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Chapter 1

Introduction

This book will introduce the reader with the Task Oriented Programming (TOP) for the Internet
of Things (IOT).

1.1 Structure of the Book

Chapter 1 contains the introductions to the IOT, TOP and iTasks. A general introduction
to mTask is given in Chapter 2 containing a brief history and an overview to the architecture.
Chapter 3 gives a step-by-step introduction on how to actually use the mTask with accompanying
assignments. It starts with a simple blink application, continuing with threads, interaction with
the server, multitasking and controlling the LED matrix, writing a thermostat. It concludes with
a fairly advanced assignment in where you create a temperature sensor that plots the temperature
and has an adjustable delay.

The appendices contain background information and language manuals for the used lan-
guages. Appendix A contains installation instructions for mTask. Appendix B shows background
information about embedding in general. Appendix C is a complete mTask reference containing
all the classes and information about how to interact with the used backends. Appendix D con-
tains a very brief guide to functional Clean and Appendix E a similarly brief guide for iTasks.
If you are already familiar with any of the subjects in the appendices you can skip them. If
not, you are advised to at least glance through them. You are anyhow advised to at least read
Appendix D.1 about Cloogle.

1.2 IOT

IOT technology is overtaking the world rapidly. This new technology changes the way people
interact with the world.

The term IOT was coined around 1999 to describe the communication between Radio-
frequency Identification (RFID) devices. RFID became more and more popular the years after,
however, the term IOT was not used as much anymore. Years later, during the rise of novel
networks technologies, the term IOT resurged with a slightly different meaning. Today, the IOT
is the term for a system of devices that sense the environment, act upon it and communicate
with each other and the world. As we speak there are around seven billion devices connected
part of an IOT system. IOT devices are already in everyone’s household in the form of smart
electricity meters, smart fridges, smartphones, smart watches, home automation and in the form
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of much more. The devices used boast various sensors ranging from more external ones such as
positioning, temperature and humidity to more internal ones like heartbeat and respiration [8].
Estimations for the future vary greatly, from 26 billion1 in 2020, 20 billion2 in 2020, 25 billion
in 20253, to the astronomical number of fifty billion devices by 20204.

When describing IOT systems, a layered architecture is often used to compartmentalize the
technology. For example using the popular four layer architecture of which the first layer is called
the sensing layer. The actual devices with their peripherals are in this layer. For example in
home automation, the sensors reading the room, the actuators opening the curtains are all in the
sensing layer. The networking layer is the second layer and it consists of the hard and software to
connect the sensing layer to the world. In home automation, this layer may consist of a specialized
IOT technology such as Bluetooth Low Energy (BTLE) or ZigBee network but it may also use
existing technologies such as WiFi or wired connections. The third layer is named service layer
and is responsible for the servicing and business rules surrounding the application. One of its
goals is to provide the API, interfaces and data storage. In home automation this provides
the server storing the data. The fourth and final layer in this architecture is the application
layer. The application layer provides the interaction of the user with the IOT system. In home
automation, this layer provides for example the apps for to read the measurements and control
the devices.

IOT applications change rapidly but the devices stay roughly the same. The clients are often
heterogeneous collections of micro- controllers having each their own peculiarities, language of
choice and hardware interfaces. Evenmoreso, the hardware needs to be cheap, small-scale and
energy efficient. As a result, the Microcontroller Units (MCUs) used to power these devices do not
have a lot of computational power, a soupçon of memory, and little communication bandwidth.
Typically the devices do not run a full fledged OS but a statically compiled firmwares. This
firmware is often written in an imperative language that needs to be flashed to the program
memory. This greatly reduces the flexibility for dynamic systems where tasks are created on the
fly and executed on demand. While devices are getting a bit faster, smaller, and cheaper, they
keep these properties to an extent. These problems can be solved by dynamically sending TOP
code to be interpreted to the MCU.

1.3 TOP

Tasks and their task values are the first class citizens in TOP. A task represents work that
needs to be done by someone or something. This work can be anything ranging from filling in a
form, reading a sensor, send an email or even actual physical work. Furthermore, tasks can be
transformed or combined to form new tasks.

Tasks emit a three state task value that is observable by other tasks. No value means that
the task is unable to emit a complete value. It might be the case that some work has been done
but just not enough (e.g. an open serial port with a partial message). An unstable value means
that a complete value is present but it may change in the future (i.e. a side effect). A web editor
is an example of a task that always emits an unstable value since the contents may change over
time. Stable values never change. When the continue button has been pressed and the contents
of the web editor have been relayed, the values can never change, hence it is stable. Only the
state transitions in Figure 1.1 are legal.

1Gartner, March 2014
2Gartner, January 2017
3GSMA Intelligence, June 2018
4Cisco, 2016
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NoV alue Unstable Stable

Figure 1.1: State diagram for the legal transitions of task values

Tasks can also share data type- and thread-safe using Shared Data Sources (SDSs). SDSs
are an abstraction over any data. An SDS can represent typed data stored in a file, a chunk of
memory, a database etc. SDSs can also represent truly impure data such as the time, random
numbers or access to sensors. Similarly to tasks, the transformation and combinator of SDSs is
possible. In this architecture, tasks function as lightweight communicating threads

The reference implementation for TOP is iTasks [15], an Embedded Domain Specific Lan-
guage (EDSL) hosted in Clean [5]. The iTasks system realizes TOP for developing distributed
collaborative web applications.

1.4 iTasks

The iTasks system is implemented as a shallowly embedded Domain Specific Language (DSL) in
Clean.
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Chapter 2

mTask

The mTask language is a part of the mTask system. The language has several backends, for this
book we are only using the pretty printing backend and the bytecode generation backend. With
these backends, the mTask system is a programming environment for programming all layers of
an IOT system from a single source.

It consists of several components:

� mTask language

The language itself is a collection of classes and has two backends that are used in this
book:

– Pretty printing

– Bytecode generation

� MCU Run-time System (RTS) with versions for:

– Arduino compatible AVR microcontrollers (e.g. Arduino UNO)

– Arduino compatible xtensa microcontrolles (e.g. NodeMCU or LOLIN).

– Windows, Linux or MacOS compatible x86 computers.

� iTasks integration

The integration consists of transparent task lifting

A full reference manual of all language constructions with examples can be found in Ap-
pendix C.

2.1 History

A first throw at a class-based shallowly EDSL for MCUs was made by Pieter Koopman and Rinus
Plasmijer in 2016 [16]. The language was called Arduino Domain Specific Language (ARDSL)
and offered an type safe interface to Arduino C++ dialect. A C++ code generation backend
was available together with an iTasks simulation backend. There was no support for tasks or
even functions. Some time later an unpublished extended version was created that allowed the
creation of imperative tasks, SDSs and the usage of functions. It was named mTask.
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Mart Lubbers extended on this in his Master’s Thesis by adding integration with iTasks and
a bytecode compiler to the language [12]. SDS in mTask could be accessed on the iTasks server.
In this way, entire IOT systems could be programmed from a single source. However, this version
used a simplified simplified version of mTask without functions. This was later improved upon
by creating a simplified interface where SDSs from iTasks could be used in mTask and the other
way around [14]. It was shown by Matheus Amazonas Cabral de Andrade that it was possible
to build real-life IOT systems with this integration [4].

The mTask language as it is now was introduced in 2018 [11]. This paper updated the
language to support functions, tasks and SDSs. It still compiled to static C++ Arduino code.
Later the bytecode compiler and iTasks intergration was added to the language 1. Moreover,
it was shown that it is very intuitive to write MCU applications in a TOP language [13]. The
reason for this is that you get a lot of design patterns that are difficult using standard means
for free (e.g. multithreading). Furthermore, Erin van der Veen has worked and will probably be
working on a green computing analysis of the mTask language.

2.2 Architecture

1under review
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Chapter 3

Building mTask Applications

This chapter is a hands-on introduction to writing applications in mTask and iTasks. Skeletons
are listed between brackets and can be found in the mTask/cefp19 directory.

3.1 Hardware & Client

For the examples we use the WEMOS LOLIN D1 mini1. The D1 mini is an ESP8266 based
prototyping board boasting 1 analog and 11 digital General Purpose Input/Output (GPIO) pins
and a micro USB connection for programming and debugging. It can be programmed using
MicroPython, Arduino and nodemcu (LUA).

For this purpose they come preinstalled with the mTask runtime and ready to connect to the
hotspot and with several shield attached. Details on how to program the device yourself can be
found in Appendix A.4.

The devices come installed on a three-way splitter and is setup with an OLED, SHT and
Matrix LED shield. The OLED shield is used for displaying runtime during boot. When booting
up, it will show the WiFi status and when connected it will show the IP address that it uses.
Furthermore, the OLED screen contains two buttons that can be accessed from within mTask
to get some kind of feedback from the user.The SHT shield houses a Digital Humidity and
Temperature sensor (DHT) sensor that can be accessed from mTask as well. The LED matrix
can be accessed through mTask and can be used to display information to the user as well.

It is not always convenient to have to work with physical devices and therefore a simulation
client is available that works on your regular x86 machine (See Appendix A.4.5). This simulation
client is built from the exact same sources as the firmwares for the physical devices and can
therefore be used to debug more quickly.

3.2 Blink

Traditionally, the first program that one writes when trying a new language is the so called
Hello World! program. This program has the single task of printing the text Hello World! to
the screen and exiting again. On microcontrollers, there often is no screen for displaying text.
Nevertheless, almost always there is a rudimentary single pixel screen, namely an — often builtin
— LED.

1https://wiki.wemos.cc/products:d1:d1_mini

https://wiki.wemos.cc/products:d1:d1_mini
https://wiki.wemos.cc/products:d1:d1_mini
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Listing 3.1 shows the blink program when written in the Arduino C++ dialect. When flashing
the generated firmware onto the device, the builtin LED2 changes state every 500 milliseconds.

void setup () {

pinMode(D4, OUTPUT);

}

void loop() {

digitalWrite(D4, HIGH);

delay (500);

digitalWrite(D4, LOW);

delay (500);

}

Listing (3.1) Blink in Arduino.

blink :: Main (MTask v ()) | mtask v

blink = {main=rpeat (

writeD d4 (lit True)

>>|. delay (lit 500)

>>|. writeD d4 (lit False)

>>|. delay (lit 500)

)}

Listing (3.2) An mTask Translatation of Hello
World! (blinkImp)

The program can be translated almost literally using mTask constructs as seen in Listing 3.2.
In an Arduino program, the loop function is called continously during the execution of the
program. To simulate this, the rpeat task can be used, this task executes the argument task and,
when stable, reinstates it.

However, this is not very functional nor task oriented. A more natural translation would be
the one in the complete program shown in Listing 3.3.

1 module blink

2
3 import StdEnv , iTasks

4
5 import Interpret

6 import Interpret.Device.TCP

7
8 Start :: *World � *World

9 Start w = doTasks main w

10
11 main :: Task Bool

12 main = enterDevice >>= λ spec � withDevice spec

13 λ dev � liftmTask blink dev -|| viewDevice dev

14 where
15 blink :: Main (MTask v Bool) | mtask v

16 blink

17 = fun λ blink=(λ x �
18 delay (lit 500)

19 >>|. writeD d4 x

20 >>=. blink o Not)

21 In {main=blink (lit True)}

Listing 3.3: A functional mTask Translatation of Hello World! (blink)

To explain the program and automatically have a nice skeleton for writing your own mTask
programs we will go through the program line by line. Future snippets will only give the mTask
code for brevity.

Line 1 declares the name of the module, this has to match the name of the filename (See
Appendix D.2). Lines 3–6 regard the imports for the external libraries. Line 3 import StdEnv and
iTasks, these imports are required when using iTasks. Lines 5–6 import the Interpret —the mTask
bytecode backend — and Interpret.Device.TCP — the TCP device connectivity. Both imports are

2The builtin LED is connected to digital GPIO pin 2 on the LOLIN D1 mini. On the Arduino UNO this is
digital GPIO pin 13.
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always required for this book. Lines 8–9 gives the Start function, the entrypoint for a Clean
program. This start function always calls the iTasks specific entrypoint called doTasks that starts
up the iTasks machinery and launches the task main.

