
Green Computing for the Internet of Things

Mart Lubbers and Pieter Koopman

Institute for Computing and Information Sciences,
Radboud University, Nijmegen, The Netherlands

firstname@cs.ru.nl

1 Exercises

1.1 Hello world!

The first program one writes when trying a new programming is Hello world!
that simply prints the text to the screen to verify that the compilation and execu-
tion process works. In case of microcontrollers, the builtin LED (a monochrome
1-pixel screen) is often blinked to signify that everything is set up correctly.
Therefore, this first assignment is just to verify your mTask installation is work-
ing and you are able to compiler and execute Clean/mTask programs.

1 module blink

2 import StdEnv, iTasks // Imports
3 import mTask.Interpret

4 import mTask.Interpret.Device.TCP

5
6 Start w = doTasks main w // Start the engine
7
8 main :: Task Bool // Main task
9 main = enterDeviceInfo

10 >>? \spec�withDevice spec (\dev�liftmTask blink dev)

11 where
12 enterDeviceInfo :: Task TCPSettings //Ask the user for the device settings
13 enterDeviceInfo = enterInformation [] <<@ Label ”Device information”
14
15 blink :: Main (MTask v Bool) | mtask v //mTask task
16 blink = declarePin D4 PMOutput \d4� // Builtin LED on the D1 Mini
17 fun \blinkfun=(\x� // Recursive function to blink
18 delay (ms 500) // Wait for 500ms
19 >>|. writeD d4 x // Set the LED to the current state
20 >>|. blinkfun (Not x)) // Recursively call with inverse state
21 In {main=blinkfun true} // Main program

All Clean programs start with a module declaration, in this case the module
name is blink. To work with the mTask library, some imports are required (see
Line 2). As mTask is embedded in iTask, iTask’s doTasks is called on Line 6 as
the Start rule of the program. This function starts the iTask engine and execute
the main task that is given as the second argument. The main task is defined at
Line 8 and first asks the use to enter the device information (see Line 12). With

2 Mart Lubbers and Pieter Koopman

this information, mTask’s withDevice function is called that allows the program
to interact safely with a connected microcontroller. Using liftmTask, an mTask
task is lifted to iTask, i.e., it is compiled to bytecode, sent to the microcontroller
and the result is observable in iTask. The blink task is an mTask task defined at
Line 15 with the type Main (MTask v Bool) | mtask v that can be read as: An
mTask task of the type Bool parametric in the view v as long as this v implements
the classes defined by the mtask class collection.

Every mTask program is wrapped in a main record to assure that functions
and sensors are only defined at the top level. First on Line 16 the GPIO pin
D4, connected to the builtin LED is set to output mode. Then on Line 17 the
recursive function blink is defined that has one boolean argument, the state.
This function first waits for 500 milliseconds (Line 18), then writes the state to
the pin to either turn on or turn off the LED (Line 19) and finally it calls itself
recursively with the inverse of the state (Line 20). When calling this function at
Line 21 with some initial state, it results in a blinking LED when executing.

To measure power, connect the devices according to the diagram shown in
Figure 1 if you have the version with the Wemos D1 mini pro (green) or Figure 2
if you have the regular D1 mini (blue).

Connect only the leftmost microprocessor, the one on the bread-
board, with an USB cable to your PC! This microprocessor is prepro-
grammed to run a power-monitor program. The second microprocessor, fitted
on the triple base, is executing mTask programs.

Figure 1. Wiring instructions for the powermonitor using the Wemos D1 mini pro.

Green Computing for the Internet of Things 3

Figure 2. Wiring instructions for the powermonitor using the Wemos D1 mini.

Exercise 1: Hello world! (blink.icl)

Compile and run the blink module by running (see the readme for instructions).

nitrile build --only=blink

./blink

When you have connected the device properly, it should connect to either one of the
networks and show its address. Enter this address in the enterDeviceInfo task together
with the default mTask port number 8123. If you then press Continue the light on top
of the microcomputer should turn on and off according to the given frequency (500
milliseconds).

mTask programs are constructed and compiled to byte code at runtime so
it is possible to tailor make the program according to the needs of the current
state. For example, it may is possible to ask a time between state changes from
the user and inline that in the blink program.

