
Sustainable Internet of Things Computing

Mart Lubbers[0000−0002−4015−4878] and Pieter Koopman[0000−0002−3688−0957]

Institute for Computing and Information Sciences,
Radboud University, Nijmegen, The Netherlands

firstname@cs.ru.nl

1 Exercises

1.1 Hello world!

The first program anyone writes when trying a new programming language is the
so-called Hello World! program. While the program only prints Hello World! to
the screen and exits, it allows you to verify that the toolchain is working. Typical
mTask devices, e.g. microcontrollers, only have a very simple 1× 1 monochrome
screen, the built in LED. Therefore, the best we can do is let the world know
that the program is working by turning this screen on or off. On the other hand,
mTask’s toolchain is a lot more elaborate.

First the Clean program representing the iTask application is compiled. Dur-
ing the execution of the resulting program, mTask devices may be connected.
Once connected, an mTask is compiled at runtime to a specialised byte code that
is sent to the device dynamically. In turn, the device interprets the byte code to
create a task tree, a runtime representation of a task-oriented program. Step by
step, the task tree is rewritten, yielding an observable value at every step. This
observable value, and information about the used shared data sources (SDSs) is
communicated with the server.

Listing 1.1 shows the complete iTask part of the Hello World! program. After
the module heading and the imports, line 8 contains the standard way of starting
an iTask engine with task main as the argument. The main task shows the main
iTask task. First, the device information is asked from the user (line 11). With
this information, withDevice is used to connect the device (line 12). The second
argument of the withDevice function, the body, just lifts the blink mTask task
to an iTask task (line 18). This sets the machinery in motion described above
and results in the mTask device executing the program. To allow the user to
prematurely end the program (and gracefully disconnect the device), line 13
uses the >>* combinator to add a button to the user interface to terminate the
task.

1 module helloworld

2
3 import StdEnv, iTasks

4 import mTask.Interpret, mTask.Interpret.Device.TCP

5 import Device

6

2 Mart Lubbers and Pieter Koopman

7 Start :: !*World � *World

8 Start w = doTasks (main <<@ ApplyLayout frameCompact) w

9
10 main :: Task ()

11 main = enterDeviceInfo

12 >>? \spec�withDevice spec deviceTask

13 >>* [OnAction (Action ”Stop”) (always (shutDown 0))

14 , OnAction (Action ”Reset”) (always main)

15]

16 where
17 deviceTask :: MTDevice � Task ()

18 deviceTask dev = liftmTask blink dev

Listing 1.1. Hello World!, the iTask part

The blink task shown in listing 1.2 first defines the NeoPixel peripheral on
line 20. Then a helper function is defined that converts a boolean to a suitable
light intensity value (line 21). The light intensity can range from 0 to 2551.
The lines 22 to 25 define the blinking function. The blinking function takes
one argument, the current state and performs several actions combined using
the sequence operator (>>|). Using this argument it first sets the first pixel on
the shield to the correct value using the b2i helper (line 23). Then it waits for
500ms (see line 24). Finally, it calls itself recursively with the inverse of the state
(line 25) to achieve the blinking behaviour. The main record denotes the main
expression, in here, the blinkfun is simply called. The lit function transforms a
Clean value to a literal in mTask.

19 blink :: Main (MTask v ()) | mtask, NeoPixel v

20 blink = neopixel neopixelWemosRGBLEDShield \neo�
21 fun \b2i=(\b�If b (lit 10) (lit 0))

22 In fun \blinkfun=(\st�
23 setPixelColor neo (lit 0) (b2i st) (b2i st) (b2i st)

24 >>|. delay (ms 500)

25 >>|. blinkfun (Not st)

26) In {main=blinkfun true}

Listing 1.2. Hello World!, the mTask part

Use cloogle.org to lookup details about functions in Clean, iTask and
mTask.

1.2 Colors

The mTask system integrates with iTask using only three integration functions,
simplified types of these are shown in listing 1.3. withDevice is used to connect
an mTask device to an iTask server so that tasks can be executed. liftmTask is
used to compile, send and execute a task on a device, it lifts an mTask task to
an iTask task. Finally, lowerSds is used to connect iTask SDSs to mTask SDSs.