The main task first starts with an editor on line 12. This editor presents an interface to the
user connecting to the server for it to select a device. The enterDevice task allows selecting devices
from presets and allows changing the parameters to select a custom device. After selecting a
device, the task continues with connecting the device withDevice that takes a function requiring
a device and resulting in a task. This function (Line 13) executes the blink task and shows some
information about the device in parallel. Lines 15–21 contain the actual task. To make reusing
more easy, the blinking behaviour is lifted to a function. The function takes a single argument,
the state and recursively calls itself continuously. It creates an infinite task that first waits 500
milliseconds. Then it will write the current state to the pin followed by a recursive call to with
the inverse of the state.

λ x� >>|.

delay (lit 500) >>=.

writeD d4 x

x:=Not x

Assignment 3.1: Blink the builtin LED

Compile and run the blink program to test your mTask setup (blink). Instructions on how to
install mTask can be found in Appendix A.

3.3 Threaded Blinking

Now say that we want to blink multiple blinking patterns on different LEDs concurrently. In-
tuitively we want to lift the blinking behaviour to a function and call this function three times
with different parameters as done in Listing 3.4.

void blink ( int pin , int wait) {

digitalWrite(pin , HIGH);

delay(wait);

digitalWrite(pin , LOW);

delay(wait);

}

void loop() {

blink (1, 500);

blink (2, 300);

blink (3, 800);
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}

Listing 3.4: Naive approach to multiple blinking patterns in Arduino.

Unfortunately, this does not work because the delay function blocks all further execution. The
resulting program will blink the LEDs after each other instead of at the same time. To overcome
this, it is necessary to slice up the blinking behaviour in very small fragments so it can be manually
interleaved [9]. Listing 3.5 shows how three different blinking patterns might be achieved in
Arduino using the slicing method. If we want the blink function to be a separate parametrizable
function we need to explicitly provide all references to the required state. Furthermore, the delay

function can not be used and polling millis is required. The millis function returns the number
of milliseconds that have passed since the boot of the MCU. Some devices use very little energy
when in delay or sleep state. Resulting in millis potentially affects power consumption since
the processor is basically busy looping all the time. In the simple case of blinking three LEDs
on fixed intervals, it might be possible to calculate the delays in advance using static analysis
and generate the appropriate delay code. Unfortunately, this is very hard when for example the
blinking patterns are determined at runtime.

The manual interleaving method is very error prone, requires a lot of pointer juggling and
generally results into spaghetti code. Furthermore, it is very difficult to represent dependencies
between threads, often state machines have to be explicitly programmed by hand to achieve this.

long led1 = 0, led2 = 0, led3 = 0;

bool st1 = false , st2 = false , st3 = fa l se ;

void blink( int pin , int delay , long *lastrun , bool *st) {

i f (millis () - *lastrun > delay) {

digitalWrite(pin , *st = !*st);

*lastrun += delay;

}

}

void loop() {

blink(1, 500, &led1 , &st1);

blink(2, 300, &led2 , &st1);

blink(3, 800, &led3 , &st1);

}

Listing 3.5: Threading three blinking patterns in Arduino.

Blinking multiple patterns in mTask is as simple as combining several calls for the blink

function from Listing 3.3 with a parallel combinator as shown in Listing 3.6.

1 blink :: Main (MTask v Bool) | mtask v

2 blink

3 = fun λ blink=(λ (p, x, y) �
4 delay y

5 >>|. writeD p x

6 >>=. λ x � blink (p, Not x, y))

7 In {main=blink (d1 , true , lit 500)

8 .||. blink (d2 , true , lit 300)

9 .||. blink (d3 , true , lit 800)}

Listing 3.6: An mTask program for blinking multple patterns. (blinkThread)

Assignment 3.2: Blink the builtin LED with two patterns
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Adapt the program in Listing 3.6 so that it blinks the builtin LED with two different patterns
concurrently. The times for the patterns can be queried from the user.

The function signature for blink becomes (blinkThread):

blink :: Int Int � Main (MTask v Bool) | mtask v

You can use enterInformation to get the information from the user (See Appendix E.2).

3.4 Interactive Blinking

Assignment 2 showed that Clean can be used as a macro language for mTask. Customizing the
tasks when needed. SDSs can also be used to interact with the mTask tasks during execution.
This can for example be used to let the user control the blinking frequency. Listing 3.7 shows
how the blinking frequency can be controlled by the user using SDSs.

1 main :: Task Bool

2 main = enterDevice >>= λ spec � withDevice spec

3 λ dev � withShared 500 λ delayShare �
4 liftmTask (blink delayShare) dev

5 -|| updateSharedInformation "Interval" [updater] delayShare

6 where
7 updater :: UpdateOption Int Int

8 updater = UpdateUsing (λ x � (x, x)) (const fst)

9 (panel2

10 (slider <<@ minAttr 5 <<@ maxAttr 10000)

11 (integerField <<@ enabledAttr False))

12
13 blink :: (Shared s Int) � Main (MTask v Bool) | mtask , liftsds v & RWShared s

14 blink delayShare = liftsds λ delaysh=delayShare

15 In fun λ blink=(λ x �
16 writeD d4 x

17 >>|. getSds delaysh

18 >>∼. delay

19 >>=. λ _ � blink (Not x))

20 In {main=blink (lit True)}

Listing 3.7: An mTask program for interactively changing the blinking frequency.
(blinkInteractive)

Line 3 shows the creation of the controlling iTasks SDS using withShared (See Appendix E.4).
Line 5 adds a task to the withDevice function. It adds an updateSharedInformation to the mix with
which the user can control the delay. The standard integer editor is unbounded so a custom
editor is therefore used (lines 7–11). The blink task itself is hardly modified. Line 14 lifts the
SDS to an mTask SDS using liftsds (see Appendix C.1.7). Note that the >>∼. combinator is
used since the getSds task always yields an unstable value. The lifted SDS can be accessed as
usual using the getSds task (line 17). The value this yields is immediately fed to delay. The
mTask machinery takes care of the rest such as the automatic SDS updates.

Assignment 3.3: Blink the builtin LED on demand

Adapt the program in Listing 3.7 so that the user can control whether the LED blinks or not.
The blink function will then have the following type signature (blinkInteractive):
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blink :: (Shared s Bool) � Main (MTask v Bool) | mtask , liftsds v & RWShared s

3.5 Multitasking

Figure 3.2: The Answer printed on the LED matrix.

The LED matrix shield can be used to display information during the execution of the pro-
gram. The 8 × 8 LEDs can be controlled individually. The program in Listing 3.8 shows an
iTasks program to control the LED matrix. It allows toggling the state of a given LED and clear
the display.

A Ledstatus is a dedicated type created so that entering the information for toggling a single
LED automagically gets a nice user interface. The main program is very similar to previous
programs, only differing in the device part. The >^* combinator is a special kind of parallel

combinator that — instead of stepping to a continuation — forks off a continuation. This allows
the user to run multiple tasks to schedule many tasks in parallel. Continuations can be triggered
by values or by actions. In this example, only actions are used that are always enabled. One
action is added for every operation and when the user presses the button, the according task
is sent to the device. The toggle and clear tasks are self-explanatory and only use LED matrix
mTask functions (See Appendix C.1.8).

1 :: Ledstatus = {x :: Int , y :: Int , status :: Bool}

2 derive class iTask Ledstatus

3
4 main = enterDevice >>= λ spec � withDevice spec

5 λ dev � viewDevice dev >^*

6 [OnAction (Action "Toggle") (always (

7 enterInformation () [] >>= λ s � liftmTask (toggle s) dev

8 >>∼ viewInformation "done" []))

9 ,OnAction (Action "Clear") (always (

10 liftmTask clear dev

11 >>∼ viewInformation "done" []))

12 ] @! ()

13 where
14 dot lm s = LMDot lm (lit s.x) (lit s.y) (lit s.status)

15
16 toggle :: Ledstatus � Main (MTask v ()) | mtask , LEDMatrix v

17 toggle s = ledmatrix D5 D7 λ lm � {main=dot lm s >>|. LMDisplay lm}

18
19 clear :: Main (MTask v ()) | mtask , LEDMatrix v

20 clear = ledmatrix D5 D7 λ lm � {main=LMClear lm >>|. LMDisplay lm}

Listing 3.8: An interactive mTask program for interacting with the LED matrix. (matrixBlink)
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Toggling the LEDs in the matrix using the given tasks is very user intensive. Extend the
program so that there is a button for printing the answer to the question of life, universe and
everything 3 as seen in Figure 3.2. There are several approaches possible.

Assignment 3.4: LED Matrix 42 using iTasks

Write 42 to the LED matrix using only the toggle and the clear tasks. You can add the contin-
uations as follows (matrixBlink):

,OnAction (Action "42") (always (iTask42 dev))

The iTasks tasks should then have the following type signature:

iTask42 :: MTDevice � Task ()

In this situation, a whole bunch of mTask tasks are sent to the device at once. This strains
the communication channels greatly and is a risk for running out of memory. It is also possible
to define printing 42 in solely in mTask. This creates one bigger task that is sent at once.

Assignment 3.5: LED Matrix 42 using mTask

Write 42 to the LED matrix as a single mTask task. This results in the following continuation
(matrixBlink):

,OnAction (Action "42 mtask") (always (liftmTask mTask42 dev))

The mTask task should then have the following type signature:

3.6 Temperature

Reading the temperature on the device can be done using the DHT sensor that is connected as
a shield to the main board. The DHT chip attached to the board is the SHT30 sensor. When
asked via Inter-Intergrated Circuit (I2C), the chip measures the temperature between with a
±0.4°C accuracy and the relative humidity with a ±2% accuracy.

It can be accessed using the mTask dht class (See Appendix C.1.8). For example, the following
program will show the current temperature and humidity to the user. The yielded values from
the temperature and humidity tasks are in tenths of degrees or percents. Therefore, a lens is applied
on the editor to transform them into floating point values.

1 main = enterDevice >>= λ spec � withDevice spec

2 λ dev � liftmTask temp dev >&> viewSharedInformation () [ViewAs templens]

3 where
4 templens = maybe (0.0, 0.0) λ (t, h) � (toReal t / 10.0, toReal h / 10.0)

5
6 temp :: Main (MTask v (Int , Int)) | mtask , dht v

7 temp = DHT D4 DHT22 λ dht � {main=temperature dht .&&. humidity dht}

Listing 3.9: An mTask program for measuring the temperature and humidity. (tempSimple)

3N.B. the answer is 42 [3]
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Assignment 3.6: Show the temperature via an SDS

Modify the application so that it writes the temperature in a SDS. Writing the temperature
constantly in the SDS creates a lot of network traffic. Therefore it is advised to create a function
that will memorize the old temperature and only write the new temperature when it is different
from the old one. Use the following template (tempSds):

main = enterDevice >>= λ spec � withDevice spec

λ dev � withShared 0 λ sh �
liftmTask (temp sh) dev

-|| viewSharedInformation "Temperature" [ViewAs templens] sh

where
templens t = toReal t / 10.0

temp :: (Shared s Int) � Main (MTask v ()) | mtask , dht , liftsds v & RWShared

↪→ s

With the writeD functions from mTask (See Appendix C.1.8) the digital GPIO pins can be
controlled. Imagine a heater attached to a GPIO pin that turns on when the temperature is
below a given limit.

Assignment 3.7: Simple Thermostat

Modify the previous assignment so that a thermostat is mimicked. The user can enter a tem-
perature target and the LED will turn on when the temperature is below the target. Use the
following template (thermostat):

main = enterDevice >>= λ spec � withDevice spec

λ dev � withShared 0 λ tempShare �
withShared 250 λ targetShare �
liftmTask (temp targetShare tempShare) dev

-|| viewSharedInformation "Temperature" [ViewAs tempfro] tempShare

-|| updateSharedInformation "Target" [UpdateAs tempfro λ _ � tempto]

↪→ targetShare

where
tempfro t = toReal t / 10.0

tempto t = toInt t * 10

temp :: (Shared s1 Int) (Shared s2 Int) � Main (MTask v ()) | mtask , dht ,

↪→ liftsds v & RWShared s1 & RWShared s2

temp targetShare tempShare =

3.7 Temperature Plotter

For this final assignment you are going to create a temperature plotter with an alarm mode
that uses all components. I.e. the LED matrix to show the plot, the OLED shield buttons to
toggle the alarm, the builtin LED to show the alarm status and the DHT shield to measure the
temperature. Figure 3.3a shows the reference implementation in action. Figure 3.3b shows the
user interface for it.



CHAPTER 3. BUILDING MTASK APPLICATIONS 14

(a) The temperature plotter in action. (b) The temperature plotter UI.

Figure 3.3: The reference implementation of the plotter in action

Assignment 3.8: Temperature Plotter

The plotter has several jobs to do.

� Plot the temperature.

Plotting the temperature happens on the LED matrix. The range of the graph is specified
in the limitsShare and may be changed by the user.

� Report the temperature every interval.

The temperature has to be written to the tempShare SDS so that the user interface can show
an up to date temperature. Preferably it only writes to the SDS when the temperature
has changed.

� Set the alarm.

If the current temperature is higher than the alarm value (alarmShare), the builtin LED
should turn on.

� Unset the alarm.

The alarm can be unset by using the A button from the OLED shield.

Create the plotter using the following template (plotter):

module temp

import StdEnv , iTasks

import Interpret

import Interpret.Device.TCP

Start :: *World � *World

Start w = doTasks main w

BUILTIN_LED :== d3

ABUTTON :== d4

main = enterDevice >>= λ spec � withDevice spec

λ dev � withShared (220, 250) λ limitsShare �
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withShared 1000 λ waitShare �
withShared 0 λ tempShare �
withShared 250 λ alarmShare �
liftmTask (temp limitsShare waitShare tempShare alarmShare) dev

-|| updateSharedInformation "Graph Min/Max (C, C)" [] limitsShare

-|| updateSharedInformation "Granularity (ms)" [updater] waitShare

-|| viewSharedInformation "Temperature (C)" [ViewAs tempfro] tempShare

-|| updateSharedInformation "Alarm (C)" [UpdateAs tempfro λ _ � tempto]

↪→ alarmShare

where
tempfro t = toReal t / 10.0

tempto t = toInt t * 10

updater :: UpdateOption Int Int

updater = UpdateUsing (λ x � (x, x)) (const fst)

(panel2

(slider <<@ minAttr 5 <<@ maxAttr 10000)

(integerField <<@ enabledAttr False))

temp :: (Shared s1 (Int , Int)) (Shared s2 Int) (Shared s3 Int) (Shared s4 Int)

� Main (MTask v ()) | mtask , dht , liftsds , LEDMatrix v

& RWShared s1 & RWShared s2 & RWShared s3 & RWShared s4

temp limitsShare delayShare tempShare alarmShare =

Some tips are:

� Start with the preamble and a skeleton for the tasks.

The preamble should at least lift the SDSs and define the peripherals (LED matrix and
DHT).

� Use functions for state as much as possible.

Especially for measuring the temperature, you do not want to write to the temperature
SDS every time you measure. Therefore, keep track of the old temperature using a function
or a local SDS.

� Write functions for routines that you do multiple times.

For example, clearing a row on the LED matrix is a tedious job and has to be done every
cycle. Make it yourself easy and either write it as a clean function that generates all the
code or an mTask function that is called.
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Appendix A

How to Install

This section will give detailed instructions on how to install mTask on your system.

A.1 Fetch the latest version

Download the Central European Functional Programming School (CEFP) version of mTask
version for your operating system as given in table A.1 and decompress the archive. The archives
is all you need since it contains a complete clean distribution. The windows version contains an
Integrated Development Environment (IDE). Mac and Linux only have a project manager called
Clean Project Manager (cpm).

OS Arch URL

Linux x64 https://ftp.cs.ru.nl/Clean/CEFP19/mtask-linux-x64.tar.gz

Requires GCC

Windows x64 https://ftp.cs.ru.nl/Clean/CEFP19/mtask-windows-x64.zip

MacOS x64 https://ftp.cs.ru.nl/Clean/CEFP19/mtask-macos-x64.tar.gz

Requires XCode

Table A.1: Download links for the CEFP builds of mTask.

A.2 Setup

A.2.1 Linux

Assuming you uncompressed the archive in ~/mTask, run the commands from listing A.1 in a
terminal.

# Add the bin d i r e c t o r y o f the c l ean d i s t r i b u t i o n to $PATH
echo ’export PATH =~/ mTask/clean/bin:$PATH’ >> ~/. bashrc

# Correc t l y s e t CLEANHOME
echo ’export CLEAN_HOME =~/ mTask/clean’ >> ~/. bashrc

Listing A.1: Linux setup instructions for mTask.

https://ftp.cs.ru.nl/Clean/CEFP19/mtask-linux-x64.tar.gz
https://ftp.cs.ru.nl/Clean/CEFP19/mtask-linux-x64.tar.gz
https://ftp.cs.ru.nl/Clean/CEFP19/mtask-windows-x64.zip
https://ftp.cs.ru.nl/Clean/CEFP19/mtask-windows-x64.zip
https://ftp.cs.ru.nl/Clean/CEFP19/mtask-macos-x64.tar.gz
https://ftp.cs.ru.nl/Clean/CEFP19/mtask-macos-x64.tar.gz
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A.2.2 Windows

You do not need to setup anything on windows. However, if you want to use cpm as well, you
need to add its directory to your %PATH% as follows1.

Assuming you uncompressed the archive in C:\Users\frobnicator\mTask:

� Right-click on Computer. Then go to Properties Advanced System settings Environment Variables

or press win + R and type SystemPropertiesAdvanced.exe and press .

� Select “Path” from the list of system variables.

� Choose Edit and append (i.e., do not overwrite the previous value):

;C:\Users\frobnicator\mTask\clean

A.2.3 MacOS

MacOS should work but is less tested and recent Clean builds have been reported to be a tad bit
unstable.

Assuming you uncompressed the archive in ~/mTask, run the commands from listing A.2 in
a terminal.

# Add the bin d i r e c t o r y o f the c l ean d i s t r i b u t i o n to $PATH
echo ’export PATH =~/ mTask/clean/bin:$PATH’ >> ~/. bash_profile

# Correc t l y s e t CLEANHOME
echo ’export CLEAN_HOME =~/ mTask/clean’ >> ~/. bash_profile

Listing A.2: MacOS setup instructions for mTask

A.3 Compile the test program

Note that the first time compiling everything can take a while and will consume quite some
memory.

A.3.1 Windows

Assuming you uncompressed the archive in C:\Users\frobnicator\mTask. Connect a device or
start the local TCP client by executing C:\Users\frobnicator\mTask\client.exe

IDE

� Open the IDE by starting C:\Users\frobnicator\mTask\clean\CleanIDE.exe.

� Click on File Open or press Ctrl + O ond open C:\Users\frobnicator\mTask\mTask\

cefp19\blink.prj.

� Click on Project Update and Run or press Ctrl + R .

1Instructions from https://hmgaudecker.github.io/econ-python-environment/paths.html

https://hmgaudecker.github.io/econ-python-environment/paths.html
https://hmgaudecker.github.io/econ-python-environment/paths.html
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cpm

In a command prompt or powershell session follow the commands listed in listing A.3.

cd C:\Users\frobnicator\mTask\mTask\cefp19

cpm blink.prj

blink.exe

Listing A.3: Compile and run the test program on windows with cpm.

A.3.2 Linux & MacOS

Assuming you uncompressed the archive in ~/mTask. Connect a device or start the local TCP
client by executing ~/mTask/client. In a terminal follow the commands listed in listing A.4.

cd ~/mTask/cefp19

cpm blink.prj

./blink

Listing A.4: Compile and run the test program on Linux or MacOS with cpm.

A.4 Setup the Microcontroller

Programming the microcontroller yourself is also possible but a lot more elaborate.

A.4.1 Manual Method (All Platforms)

� Download and install the latest Arduino IDE2.

� Open it and click on File Preferences .

� Add the Arduino ESP8266 url3 to the Additional Board Manager URLs .

� Open the boards manager from Tools Board and install esp8266 platform.

� Install all libraries from the mTask repository via: Sketch Include Library Add.ZIP Library. . . .

A.4.2 Automatic Method (Linux)

This method assumes that there is no previous installation of Arduino and installs the prepped
IDE in the arduino directory.

git clone https :// gitlab.science.ru.nl/mlubbers/mtask

cd mtask

mkdir -p arduino

curl -SsL https :// downloads.arduino.cc/arduino -1.8.9 - linux64.tar.xz | tar -xJC

↪→ arduino --strip -components =1

for f in dependencies /*. zip

do
unzip -d arduino/libraries "$f"

done
mkdir -p arduino/hardware/esp8266

git clone --recursive https :// github.com/esp8266/Arduino.git \

arduino/hardware/esp8266/esp8266

2https://www.arduino.cc/en/Main/Software
3https://arduino.esp8266.com/stable/package_esp8266com_index.json

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://arduino.esp8266.com/stable/package_esp8266com_index.json
https://arduino.esp8266.com/stable/package_esp8266com_index.json
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( cd arduino/hardware/esp8266/esp8266/tools/; python get.py; )

Listing A.5: Setup the arduino environment for mTask.

A.4.3 Flashing the RTS

Before flashing — and if using WiFi — make sure to set up wifi.h. You can do this by using
the wifi.def.h template and fill in any connection details you want the device to connect to.

� Open the prepped Arduino IDE and click on File Open and select client/client.ino

from the mTask repository.

� Click on Tools Board LOLIN (WEMOS) D1 & R2 mini .

� Click on Sketch Upload to upload the RTS. It might be necessary to change Tools Port to
the correct port number before compiling and uploading.

A.4.4 Macro Definitions

For specializing the devices, the code adheres to several macro definitions for specifying cer-
tain things. First the platform is determined using the macro definitions listed in Table A.2.
According to the platform the specified header is included.

Definition Header File

PC pc.h

ARDUINO arduino.h

Table A.2: Platform macro definitions.

Table A.3 shows all other options for customizing the firmware.

A.4.5 Simulator

A standalone program can be generated for x86 x64 machines that simulates a device. This
program is built from the same source as the actual RTS that is flashed on the microcontrollers.
To compile this, run make in the client directory of the repository.

The client accepts two command line options. The -h command line option displays the
help. By default the simulator listens to port number 8123, with the -p command line option,
this can be changed.
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Definition Ard. Pc Description

MEMSIZE 3 3 Number of bytes to reserve for the stack and
heap

SC(s) 3 3 String literal decoration, useful for storing string
literals in the program memory.

APINS 3 3 Number of analog GPIO pins.
DPINS 3 3 Number of digital GPIO pins.
HAVE DHT 3 3 DHT attached.
HAVE LEDMATRIX 3 3 LED matrix attached.
HAVE OLEDSHIELD 3 7 OLED shield attached4.
LOGLEVEL 3 3 Level of logging, 0=none, 1=info, 2=debug.
BAUDRATE 3 7 Baudrate for the serial connection.
CURSES INTERFACE 7 3 Compile with the experimental ncurses frontend.
REQUIRE ALIGNED MEMORY ACCESS 3 3 Make sure all load and store instructions are

aligned to the native word length (required for
xtensa processors).

Table A.3: Feature macro definitions.
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Appendix B

EDSL Techniques

An EDSL is a language embedded in a host language created for a specific domain [10]. EDSLs
can have one or more backends or views. Commonly used views are pretty printing, compiling,
simulating, verifying and proving the program. There are several techniques available for cre-
ating EDSLs. They all have their own advantages and disadvantages in terms of extendability,
typedness and view support. In the following subsections each of the main techniques are briefly
explained. An example expression DSL is used as a running example.

B.1 Deep Embedding

A deep EDSL is a language represented as data in the host language. Views are functions that
transform something to the datatype or the other way around. Listing B.1 shows an example
implementation for the expression DSL.

:: Expr

= LitI Int

| LitB Bool

| Var String

| Plus Expr Expr

| Minus Expr Expr

| And Expr Expr

| Eq Expr

Listing B.1: A minimal deep EDSL.

Deep embedding has the advantage that it is easy to build and views are easy to add. To the
downside, the expressions created with this language are not type-safe. In the given language
it is possible to create an expression such as Plus (LitI 4) (LitB True) that adds a boolean to an
integer. Evermore so, extending the Algebraic Data Type (ADT) is easy and convenient but
extending the views accordingly is tedious and has to be done individually for all views.

The first downside of this type of EDSL can be overcome by using Generalized ADTs
(GADTs) [7]. Listing B.2 shows the same language, but type-safe with a GADT. GADTs are
not supported in the current version of Clean and therefore the syntax is hypothetical. However,
it has been shown that GADTs can be simulated using bimaps or projection pairs [7]. Unfortu-
nately the lack of extendability remains a problem. If a language construct is added, no compile
time guarantee can be given that all views support it.