4 Mart Lubbers and Pieter Koopman

Exercise 2: Tailor-made blinking (blinkparam.icl)

Change the blink function so that it gets a parameter, i.e. the time between state
changes as follows:

blink :: Int � Main (MTask v Bool) | mtask v

blink wait = declarePin D4 PMOutput \d4�

This does require you to provide this extra argument as well. By using the -&&- combi-
nator, the enterDeviceInfo can be combined with another task that asks the user for
a time in milliseconds. The result of this line will then be a tuple that can be pattern
matched and passed on to the blink function as follows:

>>? \(spec, wait)�withDevice spec (\dev�liftmTask (blink wait) dev)

Finally, adapt the delay task in the mTask task so that it uses wait instead of a fixed
number of milliseconds.
Hint: wait is of type Int and not of type v Int so you have to lift it to the mTask
domain first.

Tasks in mTask can share information through SDSs with iTask. This allows
for very dynamic behaviour, such as setting the blinking frequency during the
run time of the mTask task.

Exercise 3: Dynamic blinking behaviour (blinkshare.icl)

To create an SDS that is available globally, the sharedStore function is used:

delayShareI :: SimpleSDSLens Int

delayShareI = sharedStore ”delay” 500

This SDS can be lifted to an mTask SDS using the liftsds construct as follows:

blink :: Main (MTask v Bool) | mtask, liftsds v

blink = declarePin D4 PMOutput \d4�
liftsds \delayShareM=delayShareI

In fun \blinkfun=(\x�
· · ·

Adapt the blinkfun function so that it first reads the value of delayShareM and uses
it as the time to wait.
Hint: getSds yields an unstable value so you have to use a sequential combinator that
steps on an unstable value.

Green Computing for the Internet of Things 5

1.2 Temperature monitor

Exercise 4: Initial temperature monitor (tempmon.icl)

The appointed device contains a SHT30x digital humidity and temperature sensor
(DHT) that communicates with the microprocessor using I2C. While task values can
be observed directly using the appropriate combinators (>&>, >&*), writing the value
to an SDS is an easier option.
Create a globally available SDS to store the temperature.
Hint: In mTask, temperature is measured in °Celcius stored in a Real.
To view this SDS during operation, create viewTemperature task and run that in par-
allel with the liftmTask task:

viewTemperature :: Task Real

viewTemperature = viewSharedInformation [] tempShareI

<<@ Label ”Current temperature (C)”

Finally, implement the temperature monitoring task.

tempmon :: Main (MTask v Real) | mtask, dht, liftsds v

tempmon = DHT (DHT SHT (i2c 0x45)) \dht�
liftsds \tempShareM=tempShareI

In fun \tempfun=(\()�temperature dht

>>~. \t�setSds tempShareM t

>>|. tempfun ()

) In {main=tempfun ()}

As you can see, this version of the temperature monitoring application generates
a lot of traffic since the temperature is bound to be different each time it is
measured.

Exercise 5: Temperature monitor, second iteration (tempmon2.icl)

The temperature is not bound to change every millisecond so it’s not required to
measure it that often.
Adapt the program so that there is a 5 second delay in between the measurements.
This is done by adding a delay somewhere.

The second iteration reduced the number of reading greatly but still even the
most minute temperature changes are reported.

6 Mart Lubbers and Pieter Koopman

Exercise 6: Temperature monitor, third iteration (tempmon3.icl)

Adapt the program so that only changes bigger than half a degree Celcius are reported.
Using the step combinator (>>*.) you can observe the value of a task and step when
the predicate holds.
If the predicate does not match, the left hand side of the step combinator is scheduled
for execution some other time, depending on the characteristics of the task. In case of
the temperature sensor, the next execution will be within two seconds.
Hint: Use functions to do the heavy lifting. For example, to take the absolute value
over real numbers you can define:

In fun \abs=(\x�If (x >. lit 0.0) x (lit (-1.0) *. x))

Furthermore, remember that multiparameter functions are always written with tuple
notation. So a function that determines if two real numbers differ more than 0.5 is
defined as:

In fun \differsenough=(\(old, new)�abs (old -. new) >. lit 0.5)

1.3 Motion detection

If a person enters the room, the temperature is bound to change faster. Using
the passive infrared (PIR) sensor, motion can be detected. If the PIR detects
motion, the GPIO pin it connects to will be high for a couple of seconds. Polling
this pin continuosly to check whether there is motion consumes a lot of energy.
Luckily, using an high interrupt handler we get notified when the pin is high,
i.e. when there is motion.

