This text contains the second worked-out version of discussions with John and Rinus about type checks for dynamics. 

Type checks for dynamics
Two most important operations on dynamics are:

· a dynamic pattern match e.g. apply (f :: a -> b) (v :: a) = dynamic (f v) :: b

· constructing a dynamic e.g. dynamic (length [1,2]) :: Int

Dynamic pattern matches
But the Tree (and Int) offered by the first dynamic may not be the Tree (and Int) of the second dynamic. In general there is of course no reason to assume that both dynamics use the same Tree. So actually the example reads:

apply (dynamic _ :: Tree1 Int1 -> Tree1 Int1) (dynamic _ :: Tree2 Int2)

This is incorrect. Above it is claimed that types packed into a dynamic become anonymous i.e. the name doesn’t matter anymore. Consider the following example:

The application:

:: Boom a = Knoop a (Boom a) (Boom a) | Leeg | Leeg2

The dynamic:

:: Tree a = Node a (Node a) (Node a) | Empty | Empty2

These types cannot be considered equivalent. For pratical purposes the constructors Node and Knoop could be considered equivalent. But it is not clear if Empty can be considered equivalent to Leeg or Leeg2. It  could be  assumed that the descriptors are ordered.

This means that the following two types are not considered equivalent (example from Marco Pil):

Colour = Red | Green | Blue

and

Colour = Blue | Green | Red

Obviously neither of the possibilities does provide what is wanted: both the trees and the colours are expected to be equivalent. In addition the checks described in the first version of this document impose an extra run-time overhead and are difficult to implement.

It has been decided that if two types are to be equivalent, they must be syntaxically equivalent and synonym types should be expanded. This is a very strong notion of equality e.g. the two cases above are not considered equivalent. Of course a construction is needed to include the above cases.

A possible solution to the problems mentioned above could be to allow the renaming of constructors e.g. the programmer should specify that the Tree-constructor should be renamed to a Knoop-descriptor. In this way the above can be made equivalent. Restrictions on renaming are relatively straightforward to define.

However there is still another problem:

The dynamic:

:: Record1


= {



name 

:: String


,
address 
:: String


,
age

:: Int


}

The application:

:: Record2


= {



name 

:: String


,
address 
:: String


}

If the application attempts to use the dynamic, then an age-field is required which is not contained in Record2. Perhaps an application would use the dynamic anyway. A first idea is to use overloaded functions to solve these problems. This is a point of further discussion. 

Implementation

This part roughly describes the proposed implementation of dynamics using the existing compiler, dynamic linker and conversion functions. The following almost trivial example is used:

:: Tree a = Node a (Tree a) (Tree a) | Empty

Start world


#! (_,d,world)



= readDynamic “trivial” world


#! (_,world)



= writeDynamic “trivial” world


= world

% Implementation general; terminology

Type information associated with a dynamic can be divided into internal and external type information. The expression immediately following the dynamic-keyword provides the internal type information. The external type information can follow after the double colon (::) or can be derived by the type checker.

The need for internal type information has been discussed in the first version of this document. Internal type information is not needed if the injected object satisfies the conditions below:

· the injected object is hyper strict

· the injected object is not a curried function

Hence an obvious optimization can be made in this case when only data objects are to be injected into a dynamic. Such a dynamic is called a data dynamic in contrast to a lazy dynamic. 

The intended type information consists of:

· type definitions and dependencies

· types for functions and constuctors and dependencies

Design principles:

· Each application should be capable of using each dynamic, provided that the external type of the dynamic matches the demanded type of the application.

· No additional overhead should be imposed on internal dynamics i.e. those dynamics which are not read or written using respectively readDynamic and writeDynamic.

· The additional overhead needed for external dynamics, should be done lazily in accordance with the lazy semantics of the Clean language.

Consider the first example below:

apply :: Dynamic Dynamic -> Dynamic

apply (f :: a -> b) (o :: a)


= dynamic (f o) :: b 

Start :: World -> World

Start world


# (ok,d1,world)



= ReadDynamic “d1” world


# (ok,d2,world)



= ReadDynamic “d2” world


# (ok,world)



= WriteDynamic (apply d1 d2) “result” world


= world

During the dynamic pattern match in the apply-function, the unification algorithm uses only one type definition check: the type definition of the argument type of the function contained in the first dynamic should match that of the object contained in the second dynamic.

Notice that the type definition check is performed on the external type information of both dynamics. In this case, the type information provided by the application is irrelevant. 

Consider the second, slightly modified example (only the changed part is shown):

apply :: Dynamic Dynamic -> Dynamic

apply (f :: Int -> b) (o :: Int)


= dynamic (f o) :: b 

In contrast to the last example, the type information of the application now plays a role during the dynamic pattern match. The first argument of the function f should be an Int and o should also be an Int. Both should be Ints of the example application. After the unfication it is guaranteed that the type definitions of f’s first argument matches that of o because the definition match-relation is both symmetrical and transitive.

Although the definitions match, three Int-descriptors exists. One in the first dynamic, one in the second dynamic and one in the application. Because they are considered the same after unification, they should also be treated the same. This problem and its solution have been described in the first version of this document. In this case it suffices to rename the Int-descriptor references of both dynamics to the Int-descriptor of the already running application.

Thus the external type definition checks can be done during unification. 

For lazy dynamics, the internal type information remains to be checked. This check must have been passed before the injected expression can be converted to its internal run-time graph-representation because otherwise a type correct expression cannot be build.

During the dynamic pattern match, the type information of the application e.g. Tree plays a r

A type information file (.tcl) is associated with each application and each object file. Besides the type information which is stored in the dynamic itself, each type has an internal and external boolean-attribute type. This information can be considered as the requirements of a dynamic to its environment i.e. the application and the object files to be linked.

The type information in a running application, a dynamic and several object files should match in order to use the dynamic within the application. An application and a dynamic must match because otherwise the dynamic cannot be used. In case of a type information mismatch between on the one hand an application or a dynamic and on the other hand an object file, another object file can be searched which matches.

kind type definition matters because 

:: Node = { ..  (Record-type}

:: Node = A …    (Algebraic-type}

are allowed.

object injected into a dynamic does not have 

A type information associated with a dynamic can be divided into an internal and external type information. The need for internal type information has been described in the first version of this document.
Reading a dynamic

The process of reading a dynamic consists of the following steps:

-


· describe actual process of {reading,writing} dynamics.