:: Expr a

= LitI Int � Expr Int
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| LitB Bool � Expr Bool

| ∃ e: Var String � Expr e

| Plus (Expr Int) (Expr Int) � Expr Int

| Minus (Expr Int) (Expr Int) � Expr Int

| And (Expr Bool) (Expr Bool) � Expr Bool

| ∃ e: Eq (Expr e) (Expr e) � Expr Bool & == e

Listing B.2: A minimal deep EDSL using GADTs.

B.2 Shallow Embedding

In a shallow EDSL all language constructs are expressed as functions in the host language.
An evaluator view for the example language then can be implemented as the code shown in
listing B.3. Note that much of the internals of the language can be hidden using monads.

:: Env = ...

// Some environment
:: DSL a = DSL (Env � a)

Lit :: a � DSL a

Lit x = λ e � x

Var :: String � DSL Int

Var i = λ e � retrEnv e i

Plus :: (DSL Int) (DSL Int) � DSL Int

Plus x y = λ e � x e + y e

Eq :: (DSL a) (DSL a) � DSL Bool | == a

Eq x y = λ e � x e + y e

Listing B.3: A minimal shallow EDSL.

The advantage of shallowly embedding a language in a host language is its extendability. It
is very easy to add functionality because the compile time checks of the host language guarantee
whether or not the functionality is available when used. Moreover, the language is type safe as
it is directly typed in the host language.

The downside of this method is extending the language with views. It is nearly impossible
to add views to a shallowly embedded language. The only way of achieving this is by decorating
the datatype for the EDSL with all the information for all the views. This will mean that every
component will have to implement all views rendering it slow for multiple views and complex to
implement.

B.3 Class Based Shallow Embedding

There are also some hybrid approaches that try to mitigate the downsides. The mTask language
is using class-based — or tagless — shallow embedding that has both the advantages for shallow
and deep embedding [6]. In class-based shallow embedding the language constructs are defined
as type classes. This language is shown with the new method in listing B.4.

This type of embedding inherits the ease of adding views from shallow embedding. Just
as with GADTs, type safety is guaranteed in deep embedding. Type constraints are enforced
through phantom types. One can add as many phantom types as necessary. Lastly, extensions
can be added easily, just as in shallow embedding. When an extension is made in an existing class,
all views must be updated accordingly to prevent possible runtime errors. When an extension is
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added in a new class, this problem does not arise and views can choose to implement only parts
of the collection of classes.

:: Eval a = Eval a

runEval :: (Eval a) � a

runEval (Eval a) = a

:: PrettyPrinter a = PP String

runPrinter :: (PrettyPrinter t) � String

runPrinter (PrettyPrinter s) = s

class intArith where
lit :: t � v t | toString t

add :: (v t) (v t) � (v t) | + t

minus :: (v t) (v t) � (v t) | - t

class boolArith where
and :: (v Bool) (v Bool) � (v Bool)

eq :: (v t) (v t) � (v Bool) | == t

instance intArith Evaluator where ...

instance intArith PrettyPrinter where
lit x = PP $ toString x

add x y = PP $ x +++ "+" +++ y

...

instance boolArith Evaluator where ...

instance boolArith PrettyPrinter where ...

Listing B.4: A minimal class based shallow EDSL.

A downside is that the type errors can be pretty arcane but there are some techniques to
mitigate this. Furthermore, when you want to use multiple backends for the same expression,
rank-2 polymorphism is required in the language as seen in listing B.5.

printAndEval :: (∀ v: v t | intArith , boolArith v) � (String , t)

printAndEval c = (runPrinter c, runEval c)

Start :: (PP String , Bool)

Start = printAndEval (eq (lit 42) (lit 21 +. lit 21))

Listing B.5: Using multiple backends simultaneously in a shallow EDSL.
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Appendix C

mTask Reference

The mTask/library directory contains all Clean files that form the mTask system. Table C.1
shows all directories and their explanations.

Directory Description

Generics type indexed helper functions
Interpret bytecode interpretation backend
Language mTask language classes
Show pretty printing backend
Simulate symbolic simulation backend
AST C code generation backend (deprecated)

Table C.1: Directory overview

C.1 The mTask language (Language.*)

The core of the mTask system is the mTask language — a multibackend class based EDSL. The
classes are type-constructor classes and therefore, a backend implementing a class is a type of
the form v t where v is the actual backend. The phantom type t represents the type of the
construction. The type t is often constrained with the type class collection to make sure only
types suitable for MCUs can be used, e.g. only serializable and bounded.

C.1.1 Type restrictions

All types used in mTask programs must implement all classes in the type class collection. This
collection contains serialization, printing, iTasks functions, etc. Many of these functions can be
derived using generic programming. A subset of the types implementing type also implement
basic types. Some types are basic types,

class type t | toString , iTask ... toByteCode{|*|} t

class basicType t | type t :: t

instance basicType Int , Bool , Real , Char , ()

:: Main a = {main :: a}
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:: MTask v a = ...

:: In a b = In inf ix 0 a b

class mtask v | arith v & cond v & ...

Listing C.1: Type restrictions

C.1.2 Expressions

The classes for expressions — i.e. arithmetic functions, conditional expressions and tuples —
are listed in Listing C.2. Some of the class members are oddly named (e.g. +.) to make sure
there is no name conflict with Clean’s builtin functions. There is no need for loop control due to
support for tail-call optimized recursive functions and tasks. An exception to the pattern is the
lit function, which allows lifting host language values to the mTask domain. For tuples there is
a useful macro (topen) to convert a function with an mTask tuple as an argument to a function
with a tuple of mTask values as an argument.

class arith v where
lit :: t � v t | type t

(+.) i n f i x l 6 :: (v t) (v t) � v t | basicType , +, zero t

(-.) i n f i x l 6 :: (v t) (v t) � v t | basicType , -, zero t

(*.) i n f i x l 7 :: (v t) (v t) � v t | basicType , *, zero , one t

(/.) i n f i x l 7 :: (v t) (v t) � v t | basicType , /, zero t

(&.) in f ixr 3 :: (v Bool) (v Bool) � v Bool

(|.) in f ixr 2 :: (v Bool) (v Bool) � v Bool

Not :: (v Bool) � v Bool

(==.) in f ix 4 :: (v a) (v a) � v Bool | Eq, basicType a

(!=.) in f ix 4 :: (v a) (v a) � v Bool | Eq, basicType a

(<.) in f ix 4 :: (v a) (v a) � v Bool | Ord , basicType a

(>.) in f ix 4 :: (v a) (v a) � v Bool | Ord , basicType a

(<=.) in f ix 4 :: (v a) (v a) � v Bool | Ord , basicType a

(>=.) in f ix 4 :: (v a) (v a) � v Bool | Ord , basicType a

class cond v where
If :: (v Bool) (v t) (v t) � v t | type t

(?) in f ix 1 :: (v Bool) (v t) � MTask v () | type t & cond v

(?) p t = If p t (lit ())

class tupl v where
first :: (v (a, b)) � v a | type a & type b

second :: (v (a, b)) � v b | type a & type b

tupl :: (v a) (v b) � v (a, b) | type a & type b

topen :: (v (a, b) � c) (v a, v b) � c

topen f x :== f (first x, second x)

Listing C.2: The mTask classes for arithmetic, conditional and tuple expressions.

Functions

Functions are supported in the EDSL, albeit with some limitations. All user defined mTask
functions are typed by Clean functions so that they are type-safe. All functions are defined using
the multi-parameter typeclass fun. The first parameter (a) of the typeclass is the shape of the
argument and the second parameter (v) is the backend (Listing C.3). Functions may only be
defined at the top level and to constrain this, the main type is introduced to box a program.

One implementation for the fun class is defined for every arity. The listing gives example
instances for for arities zero to two for backend T. Defining the different arities as tuples of
arguments forbids the use of curried functions.
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:: Main a = {main :: a}

:: In a b = In inf ix 0 a b

class fun a v where
fun :: ((a � v s) � In (a � v s) (Main (v u))) � Main (v u) | type s & type

↪→ u

:: T a // a backend
instance fun () T

instance fun (T a) T | type a

instance fun (T a, T b) T | type a & type b

Listing C.3: The mTask classes for functions definitions.

To demonstrate the use, Listing C.4 shows examples for many functions. The type constraint
on the function arguments forbid the use of higher order functions. This Clean function will
construct the program that will calculate the factorial of the given argument. In the bytecode
backend, there is full tailcall optimization. It therefore loans to write tailcall optimized functions
(see factorial‘).

increment :: Int � Main (v Int)

increment x =

fun λ inc=(λ i � i +. lit 1) In
{main=inc x}

sum :: Int Int � Main (v Int)

sum x y =

fun λ sum=(λ (l, r) � l +. r) In
{main=sum (x, y)}

factorial :: Int � Main (MTask v Int) | mtask v

factorial x =

fun λ fac=(λ i �
If (i ==. lit zero)

(lit one)

(i *. fac (i -. lit one))) In
{main=rtrn (fac (lit i))}

// Tai l c a l l opt imized f a c t o r i a l
factorial ‘ :: Int � Main (MTask v Int) | mtask v

factorial ‘ x =

fun λ facacc=(λ (n,a) �
If (n ==. lit zero)

a

(facacc (n -. lit one , n*.a))) In
fun λ fac=(λ i �

facacc (i, lit one)) In
{main=rtrn (fac (lit i))}

Listing C.4: Example functions.

C.1.3 Basic Tasks

Tasks are viewed as trees with leafs and forks. Basic tasks are the leafs and often represent a
side effect such as hardware access. Task combinators are the forks and transform some tasks to
a single transformed task.

Task values in mTask are represented by the same type as tasks in iTasks (Listing C.5). To
lift a value in the expression domain to the task domain, the basic task rtrn is used. The resulting
task will forever yield the given value as a stable task value.
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class rtrn v where rtrn :: (v t) � MTask v t | type t

Listing C.5: The mTask classes for basic tasks.

class rpeat v :: (MTask v a) � MTask v () | type a

class delay v :: (v n) � MTask v n | type , number n

Listing C.6: The mTask classes for delay and rpeat.

C.1.4 Parallel Task Combinators

In contrast to in iTasks, there are only two parallel combinators (Listing C.7). The listing shows
an example of querying two pins at the same time, returning the one with the highest value.

class .&&. v where
(.&&.) in f ixr 4 v :: (MTask v a) (MTask v b) � MTask v (a, b) | type a ...

class .||. v where
(.||.) in f ixr 3 v :: (MTask v a) (MTask v a) � MTask v a | type a

twopins :: APin APin � Main (MTask v Int) | mtask v

twopins p1 p2 = {main=

readA p1 .&&. readA p2

>>∼. topen λ (l, r) � If (l >. r) (rtrn l) (rtrn r)}

Listing C.7: The mTask classes for parallel task combinators.

The conjunction combinator .&&. combines the task values to a tuple. The disjunction combi-
nator .||. combines them into single task value, giving preference to the most stable value. The
combinators first rewrite both sides and then merge the task values according to the semantics
given as a Clean function in Listing C.8.

(.&&.) :: (TaskValue a) (TaskValue b) � TaskValue (a, b)

(.&&.) (Value lhs stab1) (Value rhs stab2) = Value (lhs , rhs) (stab1 && stab2)

(.&&.) _ _ = NoValue

(.||.) :: (TaskValue a) (TaskValue a) � TaskValue a

(.||.) lhs=:(Value _ True) _ = lhs

(.||.) (Value lhs _) rhs=:(Value _ True) = rhs

(.||.) NoValue rhs = rhs

(.||.) lhs _ = lhs

Listing C.8: Task value semantics for the parallel combinators.

C.1.5 Sequential Task Combinators

With sequential combinators, tasks are executed after each other. With parallel combinators,
the tasks are executed at the same time and the resulting task values are combined.

