Nested dynamics

Conventions:

· with a word is meant the machine word. For Intel and PowerPC processors this is four bytes.
Need:

A nested dynamic is a dynamic containing dynamics. The value of a dynamic is converted to its internal graph representation after its type has been matched. In case of a mismatch the value graph should not be constructed. The current graph-conversion routines do no support it.

For a datadynamic the consequence is that a nested dynamic cannot contain a dynamic object of an unknown type with respect to some subsystem regardless of its use in the subsystem. In particular if the subsystem does not use the nested dynamic, a run-time type error will still be reported.

For a lazy dynamic, the consequence is the superfluous computation will be done. The dynamic linker which might fail, is required to search the required but possibly not needed libraries which decreases efficiency.

Hence the goal of nested dynamics is to avoid unnecessary run-time type checks and link errors for subsystems which selectively use nested dynamics.

Definitions:

A top-level dynamic is the dynamic which is passed to the toString-conversion routine.

Every keyword Dynamic occuring in the top-level dynamic type or in one of its descendants is called a subdynamic. Each subdynamic is associated with a value graph and its type graph.

An encoded dynamic which is a string is a top-down, left-to-right encoding of the run-time graph which of course may contain other objects than dynamic objects.

Representation:

· internal & external indirections

· the order of encoding and decoding may differ e.g. another not yet decoded subdynamic may contain a definition of an indirection

· copying of dynamic with unknown type should be possible

*

problems

1 indirections (internal/external)

2 identification of dynamics within one application

3 lazy (selective) linking

The label names for a certain symbol in a certain module in different contexts i.e.

4 dynamics which are only copied (representation by reference or by copy?)

Conversion to graph:

In accordance with the semantics of the Clean language, a dynamic is constructed lazily. If the conversion routine encounters a dynamic,

Indirections:
There are internal and external indirections. An internal reference within a dynamic only references objects contained in that same dynamic. An external reference has one or more references within another dynamic.

There are of course also internal and external definitions. An internal definition has only internal references pointing to it. An external definition has at least one external reference pointing to its definition. In addition there may also be internal references to the external definition in which case the external definition is in the same dynamic as the internal references.

Pass one of the graph_to_string converts the graph to its string representation. During this pass sharing is preserved in the encoded graph by using indirections: if a shared node is detected, it can be determined whether or not it has already been encoded or not. In the former case an indirection is made. In the latter case the node is encoded and marked as shared. Notice that indirections point only backwards.

If the indirection is internal i.e. the shared node it references is between the start of the encoded dynamic and the point just before the reference of the (already encoded) shared node, then it is an internal reference. In the other case it is an external reference.

Internal references do not cause any problems. External references however do. Consider the following example:

:: ExternalReference = {

first
:: Dynamic

next
:: Dynamic

}

where

 er = { ExternalReference |

first
= dynamic v,

next
= dynamic v}

 v = “shared”

The er-record is packed into a dynamic. Using the current algoritm, the string v is encoded in the second dynamic i..e. the one which is a value of the first-field. It forms an external definition for the reference to v in the third dynamic. This reference is of course external.

Assume the first-field is selected before the next-field which requires the dynamic to be built. Later the second field is selected which causes the third dynamic to be built but this dynamic shares the already built v. Simply using the address of v during the construction of the second dynamic fails because the garbage collection may have relocated v.

Hence the correct address of v is needed across one or more garbage collections. The situation gets even worse, if the third dynamic is built before the second one. In that case v has to be built from the second dynamic because it was encoded there. If later the second dynamic is built, v may be built again. In this way sharing is lost.

In summary the problems are:

· maintaining the correct addresses of shared node(s) across several garbage collections.

· loosing sharing (and thus efficiency) if the evaluation order differs from the order of encoding.

Both problems are serious. The former problem because it will certainly to low-level operating system errors e.g. access violations. The latter problem may affect run-time efficiency, if v is some heavy computations.

The following discussion assumes that external references are relatively rare in comparison to internal references i.e. intra dynamic references occur relatively seldom. The programmer should only pay for a more these intra dynamic references, if they are present.

The former problem can be solved by numbering all definitions of shared nodes. A node is either directly referenced from a dynamic or indirectly from another shared node. The definition number is an index in a run-time shared nodes array which contains the addresses of all shared nodes. At run-time each nested dynamic, receives a reference to the shared nodes array and is required to destructively update the array at the proper index with the address of the newly created shared node.

The array is an ordinary run-time Clean object but it differs from other arrays at run-time because it may contain objects of arbitrarly types i.e. at the language level, a tuple might be more appropriate. The reason for not using tuples is that they are limited to an arity of 32. It is guaranteed by the garbage collector that the array always contains valid addresses for the shared nodes.

