
Sustainable IoT programming

IoT = Internet of Things

Mart Lubbers - Pieter Koopman

layered IoT architecture

presentation layer

application layer

network layer

perception layer

2

the smart sensors
on the mills

edge computing

sometimes split in
an application and

a business layer

vital software challenges
also holds for Internet of Things programming

• reliable
§ functionality, performance, security, usability, ..
• maintainable & evolvable
§ maintainable: fix problem and small adaptations to changing environment
§ evolvable: ability to easily accommodate future changes gradually
• efficient engineering
§ effective tools and how to use them properly
• sustainable
§ energy-efficiency of IoT system (previous SusTrainable summer school)
§ efficiency of construction, maintenance and evolution

adapted from the versen.nl manifesto

3

up to 90% of
project costs

https://www.versen.nl/contents/manifesto

first laws of software quality

E = mc2

Errors = (more code)2
Chet Haase (Google)

If something can go wrong, it will
Edward A. Murphy

lowering quality lengthens development time
Ward Cunningham

Programs must be written for people to read,
and only incidentally for machines to execute.

Abelson and Sussman

4

static typing spots
error before
they occur

we need concise
high quality code !

project management triangle

good, fast and cheap; pick any two you like

5

good

cheapfast

does
not

exist

the IoT Development Grief

6

edge computing

example
technologies

the IoT Development Grief

• distributed heterogeneous system
• many languages and protocols
§ Python, PHP
§ TCP, MQTT, Protobuf
§ HTML, JSON,
§ Redis, MongoDB
§ I2C, 1-Wire, GPIO

+ flexible

- complex
- semantic friction
- problems detected at runtime
- maintenance is very hard

7

the tierless approach

• tierless = use a single source to define the entire application
§ software for all components and their interaction generated from this single source
§ type-system checks the entire application (prevents run-time errors)
§ prevents semantic friction and version problems
§ also used for websites: Hop, Links, ScalaLoci, .., Potato

• tierless Task-Oriented Programming, TOP
§ focussed on tasks to be executed by machines and humans

web-pages and other interactions are determined by the current tasks to do
§ iTask for web-pages, server, and database,

the same code is executed in the browser and on the server and clients
Øbuilt on top of and inheriting all advantages of functional programming

§ mTask for small IoT devices

8

tasks by example

• basic tasks: read temperature sensor, update SDS, view/edit SDS
• Shared Data Source, SDS
• task composition: sequence, repeat, parallel (combinators)

9

update

-||-

sds
viewtemp

>>-

repeat

dht

deviceTask

generated interface
in browser,

presentation layer

TOP by example: temperature sensor remote RPi

• we only indicate where tasks are executed
• code for remote task is unaffected
• an easy way to select the remote computer is via an iTask editor,

dynamic placing of the device task

10

view dev

-||

sds

server remote

Task-Oriented Programming for the IoT

Tierless
• single source for all code

+ type system prevents errors
+no semantic friction
+communication and storage

are generated

+more reliable
+easier to maintain
+ less code

- monolithic
11

goodedge computing

tasks on restricted hardware
microcontrollers require less energy and resources

12

IoT devices: single-board computers vs. microcontrollers

• microcontrollers are fine IoT edge devices
+price and energy consumption are excellent, Wi-Fi included
- memory and speed are limited, which has an impact on the software

Raspberry Pi 3 Wemos D1 mini
price 60 € 6 €

energy 4 W 0.4 W

* we can use FreeRTOS

volatile fast memory 2,000 MB 0.05 MB
flash memory (wears) 32,000 MB 4 MB

CPU speed 1,400 MHz 80 MHz
Word size 64 bits 32 bits

WiFi ❌ ✔

operating system ✔ Pi OS ❌ *

13

byte code
interpreter
+ tiny OSiTask

mTask

the need for mTask

• remote task on a device like the Wemos D1
• challenge: limited resources
§ processor is too slow
§ memory is too small (4 MB flash and 50 KB RAM)
§ tasks are too dynamic to store in flash (wear)
• solution: mTask: restricted version of iTask