The step combinator (>>*.) is the Swiss army knife of sequential combination (Listing C.9).
The value that the left-hand side of the combinator yields is matched against all task continua-
tions (Step v t u) on the right-hand side, i.e. the right-hand side tasks observes the task value.
If one of the continuations yields a new task, the combined task continues with it, pruning the
left-hand side. All other sequential combinators are derived from the step combinator as default
instances but their implementation can be overridden. For example, the >>=. combinator is very
similar to the monadic bind, it continues if and only if a stable value is yielded. The >>∼. com-
binator continues when any value, stable or unstable, is yielded. The >>|. and >>.. combinators
are variants that do not take the value into account of the aforementioned combinators.
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class step v where
(>>*.) i n f i x l 1 :: (MTask v t) [Step v t u] � MTask v u | type u & type t

(>>=.) i n f i x l 0 :: (MTask v t) ((v t) � MTask v u) � MTask v u | ...

(>>=.) m f = m >>*. [IfStable (λ _ � lit True) f]

(>>∼.) i n f i x l 0 :: (MTask v t) ((v t) � MTask v u) � MTask v u | ...

(>>∼.) m f = m >>*. [IfValue (λ _ � lit True) f]

(>>|.) i n f i x l 0 :: (MTask v t) (MTask v u) � MTask v u | ...

(>>|.) m f = m >>=. λ _ � f

(>>..) i n f i x l 0 :: (MTask v t) (MTask v u) � MTask v u | ...

(>>..) m f = m >>∼. λ _ � f

:: Step v t u

= IfValue ((v t) � v Bool) ((v t) � MTask v u)

| IfStable ((v t) � v Bool) ((v t) � MTask v u)

| IfUnstable ((v t) � v Bool) ((v t) � MTask v u)

| IfNoValue (MTask v u)

| Always (MTask v u)

Listing C.9: The mTask classes for sequential task combinators.

The following listing shows an example of a step in action. The readPinBin function will
produce an mTask task that will classify the value of an analog pin into four bins. It also shows
how the nature of embedding allows the host language to be used as a macro language.

readPinBin :: Main (MTask v Int) | mtask v

readPinBin = {main=readA A2 >>*.

[ IfValue (λ x � x <. lim) λ _ � rtrn (lit bin)

\\ lim<- [64 ,128 ,192 ,256]

& bin<-[0..]]

Listing C.10: An example task using sequential combinators.

C.1.6 Miscellaneous Combinators

Furthermore, there are miscellaneous combinators. For example, the rpeat function will forever
execute the argument task. When the argument task is stable, it reinstates it and starts all
over again. The delay task will wait for the specified amount of time. This task yields no value
until the given time has elapsed, then it will yield the remaining time as a stable task value. To
demonstrate them, the blink program is given that will turn the given pin on or off every 500
milliseconds. The functionality of rpeat can also be simulated using recursive functions as shown
in the blinkFun task.

class rpeat v where
rpeat :: (MTask v a) � MTask v () | type a

class delay v where
delay :: (v Int) � MTask v t | type t

blink :: DPin � Main (MTask v ()) | mtask v

blink p = {main=rpeat (

delay (lit 500) >>|. writeD (lit True) p

>>|. delay (lit 500) >>|. writeD (lit False) p)}

blinkFun :: DPin � Main (MTask v Bool) | mtask v

blinkFun p =

fun λ blink=(

λ st � delay (lit 500) >>|. writeD st p >>=. blink o Not

) In {main=blink (lit True)}

Listing C.11: The mTask classes for repeat and delay.
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C.1.7 Shared Data Sources

In mTask it is also possible to share data between tasks type safely using SDSs. Similar to
functions, SDSs can only be defined at the top level. They are well-typed parts of the monadic
state.

The sds class contains the function for defining and accessing SDSs. With the sds function,
local SDSs can be defined. They are also typed by functions in the host language to assure type
safety. The other functions in the class are for creating get and set tasks. The getSds returns
a task that constantly emits the value of the SDS as an unstable task value. setSds writes the
given value to the task and re-emits it as a stable task value when it is done.

Listing C.12 presents the definitions and an example. The artificial example shows a task
that mirrors a pin value to another pin using an SDS.

:: Sds a

class sds v where
sds :: ((v (Sds t)) � In t (Main (MTask v u)))

� Main (MTask v u) | type t & type u

getSds :: (v (Sds t)) � MTask v t | type t

setSds :: (v (Sds t)) (v t) � MTask v t | type t

localvar :: Main (MTask v ()) | mtask v

localvar = sds λ x=42 In {main= rpeat (readA D13 >>∼. setSds x)

.||. rpeat (getSds x >>∼. writeD D1)}

Listing C.12: The mTask classes for SDS tasks.

Lifted Shared Data Sources

The liftsds class is used to allow iTasks SDSs to be accessed from within mTask tasks. The
function has a similar type as sds and creates an mTask SDS from an iTasks SDS so that it can
be accessed using the class functions from the sds class. Listing C.13 shows an example of this
where an iTasks SDS is used to control an LED on a device. When used, the server automatically
notifies the device if the SDS is written to and vice versa. The liftsds class only makes sense in
the context of actually executing backends. Therefore this class is excluded from the mtask class
collection.

:: Shared a // an iTasks SDS
class liftsds v | sds v where

liftsds :: ((v (Sds t)) � In (Shared t) (Main (MTask v u)))

� Main (MTask v u) | type t & type u

lightSwitch :: (Shared Bool) � Main (MTask v ()) | mtask v & liftsds v

lightSwitch s = liftsds λ x=s In {main=rpeat (getSds x >>∼. writeD D13)}

Listing C.13: The mTask class for lifting iTasks SDSs.

C.1.8 Peripherals

Interaction with the GPIO pins, and other peripherals for that matter, is also captured in basic
tasks.

GPIO

For each type of pin, there is a read and a write task that, given the pin, will execute the action.
The class for analog GPIO pin access is shown in Listing C.14. The readA/readD task constantly
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yields the value of the analog pin as an unstable task value. The writeA/writeD writes the given
value to the given pin once and returns the written value as a stable task value.

class aio v where
readA :: (v APin) � MTask v Int

writeA :: (v APin) (v Int) � MTask v Int

class dio p v | pin p where
readD :: (v p) � MTask v Bool

writeD :: (v p) (v Bool) � MTask v Bool

:: Pin = AnalogPin APin | DigitalPin DPin

class pin p :: p � Pin | type p

instance pin APin , DPin

Listing C.14: The mTask classes for GPIO tasks.

Digital Humidity and Temperature Sensor

Several types of DHT sensors are supported and they can be used with functions from the dht

class. Note that this class is not part of the mtask class collection and needs to be added as a
separate constraint.

:: DHT

:: DHTtype = DHT11 | DHT21 | DHT22

//Hundredths o f degreens
class dht v where

DHT :: p DHTtype ((v DHT) � Main (v b)) � Main (v b) | type p & pin p &

↪→ type b

temperature :: (v DHT) � MTask v Int

humidity :: (v DHT) � MTask v Int

Listing C.15: The mTask classes for DHT tasks.

LED Matrix

The 8× 8 LED can be accessed using the function in the LEDMatrix class. Note that this class is
not part of the mtask class collection and needs to be added as a separate constraint.

:: LEDMatrix = LEDMatrix Int

derive class gCons LEDMatrix

derive class iTask LEDMatrix

class LEDMatrix v where
ledmatrix :: DPin DPin ((v LEDMatrix) � Main (v b)) � Main (v b) | type b

LMDot :: (v LEDMatrix) (v Int) (v Int) (v Bool) � MTask v ()

LMIntensity :: (v LEDMatrix) (v Int) � MTask v ()

LMClear :: (v LEDMatrix) � MTask v ()

LMDisplay :: (v LEDMatrix) � MTask v ()

Listing C.16: The mTask classes for LED Matrix tasks.

C.2 Pretty printing (Show.*)

In the pretty printing backend, tasks are printed to a list of strings. To run it one can just run
the showMain function as shown in the following listing.
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:: Show a

showMain :: (Main (Show a)) � [String] | type a

Start = showMain {main=rtrn (lit 42)}

Listing C.17: Pretty printing backend functionality

C.3 Bytecode Interpretation (Interpret.*)

In the bytecode backend, tasks are compiled, sent and executed during runtime of the iTasks
server to a specified device. The supporting Clean functions for this are listed in Listing C.18.

The withDevice function offers access to the device with the given specification. The first
argument of the function contains the information for maintaining a connection with the device
that is of a type implementing the channelSync. As of now, the framework has instances for
channelSync for types describing TCP connections, serial communication and a simulator as can
be seen in Appendix C.3.1. The resulting task connects the device and ascertains that the
connection is set up, kept up and closed down on completion. After the connection is set up, the
second argument, the task doing something with a device, is executed.

Within the argument task — besides executing iTasks tasks — the liftmTask task can be used.
This task lifts an mTask task to an iTasks task using the specified device. The Bytecode type
implements the mTask classes and therefore, tasks will have the form Main (MTask BCInterpret u

↪→ ). Under the hood, this functions runs the compiler, sends the generated bytecode, listens
to messages from the device and watches the lifted SDSs. The task value of the mTask task is
observable from iTasks because the task is now a regular iTasks task. Furthermore, lifted SDSs
can be accessed and used for communication. In a traditional setting, all these things — such as
communication, data sharing, task scheduling — have to be done by hand.

:: MTDevice //Abstract dev i c e r ep r e s en t a t i on
:: Channels //Communication channe l s

class channelSync a :: a (Shared Channels) � Task ()

withDevice :: a (MTDevice � Task b) � Task b | iTask b & channelSync , iTask a

liftmTask :: (Main (MTask BCInterpret u)) MTDevice � Task u | iTask , type u

Listing C.18: Integration with iTasks

C.3.1 Device types (Interpret.Device.*)

TCP (Interpret.Device.TCP)

The TCPSettings type houses the connection details for TCP connected mTask devices. The host

and port field are fairly common and therefore it might be necessary to disambiguate the record
(See Appendix D.12).

:: TCPSettings = {host :: String , port :: Int}

instance channelSync TCPSettings

Listing C.19: TCP Device Definition
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Serial (Interpret.Device.Serial)

The TTYSettings type houses the connection details for the serial port connection.

:: ByteSize = BytesizeFive | BytesizeSix | BytesizeSeven | BytesizeEight

:: Parity = ParityNone | ParityOdd | ParityEven | ParitySpace | ParityMark

:: BaudRate = ... | B9600 | B19200 | B38400 | B57600 | B115200 | ...

:: TTYSettings = {

devicePath :: String ,

baudrate :: BaudRate ,

bytesize :: ByteSize ,

parity :: Parity ,

stop2bits :: Bool ,

xonxoff :: Bool ,

//* Time in seconds to wait a f t e r opening the d e v i c e .
//* Set t h i s to 2 i f you want to connect to a borked arduino
sleepTime :: Int

}

instance channelSync TTYSettings

Listing C.20: Serial Device Definition
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Appendix D

Clean Reference

This chapter is an adapted version of the chapter written by Peter Achten for the lecture notes
of CEFP 2013 [2].

This chapter gives a brief overview of functional programming in Clean1 [5]. Clean is a pure
lazy functional programming language. It has many similarities to Haskell2 .

This section contains a set of brief overviews of topics in Clean. These overviews should be
short enough to read while studying other parts of this paper without loosing the flow of those
parts. The somewhat experienced functional programmer is introduced to particular syntax or
language constructs in Clean.

D.1 Cloogle

Cloogle is a search engine for Clean [17]. It searches all included libraries such as iTasks and
Platform but also some extra libraries. As of now it does not index mTask (yet).

� The web frontend4

This frontend can also be accessed using the !cloogle bang via DuckDuckGo Furthermore
it is possible to share search results, browse the libraries5 or browse the documentation6.

� The :Cloogle command or <LocalLeader>c in vim-clean7.

� An email to query@cloogle.org with the query in the subject9

� The !query command of the IRC bot clooglebot10 which often resides on the #cloogle

and #cleanlang channels on freenode11.

Table D.1 shows all possible query types.

1https://clean.cs.ru.nl
2A one-page guide to Clean for Haskell programmers is also available here3 [1]
3http://www.mbsd.cs.ru.nl/publications/papers/2007/achp2007-CleanHaskellQuickGuide.pdf
4https://cloogle.org
5https://cloogle.org/src
6https://cloogle.org/doc
7https://gitlab.science.ru.nl/cstaps/vim-clean8

8Note for Linux/MacOS users: vim-clean also contains IDE functions such as searching for definitions, switching
between implementation and definition and much more

9https://gitlab.science.ru.nl/cloogle/cloogle-mail
10https://gitlab.science.ru.nl/clean-cloogle/clean-irc
11irc://freenode.net/#cleanlang
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Query Description

hd Functions with a name like hd
:: a [a] � a Functions with a type unifiable with a [a] � a

hd :: [a] � a A combination of the above
:: ∀ a: [a] � a Type search, where a cannot be unified
.[] Information about the syntax construct .[]

stack overflow Information about the error message “stack overflow”
using Maybe ==; Anything that uses Maybe and ==
exact Text Anything with the exact name Text
class Text Classes with the exact name Text
type Maybe Types with the exact name Maybe

Table D.1: Cloogle’s different search types

D.2 Modules

A module with name M is represented physically by two text files that reside in the same
directory: one with file name M.dcl and one with file name M.icl.