For each node, during encoding of a graph, the following additional information w.r.t. the (current) three pass algorithm is needed:

· whether or not, the node to be encoded is shared

· in addition for a shared node, whether it is internal i.e. all references to that node remain within a dynamic or external.

The current encoding algorihm loops through the following three passes i.e. traversals of the entire graph:

· copying the graph and detecting shared nodes by inserting indirections in the run-time representation of the graph.

· removal of indirections and copying label and modules names which are also shared.

· determining the prefixes needed for each label/module name.
The traversal of the graph is top-down and from left-to-right. If a dynamic is encountered, then its encoding is postponed until the encoding of its enclosing dynamic has been completed. The nested dynamics are then encoded in the order of occurrence.

Notice that references to shared nodes are always referenced backwards because the first reference is at the same time its definition.

· Initially the needed sharing information is unknown, but during the first pass this information could be collected. The sharing information needs to be encoded in the definition of a shared node and in its references. There are essentially two possiblities to encode a shared node:

· it becomes part of the first subdynamic referencing it which takes the encoding order of the graph into account.

· it is encoded in a separate part which contains the encoding of all shared nodes.

These two possibilites are elaborated on below. For both possibilities a detailled description is given because it will being used in the existing algorithm.

Shared nodes part of first referencing subdynamic:
· The following additional data structures are needed during the first pass:

· a bit-vector which is constructed simultaneosly with the encoded graph. For each node and each reference a bit is used to indicate whether or not it is external i.e. 1 or internal i.e. 0. It is initialized with zeroes.

· a counter which counts the size of the shared nodes array. It is initialized at zero.

· the start address of the current dynamic being encoded.

· If an indirection i.e. a shared node is referenced is detected, then the following tasks should be perfomed:

· if the shared node is external i.e. its address is less than the start address of the current dynamic being encoded, then the shared node and the reference are both marked as external by setting the corresponding bits in the bit-vector.

· if the shared node was not marked as external before, then the counter which counts the size of the shared node array is increased.

Pass 2

Most important data structures:

· The shared nodes array:

· a zero-initialized index in the shared nodes array.

· a shared nodes array of the size computed in the first pass.

· In order to correct references:

· a zero-initialized, word sized delta

· word sized sourceP and destP

· Before the pass starts, the following actions should be taken:

· the encoded graph is enlarged with the size of the shared nodes array computed in the first pass because an externally shared node needs a extra information. The encoded graph is moved to the end.

Just before the value-part of a dynamic is to be encoded, the current start address of the dynamic is set to the start of its value-part.

During the second pass the graph, the encoded graph and the bitvector are traversed

simulateneously.

Before the second pass can start, the encoded graph is enlarged with the size of the shared nodes array to make room for an extra information word (4 bytes) which will precede an externally shared node. The encoded graph is then moved to the new end.

· in case of an indirections:

*

The following sharing information is needed:

*

Shared nodes in separate part:

How? Is not said.

 which would unfortunately be too late because of the following reasons:
knowledge during encoding whether or not the node is externally shared.

· closure of shared nodes

· chopping a dynamic

 which is consequently also subject to garbage collection which guarantees the array always containd

Second case, build shared node of 2nd dynamic, overwrite the encoded representation with recognisable value i.e.

in the range start of the current dynamic

Lazy (selective) linking & identification:

Encoding time of a dynamic:

· Each dynamic including the top-level dynamic encountered in the traversal of the run-time graph representation during the conversion is given a local unique identification.

· Each entry of the descriptor prefix table is extended with a set identifying the (nested) dynamics which use that particular entry.

· The sets are superfluous if there is only a top-level dynamic i.e. the injected expression does not contain a dynamic or if all (nested) dynamics use all entries.

The function readDynamic:

· The encoded graph is read from disk and possible file i/o errors are handled.

· It sends the dynamic run-time system the filename of the file containing the encoded graph. The run-time system responds by sending an unique identification of the dynamic.

· The function build_dynamic with arguments ugid, ulid, encoded_graph_i, and graph. The ugid is the just obtained unique identification of the dynamic, the next argument ulid is zero because it is the top-level dynamic, the third argument is also zero because the top-level dynamic starts at offset zero from the encoded graph and the last argument contains the graph to be encoded.

The function build_dynamic:

Decoding time of a dynamic:

· Each top-level dynamic about to be decoded, receives a global unique identification from the dynamic run-time system e.g. the dynamic linker is part of it. The global and local identification together uniquely identifies each dynamic. By using this identification the dynamic run-time system can also locate the proper descriptor prefix table and string table.

· idescriptor prefix table and string table associated with the top-level dynamic are identified by the

Copying dynamics:

