pages regularly to see latest news):

platform Macintosh PowerMac P C P C P C Sun Sun

oper. sys. MacOS
6 . 0

MacOS
7 . 1 . 2

O S / 2
2 . 0

Windows '95 Linux
0 . 9 9 . 1 2

SunOS
4 . 1 . 2

Solaris
2 . 0

processor Motorola PowerPC Intel Intel Intel Sparc Sparc
process. type any any >= 486 >= 486 >= 486 any any
window system MacOS MacOS OS/2 2.0 Windows '95 Xview Xview/

Open-Look
Xview/
Open-Look

Clean compiler 1.1 1.1 1.1 1.1 1.1 1.1 1.1
Clean I/O lib 1.0/0.8 1.0/0.8 0.8 0.8 0.8 0.8 0.8
Clean PDS C version Clean vrs. make files make files make files make files make files
assembler not needed not needed emx(gnu) not needed gnu Sun system Sun system
linker included included emx(gnu) included gnu Sun system Sun system
Code gen Seq Seq Seq Seq Seq Seq Seq
RAM in PC
- minimal
- comfortable
Disk usage
- minimal

4 Mb
8 Mb

5 Mb

8 Mb
16 Mb

7 Mb

8 Mb
16 Mb

6 Mb

8 Mb
16 Mb

6 Mb

8 Mb
16 Mb

6 Mb

8 Mb
16 Mb

7 Mb

8 Mb
16 Mb

7 Mb
Available now now now planned now now now

The Clean compiler is set up to make parallel and distributed evaluation possible. This feature will
be made available later.

The installation of the Clean compiler is rather dependent on the kind of platform one is working on.
For each platform there is a help file which should help you to install properly. On the Mac's there is
a dedicated Clean Programming Development System including dedicated editor, library search faci-
lities and a project manager. There is a new version of the Clean Programming Development Sys-
tem which is entirely written in Clean which we currently are porting to several platforms. For the
platforms without Development System one needs to use one of the standard editors available on
the platform. In that case a distribution includes make files which will do the project management. We
generate native code for all platforms.

The old Clean 0.8 remains available on the net for Mac (Motorola), Sun (SunOS), PC (Linux) and
there even is a parallel implementation on a ParSyTec Supercluster (Transputers).

viii PREFACE

Current state of the Clean System

Some of the features mentioned in this report are still under consideration, design and/or
implementation and therefore not yet incorporated in the current release of the Clean
system. They should be regarded as "possible future trends". Perhaps they will be kicked
out, perhaps we incorporate them in slightly different form, perhaps they will be there in
full glory in the next release. We also take the liberty to make small syntactic changes in
future versions of the language.

Release 1.1 (March 1996). The syntax and semantics of classes are improved. The overload
declaration is incorporated in the class declaration. It is now also possible to combine uniqueness
typing with type (constructor) classes. Arrays can be used as an instantiation of classes. There are
different kind of array implementations for optimal efficiency (lazy, strict, unboxed). The class con-
cept makes it possible to define overloaded functions which can deal with all of them (although we
are not yet completely happy with the current solution). Uniqueness type attribute equations can
now also be specified by the programmer. This allows the definition of higher order functions like
'bind' such that they can now also be applied to possibly unique arguments without enforcing
unnecessary restrictions. A string is not a basic type anymore but has become synonym for an
(unboxed) array of character (the type String is now defined as type synonym in module
StdString). Curly braces are used for arrays instead of the ugly '{:' ':}' pair. Macro definitions can
contain local definitions (which are substituted as well). Macros can be applied curried. Constructors
for which also functions are defined are kicked out (there were not used very often and it
complicated the compiler). The Standard Environment has slightly changed (sorry about this
inconvenience). Some operators and functions are moved to other modules to increase
orthogonality. The priority of some operators have been changed. We also had to rename some
functions (e.g. # to size/length and ## to maxindex) because these symbols are reserved for a
handy syntax extension which will become available in the next release.

Clean is ported to PowerMac (MacOS) (a native version which can generate native applications),
Sun (Solaris) en PC (Linux). The Clean 0.8 I/O library is ported to all these platforms as well.
There is a new Clean programming environment (written in Clean). We will improve this environ-
ment (we know it is far from perfect yet) and will port it to all the other supported platforms. Some
bugs in the compiler have been removed. Some space leaks have been removed as well. More
strictness is found (in local definitions). We generate slightly better code.

The current release of the Clean system has the following limitations:
- The Clean 1.0 I/O library is currently only available for the Mac. This system is not yet made

public available via the net (we still want to add some nice stuff), anyone interested in the sys-
tem can ask us for a copy (Mac only). Some of the primitives for message passing
(synchronous send, remote procedure call) are not yet implemented. Some important low level
features (printing, copy/pasting between Clean and non-Clean applications, support for inter-
facing with non-Clean applications, drag and drop support and the like) are missing. On all
platforms the Clean 0.8 I/O library (albeit converted to Clean 1.0 syntax) is available. For a de-
scription of the 0.8 I/O library we refer to the draft of the new Clean book on the net or to the
Addison-Wesley book (Plasmeijer and Van Eekelen, 1993).

- The Class mechanism is used to predefine overloaded functions for the creation, selection and
updating of arrays. The current class mechanism has certain restrictions, namely a class can
only have one type class variable which can only be instantiated with a flat type. Due to these
restrictions we had to define the overloaded array operators in a rather complicated way. This
gives rise to a too complex class context for overloaded array operators. We will make the class
system more flexible such that this problem will disappear in the future.

PREFACE i x

- Macros are at this moment substituted in an early stage of the compilation process. This may
cause criptical error messages.

- Observation of unique objects is switched off (e.g. in strict let expressions). This means that
currently handling of unique objects is sometimes more tedious than is strictly necessary. It
makes more dimensional arrays hard to use.

- Only simple variables can be used as array pattern.
- The arrow type constructor (->) cannot be used prefixed or used in a curried way.
- Annotations for parallelism are ignored. The distributed code generator is switched off.
- Everything exported in a definition module still has to be repeated in the corresponding imple-

mentation module.
- The code generator is not yet optimal. User defined uniqueness type information is not yet

exploited (no destructive updates yet).
- The new Clean programming environment is only available for some platforms and needs impro-

vement.

Sorry for all these inconveniences, we are working hard on it.

Release 1.0.3 (October 1995). Some bugs in the compiler have been removed.

Release 1.0.2 (June 1995). Clean is ported to PC (OS/2) and Sun (SunOS). The Clean 0.8 I/O
library is ported to these platforms as well. Some bugs in the compiler have been removed.

Release 1.0.1 (April 1995). Clean 1.0 release on the Mac (Motorola). Compared with the previous
public release (0.84b) many important changes have been made (there is a noticeable difference
between an intermediate language and a programming language).

The most important changes in the language are:
- Clean has been changed from an intermediate language to a functional programming language

with a syntax in the style of Miranda, Haskell and the like;
- so, various small syntactic sugar is added (infix operators, a case construct, local function defini-

tions, lambda-abstractions, list comprehensions, lay-out rule, etcetera);
- overloaded functions, type classes and type constructor classes can be defined;
- records and arrays are added as predefined data structure with handy operations (such as an

update operator for arrays and records, array comprehensions etc.);
- a more refined control of strictness is possible (partially strict data structures can be defined for

any type, in particular for recursive types, there is strict let construct);
- the uniqueness typing is refined (now polymorphic and inferred, observation of uniquely typed

objects is made easier);
- existentially quantified types can be defined.

Also the Clean I/O library has been changed:
- the I/O library is improved (with respect to orthogonality, modularity, extendibility, portability);
- the I/O library is extended allowing to define interactive processes running interleaved inside

one application which can communicate via files, shared data and message passing;
- one can define interactive processes which (in the near future) can run distributed on workstati-

ons connected via a network.

x PREFACE

This new 1.0 I/O library is not yet made public available in this release (1.0.1). The old 0.8 I/O li-
brary (converted to 1.0 syntax) will be made available on all platforms.

The compiler and code generator have been extended and are partly rewritten. Furthermore,
- the code generator is improved;
- the code generator is prepared for parallel and distributed evaluation;

Compared with the 0.84 version we have made a lot of syntactic changes to the language. The
complete redesign of Clean has as consequence that Clean version 1.0 is not compatible with its
predecessors. A Clean application is available which can transform programs written in old Clean
into new Clean.

Authors and Credits

The Concurrent Clean System is developed by:

Peter Achten: Sequential and distributed Event I/O, I/O library support for the Mac.
John van Groningen: Clean compiler,

Code generators (Mac (Motorola, PowerPC), PC (Intel), Sun (Sparc)),
Low level interfaces, all machine wizarding.

Martin van Hintum: Program Development System (Clean version).
Marko Kesseler: Parallel code generator (ParSyTec (Transputer)).
Eric Nöcker: Strictness analyser via abstract reduction, I/O library support for OS/2.
Leon Pillich: I/O library support for the Sun.
Sjaak Smetsers: Clean compiler,

All type systems (including uniqueness typing and type classes),
Ron Wichers Schreur: Program Development System (C version), Testing,

Parser, Support, Porting, Clean 0.8 to 1.0 Conversion program,
Clean distribution on the net.

Rinus Plasmeijer &
Marko van Eekelen: Clean language design.
Rinus Plasmeijer: Overall design and implementation supervision.

Concurrent Clean and the Concurrent Clean System are a spin-off of the research performed by
the research group on functional programming languages, Computing Science Institute, at the Uni-
versity of Nijmegen under the supervision of Rinus Plasmeijer.

Special thanks to the following people:

Christ Aarts, Steffen van Bakel, Erik Barendsen, Henk Barendregt, Pieter Hartel, Hans Koetsier,
Pieter Koopman, Ronan Sleep and all the Clean users who helped us to get a better system.

Many thanks to the following sponsors:

- the Dutch Technology Foundation (STW);
- the Dutch Foundation for Scientific Research (NWO);
- the International Academic Centre for Informatics (IACI);
- Kropman B.V., Installation Techniques, Nijmegen, The Netherlands;
- Hitachi Advanced Research Laboratories, Japan;
- the Dutch Ministry of Science and Education (the Parallel Reduction Machine project (1984-

1987)) who initiated the Concurrent Clean research;

PREFACE x i

- Esprit Basic Research Action (project 3074, SemaGraph: the Semantics and Pragmatics of
Graph Rewriting (1989-1991));

- Esprit Basic Research Action (SemaGraph II working group 3646 (1992-1995));
- Esprit Parallel Computing Action (project 4106, (1990-1991));
- Esprit II (TIP-M project area II.3.2, Tropics: TRansparent Object-oriented Parallel Information

Computing System (1989-1990)).

Final Remark

We hope that this new version of Clean indeed enables you to program your applications in a con-
venient and efficient way. We will continue to improve the language and the system. We greatly
appreciate your comments and suggestions for further improvements.

Rinus Plasmeijer and Marko van Eekelen

March 1996

Mail address: Computer Science Institute,
University of Nijmegen,
Toernooiveld 1,
6525 ED Nijmegen,
The Netherlands.

e-mail: rinus@cs.kun.nl
marko@cs.kun.nl

Phone: +31 24 3652644
Fax: +31 24 3652525
Clean on Internet: www.cs.kun.nl/~clean
Clean on Ftp: ftp.cs.kun.nl in pub/Clean
Questions on Clean: clean@cs.kun.nl
Subscription Clean mailing list: clean@cs.kun.nl, subject: subscribe

Table of contents

Preface iii

History of Clean iii
Special features of Concurrent Clean iv
About this language report v
Some remarks on the Clean syntax v
Notational conventions vi
How to obtain Clean vii
Current state of the Clean System viii
Authors and Credits x
Final Remark xi

Table of contents xiii

Introduction 1

1.1 Key design rules for Clean 1.0 1
1.2 Short summary of the features of Clean 1.0 1

Basic semantics 3

2.1 Graph rewriting 3
2.1.1 A small example 4

2.2 Global graphs 6

Lexical structure 9

3.1 Lexical program structure 9
3.2 Literals 10
3.3 Reserved keywords and symbols 10
3.4 Symbols, identifiers and name spaces 11
3.5 Scope of definitions 12

3.5.1 Scope of definitions given in a definition module 12
3.5.2 Scope of global definitions given in an implementation module 12
3.5.3 Scope within functions and graphs 13

3.6 Lay-out rule 13

Expressions 15

4.1 Expressions 15
4.2 Applications 15
4.3 Node symbols 16
4.4 Graph variables 16
4.5 Constant values of basic type 16

xiv CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

4.6 Lists and list comprehensions 17
4.7 Tuples 18
4.8 Records, record selection and record update 18
4.9 Arrays, array selection and array update 19
4.10 Case expression and conditional expression 22
4.11 Lambda abstraction 22

Defining graphs 23

5.1 Graph definitions 23
5.1.1 Defining graphs in functions 23
5.1.2 Defining graphs on the global level 24

5.2 Selectors 24

Defining functions 27

6.1 Defining functions 27
6.2 Left-hand side patterns 28

6.2.1 Constructor patterns 29
6.2.2 Simple Constructor pattern 29
6.2.3 Variables and wildcards in patterns 29
6.2.4 Constant values of basic type as pattern 30
6.2.5 List patterns 30
6.2.6 Tuple patterns 30
6.2.7 Record patterns 31
6.2.8 Array patterns 31

6.3 Guards 31
6.4 Strict let expression 32
6.5 Root expression 32
6.6 Local definitions 33

Process annotations (DRAFT !) 35

7.1 Process creation 35
7.2 Process communication 36

Defining types 39

8.1 Types 39
8.1.1 Basic types 40
8.1.2 Predefined abstract types 40
8.1.3 List types 40
8.1.4 Tuple types 41
8.1.5 Array types 41
8.1.6 Arrow types 41

8.2 Defining new types 42
8.2.1 Defining algebraic data types 42

Defining infix data constructors 43
Using higher order types 43
Defining algebraic data types with existentially quantified variables 44
Semantic restrictions on algebraic data types 45

8.2.2 Defining record types 45
8.2.3 Defining synonym types 47
8.2.4 Defining abstract data types 47

8.3 Typing functions and operators 48
8.3.1 Typing curried functions 49
8.3.2 Typing operators 49
8.3.3 Typing partial functions 49

8.4 Typing overloaded functions and operators 50

CONTENTS x v

8.4.1 Type classes 50
8.4.2 Functions defined in terms of overloaded functions 51
8.4.3 Instances of type classes defined in terms of overloaded functions 52
8.4.4 Type constructor classes 53
8.4.5 Generic instances 53
8.4.6 Default instances 54
8.4.7 Defining derived members in a class 54
8.4.8 A shorthand for defining overloaded functions 55
8.4.9 Classes defined in terms of other classes 55
8.4.10 Exporting type classes 56
8.4.11 Semantic restrictions on type classes 56

8.5 Partially strict data structures and functions 57
8.5.1 Strict and lazy context 57
8.5.2 Functions with strict arguments 58
8.5.3 Defining data structures with strict arguments 58
8.5.4 Strictness annotations on array instances 59
8.5.5 Strictness annotations on tuple instances 59

Defining uniqueness types 61

9.1 Uniqueness typing 61
9.1.1 Basic ideas behind uniqueness typing 61

9.2 Defining new types with uniqueness attributes 63
9.3 Typing functions and graphs with uniqueness attributes 65

9.3.1 Uniqueness and sharing 66
Multiple references to unique objects 66

9.3.2 Meaning of the type attributes in the specification of a function type 67
Shorthand notation in function type specifications 69

9.3.3 Typing curried functions 69
9.3.5 Type consistency 70

9.4 Typing overloaded functions and operators with uniqueness attributes 70

Input / Output handling (DRAFT !) 71

10.1 The world according to Clean 72
10.1.1 I/O using the console 72
10.1.2 I/O on the unique world 72

The program state 72
Starting and stopping an interactive process 74

10.2 File I/O 74
10.3 Event based I/O 76

Specifying abstract devices 76
Opening abstract devices and application of call-back functions 78

10.4 Graphical user interfaces 78
10.4.1 Windows, dialogues and notices 79
10.4.2 Keyboard 80
10.4.3 Mouse 80
10.4.4 Writing and drawing to a window 80
10.4.5 Menus 81
10.4.6 Controls 81

Defining the position of a Control (also applicable for Windows) 82
Defining the look of a Control 82
Defining the size of a Control 82

10.5 Timer handling 83
10.6 Interleaved executing communicating processes 84

10.6.1 Message passing 85
10.6.3 Remote procedure calls 86

10.7 Distributing executing communicating processes 86

xvi CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

Defining macros 89

11.1 Defining Macros 89

Modules 91

12.1 Definition and implementation modules 91
12.1.1 Separate compilation 91
12.1.2 Special kind of modules 92

The main or start module 92
System definition and implementation modules 93

12.2 Importing definitions 93
12.3 Exporting definitions 94

Time and space efficiency 95

13.1 Space consumption of Clean structures 95
13.2 Size limitations 96
13.3 Lazy evaluation versus strict evaluation 96
13.4 Destructive updates using uniqueness typing 97
13.5 Graphs versus constant functions versus macros 98
13.6 The costs of overloading 98
13.7 Concurrency 99
13.8 Other efficiency issues 99

Context-free syntax description 101

A.1 Clean program 101
A.2 Function definition 102
A.3 Graph definition and expression 103
A.5 Macro definition 104
A.6 Type definition 104
A.6 Class definition 105
A.7 Symbols 105
A.8 Identifiers 105
A.9 Denotations 105

Standard library 107

B.1 Clean’s Standard Environment 107
B.1.1 StdOverloaded: predefined overloaded operations 108
B.1.2 StdClass: predefined classes 108
B.1.3 StdBool: operations on Booleans 109
B.1.4 StdInt: operations on Integers 109
B.1.5 StdReal: operations on Reals 110
B.1.6 StdChar: operations on Characters 110
B.1.7 StdList: operations on Lists 111
B.1.8 StdCharList: operations on lists of characters 112
B.1.9 StdTuple: operations on Tuples 112
B.1.10 StdArray: operations on Arrays 113
B.1.11 StdString: operations on Strings 113
B.1.12 StdFunc: operations on polymorphic functions 114
B.1.13 StdMisc: miscellaneous functions 114
B.1.14 StdFile: File based I/O 114
B.1.15 StdEnum: handling dot-dot expressions 116
B.1.16 StdEnv: summary of operators 117

B.2 Creating interactive processes 117
B.3 Event based I/O 119

B.3.1 Windows 119

CONTENTS xvi i

StdWindowDef: the window device 119
StdWindow: window handling 120

B.3.2 Controls 122
StdControlDef: the control device 122
StdControl: control handling 123

B.3.3 Menus 124
StdMenuDef: the menu device 124
StdMenu: menu handling 124

B.3.4 StdPicture: drawing in windows 125
B.3.5 StdFont: writing in windows 127
B.3.6 Timers 128

StdTimerDef: the timer device 128
StdTimer: timer handling 129

B.3.7 Receivers 129
StdReceiverDef: the receiver device 129
StdReceiver: receiver handling 130

B.3.8 StdFileSelect: selecting files 130
B.3.9 StdIOCommon: common definitions 130
B.3.10 StdIOState: global operations on the IO State 131
B.3.11 StdSystem: platform dependent settings 132

B.4 Operations for parallel evaluation 133
B.4.1 StdProcId: operations for load distribution on ProcIds 133

Annotated Clean Bibliography 135

General papers on Concurrent Clean 135
Papers on the underlying computational model being used 135
Papers on applications written in Clean 136
Papers on advanced I/O 136
Papers on the Clean to PABC compiler 137
Papers on the abstract machine level 137
Papers on code generation 137

Bibliography 139

Index 141

1
Introduction

1 . 1 Key design rules for Clean 1.0 1 . 2 Short summary of the features of
Clean

In this section we summarize the key design rules and major features of Clean 1.0.

1 . 1 Key design rules for Clean 1.0

Key design rules for Clean 1.0 have been:
- The language must be purely functional, higher order and lazy;
- The semantics of the language must be based on graph rewriting systems;
- The language must be suitable for writing real world applications in a very compact and

readable style;
- It must be possible to create programs with an efficiency comparable with C;
- Direct and efficient interfacing with the non-functional world must be possible;
- One must be able to control the time and space efficiency of the program;
- Parallel and distributed evaluation of programs must be possible;
- Program components must be re-usable;
- A program (including window based interactive programs) must be fully portable.

1 . 2 Short summary of the features of Clean 1.0

The most important features of Clean are:

- Clean is a lazy, pure, higher order functional programming language with explicit graph
rewriting semantics; one can explicitly define the sharing of structures (cyclic structures
as well) in the language;

- Although Clean is by default a lazy language one can smoothly turn it into a strict language
to obtain optimal time/space behaviour: functions can be defined lazy as well as (partially)
strict in their arguments; any (recursive) data structure can be defined lazy as well as
(partially) strict in any of its arguments;

- Clean is a strongly typed language based on an extension of the well-known Milner/Hindley
type inferencing scheme (Milner 1978; Hindley 1969) including the common polymorphic ty-
pes, abstract types, algebraic types, and synonym types extended with a restricted facil-
ity for existentially quantified types;

2 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

- Type classes and type constructor classes are provided to make overloaded use of func-
tions and operators possible.

- Clean offers the following predefined types: integers, reals, booleans, characters,
strings, lists , tuples, records, arrays and files ;

- Clean’s key feature is a polymorphic uniqueness type inferencing system, a special ex-
tension of the Milner/Hindley type inferencing system allowing a refined control over the single
threaded use of objects; with this uniqueness type system one can influence the time and
space behaviour of programs; it can be used to incorporate destructive updates of objects
within a pure functional framework, it allows destructive transformation of state informa-
tion, it enables efficient interfacing to the non-functional world (to C but also to I/O systems
like X-Windows) offering direct access to file systems and operating systems;

- Clean is a modular language allowing separate compilation of modules; one defines imple-
mentation modules and definition modules; there is a facility to implicitly and explicitly import
definitions from other modules;

- Clean offers a sophisticated I/O library with which window based interactive applications
(and the handling of menus, dialogues, windows, mouse, keyboard, timers and events
raised by sub-applications) can be specified compactly and elegantly on a very high level of
abstraction;

- Specifications of window based interactive applications can be combined such that one can cre-
ate several applications (sub-applications or light-weight processes) inside one Clean ap-
plication. Automatic switching between these sub-applications is handled in a similar way as
under a multi-finder (all low level event handling for updating windows and switching between
menus is done automatically); sub-applications can exchange information with each other (via
files , via clipboard copy-paste like actions using shared state components, via asynchro-
nous message passing) but also with other independently programmed (Clean or other) appli-
cations running on the same or even on a different host system;

- Sub-applications can be created on other machines which means that one can define distribu-
ted window based interactive Clean applications communicating e.g. via (a)synchronous
message passing and remote procedure calls across a local area network;

- Dynamic process creation is possible; processes can run interleaved or in parallel; arbi-
trary process topologies (for instance cyclic structures) can be defined; the interprocess
communication is synchronous and is handled automatically simply when one function de-
mands the evaluation of its arguments being calculated by another process possibly executing
on another processor;

- Due to the strong typing of Clean and the obligation to initialise all objects being created run-
time errors can only occur in a very limited number of cases: when partial functions are
called with arguments out of their domain (e.g. dividing by zero), when arrays are accessed with
indices out-of-range and when not enough memory (either heap or stack space) is assigned to a
Clean application;

- Programs written in Clean 1.0 can be ported without modification of source code to one of the
many platforms we support (see the Preface for an overview).

2
Basic semantics

2 . 1 Graph rewriting 2 . 2 Global graphs

The semantics of Clean is based on Term Graph Rewriting Systems (Barendregt, 1987a; Plasmei-
jer and Van Eekelen, 1993). This means that functions in a Clean program semantically work on
graphs instead of the usual terms. This enabled us to incorporate Clean’s typical features (definition
of cyclic data structures, lazy copying, uniqueness typing) which would otherwise be very difficult
to give a proper semantics for. However, in many cases the programmer does not need to be
aware of the fact that he/she is manipulating graphs. Evaluation of a Clean program takes place in
the same way as in other lazy functional languages. One of the "differences" between Clean and
other functional languages is that when a variable occurs more than once in a function body, the se-
mantics prescribe that the actual argument is shared (the semantics of most other languages do not
prescribe this although it is common practice in any implementation of a functional language). Fur-
thermore, one can label any expression to make the definition of cyclic structures possible. So,
people familiar with other functional languages will have no problems writing Clean programs.
When larger applications are being written, or, when Clean is interfaced with the non-functional
world, or, when efficiency counts, or, when one simply wants to have a good understanding of the
language it is good to have some knowledge of the basic semantics of Clean which is based on
term graph rewriting. In this chapter a short introduction into the basic semantics of Clean is given.
An extensive treatment of the underlying semantics and the implementation techniques of Clean can
be found in Plasmeijer and Van Eekelen (1993).

2 . 1 Graph rewriting

A Clean program basically consists of a number of graph rewrite rules (function definitions)
which specify how a given graph (the initial expression) has to be rewritten.

A graph is a set of nodes. Each node has a defining node-identifier (the node-id). A node con-
sists of a symbol and a (possibly empty) sequence of applied node-id's (the arguments of the
symbol). Applied node-id's can be seen as references (arcs) to nodes in the graph, as such
they have a direction: from the node in which the node-id is applied to the node of which the node-
id is the defining identifier.

Each graph rewrite rule consists of a left-hand side graph (the pattern) and a right-hand side
(rhs) consisting of a graph (the contractum) or just a single node-id (a redirection). In Clean
rewrite rules are not comparing: the left-hand side (lhs) graph of a rule is a tree, i.e. each node identi-
fier is applied only once, so there exists exactly one path from the root to a node of this graph.

4 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

A rewrite rule defines a (partial) function. The function symbol is the root symbol of the left-hand
side graph of the rule alternatives. All other symbols that appear in rewrite rules, are constructor
symbols.

The program graph is the graph that is rewritten according to the rules. Initially, this program graph
is fixed: it consists of a single node containing the symbol Start, so there is no need to specify this
graph in the program explicitly. The part of the graph that matches the pattern of a certain rewrite
rule is called a redex (reducible expression). A rewrite of a redex to its reduct can take place
according to the right-hand side of the corresponding rewrite rule. If the right-hand side is a contrac-
tum then the rewrite consists of building this contractum and doing a redirection of the root of the re-
dex to root of the right-hand side. Otherwise, only a redirection of the root of the redex to the single
node-id specified on the right-hand side is performed. A redirection of a node-id n1 to a node-id n2
means that all applied occurrences of n1 are replaced by occurrences of n2 (which is in reality com-
monly implemented by overwriting n1 with n2).

A reduction strategy is a function that makes choices out of the available redexes. A reducer is a
process that reduces redexes that are indicated by the strategy. The result of a reducer is reached
as soon as the reduction strategy does not indicate redexes any more. A graph is in normal form if
none of the patterns in the rules match any part of the graph. A graph is said to be in root normal
form when the root of a graph is not the root of a redex and can never become the root of a redex.
In general it is undecidable whether a graph is in root normal form.

A pattern partially matches a graph if firstly the symbol of the root of the pattern equals the sym-
bol of the root of the graph and secondly in positions where symbols in the pattern are not syntacti-
cally equal to symbols in the graph, the corresponding sub-graph is a redex or the sub-graph itself
is partially matching a rule. A graph is in strong root normal form if the graph does not partially
match any rule. It is decidable whether or not a graph is in strong root normal form. A graph in strong
root normal form does not partially match any rule, so it is also in root normal form.

The default reduction strategy used in Clean is the functional reduction strategy. Reducing
graphs according to this strategy resembles very much the way execution proceeds in other lazy
functional languages: in the standard lambda calculus semantics the functional strategy corresponds
to normal order reduction. On graph rewrite rules the functional strategy proceeds as follows: if there
are several rewrite rules for a particular function, the rules are tried in textual order; patterns are
tested from left to right; evaluation to strong root normal form of arguments is forced when an actual
argument is matched against a corresponding non-variable part of the pattern. A formal definition of
this strategy can be found in (Toyama et al., 1991).

2 . 1 . 1 A small example

Consider the following Clean program:

Add Zero z = z (1)
Add (Succ a) z = Succ (Add a z) (2)

Start = Add (Succ o) o
where

o = Zero (3)

In Clean a distinction is between function definitions (graph rewriting rules) and graphs (constant
definitions). A semantic equivalent definition of the program above is given below where this dis-
tinction is made explicit ("=>" indicates a rewrite rule whereas "=:" is used for a constant (sub-)
graph definition.

BASIC SEMANTICS 5

Add Zero z => z (1)
Add (Succ a) z => Succ (Add a z) (2)

Start => Add (Succ o) o
where

o =: Zero (3)

These rules are internally translated to a semantically equivalent set of rules in which the graph
structure on both left-hand side as right-hand side of the rewrite rules has been made explicit by
adding node-id's. Using the set of rules with explicit node-id's it will be easier to understand what
the meaning is of the rules in the graph rewriting world.

x =: Add y z
y =: Zero => z (1)
x =: Add y z
y =: Succ a => m =: Succ n

n =: Add a z (2)

x =: Start => m =: Add n o
n =: Succ o
o =: Zero (3)

The fixed initial program graph that is in memory when a program starts is the following:

The initial graph in linear notation:

@DataRoot =: Graph @StartNode
@StartNode =: Start

The initial graph in pictorial notation:

To distinguish the node-id’s appearing in the rewrite rules from the node-id’s appearing in the graph
the latter always begin with a ‘@’.

The initial graph is rewritten until it is in normal form. Therefore a Clean program must at least contain
a "start rule" that matches this initial graph via a pattern. The right-hand side of the start rule speci-
fies the actual computation. In this start rule in the left-hand side the symbol Start is used.
However, the symbols Graph and Initial (see next section) are internal, so they cannot actually
be addressed in any rule.

The patterns in rewrite rules contain formal node-id’s. During the matching these formal nodeid’s
are mapped to the actual node-id’s of the graph. After that the following semantic actions are per-
formed:

The start node is the only redex matching rule (3). The contractum can now be constructed:

The contractum in linear notation:

@A =: Add @B @C
@B =: Succ @C
@C =: Zero

The contractum in pictorial notation:

All applied occurrences of @StartNode will be replaced by occurrences of @A. The graph after re-
writing is then:

6 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

The graph after rewriting:

@DataRoot =: Graph @A
@StartNode =: Start
@A =: Add @B @C
@B =: Succ @C
@C =: Zero

Pictorial notation:

This completes one rewrite. All nodes that are not accessible from @DataRoot are garbage and not
considered any more in the next rewrite steps. In an implementation once in a while garbage collec-
tion is performed in order to reclaim the memory space occupied by these garbage nodes. In this ex-
ample the start node is not accessible from the data root node after the rewrite step and can be left
out.

The graph after garbage collection:

@DataRoot =: Graph @A
@A =: Add @B @C
@B =: Succ @C
@C =: Zero

Pictorial notation :

The graph accessible from @DataRoot still contains a redex. It matches rule 2 yielding the expected
normal form:

The final graph:

@DataRoot =: Graph @D
@D =: Succ @C
@C =: Zero

Pictorial notation :

The fact that graphs are being used in Clean gives the programmer the ability to explicitly share
terms or to create cyclic structures. In this way time and space efficiency can be obtained.

2 . 2 Global graphs

Due to the presence of global graphs in Clean the initial graph in a specific Clean program is slightly
different from the basic semantics. In a specific Clean program the initial graph is defined as:

@DataRoot =: Graph @StartNode @GlobId1 @GlobId2 … @GlobIdn
@StartNode =: Start
@GlobId1 =: Initial
@GlobId2 =: Initial
…
@GlobIdn =: Initial

BASIC SEMANTICS 7

The root of the initial graph will not only contain the node-id of the start node, the root of the graph to
be rewritten, but it will also contain for each global graph (see 5.1) a reference to an initial node
(initialised with the symbol Initial). All references to a specific global graph will be references to
its initial node or, when it is rewritten, they will be references to its reduct.

3
Lexical structure

3 . 1 Lexical program structure
3 . 2 Literals
3 . 3 Reserved keywords and symbols

3 . 4 Symbols, identifiers and name spa-
ces

3 . 5 Scope of definitions
3 . 6 Lay-out rule

In this chapter the lexical structure of Clean is explained. It describes the kind of tokens recognised
by the scanner/parser (Sections 3.1, 3.2 and 3.3).
In Section 3.4 the symbols are summarised which are used in the context-free syntax description in
the chapters hereafter (they are written in italic in the syntax description).
As is common in modern functional languages there is a lay-out rule (off-side rule) in Clean which
permits the omission of braces and semicolons. This lay-out rule is described in Section 3.6. All ex-
amples in this report make use of the lay-out rule.

3 . 1 Lexical program structure

LexProgram = { Lexeme | {Whitespace}+ }
Lexeme = ReservedKeyword // see Section 3.3

| ReservedSymbol // see Section 3.3
| ReservedChar
| Literal // see Section 3.2
| Identifier

Identifier = LowerCaseId
| UpperCaseId
| FunnyId

LowerCaseId = LowerCaseChar~{IdChar}
UpperCaseId = UpperCaseChar~{IdChar}
FunnyId = {SpecialChar}+

LowerCaseChar = a | b | c | d | e | f | g | h | i | j
| k | l | m | n | o | p | q | r | s | t
| u | v | w | x | y | z

UpperCaseChar = A | B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z

SpecialChar = ~ | @ | # | $ | % | ^ | ? | !
| + | - | * | < | > | \ | / | | | & | =
| :

IdChar = LowerCaseChar
| UpperCaseChar
| Digit
| _ | `

Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
CharDel = '
StringDel = "

Whitespace = space // a space character
| tab // a horizontal tab

1 0 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

| newline // a newline char
| formfeed // a formfeed
| verttab // a vertical tab
| Comment

Comment = / / AnythingTillNL newline
| / * AnythingTill/* Comment AnythingTill*/ * /
| / * AnythingTill*/ * /

AnythingTillNL = {AnyChar/~newline} // no newline
AnythingTill/* = {AnyChar/~/ *} // no "/*"
AnythingTill*/ = {AnyChar/~* /} // no "*/"
AnyChar = IdChar | ReservedChar | Special
ReservedChar = (|) | { | } | [|] | ; | , | .
Special = \ n | \r | \ f | \ b // newline,return,formf,backspace

| \ t | \ \ | \CharDel // tab,backslash,character delete
| \StringDel // string delete
| \ {OctDigit}+ // octal number
| \ x{HexDigit}+ // hexadecimal number

OctDigit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
HexDigit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| A | B | C | D | E | F
| a | b | c | d | e | f

3 . 2 Literals

Literal = IntegerDenot
| RealDenot
| BoolDenot
| CharDenot
| CharsDenot
| StringDenot

IntegerDenot = [Sign]~{Digit}+ // decimal
| [Sign]~0~{OctDigit}+ // octal
| [Sign]~0 x~{HexDigit}+ // hexadecimal

Sign = + | - | ~
RealDenot = [Sign~]{Digit~}+. {~Digit}+[~E [~Sign]{~Digit}+]
BoolDenot = True | False
CharDenot = CharDel~AnyChar/~CharDel.CharDel
CharsDenot = CharDel~{AnyChar/~CharDel}+.CharDel
StringDenot = StringDel~{AnyChar/~StringDel}~StringDel

Example (literals).

Integer (decimal): 0|1|2|…|8|9|10| … |-1|-2| …
Integer (octal): 00|01|02|…|07|010| … |-01|-02| …
Integer (hexadecimal): 0x0|0x1|0x2|…|0x8|0x9|0xA|0xB … |-0x1|-0x2| …
Real: 0.0|1.5|0.314E10| …
Boolean: True | False
Character: 'a'|'b'|…|'A'|'B'|…
String: "" | "Rinus"|"Marko"|…
List of characters: ['Rinus']|['Marko']|…

3 . 3 Reserved keywords and symbols

Below the symbols are listed which have a special meaning in the language. Some symbols only
have a special meaning in a certain context. Outside this context they are ordinary identifiers. In the
comment it is indicated for which context (name space) the symbol is predefined.

ReservedKeyword = // in all contexts:

/ * // begin of comment block
| * / // end of comment block
| / / // rest of line is comment
| : : // begin of a type definition
| :== // in a type synonym or macro definition
| = // in a function, graph, alg. type, rec. field
| = : // labeling a graph definition
| = > // in a function definition

LEXICAL STRUCTURE 1 1

| - > // in a case expression, lambda abstraction
| [// begin of a list
| : // cons node
|] // end of a list
| \ \ // begin of list or array comprehension
| < - // in list gen. in list or array comprehension
| <-: // in array gen. in list or array comprehension
| { // begin of a record or array, begin of a block
| } // end of a record or array, end of a block
| & // an update of a record or array
| { * // begin of process annotations
| * } // end of process annotations
| case // begin of case expression
| class // begin of type class definition
| code // begin code block in a syst impl. module
| default // to indicate default class instance
| definition // begin of definition module
| export // to reveal which class instances there are
| from // begin of symbol list for imports
| i f // begin of a conditional expression
| implementation // begin of implementation module
| import // begin of import list
| i n // end of strict let expression
| infix // infix indication in operator definition
| infixl // infix left indication in operator definition
| infixr // infix right indication in operator definition
| instance // def of instance of a type class
| let! // begin of strict let expression
| module // in module header
| o f // in case statement
| system // begin of system module
| where // begin of local def of a function alternative
| with // begin of local def in a rule alternative

ReservedSymbol = // in type specifications:

! // strict type
| . // uniqueness type variable
| # // unboxed type, let statement
| * // unique type
| : // in a uniqueness type variable definition
| - > // function type constructor
| [] // list type constructor
| (,),(,,),(,,,),… // tuple type constructors
| { },{!},{#} // lazy, strict, unboxed array type constr.
| Bool // type boolean
| Char // type character
| File // type file
| Int // type integer
| ProcId // type process id
| Real // type real
| Void // type void
| World // type world

// in process annotations:

| a t // followed by processor id
| P // a parallel process to normal form
| I // an interleaved process to normal form

3 . 4 Symbols, identifiers and name spaces

In the context-free syntax description given in this language report the symbols listed below are
used. The symbols are identifiers used to name modules, functions, operators, graphs, construc-
tors, (node) variables, field names, macros, types, type variables, uniqueness types, uniqueness
type (constructor) variables and type classes. The convention used is that variables always start

1 2 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

with a lowercase character while constructors and types always start with an uppercase character.
The other identifiers may either start with an uppercase or a lowercase character.

It is allowed to use the same identifier for different purposes as long as the symbols belong to dif-
ferent name spaces. Function-, operator-, constructor-, graph-, macro-symbols and node variables
form one name space. Type variables and uniqueness type variables form together another name
space. All other symbols form a name space on their own.

Under certain conditions it is allowed to use the same name for different functions and operators
(overloading, see 8.4).

Notice that for the identifiers names can be used consisting of a combination of lower and/or upper-
case characters but one can also define identifiers constructed from special characters like +, <, etc.
(see 3.1). These two kind of identifiers cannot be mixed. This makes it possible to leave out white
space in expressions like a+1 (same as a + 1). See also 4.3.

ModuleSymb = LowerCaseId | UpperCaseId | FunnyId
FunctionSymb = LowerCaseId | UpperCaseId | FunnyId
ConstructorSymb = UpperCaseId | FunnyId
SelectorVariable = LowerCaseId
Variable = LowerCaseId
MacroSymb = LowerCaseId | UpperCaseId | FunnyId
FieldSymb = LowerCaseId
TypeSymb = UpperCaseId | FunnyId
TypeVariable = LowerCaseId
UniqueTypeVariable = LowerCaseId
ClassSymb = LowerCaseId | UpperCaseId | FunnyId

3 . 5 Scope of definitions

The scope is the program region in which an introduced definition (e.g. function definition, type def-
inition) and corresponding names (e.g. function name, variable name, type name, type variable
name) has a meaning. Scopes can be nested: within a scope new scopes can be defined. Within
such a nested scope new definitions can be given, new names can be introduced. As usual it is al-
lowed in a nested scope to re-define definitions or re-use names given in a surrounding scope. A
definition given or a name introduced in a (nested) scope has no meaning in surrounding scopes. It
has a meaning for all scopes nested within it (unless they are redefined within such a nested
scope).
• Within a scope different objects of the same kind (i.e. belonging to the same name space, see

3.4) must have different names.

3 . 5 . 1 Scope of definitions given in a definition module

The definitions of a definition module have the widest scope. All symbols that are defined in a defini-
tion module are also automatically visible (exported) to all other modules. In the latter case imports
are required to effectuate the actual scope of a symbol to the other module.
• Within one module a symbol can be defined (see 12.2) only once within the same scope and

within the same name space (see 3.4).

3 . 5 . 2 Scope of global definitions given in an implementation module

Definitions on the global (= outermost) level (see 3.6, 12.1.1) have in principle as scope the mo-
dule they are defined in, unless they are exported (see 12.3).