The M.icl file is the implementation module. It contains the (task) functions and data type
definitions of the module. Its first line repeats its name:

implementation module M

An implementation module can always use its own definitions. By importing other modules,
it can use the definitions that are made visible by those modules as well:

import M1, M2, ..., Mn

The M.dcl file is the definition module. It contains M ’s interface to other modules. The first
line of a definition module also gives its name:

definition module M

A definition module basically serves two purposes.

� It exports identifiers of its own implementation module by repeating their signature. Hence,
identifiers which signatures are not repeated are cloaked for other modules.

� It acts as a serving-hatch for identifiers that are exported by other modules by importing
their module names. In this way you can create libraries of large collections of related
identifiers.

D.3 Operators

Operators are binary (two arguments) functions that can be written in infix style (between its
arguments) instead of the normal prefix style (before its arguments). Operators are used to
increase readability of your programs. With an operator declaration you associate two other
attributes as well. The first attribute is the fixity which indicates in which direction the binding
power works in case of operators with the same precedence. It is expressed by one of the keywords
infixl, infix, and infixr. The second attribute is its precedence which indicates the binding power
of the operator. It is expressed as an integer value between 0 and 9, in which a higher value
indicates a stronger binding power.
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The snapshot below of common operators as defined in the host language Clean illustrates
this.

class (==) in f ix 4 a :: !a !a � Bool

class (+) i n f i x l 6 a :: !a !a � a

class (-) i n f i x l 6 a :: !a !a � a

class (*) i n f i x l 7 a :: !a !a � a

class (/) i n f i x l 7 a :: !a !a � a

class (^) in f ixr 8 a :: !a !a � a

(These operators are overloaded to allow you to instantiate them for your own types.) Due to
the lower precedence of ==, the expression x + y == y + x must be read as (x + y) == (y + x). Due
to the fixities, the expression x - y - z must be read as (x - y) - z, and x ^ y ^ z as x ^ (y ^ z).
In case of expressions that use operators of the same precedence but with conflicting fixities you
must work out the correct order yourself using brackets ().

D.4 Guards

Pattern matching is an expressive way to perform case distinction in function alternatives, but
it is limited to investigating the structure of function arguments. Guards extend this with
conditional expressions. Here are two examples.

sign :: !Int � Int

sign 0 = 0

sign x

| x < 0 = -1

sign x = 1

instance < Date where
< x y

| x.year < y.year = True

| x.year == y.year

| x.mon < y.mon = True

| x.mon == y.mon = x.day < y.day

| otherwise = False

| otherwise = False

In sign, the first alternative matches only if the argument evaluates to the value 0. In that case,
sign results in the value 0. The second alternative imposes no pattern restrictions, but it does
have a guard (| x < 0). Even though the pattern always matches, evaluation of the guard must
result in True if the second alternative of sign is to be chosen. Therefor, the value -1 is returned
only if the argument is a negative number. Finally, the last alternative has neither a pattern
restriction nor a guarded restriction, and therefor matches all remaining cases, which concern
the positive numbers. In those cases, the result is 1.

The implementation of < for Date values illustrates nested guards. In contrast with top-level
guards, nested guards must be completed with otherwise to catch any remaining cases. The
otherwise keyword can also be used in top-level guards, as is shown on the last line of the <

function. The < function first checks the guard on line 3 and returns True if the first year field
is smaller than the second year field. If the guard evaluates to False, then the second guard on
line 4 is tested. In case of equal year field values, evaluation continues with the nested guards
on lines 5–7 that inspect the month fields. If the first nested guard on line 5 evaluates to True,
then the comparison also yields True. In case of a False result, the second nested guard on line 6
is tested. In case of equal month field values, the comparison of the day values provides the final
answer. Finally, to complete the nested guards, the last case on line 7 concludes that the first
argument is not smaller than the second, a conclusion that is shared by the last top-level guard
on line 8.
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D.5 Choice and pattern matching

Unlike most programming languages, in which an if-then-else construct is supported in the
language, it can be straightforwardly incorporated as a function in a lazy functional language,
using pattern matching as well. Let’s examine the type and implementation of if :

i f :: !Bool a a � a

i f True then else = then

i f _ _ else = else

The type tells you that the Bool argument is strict in if : it must always be evaluated in order to
know whether its result is True or False. The implementation uses the evaluation strategy of the
host language to make the choice effective. The if function has two alternatives, each indicated
by repeating the function name and its arguments. Alternatives are examined in textual order,
from top to bottom. Up until now the arguments of functions were only variables, but in fact
they are patterns. A pattern p is one of the following.

� A variable, expressed by means of an identifier that starts with a lowercase character or
simply the _ wildcard symbol in case the variable is not used at all. A variable identifies
and matches any computation without forcing evaluation. Within the same alternative,
the variable identifiers must be different.

� A constant in the language, such as 0, False, 3.14, ‘c‘, and "hello, world". To match
successfully, the argument is evaluated fully to determine whether it has exactly the same
constant value.

� A composite pattern, which is either a tuple (p1, . . . ,pn), a data constructor (d p1 . . . pn)
where n is the arity of d, a record {f1=p1, . . . ,fn=pn}, or a list [p1, . . . ,pn] or [p1, . . . ,pn
: pn+1]. Matching proceeds recursively to each part that is specified in the pattern. In
case of records, only the mentioned record fields are matched. In case of lists, p1 upto pn
are matched with the first n elements of the list, if present, and pn+1 with the remainder
of the list.

Patterns control evaluation of arguments until it is discovered that it either matches or not.
Only if all patterns in the same alternative match, computation proceeds with the corresponding
right-hand side of that alternative; otherwise computation proceeds with the next alternative.

Hence, in the case of if its second argument is returned if the evaluation of the first argument
results in True. If it results in False the second alternative is tried. Because it does not impose
any restriction, and hence also causes no further evaluation, it matches, and the third argument
is returned.

In firstYearPossible the data constructors are also matched from top to bottom. The last
case always matches, and returns the value 0.

D.6 List comprehensions

Lists are the workhorse of functional programming. List comprehensions allow you to concisely
express list manipulations. Their simplest form is:

[ e \\ p <- g ]

Generator g is an expression that is or yields a list. (Note that g can also evaluate to an array.
In that case you need to use <-: instead of <- to extract array elements.) From the generator,
values are extracted from the front to the back. Each value is matched with the pattern p. If this
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succeeds, then the pattern variables in p are bound to the corresponding parts of the extracted
value, and expression e, that typically uses these bound pattern variables, yields an element of
the result list. If matching fails, then the next element of the generator is tried.

Besides the pattern p, elements can also be selected using a guarded condition:

[ e \\ p <- g | c ]

Here, c is a boolean expression that can use any of the pattern variables that are introduced at
generator patterns to its left. For each extracted value from the sequence for which the pattern
match succeeds, the guarded condition is evaluated. Only if the condition also evaluates to True,
a list element is added.

It is possible to use several pattern-generator pairs p <- g in one list comprehension. They
are combined either in parallel with the & symbol or as a cartesian product with the , symbol.

� In p1 <- g1 & p2 <- g2, values are extracted from g1 and g2 at the same index positions and
matched against p1 and p2 respectively. The shortest generator determines termination of
this value-extraction process.

� In p1 <- g1 , p2 <- g2, for each extracted value from g1 that matches p1 all values from g2
are extracted and matched against p2.

Each and every one of the above ways to manipulate lists is already very expressive. However,
they can be combined in arbitrary ways. This can be daunting at times, but once you get used
to the expressive power, list comprehensions often prove to be the best tool for list processing
tasks.

D.7 Lambda abstractions

Lambda-abstractions λ x � e allow you to introduce anonymous functions ‘on the spot’. They
typically occur in situations where an ad hoc function is required, for which it does not make
much sense to come up with a separate function definition. This frees you from thinking of a
proper identifier and perhaps a type signature as well. The bind combinator >>= is an excellent
example of such a situation because in general you need to give a name x to the task value of
the first task, and want to give an expression e that uses x. If you weren’t interested in x, you
would have used the näıve then combinator >>| instead.

D.8 Modelling side-effects

In a pure functional programming language all results must be explicit function results. This
implies that a changed state should also be a function result. The type of the Start function in
an interactiev program is *World � *World, this indicates that it changes the world. There are
two things worth noting at this moment:

� The basic type World is annotated with the uniqueness attribute *. In a function type any
argument can be annotated with this attribute. This enforces the property that whenever
the function is evaluated, it has the sole reference to the corresponding argument value.
This is useful because it allows the function implementation to destructively update that
value without compromising the semantics of the functional programming language. This
can only be done if the function body itself does not violate this uniqueness property. This
is checked statically.
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� The basic type World represents the ‘external’ environment of a program. If the Start

function has an argument, the language assumes that it is of type World. The language
provides no other means to create a value of type World, so if an application is to do any
interaction with the external environment, it must have a Start function with a uniquely
attributed World argument.

Incorporating side-effects safely in a functional language has received a lot of attention in the
functional language research community. For lazy functional languages a host of techniques has
been proposed. Well-known examples are monads, continuations, and streams. For eager func-
tional languages, the situation is less complicated because in these languages programs exhibit
an execution order that is more predictable.

D.9 Signatures

A signature x :: t declares that identifier x has type t. An identifier x starts with a lowercase
or uppercase letter and has no whitespace characters. The type t can be either of the following
forms.

� It is one of the basic types, which are: Bool, Int, Real, Char, String, File, and World.

� It is a type variable. Their identifiers start with a lowercase character.

� It is a composite type, using one of the language type constructors [ ], { }, (,), and �.

– If t is a type, then [t] is the list-of-t type.

– If t is a type, then {t} is the array-of-t type.

– If t1 and t2 are types, then (t1,t2) is the tuple-of-t1-and-t2 type. This generalizes to
t1 upto tn with 2 ≤ n ≤ 32, separating each type by ,. Hence, (t1,t2,t3), (t1,t2,t3,t4)
and so on are also tuple types.

– If t1 and t2 are types, then t1 � t2 is the function-of-t1-to-t2 type. This generalizes
to t1. . . tn � tn+1, where t1. . . tn are the argument types, and tn+1 is the result type.
The function argument types are separated by whitespace characters. So, t1 t2 � t3,
t1 t2 t3 � t4 and so on are also function types.

� It is a custom defined type, using either an algebraic type or a record type. Their type
names are easily recognized because they always start with an uppercase character.

Signatures can be overloaded, in which case they are extended with one or more overloading
constraints, resulting in x :: t | tc1 a1 & . . . & tcn an. A constraint tci ai is a pair of a type
class tci and a type variable ai that must occur in t. Note that tc1 a & tc2 a & . . . & tcn a can be
shorthanded to tc1, tc2, . . . ,tcn a.

D.10 Overloading

Overloading is a common and useful concept in programming languages that allows you to use
the same identifier for different, yet related, values or computations. In the host language Clean
overloading is introduced in an explicit way: if you wish to reuse a certain identifier x, then you
declare it via a type class:

class x a1 . . . an :: t
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with the following properties:

� the type variables a1 . . . an (n > 0) must be different and start with a lowercase character;

� the type scheme t can be any type that uses the type variables ai.

This declaration introduces the type class x with the single type class member x. It is possible
to declare a type class x with several type class members x1 . . .xk:

class x a1 . . . an
where x1 :: t1

...
xk :: tk

It is customary, but not required, that in this case identifier x starts with an uppercase character.
The identifiers xi need to be different, and their types ti can use any of the type variables ai.