view dev

-||

sds

server remote

14

iTask
mTask

server remote

dynamic byte code

SDS synchronisation

mTask

sds sds

Task-Oriented Programming for the IoT on restricted devices

mTask architecture
• single source for all code

+ typed: no runtime errors
+ no version problems
+ no semantic friction
• a separate part for edge node
§ runtime compiled to bytecode
§ runtime shipment to device
§ bytecode interpreter on device

featherlight domain-specific OS
§ tasks are stored in RAM,

prevents wear of flash memory

15

mTask architecture

• mTask is integrated in iTask
• same high-level single source
• same static quality guarantees
• automatic SDS synchronisation
• storage and GUI generated

• program is shipped dynamically
• no maintenance problems,

remote program is always up to date
• mTask OS optimizes task execution
• communication is generated

16

iTask
mTask

server remote

dynamic byte code

SDS synchronisation

mTask

sds sds

TOP for IoT by example
iTask – mTask example

17

remote temperature sensor

tSDS = sharedStore "tSDS" -273.15

Start w = doTasks combinedTask w
combinedTask =
 runMTask tempMTask -||
 (Label "Temperature" @>> viewSharedInformation [] tSDS)

tempMTask =
 dht dhtWemosSHT30Shield \sensor->
 lowerSds \rSDS = tSDS In
 {main = rpeat (
 temperature sensor >>~. \t.
 setSds rSDS t >>|.
 delay delta)
 }
delta = ms 200

18

view mTask
rSDStSDS

sensor

server remote
-||

dimSDS = sharedStore "dim" 0

Start w = doTasks combinedTask w
combinedTask =
 runMTask color -||
 (updateSharedInformation [] dimSDS <<@ Label "Value between 0 and 255")

color =
 neopixel neopixelWemosRGBLEDShield \neo->
 lowerSds \dim = dimSDS In
 {main = rpeat (getSds dim
 >>~. \d->setPixelColor neo ledNum d d d)
 }

ledNum = lit 0

controlling a neoPixel LED

19

edit mTask
dimdSDS

neoPixel

server remote
-||

Development and maintenance
Comparing code size and paradigms

20

case study: University of Glasgow - smart campus sensor

• real-world example to compare tiered and TOP code
• sensor in each room to make campus smart
§ UoG ten-year campus upgrade programme
§ apps to monitor campus use, room temperature, …
§ existing prototype in Python on Raspberry Pi

https://ieeexplore.ieee.org/document/7575844
• functional requirements:
§ measures temperature, humidity and light
§ scales to 10 sensors per node
§ communication with server
§ centralised database server
§ web interface to data
§ managing and monitoring sensor nodes

21

4 implementations of smart campus sensor

sensor node

server +
data storage +
communication

languages used

MicroPython

Python, JSON,
Redis, MongoDB,

HTML, PHP

7

Python

Python, JSON,
Redis, MongoDB,

HTML, PHP

6

mTask

iTask

2

iTask

iTask

1

tiered tierless

22

smart campus sensor - code size
tiered tierless

23

SLOC PWS PRS CWS CRS
sensor node 178 183 9 4

sensor interface 52 57 11 11

communication 94 98 5 4
web interface 56 56 28 28

DB interface 106 106 87 87
swap DB to SDS - - 8 8

manage node 76 76 5 4

total 562 576 166 155 94 98

5 4

106 106

78 78

56 56

28 28

76 76

35 30

178 183

9 4

52 57

11 11

0

100

200

300

400

500

600

PWS PRS CWS CRS

sensor interface

sensor node

manage node

web interface

DB interface

communication

files 35 38 3 5

E = mc2

tierless:
often 90% reduction

on average 73%

smart campus sensor - comparison
tiered tierless

24

• restricted hardware:
§ additional language and decisions
§ limited additional code