LEXICAL STRUCTURE 1 3

Type variables introduced on the left-hand side of a (algebraic, record, synonym, overload, class,
instance, function, graph) type definition have the right-hand side of the type definition as scope.

3 . 5 . 3 Scope within functions and graphs

More complex are the scope rules within function and graph definitions (see the Chapters 5 and 6).
In the picture below the general appearance of a function definition is given and the scope that is
introduced by the different kind of definitions that can appear.

One can deduce from the picture that a new scope is introduced for each function alternative (see
6.1). Within such a function alternative new functions and graphs can be defined locally within a
where block (see 6.6). Each of the guarded rule alternatives also introduce a new scope. Within
such a rule alternative new functions and graphs can be defined locally within a with block (see
6.6). Each strict let clause introduces a new nested scope (see 6.4).

module scope_example

function args

|guard=let! selector = expr
 …
in
 rootexpression

 with
 selector = expr
 …

 function args = body
 …

 |guard = …
 …

 where
selectors = expr
 …
function args = body
 …

New scopes are also introduced by list and array comprehensions and by case expressions. In a
list and in an array comprehension new variables can be introduced when generators are specified.
These variables introduce a new scope in the comprehension (from left to right). Each case alterna-
tive definition invokes a new scope which is identical to the scope rules of an ordinary function def-
inition as indicated in the picture above (see also section 4.10).

3 . 6 Lay-out rule

As is common in modern functional languages, there is a lay-out rule in Clean. When the definition of
the module header of a module is not ended by a semicolon a Clean program has become lay-out
sensitive. The lay-out rule assumes the omission of the semi-colon (';') that ends a definition and
of the braces ('{' and '}') that are used to group a list of definitions. These symbols are automati-
cally added according to the following rules:

1 4 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

In lay-out sensitive mode the indentation of the first lexeme after the keywords let!, of, where, or
with determines the indentation that the group of definitions following the keyword has to obey. De-
pending on the indentation of the first lexeme on a subsequent line the following happens. A new
definition is assumed if the lexeme starts on the same indentation (and a semicolon is inserted). A
previous definition is assumed to be continued if the lexeme is indented more. The group of definiti-
ons ends (and a close brace is inserted) if the lexeme is indented less. Global definitions are assu-
med to start in column 0.

For reasons of portability it is assumed that a tab space is set to 4 white spaces and that
a non-proportional font is used.

Example (use of lay-out rule: same example with and without using the lay-out sensitive mode).

primes :: [Int]
primes = sieve [2..]
where

sieve :: [Int] -> [Int]
sieve [pr:r] = [pr:sieve (filter pr r)]

filter :: Int [Int] -> [Int]
filter pr [n:r]

| n mod pr == 0 = filter pr r
= [n:filter pr r]

primes :: [Int];
primes = sieve [2..];
where
{ sieve :: [Int] -> [Int];

sieve [pr:r] = [pr:sieve (filter pr r)];

filter :: Int [Int] -> [Int];
filter pr [n:r]

| n mod pr == 0 = filter pr r;
= [n:filter pr r];

}

4
Expressions

4 . 1 Expressions
4 . 2 Applications
4 . 3 Node symbols
4 . 4 Variables
4 . 5 Constant values of basic type
4 . 6 Lists and list comprehensions
4 . 7 Tuples

4 . 8 Records, record selection and re-
cord update

4 . 9 Arrays, array selection and array up-
date

4 . 1 0 Case expression and conditional ex-
pression

4 . 1 1 Lambda abstraction

In this chapter it is explained what kind of expressions can be written. In Clean, expressions are
actually graph expressions which define the creation of a (sub-) graph (see 2.1).

4 . 1 Expressions

An expression generally expresses an application of a function or data constructor to its arguments
(see 4.2). A case clause, conditional expression and lambda abstraction is added for convenience
(see 4.10). One can optionally demand the interleaved or parallel evaluation of the expression by
another process or on another processor (see 7.1 and 10.5).

Graph = [Process] GraphExpr
GraphExpr = Application // see 4.2

| CaseExpr // see 4.10
| LambdaAbstr // see 4.11

4 . 2 Applications

Application = {BrackGraph}+ // application
| GraphExpr OperatorSymbol GraphExpr // operator application

BrackGraph = NodeSymbol // see 4.3
| GraphVariable // see 4.4
| BasicValue // see 4.5
| List // see 4.6
| Tuple // see 4.7
| Record // see 4.8
| RecordSelection // see 4.8
| Array // see 4.9
| ArraySelection // see 4.9
| (GraphExpr) // see 4.2

OperatorSymbol = FunctionSymb
| ConstructorSymb

A (graph) application or graph expression in principle consists of the application of a function or
data constructor to its (actual) arguments. Each function or data constructor can be used in a curried
way and can therefore be applied to any number (zero or more) of arguments (see 8.3 and 9.3). For
convenience and efficiency special syntax is provided to denote values of data structures of prede-

1 6 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

fined type (see 4.5 - 4.9). A function can only be rewritten if it is applied to a number of arguments
equal to the arity of the function (see 6.1).
• All expressions have to be of correct type (see Chapters 8 and 9).
• All symbols that appear in an expression must have been defined somewhere within the scope

in which the expression appears (see 3.5).

Operators are special functions or constructors defined with arity two (see 8.3.2) which can be ap-
plied in infix position. The precedence (0 through 9) and fixity (infixleft, infixright, infix)
which can be defined in the type definition of the operators (see 8.3) determine the priority of the
operator application in an expression. A higher precedence binds more tightly. When operators
have equal precedence, the fixity determines the priority. In an expression an ordinary function
application has a very high priority (10). Only selection of record elements and array elements (see
4.8 and 4.9) binds more tightly (11). Besides that, due to the priority, brackets can sometimes be
omitted, operator applications behave just like other applications (see 4.2).
• It is not allowed to apply operators with equal precedence in an expression in such a way that

their fixity conflict. So, when in a1 op1 a2 op2 a3 the operators op1 and op2 have the same pre-
cedence a conflict arises when op1 is defined as infixr implying that the expression must be
read as a1 op1 (a2 op2 a3) while op2 is defined as infixl implying that the expression must
be read as (a1 op1 a2) op2 a3.

• When an operator is used in infix position both arguments have to be present. Operators can
be used in a curried way, but then they have to be used as ordinary prefix functions / construc-
tors.

• When an operator is used as prefix function c.q. constructor, it has to be surrounded by brack-
ets.

4 . 3 Node symbols

NodeSymbol = FunctionSymbol
| ConstructorSymbol

FunctionSymbol = FunctionSymb
| (FunctionSymb)

ConstructorSymbol = ConstructorSymb
| (ConstructorSymb)

Symbols applied on zero arguments just form a syntactic unit (for non-operators no brackets nee-
ded in this case). Besides the brackets that can be omitted they behave just like other applications
(see 4.2).

4 . 4 Graph variables

GraphVariable = Variable
| SelectorVariable

There are two kinds of graph variables that can occur in a graph expression: variables (introduced
as formal argument of a function, see 6.1 and 6.2) and selector variables (defined in a selector to
identify parts of a graph expression, see 5.2).
• There has to be a definition for each node variable and selector variable within in the scope of

the graphs expression.

4 . 5 Constant values of basic type

A graph expression can be a constant value denoting an object of predefined basic type Int,
Real, Bool or Char. These predefined types introduced for reasons of efficiency and convenience

EXPRESSIONS 1 7

are treated in Section 8.1.1. There is a special notation to denote a string (an array of characters,
see 4.9) as well as to denote a list of characters (see 4.6). The denotation of constant values must
obey the lexical description given in 3.2.

BasicValue = IntDenot
| RealDenot
| BoolDenot
| CharDenot

4 . 6 Lists and list comprehensions

For programming convenience several ways are offered to create a list structure including list com-
prehensions like dot-dot expression and ZF-expressions (recurrent generators are however
not provided). With a list generator one can draw elements from a list. With an array generator
one can draw elements from an array. One can define several generators in a row separated by a
comma. The last generator in such a sequence will vary first. One can also define several genera-
tors in a row separated by a ‘&’. All generators in such a sequence will vary at the same time but
the drawing of elements will stop as soon of one the generators is exhausted. This construct can be
used instead of the zip-functions which are commonly used. Selectors are simple patterns to iden-
tify parts of a graph expression. They are explained in Section 5.3. Only those lists produced by a
generator which match the specified selector are taken into account. Guards can be used as filter in
the usual way. A special notation is provided for the frequently used list of characters. The pre-
defined type list is treated in Section 8.1.3.

List = [[{LGraphExpr} -list [: GraphExpr]]]
| [GraphExpr [,GraphExpr]. .[GraphExpr]]
| [GraphExpr \ \ {Qualifier}-list]

LGraphExpr = GraphExpr
| CharsDenot

Qualifier = Generators {|Guard}
Generators = {Generator}-list

| Generator {& Generator}
Generator = Selector < - ListExpr

| Selector <-: ArrayExpr
Selector = BrackPattern // for brack patterns see 6.2
ListExpr = GraphExpr
ArrayExpr = GraphExpr
Guard = BooleanExpr
BooleanExpr = GraphExpr

• A list expression must be of type list.
• A guard must be of type Bool.
• Dot-dot expressions are predefined on objects of type Int, Real and Char, but dot-dots can

also be applied to any user defined object of enumeration type (see StdClass).

Example (various ways to define a list with the integer elements 1,3,5,7,9).

[1:[3:[5:[7:[9:[]]]]]]
[1,3,5,7,9]
[1,3..9]
[1:[3,5,7,9]]
[1,3,5:[7,9]]
[n \\ n <- [1..10] | n mod 2 <> 0]

Example (ZF-expression: expr1 yields [(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0),
(2,1), (2,2), (3,0), (3,1), (3,2)] while expr2 yields [(0,0), (1,1), (2,2)]).

expr1 = [(x,y) \\ x <- [0..3] , y <- [0..2]]
expr2 = [(x,y) \\ x <- [0..3] & y <- [0..2]]

Example (ZF-expression: a well-know sort).

1 8 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

sort :: [a] -> [a] | Ord a
sort [] = []
sort [p:ps] = sort [x\\x<-ps|x<=p] ++ [p] ++ sort [x\\x<-ps|x>p]

Example (ZF-expression: converting an array into a list).

ArrayA = {1,2,3,4,5}

ListA = [a \\ a <-: ArrayA]

Example (various ways to define a list with the characters 'a', 'b' and 'c').

['a':['b':['c':[]]]]
['a','b','c']
['a'..'c']
['abc']
['ab','c']

4 . 7 Tuples

Tuples can be created that can be used to combine different (sub-)graphs into one data structure
without being forced to define a new type for this combination. The elements of a tuple need not be
of the same type. Tuples are in particular handy for functions that return multiple results. The prede-
fined type tuple is treated in Section 8.1.4.

Tuple = (GraphExpr, {GraphExpr}-list)

Example (tuple).

("this is a tuple with",3,['elements'])

4 . 8 Records, record selection and record update

A record is a tuple-like algebraic data structure that has the advantage that its elements can be se-
lected by field name rather then by position. Destructive updates of unique records is provided.
The type of a record has to be specified explicitly and curried use is not possible (see 8.2).

Record = { [TypeSymb|][RecordExpr &][{FieldSymbol = GraphExpr}-list]}
RecordExpr = GraphExpr
RecordSelection = RecordExpr. [TypeSymb.]FieldSymb

A new record can be created in the following ways:
- The first way is to explicitly define a value for each of the fields. The order in which the record

fields are specified is irrelevant, but all fields have to get a value.
- The second way is to construct a new record out of an existing one (a functional record up-

date). The record written to the left of the & (r & f = v is pronounced as: r updated with for f
the value v) is the record which is used as blueprint which is of the same type as the new
record to be constructed. On the right from the & the fields are specified in which the new record
differs from the old one. The other fields are created implicitly. Notice that the functional update is
not an update in the classical, destructive sense since a new record is created.

With a record selection one can select the value stored in the indicated field. Record selection
binds more tightly (priority 11) than application (priority 10).
• The record expression must yield an object of a record type.
• The type of the record must have been defined (see 8.2.2).
• The field names used in the expression must be the same as the field names defined in the type

definition of the record, their types must be an instantiation of the corresponding types.

EXPRESSIONS 1 9

• When a record is created, all fields have to get a value (either implicitly or explicitly). This implies
that records cannot be used in a curried way.

• The type symbol of the record being created can only be left out if there is at least one field
name is specified which is not being defined in some other record.

Example (record type definition, record creation and update).

::Person = { name :: String,
address :: String,
city :: String,
cleanuser :: Bool }

SomePerson :: Person // function creating a new record
SomePerson = { name = "Some Body",

address = "Somewhere 17",
city = "Sometown",
cleanuser = False }

SetUser :: Person -> Person // function updating a record
SetUser someone = { someone & cleanuser = True }

4 . 9 Arrays, array selection and array update

An array is a tuple/record-like data structure in which all elements are of the same type. Instead of
selection by position or field name the elements of an array can be selected very efficiently in con-
stant time by indexing. Unique arrays will be updated destructively in Clean and therefore have to
be unique (see Chapter 9). Arrays are very useful if time and space consumption is becoming very
critical. If this is not the case we recomment the use of lists instead of arrays because lists induce a
much better programming style. Lists are more flexible and less error prone: array indices can point
outside the range which can only be detected at run-time. In Clean, array indices always start with
0. More dimensional arrays (e.g. a matrix) can be defined as an array of arrays.

For efficiency reasons, arrays are available in several ways: there are lazy arrays (type {a}),
strict arrays (type {!a}) and unboxed arrays for elements of basic type (e.g. type {#Int}). All
these arrays are considered to be of different type. By using the overloading mechanism (type
constructor classes) one can still define (overloaded) functions which work on any array. The pre-
defined type array is treated in Section 8.1.2.

Array = { {GraphExpr}-list}
| {ArrayExpr & [{ArrayIndex = GraphExpr}-list] [\ \ {Qualifier}-list]}
| { [ArrayExpr &] GraphExpr \ \ {Qualifier}-list}
| StringDenot

ArrayExpr = GraphExpr
ArrayIndex = [{IntegerExpr}-list]
IntegerExpr = GraphExpr
ArraySelection = ArrayExpr.ArrayIndex

A new array can be created in a number of ways.
- One way is to simply list the array elements. By default a lazy array will be created. Arrays

are unique (the * attribute in front of the type, see Chapter 9) to make destructive updates
possible.

Example (creating a lazy array, strict and unboxed unique array with elements 1,3,5,7,9).

MyLazyArray :: *{Int}
MyLazyArray = {1,3,5,7,9}

MyStrictArray :: *{!Int}
MyStrictArray = {1,3,5,7,9}

2 0 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

MyUnboxedArray :: *{#Int}
MyUnboxedArray = {1,3,5,7,9}

A lazy array is a box with pointers pointing to the array elements. One can also create a strict
array (explicitly define its type as {!Int}), which will have the property that the elements to
which the array box points will always be evaluated. One can also create an unboxed array
(explicitly define its type as {#Int}), which will have the property that the evaluated elements
(which have to be of basic value) are stored directly in the array box itself. Clearly the last one
is the most efficient representation (see also Chapter 13).

To make it possible to use e.g. array selection on any of these arrays (of actually different type)
a type constructor class has been defined (in StdArray) which expresses that "some kind of
array structure is created". The compiler will therefore deduce the following type:

Array :: *(a Int) | Array a
Array = {1,3,5,7,9}

- There are a number of handy functions for the creation and manipulation of arrays predefined in
StdArray (see Appendix B). These functions are overloaded (see StdArray) to be able to
deal with any type of array. The class restrictions for these functions express that "an array
structure is required" containing "an array element".

Example (type of some predefined functions in StdArray).

createArray :: !Int e -> *(a e) | Array a & ArrayElem e
// size arg1, a.[i] = arg2

size :: (a e) -> Int | Array a & ArrayElem e
// number of elements in array

- Finally one can construct a new array out of an existing one (a functional array update). Left
from the & (a & [i] = v is pronounced as: array a updated with for a.[i] the value v) the old
array has to be specified. On the right from the & those array elements are listed in which the
new array differs from the old one.
One can use an array comprehension to list these elements compactly in the same spirit as
with an list comprehension (see 4.6). One can even leave out the indices. The size of the array
generated is then equal to the size of the first array or list generator from which elements are
drawn. Drawn elements which are rejected by a corresponding guard result in an undefined ar-
ray element on the corresponding position.
The &-operator is strict in its arguments. Notice that the functional update is not an update in the
classical, destructive sense since a new array is created.

Important: For reasons of efficiency we have defined the updates only on arrays which are of
unique type (*{…}), such that the update can always be done destructively (!) which is se-
mantically sound because the original unique array is known not to be used anymore (see 9.2).

Important: We are currently making the overloading system more powerful. We hope that this
will make it possible in the future to express e.g. overloaded operators on all kinds of arrays in a
more convenient way.

Important: We are still working adding facilities to support destructive updates of more
dimensional arrays (to be expected in a next version of Clean).

Example (various ways to define an array with the integer elements 1,3,5,7,9).

{1,3,5,7,9}

EXPRESSIONS 2 1

{CreateArray 5 0 & [0] = 1, [1] = 3, [2] = 5, [3] = 7, [4] = 9}
{CreateArray 5 0 & [1] = 3, [0] = 1, [3] = 7, [4] = 9, [2] = 5}
{CreateArray 5 0 & [i] = 2*i+1 \\ i <- [0..4]}
{CreateArray 5 0 & [i] = elem \\ elem <-: {1,3,5,7,9} & i <- [0..4]}
{CreateArray 5 0 & elem \\ elem <-: {1,3,5,7,9}}
{elem \\ elem <-: {1,3,5,7,9}}
{elem \\ elem <- [1,3,5,7,9]}

A string is equivalent with an unboxed array of character {#Char}. A type synonym is defined
in module StdString. Notice that this array is not unique, such that a destructive update of a string
is not possible. There is special syntax to denote strings (see 3.2).

Example (some ways to define a string, i.e. an unboxed array of character).

"abc"
{'a','b','c'}

With an array selection one can select an array element. When an object a is of type Array, the
ith element can be selected (computed) via a.[i]. Array selection is left-associative: a.[i,j,k]
means ((a.[i]).[j]).[k]. Array selection binds more tightly (priority 11) than application (priority
10).
• All elements of an array need to be of same type.
• The array expression on the left of the dot '.' and to the left of the update '&' should yield an ob-

ject of type array.
• An array index must be an integer value between 0 and the number of elements of the array-1.

An index out of this range will result in a run-time error.
• The only excuse for using arrays is when one wants to achieve optimal speed

(otherwise use a list). A functional update is therefore only defined on unique arrays
such that the updates can be done destructively!

• A unique arrays of any type created by an overloaded function cannot be converted
to a non-unique array.

• An array expression must be of type array.

Example (array creation, selection, update). The most general types have been defined. One can of
course always restrict to a more specific type.

MkArray :: !Int (Int -> e) -> *(a e) | Array a & ArrayElem e
MkArray i f = {f j \\ j <- [0..i-1]}

SetArray :: *(a e) Int e -> *(a e) | Array a & ArrayElem e
SetArray a i v = {a & [i] = v}

CA :: Int e -> *(a e) | Array a & ArrayElem e
CA i e = createArray i e

InvPerm :: {Int} -> *{Int}
InvPerm a = {CA (size a) 0 & [a.[i]] = i \\ i <- [0..maxindex a]}

ScaleArray :: e (a e) -> *(a e) | Array a & ArrayElem e & Arith e
ScaleArray x a = {x * e \\ e <-: a}

MapArray:: (a -> b) (ar a) -> *(ar b) | Array ar & ArrayElem a & ArrayElem b
MapArray f a = {f e \\ e <-: a}

inner :: (a e) (a e) -> *(a e) | Array a & ArrayElem e & Arith e
inner v w

| size v == size w = {vi * wi \\ vi <-: v & wi <-: w}
| otherwise = abort "cannot take inner product"

ToArray :: [e] -> *(a e) | Array a & ArrayElem e
ToArray list = {e \\ e <- list}

ToList :: (a e) -> *[e] | Array a & ArrayElem e

2 2 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

ToList array = [e \\ e <-: array]

4 . 1 0 Case expression and conditional expression

For programming convenience a case expression and conditional expression is included to make a
choice between several alternatives (one can obtain the same effect by defining additional functions
and use the pattern matching mechanism).

CaseExpr = case GraphExpr o f
{ {CaseAltDef}+ }

| i f BrackGraph BrackGraph BrackGraph
CaseAltDef = [Pattern] {[| Guard] - > FunctionBody}+

[LocalFunctionAltDefs]

In the case expression first the discriminating expression is evaluated after which the patterns are
tried in textual order. When a pattern matches the expression the corresponding alternative is cho-
sen. Patterns are like left-hand side patterns (see 6.2), optionally a guard can be specified (see
6.3). A new block structure (scope) is created with a case expression (see 3.5).
• All alternatives in the case expression must be of the same type.
• When none of the patterns matches a run-time error is generated.

In a conditional expression first the boolean expression is evaluated after which either the then-
or the else-part is chosen. The conditional expression can be seen as a special case of the case
expression.
• The then- and else-part in the conditional expression must be of the same type.
• The boolean expression must yield an object of type Bool.

Example (case expression).

h x = case g x of
[hd:_] -> hd

 [] -> abort "result of call g x in h is empty"

is semantically equivalent to:

h x = mycase (g x)
where

mycase [hd:_] = hd
mycase [] = abort "result of call g x in h is empty"

4 . 1 1 Lambda abstraction

If one wants to define a tiny function it can sometimes be convenient to define such a function in an
expression "right on the spot". For this purpose one can use a lambda abstraction. An anonymous
function is defined which can have several formal arguments which can be patterns as common in
ordinary function definitions (see Chapter 6). However, only simple functions can be defined in this
way: no guards, no rule alternatives, no local definitions. Since the dot is already used for record
and array selection the syntax for lambda abstraction is as follows:

LambdaAbstr = \ {Pattern}+ - > GraphExpr

Example (lambda expression).

AddTupleList :: [(Int,Int)] -> [Int]
AddTupleList list = map (\(x,y) -> x+y) list

5
Defining graphs

5 . 1 Graph definitions 5 . 2 Selectors

With a graph definition one can define constants (actually graphs), both on the global level or local
to a function definition (see 5.1). See also Clean’s basic semantics in Chapter 2. One can also
identify certain parts of a constant via a projection function called a selector (see 5.2).

5 . 1 Graph definitions

GraphDef = Selector = [:] GraphExpr ;

When a graph is defined a name is given to (part) of a constant graph expression (see Chapter
4). The definition of a graph can be compared with a definition of a constant (data) or a constant
(projection) function. However, notice that graphs are constructed according to the basic semantics
of Clean (see Chapter 2) which means that multiple references to a graph will result in sharing of
that graph. Recursive references will result in cyclic graph structures. Graphs have the property
that they are computed only once and that their value is remembered within the scope they are de-
fined in. Graph definitions differ from constant function definitions (see 6.1). Constant function def-
initions are a special form of a graph rewriting rule: multiple references to a function just means that
the same definition is used such that a (constant) function will be recomputed again for each
occurrence of the function symbol made.

Syntactically the definition of a graph is distinguished from the definition of a function by the symbol
which separates left-hand side from right-hand side: "= :" is used for graphs while "= >" is used for
functions. However, in general the more common symbol "=" is used for both type of definitions.
Generally it is clear from the context what is meant. Constant definitions are ambiguous. Locally (i.e.
within a function definition, see Chapter 6) they are by default taken to be graph definitions (see
also 5.1.1), globally they are by default taken to be function definitions (see 6.1).

Example (Graph versus constant function definition: biglist1 is a graph which is computed only once,
biglist2 is a constant function which is computed every time it is applied).

biglist1 =: [1..10000] // a graph
biglist2 => [1..10000] // a constant function

5 . 1 . 1 Defining graphs in functions

The contractum graph specified on the right-hand side of a rewrite rule (function) which has as root
the graph defined in the root expression (see 6.5) can be composed out of locally defined (sub-)
graphs (see Clean’s basic semantics in Chapter 2). A (sub-) graph can be defined in a strict let ex-

2 4 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

pression (see 6.4), as local definition in a function body (see 6.6), and as local definition for a rule al-
ternative (see also 6.6).

Graphs defined locally will be collected by the garbage collector when they are no longer connected
to the root of the program graph (see Chapter 2).

Example (graph locally defined in a function: the graph labelled last is shared in the function
StripNewline and computed only once).

StripNewline :: String -> String
StripNewline "" = ""
StripNewline string

| string !! last<>'\n' = string
| otherwise = string%(0,last-1)

where
last = maxindex string

Example (the Hamming numbers defined using a locally defined cyclic constant graph and defined by us-
ing a recursive constant function. The first definition (ham1) is efficient because already computed num-
bers are reused via sharing. The second definition (ham2) is much more inefficient because the recur-
sive function recomputes everything).

ham1 :: [Int]
ham1 = y
where y = [1:merge (map ((*) 2) y) (merge (map ((*) 3) y) (map ((*) 5) y))]

ham2 :: [Int]
ham2 = [1:merge (map ((*) 2) ham2) (merge (map ((*) 3) ham2)

(map ((*) 5) ham2))]

5 . 1 . 2 Defining graphs on the global level

Graphs can also be defined on a global level.

Definition = …
| GraphDef

A global graph definition defines a global constant (closed) graph, i.e. a graph which has the
same scope as a global function definition. The selector variables that occur in the selectors of a
global graph definition have a global scope just as globally defined functions.

Special about global graphs (in contrast with local graphs) is that they are not garbage collected
during the evaluation of the program. A global graph can be compared with a CAF (constant ap-
plicative form): its value is computed at most once and remembered at run-time. A global graph
can save execution-time at the cost of permanent space consumption (see Chapter 13).

5 . 2 Selectors

A selector is a pattern which introduces one or more new selector variables implicitly defining
projection functions to identify (parts of) a graph being defined on a local or global level. One can
identify the sub-graph as a whole or one can identify its components. With a wildcard one can indi-
cate that one is not interested in certain components.

Selector = BrackPattern // for bracket patterns see 6.2

• When a selector on the left-hand side of a graph definition is not matching the graph on the right-
hand side it will result in a run-time error.

DEFINING GRAPHS 2 5

• The selector variables introduced in the selector must be different from each other and not al-
ready be used in the same scope and name space (see 3.5 and 3.4).

Remark: a selector can also appear on the left-hand side of a generator in a list comprehension (see
4.5) or array comprehension (see 4.8).

Example (use of selectors to select record elements).

:: Complex = {re :: Real, im :: Real}

RePart:: Complex -> Real
RePart c = r
where

{re = r} = c

6
Defining functions

6 . 1 Defining functions
6 . 2 Left-hand side patterns
6 . 3 Guards

6 . 4 Strict let expression
6 . 5 Root expression
6 . 6 Local definitions

In this section function definitions are treated (actually: graph rewrite rules). Operator definitions are
regarded as special kind of function definitions (see 6.1 and 8.3). A function can be preceded by a
definition of its type. This is explained in Chapter 8.

6 . 1 Defining functions

FunctionDef = [FunctionTypeDef] DefOfFunction
DefOfFunction = {FunctionAltDef}+
FunctionAltDef = FunctionSymbol {Pattern}

{[| Guard] = [>] FunctionBody}+
[LocalFunctionAltDefs]

FunctionSymbol = FunctionSymb // ordinary function
| (FunctionSymb) // operator function

FunctionBody = {StrictLet}+
RootExpression ;
[LocalFunctionDefs]

A function definition consist of one or more definitions of function alternatives (rewrite rules)
which are tried in textual order. The left-hand side of such a function alternative can serve a whole
sequence of guarded function bodies (called the rule alternatives). A particular rule alternative
is chosen for evaluation when
+ all patterns on the left-hand side are matching on the corresponding actual arguments of the

function application (see 6.2) and
+ the optional guard (see 6.3) specified on the left-hand side evaluates to True.

When a rule is evaluated, first the sub-graphs defined in the strict let expression will be evaluated
(see 6.4). Hereafter the root expression is evaluated (see 6.5). In each rule alternative one can op-
tionally specify local definitions containing the definitions of sub-graphs and functions that have a
meaning for that rule alternative only (the with block, see 6.6). The last rule alternative in a se-
quence can optionally also be followed by local definitions that have a meaning for all preceding rule
alternatives belonging to the same left-hand side (the where block, see 6.6 as well).
• Function definitions are only allowed in implementation modules (see 12.1).
• It is required that the function alternatives are textually grouped together (separated by semi-

colons when the lay-out dependent mode is not chosen).
• Each alternative of a function must start with the same function symbol.

2 8 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

• The function name must in principle be different from other names in the same name space and
same scope (see 3.4). However, it is possible to overload functions and operators (see 8.4).

• A function has a fixed arity, so in each rule the same number of formal arguments must be speci-
fied. Functions can be applied to any number of arguments though, as usual in higher order
functional languages (see 4.2 and 9.3).

Example (function definition).

module example // module header
import StdInt // implicit import

map :: (a -> b) [a] -> [b] // definition of the function map
map f list = [f e \\ e <- list]

square :: Int -> Int // definition of the function square
square x = x * x

Start :: [Int] // definition of the Start rule
Start = map square [1..1000]

Constant definitions on the global level are by default taken to be function definitions (see 5.1.2).
By using "=:" instead of "=" one can indicate that a constant graph (CAF) is defined instead of a
function.

An operator is a function with arity two that can be used in infix notation. Operators can be
applied in infix notation (brackets are left out) or as ordinary prefix function (the name has to be sur-
rounded by brackets).
• When an operator is used in infix position both arguments have to be present. Operators can

be used in a curried way, but then they have to be used as ordinary prefix functions (see also
4.3).

Example (operator definition).

(++) infixr 0 :: [a] [a] -> [a]
(++) [] ly = ly
(++) [x:xs] ly = [x:xs ++ ly]

(o) infixr 9 :: (a -> b) (c -> a) -> (c -> b)
(o) f g = \x -> f (g x)

An operator has a precedence (0 through 9, default 9) and a fixity (infixl, infixr or just infix,
default infixl). This is defined in its type (see 8.3.2). See also Section 4.3.

6 . 2 Left-hand side patterns

In this section the different kind of formal arguments (patterns) that can be specified on the left-
hand side of a function definition (rewrite rule definition) are explained. A pattern in general consists
of some data constructor with its optional arguments which on their turn can contain sub-patterns
(see 6.2.1). A node-id variable can be attached to a pattern which makes it possible to identify
(label) the whole pattern as well as its contents. Bracketed patterns are formal arguments that
form a syntactic unit (see 6.2.2 - 6.2.6).

Pattern = [Variable = :] BrackPattern
BrackPattern = ConstructorSymbol // see 6.2.2

| PatternVariable // see 6.2.3
| BasicValuePattern // see 6.2.4
| ListPattern // see 6.2.5
| TuplePattern // see 6.2.6
| RecordPattern // see 6.2.7
| ArrayPattern // see 6.2.8

DEFINING FUNCTIONS 2 9

| (GraphPattern) // see 6.2.1

• It is possible that the specified patterns turn a function into a partial function (see 8.3.3). When a
partial function is applied outside the domain for which the function is defined it will result into a
run-time error. A compile time warning is generated that such a situation might arise.

6 . 2 . 1 Constructor patterns

GraphPattern = ConstructorSymbol {Pattern} // Constructor pattern
| GraphPattern ConstructorSymb GraphPattern // Constructor operator
| Pattern // a pattern in brackets

A constructor pattern (see above) consists of a data constructor (see 8.2.1) with its optional ar-
guments which on its turn can contain sub-patterns. A constructor pattern forces evaluation of the
corresponding actual argument to strong root normal form since the strategy has to determine whe-
ther the actual argument indeed is equal to the specified constructor.
• the data constructor must have been defined in an algebraic data type definition (see 8.2.1).

Example (algebraic data type definition and constructor pattern in function definition).

::Tree a = Node a (Tree a) (Tree a)
| Nil

Mirror :: (Tree a) -> Tree a
Mirror (Node e left right) = Node e (Mirror right) (Mirror left)
Mirror Nil = Nil

Constructors with arity two (see 6.1, see 8.2.1) can also be defined as infix constructors (or con-
structor operator). In a pattern match they can be written down in infix position as well .
• When a constructor operator is used in infix position in a pattern match both arguments have to

be present. Constructor operators can occur in a curried way, but then they have to be used as
ordinary prefix constructors (see also 6.2.1 and 4.3).

Example (algebraic type definition and constructor pattern in function definition).

::Tree2 a = (/\) infixl 0 (Tree a) (Tree a)
| Value a

Mirror :: (Tree2 a) -> Tree2 a
Mirror (left/\right) = Mirror right/\Mirror left
Mirror leaf = leaf

6 . 2 . 2 Simple Constructor pattern

ConstructorSymbol = ConstructorSymb
| (ConstructorSymb)

Constructor symbols without arguments just form a syntactic unit (for non-operators no brackets
needed in this case). Besides the brackets that can be omitted they behave just like other construc-
tor patterns (see 6.2.1).

6 . 2 . 3 Variables and wildcards in patterns

A pattern variable can be a (node) variable or a wildcard.

PatternVariable = Variable
| _

3 0 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

A node variable matches on any concrete value of the corresponding actual argument and does
not force evaluation of this argument. A wildcard is an anonymous node variable ("_") one can use
to indicate that the corresponding argument is not used in the right-hand side of the rewrite rule. All
lower case identifiers in a graph pattern are (node) variables.
• All variable symbols appearing at the left-hand side of a function definition must have different

names.

Example (use of pattern variables).

:: Complex :== (!Real,!Real) // synonym type def

realpart :: Complex -> Real
realpart (re,_) = re

6 . 2 . 4 Constant values of basic type as pattern

BasicValuePattern = BasicValue

A constant value of predefined basic type Int, Real, Boolor Char (see 8.1) can be specified as
pattern.
• The denotation of such a value must obey the syntactic description given in 3.2.

Example (use of basic values as pattern).

nfib :: Int -> Int
nfib 0 = 1
nfib 1 = 1
nfib n = 1 + nfib (n-1) * nfib (n-2)

6 . 2 . 5 List patterns

An object of the predefined algebraic type list (see 8.1.3) can be specified as pattern.

ListPattern = [[{LGraphPattern}-list [: GraphPattern]]]
LGraphPattern = GraphPattern

| CharsDenot

Notice that only simple list patterns can be specified on the left-hand side (one cannot use a dot-dot
expression or list comprehension to define a list pattern).

Example (use of list patterns, use of guards, use of variables to identify patterns and sub-patterns; merge
merges two (sorted) lists into one (sorted) list).

merge :: [Int] [Int] -> [Int]
merge f [] = f
merge [] s = s
merge f=:[x:xs] s=:[y:ys]

| x<y = [x:merge xs s]
| x==y = merge f ys
| otherwise = [y:merge f ys]

6 . 2 . 6 Tuple patterns

An object of the predefined algebraic type tuple (see 8.1.4) can be specified as pattern.

TuplePattern = (GraphPattern, {GraphPattern} -list)

DEFINING FUNCTIONS 3 1

6 . 2 . 7 Record patterns

An object of type record (see 8.2.2) can be specified as pattern. Only those fields which contents
one would like to use in the right-hand side need to be mentioned in the pattern.

RecordPattern = { [TypeSymb|] {FieldSymbol [= GraphPattern]} -list}

• The type of the record must have been defined in a record type definition (see 8.2.2).
• The field names specified in the pattern must be identical to the field names specified in the cor-

responding type.
• The type of the record need not to be given if at least one of the field names specified in the

pattern unambiguously identifies the type of the record being used.

Example (use of record patterns).

::Tree a = Node (RecTree a)
| Leaf a

::RecTree a = { elem :: a,
left :: Tree a,
right :: Tree a }

Mirror :: (Tree a) -> Tree a
Mirror (Node tree=:{left=l,right=r}) = Node {tree & left=r,right=l}
Mirror leaf = leaf

Example (the first alternative of function Mirror defined in another equivalent way).

Mirror (Node tree) = Node {tree & left=tree.right,right=tree.left}
or
Mirror (Node tree=:{left,right}) = Node {tree & left=right,right=left}

6 . 2 . 8 Array patterns

An object of type array (see 8.1.5) can be specified as pattern. Notice that only simple array pat-
terns can be specified on the left-hand side (one cannot use array comprehensions). Only those
array elements which contents one would like to use in the right-hand side need to be mentioned in
the pattern.

ArrayPattern = { {GraphPattern} -list}
| { {ArrayIndex = GraphPattern}-list}
| StringDenot

• All array elements of an array need to be of same type.
• An array index must be an integer value between 0 and the number of elements of the array-1.

Accessing an array with an index out of this range will result in a run-time error.

It is allowed in the pattern to use an index expression in terms of the other formal arguments (of
type Int) passed to the function to make a flexible array access possible.

Example (use of array patterns).

Swap :: !Int !Int !*(a e) -> *(a e) | Array a & ArrayElem e
Swap i j a=:{[i]=ai,[j]=aj} = {a & [i]=aj,[j]=ai}

6 . 3 Guards

Guard = BooleanExpr

3 2 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

A guard is a boolean expression attached to a rule alternative that can be regarded as generalisa-
tion of the pattern matching mechanism: the alternative only matches when the patterns defined on
the left hand-side match and its (optional) guard evaluates to True (see 6.1). Otherwise the next
alternative is tried. Pattern matching always takes place before the guards are evaluated.

The guards are tried in textual order. The alternative corresponding to the first guard that yields True
will be evaluated. A right-hand side without a guard can be regarded to have a guard that always
evaluates to True (the ‘otherwise’ or ‘default’ case). In StdBool otherwise is predefined as syno-
nym for True for people who like to emphasis the default option.
• Only the last rule alternative of a function alternative can have no guard.
• It is possible that the guards turn the function into a partial function (see 8.3.3). When a partial

function is applied outside the domain for which the function is defined it will result into a run-time
error. At compile time this cannot be detected.

Example (function definition with guards).

filter :: Int [Int] -> [Int]
filter pr [n:str]

| n mod pr == 0 = filter pr str
= [n:filter pr str]

Example (equivalent definition).

filter :: Int [Int] -> [Int]
filter pr [n:str]

| n mod pr == 0 = filter pr str
| otherwise = [n:filter pr str]

6 . 4 Strict let expression

Although Clean is a lazy functional language one can force evaluation of sub-graphs by using a
strict let expression. This can be used to put unique objects in a preliminary context such that
they can be observed before they are destructively updated (see 13.6). By forcing evaluation one
can obtain a more time- and space-efficient program (see 13.3). Forcing evaluation can influence the
termination behaviour of the program (a terminating program may be turned into a non-terminating
program). See also Section 8.5.

StrictLet = let! { {GraphDef}+ } i n

Before the root expression is evaluated (see 6.5), first the graphs specified in the strict let expres-
sion are evaluated to strong root normal form. The order in which the graphs in the let expression are
evaluated is undefined. One can use the evaluation order to calculate an expression first such that it
can be used to destructively update e.g. an array structure later on. Warning: observation is
switched of in the current release of the compiler!

Example (let! expression forcing evaluation).

SquareArrayElem :: *{Int} Int -> *{Int}
SquareArrayElem a i = let! e = a.[i]

in {a & [i]=e*e}

6 . 5 Root expression

The expression defining the root of the contractum is called the root expression. Such a right-hand
side of a rule alternative is either a variable (in the case of a redirection) or a graph expression (in
the case a contractum graph is constructed) (see Clean’s basic semantics in Chapter 2). Not the
whole contractum need to be specified in the root expression. Parts of the contractum (sub-graphs

DEFINING FUNCTIONS 3 3

of the contractum) can be refined after the root expression (in a local definition) or before (in the strict
let expression).

RootExpression = GraphExpr

Example (y is the root expression referring to a cyclic graph).

ham :: [Int]
ham = y
where y = [1:merge (map ((*) 2) y) (merge (map ((*) 3) y) (map ((*) 5) y))]

6 . 6 Local definitions

For the purpose of introducing definitions with a limited scope both graphs as well as functions can
be defined locally. Local functions are always lifted to the global level by the compiler whereas local
graphs are not lifted and stay on a local level (see 13.5). There are two kinds of local definitions.
- Firstly, each rule alternative can contain local definitions. They are defined in a with block intro-

ducing a new scope (see 3.5). The definitions given in such a block have only a meaning for the
corresponding rule alternative.

- Secondly, as usual in functional languages, one can also define local definitions in a where
block (a block preceded by the keyword where) that have a meaning for the whole sequence
of rule alternatives belonging to the same left-hand side (see 6.1).

When the sequence of rule alternatives only consists of one alternative the scope and meaning of
both kind of local definitions is the same and it therefore does not make any difference which kind of
block is used (in that case the keywords can even be left out if the curly braces are used).

LocalFunctionDefs = [with] { {LocalDef}+ }
LocalDef = GraphDef

| FunctionDef
LocalFunctionAltDefs = [where] { {LocalDef}+ }

Example (local function definition).

primes :: [Int]
primes = sieve [2..]
where

sieve :: [Int] -> [Int] // local function def
sieve [pr:r] = [pr:sieve (filter pr r)]

filter :: Int [Int] -> [Int] // local function def
filter pr [n:r]

| n mod pr == 0 = filter pr r
| otherwise = [n:filter pr r]

7
Process annotations (DRAFT !)

7 . 1 Process creation 7 . 2 Process communication

UNDER CONSTRUCTION. NOT SUPPORTED IN CURRENT RELEASE. SORRY !

There are two ways of creating processes in Clean.

One way is by creating interactive applications. These interactive "processes" actually consist of a
collection of call-back functions which are applied automatically when certain events occur. The call-
back functions are applied by the I/O system sequentially one after another. Hence, scheduling
takes place by the I/O system on the level of call-back functions which perform a state transition in
an indivisible action. Interactive processes are explained in Chapter 10 on I/O.

In Concurrent Clean one can also create "real" processes which are executed interleaved in an un-
defined order or which are executed in parallel on a multi-processor architecture or on a network of
processors. These Clean processes are generally used to speed-up the program or to obtain a
specific distribution of parts of the program across a network of processors (e.g. of the interactive
processes !). Interleaved or parallel executing processes can be created by adding process anno-
tations (Plasmeijer and van Eekelen, 1993) to function applications. The annotations only influence
the order of evaluation, the program remains a pure functional program, no non-deterministic effects
are introduced. The original semantics of the process annotations as explained in the Clean book
are modified to be able to deal with uniqueness typing (Kesseler, 1995). Clean processes are
lightweight processes which run very efficient. Time-slicing, scheduling and communication is cont-
rolled by the Clean run-time system. Arbitrary process topologies can be created (e.g. cyclic pro-
cess topologies) beyond the divide (fork) and conquer parallelism generally offered.

7 . 1 Process creation

If an application being evaluated contains an argument which is attributed with an process annota-
tion ({*I*} or {*P*}) the corresponding argument will be evaluated by a new reduction process.
This new reducer can run interleaved or in parallel with the original reduction process. The original
process continues with the evaluation in the ordinary reduction order independently. The new redu-
cer will evaluate the expression following the functional strategy until a normal form is reached.

The creation of a new process will in theory not influence the termination behaviour of the program.
It will influence the time and space consumption of the program which might cause run-time problems
when resources are exhausted.

Process = {* I *}

3 6 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

| {* P [a t ProcIdExpr] * }
ProcIdExpr = GraphExpr

With the {*I*} annotation a new interleaved reducer is created on the same processor that re-
duces the annotated graph expression to normal form (following the functional strategy). Such an in-
terleaved reducer dies when this normal form is reached. However, during the evaluation of this re-
sult other reducers may have been created.

With the {*P*} annotation a new parallel reducer is created. This reducer is preferably located on
a different processor working on a lazy copy of the corresponding sub-graph. Reducers that are lo-
cated on different processors run in parallel with each other. The {*P*} annotations can be ex-
tended with a location directive at location, where location is an expression of predefined
type ProcId indicating the processor on which the parallel process has to be created. In the library
StdProcId (see Appendix B.3) functions are given that yield an object of this type.

When there are several local annotations specified in a contractum, the order in which they have to
be effectuated is in principle depth-first with respect to the sub-graph structure.

7 . 2 Process communication

A reducer can demand the evaluation of a sub-graph located on another processor. Such a demand
always takes place via a communication channel (a lazy copy node, see Plasmeijer and Van
Eekelen, 1993).
- if the sub-graph the channel is referring to is not in strong root normal form, there will be a reducer

process on the other processor (it will be already there or it will be created lazily) that will take
care of the evaluation to root normal form. The demanding process is locked (suspended) until
the root-normal form is reached.

- if the sub-graph the channel is referring to is in strong root normal form, a lazy copy of this sub-
graph is made on the processor such that it can be inspected by the demanding reducer. Only
that part of the graph expression which is in strong root normal form is copied (in one or more
chunks) to the demanding processor. Such a copy is an ordinary graph which can contain
shared parts, it can be cyclic and it can refer to other parts of the graph stored on another pro-
cessor. Those parts of the graph which are not in root normal form will not be copied. They are
lazy copied in the same way (this might induce the creation of new lazy reduction processes)
whenever there is a new demand for them.

- a reducer will be locked (suspended) if it wants to reduce a redex that is already being redu-
ced by some other reducer. A locked reducer can continue when the redex has been reduced to
strong root normal form.

So, process communication takes place automatically and there will always be a serving process
that will reduce the demanding information to root normal form before it is shipped.

Example (hierarchical process topology creation).

fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n

| n>threshold = fib (n-1) + {*P*} fib (n-2)
| n>2 = fib (n-1) + fib (n-2)

where
threshold = 10

Example (pipeline of processes; the sieve of Eratosthenes is a classical example in which parallel sieving
processes are created dynamically in a pipeline).

PROCESS ANNOTATIONS 37

Start :: [Int]
Start = primes
where

primes :: [Int]
primes = sieve {*P*} [2..]

sieve :: [Int] -> [Int]
sieve [] = []
sieve [pr:str] = [pr:{*P*} sieve (filter pr str)]

filter :: Int [Int] -> [Int]
filter pr str = [n \\ n <- str | n mod pr <> 0]

8
Defining types

8 . 1 Types
8 . 2 Defining new types
8 . 3 Typing functions and operators

8 . 4 Typing overloaded functions and
operators

8 . 5 Partially strict data structures and
functions

Clean is a strongly typed language. The basic type system of Clean is based on the classical po-
lymorphic Milner/Hindley/Mycroft (Milner 1978; Hindley 1969, Mycroft, 1984) type system. This
type system is adapted for graph rewriting systems and extended with basic types, (possibly ex-
istentially quantified) algebraic types, record types, abstract types and synonym types. These
types are explained in the Sections 8.1, 8.2 and 8.3.
In Clean each classical type is furthermore extended with uniqueness type attributes. This very
special and important extension is explained in Chapter 9.
Clean allows functions and operators to be overloaded. Type classes and type constructor
classes are provided (which look similar to Haskell (Hudak et al. , 1992) and Gofer (Jones, 1993)
although they have slightly different semantics) with which a restricted context can be imposed on a
type variable in a type specification. This is explained in Section 8.4.
In Clean types can be attributed with strictness information (see Section 8.5). In this way one can
define data structures which (partially) will be evaluated eager instead of lazy as is by default the
case in Clean. In this way one can even turn Clean into a strict language instead of a lazy one.

8 . 1 Types

Clean is a strongly typed language: every object (graph) and function (graph rewrite rule) in
Clean has a type. The types of functions can be explicitly specified by the programmer or they
can be inferred automatically (see 8.3.5). Types can be formed by taking instances of type
constructors which have been defined explicitly as algebraic type (see 8.2.1), record type (see
8.2.2), synonym type (see 8.2.3), abstract type (see 8.2.4) or by taken instances of a predefined
type (see 8.1.1 - 8.1.6). A type instance from a given type is obtained by uniformly substituting a
type for a type variable. A type instance can be preceded by a uniqueness type attribute. This is
further explained in Section 9.1.

Type = {BrackType}+
BrackType = [UnqTypeAttrib] SimpleType
SimpleType = TypeConstructor // see 8.2, 8.4

| TypeVariable
| BasicType // see 8.1.1
| PredefAbstrType // see 8.1.2
| ListType // see 8.1.3
| TupleType // see 8.1.4
| ArrayType // see 8.1.5
| ArrowType // see 8.1.6

4 0 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

| (Type)

8 . 1 . 1 Basic types

Basic types are algebraic types (see 8.2) which are predefined for reasons of efficiency and con-
venience: Int (for 32 bits integer values), Real (for 64 bit double precision floating point values),
Char (for 8 bits ASCII character values) and Bool (for 8 bits boolean values). For programming
convenience special syntax is introduced to denote constant values (data constructors) of these
predefined types (see Section 3.2). Functions to create and manipulate objects of basic types can
be found in the Clean library (as indicated below).

BasicType = Int // see StdInt.dcl
| Real // see StdReal.dcl
| Char // see StdChar.dcl
| Bool // see StdBool.dcl

8 . 1 . 2 Predefined abstract types

As is explained in Section 8.2.4, Abstract data types are types of which the actual definition is hid-
den. In Clean the types World, File, ProcId and Void are predefined abstract data types.
They are recognised by the compiler and treated specially, either for efficiency or because they
play a special role in the language. Since the actual definition is hidden it is not possible to denotate
constant values of these predefined abstract types. There are functions predefined in the Clean li-
brary for the creation and manipulation of these predefined abstract data types. Some functions
work (only) on unique objects (see Chapter 9).

An object of type *World (* indicates that the world is unique, see 9.1) is automatically created
when a program is started. This object is optionally given as argument to the Start function (see
12.2 and 10.1). With this object efficient interfacing with the outside world (which is indeed unique) is
made possible (see Chapter 10).

An object of type File or *File can be created by means of the functions defined in StdFileIO
(see Appendix B.5.1). It makes direct manipulation of persistent data possible (see 10.2). The type
File is predefined for reasons of efficiency: Clean Files are directly coupled to concrete files.

An object of type ProcId can be created by means of the functions defined in StdProcId (see
Appendix B.3.1). These objects are used in process annotations to allow process creation on an in-
dicated processor (see Chapter 7) in a network topology.

The predefined type Void is introduced for don't care usage, e.g. for instantiating an existentially
quantified type variable. There is no special denotation for an object of type Void. One can use
e.g. an abort statement (see StdMisc) to create an object of type Void.

PredefAbstrType = World // see StdWorld.dcl
| File // see StdFileIO.dcl
| ProcId // see StdProcId.dcl
| Void // see StdMisc.dcl

8 . 1 . 3 List types

A list is an algebraic data type predefined just for programming convenience. A list can contain an
infinite number of elements. All elements must be of the same type. Lists are very often used in
functional languages and therefore the usual syntactic sugar is provided for the creation and mani-

DEFINING TYPES 4 1

pulation of lists (dot-dot expressions, list comprehensions) while there is also special syntax for list
of characters . (see 4.6 and 6.2.5)

Lists cannot be annotated as strict or spine strict. To create such lists a new algebraic data type
has to be defined with appropriate strictness annotations (see 8.5.3).

ListType = [Type]

8 . 1 . 4 Tuple types

A tuple is an algebraic data type predefined for reasons of programming convenience and effi-
ciency (see 13.3). Tuples have as advantage that they allow to bundle a finite number of objects of
arbitrary type into a new object without being forced to define a new algebraic type for such a new
object (see 4.7 and 6.2.5). This is in particular handy for functions that return several values.

The tuple arguments can optionally be annotated as being strict (see 8.5.1). This can be used to in-
crease the efficiency of a program (see 13.3). The compiler will automatically take care of the con-
version between lazy and strict tuples where needed (see 8.5.4).

TupleType = ([Strict] Type, {[Strict] Type}-list)

8 . 1 . 5 Array types

An array is an algebraic data type predefined for reasons of efficiency. Arrays contain a finite num-
ber of elements that all have to be of the same type. An array has as property that its elements can
be accessed via indexing in constant time. An array index must be an integer value between 0
and the number of elements of the array-1. Destructive updates of array elements is possible
thanks to uniqueness typing. For programming convenience special syntax is provided for the crea-
tion, selection and updating of array elements (array comprehensions) while there is also special
syntax for strings (i.e. unboxed arrays of characters) (see 4.9 and 6.2.8). Arrays have as disad-
vantage that their use increases the possibility of a run-time error (indices that might get out-of-
range). Again, see 4.9 and 6.2.8.

To obtain optimal efficiency in time and space, arrays are implemented different depending on the
concrete type of the array elements. By default an array is implemented as a lazy array (type {a}),
i.e. an array consists of a contiguous block of memory containing pointers to the array elements. The
same representation is chosen if strict arrays (define its type as {!a}) are being used. For ele-
ments of basic type an unboxed array (define its type as {#a}) can be used. In that latter case
the pointers are replaced by the array elements themselves. Lazy, strict and unboxed arrays are
regarded by the Clean compiler as objects of different types. However, most predefined operations
on arrays are overloaded such that they can be used on lazy, on strict as well as on unboxed ar-
rays.

ArrayType = { [Strict] Type}
| { #BasicType}

8 . 1 . 6 Arrow types

The arrow type is used for function objects (these functions have at least arity one). One can
use the Cartesian product (uncurried version) to denote the function type (see 8.3) to obtain a com-
pact notation. Curried functions applications and types are automatically converted to their uncurried
equivalent versions (see 8.3.1).

4 2 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

ArrowType = ({BrackType}+ - > Type)

Example (of an arrow type).

((a b -> c) [a] [b] -> [c])

being equivalent with:

((a -> b -> c) -> [a] -> [b] -> [c])

8 . 2 Defining new types

New types can be defined in an implementation as well as in a definition module. Types can only
be defined on the global level. Abstract types can only be defined in a definition module hiding the
actual implementation in the corresponding implementation module (see 8.2.4 and Chapter 11).

Definition = ImportDef
| TypeDef
| ClassDef
| FunctionDef
| GraphDef
| MacroDef

TypeDef = AlgebraicTypeDef // see 8.2.1 and 9.2.1
| RecordTypeDef // see 8.2.2 and 9.2.2
| SynonymTypeDef // see 8.2.3 and 9.2.3
| AbstractTypeDef // see 8.2.4 and 9.2.4

FunctionDef = [FunctionTypeDef] DefOfFunction // see 8.3 and 9.3
ClassDef = TypeClassDef // see 8.4 and 9.4

| TypeInstanceDef // see 8.4 and 9.4
| TypeClassInstanceExportDef // see 8.4

8 . 2 . 1 Defining algebraic data types

With an algebraic data type one assigns a new type constructor (a new type) to a newly in-
troduced data structure. The data structure consists of a new constant value(called the data
constructor) which can have zero or more arguments (of any type). Every data constructor must
unambiguously have been (pre)defined in an algebraic data type definition. Several data construc-
tors can be introduced in one algebraic data type definition which makes it possible to define alter-
native data structures of the same algebraic data type. The data constructors can, just like functions,
be used in a curried way. Also type constructors can be used in a curried way, albeit only in the
type world of course.

Polymorphic algebraic data types can be defined by adding (possibly existentially quantified,
see below) type variables to the type constructors on the left-hand side of the algebraic data
type definition. The arguments of the data constructor in a type definition are type instances of ty-
pes (that are defined or are being defined).

Types can be preceded by uniqueness type attributes (see 9.2). The arguments of a defined data
constructor can optionally be annotated as being strict (see 8.5).

AlgebraicTypeDef = : :TypeLhs = ConstructorDef {|ConstructorDef} ;

TypeLhs = [*]TypeConstructor {E .[*] TypeVariable} {[*] TypeVariable}
TypeConstructor = TypeSymb

ConstructorDef = ConstructorSymb {[Strict] BrackType}
| (ConstructorSymb) [Fix][Prec] {[Strict] BrackType}

Fix = infixl
| infixr
| infix

DEFINING TYPES 4 3

Prec = Digit

Example (algebraic type definition and its use).

::Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

::Tree a = NilTree
| NodeTree a (Tree a) (Tree a)

MyTree :: (Tree Int) // constant function yielding a Tree of Int
MyTree = NodeTree 1 NilTree NilTree

An algebraic data type definition can be seen as the specification of a grammar in which is specified
what legal data objects are of a specific type. The grammar is LL1. All data constructors being defi-
ned must therefore have different names, to make type inferencing possible. Notice that the other
Clean types (basic, list, tuple, array, record, abstract types) can be regarded as special cases of
an algebraic type.

Defining infix data constructors

Constructors with two arguments can be defined as infix constructor, in a similar way as function
operators (with fixity (infixl, infixr or just infix, default infixl) and precedence (0 through
9, default 9). Infix constructors can also be used in prefix position when they are surrounded by
brackets (see 6.1).

Example (algebraic type defining an infix data constructor, function on this type; notice that one cannot use
a ':' because this character is already reserved).

::List a = (\) infixr 5 a (List a)
| Nil

Head :: (List a) -> a
Head (x\xs) = x

Using higher order types

In an algebraic type definition ordinary types can be used (such as a basic type, e.g. Int, or a list
type, e.g. [Int], or an instantiation of a user defined type, e.g. Tree Int), but one can also use
higher order types. Higher order types can be constructed by curried applications of the type
constructors. Higher order types can be applied in the type world in a similar way as higher order
functions in the function world. The use of higher order types increases the flexibility with which al-
gebraic types can be defined. Higher order types play an important role in combination with type
classes (see 8.4).

Type = {BrackType}+
BrackType = [UnqTypeAttrib] SimpleType
SimpleType = TypeConstructor

| TypeVariable
| BasicType
| PredefAbstrType
| ListType
| TupleType
| ArrayType
| ArrowType
| (Type)

TypeConstructor = TypeSymb // a user defined type
| [] // list type
| ({, }+) // tuple type (arity >= 2)
| { } // lazy array type
| {!} // strict array type
| {#} // unboxed array type
| (->) // an arrow type

4 4 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

Predefined types can also be used in curried way. To make this possible all predefined types can
be written down in prefix notation as well, as follows:

[] a is equivalent with [a]
(,) a b is equivalent with (a,b)
(,,) a b c is equivalent with (a,b,c) and so on for n-tuples
{} a is equivalent with {a}
{!} a is equivalent with {!a}
{#} a is equivalent with {#a}
(->) a b is equivalent with (a -> b)

Of course one needs to ensure that all types are applied in a correct way. So, one actually needs
another (simple) type system to check the correctness of the type definitions. To each type (type
variable) a kind is assigned internally by the compiler expressing the required amount of arguments.
X stands for a first order type (Int, Bool, [Int], etcetera), X -> X for a type to be applied on one
argument, and so on.

Int, Bool, [Int], Tree [Int] :: X
[], Tree, (,) Int, (->) a, {} :: X -> X
(,), (->) :: X -> X -> X
(,,) :: X -> X -> X -> X

The right-hand side of a type should yield a type of kind X, all arguments of the data constructor
being defined should be of kind X as well. To a type variable a kind is assigned which is determined
by the way it is used in the type definition. A type variable can only be instantiated with a type
which is of the same kind as the type variable itself.

Example (algebraic type using higher order types; the type variable t in the definition of Tree2 s of kind X
-> X. Tree2 is instantiated with a list (also of kind X -> X) in the definition of MyTree2).

::Tree2 t = NilTree
| NodeTree (t Int) (Tree2 t) (Tree2 t)

MyTree2 :: Tree2 []
MyTree2 = NodeTree [1,2,3] NilTree NilTree

Defining algebraic data types with existentially quantified variables

An existential algebraic data type definition is an algebraic type definition in which existen-
tially quantified variables are used (Läufer 1992). These special variables are marked with "E .".
Existential types are useful if one wants to create (recursive) data structures in which objects of
different types are being stored (e.g. a list with elements of different types).

Example (existential algebraic type definition and its use). In this example a list-like structure is defined in
which functions can be stored. The functions in this structure can be applied one after another in a pipe-
line fashion. Each function in the pipeline can yield a result of arbitrary type which is exactly of the type
required by the next function in the pipe-line. The first function in the pipeline expects type a, the last will
yield type b . Hence, the function composed in this way is a function of type a -> b. The recursive func-
tion ApplyPipe happens to be an example of a recursive function which type cannot be inferred (with
the Milner type system), however its specified type can be checked (with the Mycroft type system).

::Pipe E.c a b = ENil (a -> b)
| ECons (a -> c) (Pipe Void c b)

ApplyPipe :: (Pipe Void a b) a -> b
ApplyPipe (ENil func) val = func val
ApplyPipe (ECons func pipes) val = ApplyPipe pipes (func val)

Start = ApplyPipe (ECons toReal (ECons exp (ENil toInt))) 3

There are severe limitations imposed on the use of data structures of existential types.

DEFINING TYPES 4 5

• Once a data structure of existential type is created and is passed to another function it is gene-
rally statically not possible to determine what the actual type is of those components of the data
constructor that correspond to the existential quantified variables. In general it can be of any
type (which is indicated by the predefined type Void). Therefore, one can only instantiate an
existentially quantified type variable with a concrete type when the object is created.

Counter Example (Illegal use of an object with existentially quantified components; the concrete type of
the components of the Pipe are unknown).

TakeFunc :: (Pipe Void a b) -> ??
TakeFunc (ECons func pipes) = func

• For software engineering reasons, existentially quantified variables have to be declared as such
on the left-hand side of a type definition. However, it does not make sense to instantiated such
a type variable with a certain type. So, these existentially quantified variables can only be in-
stantiated with the predefined type Void.

Apart from the restrictions mentioned above existentially quantified algebraic types are not different
from standard algebraic types. They can be used e.g. as the basis of record types, synonym
types and abstract types.

Semantic restrictions on algebraic data types

Other semantic restrictions on algebraic data types:
• The name of a type must be different from other names in the same scope (see 3.5) and name

space (see 3.4).
• All type variables on the left-hand side must be different.
• All type variables used on the right-hand side are bound, i.e. must be introduced on the left-

hand side of the algebraic type being defined.
• A data constructor can only be defined once within the same scope and name space. So, each

data constructor unambiguously identifies its type to make type inferrencing possible.
• When a data constructor is used in infix position both arguments have to be present. Data

constructors can be used in a curried way in the function world, but then they have to be used
as ordinary prefix constructors.

• Type constructors can be used in a curried way in the type world; to use predefined bracket-like
type constructors (for lists, tuples, arrays) in a curried way they must be used in prefix notation.

• The right-hand side of an algebraic data type definition should yield a type of kind X, all argu-
ments of the data constructor being defined should be of kind X as well.

• A type can only be instantiated with a type that is of the same kind.
• An existentially quantified type variable specified in an algebraic type can only be instantiated

with a concrete type (= not a type variable) when a data structure of this type is created.

8 . 2 . 2 Defining record types

A record type is basically an algebraic data type in which exactly one constructor is defined. Spe-
cial about records is
- that a field name is attached to each of the arguments of the data constructor;
• that records cannot be used in a curried way.

Compared with ordinary algebraic data structures the use of records gives a lot of notational conve-
nience because the field names enable selection by field name instead of selection by posi-
tion. When a record is created all arguments of the constructor have to be defined but one can

4 6 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

specify the arguments in any order (see 4.8). Furthermore, when pattern matching is performed on a
record, one only has to mention those fields one is interested in (see 6.2.6). A record can be created
via a functional update (see 4.8). In that case one only has to specify the values for those fields
which differ from the old record. Matching and creation of records can hence be specified in Clean in
such a way that after a change in the structure of a record only those functions have to be changed
which are explicitly referring to the changed fields.

Existentially quantified type variables (see 8.2.1) are allowed in record types (as in any other
type). The arguments of the constructor can optionally be annotated as being strict (see 8.5). The
optional uniqueness attributes are treated in 9.2.

RecordTypeDef = : :TypeLhs = { {FieldSymbol : : [Strict] Type}-list};

As data constructor for a record the name of the record type is used internally.
• The semantic restrictions which apply for algebraic data types also hold for record types.
• The field names inside one record all have to be different. It is allowed to use the same field

name in different records.

Example (record definition).

::Complex = { re :: Real,
im :: Real }

The combination of existentially quantified type variables in record types are of use for an object
oriented style of programming.

Example (using existentially quantified records to create object of same type but which can have different
representations).

::Object E.x = { state :: x,
get :: x -> Int,
set :: x Int -> x }

::MyObject :== Object Void

CreateObject1 :: MyObject
CreateObject1 = {state = [], get = myget, set = myset}
where

myget :: [Int] -> Int
myget [i:is] = i
myget [] = 0

myset :: [Int] Int -> [Int]
myset is i = [i:is]

CreateObject2 = {state = 0.0, get = myget, set = myset}
where

myget :: Real -> Int
myget r = toInt r

myset :: Real Int -> Real
myset r i = r + toReal i

Get :: MyObject -> Int
Get {state,get} = get state

Set :: MyObject Int -> MyObject
Set o=:{state,set} i = {o & state = set state i}

Start :: [MyObject]
Start = map (Set 3) [CreateObject1,CreateObject1]

DEFINING TYPES 4 7

8 . 2 . 3 Defining synonym types

Synonym types permit the programmer to introduce new type names for a type instance of any
type.

SynonymTypeDef = : :TypeLhs :== Type ;

• For the left-hand side the same restrictions hold as for algebraic types (see 8.2.1).
• Cyclic definitions of synonym types (e.g. ::T a b :== G a b; ::G a b :== T a b) are not

allowed.

Example (type synonym definition).

::Operator a :== a a -> a

map2 :: (Operator a) [a] [a] -> [a]
map2 op [] [] = []
map2 op [f1:r1] [f2:r2] = [op f1 f2 :map2 op r1 r2]

Start :: Int
Start = map2 (*) [2,3,4,5] [7,8,9,10]

8 . 2 . 4 Defining abstract data types

A type can be exported by defining the type in a Clean definition module (see Chapter 11). For
software engineering reasons it sometimes better only to export the name of a type but not its con-
crete definition (the right-hand side of the type definition). The type then becomes an abstract
data type. In Clean this is done by specifying only the left-hand-side of a type in the definition
module while the concrete definition (the right-hand side of the type definition) is hidden in the imple-
mentation module. So, Clean's module structure is used to hide the actual implementation. When one
wants to do something useful with objects of abstract types one needs to export functions that can
create and manipulate objects of this type as well.
• Abstract data type definitions are only allowed in definition modules, the concrete definition has

to be given in the corresponding implementation module.
• The left-hand side of the concrete type should be identical to (modulo alpha conversion for vari-

able names) the left-hand side of the abstract type definition (inclusive strictness and unique-
ness type attributes).

AbstractTypeDef = : :TypeLhs ;

Example (abstract data type).

definition module stack

::Stack a
Empty :: (Stack a)
isEmpty :: (Stack a) -> Bool
Top :: (Stack a) -> a
Push :: a (Stack a) -> Stack a
Pop :: (Stack a) -> Stack a

implementation module stack

::Stack a :== [a]

Empty :: (Stack a)
Empty = []

isEmpty :: (Stack a) -> Bool

4 8 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

isEmpty [] = True
isEmpty s = False

Top :: (Stack a) -> a
Top [e:s] = e

Push :: a (Stack a) -> Stack a
Push e s = [e:s]

Pop :: (Stack a) -> Stack a
Pop [e:s] = s

8 . 3 Typing functions and operators

Although one is in general not obligated to explicitly specify the type of a function (the Clean
compiler can infer the type) the explicit specification of the type is highly recommended to increase
the readability of the program.

FunctionDef = [FunctionTypeDef] DefOfFunction

FunctionTypeDef = FunctionSymb : : FunctionType ;
| (FunctionSymb) [Fix][Prec] [: : FunctionType] ;

Fix = infixl
| infixr
| infix

Prec = Digit
FunctionType = [{[Strict] BrackType}+ - >] Type [ClassContext] [UnqTypeUnEqualities]

An explicit specification is required when a function is exported, or when the programmer wants to
impose additional restrictions on the application of the function (e.g. a more restricted type can be
specified, strictness information can be added as explained in Section 8.5, a class context for the
type variables can be defined as explained in Section 8.4, uniqueness information can be added as
explained in Section 9.3). The Clean type system uses a combination of Milner/Mycroft type
assignment. This has as consequence that the type system in some rare cases is not capable to
infer the type of a function (using the Milner/Hindley system) although it will approve a given type
(using the Mycroft system; see Plasmeijer and Van Eekelen, 1993; see also the example in 8.2.1).

The Cartesian product is used for the specification of the function type. Cartesian product is de-
noted by juxtaposition of the bracketed argument types. For the case of a single argument the brac-
kets can be left out. In type specifications the binding priority of the application of type constructors
is higher than the binding of the arrow ->. To indicate that one defines an operator the function name
is on the left-hand side surrounded by brackets.
• The function symbol before the double colon should be the same as the function symbol of the

corresponding rewrite rule.
• The arity of the functions has to correspond with the number of arguments of which the Carte-

sian product is taken. So, in Clean one can tell the arity of the function by its type.

Example (arity of a function reflected in type).

map :: (a->b) [a] -> [b] // map has arity 2
map f [] = []
map f [x:xs] = [f x : map f xs]

domap :: ((a->b) [a] -> [b]) // domap has arity zero
domap = map

• The arguments and the result types of a function should be of kind X.
• In the specification of a type of a locally defined function one cannot refer to a type variable in-

troduced in the type specification of a surrounding function (there is not yet a scope rule on ty-

DEFINING TYPES 4 9

pes defined). The type of such a local function can therefore not yet be specified by the pro-
grammer. However, the type will be inferred and checked (after it is lifted by the compiler to the
global level) by the type system.

Counter example (illegal type specification). The function g returns a tuple. The type of the first tuple el-
ement is the same as the type of the polymorphic argument of f. Such a dependency (here indicated by
"^" cannot be specified yet.

f:: a -> (a,a)
f x = g x
where

// g :: b -> (^a,b)
g y = (x,y)

8 . 3 . 1 Typing curried functions

In Clean all symbols (functions and constructors) are defined with fixed arity. However, in a appli-
cation it is of course allowed to apply them to an arbitrary number of arguments. A curried appli-
cation of a function is an application of a function with a number of arguments which is less than its
arity (note that in Clean the arity of a function can be derived from its type). With the aid of the pre-
defined internal function _AP a curried function applied on the required number of arguments is trans-
formed into an equivalent uncurried function application.

The type axiom's of the Clean type system include for all s defined with arity n the equivalence of
s::(t1->(t2->(…(tn->tr)…)) with s::t1 t2 … tn -> tr.

8 . 3 . 2 Typing operators

An operator is a function with arity two that can be used in infix position. An operator can be
defined by enclosing the operator name between parentheses in the left-hand-side of the function
definition. An operator has a precedence (0 through 9, default 9) and a fixity (infixl, infixr
or just infix, default infixl). A higher precedence binds more tightly. When operators have
equal precedence, the fixity determines the priority. In an expression an ordinary function applica-
tion always has the highest priority (10). See also Section 4.3 and 6.1.
• The type of an operator must obey the requirements as defined for typing functions with arity

two.
• If the operator is explicitly typed the operator name should also be put between parentheses in

the type rule.
• When an infix operator is enclosed between parentheses it can be applied as a prefix function.

Possible recursive definitions of the newly defined operator on the right-hand-side also follow
this convention.

Example (an operator definition and its type).

(o) infix 8 :: (x -> y) (z -> x) -> (z -> y) // function composition
(o) f g = \x -> f (g x)

8 . 3 . 3 Typing partial functions

Patterns and guards imply a condition that has to be fulfilled before a rewrite rule can be applied
(see 6.2 and 6.3). This makes it possible to define partial functions, functions which are not defi-
ned for all possible values of the specified type.
• When a partial function is applied to a value outside the domain for which the function is defined

it will result into a run-time error.
The compiler gives a warning when functions are defined which might be partial.

5 0 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

With the abort expression (see StdMisc.dcl) one can change any partial function into a total
function (the abort expression can have any type). The abort expression can be used to give a
user-defined run-time error message

Example (use of abort to make a function total).

fac :: Int -> Int
fac 0 = 1
fac n

| n>=1 = n * fac (n - 1)
| otherwise = abort "fac called with a negative number"

8 . 4 Typing overloaded functions and operators

The names of the functions one defines generally all have to be different within the same scope and
name space (see 3.4). However, it is sometimes very convenient to overload certain functions and
operators (e.g. +, -, ==), i.e. use identical names for different functions or operators that perform simi-
lar tasks albeit on objects of different types.

In principle it is possible to simulate a kind of overloading by using records. One simply defines a
record (see 8.2.2) in which a collection of functions are stored that somehow belong to each other.
Now the field name of the record can be used as (overloaded) synonym for any concrete function
stored on the corresponding position. The record can be regarded as a kind of dictionary in which
the concrete function can be looked up.

Example (the use of a dictionary record to simulate overloading/type classes). sumlist can use the field
name add as synonym for any concrete function obeying the type as specified in the record definition.
The operators +., +^, -. and -^ are assumed to be predefined primitives operators for addition and sub-
traction on the basic types Real and Int.

::Arith a = { add :: a a -> a,
subtract :: a a -> a }

ArithReal = { add = (+.), subtract = (-.) }
ArithInt = { add = (+^), subtract = (-^) }

sumlist :: (Arith a) [a] [a] -> [a]
sumlist arith [x:xs] [y:ys] = [arith.add x y:sumlist arith xs ys]
sumlist arith x y = []

Start = sumlist ArithInt [1..10] [11..20]

A disadvantage of such a dictionary record is that it is syntactically not so nice (e.g. one explicitly
has to pass the record to the appropriate function) and that one has to pay a huge price for effi-
ciency (due to the use of higher order functions) as well. Clean's overloading system as introduced
below enables the Clean system to automatically create and add dictionaries as argument to the
appropriate function definitions and function applications. To avoid efficiency loss the Clean compi-
ler will substitute the intended concrete function for the overloaded function application where pos-
sible. In worst case however Clean's overloading system will indeed have to generate a dictionary
record which is then automatically passed as additional parameter to the appropriate function.

8 . 4 . 1 Type classes

In a type class definition one gives a name to a set of overloaded functions (this is similar to
the definition of a type of the dictionary record as explained above). For each overloaded func-
tion or operator which is a member of the class the overloaded name and its overloaded
type is specified. A special overloaded type variable indicates how the different instantiations of
the class can vary from each other.

DEFINING TYPES 5 1

TypeClassDef = class ClassSymb TypeVariable [ClassContext]
[[where] { {ClassMemberDef}+ }]

| class FunctionSymb TypeVariable : : FunctionType;
| class (FunctionSymb) [Fix][Prec] TypeVariable : : FunctionType;

ClassMemberDef = FunctionTypeDef
[MacroDef]

Example (definition of a type class; in this case the class named Arith contains two overloaded operators).

class Arith a
where

(+) infixl 6 :: a a -> a
(-) infixl 6 :: a a -> a

With an instance declaration an instance of a given class can be defined (this is similar to the
creation of a dictionary record). When the instance is made it has to be specified for which concrete
type an instance is created. For each overloaded function in the class a concrete function or op-
erator has to be defined. The type of a concrete function must exactly match the corresponding
overloaded type after uniform substitution of the concrete type for the overloaded function type in
the type class definition.

TypeClassInstanceDef | instance ClassSymb [BrackType [default] [ClassContext]]
[[where] { {DefOfFunction}+ }]

Example (definition of an instance of a type class Arith for type Int). Notice that the type of the concrete
functions can be deduced by substituting the concrete type for the overloaded type variable in the cor-
responding class definition. One is not obliged to repeat the type of the concrete functions instantiated
(nor the fixity or associativity in the case of operators) .

instance Arith Int
where

(+) :: Int Int -> Int
(+) x y = x +^ y

(-) :: Int Int -> Int
(-) x y = x -^ y

Example (definition of an instance of a type class Arith for type Real).

instance Arith Real
where

(+) x y = x +. y
(-) x y = x -. y

One can define as many instances of a class as one likes. Instances can be added later on in any
module.
• When an instance of a class is defined a concrete definition has to be given for all the class

members.

8 . 4 . 2 Functions defined in terms of overloaded functions

When an overloaded name is encountered in an expression, the compiler will determine which of the
corresponding concrete functions/operators is meant by looking at the concrete type of the expres-
sion. This type is used to determine which concrete function to apply. All instances of the overloa-
ded type variable of a certain class (with exception of the default instance, see below) must there-
fore not overlap (being not unifyable) with each other and they all have to be of flat type (see the
restrictions mentioned in 8.4.11). If it is clear from the type of the expression which one of the con-
crete instantiations is meant the compiler will in principle substitute the concrete function for the
overloaded one, such that no efficiency is lost.

5 2 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

Example (substitution of a concrete function for an overloaded one). given the definitions above the func-
tion

inc n = n + 1

will be internally transformed into

inc n = n +^ 1

However, it is very well possible that the compiler, given the type of the expression, cannot decide
which one of the corresponding concrete functions to apply. The new function then becomes over-
loaded as well.

For instance, the function

add x y = x + y

becomes overloaded as well because anyone of the concrete instances can be applied. Consequently,
add can be applied to arguments of any type as well, as long as addition (+) is defined on them.

This has as consequence that an additional restriction must be imposed on the type of such an ex-
pression. A class context has to be added to the function type to express that the function can
only be applied provided that the appropriate type classes have been instantiated (in fact one
specifies the type of the dictionary record which has to be passed to the function in worst case).
Such a context can also be regarded as an additional restriction imposed on a type variable,
introducing a kind of bounded polymorphism.

FunctionType = [{[Strict] BrackType}+ - >] Type [ClassContext] [UnqTypeUnEqualities]
ClassContext = | ClassSymb-list TypeVariable {& ClassSymb-list TypeVariable }

Example (use of a class context to impose a restriction on the instantiation of type variable). The function
add can be applied on arguments of any type under the condition that an instance of the class Arith is
defined on them.

add :: a a -> a | Arith a
add x y = x + y

Clean’s type system can infer contexts automatically. If a type class is specified as restricted con-
text the type system will check the correctness of the specification (as always a type specification
can be more restrictive than is deduced by the compiler).

8 . 4 . 3 Instances of type classes defined in terms of overloaded functions

The concrete functions defined in a class instance definition can also be defined in terms of (other)
overloaded functions. This is reflected in the type of the instantiated functions. Both the concrete
type and the context the class instantiation (and its members) is depending on need to be speci-
fied.

Example (instance declaration of which type is depending on the same type class). The function + on lists
can be defined in terms of the overloaded operator + on the list elements. With this definition + is defi-
ned not only on lists, but also on a list of lists etcetera.

instance Arith [a] | Arith a // on lists
where

(+) infixl 6 :: [a] [a] -> [a] | Arith a
(+) [x:xs] [y:ys] = [x + y:xs + ys]
(+) _ _ = []

(-) infixl 6 :: [a] [a] -> [a] | Arith a
(-) [x:xs] [y:ys] = [x - y:xs - ys]
(-) _ _ = []

DEFINING TYPES 5 3

Example (Equality class).

class Eq a
where

(==) infix 2 :: a a -> Bool

instance Eq [a] | Eq a // on lists
where

(==) infix 2 :: [a] [a] -> Bool | Eq a
(==) [x:xs] [y:ys] = x == y && xs == ys
(==) [] [] = True
(==) _ _ = False

8 . 4 . 4 Type constructor classes

The Clean type system offers the possibility to use higher order types (see 8.2.1). This makes it
possible to define type constructor classes (similar to constructor classes as introduced in Gofer,
Jones (1993)). In that case the overloaded type variable of the type class is not of kind X, but of
higher order, e.g. X -> X, X -> X -> X, etcetera. This offers the possibility to define overloaded
functions which can be instantiated with type constructors of higher order (as usual, the overloaded
type variable and a concrete instantiation of this type variable need to be of the same kind). This
makes it possible to overload more complex functions like map and the like.

Example (definition of a type constructor class). The class Functor including the overloaded function map
which varies in type variable f of kind X -> X).

class Functor f
where

map :: (a -> b) (f a) -> (f b)

Example (instantiation of a type constructor class). An instantiation of the well-known function map applied
on lists ([] is of kind X -> X), and a map function defined on Tree's (Tree is of kind X -> X).

instance Functor []
where

map :: (a -> b) [a] -> [b]
map f [x:xs] = [f x : map f xs]
map f [] = []

::Tree a = (/\) infixl 0 (Tree a) (Tree a)
| Leaf a

instance Functor Tree
where

map :: (a -> b) (Tree a) -> (Tree b)
map f (l/\r) = map f l /\ map f r
map f (Leaf a) = f a

8 . 4 . 5 Generic instances

It is possible to specify a generic instance (in that case a type variable is specified as instance
for the overloaded type variable in the instance declaration) which will be taken when none of the
other defined instances happens to be applicable. Since such a function must work for any instance
the type of the generic instance must be equivalent to the type of the overloaded function.
Therefore it can only perform very general tasks.

Example (defining a generic instance). In this example any two objects of arbitrary type can be compared
with each other but they are by default unequal unless specified otherwise.

instance Eq a // generic instance for Eq
where

(==) infix 2 :: a a -> Bool
(==) x y = False

5 4 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

8 . 4 . 6 Default instances

It is possible that a Clean expression using overloaded functions is internally ambiguously over-
loaded.
• The problem can occur when an overloaded function is used which has on overloaded type in

which the overloaded type variable only appears on the right-hand side of the ->. If such a
function is applied in such a way that the overloaded type does not appear in the resulting type
of the application, any of the available instances of the overloaded function can be used. In that
case the system cannot determine which instance to take, such that a type error is given.

Counter example (ambiguous overloaded expression). The function body of f is ambiguously overloa-
ded which results in a type error. It is not possible to determine whether its argument should be conver-
ted to an Int or to a Bool.

class Read a :: a -> String
class Write a :: String -> a
instance Read Int, Bool // export of class instance, see 8.4.10
instance Write Int, Bool

f:: String -> String
f x = Write (Read x) // ! This results in a type error !