1 Remember to put on sunglasses before ramping the brightness to 255.

cloogle.org

Sustainable Internet of Things Computing 3

Exercise 1 Hello World! file: helloworld.icl
Compile and run your first mTask program (see README.html for instructions on how
to install Clean, iTask and mTask).
On Linux or through a visual studio code devcontainer you run in a shell:

nitrile build --only=helloworld

./helloworld

On windows you run in a PowerShell:

nitrile build --only=helloworld

.\helloworld

Once your program is up and running, navigate to localhost:8080 to see the iTask
interface. Here you enter the IP address shown on the OLED screen of the device in
the Host: field. Leave the Port and Ping timeout fields for what they are. When you
have pressed continue, the middle LED of the RGB LED shield should blink to tell
you hello!
Hint: Try changing the frequency or position of the LED.

withDevice :: TCPSettings (MTDevice � Task b) � Task b | · · ·
liftmTask :: (Main (MTask BCInterpret u)) MTDevice � Task u | · · ·
lowerSds :: ((v (Sds t))�In (Shared sds t) (Main (MTask v u)))

� Main (MTask v u) | · · ·
Listing 1.3. Integration functions of mTask with iTask.

While tasks have an observable task value, some collaboration patterns bene-
fit a lot from the many-to-many communication SDSs offer. As SDSs from iTask
can be accessed by mTask, the powerful web editor infrastructure of iTask can
be used to communicate with mTask tasks.

Exercise 2 Colors file: colors.icl
Use lowerSds to access the color values that are stored in the iTask SDS. See the
lowering of redShareI for an example.
Then read the SDSs in mTask and provide the values to setPixelColor.
Hint: The >>~. combinator is used because getSds always yields an unstable value.

1.3 Walking

As seen in listing 1.4, the interface to the NeoPixel peripheral only contains one
function besides the constructor. This function, setPixelColor requires five argu-
ments. The first argument is the handle to the peripheral, obtained by defining
it using the constructor. The second argument is the index of the LED you want
to address. The RGB LED shield contains seven LEDs so indices 0 to 6 are valid
here. The other arguments are the RGB color components.

helloworld.icl
README.html
localhost:8080
colors.icl

4 Mart Lubbers and Pieter Koopman

class NeoPixel v where
neopixel :: NeoInfo ((v NeoPixel) � Main (v b)) � Main (v b)

setPixelColor :: (v NeoPixel) (v Int) (v Int) (v Int) (v Int)

� MTask v ()

Listing 1.4. NeoPixel mTask interface.

Exercise 3 Walking file: walking.icl

Fill in the gaps in the walk mTask task so that instead of blinking one LED, it it walks
through the full range of LEDs.
First create blinkonce mTask function by inserting the correct setPixelColor calls.
Then implement the walkfun mTask function that iterates over the LEDs and calls
blinkonce for each one.
Hint: There are 7 LEDs on the board so the valid indices range from 0 to 6.

1.4 Sensors

Attached to the microcontroller is a digital temperature and humidity (DHT)
sensor, sht30x, that connects via I2C to the board. The interface is shown in
listing 1.5. The constructor (dht) works very similar to the NeoPixel constructor.
temperature yields the temperature as an unstable value in ◦C. humidity yields
the relative humidity as an unstable value in %.

class dht v where
dht :: DHTInfo ((v DHT)�Main (v b)) � Main (v b)

temperature :: (v DHT) � MTask v Real

humidity :: (v DHT) � MTask v Real

Listing 1.5. DHT mTask interface.

Exercise 4 Temperature file: temperature.icl

The program consists of two functions. measureTemp measures the temperature and
sets the color of the pixel according to the limits. setColor reads the lowered SDSs
and determines the color of the pixel. Blue if it is too cold, green if it’s within limits
and red if it’s too hot. Implement the logic for setting the pixel colors and observe the
behaviour2.
Hint: Use the conditional statement If and one of the comparison operations to cal-
culate the color. In mTask, all arithmetic operations are suffixed with a . (a period),
e.g. +., -., *., /., >., <., >=., <=.. The if-expression is written with the If function.
Furthermore, literals must always be lifted so 100 in mTask is written as lit 100.