• mTask ships tasks dynamically,
static allocation in the tiered approach

• tierless is a single program
§ checked by the compiler
• tierless requires less languages
• tierless requires less paradigms
• tierless requires less code
• hence, tierless is better maintainable

94 98

5 4

106 106

78 78

56 56

28 28

76 76

35 30

178 183

9 4

52 57

11 11

0

100

200

300

400

500

600

PWS PRS CWS CRS

sensor interface

sensor node

manage node

web interface

DB interface

communication

cheapfast

green computing (previous summer school)

• automatic sleeping
§ microcontrollers have sleep modes to save energy,

even light sleep saves 99,7% energy
§ the mTask OS on the device assigns an execution region to each task
§ regions based on expected change. e.g., temperature <0, 2000> ms
§ without urgent tasks the devices takes a nap,

whenever awake it executes all tasks that cannot be delayed to next round
• interrupt handling
§ sensor wakes up or interrupts microcontroller
§ less energy needed than polling
§ fewer events missed

25

polling

interrupt

good

other aspects of tiered / tierless programming

tiered (Python and friends)
• reliable
§ finished system had some errors
• maintenance
§ updates are pretty tricky

• evolution
§ hard
§ fail-safe system was too much work

• efficient engineering
§ wide variety of tools available
§ many courses
§ wide community (e.g. stack overflow)

tierless (iTask + mTask)
• reliable
§ no errors found after the type check and tests
• maintenance
§ update the single source and recompile

• evolution
§ much easier
§ fail-safe system in a few lines of code

• efficient engineering
§ all benefits of pure functional programming
§ a single TOP implementation
§ support by a few friendly people and companies

26

the bad and the ugly

• we have to learn a new paradigm
§ embedded in functional programming language Clean
§ iTask for server and fast devices
§ mTask for restricted devices
§ this is not yet another Python variant

• TOP is not yet mainstream
§ limited courses available
§ experienced programmers are hard to find
§ no help on stackoverflow.com, nor on ChatGPT

§ but there is cloogle.org, clean-lang.org, top-software.nl, nitrile, Eastwood

27

http://cloogle.org/
https://clean-lang.org/
https://top-software.nl/index.html
https://clean-and-itasks.gitlab.io/nitrile/
https://gitlab.com/top-software/clean-vs-code

sustainable IoT programming

• IoT programming is challenging: distributed & heterogenous
• a tierless approach simplifies development and maintenance
§ static types and code generation prevent runtime errors
§ single source language prevents semantic friction
• TOP provides concise logic, typically 90% less code
§ only 10% to 25% of the code
§ E = mc2: less errors
• restricted devices make the IoT greener, but add challenges
§ limited processing, tiny amounts of memory
§ mTask integrates seamlessly with iTask and controls restricted devices

28

good

cheapfast

TOP

10-2 to 10-4 energy use

Task-Oriented Programming
this gives us motivation to study

29

iTask

• embedded in the functional programming language Clean
§ https://clean-lang.org/
§ dedicated search engine: https://cloogle.org/

• tasks are repeated until they produce a stable value,
or become obsolete
• all tasks produces a task value

:: TaskValue a = NoValue | Value a Stability
:: Stability :== Bool

30

NoValue
Value vi
Unstable

Value vj
Stable

https://clean-lang.org/
https://cloogle.org/

module example
import iTasks, StdEnv

Start :: *World -> *World
Start world = doTasks task world

task :: Task Int
task = enterInformation [] >>? \i -> return i

Interactive tasks

NoValue
Value vi
UnStable

Value vj
Stable

iTask versus mTask

• 'normal' embedded DSL in Clean
§ iTask library is just a set of functions
§ fully integrated in Clean
§ single view: execution
§ generates a web-server as GUI
§ error messages in terms of functions

• Full-fledged pure FP language
§ implements Task Oriented Programming
§ referential transparency
§ lazy evaluation
§ higher-order functions
§ fancy datatypes
§ high hardware requirements