Type classes can be instantiated with concrete types. This must always be done for all of its
type variables and all type class members. The general form of such an instantiation is:

instance x t′1 . . . t′n | tc1 b1 & . . . & tcm bm
where . . .

with the following properties:

� the types t′1 . . . t′n are substituted for the type variables a1 . . . an of the type class x.
They are not required to be different but they are not allowed to share type variables;

� the types t′i can be overloaded themselves, in which case their type class constraints tci bi
are enumerated after | (which is absent in case of no constraints). The type variable bi
must occur in one of the types t′i;

� the where keyword is followed by implementations of all class member functions. Of course,
these implementations must adhere to the types that result after substitution of the corre-
sponding type schemes ti.

D.11 Algebraic and existential types

Algebraic types allow you to introduce new constants in your program, and give them a type at
the same time. The general format of an algebraic type declaration is:

:: t a1 . . . am = d1 t11 . . . t1c1 | . . . | dn tn1 . . . tncn

with the following properties:

� the type constructor t is an identifier that starts with an uppercase character;

� the type variables ai (0 ≤ i ≤ m) must be different and start with a lowercase character;

� the data constructors di (1 ≤ i ≤ n) must be different and start with an uppercase charac-
ter;

� the data constructors can have zero or more arguments. An argument is either one of the
type variables ai or a type that may use the type variables ai.
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From these properties it follows that all occurrences of type variables in data constructors
(all right hand side declarations) must be accounted for in the type constructor (on the left hand
side). With existential quantification it is possible to circumvent this: for each data constructor
one can introduce type variables that are known only locally to the data constructor. A data
constructor can be enhanced with such local type variables in the following way:

∃ b1 . . . bk : di ti1 . . . tici & tc1 x1 & . . . & tcl xl

with the following properties:

� the type variables bj (0 ≤ j ≤ k) must be different and start with a lowercase character;

� the arguments of the data constructor di can now also use any of the existentially quantified
type variables bi;

� the pairs tc x are type class constraints, in which tc indicates a type class and x is one of
the existentially quantified type variables bi.

From these properties it follows that it does not make sense to introduce an existentially
quantified type variable in a data constructor without adding information how values of that
type can be used. There are basically two ways of doing this. The first is to add functions of the
same type that handle these encapsulated values (in a very similar way to methods in classes
in object oriented programming). The second is to constrain the encapsulated type variables to
type classes.

D.12 Record types

Record types are useful to create named collections of data. The parts of such a collection can
be referred to by means of a field name. The general format of a record type declaration is:

:: t a1 . . . am = { r1 :: t1, . . . , rn :: tn }

with the following properties:

� the type constructor t is an identifier that starts with an uppercase character;

� the type variables ai (0 ≤ i ≤ m) must be different and start with a lowercase character;

� the pairs ri :: ti (1 ≤ i ≤ n) determine the components of the record type. The field names
ri must be different and start with a lowercase character. The types ti can use the type
variables ai.

Just like algebraic types, record types can also introduce existentially quantified type variables
on the right-hand side of the record type. However, unlike algebraic types, their use can not be
constrained by means of type classes. Hence, if you need to access these encapsulated values
afterwards, you need to include function components within the record type definition.

D.13 Disambiguating records

Within a program record field names are allowed to occur in several record types (the corre-
sponding field types are allowed to be different). This helps you to choose proper field names,
without worrying too much about their existence in other records. The consequence of this useful
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feature is that once in a while you need to explicit about the record value that is created (in case
of records with exactly the same set of record field names) and when using record field selectors
(either in a pattern match or with the .field notation). Type constructor names are required to
be unique within a program, hence they are used to disambiguate these cases.

� When creating a record value, you are obliged to give a value to each and every record field
of that type. If a record has a field with a unique name, then it is clear which record type
is intended. Only if two records have the same set of field names, you need to include the
type constructor name t within the record value definition.

. . . { t | f1 = e1, . . . , fn = en} . . .

� If a record pattern has at least one field with a unique name, then it is clear which record
type is intended. The record pattern is disambiguated by including the type constructor
name t in the pattern in an analogous way as described above when creating a record value,
except that you do not need to mention all record fields and that the right hand sides of
the fields are patterns rather than expressions:

. . . { t | f1 = p1, . . . , fn = pn} . . .

� If a record field selection e.f uses a unique field name f , then it is clear which record type is
intended. A record field selection can be disambiguated by including the type constructor
name t as a field selector. Hence, e.t.f states that field f of record type t must be used.

D.14 Record updates

Record values are defined by enumerating each and every record field, along with a value. If r is
a record (or an expression that yields a record value), then a new record value can be created by
specifying only what record fields are different. The general format of such a record update is:

{ r & f1 = e1, . . . , fn = en}

This expression creates a new record value that is identical to r, except for the fields fi that have
values ei (0 < i ≤ n) respectively. A record field should occur at most once in this expression.

D.15 Synonym types

Synonym types only introduce a new type constructor name for another type. The general formal
of a type synonym declaration is:

:: t′ a1 . . . an :== t

with the following properties:

� the type constructor t′ is an identifier that starts with an uppercase character;

� the type variables ai (0 ≤ i ≤ n) must be different and start with a lowercase character;

� the type t can be any type that uses the type variables ai. However, a synonym type is
not allowed to be recursive, either directly or indirectly.

Synonym types are useful for documentation purposes of your model types. Although the name t′

must be new, t′ does not introduce a new type: it is completely exchangeable with any occurrence
of t.
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D.16 Strictness

In the signature of the basic task function return the first argument is provided with a strictness
annotation, !. Recall that iTasks is embedded in Clean, which is a lazy language. In a lazy
language, computation is driven by the need to produce a result. As a simple example, consider
the function const that does nothing but return its first argument:

const x y = x

There is absolutely no need for const to evaluate argument y to a value. However, argument x is
returned by const, so its evaluation better produces a result or otherwise const x y won’t produce
a result either.

The more general, and more technical, way of phrasing this is the following. Suppose we have
a function f that has a formal argument x. Let e be a diverging computation (it either takes
infinitely long or aborts without producing a result). If (f e) also diverges, then argument x is
said to be strict in f . Note that this is a property of the function, and not of the argument. In
case of const, it is no problem that argument y might be a diverging computation because it is
not needed by const to compute its result. The consequence is that with respect to termination
properties, it does not matter if strict function arguments are evaluated before the function is
called. In many cases, this increases the performance of the application because you do not need
to maintain suspended computations (due to lazy evaluation), but instead can evaluate them to
a result and use that instead.

The strictness property of function arguments is expressed in the function signature by pre-
fixing the argument that is strict in that function with the ! annotation. In case of const, its
signature is:

const :: !a b � a
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Appendix E

iTasks Reference

This chapter gives a brief overview of the iTasks library. It is by far extensive but should cover
all iTasks constructions you will need for the assignments. Some examples from [18] can be found
in Appendix E.6.

E.1 Types

The class collection iTask is used throughout the library to make sure the types used have all
the required machinery for iTasks. This class collection contains only generic functions that can
automatically be derived. Listing E.1 shows how to derive this class for a user defined type.

:: MyName =

{ firstName :: String

, lastName :: String

}

derive class iTask MyName

Listing E.1: Derive the iTask class for a user defined type.

E.2 Editors

The most common basic tasks are editors for entering, viewing or update information. For the
three basic editors there are three corresponding functions to create tasks as seen in Listing E.2.

enterInformation :: d [EnterOption m] � Task m | toPrompt d & iTask m

updateInformation :: d [UpdateOption m m] m � Task m | toPrompt d & iTask m

viewInformation :: d [ViewOption m] m � Task m | toPrompt d & iTask m

Listing E.2: The definitions of editors in iTasks.

The first argument of the function is something implementing toPrompt. There are toPrompt

instances for at least String — for a description, (String, String) — for a title and a description
and () — for no description.

The second argument is a list of options for modifying the editor behaviour. This list is either
empty or contains exactly one item. The types for the options are shown in Listing E.3. Simple
lenses are created using the *As constructor. If an entirely different editor must be used, the
*Using constructors can be used.
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:: ViewOption a = ∃ v: ViewAs (a � v) & iTask v

| ∃ v: ViewUsing (a � v) (Editor v) & iTask v

:: EnterOption a = ∃ v: EnterAs (v � a) & iTask v

| ∃ v: EnterUsing (v � a) (Editor v) & iTask v

:: UpdateOption a b

= ∃ v: UpdateAs (a � v) (a v � b) & iTask v

| ∃ v: UpdateUsing (a � v) (a v � b) (Editor v) & iTask v

Listing E.3: The definitions of editors in iTasks.

E.3 Task combinators

There are two flavours of task combinators, namely parallel and sequential. Both are based on
super combinators, step and parallel respectively.

E.3.1 Parallel combinators

The two main parallel combinators are the conjunction and disjunction combinators shown in
Listing E.4.

The -&&- has semantics similar to the mTask .&&. combinator. The -||- has the same semantics
as the mTask .||. combinator. The -|| and ||- executes both tasks in parallel but only looks at
the value of the left task or the right task respectively.

(-&&-) in f ixr 4 :: (Task a) (Task b) � Task (a,b) | iTask a & iTask b

(-|| ) i n f i x l 3 :: (Task a) (Task b) � Task a | iTask a & iTask b

( ||-) in f ixr 3 :: (Task a) (Task b) � Task b | iTask a & iTask b

(-||-) in f ixr 3 :: (Task a) (Task a) � Task a | iTask a

Listing E.4: The definitions of parallel combinators in iTasks.

E.3.2 Sequential combinators

All sequential combinators are derived from the >>* combinator as shown in Listing E.5. With
this combinator, the task value of the left-hand side can be observed and execution continues
with the right-hand side if one of the continuations yields a Just (Task b). The listing also shows
many utility functions for defining task steps.

(>>*) i n f i x l 1 :: (Task a) [TaskCont a (Task b)] � Task b | iTask a & iTask b

:: TaskCont a b

= OnValue (( TaskValue a) � Maybe b)

| OnAction Action (( TaskValue a) � Maybe b)

:: Action = Action String // button

always :: b (TaskValue a) � Maybe b

never :: b (TaskValue a) � Maybe b

hasValue :: (a � b) (TaskValue a) � Maybe b

ifStable :: (a � b) (TaskValue a) � Maybe b

ifUnstable :: (a � b) (TaskValue a) � Maybe b

ifValue :: (a � Bool) (a � b) (TaskValue a) � Maybe b

ifCond :: Bool b (TaskValue a) � Maybe b

withoutValue :: (Maybe b) (TaskValue a) � Maybe b

withValue :: (a � Maybe b) (TaskValue a) � Maybe b

withStable :: (a � Maybe b) (TaskValue a) � Maybe b

withUnstable :: (a � Maybe b) (TaskValue a) � Maybe b

Listing E.5: The definitions of sequential combinators in iTasks.
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Derived from the >>* combinator are all other sequential combinators such as the ones listed
in Listing E.6 with their respective documentation.

// Combines two ta sk s s e q u e n t i a l l y . The f i r s t task i s executed f i r s t .
// When i t has a value the user may cont inue to the second task , which i s executed

↪→ with the r e s u l t o f the f i r s t task as parameter .
// I f the f i r s t task becomes s tab l e , the second task i s s t a r t ed au tomat i c a l l y .
(>>=) i n f i x l 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

// Combines two ta sk s s e q u e n t i a l l y but e x p l i c i t l y wai t s f o r user input to conf i rm
↪→ the complet ion o f

(>>!) i n f i x l 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

// Combines two ta sk s s e q u e n t i a l l y but cont inues only when the f i r s t task has a
↪→ s t ab l e va l u e .

(>>-) i n f i x l 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

// Combines two ta sk s s e q u e n t i a l l y but cont inues only when the f i r s t task has a
↪→ s t ab l e va l u e .

(>-|) i n f i x l 1

(>-|) x y :== x >>- λ _ � y

// Combines two ta sk s s e q u e n t i a l l y but cont inues only when the f i r s t task has a
↪→ va l u e .

(>>∼) i n f i x l 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

// Combines two ta sk s s e q u e n t i a l l y j u s t as >>=, but the r e s u l t o f the second task
↪→ i s d i s r e g a rd ed .

(>>^) i n f i x l 1 :: (Task a) (Task b) � Task a| iTask a & iTask b

// Execute the l i s t o f t a sk s one a f t e r a¬he r .
sequence :: [Task a] � Task [a] | iTask a

Listing E.6: The definitions of derived sequential combinators in iTasks.