One can solve such an ambiguity by splitting up the expression in parts that are typed explicitly
such that it becomes clear which of the instances should be used.

f:: String -> String
f x = Write (MyRead x)
where

MyRead :: Int -> String
MyRead x = Read x

Another way to solve the ambiguity is to mark one of the instances as the default instance
(indicated by the keyword default in the instance declaration) which will be taken in the case an
ambiguously overloaded expression is encountered.

Example (default instance declaration to be used to solve ambiguities). The function body of f is ambigu-
ously overloaded. Due to the default instance specified the argument is converted to an Int.

class Read a :: a -> String
class Write a :: String -> a
instance Read Int default, Bool
instance Write Int default, Bool

f:: String -> String
f x = Write (Read x)

8 . 4 . 7 Defining derived members in a class

The members of a class consists of a set of functions or operators which logically belong to each
other. It is often the case that the effect of some members (derived members) can be expressed
in others. For instance, <> can be regarded as synonym for not (==). For software engineering
(the fixed relation is made explicit) and efficiency (one does not need to include such derived mem-
bers in the dictionary record) it is good to make this relation explicit. In Clean the existing macro facili-
ties are used for this purpose.

Example (Classes with macro definitions to specify derived members).

class Eq a
where

DEFINING TYPES 5 5

(==) infix 2 :: a a -> Bool

(<>) infix 2 :: a a -> Bool | Eq a
(<>) x y :== not (x == y)

class Ord a
where

(<) infix 2 :: a a -> Bool

(>) infix 2 :: a a -> Bool | Ord a
(>) x y :== y < x

(<=) infix 2 :: a a -> Bool | Ord a
(<=) x y :== not (y<x)

(>=) infix 2 :: a a -> Bool | Ord a
(>=) x y :== not (x<y)

min :: a a -> a | Ord a
min x y :== if (x<y) x y

max :: a a -> a | Ord a
max x y :== if (x<y) y x

8 . 4 . 8 A shorthand for defining overloaded functions

A class definition seems sometimes a bit overdone when a class actually only consists of one
member. Special syntax is provided for this case.

TypeClassDef = class ClassSymb TypeVariable [ClassContext]
[[where] { {ClassMemberDef}+ }]

| class FunctionSymb TypeVariable: : FunctionType;
| class (FunctionSymb) [Fix][Prec] TypeVariable: : FunctionType;

Example (defining an overloaded function/operator).

class (+) infixl 6 a :: a a -> a

which is shorthand for:

class + a
where

(+) infixl 6:: a a -> a

The instantiation of such a simple one member class is done in a similar way as with ordinary clas-
ses, using the name of the overloaded function as class name (see the syntax definition for instan-
tiation).

Example (instantiations of an overloaded function/operator).

instance + Int
where

(+) x y = x +^ y

8 . 4 . 9 Classes defined in terms of other classes

In the definition of a class one can optionally specify that other classes which already have been
defined elsewhere are included. The classes to include are specified as context after the overloaded
type variable. It is not needed (but it is allowed) to define new members in the class body of the
new class. In this way one can give a new name to a collection of existing classes creating a
hierarchy of classes (cyclic dependencies are forbidden). Since one and the same class can be
included in several other classes, one can combine classes in different kinds of meaningful ways.

5 6 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

For an example have a closer look at the Clean standard library (see e.g. StdOverloaded and Std-
Class)

Example (defining classes in terms of existing classes). The class Arith consists of the class + and -.

class (+) infixl 6 a :: a a -> a

class (-) infixl 6 a :: a a -> a

class Arith a | +,- a

8 . 4 . 1 0 Exporting type classes

To export a class one simply repeats the class definition in the definition module (see Chapter 12).
To export an instantiation of a class one simply repeats the instance definition in the definition mod-
ule, however without revealing the concrete implementation. This can only be specified in the im-
plementation module.

Example (Exporting classes and instances).

definition module example

class Eq a // the class Eq is exported
where

(==) infix 2 :: a a -> Bool

instance Eq [a] | Eq a // an instance of Eq on lists is exported
instance Eq a // a generic instance of Eq is exported

For reasons of efficiency the compiler will always try to make specialised efficient versions of functi-
ons which have become overloaded (see above). In principle one version is made for each possi-
ble concrete application. However, when an overloaded function is exported it is unknown with
which concrete instances the function will be applied. So, a record is constructed in which the con-
crete function is stored as is explained in the introduction of this section. This approach can be very
inefficient, especially in comparison to a specialised version for instantiations of basic type. The
compiler can generate much better code for other modules if it is informed about the instances known
in the implementation module. The compiler is unaware of such information (it only inspects definition
modules in case of separate compilation). The information should therefore be provided in the corre-
sponding definition module. To make this possible a special export definition is provided. It is rec-
ommended to add such an export definition if speed matters, leaf it out when it does not matter or
when a small code size matters more. The export definition will only have an effect for instances of
basic type (for these types it can really help to have a special version) .

TypeClassInstanceExportDef
= export ClassSymb BasicType-list;

Example (Exporting class instances).

export Eq Int, Real

8 . 4 . 1 1 Semantic restrictions on type classes

Semantic restrictions:
• When a class is instantiated a concrete definition must be given for each of the members in the

class (not for derived members).
• The type of a concrete function or operator must exactly match the overloaded type after uniform

substitution of the overloaded type variable by the concrete type as specified in the correspon-
ding type instance declaration.

DEFINING TYPES 5 7

• The overloaded type variable and the concrete type must be of the same kind.
• A type instance of an overloaded type must be a flat type, i.e. a type of the form T a1 … an

where ai are type variables which are all different.
• All instances other than the default instance of a given overloaded type must differ from each

other (be ununifyable with each other).
• It is not allowed to use a type synonym as instance.
• The start rule cannot have an overloaded type.
• If a default instance is specified the type of the corresponding concrete default function must be

identical to the type of the overloaded function or operator.
• For the specification of derived members in a class the same restrictions hold as for defining ma-

cros.
• A restricted context can only be imposed on one of the type variables appearing in the type of

the expression.
• The specification of the concrete functions can only be given in implementation modules.

8 . 5 Partially strict data structures and functions

Clean uses by default a lazy evaluation strategy: a redex is only evaluated when it is needed to
compute the final result. But it is generally much more efficient to calculate arguments in advance
(see 13.3 and Nöcker & Smetsers, 1990, 1993). It gives the possibility to manipulate objects un-
boxed (e.g. in a registers instead of in a nodes of the graph). Therefore it is possible in Clean in a
type definition to annotate the arguments of a function (see 8.3) and of a data constructor
(see 8.2) to be strict. This will force the evaluation the arguments to strong root normal form when
the function or data structure is used in a strict context (see below). The compiler is capable of
deriving strictness information for the arguments of functions, so generally there is no need for the
programmer to specify these kind of strictness explicitly.

When a strict annotated argument is put in a strict context while the argument is defined in terms of
another strict annotated data structure the latter is put in a strict context as well and therefore also
evaluated. So, one can change the default lazy semantics of Clean into a (hyper) strict seman-
tics as demanded. The type system will check the consistency of types and ensure that the speci-
fied strictness is maintained.

One has to be careful though. When strictness annotations are put on arguments representing infi-
nite computations or infinite data structures the program the termination behaviour of the program
might change. It is only safe to put strictness annotations in the case that the function or data con-
structor is known to be strict in the corresponding argument which means that the evaluation of
that argument in advance does not change the termination behaviour of the program. The compiler is
not able to check this.

Strict = !

8 . 5 . 1 Strict and lazy context

Each graph expression on the right-hand side of a rewrite rule is considered to be either strict
(appearing in a strict context: it has to be evaluated to strong root normal form) or lazy
(appearing in a lazy context: not yet to be evaluated to strong root normal form). The following ru-
les specify whether or not a particular graph expression is lazy or strict:
+ a non-variable pattern is strict;
+ an expression in a guard is strict;
+ the expressions specified in a strict let expression are strict;

5 8 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

+ the root expression is strict;
+ the arguments of a function or data constructor in a strict context are strict when these arguments

are being annotated as strict in the type definition of that function or data constructor;
+ all the other nodes are lazy.

Evaluation will happen in the following order: patterns, guard, expressions in a strict let expression,
root expression (see also 6.1 and 9.3.4).

8 . 5 . 2 Functions with strict arguments

In the type definition of a function the arguments can optionally be annotated as being strict. In rea-
soning about functions it will always be true that the corresponding arguments will be in strong root
normal form (see 2.1) before the rewriting of the function takes place.

Example (a function with strict annotated arguments).

Acker :: !Int !Int -> Int
Acker 0 j = inc j
Acker i 0 = Acker (dec i) 1
Acker i j = Acker (dec i) (Acker i (dec j))

The Clean compiler includes a fast and clever strictness analyser which is based on abstract reduc-
tion (Nöcker, 1993). The compiler can derive the strictness of the function arguments in many cases,
such as for the example above. Therefore there is generally no need to add strictness annotations
to the type of a function by hand. When a function is exported from a module (see Chapter 12), its
type has to be specified in the definition module. To obtain optimal efficiency, the programmer
should also include the strictness information to the type definition in the definition module. One can
ask the compiler to print out the types with the derived strictness information and paste this into the
definition module.

8 . 5 . 3 Defining data structures with strict arguments

It is very hard for a strictness analyser to deduce strictness of data structures since this is highly
depending on the way the data structure is being used (the Clean compiler will do its best though).
Functional programs will generally run much more efficient when strict data structures are being used
instead of lazy ones. If the inefficiency of your program becomes problematic one can think of
changing lazy data structures into strict ones by hand.

In the type definition of a constructor (in an algebraic data type definition or in a the definition of a re-
cord type) the arguments of the data constructor can optionally be annotated as being strict. In rea-
soning about objects of such a type it will always be true that the annotated argument will be in
strong root normal form when the object is examined. Whenever a new object is created in a strict
context, the compiler will take care of the evaluation of the strict annotated arguments. When the
new object is created in a lazy context, the compiler will insert code that will take care of the evalua-
tion whenever the object is put into a strict context. If one makes a data structure strict in a certain
argument, it is better not define infinite instances of such a data structure to avoid non-termination.

So, in a type definition one can define a data constructor to be strict in zero or more of its arguments.
Strictness is a property of data structure which is specified in its type. In general (with the
exceptions of tuples) one cannot arbitrary mix strict and non-strict data structures because they are
considered to be of different type. So, e.g. if one wants to use list with strict elements or a spine
strict list one has to define new algebraic data types (with different data constructors). One cannot
simply use the predefined notation for lists because these lists are lazy lists.

DEFINING TYPES 5 9

Example (list with a strict elements). The list element will be evaluated when the Cons node is put in a strict
context .

::List a = Cons !a (List a)
| Nil

Example (spine strict list).

::List2 a = Cons2 a !(List2 a)
| Nil2

Example (a complex number as record type with strict components).

::Complex = { re :: !Real,
im :: !Real }

(+) infixl 6 :: !Complex !Complex -> Complex
(+) {re=r1,im=i1} {re=r2,im=i2} = {re=r1+r2,im=i1+i2}

8 . 5 . 4 Strictness annotations on array instances

For reasons of efficiency there are different types of arrays predefined. One can define a lazy array
(default, of type {a}), a strict array (explicitly type the array as {!a}), and an unboxed one
(explicitly type the array as {#a}, works only on elements of basic value). When put in a strict
context, all the elements of a strict array will be evaluated automatically. As usual one has to take
care that the elements do not represent an infinite computation. Lazy, strict and unboxed arrays are
regarded to be of different type even if the array elements are of the same type. So, in principle one
cannot offer e.g. a strict array to a function demanding a lazy one, and the other way around. Both
will give rise to a type error. However, by using the overloading mechanism one can define
functions which work on any kind of array (see 4.9).

Example (strict and non-strict arrays). ArrayA is a strict one and ArrayB is a lazy one. The function Scale
expects a lazy one and can therefore only be applied on a lazy array. If one wants to define a function
which works on any kind of array of Reals, one has to define an overloaded function (see 4.9) like
Scale2.

ArrayA :: {Real}
ArrayA = {1.0,2.0,3.0}

ArrayB :: {!Real}
ArrayB = {1.0,2.0,3.0}

Scale :: {Real} Real -> *{Real}
Scale lazy_array factor = {factor * e \\ e <-: lazy_array}

Scale2 :: (a Real) Real -> *(a Real) | Array a
Scale2 any_array factor = {factor * e \\ e <-: any_array}

8 . 5 . 5 Strictness annotations on tuple instances

Tuples are predefined algebraic data structures that make it possible to combine several results of
arbitrary type into one structure. One can define strict tuples, in the same way as defining strict
arrays. This can be done by putting strictness annotations in the type instance on the tuple ele-
ments that one would like to make strict. When the corresponding tuple is put into a strict context the
tuple and the strict annotated tuple elements will be evaluated.

Strictness annotation can be put on any tuple element of any tuple instance. Such an instance can
occur in any type definition (also in a synonym type). The meaning of these annotated synonym
types can be explained with the aid of a simple program transformation with which all occurrences of
these synonym types are replaced by their right-hand sides (of course, annotations included).

6 0 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

As with arrays, strict and lazy tuples are actually regarded to be of different type. However, unlike
is the case with arrays, the compiler will automatically convert strict tuples into lazy ones, and the
other way around. This is done for programming convenience. Due to the complexity of this
automatic transformation, the conversion is done for tuples only! For the programmer it means that he
can freely mix strict and lazy tuples. The type system will not complain when a strict tuple is offered
while a lazy tuple is required. The compiler will automatically insert code to convert non-strict tuples
into strict version and backwards whenever this is needed.

Example (a complex number as tuple type with strict components).

::Complex :== (!Real,!Real)

(+) infixl 6 :: !Complex !Complex -> Complex
(+) (r1,i1) (r2,i2) = (r1+r2,i1+i2)

which is equivalent to

(+) infixl 6 :: !(!Real,!Real) !(!Real,!Real) -> (!Real,!Real)
(+) (r1,i1) (r2,i2) = (r1+r2,i1+i2)

when for instance G is defined as

G :: Int -> (Real,Real)

than the following application is approved by the type system:

Start = G 1 + G 2

9
Defining uniqueness types

9 . 1 Uniqueness typing
9 . 2 Defining new types with uniqueness

attributes

9 . 3 Typing functions, operators and
graphs with uniqueness attributes

9 . 4 Typing overloaded functions and
operators with uniqueness attribu-
tes

A special feature of Clean is that the classical types can be extended with uniqueness type attribu-
tes. Uniqueness typing forms a key feature of Clean (Plasmeijer and Van Eekelen, 1993; Barend-
sen et al., 1993; Barendsen and Smetsers, 1993). It is related to linear type systems (special is the
subtype relation on unique types and the input taken from a reference count analyser) with gives
the opportunity to interface Clean programs in a direct and efficient way with the non-functional
world while the resulting program still remains a pure functional program. For instance, the type sys-
tem makes it possible to directly interface with an operating system, a file system (updating persis-
tent data), with GUI's libraries, it allows to create arrays, records or user defined data structures that
can be updated destructively. The time and space behaviour of a functional program therefore
greatly benefits from the uniqueness typing (see 13.6). The uniqueness type system is polymorp-
hic.
The uniqueness type system in Clean is an inferencing system capable of deducing uniqueness
types automatically. The type system will infer uniqueness type attributes for all types, not only for
the types corresponding to the vital objects one is primarily interested in. The deduced types often
give a lot of extra information on the actual behaviour of a function.
The uniqueness type system is not visible when one is not interested in uniqueness. However,
uniqueness type attributes are always inferred by the type system.

9 . 1 Uniqueness typing

Since the uniqueness type system is a rather new phenomenon we explain this type system and
the motivation behind it in more detail.

9 . 1 . 1 Basic ideas behind uniqueness typing

The uniqueness type system is an extension on top of the classical type system. In the unique-
ness type system a uniqueness type attribute is attached to each classical type (see Chapter
8). Uniqueness type attributes appear both in the definitions of new types as (see 9.2) well as in
the type specification of a function (see 9.3). A classical type can be prefixed by one of the follow-
ing uniqueness type attributes:

Type = {BrackType}+
BrackType = [UnqTypeAttrib] SimpleType

6 2 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

UnqTypeAttrib = * // type attribute "unique"
| UniqueTypeVariable: // a type attribute variable
| . // an anonymous type attribute variable

The basic idea behind uniqueness typing is the following. A uniqueness type attribute imposes an
additional restriction on the use of the corresponding object.
- When in the type specification of a function an argument of type T is attributed with the type at-

tribute unique ("*") it is guaranteed by the type system that the function will have private
("unique") access to this particular argument (see Barendsen and Smetsers1, 1993; Plasmeijer
and Van Eekelen, 1993): the object will have a reference count of one2 at the moment it is in-
spected by the function. It is important to know that there can be many references to the object
before this specific access takes place. If a uniquely typed argument is not returned again in the
function result it has become garbage (the reference has dropped to zero). Due to the fact that
uniqueness typing is static the object can be garbage collected (see Chapter 2) at compile time.
In particular it is perfectly safe for the compiler to reuse the space occupied by the argument to
create the function result. In other words: it is allowed to update the unique object de-
structively without any consequences for referential transparency.

Example: the I/O library function fwritec is used to write a character to a file yielding a new file as result. In
general it is semantically not allowed to overwrite the argument file with the given character to construct
the resulting file. However, by demanding the argument file to be unique by specifying

fwritec :: Char *File -> *File

it is guaranteed by the type system that fwritec has private access to the file such that overwriting the
file can be done without violating the functional semantics of the program. The resulting file is unique as
well and can therefore be passed as continuation to another call of e.g. fwritec to make further writing
possible.

WriteABC :: *File -> *File
WriteABC tofile = fwritec 'c' (fwritec 'b' (fwritec 'a' tofile))

So, a unique file is passed in a single threaded way (as a kind of unique token) from one func-
tion to another where each function can safely modify the file knowing that is has private access
to that file. The type system makes it possible to let a Clean file and a physical file of the real
world be one and the same: file I/O can be treated as efficiently as in imperative languages.
The uniqueness typing prevents writing while other readers/writers are active. E.g. one cannot
apply fwritec with a shared file being used elsewhere (it is not possible that both the original
as well as the modified file exist at the same time).

For instance, the following expression is not approved by the type system:

(file, fwritec 'a' file)

- When there is no uniqueness type attribute attached to a classical type in a function type defini-
tion, it is assumed that no uniqueness is required: the corresponding object is assumed to be at-
tributed as "non-unique". Private access to a non-unique argument cannot be guaranteed, the
object can be shared by others. The function is only allowed to have read access (as usual in
a functional language) even if the function happens to be applied with a unique attributed actual
argument.

1 Compared with the theoretical system as described in Barendsen and Smetsers, 1993), Cleans offers a
slightly restricted (these restrictions do not impose serieus restrictions for practical applications) simplyfied
type system which is reasonably efficient as well.
2 Note that it is very natural in Clean to speak about references due to the underlying graph rewriting
semantics of the language: it is always clear when objects are being shared or when cyclic structures are
being created.

DEFINING UNIQUENESS TYPES 6 3

freadc :: File -> (Char, File)

The function freadc can be applied to both a unique as well as non-unique file. This is fine since the
function only wants read access on the file. The type indicates that the result is always a non-unique file.
Such as file can be passed for further reading, but not for further writing anymore.

- One can also define functions which are polymorphic in their uniqueness type attribute.
Such functions will accept both unique as well as non-unique objects (called possibly unique
objects). Uniqueness type variables will be uniformly substituted as is the case with ordinary
type variables.

freadc :: u:File -> u:(Char, u:File)

The function freadc above now accepts both a unique (and then it also yields a unique file) as well as a
non-unique file (and then it will also yield a non-unique file). In other words this function is polymorphic in
its uniqueness type attribute indicated by the uniqueness type variable u attached to the ordinary type
File. If in a concrete application the function is applied to a non-unique file only further reading is possi-
ble, if it is applied to a unique file one can either continue with reading as well as with writing. One can
only store unique objects in objects which themselves are unique as well (the propagation rule (see
9.2)). So, the tuple returned by freadc will have to be unique if the file it contains is unique. The tuple is
therefore attributed with u as well.

The anonymous uniqueness type variable is used as a shorthand when the names of the
uniqueness type variables do not matter introduced to keep type specifications as readable as
possible (see 9.3).

freadc :: .File -> .(Char, .File)

So, uniqueness typing makes it possible to update objects destructively within a pure functional
language. For the development of real world applications (which manipulate files, windows, arrays,
databases, states etc.) this is a very desirable property.

9 . 2 Defining new types with uniqueness attributes

Uniqueness type attributes generally only appear in a type of a function when destructively upda-
teable objects are being manipulated. However, uniqueness type attributes are actually attached to
every classical type, both in the definition of an algebraic type as well as in a function type. The
default values for the uniqueness attributes are chosen in such a way that one can leave out the
attributes if one don't care about unicity. The classical notation is also a valid type for Clean’s type
system extended with uniqueness type attributes. As a consequence the uniqueness typing can
remain a hidden feature when it is of no concern. Even when a classical data type has been defined
with no uniqueness in mind, a unique variant can still be instantiated from it.

AlgebraicTypeDef = : :TypeLhs = ConstructorDef {|ConstructorDef} ;
TypeLhs = [*]TypeConstructor {E .[*] TypeVariable} {[*] TypeVariable}
ConstructorDef = ConstructorSymb {[Strict] BrackType}

| (ConstructorSymb) [Fix][Prec] {[Strict] BrackType}
BrackType = [UnqTypeAttrib] SimpleType

When uniqueness type attributes are not specified explicitly in the definition of a type, a fresh uni-
queness type variable is internally added as attribute to each classical type (is does not matter
whether an algebraic, record, synonym or abstract type is being defined), obeying the following
general rules:
• All occurrences of a classical type variable must be attributed with the same uniqueness type

attribute within its scope.
• All identical instantations of a recursive algebraic type must have the same uniqueness type at-

tribute within the recursive definition.

6 4 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

Example (uniqueness expansion of a classically defined type). The classical algebraic definition of a list:

:: List a = Cons a (List a)
| Nil

is internally automatically expanded to:

:: u:List v:a = Cons v:a u:(List v:a)
| Nil

For the instantiation of a uniqueness type variable certain restrictions hold. One of the most impor-
tant restriction is the propagation rule stating that unique objects can only be stored in data structu-
res which are unique themselves (see Barendsen and Smetsers, 1993; Plasmeijer and Van Eeke-
len, 1993). An argument of a type constructor is propagating if in the corresponding algebraic data
type definition the corresponding variable occurs in the right-hand side on a position which is not
part of a arrow type nor (part of) an instantiation of a non-propagating variable of another data
type.
• The propagation rule: when an argument of a type is propagating and its uniqueness type

variable is being instantiated with type *, the whole type must be attributed * as well.

Example (propagation rule). In the type List a given above the argument a is propagating. Now consider
the following function:

hd (Cons x xs) = x

The type system will deduce the following most general type for hd:

hd :: u:(List v:a) -> v:a

or, more shortly

hd :: (List .a) -> .a

The function hd can be called with an ordinary list as usual. It can also be applied with spine unique list
(one pointer to Cons and Nil nodes). Furthermore it can be applied to a spine-unique list which has
unique elements. The resulting element is unique if the list had unique elements. The following more
restricted types are also allowed (to understand the meaning of these types simply substitute the type
attributes for the corresponding type variables in the definition above in an uniform way):

hd :: *(List a) -> a // a spine unique list with non-unique elements is demanded
hd :: *(List *a) -> *a // a spine unique list with unique elements is demanded
hd :: (List a) -> a // the common (non-unique) list of (non-unique) elements

Counter example (invalid uniqueness type instance not obeying the propagation rule described above):

hd :: (List *a) -> *a // a unique object is not allowed inside a non-unique one

So, one can define a function on a unique version via a proper instantiation of the automatically at-
tached uniqueness type variables. Not all imaginable unique instantiations of a classically defined
data structures can be obtained in this way. Sometimes one has to slightly modify the classical
type definition to make the proper unique instantiation possible.

Example (changing a type definition to make it possible to obtain certain unique instances): assume the
following algebraic type definition and assume that one would like to have an instantiation of this data
structure where only the left list is a spine unique one:

:: T a = C [a] [a]

There is now way to express this since the left list is not an argument of the type. So, one has to redefine
T e.g.:

:: T l r = C l r

and instantiate this type with T *[a] [a].

DEFINING UNIQUENESS TYPES 6 5

If one would like to define algebraic types with even more complicated or restricted uniqueness
structures one has to explicitly specify the uniqueness type attributes in the algebraic data type
definition. The semantic restrictions mentioned above have to be obeyed. Furthermore:
• All uniqueness type variables introduced on the left-hand side of a type definition must have dif-

ferent names.
• Uniqueness type variables used on the right-hand side of a type definitions must have been in-

troduced on the left-hand side.
• All uniqueness type variables must have at least one occurrence on the right-hand side which is

not part of a recursive instantiation of the algebraic type being defined.
• To simplify the type system it is not allowed to attribute arrow (function) types in type definiti-

ons with a uniqueness type.
• For record types, synonym types and abstract types the same restrictions hold as for algebraic

types.
• When an abstract data type is specified its arguments are assumed to be propagating with a

positive sign (see below).

Example (algebraic type with user defined uniqueness property):

:: u:T a = C u:[a] [a]

and for instance instantiate this type with *T a to obtain the required structure explained above.

The uniqueness type variable "." and the uniqueness type "*" have a special meaning when be-
ing used in an algebraic data type definition. The "." is introduced for notational convenience and is
always uniformly instantiated with the attribute of the type itself. The "*" is reserved to define es-
sentially unique objects which means that the type system will never allow such an object to be
shared in any context.

Example (algebraic type with user defined uniqueness types):

:: T a = C .[a] [a]
which is equivalent to
:: u:T a = C u:[a] [a]
which is automatically expanded to
:: u:T v:a = C u:[v:a] w:[v:a]

9 . 3 Typing functions and graphs with uniqueness attributes

The type system of Clean will infer and check the uniqueness type attributes after the classical ty-
pes of functions and graphs have been inferred and approved (see 8.3). The uniqueness types in-
ferred by the type system will in general add detailed uniqueness type information to the classical
types.

Example (inferred uniqueness type). Consider the standard definition for the append function:

(++) infixr 0 // infix operator
(++) [hd:tl] list = [hd:tl ++ list]
(++) nil list = list

The following type will be inferred:
(++) infixr 0 :: [.a] u:[.a] -> u:[.a]
Which is shorthand for:
(++) infixr 0 :: x:[w:a] u:[w:a] -> u:[w:a]
Indicating that the new list being constructed is unique if both arguments lists are, the result is spine uni-
que only if the second argument list is spine unique.

As explained in Section 9.1, a function can demand a non-unique object, a unique object or a possi-
bly unique object. Non-unique objects always stay non-unique. Unique or possibly unique objects

6 6 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

can remain unique or possibly unique but they can also loose their unicity depending on how these
objects are being used inside the function body. The uniqueness attributes of the result of a func-
tion will depend on the attributes of its arguments and how the result is constructed.

9 . 3 . 1 Uniqueness and sharing

The uniqueness type system uses a kind of reference count analysis called sharing analysis. The
sharing analysis performed by the Clean system is input for the uniqueness type system to check
uniqueness type consistency (see 9.3.5). The sharing analysis will mark each reference to an ob-
ject (see 2.1) in a right-hand side of a function definition as not-shared (if this could be shown) or
shared (otherwise). When a reference is marked shared by the sharing analysis the corresponding
object will be typed non-unique. So, objects marked shared by the sharing analysis cannot be ty-
ped unique. When a reference is marked not-shared the value of the type attribute can become * (if
the reference refers to a unique attributed object) but it can also become not unique or a uniqueness
type variable (otherwise).

Multiple references to unique objects

The sharing analysis is a liberal system to make manipulation of unique objects as easy as possi-
ble. Unique objects do not have to be used in a pure "linear" way. Multiple references are possible
to allow easy inspection (read access) of destructively updateable objects.
- When there is only one reference in the right-hand side to a certain object (the reference count of

the object is locally one) the reference is marked as not-shared.
- Cyclic structures are marked as shared.
- A certain reference to an object will be marked as not-shared even though there are textually

more references to this object if it can be shown at compile time that the evaluation order is such
that the other references will vanish before the object is accessed via this particular reference.
Otherwise such a reference will be marked shared.

So, the sharing analysis takes the evaluation order into account as far as this is fixed in a functional
language. Another reference is not counted by the sharing analysis to determine if a certain refer-
ence is shared or not if it is an alternative reference or if it is an observing reference.

Example (multiple references to a unique object): The function F demands a spine unique list. And al-
though there are three references to such a list in G the type system will approve the expression. The
first reference to the list in the conditional is an observing reference. The other two are alternative refer-
ences. Whenever F is called (in either then or else branch) only one reference to the list will be left.

F :: *[Bool] -> ...

G *[Bool] -> ...
G list = if (hd list) (F list) (F (tl list))

hd :: *[u:a] -> u:a
tl :: *[u:a] -> *[u:a]

An alternative reference is not taken into account because the reference will no longer exist when
the choice between the alternatives has been made. An alternative reference is a reference to the
object that will vanish because:
- it belongs to a different rule alternative then the reference to be marked;
- it belongs to a different case alternative then the reference to be marked;
- it belongs to the other part of a conditional (if) (the then part while the reference to be marked is

part of the else part (or the other way around)).

DEFINING UNIQUENESS TYPES 6 7

An observing reference is not taken into account because it can be shown that the reference will
no longer exist after the observation has taken place. Observing references are very important be-
cause they enable to inspect values stored in a unique object in such a way that one can still ob-
tain a unique reference to the object (such that it can be destructively updated). An observing refer-
ence is a reference to the object that will vanish because:
a. the observation is performed before the reference to be marked as non-shared while
b. it is guaranteed that the reference to the object will vanish.

In Clean the following property of the order of evaluation is taken into account to determine ob-
serving references (see also 6.1). For each rule or case alternative:
+ for each non-variable part of a pattern the corresponding argument is evaluated to strong root

normal form before
+ the guard (if present) is evaluated to a boolean before
+ the graphs of the strict let expression are evaluated to strong root normal form before
+ the root expression is evaluated to strong root normal form in which the first argument (the bool-

ean expression) of a conditional (if) is evaluated before the then or else part.

A reference to an object e::Te in an observing expression o::To will vanish if one can deduce from
the type To that e after evaluation cannot contain references to e anymore. This is the case if
- To is of polymorphic type a (as is the case with projection functions created via a pattern match,

tuple/record/array selectors etc.) or
- To is a plain basic type, i.e. of type Int, Real, Char or Bool.

Example (observing a unique state): the contents of the unique state abc is observed in the pattern match
before the state is overwritten in the function body.

Jsr :: InstrId *ABCState -> *ABCState
Jsr address abc=:{pc,cs}

= ABCState {abc & cs = CS_push pc cs, pc = address}

Example (observing a spine unique list): the unique list is observed in the let-block in which the nth ele-
ment is taken out of the list.

Select :: n *[a] -> (*[a],a)
Select list n = let! y = NthElem n list

in (list,y)
where

NthElem :: Int [.a] -> a
NthElem 1 [x:xs] = x
NthElem n [x:xs] = NthElem (n-1) xs

Counter Example: suppose that one wants to extract two elements from the spine unique list. NthElem2
is not observing because one cannot tell from the type of NthElem2 whether a new spine unique list is
returned or part of the original spine unique list. To make NthElem2 observing it should return the ele-
ments e.g. a strict tuple instead.

Select2 :: n *[a] -> ([a],a,a)
Select2 list n = let! [y1,y2] = NthElem2 n list

in (list,y1,y2)
where

NthElem2 :: Int [.a] -> [.a]
NthElem2 1 [x,y:xs] = [x,y]
NthElem2 n [x:xs] = NthElem2 (n-1) xs

9 . 3 . 2 Meaning of the type attributes in the specification of a function type

The uniqueness type system is a subtyping system: the attribute unique (*) is regarded as being
a sub-type of the attribute non-unique (* ≤ non-unique). So, the type system can coerce unique
to non-unique. As with general subtyping, coercions are contravariant with respect to function ty-

6 8 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

pes. Contravariance is indicated by the sign. The sign of an argument is determined by the posi-
tion on which the argument occurs in the right-hand side of the type definition. For an algebraic data
type, say T a1 … an, that does not contain function types, all ai are on a positive position. For
an arrow/function type, say a -> b, however, a is on a positive position and b is on a negative
position. For algebraic data types, say T a1 … an, in which function types are contained each ai
can be on a positive position (the sign is +), on a negative position (the sign is -) or on a position
which is both negative as well as positive (the sign is +/-) depending on the use of the corres-
ponding variable in the right-hand sides of the algebraic data type. Note that an argument which
has a negative sign cannot be propagating.
• The coercion from unique to non-unique is only possible if the sign of the corresponding argu-

ment is positive.

Example (sign and propagation: a has sign + and is propagating, b has sign - and is not propagating):

::FunList a b = FunCons (a, a -> b) (FunList a b)
| FunNil

The meaning of the uniqueness type attributes in the type specification of a function is different for
positive (in a function argument) and negative (in a function result) positions.

When no uniqueness type attribute is specified explicitly the default attribute non-unique is ta-
ken by the type system (notice that there is no explicit notation for this attribute in Clean).
- For a (sub-) arguments on a positive position no type attribute means that the corresponding

(sub-) argument is expected to be non-unique. When the function is actually applied with a uni-
que typed (sub-) argument it will be coerced by the type system to a non-unique type.

- On a negative position the absence of a type attribute indicates that uniqueness of the corres-
ponding result cannot be guaranteed. Such a result might be shared and therefore it cannot be
given to a function demanding it as unique argument.

Example (the uniqueness type attribute of a classical type is by default not unique):

I :: a -> a
I x = x

When the uniqueness type attribute * is derived or specified explicitly the following holds.
- On a positive position it means that the corresponding (sub-) argument is required to be unique.

The function can only be applied with a unique (*) typed (sub-) argument1.
- On a negative position it indicates that uniqueness of the corresponding result is guaranteed.

Another valid restricted type for the identity function is the following type which indicates that the func-
tion can only be applied on a unique argument and that it will return a unique object:

I :: *a -> *a
I x = x

When a uniqueness type variable is derived or specified explicitly the following holds.
- On a positive position it means that the corresponding (sub-) argument can be unique as well

as non-unique (this is also called possibly unique). Uniqueness type variables in the type
specification of functions are very useful for the specification of uniqueness consistency bet-
ween the arguments and the result of polymorphic functions.

1 Remark: In the classical type system sources of non-polymorphism are a user specified restricted
type in the type specification of a function or denotations of objects that are predefined or user-de-
fined in an algebraic data type. For uniqueness types the only source of non-polymorphism (read:
*) is the specification of a restrictive type by the user or in a library (e.g. FWriteC).

DEFINING UNIQUENESS TYPES 6 9

- On a negative position a bound uniqueness type variable (i.e. a uniqueness variable which
is introduced on a positive position) means that the uniqueness will depend on the uniqueness
attribute of the corresponding argument(s) in the actual function call (see below).
When free uniqueness type variables appear in the result type of a function it means that
the corresponding result can be regarded as unique as well as non-unique. So, one can deduce
from this that a unique result is returned.

Example (inferred uniqueness types of functions). The inferred most general type of the identity function
is given below. It indicates that, when a (non-)unique argument is given to the identity function, the result
will be (non-)unique as well (and of the same classical type). The previous types for I are restricted versi-
ons of this most general inferred type (uniformly instantiate u with non-unique or with *).

I :: u:a -> u:a
I x = x

Shorthand notation in function type specifications

The anonymous uniqueness type variable "." can be used in a function type instead of a uni-
queness type variable in cases the name does not matter. Since each classical type variable has
to be attributed uniformly, one can prefix each of them with a dot to indicate that they are actually at-
tributed with a uniqueness type variable. For notational convenience one furthermore need only to
specify the (possible) uniqueness of the innermost structure. The system will infer the propagation
consequences for the surrounding structures.

Example (use of the anonymous uniqueness type variable).

I :: .a -> .a
I x = x

map :: (.a -> .b) [.a] -> [.b]
which is equivalent with
map :: (u:a -> v:b) w:[u:a] -> x:[v:b]

9 . 3 . 3 Typing curried functions

When a curried function is applied to a (possibly) unique element the resulting function type must
be unique (a curried function in this aspect acts like a constructor). This behaviour is reflected in the
propagation property for curried functions: the arrow type of a curried application of a function
with at least one argument is attributed as follows:
• if one of the arguments has uniqueness attribute not being non-unique then the resulting arrow

type must have attribute *, otherwise the resulting arrow type is attributed as being non-uni-
que.

• it is not allowed to ever share on object of arrow type which is attributed with * (it is said to be
essentially unique). This restriction implies that an essentially unique function cannot be coer-
ced to a non-unique function type. This has as consequence that an essentially unique function
cannot be passed as argument to a function that will share the essentially unique function inside
its function body.

The propagation property reflects the fact that a curried function can be regarded as a kind of data
structure.

Example (essentially unique functions cannot be coerced to a non-unique function). Consider again the in-
ferred type of the function map.

7 0 CONCURRENT CLEAN 1.1 LANGUAGE REPORT

map :: (.a -> .b) [.a] -> [.b]
map f [] = []
map f [x:xs] = [f x:map f xs]

The type specification shows that a non-unique function is demanded. This means that map cannot be
called with an essentially unique function (i.e. a curried function which has "eaten" unique arguments).
And indeed, one can see in the definition of map that its first argument becomes shared in the function
body.

9 . 3 . 5 Type consistency

The (uniqueness) type specifications of graphs and functions/operators are inferred at compile
time by the uniqueness type inferencing mechanism. Explicit uniqueness type specifications
are allowed to be more restrictive than the inferred types. In that case the restrictive type is used in
all contexts.

A uniqueness type specification must be correct. It is assumed that the underlying classical type
specification is already correct (see 8.3.5). So, only the attached uniqueness type attributes have
to be taken into consideration for uniqueness type consistency. Each occurrence of a uniqueness
type attribute is assumed to have a sign (see 9.3.2) and is propagating or not (see 9.2).

Each node is typed with respect to uniqueness by correctly instantiating uniqueness variables:
• All occurrences of a classical type variable must be attributed with the same uniqueness type

attribute within its scope.
• For each argument of the node symbol, the type attribute has to be sharing consistent i.e. its

attribute must be non-unique if the argument has been marked shared by the sharing analysis
(see 9.3.1).

• The instantiated type (the offered type) must be coercible (with * ≤ u: ≤ non-unique) to the
environment type of the node symbol (the demanded type).
Coercions are defined as follows:

- a non-arrow type offered is coercible to a type demanded if all the arguments, sub-ar-
guments and results of the type constructors are coercible with respect to the sign of
their position; for sign + this means that offered ≤ demanded, for sign - this means that
demanded ≤ offered and for sign ± it means that both offered ≤ demanded and deman-
ded ≤ offered (so, demanded = offered);

- an arrow type offered is coercible to a type demanded if the type attributes of offe-
red and demanded (so, demanded = offered) are the same and the arguments, subar-
guments and the result are coercible as well. Consequently, unique arrow types can
never be shared in a context.

• When an argument of a type is propagating and its uniqueness type variable is being instanti-
ated with type *, the whole type must be attributed * as well (see 9.2).

• Furthermore, if the node contains a curried application of a function symbol then the propaga-
tion rule for curried functions has to be taken into account (see 9.3.3).

9 . 4 Typing overloaded functions and operators with uniqueness attributes

10
Input / Output handling (DRAFT !)

1 0 . 1 The world according to Clean
1 0 . 2 File I/O
1 0 . 3 Event based I/O
1 0 . 4 Graphical user interfaces
1 0 . 5 Timer handling

1 0 . 6 Interleaved executing communicat-
ing processes

1 0 . 7 Distributing executing communicat-
ing processes

In this Chapter the new Clean I/O system version 1.0 is described. This system is currently
available only on a limited number of platforms (see the Preface).

On other systems the Clean I/O system version 0.8 is distributed. On all platforms the Clean 0.8
I/O library (albeit converted to Clean 1.0 syntax) is available. For a description of the 0.8 I/O
library we refer to the draft of the new Clean book on the net or to the Addison-Wesley book
(Plasmeijer and Van Eekelen, 1993).