2 If you look for a challenge, you can also implement a gradient.

walking.icl
temperature.icl

Sustainable Internet of Things Computing 5

The sgp30 is an air quality sensor that is connected to the WEMOS D1
mini as an expansion shield. It communicates via I2C to the mainboard and
can report equivalent CO2 measurement (in ppb) and a total voltile organic
compounds measument (in ppm).

The interface is shown in listing 1.6.

class AirQualitySensor v where
airqualitySensor :: AirQualitySensorInfo

((v AirQualitySensor) � Main (v a)) � Main (v a) | · · ·
setEnvironmentalData :: (v AirQualitySensor) (v Real) (v Real)

� MTask v ()

tvoc :: (v AirQualitySensor) � MTask v Int

co2 :: (v AirQualitySensor) � MTask v Int

Listing 1.6. Air quality sensor mTask interface.

As the air quality is not bound to change very quickly, the default refresh
rate of airquality tasks is one minute. To increase this for the purpose of the
assignment, we use the co2` variant that takes a refresh interval parameter.

Exercise 5 Air quality file: airquality0.icl

The skeleton program contains an iTask system that measures the equivalent CO2 and
places this, when it is changed, in a SDS. Typical air quality sensors need some time to
warm up. The measurement will start at the minimum (400 ppm) and this will, after a
thirty minutes or so to the actual measurement. When observing the terminal, you see
that after the sensor has warmed up enough, the measurement fluctuates very quickly.
Breathing on the sensor will also show immediate results.
Adapt the differs function so that only values that differ more than ϵppm are re-
ported.
Hint: differs is a Clean function, the host language will inline the code. The first
argument is a Clean value so you have to use lit here.

As we have seen before, the device is equipped with an sht3x temperature
and humidity sensor. Most air quality sensors can be made more accurate by feed-
ing it with the current temperature and humidity using the setEnvironmentalData
↪→ task.

Exercise 6 Environment file: airquality1.icl

Adapt the program so that it sets the environmental values before measuring the air
quality.
Hint: Use the correct sequential combinator. temperature and humidity yield unstable
values so use >>~.

Running multiple tasks on mTask devices is as simple as combining tasks
with one of the parallel combinators. Listing 1.7 shows the types of the two

airquality0.icl
airquality1.icl

6 Mart Lubbers and Pieter Koopman

parallel combinators. Use .&&. if you want to combine the values of the two
tasks. Use .||. if you are only interested in one of the values.

class (.&&.) infixr 4 v :: (MTask v a) (MTask v b) � MTask v (a, b) | · · ·
class (.||.) infixr 3 v :: (MTask v a) (MTask v a) � MTask v a | · · ·

Listing 1.7. Parallel task combinators in mTask.

Exercise 7 Changing environments file: airquality2.icl

Adapt the program so that it the environmental value is set each time either the
humidity or the temperature changes.
To give some feedback to the user that the environmental values have changed, blink
the LED after setting the environmental values.

airquality2.icl

Sustainable Internet of Things Computing 7

A Solutions

Solution 1 Hello World!
See listings 1.1 and 1.2.

Solution 2 Colors

1 color :: Int � Main (MTask v ()) | mtask, lowerSds, NeoPixel, AirQualitySensor v
2 color lednumber = neopixel neopixelWemosRGBLEDShield \neo�
3 lowerSds \red=redShareI
4 In lowerSds \grn=grnShareI
5 In lowerSds \blu=bluShareI
6 In {main=rpeat (
7 delay (ms 100)
8 >>|. getSds red
9 >>~. \r�getSds grn