Exercise 7: Temperature monitor, Motion detection (tempmon4.icl)

Adapt the temperature monitor so that the temperature is only measured every minute.
In addition, if motion is detected, record the motion and take an extra temperature
measurement.

1. Adapt the temperature function so that it measures only once every minute (this
is done using temperature`).

2. Add the declaration of the PIR sensor to the top level of the mTask task using the
PIR functions:

tempmon = PIR D3 \pir�

3. Add an extra SDS to record the number of movements. E.g.

movementShareI :: SimpleSDSLens Int

4. Extend the main task using a parallel combinator so that it not only calls tempfun
but also motionfun.

5. Extend motionfun so that it also measures the temperature when detecting motion.

Green Computing for the Internet of Things 7

A Solutions

Solution 1: Hello world! (blink.icl)

Solution 2: Tailor-made blinking (blinkparam.icl)

import StdEnv, iTasks

import mTask.Interpret

import mTask.Interpret.Device.TCP

Start w = doTasks main w

main :: Task Bool

main = enterDeviceInfo -&&- enterDelayTime

>>? \(spec, wait)�withDevice spec (\dev�liftmTask (blink wait) dev)

where
enterDeviceInfo :: Task TCPSettings

enterDeviceInfo = enterInformation [] <<@ Label ”Device information”

enterDelayTime :: Task Int

enterDelayTime = enterInformation [] <<@ Label ”Time between state change (ms)”

blink :: Int � Main (MTask v Bool) | mtask v

blink wait = declarePin D4 PMOutput \d4�
fun \blinkfun=(\x�

delay (lit wait)

>>|. writeD d4 x

>>|. blinkfun (Not x))

In {main=blinkfun true}

Solution 3: Dynamic blinking behaviour (blinkshare.icl)

import StdEnv, iTasks

import mTask.Interpret

import mTask.Interpret.Device.TCP

Start w = doTasks main w

delayShareI :: SimpleSDSLens Int

delayShareI = sharedStore ”delay” 500

main :: Task Bool

main = enterDeviceInfo

>>? \spec�withDevice spec (\dev�
liftmTask blink dev

-|| updateSharedInformation [] delayShareI

)

where
enterDeviceInfo :: Task TCPSettings

enterDeviceInfo = enterInformation [] <<@ Label ”Device information”

blink :: Main (MTask v Bool) | mtask, liftsds v

blink = declarePin D4 PMOutput \d4�
liftsds \delayShareM=delayShareI

In fun \blinkfun=(\x�
getSds delayShareM

>>~. \wait�delay wait

>>|. writeD d4 x

>>|. blinkfun (Not x))

In {main=blinkfun true}

8 Mart Lubbers and Pieter Koopman

Solution 4: Initial temperature monitor (tempmon.icl)

import StdEnv, iTasks

import mTask.Interpret

import mTask.Interpret.Device.TCP

Start w = doTasks main w

tempShareI :: SimpleSDSLens Real

tempShareI = sharedStore ”temp” 0.0

main :: Task Real

main = enterDeviceInfo

>>? \spec�withDevice spec (\dev�
liftmTask tempmon dev

-|| viewTemperature

)

where
enterDeviceInfo :: Task TCPSettings

enterDeviceInfo = enterInformation [] <<@ Label ”Device information”

viewTemperature :: Task Real

viewTemperature = viewSharedInformation [] tempShareI

<<@ Label ”Current temperature (C)”

tempmon :: Main (MTask v Real) | mtask, dht, liftsds v

tempmon = DHT (DHT SHT (i2c 0x45)) \dht�
liftsds \tempShareM=tempShareI

In fun \tempfun=(\()�temperature dht

>>~. \t�setSds tempShareM t

>>|. tempfun ()