Clean’s Uniqueness Type System makes it possible to update objects destructively. As explained
in Section 9.1 one can use this property to create Clean functions which have direct read and write
access on files. In the same way one can define functions for all communication with the outside
world: for file I/O, window based I/O, communication with the operating system, interface with C
etc.
Since we want Clean programmers to write programs on a high level of abstraction in a declarative
style, we wanted to offer more than just an interface to C. We do not want to burden the program-
mer with the low level details of how I/O is handled on a specific platform. To make this possible a
sophisticated I/O system has been predefined in Clean. It provides a way for the programmer to
specify interactive programs on such a way that window based interactive programs can be devel-
oped very easily. All low-level event handling and window management is handled automatically.
The specification is platform independent. Programs can be ported to other machines without modifi-
cation of code while the resulting program will obey the specific look and feel offered by the underly-
ing operating system. Although the I/O system cannot support everything one can imagine, it is
powerful enough for most applications. The I/O system can also easily be extended or modified by
the (system) programmer to support wishes we did not think of.
I/O handling in Clean is done via an explicit multiple environment passing scheme to enforce the
correct order of evaluation (see 10.1) while destructive updateability in a pure functional language is
realised by using uniqueness typing (see Chapter 9).
Files can be directly accessed for reading and writing (see 10.2). Graphical User Interfaces can be
specified by defining abstract devices using a predefined algebraic data type (see 10.3 and 10.4).
Timers can be defined to perform time dependent actions (see 10.5).
The system offers the possibility to combine (independently developed) interactive applications
(processes) into one new Clean application. The different sub-applications are executed in an

7 2 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

interleaved manner (see 10.6). One can switch between these applications (like in a multi-finder)
and exchange information between them. Sub-applications can communicate via files (e.g. via
copy-pasting), via global states interactions can have in common or via message passing (see
10.6).
It is in principle also possible to create sub-applications running on a different processor (see 10.7).
In this way distributed applications can be made running in parallel on different machines connected
via a network. Such distributed programs can be tested and developed on one processor and with
one change in the code and a recompilation turned into the desired distributed version.

1 0 . 1 The world according to Clean

Clean programs can run in two modes.

1 0 . 1 . 1 I/O using the console

The first mode is a console mode. It is chosen when the Start rule is defined as a nullary function.

Start :: TypeOfStartFunction
Start = … // initial expression

In the console mode, that part of the initial expression (indicated by the right-hand side of the
Start rule) which is in root normal form (also called the head normal form or root stable form), is
printed as soon as possible. The console mode can be used for instance to test functions.

1 0 . 1 . 2 I/O on the unique world

The second mode is the world mode. It is chosen when the optional additional parameter (which is
of type *World) is added to the Start rule and delivered as result.

Start :: *World -> *World
Start w = … // initial expression returning a changed world

The world which is given to the initial expression is an abstract data structure, an abstract world
of type *World which models the concrete physical world as seen from the program. The ab-
stract world can in principle contain anything we want, anything what is of importance for a functio-
nal program to interact during execution with the concrete world. The world can be seen as a state
and modifications of the world can be realised via state transition functions defined on the world or a
part of the world. By requiring that these state transition functions work on a unique world the modifi-
cations of the abstract world can directly be realized in the real physical world, without loss of effi-
ciency and without losing referential transparency (see Chapter 9).

The concrete way in which one can handle the world in Clean is determined by the system pro-
grammer. One way to handle the world is by using the predefined Clean I/O library which can be
regarded as a platform independent mini operating system. It makes it possible to do file I/O, win-
dow based I/O, dynamic process creation and process communication in a pure functional language
in an efficient way.

The program state

For programming convenience the world is further refined in the Clean I/O system as follows.

Figure (the world according to Clean).

INPUT / OUTPUT HANDLING 7 3

In the Clean I/O system the abstract world is divided into unique abstract sub-worlds. Such an ab-
stract sub-world models a part of the real world which has as property that it can be manipulated
independent from another part: one can modify one without influencing another.
- An important sub-world is the file system (of type *Files) for performing file I/O (see 9.2).

This idea of sub-worlds can be further refined as required, e.g. one can retrieve a file of type
*File from the file system. With the hierarchy of sub-worlds we can guarantee that things
happen in a certain order. E.g. to open a file one first needs the uniquely typed file system, to
re-open a file one first has to close it.

- Another important sub-world is the event I/O system (of type *IOState local share) in
which the event queue in which all events intended for the Clean application are being stored.
The IOState is an abstract data type on which all kinds of operations are defined to handle
event driven (window-based) I /O. The abstract data type is parametrised with the type of
the local process state and the shared process state (see hereafter) because state transition
functions working on these sates are stored in the IOState as well.

But, of course, an application does not only manipulate the world, it probably has to manipulate its
own data (the program dependent state) as well. It is explained in section 10.6 and 10.7 that a
Clean application can consists of several interactive processes. For this reason the program de-
pendent state is split-up into two categories:
• Each interactive process has its own local process state containing information which is pri-

vate for each process.
• With the shared process state interactive processes which belong to the same group (see

10.6) can exchange information (e.g. to realise inter process communication via shared data such
as clip-board copy-pasting between processes).

Writing an interactive Clean program means writing state transition functions which manipulate
the abstract world and the program dependent states. The four states introduced above are the
states on which all top level state transition functions in Clean work. These states are collected in
one record, the process state which is of the following type:

::*PState local public // the unique s ta te of an interactive process
= { pLocal :: local, // the local (and private) data of the process

pPublic :: public, // the data shared with other processes in the same group
pFiles :: !*Files, // the unique state of the file system
pIOState :: !*IOState local public// the unique state of the event I/O system

}

7 4 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

Starting and stopping an interactive process

The first thing which generally happens in a Clean program is to create an interactive process with
the function OpenIO. The function OpenIO is called a process control function. Such a function ta-
kes care of all low level event handling in the following way.
- First the initial process state is constructed from a specified initial local process state, an initial

shared process state and the initial world. The process control function will fetch the initial event
queue and file system from this world.

- The process control function accepts a list of initial state transition functions which are applied
one after another on the initial process state. This list typically contains state transition functions
with which abstract devices are specified (see 10.3) and opened (see 10.4 - 10.7). These de-
scriptions are stored by the process control function in the IOState.

- Now the process control function will repeatedly examine the event queue to see if there is an
event on top of the queue matching a description given in one of the stored abstract device
specifications. When a matching event is found the corresponding state transition function stored
in the description (see again 10.3) is applied on the current process state of the program thus
yielding a new process state.

- This way of dealing with events continues until finally the predefined state transition function
QuitIO is applied on the process state after which the process control function (and the
interactive process) terminates yielding the final process state.

So, in an interactive process state transition functions defined by the programmer are repeatedly
applied to the initial process state until the final process state has been reached.

The function OpenIO is of following type.

OpenIO :: (IODef .l .p) (.l,.p) *World -> *World

:: IODef l p
= { ioDefInit :: InitIO l p, // initial actions process

ioDefAbout :: String // name of the process
}

:: InitIO l p :== [(PState l p) -> (PState l p)]

QuitIO, the state transition function which stops an interactive process has type:

QuitIO :: !(IOState .l .p) -> IOState .l .p

Example (a program just starting and stopping an interactive process doing nothing).

module StartAndStop

:: UnUsed = UnUsed

Start :: *World -> *World
Start world = OpenIO thisprocess (UnUsed,UnUsed) world
where

thisprocess = { ioDefInit = [stop],
 ioDefAbout = "Tiny Process" }

stop pstate = { pstate & pIOState = QuitIO pstate.pIOState }

1 0 . 2 File I/O

In the program state the file system of type *Files is stored. This unique file system gives access
to all files in the world visible to the program. One can open writeable files (they therefore are of
type *File) or files that are read only (they have type File).

INPUT / OUTPUT HANDLING 7 5

• A file can be opened writeable only if it the file is not already open (run-time error). A writeable
file can be closed and re-opened later on. A file which is opened as read-only can be opened as
many times as one like, but it cannot be closed (and hence it cannot be re-opened as a writea-
ble file). Read-only files are closed automatically by the I/O system when the application termi-
nates or these files have become garbage.

• When a writeable file becomes shared (loosing its uniqueness attribute) it can only be used for
further reading (it gets the same status as files which are initially opened as read-only).

One can find the predefined functions working on the file system and on the files in this file system
in the module StdFileIO (see ??).

Example (functions to open and close files). See also StdFileIO.

fopen :: !String !Mode !*Files -> (!Bool,!*File,!*Files) // writeable file
fclose :: !*File !*Files -> (!Bool,!*Files) // writeable file

sfopen :: !String !Int !*Files -> (!Bool,!File,!*Files) // read-only file

File I/O is handled very efficiently because the uniqueness typing allows direct access to the actual
file. There is no limitation on the kind of file handling which is allowed (e.g. seeks are possible).

fwritec :: !Char !*File -> *File // directly writes a character into the file
sfreadc :: !File -> (!Bool,!Char,!File) /-/ directly reads a character from
the file

Example (a program that copies a file called "source" to a file called "dest"). It uses the file system from
the process state. This file system is used to open the source and the destination file. The source file is
only being read (indicated by FReadData), so it does not have to be unique. The destination file is being
written (FWriteData) and therefore this file must be unique. The file being written is closed explicitly.
Files which are opened read-only are closed automatically by the system (it keeps track of the amount of
references to such a file). Notice that the process state is uniquely used everywhere due to the unique-
ness of the file system and IOState.

module copyfile

import StdEnv, StdEventIO

:: UnUsed = UnUsed // Used to initialise unused settings

:: Local :== UnUsed // Local program state not used
:: Share :== UnUsed // Data sharing not used
:: *State :== PState Local Share // Synonym type for State
:: *IO :== IOState Local Share // Synonym type for IOState

Start :: *World -> *World
Start world = OpenIO

{ ioDefInit = [DoCopyFile],
ioDefAbout = "Copying Process"} (UnUsed,UnUsed) world

DoCopyFile :: *State -> *State
DoCopyFile state = {state & pFiles = nfiles, pIOState = QuitIO
state.pIOState}
where

nfiles = CopyFile "aap" "noot" state.pFiles

CopyFile :: String String *Files -> *Files
CopyFile source dest files

| not sopen = abort "Source file could not be opened.\n"
| not dopen = abort "Destination file could not be opened.\n"
| not dclose = abort "Destination file could not be closed.\n"
| otherwise = files3

where
(sopen,sfile,files1) = sfopen source FReadData files
(dopen,dfile,files2) = fopen dest FWriteText files1
(dclose,files3) = fclose (CopyOneFile sfile dfile) files2

7 6 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

CopyOneFile :: File *File -> *File
CopyOneFile sfile dfile

| not ok = dfile
| otherwise = CopyOneFile nsfile (fwritec char dfile)

where
(ok,char,nsfile) = sfreadc sfile

1 0 . 3 Event based I/O

The I/O state (see StdEventIO) is an abstract data type which reflects the current state of the
event based I/O performed by the program. We already explained that the IOState contains the
event queue which has been retrieved from the world (see 10.1.2). In this queue all events are be-
ing stored that have been generated by the user (by clicking the mouse, pressing keys and but-
tons etc.) and by the operating system (timer events) while the application is running. Instead of
offering low level functions to fetch events from the queue we have chosen to handle all low-level
events automatically via Clean functions predefined in the Clean event I/O library such that a
Clean programmer only has to deal with the high-level event handling.

A Clean programmer using the Clean I/O system has to define abstract devices, an abstraction
of the concrete devices (such as Graphical User Interfaces components) as they can be found
on modern computer systems. Examples of abstract devices are: windows (including dialogues)
for window based event I/O (see 10.4), timers (for time driven events, see 10.5) and receivers
(for events generated by using message passing primitives, see 10.6). A device can be composed
of device components which on their turn can be refined further. For instance, each window can
have menu (see 10.4.1), a keyboard (see 10.4.2) and a mouse (see 10.4.3) as component and
can furthermore have several controls (buttons and the like, see 10.4.4). A menu is composed out
of sub-menus, menu items and so on.

Specifying abstract devices

Abstract devices are specified in Clean by means of predefined algebraic data types. With such
a predefined algebraic type actually a special kind of declarative device specification language
is offered in which the programmer can define the relevant properties of the concrete devices that
are being used on a high level of abstraction. The algebraic specification of a device or device com-
ponent generally consists of:
- a constructor with a meaningful name to indicate the desired device/device component (e.g.

PullDownMenu indicates that a pull-down menu item is wanted);
- the definition of a very limited number of non-optional attributes (e.g. each pull-down menu

must have a Title which is of type String);
- if applicable the definition of the sub-components (e.g. a menu can contain menu-items, a sub-

menu etc.) which are defined in the same declarative style;
- a state transition function (called the call-back function) to be applied on the current process

state when the device (component) is triggered by a corresponding event (e.g. one can trigger
an abstract menu element by selection of the corresponding concrete menu element with the
mouse);

- a list in which one can specify the optional attributes (a default value is chosen when an op-
tional parameter is not specified);

Example (The predefined algebraic type MenuDef with which one can define a menu). Constructors are
displayed bold, call back functions are in italic.:

:: MenuDef ps = Menu Title [MenuElement ps]
[MenuAttribute ps]

:: MenuElement ps = SubMenuItem Title [MenuElement ps]

INPUT / OUTPUT HANDLING 7 7

[MenuAttribute ps]
| MenuItem Title [MenuAttribute ps]
| MenuSeparator

:: MenuAttribute ps // Default:
= MenuId Id // no Id
| MenuSelectState SelectState // menu(item) Able
| MenuShortKey KeyCode // no KeyCode
| MenuAltKey Index // no AltKey
| MenuMarkState MarkState // NoMark

// Attributes ignored by (sub)menus:

| MenuFunction (IOFunction ps) // Identity function
| MenuModsFunction (ModsIOFunction ps) // MenuFunction

An abstract device specification can be seen as a declarative specification which is interpreted by
process control functions like OpenIO to generate the demanded action on the screen.

Example (Concrete instantiation of MenuDef and its appearance on the screen of an Apple Macintosh):
The call back functions new, open, close ,save, saveAs and quit need to be declared in the program.
Notice that QuitIO is used as call-back function. When "Quit" is chosen from the menu the process will
be terminated. This example shows the close relation between the specification and the actual appear-
ance on the screen. Notice that the specification is not static but dynamic: any expression which yield an
instance of MenuDef will do.

Menu "File"
[MenuItem "New" [MenuFunction new,

MenuShortKey 'n'],
MenuItem "Open…" [MenuFunction open,

MenuShortKey 'o'],
MenuItem "Close" [MenuFunction close,

MenuShortKey 'w',
MenuSelectState Unable],

MenuSeparator,
MenuItem "Save" [MenuFunction save,

MenuShortKey 's',
MenuSelectState Unable],

MenuItem "Save As…" [MenuFunction saveAs,
MenuSelect Unable],

MenuSeparator,
MenuItem "Quit" [MenuFunction quit

MenuShortKey 'q']
] []

The specification method is constructed in such a way that not more has to be specified as strictly
necessary. Due to the high-level of abstraction the specification can be platform independent. The
I/O library can in the future easily be extended by adding more optional attributes without effecting
existing programs.

7 8 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

Opening abstract devices and application of call-back functions

For each abstract device a special open function has been predefined. It is a state transition func-
tion (defined on the process state) which, when it is applied (on the current process state), stores
the algebraic description of the device into the IOState and it activates the corresponding concrete
devices (if they are specified as active) and draws them on the screen (if they have a visual repre-
sentation).

Figure (what is stored in the IOState).

For instance, with the function OpenMenu a menu description like the one given above can be atta-
ched to a given window. Each menu has a private state again which can be used to remember
specific menu settings. So each device / device component can be regarded as a kind of object
containing information which is relevant for that object and which can only be accessed by that ob-
ject.

OpenMenu:: !Int !(MenuDef (PState .l .p)) !(IOState .l .p) -> IOState .l .p

The function OpenIO will recursively examine the event queue to see if there is an event on top of
the queue matching the stored abstract device specifications. If this is the case, the corresponding
call back function specified in the algebraic specification is called by applying it on the current pro-
cess state. A call-back function is a user-defined state transition function defined on the pro-
cess state, generally of type:

CallBackFunc :: Info (PState .l .p) -> PState .l .p

The first parameter depends on the kind of call-back function. For instance, a call-back function invo-
ked by a mouse click will also get information on the current position of the mouse. All call-back func-
tions get the actual value of their arguments automatically from the I/O system. When a call-back
function has reached head normal form, control (and the states) is given back such that the next call-
back function can be determined (with the new states as returned by the previous call-back function
called) given the next event in the event queue. So, the process states are used to pass informa-
tion from one call-back function to another. A process terminates when the function QuitIO is ap-
plied on the IO state.

Each call-back function can of course change the process state but it can also change the definitions
or the attributes of the devices and the device components stored in the I/O state. Each of them can
be modified dynamically (that is why they all can have a special label for identification).

1 0 . 4 Graphical user interfaces

In this section we explain how graphical user interfaces like windows (including dialogues) can be
created and manipulated. A window device (see StdWindowDef) gives a view on a picture

INPUT / OUTPUT HANDLING 7 9

(again a unique abstract object) on which a set of drawing and text handling functions is defined
(see 10.4.4). Each window can have a menu (see 10.4.2), a keyboard (see 10.4.2) and a mouse
(see 10.4.3) as component and can furthermore contain several controls (buttons and the like,
see 10.4.5). There is a special lay-out language to control the lay-out of controls and windows (see
10.4.6).

1 0 . 4 . 1 Windows, dialogues and notices

Windows are the basic medium through which interactive applications and users communicate. An
application can have an arbitrary number of open windows. Of these windows at most one is ac-
tive. The active window is the window to which all keyboard events are directed. Applications can
display anything in a window: a window gives a view on an arbitrary picture. Windows are also
used to structure user input to applications: a window may accept keyboard and/or mouse input.
Controls (e.g. slider controls) can be put into the window such that very complicated windows can
be defined.

Figure (components of a simple window).

Contents

Title Arrow

Thumb

Scrollbar

Windows can be opened with the function OpenWindow. Each window has a private state which
can be used to remember specific window settings. The window-id which is returned can be used
to change window settings dynamically (e.g. to close a window, see further StdWindow in the ap-
pendix).

OpenWindow :: !(WindowDef (PState .l .p))
!(IOState .l .p) -> IOState .l .p

OpenModalWindow :: !(WindowDef (PState local share))
!(PState .l .p) -> PState .l .p

CloseWindow :: !Id !(IOState .l .p) -> IOState .l .p

:: WindowDef ps
= DialogWindow Title Id [ControlDef ps] [WindowAttribute ps]
| Window Title PictureDomain [ControlDef ps] [WindowAttribute ps]

Windows can be of fixed size (DialogWindow) or of variable size (Window). There are two
special windows which can be opened. When a modal window is opened (OpenModalWindow)
one is forced to perform interactions with that window until this window is closed.

There are a lot of optional window attributes, we only specify a few here (see StdWindowDef for a
complete list). With the attributes one can attach special call back functions, e.g. to handle mouse
clicks in the window, how a window should be positioned (see 10.4.6) keyboard keys being pres-
sed when the window is active, what to do when a window is closed etc. Below we explain key-
board (10.4.2) and mouse handling (10.4.3).

Inside a window controls like buttons and the like can be positioned (Control Definitions). Controls
are treated in section 10.4.6.

8 0 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

1 0 . 4 . 2 Keyboard

A keyboard function is a call back function which can optionally be attached to a window as window
attribute.

:: WindowAttribute ps // Default:
= …
| WindowKeys SelectState (KeysFunction ps) // no keyboard

:: SelectState = Able | Unable

In this way one can define a function to handle the response to keyboard events. All keyboard
events are directed to the active window (of which there is only one). The KeyboardState contains
all information needed for the call back function to handle the event: which key was pressed or re-
leased and which of the modifier keys were being held down at that time.

:: KeysFunction ps :== KeyboardState -> ps -> ps

:: KeyboardState :== (!KeyCode, !KeyState, !Modifiers)
:: KeyCode :== Char
:: KeyState = KeyUp | KeyDown | KeyStillDown
:: Modifiers :== (Bool,Bool,Bool,Bool)

//(Shift,Option,Command,Control)

1 0 . 4 . 3 Mouse

A MouseFunction is a call back function which can optionally be attached to a window as window
attribute.

:: WindowAttribute ps // Default:
= …
| WindowMouse SelectState (MouseFunction ps) // no mouse input

The Mouse function defines the response of the window to mouse events in the window’s con-
tents (see also controls in 10.3.6 to handle the clicks on buttons and so on). The MouseState con-
tains information about the mouse event: the position of the pointer (in picture domain co-ordinates),
whether it was a click, a double-click, a triple-click or a release of the mouse button and which modi-
fier keys (shift, option etc.) were being held down.

:: MouseFunction ps:== MouseState -> ps -> ps

:: MouseState :== (!MousePosition, !ButtonState, !Modifiers)
:: MousePosition :== (!Int, !Int)
:: ButtonState = ButtonUp | ButtonDown | ButtonDoubleDown |

ButtonTripleDown | ButtonStillDown

1 0 . 4 . 4 Writing and drawing to a window

The library module StdWindow contains several functions with which one can draw in a given win-
dow, for example:

DrawInWindow :: Id [DrawFunction] (IOState .l .p) -> IOState .l .p

:: DrawFunction :== Picture -> Picture

These functions take a list of DrawFunctions and apply these to the indicated window in order of
appearance in the list. A large set of functions has been predefined in the module StdPicture, such
as:

INPUT / OUTPUT HANDLING 8 1

MovePenTo :: !Point !Picture -> Picture
DrawString :: !String !Picture -> Picture

Font handling (useful when texts have to be drawn in a window) is performed by functions from the
library module StdFont.

Example (a function that draws a string in a window at a certain position) : MovePenTo and DrawString are
predefined functions defined in StdPicture.

DrawStringInWindow:: Id Point String (IOState .l .p) -> IOState .l .p
DrawStringInWindow id pos string io

= DrawInWindow id [MovePenTo pos,
DrawString string] io

1 0 . 4 . 5 Menus

With the functions defined in library module StdMenu one can attach a menu to a given window. The
menu device (see StdMenuDef) conceptualises choosing from a menu of available commands. A
menu device can contain components like pull-down menus each containing sub-components like a
menu-item, or a sub-menu. See further the intro of 10.3.

OpenMenu :: !Int !(MenuDef (PState .l .p))
!(IOState .l .p) -> IOState .l .p

1 0 . 4 . 6 Controls

Besides that one can draw pictures and write text in a window one can put controls like buttons and
the like into a given window. Controls can be editable text fields (the displayed text can be
changed by the user or the program during the interaction), static text fields (the text cannot be
changed), pop-up menus (a number of options of which only one is valid and displayed at a time),
radio buttons (a number of options of which only one is valid, all options are displayed), check
boxes (a number of options which can be turned on and off, all options are displayed), buttons,
final buttons (default buttons) and even user-defined controls (controls of which the look and
feel can be specified by the programmer, see StdControls). A group of controls can be combined
to form a unit which is called a CompoundControl.

Figure (controls in a window).

user-defined control

pop up menustatic text

editable text

check boxes

radio buttons

buttons

user-defined
button

:: ControlDef ps
= RadioControl TextLine MarkState [ControlAttribute ps]

8 2 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

| CheckControl TextLine MarkState [ControlAttribute ps]
| PopUpControl [PopUpItem ps] Index [ControlAttribute ps]
| SliderControl Direction Length SliderState (SliderAction ps)

[ControlAttribute ps]
| TextControl TextLine [ControlAttribute ps]
| EditControl TextLine Width NrLines [ControlAttribute ps]
| ButtonControl TextLine [ControlAttribute ps]
| CustomButtonControl Size ControlLook [ControlAttribute ps]
| CustomControl Size ControlLook CustomState [ControlAttribute ps]
| CompoundControl [ControlDef ps] ControlLook [ControlAttribute ps]

Defining the position of a Control (also applicable for Windows)

:: ControlAttribute ps // Default:
…
| ControlPos ItemPos // (RightTo previous,(0,0))

In the attributes of controls (ControlPos) or windows (WindowPos) one can define that they
have to be positioned in a certain way. For this purpose a platform independent lay-out language is
created as follows:

:: ItemPos :== (ItemLoc, ItemOffset)
:: ItemLoc = LeftTop | RightTop | LeftBottom | RightBottom

| Left | Center | Right
| LeftOf Id | RightTo Id
| Above Id | Below Id

:: ItemOffset :== (!Int,!Int)

An position consists of a location (ItemLoc) and an offset (ItemOffset).
- When this location is LeftTop, RightTop, LeftBottom or RightBottom the item is pla-

ced at the indicated corner in the window. When the window is resizable the control will option-
ally be resized and moved as well.

- When this location is Left, Center or Right the item is placed left-aligned, right-aligned or
centred, beneath all items defined earlier in the list.

- When this position is LeftOf, RightTo, Below, or Above the item is placed relative to the
item with the indicated id. When that id is not the id of an item that is defined earlier in the list of
items, the item is placed beneath the items defined earlier, left-aligned. When an item is placed
below an item that is centred resp. right-aligned this item will also be centred resp. right-aligned.
When an item is placed right to a centred item, these items are centred together.

- With the ItemOffset an item can be shifted relatively on the indicated position with the
(possibly negative) offset specified.

Defining the look of a Control

The look of controls is defined as follows: system controls have a predefined look (these are Ra-
dio-, Check-, PopUpList-, Text-, Edit- , system button look Button-, and SliderCon-
trols). Customised controls (custom button look Button- and CustomControls) are drawn
by their program defined ControlLook functions. The ControlLook function of a CompoundCont-
rol is drawn first, after which the looks of its control elements in left-to-right and depth-first order fol-
low. The backgrounds of controls is not erased by the system, thus enabling controls to define local
background textures.

Defining the size of a Control

When a window is resizeable one would sometimes like to resize the controls in it as well. For this
purpose controls can use the ControlResize attribute.

INPUT / OUTPUT HANDLING 8 3

:: ControlAttribute ps // Default:
 | ControlResize ControlResizeFunction // no resize
 | ControlMinimumSize Size // (0,0)

:: ControlResizeFunction
 :== Size -> // current control size

Size -> // current window size
Size -> // new window size
Size // new control size

The control resize function determines the new size of a control given the current control size, the
current window size, and the new window size. The minimum size of a control can be set with attri-
bute ControlMinimumSize. The minimum size of a compound control is the minimum surround-
ing rectangle of its component controls (as a compound is allowed to occupy more space than the
total of its component controls).

Computation rules for the new layout are as follows: Controls are either resizeable or fixed size.
Resizeable controls are Edit-, Slider-, Custom-, and CompoundControls. Fixed size con-
trols are all other controls. The ControlResize attribute is ignored for fixed size controls. Resiz-
ing a window of size curWSize to newWSize involves the following recomputation of control sizes:
fixed size controls do not change in size, as well as resizeable controls for which no ControlRe-
size attribute has been defined. A resizeable control of size curCSize with attribute ControlRe-
size f obtains the new size f curCSize curWSize newWSize = (x,y). If the ControlResi-
zeFunction yield a value smaller than the minimum size the control will be hidden, otherwise its
new size will be (x,y). When all sizes have been recomputed for all controls then the layout will
be recalculated. The result of this recalculation should be the same as if the window is opened with
the new sizes of the controls. This method retains the control layout of a window.

1 0 . 5 Timer handling

With the timer device (see StdTimerDef) a program can be synchronised: a call-back function
can be evaluated every time a certain time interval has passed. The TimerInterval is defined as
a number of ticks. The number of ticks per second depends on the operating system. A macro
TicksPerSecond is available in the library module StdTimer. When a time interval is set less than
one, a timer event is generated whenever no other event is generated. Several timers can be instal-
led. Each timer has a private state which can be used to remember timer specific settings.

OpenTimer :: !(TimerDef (PState .l .p))
!(IOState .l .p) -> IOState .l .p

CloseTimer :: !Id !(IOState .l .p) -> IOState .l .p

:: TimerDef ps = Timer TimerInterval [TimerAttribute ps]
:: TimerInterval :== Int

:: TimerAttribute ps // Default:
= TimerId Id // no Id
| TimerSelect SelectState // timer Able
| TimerFunction (TimerFunction ps) // f _ x = x

:: TimerFunction ps :== NrOfIntervals -> ps -> ps
:: NrOfIntervals :== Int

The TimerFunction is the type of the call-back function which is called each time the specified timer
interval has passed. The NrOfIntervals parameter contains the number of times the interval has
passed since the last time the timer function was called. The problem is the program might be busy
with the evaluation of a call-back function. Each call-back function is an indivisible action which will
turn over the control to the process control function when the head normal form is reached on each of
the components of the process state. Such an evaluation might of course take more time than one

8 4 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

timer interval. In that case the NrOfIntervals will be greater than one. It is guaranteed however,
that each timer gets its turn some time, provided that no non-terminating event handlers have been
defined. When the TimerInterval of a timer is less than one, the timer function of this timer will be
called as often as possible. The TimerState argument of the timer function will then always be
one.

1 0 . 6 Interleaved executing communicating processes

Imagine that one has written two interactive Clean applications, an editor and a compiler for a pro-
gramming language. Each of these applications will have its own devices (windows, dialogues, me-
nus, timers) and own program state to remember application specific information. Assume that one
wants to combine both interactive applications into a new one, for instance to make a programming
environment for that language. The Clean I/O system makes this possible and, when applications
are structured in the right way, one can even reuse the original source code without any modifica-
tion.

A Clean program can consist of several interactive processes which can be created dynamically.
Each process defines its own user interface, timers etcetera with corresponding call-back functions.
One can switch between these sub-applications and exchange information between them (like in a
multi-finder). Again the Clean I/O system will take care of all low-level event handling, activation/de-
activation of windows, the switching between menu-bars depending on which application is active
and so on. Each call-back function remains an indivisible action which will turn over the control to the
process control function when the head normal form is reached on each of the components of the
process state. So, on one processor the interactive processes will run interleaved with each other
(but see also 107). The I/O system will call one call-back function after another, depending on
which application is active and which event is raised.

Figure (process groups and processes and how they can communicate via the process state).

Each interactive application can store its private information in its local process state. Several
processes can form a process group. There can be several groups. Processes in the same group
can exchange information via their shared process state (see 10.1.2). Since call-back functions
are indivisible it is guaranteed that only one process at a time can have access to a shared process
state. All applications (whether they are in the same group or not) can communicate via files. Since
files are uniquely attributed it means that a particular file can only be opened for writing by one
(sub-) application at the time. It is good to realise that Clean applications can also communicate with
other (non-Clean) applications running on the computer system in the same way. This means that
Clean applications can be smoothly incorporated in the real world.

INPUT / OUTPUT HANDLING 8 5

:: InitIO l p :== [IOFunction (PState l p)]

OpenIO :: !(IODef .l .p) (.l, .p) !*World -> *World
NewIO :: !(IODef .l .p) (.l, .p) !(IOState .l` .p`) -> IOState .l` .p`
ShareIO :: !(IODef .l .p) .l !(IOState .l` .p) -> IOState .l` .p

Initially a interactive Clean program has only one group with one process (created with OpenIO).
Any process can dynamically create new processes using the other process control functions
shown above. A new interactive process in the same process group can be created by applying
ShareIO on the IOState. With the function NewIO any process can create a new group initially
consisting of one interactive process.

The following functions are planned: The operations NestNewIO and NestShareIO define the nes-
ted form of NewIO and ShareIO. In both cases the currently active process will be hidden and repla-
ced by the argument process. Other processes will still continue to be evaluated. The new process
can spawn new processes as well. Only when this process has terminated, its parent process is
shown again, and the function terminates with the final value of the local program state of the termi-
nated process. Observe that it can be the case that there are processes around that have been
created by the child process. So, the difference between the two operations is that NestNewIO
creates a new group of processes for the new process, while NestShareIO adds the new process
in the group of the father process.

1 0 . 6 . 1 Message passing

We have seen that processes in the same group can communicate via the shared process state
and that all processes can communicate via files obtained from the files system. Interactive Clean
processes can also communicate with each other via message passing.

In the Clean system messages are considered to be abstract events. Conform the Event I/O pa-
radigm of abstract event handling by abstract devices (see 10.3), message events are dealt with
by a new abstract device, the receiver device. Receivers can be created and disposed of dy-
namically. Message passing is polymorphic: the content of a message can be any typeable ex-
pression. The type system is applied to enforce type-safe message passing: it is impossible for a
correctly typed interactive program to send messages of the wrong type.

OpenReceiver :: !(ReceiverDef mess (PState .l .p)) !(IOState .l .p)
-> (!RId mess, ! IOState .l .p)

CloseReceiver :: !(RId mess) !(IOState .l .p) -> IOState .l .p

:: ReceiverDef mess ps
= Receiver [ReceiverAttribute mess ps]

:: ReceiverAttribute mess ps // Default:
= ReceiverSelect SelectState // receiver Able
| ReceiverFunction (ReceiverFunction mess ps) // f _ x = x

:: ReceiverFunction mess ps
:== mess -> ps -> ps

Interactive processes can dynamically open and close an arbitrary number of receivers with the
functions OpenReceiver and CloseReceiver. When a receiver is created the type of message it
can receive is fixed (the message type m can of course be of any (polymorphic) type). The re-
turned RId is important because one needs it when one wants to send a message to this receiver.
Sending a message actually means that an event of appropriate type is raised and put into the
event queue in the IOState. Thanks to the RId it is guaranteed that only correctly typed messages
can be send and that they can only go to the correct receiver.

8 6 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

ASyncSend :: !(RId mess) mess !(IOState .l .p) -> IOState .l .p

Interactive processes can send messages in an asynchronous or synchronous way (with ASync-
Send and SyncSend (not yet implemented) respectively). Both functions require the receivers identi-
fication value of type RId m. Neither function has an effect in case the corresponding receiver does
not exist anymore (because the receiver has been closed or the receiving process has been termi-
nated). ASyncSend is purely asynchronous.

Using SyncSend the sending interactive process blocks until the indicated receiver accepts the mes-
sage. Programmers must be aware that SyncSend involves a context-switch. In case that there
are several interactive processes in the process group it can be possible that after a SyncSend the
shared process state component may be changed by another process in the group. One should
also be aware that processes can send messages to blocked processes such that a deadlock is
possible.

1 0 . 6 . 3 Remote procedure calls

It is not yet possible (since it is not yet implemented in the current release) to define a special kind
of interactive process, the Remote Procedure Call process (RPC process). A new RPC pro-
cess be the first process of new process group (NewRPC) or it can be a member of the current pro-
cess group (ShareRPC). Special about the process is that it contains a special receiver, which can
be addressed via a Remote Procedure Call (SendRPC). A RPC process of type in out is an in-
teractive process that for every in message generates one out message. Analogous to opening a
receiver, the creation of a RPC process yields an identification value which is type parameterised
with the in and out message types.

:: RPCDef in out ps = { rpcFunction :: (in,ps) -> (out,ps),
 rpcInitIO :: InitIO ps }
:: RPCId in out

NewRPC :: (RPCDef in out *(PState .l .s)) (.l,.s)
*(IOState .m .t) -> (RPCId in out, *IOState .m .t)

ShareRPC:: (RPCDef in out *(PState .l .s)) .l
*(IOState .m .s) -> (RPCId in out, *IOState .m .s)

SendRPC :: (RPCId in out) in
*(PState .l .s) -> (SuccessOrFail out,*PState .l .s)

Using SendRPC the sending interactive process blocks until the indicated receiver accepts the
message. Programmers must be aware that SendRPC involves a context-switch. In case that
there are several interactive processes in the process group it can be possible that after a Sen-
dRPC the shared process state component may be changed by another process in the group. One
should also be aware that processes can remotely call processes which are blocked such that a
deadlock is possible.

1 0 . 7 Distributing executing communicating processes

In a distributed implementation interactive processes are implemented as parallel reduction proces-
ses. In Clean process belonging to the same process group can be created on a different proces-
sor. Data sharing is not possible.

INPUT / OUTPUT HANDLING 8 7

NOT SUPPORTED IN CURRENT RELEASE.

11
Defining macros

1 1 . 1 Defining Macros

In this chapter macros are treated. Macros are rewrite rules which are applied at compile time which
can be used to define constants, create in-line substitutions, rename functions etc.

1 1 . 1 Defining Macros

At compile time the right-hand side of the macro definition will be substituted for every occurrence
of the left-hand side. The substitution process is guaranteed to terminate. With a macro definition
one can, for instance, assign a name to a constant such that it can be used as pattern on the left-
hand side. Furthermore, the use of macros can speed up a Clean program since due to the inline
substitution less function calls need to be done. A disadvantage is that more code will be generated
when (parameterised) macros are used instead of non-recursive functions.

MacroDef = [MacroFixityDef] DefOfMacro
MacroFixityDef = (FunctionSymb) [Fix][Prec] ;
DefOfMacro = FunctionSymbol {Variable} :== FunctionBody;

[LocalFunctionAltDefs]

The formal arguments of a macro are not allowed to contain constants: only variables are allowed as
formal argument. A macro rule always consists of a single alternative.
• Macro definitions are not allowed to be cyclic to ensure that the substitution process terminates.

Example (macros):

Black :== 1
White :== 0

::Color:== Int

Invert :: Color -> Color
Invert Black = White
Invert White = Black

Example (example: macro to write (a?b) for lists instead of [a:b] and its use in the function map).

(?) infixr 5
(?) h t :== [h:t]

map :: (a -> b) [a] -> [b]
map f (x?xs) = f x ? map f xs
map f [] = []

9 0 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

Macros can contain local function definitions. These definitions will also be substituted inline. In this
way complicated substitutions can be achieved resulting in efficient code.

Example (example: macros can be used to speed up frequently used functions. See for instance the
definition of the function foldl in StdList).

foldl op r l :== foldl r l
where

foldl r [] = r
foldl r [a:x] = foldl (op r a) x

sum list = foldl (+) 0 list

After substitution of the macro foldl a very efficient function sum will be generated by the compiler:

sum list = foldl 0 list
where

foldl r [] = r
foldl r [a:x] = foldl ((+) r a) x

The expansion of the macros takes place before type checking. Type specifications of macro rules
is not possible. When operators are defined as macros, fixity and associativity can be defined.

12
Modules

1 2 . 1 Definition and implementation modu-
les

1 2 . 2 Importing definitions
1 2 . 3 Exporting definitions

A Clean program is composed of modules to enable separate compilation and to provide a facility to
hide actual implementations of types and functions.

1 2 . 1 Definition and implementation modules

The Clean module system is inspired by the module system of Modula-2 (Wirth, 1982). Like in Mo-
dula2, a Clean program consists of a collection of definition modules and implementation mod-
ules. An implementation module and a definition module correspond to each other if the names of
the two modules are the same. The basic idea is that the definitions given in an implementation mo-
dule only have a meaning in the module in which they are defined (see Section 3.5) unless these
definitions are exported by putting them into the corresponding definition module (see section 4.4).
In that case they also have a meaning in those other modules in which the definitions are imported
(see Section 4.3).

CleanProgram = {Module}+
Module = DefinitionModule

| ImplementationModule
DefinitionModule = definition module ModuleSymb ;

{Definition}
| system module ModuleSymb ;

{Definition}
ImplementationModule = [implementation] module ModuleSymb ;

{Definition}

• Each Clean module has to be put in a separate file.
• The name of a module (i.e. the module name) should be the same as the name of the file (minus

the suffix) in which the module is stored.
• A definition module should have as .dcl as suffix, an implementation module should have as

.icl as suffix.
• A definition module can have at most one corresponding implementation module.
• Every implementation module (except the main module, see 11.1.2) must have a corresponding

definition module.

1 2 . 1 . 1 Separate compilation

So, if you want to export a definition, you simply repeat the definition in the corresponding definition
module. For some kind of definitions in the implementation module it is only allowed to repeat a

9 2 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

certain part of it in the definition module (generally the type). The idea is to hide the actual
implementation from the outside world. The is good for software engineering reasons while another
advantage is that an implementation module can be recompiled separately without a need to
recompile other modules. Recompilation of other modules is only necessary when a definition
module is changed. All modules depending on the changed module have to be recompiled as well.
Implementations of functions, graphs and class instances are therefore only allowed in
implementation modules. They are exported by only specifying their type definition in the definition
module. Also the right-hand side of any type definition can remain hidden. In this way an abstract
data type is created (see 8.2.4).

Definition = ImportDef
| TypeDef
| ClassDef
| FunctionDef
| GraphDef
| MacroDef

Example (definition module):

definition module ListOperations

::complex // abstract type definition

re :: complex -> Real // type of function taking the real part of a complex number
im :: complex -> Real // type of function taking the imaginary part of a complex
mkcomplex :: Real Real -> Complex // type of function making a complex number

Example (corresponding implementation module):

implementation module ListOperations

::complex :== (!Real,!Real) // type synonym

re :: complex -> Real // type of function followed by its implementation
re (frst,_) = frst

im :: complex -> Real
im (_,scnd) = scnd

mkcomplex :: Real Real -> Complex
mkcomplex frst scnd = (frst,scnd)

1 2 . 1 . 2 Special kind of modules

The main or start module

The main or start module is the top-most module (root module) of a Clean program.
• Only in the main module one can leave out the keyword implementation in the module

header. In that case the implementation module does not need to have a corresponding definition
module.

Evaluation of a Clean program consists of the evaluation of the application defined in the right-
hand side of the Start rule to normal form. The right-hand side of the Start rule is regarded to be
the initial expression to be computed. The definition of the left-hand side consists of the symbol
Start with one optional argument (of type *World), which is the environment parameter that is
necessary to perform I/O actions (see Chapter 10). One can of course add a Start rule to any mo-
dule. This can be handy for testing functions defined in such a module: to evaluate such a Start rule
simply generate an application with the module as root and execute it.
• In the main module a Start rule has to be defined.

MODULES 9 3

Example (a very tiny Clean program):

module hello

Start = "Hello World!"

System definition and implementation modules

System modules are special modules. A system definition module indicates that the correspond-
ing implementation module is a system implementation module which does not contain ordinary
Clean rules. In system implementation modules it is allowed to define foreign functions: the bodies
of these foreign functions are written in another language than Clean. System implementation modu-
les make it possible to create interfaces to operating systems, to file systems or to increase execu-
tion speed of heavily used functions or complex data structures. Typically, predefined function and
operators for arithmetic and File I/O are implemented as system modules.

System implementation modules may use machine code, C-code, abstract machine code (PABC-
code) or code written in any other language. What exact is allowed is dependent from the Clean
compiler used and the platform for which code is generated. The keyword code is reserved to make
it possible to write Clean programs in a foreign language. This is not treated in this reference man-
ual.

When one writes system implementation modules one has to be very careful because the correct-
ness of the functions can no longer be checked by the Clean compiler. Therefore, the programmer is
now responsible for the following:
! The function must be correctly typed.
! When a function destructively updates one of its (sub-)arguments, the corresponding type of

the arguments should have the uniqueness type attribute. Furthermore, those arguments must
be strict.

1 2 . 2 Importing definitions

Via an import statement a definition exported by a definition module (see 11.3) can be imported
into a (definition or implementation) module. A symbol is said to be defined in a module if it either is
implicitly defined (i.e. imported from another module) or when it is explicitly defined (i.e. in a
definition in the module itself).

ImportDef = import {ModuleSymb}-list ;
| from ModuleSymb import {ImportSymbols}-list ;

ImportSymbols = FunctionSymb
| ConstructorSymb
| SelectorVariable
| FieldSymb
| MacroSymb
| TypeSymb
| ClassSymb

There are two kind of import statements, explicit imports and implicit imports.

Explicit imports are import statements in which the definitions to import are explicitly specified.
The symbol names uniquely identifying the definitions to import are listed together with the name of
the module to import them from.

Explicit imports can be used to avoid unintended name clashes that can occur via implicit imports.

9 4 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

Implicit imports are import statements in which only the module name to import from is mentioned.
In this case all symbols that are exported from that module are imported and also all symbols that on
their turn are imported in the mentioned definition module, and so on. So, all related definitions from
various modules can be imported with one single import. This opens the possibility for definition
modules to serve as a kind of 'pass-through' module (see for instance the definition module StdEnv
specified below). With such a module one can import a complete environment with one simple sta-
tement. Hence, it is meaningful to have definition modules with import statements but without any
definitions and without a corresponding implementation module. With an implicit import only those
symbols are imported which are not already explicitly defined in the importing module.

Example (implicit import): all (arithmetic) rules which are predefined can be imported easily with one import
statement:

import StdEnv

importing implicitly all definitions imported by the definition module 'StdEnv' which is defined below
(note that definition module 'StdEnv' does not have a corresponding implementation module) :

definition module StdEnv

import
StdBool, StdChar, StdInt, StdReal, StdString

• If a symbol is explicitly defined it cannot be imported from another module as well.
• A symbol can be imported more than once only if those imports refer to the same definition.

A module depends on another module if it imports a symbol from that other module.
• Cyclic dependencies of definition modules are prohibited, i.e. if a definition module M1 depends

on another definition module M2 then M2 is not allowed to depend on M1.

1 2 . 3 Exporting definitions

The definitions given in an implementation module only have a meaning in the module in which they
are defined (see Section 3.5) unless these definitions are exported by putting them into the corres-
ponding definition module. In that case they also have a meaning in those other modules in which
the definitions are imported (see Section 12.2).
• The definitions given in a definition module have to be repeated in the corresponding

implementation module. In the implementation module all definitions have to get an appropriate
implementation as well (this holds for functions, abstract data types, class instances).

• An abstract type definition is exported by specifying the left-hand side of a type rule in the
definition module. In the corresponding implementation module the abstract type has to be de-
fined again but then right-hand side has to be defined as well. It can be either an algebraic type,
record type or synonym type definition. For such an abstract data type only the name of the
type is exported but not its definition.

• A function, global graph or class instance is exported by repeating the type header in the
definition module. For optimal efficiency it is recommended also to specify strictness annotations
(see 8.5). For library functions it is recommended also to specify the uniqueness type attributes
(see Chapter 9). The implementation of the function, graph, class instance has to be given in
the implementation module.

13
Time and space efficiency

1 3 . 1 Space consumption of Clean structu-
res

1 3 . 2 Size limitations
1 3 . 3 Lazy evaluation versus strict evalua-

tion
1 3 . 4 Destructive updates using unique-

ness typing

1 3 . 5 Graphs versus constant functions
versus macros

1 3 . 6 The costs of overloading
1 3 . 7 Concurrency
1 3 . 8 Other efficiency issues

Programming in a functional language means that one should focus on algorithms and without worry-
ing about all kinds of efficiency details. However, when large applications are being written it may
happen that this attitude results in a program which is unacceptably inefficient in time and/or space.

There are several ways in which a Clean programmer can improve the time/space behaviour of a
program. In this chapter we give some suggestions how this can be done. No new language con-
structs are introduced here. We just give some additional information about the space and time be-
haviour of the data structures and language constructs introduced in the previous chapters. Most of
this information is highly implementation dependent. So, in reality it might be slightly different. Yet we
think that the information given in this chapter might be of practical use for writing big applications.

1 3 . 1 Space consumption of Clean structures

In this section we give a rough indication of the space occupied by Clean data structures. In this
context it is important to know that in general the occupied space will depend on whether these data
structures appear in a strict or appear in a lazy context (see Section 8.5). Data structures in a lazy
context are passed via references on the A-stack which point to nodes stored in the heap (see
Plasmeijer and Van Eekelen, 1993). Data structures of the basic types (Int, Real, Char or Bool) in
a strict context are stored on the B-stack or in registers. This is also the case for these strict basic
types when they are part of a record or tuple in a strict context. Data structures living on the B-stack
are passed unboxed. They consume less space (because they are not part of a node) and can
be treated much more efficiently. When a function is called in a lazy context its data structures are
passed in a node (boxed). The amount of space occupied is now also depending on the arity of
the function.

In the table below the amount of space consumed in the different situations is summarised (for the
lazy as well as for the strict context). For the size of the elements one can take the size consumed in
a strict context.

Type Arity Lazy context (bytes) Strict context (bytes) Comment

9 6 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

Int, Bool - 8 4

Int (0≤n≤32), Char - - 4 node is shared

Real - 12 8

Small Record n 4 + Σ size elements Σ size elements total length≤12

Large Record n 8 + Σ size elements Σ size elements

Tuple 2 12 Σ size elements

>2 8 + 4*n Σ size elements

{a} n 20 + 4*n 12 + 4*n

 !Int n 20 + 4*n 12 + 4*n

 !Bool,!Char n 20 + 4*ciel(n/4) 12 + 4*ciel(n/4)

 !Real n 20 + 8*n 12 + 8*n

 !Tuple, !Record n 20 + size rec/tup*n 12 + size rec/tup*n

Hnf 0 - 4 + size node node is shared

1 8 4 + size node

2 12 4 + size node also for [a]

>2 8 + 4*n 4 + size node

Pointer to node - 4 4

Function 0,1,2 12

>3 4 + 4*n

1 3 . 2 Size limitations

There are some implementation dependent restrictions which play a role when large programs are
being written. Here they come:
- the arity of functions and constructors has to be ≤ 32. This also holds for the number of elements

in predefined data structures like a tuple or record. There is however no restriction on the number
of elements in an array (besides restrictions imposed on the amount of memory on the machine).

- the number of files which can be open at the same time has to be ≤ 16.
- the code size of an implementation module has to be ≤ 32K (Macintosh only caused by limitati-

ons of the linker on the Mac).

1 3 . 3 Lazy evaluation versus strict evaluation

As one can deduce from the table above strict data structures generally consume less space than
lazy data structures. Furthermore, unboxed elements can be put on a stack or kept in registers
which also has a positive influence on the evaluation speed. In general one can say that strictness
gives a much better space and time behaviour of the program. However, Clean is by default a lazy
functional language because laziness gives notational advantages.

Lazy evaluation has the following advantages (+) / disadvantages (-) compared with eager (strict)
evaluation:
+ an expression is only evaluated when its value is needed to produce the result (normal form) of

the Start expression ;
+ one can work with infinite data structures (e.g. [1..]);
+ only those computations which contribute to the final result are computed (for some algorithms

this is a clear advantage while it generally gives a greater expressive freedom);
- it is unknown when a lazy expression will be computed (disadvantage for debugging, for cont-

rolling evaluation order);

TIME AND SPACE EFFICIENCY 9 7

- strict evaluation is in general much more efficient, in particular for objects of basic types, non-re-
cursive types and tuples and records which are composed of such types;

-/+ in general a strict expression (e.g. 2 + 3 + 4) takes less space than a lazy one, however, some-
times the other way around (e.g. [1..1000]);

Example (functions with strict arguments of basic type are more efficient).

Ackerman :: Int Int -> Int
Ackerman 0 j = inc j
Ackerman i 0 = Ackerman (dec i) 1
Ackerman i j = Ackerman (dec i) (Ackerman i (dec j))

The computation of Ackerman 3 7 takes 14.8 seconds + 0.1 seconds for garbage collection on an old
fashion MacII (5Mb heap). When both arguments are annotated as strict it will take 1.5 seconds + 0.0 sec-
onds garbage collection. The gain is one order of magnitude. Instead of rewriting graphs the calculation
is performed using stacks and registers where possible. The speed is comparable with a recursive call in
highly optimised C or with the speed obtainable when the function was programmed directly in assem-
bly.

So, lazy evaluation gives a notational freedom but it can cost space and time. In Clean the default
lazy evaluation can therefore be turned into eager evaluation in several ways:
+ One can define (partially) strict data structures (see 8.5.3). Whenever such a data structure oc-

curs in a strict context (see 8.5.1), its strict components will be evaluated. Warning: infinite data
structures thus defined will cause non-termination when put into a strict context.

+ The Clean compiler has a built-in strictness analyser based on abstract reduction (Nöcker,
1993) (it can be optionally turned off). The analyser searches for strict arguments of a function
and annotate them as strict (see 8.5.1). In this way lazy arguments are automatically turned into
strict ones. This optimisation does not influence the termination behaviour of the program. It ap-
pears that the analyser can find much information. The analysis itself is quite fast.

+ The strictness analyser cannot find all strict arguments. Therefore one can also manually anno-
tate a function as being strict in a certain argument or in its result (see 8.5.1). Warning: when the
corresponding expression is non-terminating the annotation will invoke a non-terminating eval-
uation when such a function is being evaluated.

+ The order of evaluation in a function body can be influenced with a strict let expression (see
6.4). Again this may lead to non-termination.

1 3 . 4 Destructive updates using uniqueness typing

In principle it is possible to update a uniquely typed function argument (*) destructively when the
argument does not reappear in the function result (see Chapter 9). Performing destructive updates
is only sensible when information is stored in nodes (and hence not for elements of basic type
(Int, Real, Char or Bool) in a strict context because they are stored on the B-stack or in registers).

Destructive updates of important predefined data structures such arrays, records and files of course
can have a big influence on the space and time behaviour (a new node does not have to be clai-
med and filled, the garbage collector is invoked less often and the locality of memory references is in-
creased) of programs. So, applications written using these data structures uniquely can run much
more efficient in less memory.

In principle it is possible that user-defined unique data structures are also destructively updated by
the Clean system : the space being occupied by a function argument of unique type can be reused
destructively to construct the function result when (part of) this result is of the same type. So, a
more space and time efficient program can be obtained by turning heavily used data structures into
unique data structures. This is not just a matter of changing the uniqueness type attributes (like
turning a lazy data structure into a strict one). A unique data structure also has to be used in a

9 8 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

“single threaded” way (see Chapter 9). This means that one might have to restructure parts of the
program to maintain the unicity of objects. We plan to incorporate this a one of the next versions of
the Clean system.

1 3 . 5 Graphs versus constant functions versus macros

With a macro definition constants and simple functions can be textually substituted at compile time
(see Chapter 10). This saves a function call and makes basic blocks larger (see Plasmeijer and Van
Eekelen, 1993) such that better code can be generated. A disadvantage is that also more code will
be generated. Inline substitution is also one of the regular optimisations performed by a compiler. To
avoid code explosion a compiler will generally not substitute big functions. Macros give the pro-
grammer a possibility to control the substitution process to get an optimal trade-off between the effi-
ciency of code and the size of the code.

The difference between a graph and a constant function is that multiple references to a graph will re-
sult in sharing of that graph (see Chapter 5) while multiple reference to a (constant) function will re-
sult in equally many function calls (see Chapter 6). Graphs have the property that they are compu-
ted only once (call by need) and that their value is remembered within the scope they are defined
in. A constant function is evaluated each time it is applied. A graph saves execution-time at the cost
of space consumption. A constant function saves space at the cost of execution time. So, use
graphs when the computation is time-consuming while the space consumption is small and constant
functions in the other case.

1 3 . 6 The costs of overloading

In Section 8.4 the overloading mechanism of Clean is treated. The use of overloading and type
classes certainly gives a lot of notational convenience. However, one should be aware of the time
and space costs that might be caused by using overloading and type classes.

When an overloaded function is used in such a way that the system can replace the overloaded
function by the concrete one, no overhead is introduced (see Section 8.4).

Overloading can cause code explosion. When in a certain function another overloaded function is
applied in such a way that the type system cannot deduce which concrete instance of the overloa-
ded function has to be used the system will in principle generate several versions of the function:
one version is made for each of the concrete (combination of) instances possible. In principle spe-
cial versions will only be generated for instantiations of basic types. Although the system avoids to
generate versions that are not being used, code explosion might occur when all versions are being
used or when the system simply cannot tell which versions are used. The latter can be the case
when such functions are being exported to other modules.

Overloading can cause inefficiency. Instances which are recursively defined in terms of the class it-
self can lead to an infinite amount of concrete instances. New instances can also be declared in
modules that import the overloaded function. To handle all these cases the system will generate one
special version of the overloaded function which is parametrised with a type class record (see the
introduction of 8.4). In such cases overloading is implemented by using records as a dictionary in
which the concrete function is looked up. This means that the record is used to store higher order
functions. Calling such a higher function in this way is much more inefficient than a direct call of the
corresponding concrete function. One can avoid unnecessary efficiency loss as follows. When an
overloaded function is exported it is advised also to export the concrete instances of the overloaded

TIME AND SPACE EFFICIENCY 9 9

functions. The concrete names of the functions need not to be exported. The system needs only to
know which concrete instances already exist.

1 3 . 7 Concurrency

The process annotations of Clean are designed to make parallel evaluation on loosely coupled par-
allel machine architectures possible. A loosely coupled parallel architecture is defined as a
multi-processor system which consists of a number of self-contained computers, i.e. sparsely con-
nected processors each with private memory. An important property of such systems is that for
each processor it is more efficient to access objects located in its own local memory than to use the
communication medium to access remote objects. In order to achieve an efficient implementation it is
necessary to map the computation graph to the physical processing elements in such a way that
the communication overhead due to the exchanging of information is relatively small. Therefore, the
graph to be rewritten has to be divided into a number of sub-graphs (grains) indicating the parts of
the program graph that can be reduced in parallel. A real speed-up on parallel architectures can only
be achieved if redexes that yield a sufficient large amount of computation, are evaluated in parallel
while the intermediate links are sparsely used (coarse grain parallelism).

1 3 . 8 Other efficiency issues

Here are some additional suggestions how to make your program more efficient:
+ Transform a recursive function to a tail-recursive function where possible.
+ Accumulate results in parameters instead of in right-hand side results.
+ When functions return multiple results put these results in a strict tuple (can be indicated in the

type).
+ Use macros for constant expressions instead of CAF's or functions.
+ Export the strictness information to other modules (the compiler will warn you if you don't).
+ Selections in a lazy context can better be transformed to functions which do a pattern match.
+ Higher order functions are nice but very inefficient, it is much better to use first order functions.
+ Constructors of high arity are inefficient.
+ Increase the heap space in the case that the garbage collector is going bananas.

A
Context-free syntax description

A . 1 Clean program
A . 2 Function definition
A . 3 Graph definition and expression
A . 4 Macro definition
A . 5 Type definition

A . 6 Class definition
A . 7 Symbols
A . 8 Identifiers
A . 9 Denotations

In this chapter the context-free syntax of Clean is given. In Section A.1 the construction of a Clean
program out of definition and implementation modules is given. Hereafter the syntax for, respecti-
vely, defining functions (Section A.2), graphs (Section A.3,A.4), macros (Section A.4) and types
(Section A.5) is presented. Overloading is treated in Section A.6. These sections have some pro-
duction rules in common which are collected in Section A.7,A.8 and A.9.
Notice that the lay-out rule (see Section 3.6) permits the omission of the semi-colon ('; ') which
ends a definition and of the braces ('{ ' and '} ') which are used to group a list of definitions. The de-
scription of the identifiers and literals can be found in Section 3.4.

The following notational conventions are used in the context-free syntax descriptions:

[notion] means that the presence of notion is optional
{notion} means that notion can occur zero or more times
{notion}+ means that notion occurs at least once
{notion}- l ist means one or more occurrences of notion separated by comma's
terminals are printed in bold 10 pts courier
terminals that can be left out in lay-out mode are printed in outlined courier
symbols are printed in italic and represent identifiers and literals (see also Section 3.4)
~ is used for concatenation of notions
{notion}/~str means the longest expression not containing the string str

A . 1 Clean program

CleanProgram = {Module}+
Module = DefinitionModule

| ImplementationModule
DefinitionModule = definition module ModuleSymb ;

{Definition}
| system module ModuleSymb ;

{Definition}
ImplementationModule = [implementation] module ModuleSymb ;

{Definition}

Definition = ImportDef
| TypeDef
| ClassDef
| FunctionDef
| GraphDef
| MacroDef

1 0 2 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

ImportDef = import {ModuleSymb}-list ;
| from ModuleSymb import {ImportSymbols}-list ;

ImportSymbols = FunctionSymb
| ConstructorSymb
| SelectorVariable
| FieldSymb
| MacroSymb
| TypeSymb
| ClassSymb

A . 2 Function definition

FunctionDef = [FunctionTypeDef] DefOfFunction

FunctionTypeDef = FunctionSymb : : FunctionType ;
| (FunctionSymb) [Fix][Prec] [: : FunctionType] ;

FunctionType = [{[Strict] BrackType}+ - >] Type [ClassContext] [UnqTypeUnEqualities]
ClassContext = | ClassSymb-list TypeVariable {& ClassSymb-list TypeVariable }
UnqTypeUnEqualities = , [{{UniqueTypeVariable}+ < = UniqueTypeVariable}-list]

DefOfFunction = {FunctionAltDef}+
FunctionAltDef = FunctionSymbol {Pattern}

{[| Guard] = [>] FunctionBody}+
[LocalFunctionAltDefs]

Pattern = [Variable = :] BrackPattern
BrackPattern = ConstructorSymbol

| PatternVariable
| BasicValuePattern
| ListPattern
| TuplePattern
| RecordPattern
| ArrayPattern
| (GraphPattern)

GraphPattern = ConstructorSymbol {Pattern}
| GraphPattern ConstructorSymb GraphPattern
| Pattern

PatternVariable = Variable
| _

BasicValuePattern = BasicValue

ListPattern = [[{LGraphPattern}-list [: GraphPattern]]]
LGraphPattern = GraphPattern

| CharsDenot

TuplePattern = (GraphPattern, {GraphPattern} -list)

RecordPattern = { [TypeSymb|] {FieldSymbol [= GraphPattern]} -list}

ArrayPattern = { {GraphPattern} -list}
| { {ArrayIndex = GraphPattern}-list}
| StringDenot

Guard = BooleanExpr
BooleanExpr = GraphExpr

FunctionBody = {StrictLet}+
RootExpression ;
[LocalFunctionDefs]

StrictLet = let! { {GraphDef}+ } i n

RootExpression = GraphExpr

LocalFunctionDefs = [with] { {LocalDef}+ }
LocalDef = GraphDef

| FunctionDef

CONTEXT-FREE SYNTAX DESCRIPTION 1 0 3

LocalFunctionAltDefs = [where] { {LocalDef}+ }

A . 3 Graph definition and expression

GraphDef = Selector = [:] GraphExpr ;
Selector = BrackPattern

Graph = [Process] GraphExpr
GraphExpr = Application

| CaseExpr
| LambdaAbstr

Application = {BrackGraph}+
| GraphExpr OperatorSymbol GraphExpr

BrackGraph = NodeSymbol
| GraphVariable
| BasicValue
| List
| Tuple
| Record
| RecordSelection
| Array
| ArraySelection
| (GraphExpr)

GraphVariable = Variable
| SelectorVariable

BasicValue = IntDenot
| RealDenot
| BoolDenot
| CharDenot

List = [[{LGraphExpr} -list [: GraphExpr]]]
| [GraphExpr [,GraphExpr]. .[GraphExpr]]
| [GraphExpr \ \ {Qualifier}-list]

LGraphExpr = GraphExpr
| CharsDenot

Qualifier = Generators {|Guard}
Generators = {Generator}-list

| Generator {& Generator}
Generator = Selector < - ListExpr

| Selector <-: ArrayExpr
ListExpr = GraphExpr
ArrayExpr = GraphExpr

Tuple = (GraphExpr, {GraphExpr}-list)

Record = { [TypeSymb|][RecordExpr &][{FieldSymbol = GraphExpr}-list]}
RecordSelection = RecordExpr. [TypeSymb.]FieldSymb
RecordExpr = GraphExpr

Array = { {GraphExpr}-list}
| {ArrayExpr & [{ArrayIndex = GraphExpr}-list] [\ \ {Qualifier}-list]}
| { [ArrayExpr &] GraphExpr \ \ {Qualifier}-list}
| StringDenot

ArrayIndex = [{IntegerExpr}-list]
ArraySelection = ArrayExpr.ArrayIndex

CaseExpr = case GraphExpr o f
{ {CaseAltDef}+ }

| i f BrackGraph BrackGraph BrackGraph
CaseAltDef = [Pattern] {[| Guard] - > FunctionBody}+

[LocalFunctionAltDefs]

LambdaAbstr = \ {Pattern}+ - > GraphExpr

Process = { * I * }
| { * P [a t ProcIdExpr] * }

ProcIdExpr = GraphExpr

1 0 4 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

A . 5 Macro definition

MacroDef = [MacroFixityDef] DefOfMacro
MacroFixityDef = (FunctionSymb) [Fix][Prec] ;
DefOfMacro = FunctionSymbol {Variable} :== FunctionBody;

[LocalFunctionAltDefs]

A . 6 Type definition

TypeDef = AlgebraicTypeDef
| RecordTypeDef
| SynonymTypeDef
| AbstractTypeDef

AlgebraicTypeDef = : :TypeLhs = ConstructorDef {|ConstructorDef} ;
RecordTypeDef = : :TypeLhs = { {FieldSymbol : : [Strict] Type}-list};
SynonymTypeDef = : :TypeLhs :== Type ;
AbstractTypeDef = : :TypeLhs ;

TypeLhs = [*]TypeConstructor {E .[*] TypeVariable} {[*] TypeVariable}
TypeConstructor = TypeSymb

UnqTypeAttrib = *
| UniqueTypeVariable:
| .

ConstructorDef = ConstructorSymb {[Strict] BrackType}
| (ConstructorSymb) [Fix][Prec] {[Strict] BrackType}

Fix = infixl
| infixr
| infix

Prec = Digit
Strict = !

Type = {BrackType}+
BrackType = [UnqTypeAttrib] SimpleType
SimpleType = TypeConstructor

| TypeVariable
| BasicType
| PredefAbstrType
| ListType
| TupleType
| ArrayType
| ArrowType
| (Type)

TypeConstructor = TypeSymb
| []
| ({, }+)
| { }
| {!}
| {#}
| (->)

BasicType = Int
| Real
| Char
| Bool

PredefAbstrType = World
| File
| ProcId
| Void

ListType = [Type]
TupleType = ([Strict] Type, {[Strict] Type}-list)
ArrayType = { [Strict] Type}

| { #BasicType}
ArrowType = ({BrackType}+ - > Type)

CONTEXT-FREE SYNTAX DESCRIPTION 1 0 5

A . 6 Class definition

ClassDef = TypeClassDef
| TypeClassInstanceDef
| TypeClassInstanceExportDef

TypeClassDef = class ClassSymb TypeVariable [ClassContext]
[[where] { {ClassMemberDef}+ }]

| class FunctionSymb TypeVariable: : FunctionType;
| class (FunctionSymb) [Fix][Prec] TypeVariable: : FunctionType;

ClassMemberDef = FunctionTypeDef
[MacroDef];

TypeClassInstanceDef | instance ClassSymb [BrackType [default] [ClassContext]]
[[where] { {DefOfFunction}+ }]

TypeClassInstanceExportDef
= export ClassSymb BasicType-list;

A . 7 Symbols

NodeSymbol = FunctionSymbol
| ConstructorSymbol

FunctionSymbol = FunctionSymb
| (FunctionSymb)

ConstructorSymbol
= ConstructorSymb
| (ConstructorSymb)

OperatorSymbol = FunctionSymb
| ConstructorSymb

ModuleSymb = LowerCaseId | UpperCaseId | FunnyId
FunctionSymb = LowerCaseId | UpperCaseId | FunnyId
ConstructorSymb = UpperCaseId | FunnyId
SelectorVariable = LowerCaseId
Variable = LowerCaseId
MacroSymb = LowerCaseId | UpperCaseId | FunnyId
FieldSymb = LowerCaseId
TypeSymb = UpperCaseId | FunnyId
TypeVariable = LowerCaseId
UniqueTypeVariable = LowerCaseId
ClassSymb = LowerCaseId | UpperCaseId | FunnyId

A . 8 Identifiers

LowerCaseId = LowerCaseChar~{IdChar}
UpperCaseId = UpperCaseChar~{IdChar}
.ib.FunnyId; = {SpecialChar}+

LowerCaseChar = a | b | c | d | e | f | g | h | i | j
| k | l | m | n | o | p | q | r | s | t
| u | v | w | x | y | z

UpperCaseChar = A | B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z

SpecialChar = ~ | @ | # | $ | % | ^ | ? | !
| + | - | * | < | > | \ | / | | | & | =
| :

IdChar = LowerCaseChar
| UpperCaseChar
| Digit
| _ | `

A . 9 Denotations

IntegerDenot = [Sign]~{Digit}+ // decimal

1 0 6 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

| [Sign]~0~{OctDigit}+ // octal
| [Sign]~0 x~{HexDigit}+ // hexadecimal

Sign = + | - | ~
RealDenot = [Sign~]{Digit~}+. {~Digit}+[~E [~Sign]{~Digit}+]
BoolDenot = True | False
CharDenot = CharDel~AnyChar/~CharDel.CharDel
CharsDenot = CharDel~{AnyChar/~CharDel}+.CharDel
StringDenot = StringDel~{AnyChar/~StringDel}~StringDel

AnyChar = IdChar | ReservedChar | Special
ReservedChar = (|) | { | } | [|] | ; | , | .
Special = \ n | \r | \ f | \ b // newline,return,formf,backspace

| \ t | \ \ | \CharDel // tab,backslash,character delete
| \StringDel // string delete
| \ {OctDigit}+ // octal number
| \ x{HexDigit}+ // hexadecimal number

Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
OctDigit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
HexDigit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| A | B | C | D | E | F
| a | b | c | d | e | f

CharDel = '
StringDel = "

B
Standard library

B . 1 Clean’s Standard Environment
B . 2 Creating interactive processes

B . 3 Event based I/O
B . 4 Operations for parallel evaluation

The standard library of Clean not only contains the well-known functions for arithmetic and mani-
pulation of lists, arrays and the like, but there is also a lot of support for file I/O and window based
I/O. The new Clean 1.0 I/O library makes the specification and combination of interactive programs
possible on a very high level of abstraction. Notice that this new I/O library is not yet available on
all platforms. The old Clean 0.8 library has been converted to Clean 1.0 syntax and is available on
all platforms.
In the Clean library there are many modules. Modules which names start with Std… are the top-
most interface modules of the library to be used by Clean programmers. In this appendix we have
printed the names of types, constructors, functions, type-classes in bold to assist the reader in
finding a definition.
The types of the functions in Std... are as general as possible and therefore include uniqueness
type information (the funny dots and u: etc. in the types). For reasons of efficiency also the strict-
ness information derived by the strictness analyser is exported (the exclamation marks in the
types). For most programmers this information will often be of no importance, and if this is the case,
simply ignore these funny marks.

B . 1 Clean’s Standard Environment

definition module StdEnv

import
StdOverloaded,
StdClass,

StdBool,
StdInt,
StdReal,
StdChar,

StdList,
StdCharList,
StdTuple,
StdArray,
StdString,
StdFunc,
StdMisc,

StdFile,

StdEnum

1 0 8 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

B . 1 . 1 StdOverloaded: predefined overloaded operations

definition module StdOverloaded

class (+) infixl 6 a :: !a !a -> a // Add arg1 to arg2
class (-) infixl 6 a :: !a !a -> a // Subtract arg2 from arg1
class zero a :: a // Zero (unit element for addition)

class (*) infixl 7 a :: !a !a -> a // Multiply arg1 with arg2
class (/) infix 7 a :: !a !a -> a // Divide arg1 by arg2
class one a :: a // One (unit element for multiplication)

class (^) infixr 8 a :: !a !a -> a // arg1 to the power of arg2
class abs a :: !a -> a // Absolute value
class sign a :: !a -> Int // 1 (pos value) -1 (neg value) 0 (if zero)
class ~ a :: !a -> a // -a1

class (==) infix 4 a :: !a !a -> Bool // True if arg1 is equal to arg2

class (<) infix 4 a :: !a !a -> Bool // True if arg1 is less than arg2

class toInt a :: !a -> Int // Convert into Int
class toChar a :: !a -> Char // Convert into Char
class toBool a :: !a -> Bool // Convert into Bool
class toReal a :: !a -> Real // Convert into Real
class toString a :: !a -> String // Convert into String

class fromInt a :: !Int -> a // Convert from Int
class fromChar a :: !Char -> a // Convert from Char
class fromBool a :: !Bool -> a // Convert from Bool
class fromReal a :: !Real -> a // Convert from Real
class fromString a :: !String -> a // Convert from String

class length m :: !(m a) -> Int // Number of elements in arg
// used for list like structures (linear time)

class (%) infixl 9 a :: !a !(!Int,!Int) -> a // Slice a part from arg1

class (+++) infixr 5 a :: !a !a -> a // Append args

B . 1 . 2 StdClass: predefined classes

definition module StdClass

import StdOverloaded
from StdBool import not

class PlusMin a | +, -, zero a

class MultDiv a | *, /, one a

class Arith a | PlusMin, MultDiv, abs, sign, ~ a

class IncDec a | + , - , one , zero a
where

inc :: !a -> a | + , one a
inc x :== x + one

dec :: !a -> a | - , one a
dec x :== x - one

class Enum a | <, IncDec a

class Eq a | == a
where

(<>) infix 4:: !a !a -> Bool | Eq a
(<>) x y :== not (x == y)

class Ord a | < a
where

(>) infix 4:: !a !a -> Bool | Ord a
(>) x y :== y < x

(<=) infix 4::!a !a -> Bool | Ord a
(<=) x y :== not (y<x)

STANDARD LIBRARY 1 0 9

(>=) infix 4::!a !a -> Bool | Ord a
(>=) x y :== not (x<y)

min::!a !a -> a | Ord a
min x y :== if (x<y) x y

max::!a !a -> a | Ord a
max x y :== if (x<y) y x

B . 1 . 3 StdBool: operations on Booleans

system module StdBool

import StdOverloaded

instance == Bool

instance toBool Bool
instance toString Bool

instance fromBool Bool
instance fromBool {#Char} // String :== {#Char}

// Additional Logical Operators:

not :: !Bool -> Bool // Not arg1
(||) infixr 2 :: !Bool Bool -> Bool // Conditional or of arg1 and arg2
(&&) infixr 3 :: !Bool Bool -> Bool // Conditional and of arg1 and arg2

// Miscellaneous:

otherwise :== True // To be used in guards

B . 1 . 4 StdInt: operations on Integers

system module StdInt

import StdOverloaded

instance + Int
instance - Int
instance zero Int

instance * Int
instance / Int
instance one Int

instance ^ Int
instance abs Int
instance sign Int
instance ~ Int

instance == Int

instance < Int

instance toInt Int
instance toChar Int
instance toReal Int
instance toString Int

instance fromInt Int
instance fromInt Char
instance fromInt Real
instance fromInt {#Char} // String :== {#Char}

// Additional functions for integer arithmetic:

(mod) infix 7 :: !Int !Int -> Int // arg1 modulo arg2
(rem) infix 7 :: !Int !Int -> Int // remainder after division
gcd :: !Int !Int -> Int // Greatest common divider
lcm :: Int !Int -> Int // Least common multiple

// Test on Integers:

isEven :: !Int -> Bool // True if arg1 is an even number

1 1 0 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

isOdd :: !Int -> Bool // True if arg1 is an odd number

// Operators on Bits:

(bitor) infix 6 :: !Int !Int -> Int // Bitwise Or of arg1 and arg2
(bitand) infix 6 :: !Int !Int -> Int // Bitwise And of arg1 and arg2
(bitxor) infix 6 :: !Int !Int -> Int // Exclusive-Or arg1 with mask arg2
(<<) infix 7 :: !Int !Int -> Int // Shift arg1 to the left arg2 bit places
(>>) infix 7 :: !Int !Int -> Int // Shift arg1 to the right arg2 bit places
bitnot :: !Int -> Int // One's complement of arg1

B . 1 . 5 StdReal: operations on Reals

system module StdReal

import StdOverloaded

instance + Real
instance - Real
instance zero Real

instance * Real
instance / Real
instance one Real

instance ^ Real
instance abs Real
instance sign Real
instance ~ Real

instance == Real

instance < Real

instance toInt Real
instance toReal Real
instance toString Real

instance fromReal Int
instance fromReal Real
instance fromReal {#Char} // String :== {#Char}

// Logarithmical Functions:

ln :: !Real -> Real // Logarithm base e
log10 :: !Real -> Real // Logarithm base 10
exp :: !Real -> Real // e to to the power
sqrt :: !Real -> Real // Square root

// Trigonometrical Functions:

sin :: !Real -> Real // Sinus
cos :: !Real -> Real // Cosinus
tan :: !Real -> Real // Tangens
asin :: !Real -> Real // Arc Sinus
acos :: !Real -> Real // Arc Cosinus
atan :: !Real -> Real // Arc Tangus

// Additional conversion:

entier:: !Real -> Int // Cconvert Real into Int by taking entier

B . 1 . 6 StdChar: operations on Characters

system module StdChar

import StdOverloaded

instance + Char
instance - Char
instance zero Char
instance one Char

instance == Char

STANDARD LIBRARY 1 1 1

instance < Char

instance toInt Char
instance toChar Char
instance toString Char

instance fromChar Int
instance fromChar Char
instance fromChar {#Char} // String :== {#Char}

// Additional conversions:

digtoInt :: !Char -> Int // Convert Digit into Int
toUpper :: !Char -> Char // Convert Char into an uppercase Char
toLower :: !Char -> Char // Convert Char into a lowercase Char

// Tests on Characters:

isAscii :: !Char -> Bool // True if arg1 is an ASCII character
isControl :: !Char -> Bool // True if arg1 is a control character
isPrint :: !Char -> Bool // True if arg1 is a printable character
isSpace :: !Char -> Bool // True if arg1 is a space, tab etc
isUpper :: !Char -> Bool // True if arg1 is an uppercase character
isLower :: !Char -> Bool // True if arg1 is a lowercase character
isAlpha :: !Char -> Bool // True if arg1 is a letter
isDigit :: !Char -> Bool // True if arg1 is a digit
isAlphanum :: !Char -> Bool // True if arg1 is an alphanumerical character

B . 1 . 7 StdList: operations on Lists

definition module StdList

import StdClass

instance == [a] | Eq a

instance < [a] | Ord a

instance toString [a] | ToChar a // Convert [e to Char] into String
instance fromString [a] | FromChar a // Convert String into [Char to e]

instance length []
instance % [a]

// List Operators:

(!) infixl 9 :: [.a] Int -> .a // Get nth element of the list
(++) infixr 5 :: ![.a] u:[.a] -> u:[.a] // Append args
flatten :: ![.[a]] -> [a] // e0 ++ e1 ++ ... ++ en
isEmpty :: ![.a] -> Bool // [] ?

// List breaking or permuting functions:

hd :: ![.a] -> .a // Head of the list
tl :: !u:[.a] -> u:[.a] // Tail of the list
last :: ![.a] -> .a // Last element of the list
take :: !Int [.a] -> [.a] // Take first arg1 elem of the list
drop :: Int !u:[.a] -> u:[.a] // Drop first arg1 elem from the list
takeWhile :: (a -> .Bool) !.[a] -> .[a] // Take elements while pred holds
dropWhile :: (a -> .Bool) !u:[a] -> u:[a] // Drop elements while pred holds
filter :: (a -> .Bool) !.[a] -> .[a] // Drop all elements not satisfying pred
insert :: (a a -> .Bool) a !u:[a] -> u:[a] // Insert arg2 when pred arg2 elem holds
remove :: !Int !u:[.a] -> u:[.a] // Remove arg2!arg1 from list
reverse :: !.[a] -> [a] // Reverse the list
span :: !(a -> .Bool) !u:[a] -> (.[a],u:[a])// (takeWhile list,dropWhile list)
splitAt :: !Int u:[.a] -> ([.a],u:[.a]) // (take n list,drop n list)

// Creating lists:

map :: (.a -> .b) ![.a] -> [.b] // [f e0,f e1,f e2,...
iterate :: (a -> a) a -> .[a] // [a,f a,f (f a),...
indexList :: !.[a] -> [Int] // [0..length list - 1]
repeatn :: !.Int a -> .[a] // [e0,e0,...,e0] of length n
repeat :: a -> [a] // [e0,e0,...
unzip :: ![(a,b)] -> ([a],[b]) // ([a0,a1,...],[b0,b1,...])
zip2 :: ![.a] [.b] -> [(.a,.b)] // [(a0,b0),(a1,b1),...
zip :: !(![.a],[.b]) -> [(.a,.b)] // [(a0,b0),(a1,b1),...

1 1 2 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

diag2 :: !.[a] .[b] -> [.(a,b)] // [(a0,b0),(a1,b0),(a0,b1),...
diag3 :: !.[a] .[b] .[c] -> [.(a,b,c)] // [(a0,b0,c0),(a1,b0,c0),...

// Folding and scanning:

foldl :: (.a -> .(.b -> .a)) !.a ![.b] -> .a // op(...(op (op (op r e0) e1)...en)
foldr :: (.a -> .(.b -> .b)) !.b ![.a] -> .b // op e0 (op e1(...(op r en)...)

// for efficiency reasons, foldl and folr are defined as macros,
// so that applications of these functions will be inlined !

// foldl :: (.a -> .(.b -> .a)) !.a ![.b] -> .a // op(...(op (op (op r e0) e1)...en)
foldl op r l :== foldl r l
where

foldl r [] = r
foldl r [a:x] = foldl (op r a) x

// foldr :: (.a -> .(.b -> .b)) !.b ![.a] -> .b // op e0 (op e1(...(op r en)...)
foldr op r l :== foldr r l
where

foldr r [] = r
foldr r [a:x] = op a (foldr r x)

scan :: (a -> .(.b -> a)) a ![.b] -> .[a] // [r,op r e0,op (op r e0) e1,...

// On Booleans

and :: ![.Bool] -> Bool // e0 && e1 ... && en
or :: ![.Bool] -> Bool // e0 || e1 ... || en
any :: (.a -> .Bool) ![.a] -> Bool // True, if ei is True for some i
all :: (.a -> .Bool) ![.a] -> Bool // True, if ei is True for all i

// When ordering is defined on list elements

maxList :: !.[a] -> a | Ord a // Maximum element of list
minList :: !.[a] -> a | Ord a // Minimum element of list
sort :: !u:[a] -> u:[a] | Ord a // Sort the list
merge :: !.[a] !u:[a] -> u:[a] | Ord a // Merge two sorted lists giving a sorted list

// When equality is defined on list elements

isMember :: a !.[a] -> .Bool | Eq a // Is element in list
removeMembers :: u:[a] .[a] -> u:[a] | Eq a // Remove arg2s from list arg1
removeDup :: !.[a] -> .[a] | Eq a // Remove all duplicates from list
limit :: !.[a] -> a | Eq a // [...,a,a]

// Overloaded definition of sum, product, average

sum :: !.[a] -> a | + , zero a // sum of list elements, sum [] = zero
prod :: !.[a] -> a | * , one a // product of list elements, prod [] = one
avg :: !.[a] -> a | / , IncDec a // average of list elements, avg [] gives error!