• class-based DSL in Clean
§ mTask library is just a set of classes
§ fully integrated in Clean and iTask
§ multiple views possible
§ no GUI, but interaction with peripherals
§ error messages in terms of classes

• limited pure FP language
§ implements Task-Oriented Programming
§ referential transparency
§ strict evaluation
§ first-order functions
§ simple datatypes
§ runs on restricted hardware

32

functions in iTask

• our runMTask is made for the occasion
• type BCInterpret select evaluation of mTask

runMTask :: ((Main (BCInterpret (TaskValue u))))->Task () | type u
runMTask mTask = enterDeviceInfo
 >>? \spec->withDevice spec (\dev->liftmTask mTask dev)
 >>* [OnAction (Action "Stop") (always (return ()))
 , OnAction (Action "Reset") (always (runMTask mTask))
]

• enterDeviceInfo ask user for device to run task
• liftmTask compiles and dynamically ships mTask to indicated device
• withDevice integrates the device in the iTask system

33

combine this
with other

iTasks

functions in mTask: only update on changed temperature

• idea fun \name = (\arg -> body In main)
tempMTask2 =
 dht dhtWemosSHT30Shield \sensor->
 lowerSds \rSDS = tSDS In
 fun \measure = (\old ->
 temperature sensor >>*.
 [IfValue (\new -> new !=. old)
 (\new.setSds rSDS new >>|. measure new)]) In
 {main = getSds rSDS >>~. measure}
• always exactly one function argument, (), x, (x,y), ..
• do not forget the \'s and In
• define any number of functions you need

34

multiple functions with multiple arguments

blinkTask = neopixel neopixelWemosRGBLEDShield \neo ->
 fun \b2i = (\b -> If b level off) In
 fun \blink = (\(led, s, d) ->
 setPixelColor neo led (b2i s) (b2i s) (b2i s)
 >>|. delay d
 >>|. blink (led, Not s, d)) In
 {main = blink (lit 0, false, delta) .||.
 blink (lit 1, false, delta *. lit 2)}
off = lit 0
level = lit 10
delta = ms 500

35

delay is not
blocking

task composition cloogle.org

• sequential
§ step, with list of continuations
§ on value (stable or unstable)
§ on stable value
§ on stable value, or value with user input
§ on stable value, ignore result
• parallel
§ or: results are disjunctively combined
§ and: results are conjunctively combined
§ use left result
§ use right result
• convert plain value to task

36

iTask
>>*
>>~
>>-
>>?
>-|

-||-
-&&-
-||
 ||-
return

mTask
>>*.
>>~.
>>=.

>>|.

.||.

.&&.

rtrn

https://cloogle.org/

conclusion: sustainable IoT programming

• IoT programming is challenging: distributed & heterogenous
• Task-Oriented Programming is not difficult nor weird
• reliable
§ strong typing, single source, single paradigm
• maintainable & evolvable
§ concise single source
§ storage, GUI and communication derived from types
• efficient engineering
§ single strongly typed and concise source
• sustainable
§ restricted hardware is energy friendly
§ TOP ensure efficient construction and evolution

37

good

cheapfast

TOP

10-2 to 10-4

energy use

user defined mTask constructs
• the host language is your powerful macro language

:: When v a b = When infix 2 ((v a)-> MTask v b) ((v a) -> v Bool)

(>>?.) infixr 1 :: (MTask v a) (When v a b) -> MTask v b
 | mtask v & type a & type b
(>>?.) t (f When c) = t >>*. [IfValue c f]

tempMTask3 :: (Main (MTask v ())) | mtask, lowerSds, dht v
tempMTask3 =
 dht dhtWemosSHT30Shield \sensor->
 lowerSds \rSDS = tSDS In
 fun \measure = (\old ->
 temperature sensor >>?.
 (\new -> setSds rSDS new >>|. measure new)

When ((!=.) old)) In
 {main = getSds rSDS >>~. measure}

38