) In {main=tempfun ()}

Solution 5: Temperature monitor, second iteration (tempmon2.icl)

import StdEnv, iTasks

import mTask.Interpret

import mTask.Interpret.Device.TCP

Start w = doTasks main w

tempShareI :: SimpleSDSLens Real

tempShareI = sharedStore ”temp” 0.0

main :: Task Real

main = enterDeviceInfo

>>? \spec�withDevice spec (\dev�
liftmTask tempmon dev

-|| viewTemperature

)

where
enterDeviceInfo :: Task TCPSettings

enterDeviceInfo = enterInformation [] <<@ Label ”Device information”

viewTemperature :: Task Real

viewTemperature = viewSharedInformation [] tempShareI

<<@ Label ”Current temperature (C)”

tempmon :: Main (MTask v Real) | mtask, dht, liftsds v

tempmon = DHT (DHT SHT (i2c 0x45)) \dht�
liftsds \tempShareM=tempShareI

In fun \temp=(\()�temperature dht

>>~. \t�setSds tempShareM t

>>|. delay (ms 5000)

>>|. temp ()

) In {main=temp ()}

Green Computing for the Internet of Things 9

Solution 6: Temperature monitor, third iteration (tempmon3.icl)

import StdEnv, iTasks

import mTask.Interpret

import mTask.Interpret.Device.TCP

Start w = doTasks main w

tempShareI :: SimpleSDSLens Real

tempShareI = sharedStore ”temp” 0.0

main :: Task Real

main = enterDeviceInfo

>>? \spec�withDevice spec (\dev�
liftmTask tempmon dev

-|| viewTemperature

)

where
enterDeviceInfo :: Task TCPSettings

enterDeviceInfo = enterInformation [] <<@ Label ”Device information”

viewTemperature :: Task Real

viewTemperature = viewSharedInformation [] tempShareI

<<@ Label ”Current temperature (C)”

tempmon :: Main (MTask v Real) | mtask, dht, liftsds v & fun (v Real, v Real) v

tempmon = DHT (DHT SHT (i2c 0x45)) \dht�
liftsds \tempShareM=tempShareI

In fun \abs=(\x�If (x >. lit 0.0) x (lit (-1.0) *. x))

In fun \differsenough=(\(old, new)�abs (old -. new) >. lit 0.5)

In fun \tempfun=(\oldtemp�temperature dht

>>*. [IfValue (\newtemp�differsenough (oldtemp, newtemp))

\newtemp�setSds tempShareM newtemp]

>>=. \newtemp�tempfun newtemp

) In {main=tempfun (lit 0.0)}

10 Mart Lubbers and Pieter Koopman

Solution 7: Temperature monitor, Motion detection (tempmon4.icl)

import StdEnv, iTasks

import mTask.Interpret

import mTask.Interpret.Device.TCP

Start w = doTasks main w

movementShareI :: SimpleSDSLens Int

movementShareI = sharedStore ”movement” 0

tempShareI :: SimpleSDSLens Real

tempShareI = sharedStore ”temp” 0.0

main :: Task Int

main = enterDeviceInfo

>>? \spec�withDevice spec (\dev�
liftmTask tempmon dev

-|| viewMovement

)

where
enterDeviceInfo :: Task TCPSettings

enterDeviceInfo = enterInformation [] <<@ Label ”Device information”

viewMovement :: Task Int

viewMovement = (viewSharedInformation [] movementShareI <<@ Label ”No. of detected movements”)
-|| (viewSharedInformation [] tempShareI <<@ Label ”Temperature”)

tempmon :: Main (MTask v Int) | mtask, PIR, dht, liftsds v

tempmon = PIR D3 \pir�
DHT (DHT SHT (i2c 0x45)) \dht�
liftsds \movementShareM=movementShareI

In liftsds \tempShareM=tempShareI

In fun \motionfun=(\()�
interrupt rising pir

>>|. updSds movementShareM ((+.)(lit 1))

>>|. temperature dht

>>~. \newtemp�setSds tempShareM newtemp

>>|. motionfun ())

In fun \abs=(\x�If (x >. lit 0.0) x (lit (-1.0) *. x))

In fun \differsenough=(\(old, new)�abs (old -. new) >. lit 0.5)

In fun \tempfun=(\oldtemp�temperature` (BeforeSec (lit 60)) dht

>>*. [IfValue (\newtemp�differsenough (oldtemp, newtemp))

\newtemp�setSds tempShareM newtemp]

>>=. \newtemp�tempfun newtemp)

In {main= motionfun () .||. tempfun (lit 0.0)}

	Green Computing for the Internet of Things