B . 1 . 8 StdCharList: operations on lists of characters

definition module StdCharList

// Functions for outlining

cjustify :: !.Int ![.Char] -> .[Char] // Center [Char] in field with width arg1
ljustify :: !.Int ![.Char] -> .[Char] // Left justify [Char] in field with width arg1
rjustify :: !.Int ![.Char] -> [Char] // Right justify [Char] in field with width arg1n

flatLines :: ![[u:Char]] -> [u:Char] // Concatenate by adding newlines
mkLines :: ![Char] -> [[Char]] // Split in lines removing newlines
spaces :: !.Int -> .[Char] // Make [Char] containing n space characters

B . 1 . 9 StdTuple: operations on Tuples

definition module StdTuple

import StdClass

instance == (a,b) | Eq a & Eq b
instance == (a,b,c) | Eq a & Eq b & Eq c

instance < (a,b) | Ord a & Ord b

STANDARD LIBRARY 1 1 3

instance < (a,b,c) | Ord a & Ord b & Ord c

fst :: !(!.a,.b) -> .a // t1 of (t1,t2)
snd :: !(.a,!.b) -> .b // t2 of (t1,t2)

fst3 :: !(!.a,.b,.c) -> .a // t1 of (t1,t2,t3)
snd3 :: !(.a,!.b,.c) -> .b // t2 of (t1,t2,t3)
thd3 :: !(.a,.b,!.c) -> .c // t3 of (t1,t2,t3)

app2 :: !(.(.a -> .b),.(.c -> .d)) !(.a,.c) -> (.b,.d) // f (a,b) = (f a,f b)
app3 :: !(.(.a -> .b),.(.c -> .d),.(.e -> .f)) !(.a,.c,.e) -> (.b,.d,.f)

// f (a,b,c) = (f a,f b,f c)

curry :: !.((.a,.b) -> .c) .a .b -> .c // f a b = f (a,b)
uncurry :: !.(.a -> .(.b -> .c)) !(.a,.b) -> .c // f (a,b) = f a b

B . 1 . 1 0 StdArray: operations on Arrays

definition module StdArray

import _SystemArray

system module _SystemArray

/*
Warning:
1) Arrays currently get a special treatment in the Clean compiler.

This means that you shouldn't rename the functions declared here,
and that you shouldn't make other instances of Array

2) The structure of this module will change in a future release
*/

class Array a
where

select :: ! .(a .e) !Int -> .e | select_u e
uselect :: ! u:(a e) !Int -> (e, ! u:(a e)) | uselect_u e

size :: ! .(a .e) -> Int | size_u e
usize :: ! u:(a .e) -> (!Int, ! u:(a .e)) | usize_u e

update :: !* (a .e) !Int .e -> * (a .e) | update_u e
createArray :: !Int e -> * (a e) | createArray_u e

instance Array {} default, {!}, {#}

class ArrayElem e | select_u, uselect_u, size_u, usize_u, update_u, createArray_u, defaultArrayvalue e

// Operation on unboxed arrays

class select_u e :: ! { #.e } !Int -> .e
class uselect_u e :: ! u:{ # e } !Int -> (!e, ! u:{ #e })
class size_u e :: ! { #.e } -> Int
class usize_u e :: ! u:{ #.e } -> (!Int, ! u:{ #.e })
class update_u e :: ! * { #.e } !Int !.e -> * { #.e }
class createArray_u e :: !Int !e -> *{ #e }

instance select_u a, Int, Real, Char, Bool, File
instance uselect_u a, Int, Real, Char, Bool, File
instance size_u a, Int, Real, Char, Bool, File
instance usize_u a, Int, Real, Char, Bool, File
instance update_u a, Int, Real, Char, Bool, File
instance createArray_u a, Int, Real, Char, Bool, File

class defaultArrayvalue e :: .e
instance defaultArrayvalue Int, Real, Char, Bool, File, a

B . 1 . 1 1 StdString: operations on Strings

system module StdString

import StdOverloaded

:: String :== {#Char}

1 1 4 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

instance == {#Char}

instance < {#Char}

instance toString {#Char}
instance toInt {#Char}
instance toReal {#Char}

instance fromString {#Char}

instance % {#Char}

instance +++ {#Char}

// additional operator

(:=) infixl 1 :: !String !(!Int,!Char) -> String // non-destructive update of the i-th element

B . 1 . 1 2 StdFunc: operations on polymorphic functions

definition module StdFunc

// Some Classical Functions

I :: !.a -> .a // Identity function
K :: !.a .b -> .a // Konstant function
S :: .(a -> .(.b -> .(a -> .c))) .b a -> .c // distribution function
flip :: .(.a -> .(.b -> .c)) .b .a -> .c // Flip arguments

(o) infixr 9 :: u:(.a -> .b) u:(.c -> .a) -> u:(.c -> .b) // Function composition

twice :: !(.a -> .a) .a -> .a // f (f x)
while :: !(a -> .Bool) (a -> a) a -> a // while (p x) (f x) else x
until :: !(a -> .Bool) (a -> a) a -> a // until (p x) x else (f x)
iter :: !Int (.a -> .a) .a -> .a // f (f..(f x)..)

// Some handy functions for transforming unique states:

::St s a :== s -> (a,s)

seq :: ![.(.s -> .s)] .s -> .s // fn-1 (..(f1 (f0 x))..)
seqList :: ![St .s .a] .s -> ([.a],.s) // fn-1 (..(f1 (f0 x))..)

// monadic style:
(`bind`) :: w:(St .s .a) v:(.a -> .(St .s .b)) -> u:(St .s .b), [u <= v, u <= w]
return :: u:a -> u:(St .s u:a)

B . 1 . 1 3 StdMisc: miscellaneous functions

system module StdMisc

abort :: !String -> .a // stop reduction, print argument and core dump
undef :: .a // fatal error, stop reduction.

B . 1 . 1 4 StdFile: File based I/O

system module StdFile

import StdString

// File modes synonyms

FReadText :== 0 // Read from a text file
FWriteText :== 1 // Write to a text file
FAppendText :== 2 // Append to an existing text file
FReadData :== 3 // Read from a data file
FWriteData :== 4 // Write to a data file
FAppendData :== 5 // Append to an existing data file

// Seek modes synonyms

FSeekSet :== 0 // New position is the seek offset
FSeekCur :== 1 // New position is the current position plus the seek offset

STANDARD LIBRARY 1 1 5

FSeekEnd :== 2 // New position is the size of the file plus the seek offset

:: *Files

// Opening and Closing a File from the FileSystem:

openfiles::!*World -> (!*Files,!*World)

closefiles::!*Files !*World -> *World

fopen::!String !Int !*Files -> (!Bool,!*File,!*Files)
/* Opens a file for the first time in a certain mode (read, write or append, text or data).

The boolean output parameter reports success or failure. */

fclose::!*File !*Files -> (!Bool,!*Files)

freopen::!*File !Int -> (!Bool,!*File)
/* Re-opens an open file in a possibly different mode.

The boolean indicates whether the file was successfully closed before reopening. */

// Reading from a File:

freadc::!*File -> (!Bool,!Char,!*File)
/* Reads a character from a text file or a byte from a datafile.

The boolean indicates succes or failure */

freadi::!*File -> (!Bool,!Int,!*File)
/* Reads an Integer from a textfile by skipping spaces, tabs and newlines and

then reading digits, which may be preceeded by a plus or minus sign.
From a datafile FReadI will just read four bytes (a Clean Int). */

freadr::!*File -> (!Bool,!Real,!*File)
/* Reads a Real from a textfile by skipping spaces, tabs and newlines and then

reading a character representation of a Real number.
From a datafile FReadR will just read eight bytes (a Clean Real). */

freads:: ! *File !Int -> (!String,!*File)
/* Reads n characters from a text or data file, which are returned as a String.

If the file doesn't contain n characters the file will be read to the end
of the file. An empty String is returned if no characters can be read. */

freadline :: !*File -> (!String,!*File)
/* Reads a line from a textfile. (including a newline character, except for the last

line) FReadLine cannot be used on data files. */

// Writing to a File:

fwritec :: !Char !*File -> *File
/* Writes a character to a textfile.

To a datafile fwritec writes one byte (a Clean CHAR). */

fwritei ::!Int !*File -> *File
/* Writes an Integer (its textual representation) to a text file.

To a datafile FWriteI writes four bytes (a Clean Int). */

fwriter ::!Real !*File -> *File
/* Writes a Real (its textual representation) to a text file.

To a datafile FWriteR writes eight bytes (a Clean Real). */

fwrites ::!String !*File -> *File
/* Writes a String to a text or data file. */

// Testing:

fend ::!*File -> (!Bool,!*File)
/* Tests for end-of-file. */

ferror ::!*File -> (!Bool,!*File)
/* Has an error occurred during previous file I/O operations? */

fposition :: !*File -> (!Int,!*File)
/* returns the current position of the file poInter as an Integer.

This position can be used later on for the FSeek function. */

fseek ::!*File !Int !Int -> (!Bool,!*File)
/* Move to a different position in the file, the first Integer argument is the offset,

the second argument is a seek mode. (see above). True is returned if successful. */

1 1 6 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

// Predefined files.

stdio ::!*Files -> (!*File,!*Files)
/* Open the 'Console' for reading and writing. */

stderr ::*File
/* Open the 'Errors' file for writing only. May be opened more than once. */

// Opening and reading Shared Files:

sfopen ::!String !Int !*Files -> (!Bool,!File,!*Files)
/* With SFOpen a file can be opened for reading more than once.

On a file opened by SFOpen only the operations beginning with SF can be used.
The SF... operations work just like the corresponding F... operations.
They can't be used for files opened with FOpen or FReOpen. */

sfreadc :: !File -> (!Bool,!Char,!File)
sfreadi :: !File -> (!Bool,!Int,!File)
sfreadr :: !File -> (!Bool,!Real,!File)
sfreads :: !File !Int -> (!String,!File)
sfreadline :: !File -> (!String,!File)
sfseek :: !File !Int !Int -> (!Bool,!File)

sfend :: !File -> Bool
sfposition :: !File -> Int
/* The functions SFEnd and SFPosition work like FEnd and FPosition, but don't return a

new file on which other operations can continue. They can be used for files opened
with SFOpen or after FShare, and in guards for files opened with FOpen or FReOpen. */

// Convert a *File into:

fshare :: !*File -> File
/* Change a file so that from now it can only be used with SF... operations. */

B . 1 . 1 5 StdEnum: handling dot-dot expressions

The definitions listed in StdEnum are used by the Clean compiler to handle dot-dot expressions.
Dot-dot expressions can be used for objects of type Int, Char and Real. Dot-dot expressions can
also be used of objects of arbitrary user-defined types provided that the indicated classes have
been instantiated for objects of that type.

definition module StdEnum

import _SystemEnum

/*
This module must be imported if dotdot expressions are used

[from ..] -> _from from
[from .. to] -> _from_to from to
[from, then ..] -> _from_then from then
[from, then ..] -> _from_then_to from then to

*/

system module _SystemEnum

from StdClass import Enum
from StdBool import not

from :: a -> [a] | IncDec , Ord a
from_to :: !a !a -> [a] | Enum a
from_then :: a a -> [a] | Enum a
from_then_to :: !a !a !a -> [a] | Enum a

lteq a b -= not (b < a)
minus a b :== a - b

implementation module _SystemEnum

import StdEnv

lteq a b :== not (b < a)
minus a b :== a - b

STANDARD LIBRARY 1 1 7

from :: a -> [a] | IncDec , Ord a
from n = [n | _from (inc n)]

from_to :: !a !a -> [a] | Enum a
from_to n e
| n <= e = [n | _from_to (inc n) e]
| otherwise = []

from_then :: a a -> [a] | Enum a
from_then n1 n2 = [n1 | _from_by n2 (n2-n1)]
where

from_by :: a a -> [a] | Enum a
from_by n s = [n | _from_by (n+s) s]

from_then_to : !a !a !a -> [a] | Enum a
from_then_to n1 n2 e
| n1 <= n2 = _from_by_to n1 (n2-n1) e
| otherwise = _from_by_down_to n1 (n2-n1) e
where

from_by_to :: !a !a !a -> [a] | Enum a
from_by_to n s e

| n <= e = [n | _from_by_to (n+s) s e]
| otherwise = []

from_by_down_to :: !a !a !a -> [a] | Enum a
from_by_down_to n s e

| n >= e = [n | _from_by_down_to (n+s) s e]
| otherwise = []

from_to :: !Int !Int -> [Int]
from_to n e
| n <= e = [n | from_to (inc n) e]
| otherwise = []B.1.15

B . 1 . 1 6 StdEnv: summary of operators

This paragraph summarises the infix operators from Clean’s Standard Environment.

Operator Associativity Precedence Defined in Description
`bind` none 0 StdFunc monadic bind
:= left 1 StdString replace
|| right 2 StdBool Boolean or
&& right 3 StdBool Boolean and
<> none 4 StdClass Not equal
> none 4 StdClass Greater than
<= none 4 StdClass Smaller than or equal to
>= none 4 StdClass Greater than or equal to
== none 4 StdOverloaded Equals
< none 4 StdOverloaded Smaller than
++ right 5 StdList Concatenate lists
+++ right 5 StdOverloaded Concatenate
+ left 6 StdOverloaded Add
- left 6 StdOverloaded Substract
bitor left 6 StdInt Bitwise or
bitxor left 6 StdInt Bitwise xor
bitand left 6 StdInt Bitwise and
* left 7 StdOverloaded Multiply
/ none 7 StdOverloaded Divide
<< none 7 StdInt Shift left
>> none 7 StdInt Shift right
mod none 7 Stdint Modulo
rem none 7 StdInt Remainder
^ right 8 StdOverloaded Exponent
! left 9 StdList List subscript
o right 9 StdFunc Function composition
% left 9 StdOverloaded Slice

B . 2 Creating interactive processes

definition module StdEventIO

1 1 8 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

// Definition of IOState: the environment on which all GUI I/O functions operate.

:: IOState l p

:: *PState l p
= { pLocal :: l, // the local (and private) data of an interaction

pPublic :: p, // the shared data (in a group) of an interaction
pFiles :: !*Files, // the current state of the file system
pIOState :: !*IOState l p // the IOState environment of this process

}

:: InitIO l p
:== [IOFunction (PState l p)]

:: IODef l p
= { ioDefInit :: InitIO l p, // The initial actions of the process

ioDefAbout :: String // The name of the process
}

// Coercing PState component operations to PState operations.

seqPIO :: ![IOFunction (IOState .l .p)] !(PState .l .p) -> PState .l .p
seqPFs :: ![IOFunction Files] !(PState .l .p) -> PState .l .p
seqPLoc :: ![IOFunction .l] !(PState .l .p) -> PState .l .p
seqPPub :: ![IOFunction .p] !(PState .l .p) -> PState .l .p

// Starting an interaction:

OpenIO :: !(IODef .l .p) (.l,.p) !*World -> *World

/* OpenIO starts an interaction specified by the IODef argument.
Of each device only the first occurrence is taken into account. The
program state argument consisting of a local and shared part serves
as initial program state. If the interaction has been successfully
created, the functions in InitialIO are evaluated from left-to-right.
This is followed by the actual evaluation of the interaction. In the
cause of the evaluation many new sub interactions can be created and
terminated. The interaction created by OpenIO is the root interaction.
OpenIO terminates as soon as all sub interactions (including the root
interaction) have terminated.
OpenIO returns the final file system and the resulting event stream. */

ParallelIO :: !ProcId !(IODef .l .p) !.p
!(IOState .l` .p`) -> (!IOState .l` .p`)

/* ParallelIO applies only to the root interaction. If the root interaction
is active, ParallelIO starts a new sub interaction that will run in
parallel with the current sub interactions on the processor with the
given PROCID. If the PROCID equals CurrentP (see StdProcId) then
ParallelIO proceeds as NewIO applied to the remaining arguments.
The new sub interaction is specified by the IODef argument. Creation of
the new sub interaction is done as in OpenIO. The functions in InitialIO
are evaluated from left-to-right before any abstract event handler of the
new sub interaction is evaluated.
If the interaction is inactive, ParallelIO does nothing. */

NewIO :: !(IODef .l .p) (.l,.p)
!(IOState .l` .p`) -> IOState .l` .p`

/* If the interaction is active, NewIO starts a new sub interaction
that will run interleaved with the current sub interactions.
The new sub interaction is specified by the IODef argument. Creation of
the new sub interaction is done as in OpenIO. The functions in
InitialIO are evaluated from left-to-right before any abstract event
handler of the new sub interaction is evaluated.
The new sub interaction becomes the active sub interaction (so the
current sub interaction is deactivated).
If the interaction is inactive, NewIO does nothing. */

ShareIO :: !(IODef .l .p) .l
!(IOState .l` .p) -> IOState .l` .p

/* If the interaction is active, ShareIO starts a new sub interaction that
will run interleaved with the current sub interactions. The new sub
interaction is specified by the IODef argument. Creation of the new sub
interaction is done as in OpenIO. The functions in InitialIO are
evaluated from left-to-right before any abstract event handler of the new
sub interaction is evaluated.

STANDARD LIBRARY 1 1 9

The new sub interaction becomes the active sub interaction (so the
current sub interaction is deactivated).
The new sub interaction can communicate with all sub interactions by
means of the file system or by message passing. The new sub interaction
can communicate with all sub interactions of the interaction group of the
sub interaction that spawned it by means of the share program state
component.
If the interaction is inactive, ShareIO does nothing. */

QuitIO :: !(IOState .l .p) -> IOState .l .p

/* QuitIO removes all devices that are held in the sub interaction.
As a result evaluation of this sub interaction will terminate.
QuitIO is the only function that causes OpenIO to terminate. */

HideIO :: !(IOState .l .p) -> IOState .l .p
ShowIO :: !(IOState .l .p) -> IOState .l .p

/* If the interaction is active, HideIO hides the sub interaction,
and ShowIO makes it visible. Note that hiding a sub interaction does
NOT disable the sub interaction, but simply makes it invisible.
If the interaction is inactive, HideIO and ShowIO do nothing. */

ActivateIO :: !(IOState .l .p) -> IOState .l .p

/* If the interaction is active, ActivateIO activates the sub interaction.
As a result, all open windows and dialogs of the sub interaction will
be moved top-most on the desktop.
If the interaction is inactive, ActivateIO does nothing. */

RequestIO :: !String !(IOState .l .p) -> IOState .l .p

/* If the interaction is inactive, RequestIO alerts the user that the
interaction needs to become active. If the string argument is not empty,
then this alert will consist of a Notice displaying the string.
An interaction can issue an arbitrary amount of requests.
If the interaction is active, RequestIO does nothing. */

B . 3 Event based I/O

B . 3 . 1 Windows

StdWindowDef: the window device

definition module StdWindowDef

// Window definitions.

import StdControlDef
from StdFont import Font

:: WindowDef ps
= DialogWindow Title [ControlDef ps] [WindowAttribute ps]
| Window Title PictureDomain [ControlDef ps] [WindowAttribute ps]

:: WindowFrame :== Rectangle

:: WindowAttribute ps // Default:

// Attributes for all windows:

= WindowId Id // no id
| WindowPos ItemPos // system dependent
| WindowSize Size // screen size
| WindowItemSpace Size // system dependent
| WindowOk Id // no button
| WindowStandBy // system dependent
| WindowHide // initially visible
| WindowClose (IOFunction ps) // user can't close window
| WindowUpdate (UpdateFunction ps) // update by system

// Attributes for DialogWindows only:

1 2 0 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

| WindowMargin Size // system dependent

// Attributes for Windows only:

| WindowMinimumSize Size // system dependent
| WindowResize (WindowResizeFunction ps) // fixed size
| WindowActivate (IOFunction ps) // I
| WindowDeactivate (IOFunction ps) // I
| WindowMouse SelectState (MouseFunction ps) // no mouse input
| WindowKeys SelectState (KeysFunction ps) // no keyboard input
| WindowCursor CursorShape // no change of cursor

:: WindowResizeFunction ps :== Size -> // old window size
Size -> // new window size
ps -> ps

:: CursorShape
= StandardCursor
| BusyCursor
| IBeamCursor
| CrossCursor
| FatCrossCursor
| ArrowCursor
| HiddenCursor

DialogFont :: Font

StdWindow: window handling

definition module StdWindow

import StdIOCommon, StdWindowDef, StdControlDef,StdPicture

// Module StdWindow specifies all functions on windows.
// Functions applied to non-existent windows or unknown ids are ignored.

OpenWindow :: !(WindowDef (PState .l .p)) !(IOState .l .p) -> IOState .l .p
OpenModalWindow :: !(WindowDef (PState .l .p)) !(PState .l .p) -> PState .l .p

/* If the interaction is active, Open(Modal)Window opens the given window.
In case a window with the same Id is already open then that window will
be activated.
OpenModalWindow terminates when the window has been closed (by means of
CloseWindow).
If the interaction is inactive, Open(Modal)Window does nothing. */

CloseWindow :: !Id !(IOState .l .p) -> IOState .l .p

/* If the interaction is active, CloseWindow closes the indicated window.
If the interaction is inactive, CloseWindow does nothing. */

HideWindows :: ![Id] !(IOState .l .p) -> IOState .l .p
ShowWindows :: ![Id] !(IOState .l .p) -> IOState .l .p

/* If the interactive process is active, (Hide/Show)Windows hides/shows the
indicated windows.
If the interactive process is inactive, (Hide/Show)Windows does nothing. */

ActivateWindow :: !Id !(IOState .l .p) -> IOState .l .p

/* If the interaction is active, ActivateWindow makes the window with the given
Id the active window. In case the Id is unknown ActivateWindow has no effect.
If the interaction is inactive, ActivateWindow does nothing. */

GetActiveWindow :: !(IOState .l .p) -> (Bool, !Id, !IOState .l .p)

/* GetActiveWindow returns the Id of the currently frontmost and visible window of
the interactive process. The Boolean result reports whether such a window exists.
In case it is False, Id = 0. */

StackWindow :: !Id !Id !(IOState .l .p) -> IOState .l .p

/* If the process is active, StackWindow id1 id2 places the window with id1
behind the window with id2. If id2 is unknown, the window becomes the active
window.
If id1 is unknown, or the process is inactive, StackWindow does nothing. */

STANDARD LIBRARY 1 2 1

SetWindowPos :: !Id !ItemPos !(IOState .l .p) -> IOState .l .p

/* If the interactive process is active, SetWindowPos places the window to the
indicated position. If the ItemPos argument refers to the Id of an unknown
window (in case of LeftOf/RightTo/Above/Below), SetWindowPos has no effect.
SetWindowPos also has no effect if the window is moved of the screen, if the
Id is unknown, or if the interactive process is inactive. */

GetWindowPos :: !Id !(IOState .l .p) -> (!Bool, !ItemOffset, !IOState .l .p)

/* GetWindowPos returns the current item offset position of the indicated window.
The corresponding ItemPos is (LeftTop,offset). In case the window does not exist
the Boolean result is False and ItemOffset=(0,0). */

GetWindowFrame :: !Id !(IOState .l .p) -> (!WindowFrame, !IOState .l .p)

/* GetWindowFrame returns the currently visible frame of the window in terms of the
PictureDomain. Note that in case of a DialogWindow, GetWindowFrame = ((0,0),size).
In case the id is unknown, the WindowFrame result = ((0,0),(0,0)). */

MoveWindowFrame :: !Id Vector !(PState .l .p) -> PState .l .p

/* MoveWindowFrame moves the orientation of the window over the given vector, and
updates the window if necessary. The window frame is not moved outside the
PictureDomain of the window.
In case of unknown Id, or of DialogWindows, MoveWindowFrame has no effect. */

SetPictureDomain :: Id !PictureDomain !(PState .l .p) -> PState .l .p

/* If the interactive process is active, SetPictureDomain resets the current
PictureDomain of the indicated window, and updates the window if necessary.
In case the new PictureDomain is smaller than the current WindowFrame, the
window is resized to fit the new domain exactly.
The window frame is moved only if it gets outside the new PictureDomain.
In case of unknown Ids, of DialogWindows, or of inactive processes,
SetPictureDomain has no effect. */

SetWindowMinimumSize:: Id Size !(PState .l .p) -> PState .l .p

/* If the interactive process is active, SetWindowMinimumSize sets the minimum size
of the indicated window as given. The new minimum size is set to be smaller than
the current PictureDomain of the window. The window is resized and updated if the
current size of either edge of the window is smaller than the new minimum size.
In case of unknown Ids, of DialogWindows, or of inactive processes,
SetWindowMinimumSize has no effect. */

SetWindowSize :: Id Size !(PState .l .p) -> PState .l .p

/* If the interactive process is active, SetWindowSize sets the size of the
indicated window as given, and updates the window if necessary. The size
is fit between the minimum size and the PictureDomain of the window.
In case of unknown Ids, of DialogWindows, or of inactive processes,
SetWindowSize has no effect. */

SetWindowTitle :: !Id !Title !(IOState .l .p) -> IOState .l .p
SetWindowCursor :: !Id !CursorShape !(IOState .l .p) -> IOState .l .p
SetWindowUpdate :: !Id !(UpdateFunction (PState .l .p))

!(IOState .l .p) -> IOState .l .p
SetWindowClose :: !Id !(IOFunction (PState .l .p))

!(IOState .l .p) -> IOState .l .p
SetWindowResize :: !Id !(WindowResizeFunction (PState .l .p))

!(IOState .l .p) -> IOState .l .p
SetWindowActivate :: !Id !(IOFunction (PState .l .p))

!(IOState .l .p) -> IOState .l .p
SetWindowDeactivate :: !Id !(IOFunction (PState .l .p))

!(IOState .l .p) -> IOState .l .p

/* These functions set the indicated attributes. Invalid Ids are ignored.
If the indicated window does not have the corresponding attribute then in case of
SetWindow(Close/Resize) the new attribute is not set. In the other cases the window
obtains the new attribute. */

EnableWindowMouse :: !Id !(IOState .l .p) -> IOState .l .p
DisableWindowMouse :: !Id !(IOState .l .p) -> IOState .l .p
EnableWindowKeys :: !Id !(IOState .l .p) -> IOState .l .p
DisableWindowKeys :: !Id !(IOState .l .p) -> IOState .l .p
SetWindowMouseFunction :: !Id !(MouseFunction (PState .l .p))

1 2 2 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

!(IOState .l .p) -> IOState .l .p
SetWindowKeysFunction :: !Id !(KeysFunction (PState .l .p))

!(IOState .l .p) -> IOState .l .p

// These functions change the state of mouse and keyboard input. Invalid Ids are ignored.

DrawInWindow :: !Id ![DrawFunction] !(IOState .l .p) -> IOState .l .p

// Draw in the window (behind all Controls). Invalid Ids are ignored.

B . 3 . 2 Controls

StdControlDef: the control device

definition module StdControlDef

// Definition of controls

import StdIOCommon
from StdPicture import DrawFunction, Picture

:: ControlDef ps
= RadioControl TextLine MarkState [ControlAttribute ps]
| CheckControl TextLine MarkState [ControlAttribute ps]
| PopUpControl [PopUpItem ps] Index [ControlAttribute ps]
| SliderControl Direction Length SliderState (SliderAction ps) [ControlAttribute ps]
| TextControl TextLine [ControlAttribute ps]
| EditControl TextLine Width NrLines [ControlAttribute ps]
| ButtonControl TextLine [ControlAttribute ps]
| CustomButtonControl Size ControlLook [ControlAttribute ps]
| CustomControl Size ControlLook CustomState [ControlAttribute ps]
| CompoundControl [ControlDef ps] ControlLook [ControlAttribute ps]

:: TextLine :== String
:: NrLines :== Int
:: Width :== Int
:: Length :== Int
:: PopUpItem ps :== (TextLine, IOFunction ps)
:: ControlLook :== SelectState -> Size -> [DrawFunction]
:: SliderAction ps :== SliderMove -> ps -> ps
:: SliderState

= { sliderMin :: !Int,
sliderMax :: !Int,
sliderThumb :: !Int

}
:: SliderMove

= SliderIncSmall
| SliderDecSmall
| SliderIncLarge
| SliderDecLarge
| SliderThumb Int

:: Direction
= Horizontal
| Vertical

:: CustomState
= BoolCS Bool | IntCS Int | RealCS Real | StringCS String
| PairCS CustomState CustomState
| ListCS [CustomState]

:: ControlAttribute ps // Default:
= ControlId Id // no id
| ControlPos ItemPos // (RightTo previous, (0,0))
| ControlSize Size // system derived/overruled
| ControlMinimumSize Size // (0,0)
| ControlResize ControlResizeFunction // no resize
| ControlSelectState SelectState // control Able
| ControlFunction (IOFunction ps) // I
| ControlModsFunction (ModsIOFunction ps) // ControlFunction
| ControlMouse SelectState (MouseFunction ps) // no mouse input/overruled
| ControlKeys SelectState (KeysFunction ps) // no keyboard input/overruled

:: ControlResizeFunction
:== Size -> // current control size

Size -> // old window size

STANDARD LIBRARY 1 2 3

Size -> // new window size
Size // new control size

StdControl: control handling

definition module StdControl

import StdIOCommon, StdControlDef

/* Module StdControl specifies all functions on controls.
Changing controls in a window requires a *(Window .l .p).
Reading the status of controls requires a (Window .l .p). */

:: u:Window l p

GetWindow :: !Id !(IOState .l .p) -> (!Bool, !Window .l .p, !IOState .l .p)
/* GetWindow returns a read-only Window for the indicated window.

The Boolean result indicates whether the indicated window exists.
In case it is False a dummy Window is returned. */

SetWindow :: !Id ![*(Window .l .p)->*Window .l .p] !(IOState .l .p) -> IOState .l .p
/* Apply the control changing functions to the current state of the

indicated window. Invalid Ids are ignored. */

GetControlSizes :: ![ControlDef .ps] !(IOState .l .p) -> (![Size], !IOState .l .p)
/* GetControlSizes calculates the sizes of the given control definitions

in the size as they would be opened as elements of a window. */

// Functions applied to unknown ids are ignored.

EnableControls :: ![Id] !*(Window .l .p) -> *Window .l .p
DisableControls :: ![Id] !*(Window .l .p) -> *Window .l .p
MarkCheckControls :: ![Id] !*(Window .l .p) -> *Window .l .p
UnmarkCheckControls :: ![Id] !*(Window .l .p) -> *Window .l .p
SelectRadioControl :: !Id !*(Window .l .p) -> *Window .l .p
SetEditTextControl :: !Id !String !*(Window .l .p) -> *Window .l .p
SetTextControl :: !Id !String !*(Window .l .p) -> *Window .l .p
SetControlLook :: !Id !ControlLook !*(Window .l .p) -> *Window .l .p

// These functions change the state of controls. Invalid Ids are ignored.

SetSliderState :: !Id !SliderState !*(Window .l .p) -> *Window .l .p
SetSliderThumb :: !Id !Int !*(Window .l .p) -> *Window .l .p
// ChangeSlider(State/Thumb) set the SliderState/Thumb and redraw the settings of the slider.

SetControlHandler :: !Id !(ControlAttribute (PState .l .p))
!*(Window .l .p) -> *Window .l .p

/* Set the abstract event handler of a (Radio/Check/Text/Edit/ (Custom)Button/Custom/Compound)Control.
The ControlAttribute argument must be a Control(Resize/Function/ModsFunction/Mouse/Keys) attribute.
*/

DrawInControl :: !Id ![DrawFunction] !*(Window .l .p) -> *Window .l .p

// Draw in a (Custom(Button)/Compound)Control.

GetWindowInfo :: !Id !(IOState local share)
-> (!Bool, !WindowInfo, !IOState local share)

/* GetWindowInfo returns the WindowInfo for the indicated window.
The Boolean result indicates whether the indicated window exists.
In case it is False a dummy WindowInfo is returned. */

GetEditTextControl :: !Id !(Window .l .p) -> (Bool,String) // False -> ""
GetTextControl :: !Id !(Window .l .p) -> (Bool,String) // False -> ""
GetSelectedPopUpItem :: !Id !(Window .l .p) -> (Bool,Index) // False -> 0
GetSelectedRadioControls:: !(Window .l .p) -> [Id] //
GetSelectedCheckControls:: !(Window .l .p) -> [Id] //
RadioControlMarked :: !Id !(Window .l .p) -> (Bool,Bool) // False -> False
CheckControlMarked :: !Id !(Window .l .p) -> (Bool,Bool) // False -> False
GetCustomState :: !Id !(Window .l .p) -> (Bool,CustomState) // False -> BoolCS False
GetSliderState :: !Id !(Window .l .p) -> (Bool,SliderState) // False -> { sliderMin = 0,

// sliderMax = 0,
// sliderThumb=0}

/* Functions that return the current contents of controls that
can be changed by the user. The first Boolean result is False in

1 2 4 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

case of invalid ids (if so dummy values are returned - see comment).

The id passed to GetSelectedPopUpItem must be the id of a PopUpControl.

Important: controls with no ControlId attribute, or illegal ids, can
 not be found in the WindowInfo! */

B . 3 . 3 Menus

StdMenuDef: the menu device

definition module StdMenuDef

// MenuDefinitions:

:: MenuDef ps = Menu Title [MenuElement ps] [MenuAttribute ps]
:: MenuElement ps = SubMenuItem Title [MenuElement ps] [MenuAttribute ps]

| MenuItem Title [MenuAttribute ps]
| MenuSeparator

:: MenuAttribute ps // Default:
= MenuId Id // no Id
| MenuSelectState SelectState // menu(item) Able
| MenuShortKey KeyCode // no KeyCode
| MenuAltKey Index // no AltKey
| MenuMarkState MarkState // NoMark

// Attributes ignored by (sub)menus:

| MenuFunction (IOFunction ps) // I
| MenuModsFunction (ModsIOFunction ps) // MenuFunction

StdMenu: menu handling

definition module StdMenu

import StdMenuDef

// Operations on menus.

// Operations on unknown Ids are ignored.

OpenMenu :: !Int !(MenuDef (PState .l .p))
!(IOState .l .p) -> IOState .l .p

/* Open the given menu definition for this interactive process behind
the menu indicated by the integer index.
The index of a menu starts from one for the first present
menu. If the index is negative or zero, then the new menu is added
before the first menu. If the index exceeds the number of menus,
then the new menu is added behind the last menu. */

CloseMenu :: !Id !(IOState .l .p) -> IOState .l .p

/* Close the given menu (and all of its elements including submenus). */

EnableMenuSystem :: !(IOState .l .p) -> IOState .l .p
DisableMenuSystem :: !(IOState .l .p) -> IOState .l .p

/* Enable/disable the MenuSystem. When the menu system is enabled the
previously selectable menus and menu items will become selectable
again. Operations on a disabled menu system take effect when the
menu system is re-enabled. */

EnableMenus :: ![Id] !(IOState .l .p) -> IOState .l .p
DisableMenus :: ![Id] !(IOState .l .p) -> IOState .l .p

/* Enable/disable PullDownMenus. Disabling a menu overrides the
SelectStates of its menu elements, which become unselectable.
Enabling a disabled menu re-establishes the SelectStates of
the menu elements. */

OpenMenuItems :: !Id !Int ![MenuElement (PState .l .p)]
!(IOState .l .p) -> IOState .l .p

STANDARD LIBRARY 1 2 5

/* Adding menu elements in a (sub)menu.
OpenMenuItems adds menu elements after the item with the specified index.
The index of a menu element starts from one for the first menu element in
the (sub)menu. If the index is negative or zero, then the new menu
elements are added before the first menu element of the (sub)menu. If the
index exceeds the number of menu elements in the (sub)menu, then the new
menu elements are added behind the last menu element of the (sub)menu.
Only MenuItems and MenuSeparators can be added to (sub)menus. */

CloseMenuItems :: ![Id] !(IOState .l .p) -> IOState .l .p
CloseMenuIndexItems :: !Id ![Int] !(IOState .l .p) -> IOState .l .p

/* Removing menu elements from the indicated (sub)menu(s).
RemoveMenuItems removes the menu elements by their Id.
RemoveMenuIndexItems removes menu elements of the indicated (sub)menu by
their indices.
Analogous to OpenMenuItems, indices range from one to the number of menu
elements in a (sub)menu. Invalid indices (less than one or larger than
the number of menu elements of the (sub)menu) are ignored. */

EnableMenuItems :: ![Id] !(IOState .l .p) -> IOState .l .p
DisableMenuItems :: ![Id] !(IOState .l .p) -> IOState .l .p
MarkMenuItems :: ![Id] !(IOState .l .p) -> IOState .l .p
UnmarkMenuItems :: ![Id] !(IOState .l .p) -> IOState .l .p
SetMenuItemTitles :: ![(Id, Title)] !(IOState .l .p) -> IOState .l .p
SetMenuItemFunctions :: ![(Id, MenuAttribute (PState .l .p))]

!(IOState .l .p) -> IOState .l .p

/* Enable/disable, mark/unmark, and change titles/functions of
MenuElements (including SubMenuItems). */

B . 3 . 4 StdPicture: drawing in windows

definition module StdPicture

// Drawing functions and other operations on Pictures.

import StdFont

:: *Picture

// The predefined figures that can be drawn:
:: Point :== (!Int, !Int)
:: Line :== (!Point, !Point)
:: Curve :== (!Oval, !Int, !Int)
:: Rectangle :== (!Point, !Point)
:: Oval :== Rectangle
:: Polygon :== (!Point, !PolygonShape)

:: PolygonShape :== [Vector]
:: Vector :== (!Int, !Int)

// The pen attributes which influence the way figures are drawn:
:: PenSize :== (!Int, !Int)
:: PenMode = CopyMode | OrMode | XorMode | ClearMode | HiliteMode

| NotCopyMode | NotOrMode | NotXorMode | NotClearMode
:: PenPattern = BlackPattern

| DkGreyPattern
| GreyPattern
| LtGreyPattern
| WhitePattern

// The colours:
:: Colour = RGB Real Real Real

| BlackColour | RedColour
| WhiteColour | GreenColour
| BlueColour | YellowColour
| CyanColour | MagentaColour

MinRGB :== 0.0
MaxRGB :== 1.0

// Rules setting the attributes of a Picture:

/* SetPenSize (w,h) sets the PenSize to w pixels wide and h pixels high.
SetPenMode sets the interference how new figures 'react' to drawn ones.
SetPenPattern sets the way new figures are drawn.

1 2 6 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

SetPenNormal sets the SetPenSize to (1,1), the PenMode to CopyMode and
the PenPattern to BlackPattern. */

SetPenSize :: !PenSize !Picture -> Picture
SetPenMode :: !PenMode !Picture -> Picture
SetPenPattern :: !PenPattern !Picture -> Picture
SetPenNormal :: !Picture -> Picture

/* Using colours:
There are basically two types of Colours: RGB and basic colours.

An RGB colour defines the amount of red (r), green (g) and blue (b)
in a certain colour by the tuple (r,g,b). These are Real values and
each of them must be between MinRGB and MaxRGB (0.0 and 1.0).
The colour black is defined by (MinRGB, MinRGB, MinRGB) and white
by (MaxRGB, MaxRGB, MaxRGB).
Given a RGB colour, all amounts are adjusted between MinRGB and
MaxRGB.

Only FullColour windows can apply RGB colours. Applications that use
these windows may not run on all computers (e.g. Macintosh Plus).
A small set of basic colours is defined that can be used on all systems.

SetPenColour sets the colour of the pen.
SetBackColour sets the background colour. */

SetPenColour :: !Colour !Picture -> Picture
SetBackColour :: !Colour !Picture -> Picture

/* Using fonts:
The initial font of a Picture is 12 point Chicago in PlainStyle.
SetFont sets a new complete Font in the Picture.
SetFontName sets a new font without changing the style or size.
SetFontStyle sets a new style without changing font or size.
SetFontSize sets a new size without changing font or style.
The size is always adjusted between MinFontSize and

 MaxFontSize (see deltaFont.dcl).
PictureCharWidth (PictureStringWidth) yield the width of the given
 Char (String) given the current font of the Picture.
PictureFontMetrics yields the FontInfo of the current font. */

SetFont :: !Font !Picture -> Picture
SetFontName :: !FontName !Picture -> Picture
SetFontStyle :: ![FontStyle] !Picture -> Picture
SetFontSize :: !FontSize !Picture -> Picture

PictureCharWidth :: !Char !Picture -> (!Int, !Picture)
PictureStringWidth :: !String !Picture -> (!Int, !Picture)
PictureFontMetrics :: !Picture -> (!FontInfo, !Picture)

/* Drawing within in a polygonal clipping area:
The Polygon argument defines the shape of the clipping area in
which the drawing functions will be applied. */

DrawClip :: !Polygon [DrawFunction] !Picture -> Picture

// Determine the position of the pen:

GetPenPos :: !Picture -> (!Point, !Picture)

// Rules changing the position of the pen:

// Absolute and relative pen move operations (without drawing).