10 >>~. \g�getSds blu
11 >>~. \b�setPixelColor neo (lit lednumber) r g b
12)}

Solution 3 Walking

1 walk :: Main (MTask v ()) | mtask, NeoPixel v
2 walk = neopixel neopixelWemosRGBLEDShield \neo�
3 fun \blinkonce=(\i�
4 setPixelColor neo i level level level
5 >>|. delay (ms 1000)
6 >>|. setPixelColor neo i off off off
7) In fun \walkfun=(\i�
8 If (i ==. lit 7)
9 (walkfun (lit 0))

10 (blinkonce i >>|. walkfun (i +. lit 1))
11) In {main=walkfun (lit 0)}
12
13 off = lit 0
14 level = lit 10

8 Mart Lubbers and Pieter Koopman

Solution 4 Temperature

1 temperatureTask :: Main (MTask v ()) | mtask, lowerSds, dht, NeoPixel v
2 temperatureTask =
3 neopixel neopixelWemosRGBLEDShield \neo�
4 dht dhtWemosSHT30Shield \dht�
5 lowerSds \highTempM=highTempI
6 In lowerSds \lowTempM=lowTempI
7 In lowerSds \curTempM=curTempI
8 In fun \setColor=(\x�
9 getSds lowTempM

10 >>~. \l�getSds highTempM
11 >>~. \h�setPixelColor neo (lit 0)
12 (If (x >. h) (lit 50) (lit 0))
13 (If (x >=. l &. x <=. h) (lit 50) (lit 0))
14 (If (x <. l) (lit 50) (lit 0))
15) In fun \measureTemp=(\old�
16 temperature dht
17 >>~. \x�setSds curTempM x
18 >>|. setColor x
19 >>|. delay (ms 250)
20 >>|. measureTemp x
21) In {main=measureTemp (lit 0.0)}

Solution 5 Airquality

1 differs :: Int (v Int) (v Int) � v Bool | mtask v
2 differs eps old new =
3 If (old >. new)
4 (old -. new >. lit eps)

Solution 6 Environment

1) In {main=
2 temperature dht
3 >>~. \t�humidity dht
4 >>~. \h�setEnvironmentalData aqs t h
5 >>|. getSds airqualityShareM
6 >>~. \v�measureAirquality (lit 0)
7 }

Sustainable Internet of Things Computing 9

Solution 7 Changing environments

1 airqualitymTask :: Main (MTask v ()) | mtask, lowerSds, dht, NeoPixel, AirQualitySensor v
2 airqualitymTask =
3 airqualitySensor airqualitySensorWemosSGP30Shield \aqs�
4 dht dhtWemosSHT30Shield \dht�
5 neopixel neopixelWemosRGBLEDShield \neo�
6 lowerSds \airqualityShareM=airqualityShareI
7 In fun \calibrate=(\(oldtemp, oldhumid)�
8 temperature dht .&&. humidity dht
9 >>*. [IfValue (tupopen \(t, h)�differsTH (t, h) (oldtemp, oldhumid)) rtrn]

10 >>=. tupopen \(t, h)�setEnvironmentalData aqs t h
11 >>|. setPixelColor neo (lit 1) (lit 50) (lit 50) (lit 50)
12 >>|. delay (ms 200)
13 >>|. setPixelColor neo (lit 1) (lit 0) (lit 0) (lit 0)
14 >>|. calibrate (t, h)
15) In fun \measureAirquality=(\old�
16 co2` (BeforeSec (lit 1)) aqs
17 >>*. [IfValue (\x�differs 50 old x) (\nv�setSds airqualityShareM nv)]
18 >>=. \nv�delay (ms 200)
19 >>|. measureAirquality nv
20) In {main=
21 temperature dht
22 >>~. \t�humidity dht
23 >>~. \h�setEnvironmentalData aqs t h
24 >>|. getSds airqualityShareM
25 >>~. \v�measureAirquality (lit 0) .||. calibrate (t, h)
26 }
27 where
28 differsTH (newT, newH) (oldT, oldH)
29 = differs 1.0 newT oldT
30 |. differs 10.0 newH oldH
31
32 differs eps l r = If (l >. r) (l -. r >. lit eps) (r -. l >. lit eps)

	Sustainable Internet of Things Computing