E.4 Shared Data Sources

Data can be observer via task values but for unrelated tasks to share data, SDSs are used. There
is an automatic publish subscribe system attached to the SDS system that makes sure tasks are
only rewritten when activity has taken place in the SDS. There are many types of SDSs such
as lenses, sources and combinators. As long as they implement the RWShared class collection, you
can use them as a SDS. Listing E.7 shows two methods for creating a SDS, they both yield a
SimpleSDSLens but they can be used by any task using a SDS.

sharedStore :: String a � SimpleSDSLens a | JSONEncode{|*|} a & JSONDecode{|*|} a

↪→ & TC a

withShared :: b (( SimpleSDSLens b) � Task a) � Task a | iTask a & iTask b

Listing E.7: The definitions for SDSs in iTasks.

With the sharedStore function, a named SDS can be created that acts as a well-typed global
variable. withShared is used to create an anonymous local SDS.

There are four major operations that can be done on SDSs that are all atomic (see lst:itaskssdstasks

↪→ ). get fetches the value from the SDS and yields it as a stable value. set writes the given
value to the SDS and yields it as a stable value. upd applies an update function to the SDS and
returns the written value as a stable value. watch continuously emits the value of the SDS as an
unstable task value.
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get :: (sds () a w) � Task a | iTask a & Readable sds & TC w

set :: a (sds () r a) � Task a | iTask a & TC r & Writeable sds

upd :: (r � w) (sds () r w) � Task w | iTask r & iTask w & RWShared sds

watch :: (sds () r w) � Task r | iTask r & TC w & Readable , Registrable sds

Listing E.8: The definitions for SDS access tasks in iTasks.

For all editors, there are shared variants available as shown in Listing E.9. This allows a user
to interact with the SDS.

updateSharedInformation :: d [UpdateOption r w] (sds () r w) � Task r | ...

viewSharedInformation :: d [ViewOption r] (sds () r w) � Task r | ...

sharedUpdate :: Task Int

sharedUpdate = withShared 42 λ sharedInt �
updateSharedInformation () [] sharedInt

-||- updateSharedInformation () [] sharedInt

Listing E.9: The definitions for SDS editor tasks in iTasks.

E.5 Extra Task Combinators

Not all workflow patterns can be described using only the derived combinators. Therefore,
some other task combinators have been invented that are not truly sequential nor truly parallel.
Listing E.10 shows some combinators that might be useful in the assignments.

//Feed the r e s u l t o f one task as read−only shared to a¬her
(>&>) i n f i x l 1 :: (Task a) (( SDSLens () (Maybe a) ()) � Task b) � Task b | iTask

↪→ a & iTask b

// S ide s t ep combinator .
// This combinator has a s im i l a r s i gna tu r e as the >>* combinator , but in s t ead o f

↪→ moving forward to a next step , the s e l e c t e d step i s executed in p a r a l l e l
↪→ with the f i r s t t a s k .

// When the chosen task step becomes s tab l e , i t i s removed and the a c t i on s are
↪→ enabled aga in .

(>^*) i n f i x l 1 :: (Task a) [TaskCont a (Task b)] � Task a | iTask a & iTask b

// Apply a func t i on on the task value whi l e r e t a i n i n g s t a b i l i t y
(@) i n f i x l 1 :: (Task a) (a � b) � Task b

// Map the task value to a constant value whi l e r e t a i n i n g s t a b i l i t y
(@) i n f i x l 1 :: (Task a) b � Task b

// Repeats a task i n d e f i n i t e l y
forever :: (Task a) � Task a | iTasks a

Listing E.10: The definitions for hybrid combinators in iTasks.

E.6 Examples

.

E.6.1 Hello World

The entry point to all iTasks programs is the doTasks function. This function sets all machinery
going and launches the web server. Listing E.11 shows a complete hello world program in iTasks.
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module hello

import iTasks

Start w = doTasks hello w

hello :: Task MyName

hello = enterInformation "Enter your name" []

>>= λ x � viewInformation "Hello: " [] x

//Or i t can be wr i t t en in a po int− f r ee s t y l e :
// >>= viewInformat ion ” He l l o : ” [ ]

Listing E.11: The iTasks Hello World! program.

E.6.2 Task Patterns

Some workflow task patterns can easily be created using the builtin combinator as shown in
Listing E.12.

maybeCancel :: String (Task a) � Task (Maybe a) | iTask a

maybeCancel panic t = t >>*

[ OnValue (ifStable (return o Just))

, OnAction (Action panic) (always (return Nothing))

]

:: Date // type from iTasks .Extens ions .DateTime
currentDate :: SDSLens () Date () // Bu i l t i n SDS

waitForDate :: Date � Task Date

waitForDate d = viewSharedInformation ("Wait until" +++ toString d) [] currentDate

>>* [OnValue (ifValue (λ now � date < now) return)]

deadlineWith :: Date a (Task a) � Task a | iTask a

deadlineWith d a t = t -||- (waitForDate d >>| return a)

reminder :: Date String � Task ()

reminder d m = waitForDate d >>| viewInformation ("Reminder: please " +++ m) [] ()

Listing E.12: The iTasks Hello World! program.



BIBLIOGRAPHY 48

Bibliography

[1] Peter Achten. Clean for Haskell98 Programmers. 13th July 2007.

[2] Peter Achten, Pieter Koopman and Rinus Plasmeijer. ‘An Introduction to Task Oriented
Programming’. In: Central European Functional Programming School. Springer, 2015, pp. 187–
245.

[3] Douglas Adams. The Hitchhiker’s Guide to the Galaxy Omnibus: A Trilogy in Four Parts.
Vol. 6. Pan Macmillan, 2017.

[4] Matheus Amazonas Cabral De Andrade. ‘Developing Real Life, Task Oriented Applications
for the Internet of Things’. Master’s Thesis. Nijmegen: Radboud University, 2018. 60 pp.

[5] Tom Brus et al. ‘Clean – a language for functional graph rewriting’. In: Conference on
Functional Programming Languages and Computer Architecture. Springer, 1987, pp. 364–
384.

[6] Jacques Carette, Oleg Kiselyov and Chung-Chieh Shan. ‘Finally tagless, partially evalu-
ated: Tagless staged interpreters for simpler typed languages’. In: Journal of Functional
Programming 19.5 (Sept. 2009), p. 509. issn: 0956-7968, 1469-7653. doi: 10.1017/S0956796809007205.
url: http://www.journals.cambridge.org/abstract_S0956796809007205 (visited on
15/01/2019).

[7] James Cheney and Ralf Hinze. First-class phantom types. Cornell University, 2003. url:
https://ecommons.cornell.edu/handle/1813/5614 (visited on 15/05/2017).

[8] Li Da Xu, Wu He and Shancang Li. ‘Internet of things in industries: a survey’. In: Industrial
Informatics, IEEE Transactions on 10.4 (2014), pp. 2233–2243.

[9] L. M. G. Feijs. ‘Multi-tasking and Arduino : why and how?’ In: Design and semantics
of form and movement. 8th International Conference on Design and Semantics of Form
and Movement (DeSForM 2013). Design and semantics of form and movement. 8th Inter-
national Conference on Design and Semantics of Form and Movement (DeSForM 2013).
Ed. by L. L. Chen et al. Wuxi, China, 2013, pp. 119–127. isbn: 978-90-386-3462-3.

[10] Patrick C. Hickey et al. ‘Building embedded systems with embedded DSLs’. In: ACM
Press, 2014, pp. 3–9. isbn: 978-1-4503-2873-9. doi: 10.1145/2628136.2628146. url:
http://dl.acm.org/citation.cfm?doid=2628136.2628146 (visited on 23/05/2017).

[11] Pieter Koopman, Mart Lubbers and Rinus Plasmeijer. ‘A Task-Based DSL for Micro-
computers’. In: Proceedings of the Real World Domain Specific Languages Workshop 2018
on - RWDSL2018. the Real World Domain Specific Languages Workshop 2018. Vienna,
Austria: ACM Press, 2018, pp. 1–11. isbn: 978-1-4503-6355-6. doi: 10.1145/3183895.
3183902. url: http://dl.acm.org/citation.cfm?doid=3183895.3183902 (visited on
14/01/2019).

https://doi.org/10.1017/S0956796809007205
http://www.journals.cambridge.org/abstract_S0956796809007205
https://ecommons.cornell.edu/handle/1813/5614
https://doi.org/10.1145/2628136.2628146
http://dl.acm.org/citation.cfm?doid=2628136.2628146
https://doi.org/10.1145/3183895.3183902
https://doi.org/10.1145/3183895.3183902
http://dl.acm.org/citation.cfm?doid=3183895.3183902


BIBLIOGRAPHY 49

[12] Mart Lubbers. ‘Task Oriented Programming and the Internet of Things’. Master’s Thesis.
Nijmegen: Radboud University, 2017. 69 pp.

[13] Mart Lubbers, Pieter Koopman and Rinus Plasmeijer. ‘Multitasking on Microcontrollers
using Task Oriented Programming’. In: 2019 42st International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics (MIPRO). COnfer-
ence on COmposability, COmprehensibility and COrrectness of Working Software. Opatija,
Croatia: IEEE, 2019, pp. 1842–1846.

[14] Mart Lubbers, Pieter Koopman and Rinus Plasmeijer. ‘Task Oriented Programming and
the Internet of Things’. In: Proceedings of the 30th Symposium on the Implementation and
Application of Functional Programming Languages. International Symposium on Imple-
mentation and Application of Functional Languages. Lowell, MA: ACM, 2018, p. 12. isbn:
978-1-4503-7143-8. doi: 10.1145/3310232.3310239.

[15] Rinus Plasmeijer, Peter Achten and Pieter Koopman. ‘iTasks: executable specifications
of interactive work flow systems for the web’. In: ACM SIGPLAN Notices 42.9 (2007),
pp. 141–152.

[16] Rinus Plasmeijer and Pieter Koopman. ‘A Shallow Embedded Type Safe Extendable DSL
for the Arduino’. In: Trends in Functional Programming. Vol. 9547. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2016. isbn: 978-3-319-39109-0 978-
3-319-39110-6. doi: 10.1007/978-3-319-39110-6. url: http://link.springer.com/
10.1007/978-3-319-39110-6 (visited on 22/02/2017).

[17] Camil Staps and Mart Lubbers. The Clean language search engine. 2017. url: https:
//cloogle.org.
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Glossary

Arduino is an ecosystem and a C++ dialect for many different types of Microcontroller Units.

AVR is an architecture for microprocessors used for example in the popular Arduino UNO.

C is an imperative low level system programming language.

C++ is an imperative and object oriented low level programming language compatible with C
but supporting much more such as classes..

Clean Clean Language of East-Anglia and Nijmegen, a pure lazy functional programming lan-
guage based on graph rewriting.

ESP8266 is a WiFi chip that can be used as a general purpose microcontroller as well.

Haskell Haskell, a pure lazy functional programming language.

iTasks is a Task Oriented Programming implementation hosted in the purely lazy functional
programming language Clean.

LOLIN is a prototyping Microcontroller Unit based on the popular ESP8266 chip.

mTask is an Embedded Domain Specific Language for running tasks on Microcontroller Units.

NodeMCU is a prototyping Microcontroller Unit based on the popular ESP8266 chip.

xtensa is a configurable processor microprocessor core and architecture used for example on the
popular ESP8266 chip.

ZigBee is an open standard for short-range wireless networking designed to complement WiFi
and Bluetooth.
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Acronyms

ADT Algebraic Data Type.

API Application Programming Interface.

ARDSL Arduino Domain Specific Language.

BT Bluetooth.

BTLE Bluetooth Low Energy.

CEFP Central European Functional Programming School.

cpm Clean Project Manager.

DHT Digital Humidity and Temperature sensor.

DSL Domain Specific Language.

EDSL Embedded Domain Specific Language.

GADT Generalized ADT.

GPIO General Purpose Input/Output.

I2C Inter-Intergrated Circuit.

IDE Integrated Development Environment.

IO Input/Output.

IOT Internet of Things.

IP Internet Protocol.

IRC Internet Relay Chat.

LEAN Language of East-Anglia and Nijmegen.

LED Lighting Emitting Diode.

MCU Microcontroller Unit.



OLED Organic Lighting Emitting Diode.

OS Operating System.

RFID Radio-frequency Identification.

RTS Run-time System.

SDS Shared Data Source.

TCP Transmission Control Protocol.

TOP Task Oriented Programming.
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