MovePenTo :: !Point !Picture -> Picture
MovePen :: !Vector !Picture -> Picture

// Absolute and relative pen move operations (with drawing).

LinePenTo :: !Point !Picture -> Picture
LinePen :: !Vector !Picture -> Picture

/* DrawChar (DrawString) draws the Char (String) in the current font.
The baseline of the characters is the y coordinate of the pen.
The new position of the pen is directly after the Char (String)
including spacing.

*/

DrawChar :: !Char !Picture -> Picture
DrawString :: !String !Picture -> Picture

STANDARD LIBRARY 1 2 7

// Rules not changing the position of the pen after drawing:

/* Non plane figures:
DrawPoint draws the pixel in the Picture.
DrawLine draws the line in the Picture.
DrawCurve draws the curve in the Picture.

A Curve is part of an Oval o starting from angle a
upto angle b (both of type Int in degrees modulo 360):

(o, a, b).
See Wedges for further information on the angles. */

DrawPoint :: !Point !Picture -> Picture
DrawLine :: !Line !Picture -> Picture
DrawCurve :: !Curve !Picture -> Picture

/* A Rectangle is defined by two of its diagonal corner Points (A,B)
with A = (Ax, Ay),

B = (Bx, By)
such that Ax <> Bx and Ay <> By.
In case either Ax = Bx or Ay = By, the Rectangle is empty.

DrawRectangle draws the edges of the rectangle.
FillRectangle draws the edges and interior of the rectangle.
EraseRectangle erases the edges and interior of the rectangle.
InvertRectangle inverts the edges and interior of the rectangle.

MoveRectangle moves the contents of the rectangle over the given vector.
CopyRectangle copies the contents of the rectangle over the given vector. */

DrawRectangle :: !Rectangle !Picture -> Picture
FillRectangle :: !Rectangle !Picture -> Picture
EraseRectangle :: !Rectangle !Picture -> Picture
InvertRectangle :: !Rectangle !Picture -> Picture

MoveRectangle :: !Rectangle !Vector !Picture -> Picture
CopyRectangle :: !Rectangle !Vector !Picture -> Picture

/* Ovals: an Oval is defined by its enclosing Rectangle.
Note : the Oval of a square Rectangle is a Circle.

*/

DrawOval :: !Oval !Picture -> Picture
FillOval :: !Oval !Picture -> Picture
EraseOval :: !Oval !Picture -> Picture
InvertOval :: !Oval !Picture -> Picture

/* Polygons: a Polygon is a figure drawn by a number of lines without
taking the pen of the Picture, starting from some Point p.
The PolygonShape s (a list [v1,...,vN] of Vectors) defines how the
Polygon is drawn:

MoveTo p, DrawLine from v1 upto vN, DrawLineTo p to close it.
So a Polygon with s = [] is actually the Point p.

ScalePolygon by scale k sets shape [v1,...,vN] into [k*v1,...,k*vN].
Negative, as well as 0 are valid scales.

MovePolygonTo changes the starting point into the given Point and
MovePolygon moves the starting point by the given Vector. */

DrawPolygon :: !Polygon !Picture -> Picture
FillPolygon :: !Polygon !Picture -> Picture
ErasePolygon :: !Polygon !Picture -> Picture
InvertPolygon :: !Polygon !Picture -> Picture

ScalePolygon :: !Int !Polygon -> Polygon
MovePolygon :: !Vector !Polygon -> Polygon

B . 3 . 5 StdFont: writing in windows

definition module StdFont

// Operations on Fonts.

:: Font

:: FontDef
= { fName :: !FontName,

1 2 8 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

fStyles :: ![FontStyle],
fSize :: !FontSize

}
:: FontMetrics

= { fAscent :: !Int,
fDescent :: !Int,
fLeading :: !Int,
fMaxWidth :: !Int

}
:: FontName :== String
:: FontStyle :== String
:: FontSize :== Int

MinFontSize :== 6
MaxFontSize :== 128

FontSelect :: !FontDef -> (!Bool, !Font)

/* FontSelect creates the font as specified by the name, the stylistic
variations and size. In case there are no FontStyles ([]), the font
is selected without stylistic variations (i.e. in plain style).
The size is always adjusted between MinFontSize and MaxFontSize.
The boolean result is True in case this font is available and needn't
be scaled. In case the font is not available, the default font is
chosen in the indicated style and size. */

DefaultFont :: FontDef

/* DefaultFont returns name, style and size of the default font. */

GetFontDef :: !Font -> FontDef

/* GetFontDef returns the name, stylistic variations and size of the
argument Font. */

FontNames :: [FontName]
FontStyles :: !FontName -> [FontStyle]
FontSizes :: !FontName -> [FontSize]

/* FontNames returns the FontNames of all available fonts.
FontStyles returns the FontStyles of all available styles.
FontSizes returns all FontSizes of a font that are available without scaling.
In case the font is unavailable, the styles or sizes of the default font
are returned. */

FontCharWidth :: !Char !Font -> Int
FontCharWidths :: ![Char] !Font -> [Int]
FontStringWidth :: !String !Font -> Int
FontStringWidths :: ![String] !Font -> [Int]

/* FontCharWidth(s) (FontStringWidth(s)) return the width(s) in terms of pixels
of given character(s) (string(s)) for a particular Font. */

GetFontMetrics :: !Font -> FontMetrics

/* GetFontMetrics yields the metrics of a given Font in terms of pixels.
FontMetrics is a record which defines the metrics of a font:

- fAscent is the height of the top most character measured from the base
- fDescent is the height of the bottom most character measured from the base
- fLeading is the vertical distance between two lines of the same font
- fMaxWidth is the width of the widest character including spacing

The full height of a line is fAscent+fDescent+fLeading. */

B . 3 . 6 Timers

StdTimerDef: the timer device

definition module StdTimerDef

// TimerDefinitions:

:: TimerDef ps = Timer TimerInterval [TimerAttribute ps]
:: TimerInterval :== Int
:: NrOfIntervals :== Int

:: TimerAttribute ps // Default:

STANDARD LIBRARY 1 2 9

= TimerId Id // no Id
| TimerSelect SelectState // timer Able
| TimerFunction (TimerFunction ps) // _ x->x

:: TimerFunction ps
:== NrOfIntervals->ps->ps

StdTimer: timer handling

definition module StdTimer

// Operations on the TimerDevice.

import StdTimerDef

TicksPerSecond :== 60

:: CurrentTime
= { hours :: !Int, // hours (0-23)

minutes :: !Int, // minutes (0-59)
seconds :: !Int // seconds (0-59)

}
:: CurrentDate

= { year :: !Int, // year
month :: !Int, // month (1-12)
day :: !Int, // day (1-31)
dayNr :: !Int // day of week (1-7, Sunday=1, Saturday=7)

}

OpenTimer :: !(TimerDef (PState .l .p)) !(IOState .l .p) -> IOState .l .p
/* Open a new timer. This function has no effect in case the interaction

already contains a timer with the same Id. Negative TimerIntervals
are set to zero. */

CloseTimer :: !Id !(IOState .l .p) -> IOState .l .p
/* Close the timer with the indicated Id. */

EnableTimer :: !Id !(IOState .l .p) -> IOState .l .p
DisableTimer :: !Id !(IOState .l .p) -> IOState .l .p
SetTimerFunction :: !Id !(TimerFunction (PState .l .p)) !(IOState .l .p) -> IOState .l .p
SetTimerInterval :: !Id !TimerInterval !(IOState .l .p) -> IOState .l .p
/* Enable/disable, and change the TimerFunction and TimerInterval

of the indicated timer. Negative TimerIntervals are set to zero. */

Wait :: !TimerInterval .x -> .x

/* Wait suspends the interaction for TimerInterval ticks. */

GetTimerBlinkInterval:: !(IOState .l .p) -> (!TimerInterval, !IOState .l .p)
/* Returns the TimerInterval that should elaps between blinks of e.g.

a cursor. This interval can change during the interaction! */

GetCurrentTime :: !(IOState .l .p) -> (!CurrentTime, !IOState .l .p)
GetCurrentDate :: !(IOState .l .p) -> (!CurrentDate, !IOState .l .p)
/* GetCurrentTime and GetCurrentDate return the current time and date. */

B . 3 . 7 Receivers

StdReceiverDef: the receiver device

definition module StdReceiverDef

// ReceiverDefinitions:

import StdIOCommon

:: ReceiverDef mess ps
= Receiver [ReceiverAttribute mess ps]

:: ReceiverAttribute mess ps // Default:
= ReceiverSelect SelectState // receiver Able
| ReceiverFunction (ReceiverFunction mess ps) // _ x->x

:: ReceiverFunction mess ps
:== mess->ps->ps

1 3 0 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

StdReceiver: receiver handling

definition module StdReceiver

// Operations on the ReceiverDevice.

import StdReceiverDef

// The identification of a Receiver:

:: RId m

eqRId :: !(RId m) !(RId m) -> Bool

OpenReceiver :: !(ReceiverDef mess (PState .l .p)) !(IOState .l .p)
-> (!RId mess, ! IOState .l .p)

CloseReceiver :: !(RId mess) !(IOState .l .p) -> IOState .l .p

EnableReceiver :: !(RId mess) !(IOState .l .p) -> IOState .l .p
DisableReceiver :: !(RId mess) !(IOState .l .p) -> IOState .l .p
/* Enable/Disable receiving events that have been raised to this

interaction. If there is no receiver device, nothing happens. */

ASyncSend :: !(RId mess) mess !(IOState .l .p) -> IOState .l .p
/* ASyncSend posts an event in the event stream environment that is

addressed to the interaction with the given RId. */

B . 3 . 8 StdFileSelect: selecting files

definition module StdFileSelect

import StdFile, StdEventIO

/* With the functions defined in this module standard file selector
dialogs can be opened, which provide a user-friendly way to select
input or output files. The lay-out of these dialogs depends on the
(version of the) operating system. */

SelectInputFile :: !Files !(IOState .l .p)
-> (!Bool, !String, !Files, !IOState .l .p)

/* SelectInputFile opens a dialog in which the user can traverse the
file system to select an existing file. The boolean result indicates
whether the user pressed the Open button (True) or the Cancel button
(False). The String result contains the complete pathname of the
selected file. When Cancel was pressed an empty string will be
returned. */

SelectOutputFile:: !String !String !Files !(IOState .l .p)
-> (!Bool, !String,!Files,! IOState .l .p)

/* SelectOutputFile opens a dialog in which the user can specify the
name of a file to write to in a certain directory. The first argument
is the prompt of the dialog (default: "Save As:"), the second
argument is the default filename. The boolean result indicates
whether the user pressed the Save button (True) or the Cancel button
(False). The String result contains the complete pathname of the
selected file. When Cancel was pressed an empty string will be
returned. When a file with the indicated name already exists in the
indicated directory a confirm dialog will be opened. */

B . 3 . 9 StdIOCommon: common definitions

definition module StdIOCommon

// Common types for the event I/O system and their access rules:

from StdPicture import Rectangle, Point

:: Id :== Int
:: Index :== Int
:: Title :== String
:: Size :== (!Int,!Int) // (width, height) in pixels

:: SelectState = Able | Unable

STANDARD LIBRARY 1 3 1

:: MarkState = Mark | NoMark

:: KeyboardState :== (!KeyCode, !KeyState, !Modifiers)
:: KeyCode :== Char
:: KeyState = KeyUp | KeyDown | KeyStillDown

:: MouseState :== (!MousePosition, !ButtonState, !Modifiers)
:: MousePosition :== Point
:: ButtonState = ButtonUp | ButtonDown

| ButtonDoubleDown | ButtonTripleDown | ButtonStillDown

/* Modifiers indicates the meta keys that have been pressed (True) or
not (False): (Shift, Option, Command, Control). */

:: Modifiers :== (!Bool,!Bool,!Bool,!Bool)

:: PictureDomain :== Rectangle
:: UpdateArea :== [Rectangle]

/* The layout language used for windows and controls. */

:: ItemPos
:== (ItemLoc,

ItemOffset
)

:: ItemLoc
= LeftTop | RightTop | LeftBottom | RightBottom
| Left | Center | Right
| LeftOf Id | RightTo Id
| Above Id | Below Id

:: ItemOffset
:== (!Int,!Int)

/* Attributes for interactive processes. */

:: IOAttribute ps
= IOActivate (IOFunction ps)
| IODeactivate (IOFunction ps)
| IOHelp (IOFunction ps)

/* Frequently used function types. */

:: IOFunction ps :== ps -> ps
:: ModsIOFunction ps :== Modifiers -> ps -> ps
:: UpdateFunction ps :== UpdateArea -> ps -> ps
:: MouseFunction ps :== MouseState -> ps -> ps
:: KeysFunction ps :== KeyboardState -> ps -> ps

// Optional type:

:: Optional x
= One x
| None

hasOption :: !(Optional .x) -> Bool
getOption :: !(Optional .x) -> .x

EqualSelectState :: !SelectState !SelectState -> Bool
EqualMarkState :: !MarkState !MarkState -> Bool
EqualButtonState :: !ButtonState !ButtonState -> Bool
Enabled :: !SelectState -> Bool
Checked :: !MarkState -> Bool
MarkSwitch :: !MarkState -> MarkState

B . 3 . 1 0 StdIOState: global operations on the IO State

definition module StdIOState

// Operations on the IOState that have a global effect.

import StdEventIO, StdWindowDef

// Emit the alert sound.

Beep :: !(IOState .l .p) -> IOState .l .p
/* If the interaction is active, Beep emits a sound alert.

If the interaction is inactive, Beep does nothing. */

1 3 2 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

// Operations on the global cursor:

SetGlobalCursor :: !CursorShape !(IOState .l .p) -> IOState .l .p
/* Set the shape of the cursor globally. This shape overrules the

local cursor shapes of windows. */

ResetCursor :: !(IOState .l .p) -> IOState .l .p
/* Undoes the effect of SetGlobalCursor. */

ObscureCursor :: !(IOState .l .p) -> IOState .l .p
/* ObscureCursor hides the cursor until the mouse is moved. */

// Operations on the DoubleDownDistance:

SetDoubleDownDistance :: !DoubleDownDist !(IOState .l .p) -> IOState .l .p
/* Set the maximum distance the mouse is allowed to move to generate a

ButtonDouble(Triple)Down button state. Negative values are set to zero. */

// Operations on the attributes of an interaction:

SetIOActivate :: !(IOFunction (PState .l .p)) !(IOState .l .p) -> IOState .l .p
SetIODeactivate:: !(IOFunction (PState .l .p)) !(IOState .l .p) -> IOState .l .p
SetIOHelp :: !(IOFunction (PState .l .p)) !(IOState .l .p) -> IOState .l .p
/* Set the IOActivate, IODeactivate, IOHelp attribute of the interaction. */

B . 3 . 1 1 StdSystem: platform dependent settings

definition module StdSystem

// Platform dependent constants and functions (the values are given for the Macintosh).

import StdIOCommon

// Keyboard constants.

UpKey :== '\036' // Arrow up
DownKey :== '\037' // Arrow down
LeftKey :== '\034' // Arrow left
RightKey :== '\035' // Arrow right
PgUpKey :== '\013' // Page up
PgDownKey :== '\014' // Page down
BeginKey :== '\001' // Begin of text
EndKey :== '\004' // End of text
BackSpKey :== '\010' // Backspace
DelKey :== '\177' // Delete
TabKey :== '\011' // Tab
ReturnKey :== '\015' // Return
EnterKey :== '\003' // Enter
EscapeKey :== '\033' // Escape
HelpKey :== '\005' // Help

// File constants.

DirSeparator :== ':' // Separator between folder- and
// filenames in a pathname

// Constants to check which of the Modifiers is down.

ShiftOnly :== (True,False,False,False)
OptionOnly :== (False,True,False,False)
CommandOnly :== (False,False,True,False)
ControlOnly :== (False,False,False,True)

/* The functions HomePath and ApplicationPath prefix the
filename given to them with the full pathnames of the 'home'
and 'application' directory.
These functions have been added for compatibility with the
Sun version of the Clean system. In the 'home' directory
settings-files (containing preferences, options etc.) should
be stored. In the 'application' directory (i.e. the
directory in which the application resides) files that are
used read-only by the application (such as help files) should
be stored.
On the Macintosh these functions just return the filename
given to them, which means that the file will be stored in
the same folder as the application. */

STANDARD LIBRARY 1 3 3

HomePath :: !String -> String
ApplicationPath :: !String -> String

/* Screen resolution functions.
h(mm/inch) convert millimeters/inches into pixels, horizontally.
v(mm/inch) convert millimeters/inches into pixels, vertically. */

mmperinch :== 25.4

hmm :: !Real -> Int
vmm :: !Real -> Int
hinch :: !Real -> Int
vinch :: !Real -> Int

/* Maximum ranges of window PictureDomains:
MaxScrollWindowSize yields the range at which scrollbars

are inactive.
MaxFixedWindowSize yields the range at which the window

does not change into a ScrollWindow. */

MaxScrollWindowSize :: Size
MaxFixedWindowSize :: Size

B . 4 Operations for parallel evaluation

B . 4 . 1 StdProcId: operations for load distribution on ProcIds

C
Annotated Clean Bibliography

Below follows an annotated bibliography for people who want to know more about Concurrent
Clean, its underlying concepts and its implementation. Many of these papers are available from our
ftp site:

General papers on Concurrent Clean

- Rinus Plasmeijer and Marko van Eekelen (1993). Functional Programming and Parallel Graph
Rewriting. Addison Wesley, ISBN 0-201-41663-8.

Basic book on Clean. Introduction in functional programming using Miranda; Clean (version 0.8);
Underlying model of computation (lambda-calculus, term rewriting systems, graph rewriting sys-
tems); Type systems; Strictness analysis; Implementation techniques using Clean as intermediate
language; Abstract machines; Code generation for both sequential and parallel architectures.

- Rinus Plasmeijer (1994). ‘The Concurrent Clean Development System’. University of Nijme-
gen.

Manual on the use of Clean’s programming environment on the Mac. This information can also be
obtained by printing out the help file from the Mac distribution.

- Eric Nöcker, Sjaak Smetsers, Marko van Eekelen, Rinus Plasmeijer (1991). ‘Concurrent Clean’.
In Aarts, E.H.L., J. van Leeuwen, M. Rem (Eds.), Proceedings of the Conference on Parallel
Architectures and Languages Europe (PARLE’91), Vol II, Eindhoven, The Netherlands, LNCS
505, Springer Verlag, June 1991, 202-219.

Gives a short overview of the features of Concurrent Clean (version 0.7) as well as of its imple-
mentation.

- Tom Brus, Marko van Eekelen, Maarten van Leer, Rinus Plasmeijer (1987). ‘Clean - A Lan-
guage for Functional Graph Rewriting’. Proc. of the Third International Conference on Functio-
nal Programming Languages and Computer Architecture (FPCA '87), Portland, Oregon, USA,
LNCS 274, Springer Verlag, 364-384.

First paper on Clean.

Papers on the underlying computational model being used

- Henk Barendregt, Marko van Eekelen, John Glauert, Richard Kennaway, Rinus Plasmeijer,
Ronan Sleep (1987). ‘Term Graph Rewriting’. Proceedings of Parallel Architectures and Lan-
guages Europe (PARLE) , part II, Eindhoven, The Netherlands. LNCS 259, Springer Verlag,
141-158.

Basic paper on Term Graph Rewriting, the computational model Clean is based upon.

- Ronan Sleep, Rinus Plasmeijer and Marko van Eekelen (1993). Term Graph Rewriting - The-
ory and Practice. John Wiley & Sons.

1 3 6 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

Collection of theoretical papers by various authors on properties of Term Graph Rewriting systems.

- Yoshihito Toyama, Sjaak Smetsers, Marko van Eekelen and Rinus Plasmeijer (1993). ‘The
functional strategy and transitive term rewriting systems’. In: Term Graph Rewriting, ed.
Sleep, Plasmeijer and van Eekelen, John Wiley.

- Marko van Eekelen, Rinus Plasmeijer, Sjaak Smetsers (1991). ‘Parallel Graph Rewriting on
Loosely Coupled Machine Architectures’. In Kaplan, S. and M. Okada (Eds.) Proc. of the 2nd
Int. Worksh. on Conditional and Typed Rewriting Systems (CTRS’90), 1990. Montreal, Ca-
nada, LNCS 516, Springer Verlag, 354-370.

Explains parallel Graph Rewriting and the concept of lazy copying.

- Erik Barendsen and Sjaak Smetsers (1993). ‘Extending Graph Rewriting with Copying’. In:
Proc. of the Seminar on Graph Transformations in Computer Science, ed. B. Courcelle, H.
Ehrig, G. Rozenberg and H.J. Schneider, Dagstuhl, Wadern, Springer-Verlag, Berlin, LNCS
776, Springer Verlag, pp 51-70.

Formal semantics of (lazy) copying.

- Steffen van Bakel, Simon Brock and Sjaak Smetsers (1992). ‘Partial type assignment in left-li-
near applicative term rewriting systems’. In: Proc. of the CAAP'92, ed. J.C. Raoult, Rennes,
France, LNCS 581, Springer Verlag, pp. 300-321.

Formal treatment of the "classical" type system of Concurrent Clean.

- Erik Barendsen and Sjaak Smetsers (1993). ‘Conventional and Uniqueness Typing in Graph
Rewrite Systems (extended abstract)’. In: Proc. of the 13th Conference on the Foundations of
Software Technology & Theoretical Computer Science, ed. R.K. Shyamasundar, Bombay,
India, LNCS 761, Springer Verlag, pp. 41-51.

Formal treatment of Clean’s Uniqueness Type System used to guarantee single-threaded use of
objects.

Papers on applications written in Clean

- Walter de Hoon, Luc Rutten and Marko van Eekelen (1994). ‘Implementing a Functional
Spreadsheet in Clean’. Journal of Functional Programming, 5, 3, pp. 383-414.

About a spreadsheet written in Clean. As spreadsheet language also a Clean-like functional lan-
guage is chosen which is being interpreted by a theorem prover. One can do symbolic evaluation
to verify properties of the spreadsheet.

Papers on advanced I/O

- Peter Achten, John van Groningen and Rinus Plasmeijer (1992). ‘High-level specification of
I/O in functional languages’. In: Proc. of the Glasgow workshop on Functional programming,
ed. J. Launchbury and P. Sansom, Ayr, Scotland, Springer-Verlag, Workshops in Computing,
pp. 1-17.

Introduction in Clean’s Event I/O.

- Peter Achten and Rinus Plasmeijer (1995). ‘The Ins and Outs of Concurrent Clean I/O’. Jour-
nal of Functional Programming, 5, 1, pp. 81-110.

Explains the concepts behind Clean’s Event I/O and how they can be used to define interactive
window-based applications on a high-level of abstraction.

- Peter Achten and Rinus Plasmeijer (1994). ‘A framework for Deterministically Interleaved Inter-
active Programs in the Functional Programming Language Clean’. In: Proc. of the CSN'94,
Computing Science, to appear.

ANNOTATED CLEAN BIBLIOGRAPHY 1 3 7

Explains how one can create several interleaved executing interactive Clean processes inside one
interactive pure functional Clean application which can communicate via a shared state as well as
via asynchronous message passing.

Papers on the Clean to PABC compiler

- Eric Nöcker and Sjaak Smetsers (1993). ‘Partially strict non-recursive data types’. Journal of
Functional Programming, 3, 2, pp. 191-215.

Introduces partially strict data structures as available in Concurrent Clean and explains why and
how they improve efficiency.

- Eric Nöcker (1993). ‘Strictness analysis using abstract reduction’. In: Proc. of the 6th Confer-
ence on Functional Programming Languages and Computer Architectures, ed. Arvind, Copen-
hagen, ACM Press, pp. 255-265.

Explains the efficient and powerful strictness analysis method incorporated in Clean.

Papers on the abstract machine level

- Pieter Koopman, Marko van Eekelen, Eric Nöcker, Sjaak Smetsers, Rinus Plasmeijer (1990).
‘The ABC-machine: A Sequential Stack-based Abstract Machine For Graph Rewriting’. Proc of
the Sec. Intern. Workshop on Implementation of Functional Languages on Parallel Architectu-
res, pp. 297-321, Technical Report no. 90-16, October 1990, University of Nijmegen.

Explains the sequential version of the PABC-machine and gives some information about the compi-
lation of Clean to (abstract) ABC-machine code.

Papers on code generation

- Sjaak Smetsers, Eric Nöcker, John van Groningen, Rinus Plasmeijer (1991). ‘Generating Effi-
cient Code for Lazy Functional Languages’. In Hughes, J. (Ed.), Proc. of the Fifth International
Conference on Functional Programming Languages and Computer Architecture (FPCA '91),
USA, LNCS 523, Springer Verlag, 592-618.

Explains some optimisations that are used for the generation of efficient machine code.

- John van Groningen , Eric Nöcker and Sjaak Smetsers (1991) ‘Efficient heap management in
the concrete ABC machine’ in Proc. of Third International Workshop on Implementation of
Functional Languages on Parallel Architectures, University of Southampton, UK
1991,Technical Report Series CSTR91-07.

Explains the heap management (garbage collection) techniques used for the implementation of Con-
current Clean on concrete machines.

- Marko Kesseler (1991). ‘Implementing the ABC machine on transputers’. In: Proc. of the 3rd
International Workshop on Implementation of Functional Languages on Parallel Architectures,
ed. H. Glaser and P. Hartel, Southampton, University of Southampton, Technical Report 91-
07, pp. 147-192.

- Richard Goldsmith, Dave McBurney and Ronan Sleep (1993). ‘Parallel execution of Concur-
rent Clean on ZAPP’. In: Term Graph Rewriting, ed. Sleep, Plasmeijer and van Eekelen, John
Wiley.

The papers explain different ways to achieve a parallel implementation of Concurrent Clean on a
MIMD machine with distributed memory.

- Marko Kesseler (1994). ‘Reducing Graph Copying Costs - Time to Wrap it up’. In: Proc. of the
First International Symposium on Parallel Symbolic Computation, PASCO '94, ed. Hoon
Hong, Hagenberg/Linz, Austria, World Scientific, Lecture notes Series on Computing, 5, 5, pp.
244-254.

1 3 8 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

Explains how to generate efficient code for a multi-processor Transputer system.

D
Bibliography

Barendregt, H.P. (1984). The Lambda-Calculus, its Syntax and Semantics. North–Holland.
Bird, R.S. and P. Wadler (1988). Introduction to Functional Programming. Prentice Hall.
Harper, R., D. MacQueen and R. Milner (1986). ‘Standard ML’. Edinburgh University, Internal report

ECS-LFCS-86-2.
Hindley R. (1969). The principle type scheme of an object in combinatory logic. Trans. of the Ameri-

can Math. Soc., 146, 29-60.
Hudak, P. , S. Peyton Jones, Ph. Wadler, B. Boutel, J. Fairbairn, J. Fasel, K. Hammond, J. Hughes,

Th. Johnsson, D. Kieburtz, R. Nikhil, W. Partain and J. Peterson (1992). ‘Report on the pro-
gramming language Haskell’. ACM SigPlan notices, 27, 5, pp. 1-164.

Jones, M.P. (1993). Gofer - Gofer 2.21 release notes. Yale University.
Milner, R.A. (1978). ‘Theory of type polymorphism in programming’. Journal of Computer and Sys-

tem Sciences, 17, 3, 348-375.
Mycroft A. (1984). Polymorphic type schemes and recursive definitions. In Proc. International Con-

ference on Programming, Toulouse (Paul M. and Robinet B., eds.), LNCS 167, Springer Ver-
lag, 217–239.

Turner, D.A. (1985). ‘Miranda: a non-strict functional language with polymorphic types’. In: Proc. of
the Conference on Functional Programming Languages and Computer Architecture, ed. J.P.
Jouannaud, Nancy, France. LNCS 201, Springer Verlag, 1-16.

E
Index

Emboldened terms indicate where a term has been defined in the text. A term starting with an upper-
case character generally refers to an identifier in the syntactic description or to a predefined function
or operator in the library.

A block structure 22
Bool 11, 16, 30, 40
BoolDenot 1 0, 1 0 60 1 0, 1 0 6
BooleanExpr 1 7, 1020x 1 0, 1 0 6
boxing 5 7, 9 5abort 5 0
BrackPattern 2 8, 102abstract data type 4 7
BrackType 3 9, 4 3predefined 4 0

CAbstractTypeDef 4 7, 104
Acker 5 8
actual node-id 5 CAF 2 4
algebraic data type 4 2 cartesian product 41, 4 8
algebraic data type definition 29 case 11, 2 2
AlgebraicTypeDef 42, 63, 104 case expression 2 2
anonymous uniqueness type variable 6 3 CaseAltDef 2 2, 103
AnyChar 1 0, 1 0 6 CaseExpr 2 2, 103
AnythingTill*/ 1 0 Char 11, 16, 30, 40
AnythingTill/* 1 0 CharDel 9
AnythingTillNL 1 0 CharDenot 1 0, 1 0 6
AP 4 9 CharsDenot 1 0, 1 0 6
Application 1 5, 16, 1 0 3 class 11, 5 1, 5 5, 1 0 5
Arith 5 0 ClassContext 5 2, 1 0 2
arity of a function 48, 4 9 ClassDef 105
array 17, 1 9, 31, 4 1, 1 0 3 ClassSymb 1 2, 1 0 5
array comprehension 2 0 CleanProgram 9 1, 1 0 1
array generator 1 7 code 11, 9 3
array index 21, 4 1 coercion 68, 7 0
array pattern 3 1 Comment 1 0
array selection 2 1 comparing 3
ArrayA = {1,2,3,4,5} 1 8 conditional expression 2 2
ArrayExpr 1 7, 103 console mode 7 2
ArrayIndex 1 9 constant applicative form 2 4
ArrayPattern 3 1, 102 constant function 23
ArraySelection 1 9, 1 0 3 constant value 16, 3 0, 4 2
ArrayType 4 1, 1 0 4 constructor
arrow type 4 1 of zero arity 29
ArrowType 4 2, 104 constructor operator 2 9
ASCII 40 constructor pattern 2 9

B constructor symbol 4
ConstructorDef 63, 104
ConstructorSymb 1 2, 1 0 5basic type 16, 3 0, 4 0
ConstructorSymbol 1 6, 2 9BasicType 4 0
ConstructorSymbol 105BasicValue 1 7, 103
contextBasicValuePattern 102

lazy 5 7

1 4 2 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

strict 5 7 curried application of a 4 9
context-switch 86 partial 4, 4 9
contractum 3 , 23, 32 total 5 0
contravariant 6 7 function alternative 2 7
curried application 4 9 function composition 49
curried type 41 function definition 3 , 2 7
currying 15 function object 4 1
cyclic graph 2 3 function symbol 4

D function type 4 8
functional array update 2 0
functional record update 1 8data constructor 28, 29, 4 2
functional reduction strategy 4data structure 42
FunctionAltDef 2 7, 102DataRoot 6
FunctionBody 2 7default 11
FunctionDef 2 7, 4 8, 102default attribute 6 8
FunctionSymb 1 2, 1 0 5defined symbol 9 3
FunctionSymbol 1 6, 2 7, 105explicitly 9 3
FunctionType 4 8, 5 2, 1 0 2implicitly 9 3
FunctionTypeDef 4 8, 102definition 11, 24, 42, 9 1, 92, 1 0 1
FunnyId 9global 1 2

Gdefinition module 47, 9 1
DefinitionModule 9 1, 1 0 1
DefOfFunction 2 7 garbage collection 24
demanded type 7 0 garbage collector 24
depending module 9 4 generator 1 7, 1 0 3
dictionary 5 0 array 1 7
Digit 9 , 1 0 6 list 1 7
directed arc 3 global definition 1 2
dot-dot expression 1 7 global graph 7

E global graph definition 2 4
graph 3 , 6, 1 5, 1 0 3
graph definition 2 3E. 4 4
graph expression 32enumeration type 17
graph rewrite rule 3essentially unique 6 5, 6 9
GraphDef 2 3evaluation
GraphExpr 1 5interleaved 15
GraphPattern 2 9, 102parallel 15
GraphVariable 1 6, 103existential algebraic data type definition 4 4
guard 17, 27, 3 1, 3 2, 102existential type 4 4
guarded function body 2 7existentially quantified type 40

Hexistentially quantified variable 4 4
export 11, 12
expression 1 5 ham 2 4, 3 3

initial 3 ham1 2 4
F Haskell iv

head normal form 72
HexDigit 1 0, 1 0 6fac 5 0
Hindley 39False 1 0, 1 0 6

Ifield name 18, 31, 4 5
FieldSymb 1 2, 1 0 5
File 11, 40 I 11
filter 3 2 I/O
Fix 4 2, 4 8, 104 window 79
fixity 16, 28, 4 9 IdChar 9 , 1 0 5
flat type 5 7 Identifier 9 , 1 1
foreign function 9 3 if 11
formal argument 16 implementation 11, 9 1, 1 0 1
formal arguments 2 8 implementation module 47, 9 1
formal node-id 5 import 11, 9 3
from 11, 9 3 import statement 9 3
function 4 ImportDef 9 3, 102

arity of a 4 9 ImportSymbols 93, 102
constant 23 in 11, 3 2

INDEX 1 4 3

index 31 N
infix 11, 28, 43, 4 9
infix constructor 2 9, 4 3 name space 10, 1 2
infixl 11, 28, 43, 4 9 negative position 6 8
infixr 11, 28, 43, 4 9 nfib 3 0
Initial 5, 6, 7 node 3
initial expression 3 , 7 2, 9 2 node variable 3 0
instance 11, 5 1 node-id 3
Int 11, 16, 30, 40 actual 5
IntegerDenot 1 0, 105 applied 3
IntegerExpr 1 9 formal 5
Intel vii node-id variable 2 8

K node-identifier 3
NodeSymbol 1 6, 105

keyword 10 non-unique 6 8
L normal form 4

O
LambdaAbstr 2 2, 103
Läufer 44 object oriented programming 46
lay-out rule 1 3 observing reference 6 7
lazy context 5 7 OctDigit 1 0
lazy evaluation 5 7 of 11, 2 2
lazy semantics 5 7 offered type 7 0
left hand-side of a graph 3 operator 16, 2 8, 4 9, 105
let! 11, 3 2 ++ 2 8, 6 5
Lexeme 9 o 2 8, 4 9
LexProgram 9 order of evaluation 6 7
LGraphExpr 1 7, 1 0 3 OS/2 vii
LGraphPattern 3 0, 102 otherwise 3 2
Linux vii overloaded 5 0
list 17, 30, 4 0, 1 0 3 overloading 12
list comprehension 1 7 P
list list generator 1 7
list of characters 17 P 11
list pattern 3 0 partial function 4, 29, 32, 4 9
ListExpr 1 7, 103 partial match 4
ListPattern 3 0, 102 pass-through module 9 4
ListType 4 1, 104 pattern 3 , 2 8, 102
Literal 1 0 array 3 1
local definition 27, 3 3 bracket 2 8
local function definition 3 3 constructor 2 9
local graph definition 2 4 list 3 0
local process state 84 of basic type 30
LocalDef 3 3, 102 record 3 1
LocalFunctionAltDefs 3 3, 103 tuple 3 0
LocalFunctionDefs 3 3, 102 pattern match 32
loosely coupled parallel architecture 9 9 pattern variable 2 9
LowerCaseChar 9 , 1 0 5 patterns 27
LowerCaseId 9 , 105 PatternVariable 2 9, 102

M plain basic type 6 7
polymorphic algebraic data type 4 2

MacOS vii position
macro definition 8 9 negative 6 8
MacroFixityDef 89, 104 of an argument 68
MacroSymb 1 2, 1 0 5 positive 6 8
map 2 8, 4 8, 7 0 positive position 6 8
merge 3 0 possibly unique 6 3, 6 8
Milner 39 PowerPC vii
Miranda iv Prec 4 3, 4 8, 104
module 11, 9 1, 1 0 1 precedence 16, 28, 4 9
ModuleSymb 1 2, 1 0 5 PredefAbstrType 4 0, 104
Motorola vii primes 1 4, 3 3

process annotation 11

1 4 4 CONCURRENT CLEAN LANGUAGE REPORT- 25 March 1996

process group 84 SimpleType 3 9, 4 3, 104
ProcId 11, 40 SML iv
ProcIdExpr 103 Solaris vii
program 3 sort 1 8
program graph 4 Special 1 0, 1 0 6
projection function 2 4 SpecialChar 9 , 1 0 5
propagation property for curried functions 6 9 stack 4 7
propagation rule 6 4 Start 5 , 6, 9 2

Q start rule 5
StartNode 6
state transition function 7 3Qualifier 1 7, 1 0 3
Strict 104R strict context 5 7
strict let expression 27, 3 2

Real 11, 16, 30, 40 strict semantics 5 7
RealDenot 1 0, 1 0 6 StrictLet 3 2, 102
receiver device 85 strictness annotation 5 7
record 18, 31, 1 0 3 StringDel 9 , 1 0 6
record pattern 3 1 StringDenot 1 0, 1 0 6
record selection 1 8 strong root normal form 4 , 32, 67
record type 4 5 strong type system 39
RecordExpr 1 8, 103 strongly typed language 3 9
RecordPattern 3 1, 102 sub-graph 4 , 32
RecordSelection 1 8, 1 0 3 sub-pattern 2 9
RecordTypeDef 4 6, 104 subtyping 6 7
redex 4 SunOS vii
redirection 3 symbol 3 , 10, 1 1
redirection of a node 4 arguments of a 3
reducer 4 synonym type 4 7
reducible expression 4 SynonymTypeDef 4 7, 104
reduct 4 system 11, 9 1, 1 0 1
reduction strategy 4 system definition module 9 3
reference 3 system implementation module 9 3
Remote Procedure Call (SendRPC) 86 T
Remote Procedure Call process 86
ReservedChar 1 0, 1 0 6

Term Graph Rewriting 3ReservedKeyword 1 0
terminal vi, 1 0 1ReservedSymbol 11
total function 5 0rewrite of a redex 4
tree 3right hand-side of a graph 3
True 1 0, 1 0 6root expression 27, 3 2
tuple 18, 30, 4 1, 103root normal form 4 , 72
tuple pattern 3 0root stable form 72
TuplePattern 3 0, 102RootExpression 3 3, 102
TupleType 4 1, 104RPC process 86
type 3 9, 4 3, 61, 104rule alternative 2 7, 32

abstract data 4 7S algebraic data 4 2
array 4 1

scope 12, 22, 24 arrow 4 1
selection basic 40

by field name 4 5 context 5 1
by index 1 9 curried 41
by position 4 5 existential 4 4

Selector 1 7, 2 4, 1 0 3 explicitly specified 3 9
selector variable 1 6, 2 4 flat 5 7
SelectorVariable 1 2, 1 0 5 inferred 3 9, 4 8
semantics list 17, 4 0

lazy 5 7 of a function 4 8
strict 5 7 of partial function 4 9

sharing 2 3 record 4 5
sharing analysis 6 6 synonym 4 7
sharing consistent 7 0 tuple 4 1
sieve 1 4, 3 3 variable 4 2
Sign 1 0, 6 8, 1 0 6 type class 5 0

INDEX 1 4 5

definition of 5 0 V
member of 5 0

type instance 3 9 Variable 1 2, 1 6, 1 0 5
type specification 11 existentially quantified 4 4
type variable 4 2 node 30
TypeConstructor 4 2, 104 node-id 2 8
TypeDef 4 2, 104 pattern 2 9
TypeLhs 4 2, 6 3, 1 0 4 selector 1 6, 2 4
TypeSymb 1 2, 1 0 5 type 4 2
TypeVariable 1 2, 1 0 5 Void 11, 40

U W
unboxing 5 7, 9 5 where 11, 3 3
unique 6 2 where block 27, 3 3
uniqueness type 6 1 Whitespace 9

correctness 70 wildcard 2 4, 3 0
polymorphic 6 3 Windows '95 vii

uniqueness type attribute 39, 6 1, 6 8 with 11, 3 3
uniqueness type inferencing mechanism 7 0 with block 27, 3 3
uniqueness type specification 7 0 World 11, 40
uniqueness type variable 6 8 abstract 7 2

anonymous 6 9 concrete physical 7 2
bound 6 9 world mode 7 2
free 6 9 XUnqTypeAttrib 6 2

update of a record
Xview viidestructive 1 8

Zupdate of an array
destructive 2 0

UpperCaseChar 9 , 1 0 5 zero arity symbol 16
UpperCaseId 9 , 1 0 5 ZF-expression 1 7

