CLEAN is a practical applicable general-purpose lazy pure functional programming language suited for the development of
real world applications.

CLEAN has many features among which some very special ones.

Functional languages are usually implemented using graph-rewriting techniques. CLEAN has explicit graph rewriting
semantics; one can explicitly define the sharing of structures (cyclic structures as well) in the language (Barendregt et al.,
1987; Sleep et al., 1993, Eekelen et al., 1997). This provides a better framework for controlling the time space behavior of
functional programs.

Of particular importance for practical use is CLEAN’s Uniqueness Type System (Barendsen and Smetsers, 1993a) enabling
the incorporation of destructive updates of arbitrary objects within a pure functional framework and the creation of direct
interfaces with the outside world.

CLEAN's "unique" features have made it possible to predefine (in CLEAN) a sophisticated and efficient 1/O library (Achten
and Plasmeijer, 1992 & 1995). The CLEAN Object I/O library enables a CLEAN programmer to specify interactive window
based I/O applications on a very high level of abstraction. One can define callback functions and 1/O components with
arbitrary local states thus providing an object-oriented style of programming (Achten, 1996; Achten and Plasmeijer, 1997).
The library forms a platform independent interface to window-based systems: one can port window based 1/O ap-plications
written in CLEAN to different platforms (we support Mac and PC) without modification of source code.

Although CLEAN is by default a lazy language one can smoothly turn it into a strict language to obtain optimal time/space
behavior: functions can be defined lazy as well as (partially) strict in their arguments; any (recursive) data structure can be
defined lazy as well as (partially) strict in any of its arguments.

The rich type system of CLEAN 1.3 (offering high-order types, polymorph types, type classes, uniqueness types,
existentially quantified types, algebraic types, abstract types, synonym types, record types, arrays, lists) is extended with
multi parameter type constructor classes and universally quantified types currently limited to rank 2, rank n is in
preparation). Furthermore, arrays and lists are better integrated in the language. Strict, spine-strict, unboxed and
overloaded lists are predefined in the language.

CLEAN now offers a hybrid type system with both static and dynamic typing. An object (expression) of static type can be
changed into an object of dynamic type (a "Dynamic") and backwards. One can read a Dynamic written by another
CLEAN program with one function call. A Dynamic can contain data as well as (unevaluated) functions. This means that
one can very easy transfer data as well as code (!) from one CLEAN application to another in a type safe manner enabling
mobile code and persistent storage of an expression. This technique involves just-in-time code generation, dynamic linking
and dynamic type unification.

CLEAN offers support for generic programming using an extension of the class overloading mechanism. One can define
functions like equality, map, foldr and the like in a generic way such that these functions are available for any (user
defined) data structure. The generic functions are very flexible since they not only work on types of kind star but also on
higher order kinds.

CLEAN (Brus et al., 1987; Nocker et al., 1991; Plasmeijer and Van Eekelen, 1993) is not only well known for its many
features but also for its fast compiler producing very efficient code (Smetsers et al., 1991). The new CLEAN 2.0 compiler is
written in CLEAN . The CLEAN compiler is one of the fastest in the world and it produces very good code. For example, the
compiler can compile itself from scratch within a minute.



The CLEAN 2.0 system includes lots of tools and libraries, all written in CLEAN of course. Included is an IDE (Integrated
Development Environment), a dedicated text editor, a project manager, a code generator generating native code (the only
piece of software written in C), a static linker, a dynamic linker, a proof system (Sparkle), a test system (GAST), a heap
profiler, a time profiler, and lots of libraries.

People already familiar with other functional programming languages (such as Haskell; (Hudak et al., 1992), Gofer/Hugs
(Jones, 1993), Miranda (Turner, 1985) and SML (Harper et al., 1986)) will have no difficulty to program in CLEAN. We hope
that you will enjoy CLEAN's rich collection of features, CLEAN’s compilation speed and the quality of the produced code
(we generate native code for all platforms we support). CLEAN runs on a PC (Windows 2000, '98, '95, WindowsNT). There
are also versions running on the Mac and Linux.

Research on CLEAN started in 1984 (the Dutch Parallel Machine Project) in which we had to good idea to focuss on
compilation techniques for classical computer architectures. Many new concepts came out of the research of the CLEAN
team (see below). These ideas are not only incorporated in our own system, many of them have also been adopted by
other languages like Haskell and Mercury.

More Information on Clean

A tutorial teaching how to program in CLEAN can be found on our web pages.
See http://wiki.clean.cs.ru.nl/Functional_Programming_in_Clean.

Information about the libraries (including the 1/O library) that are available for CLEAN can also be found on the web, surf to
http://wiki.clean.cs.ru.nl/Libraries.

There is a manual teaching the use of the Object I/O library. It includes many examples showing you how to write interactive
window based programs.
See http://clean.cs.ru.nl/download/supported/ObjectlO.1.2/doc/tutorial. pdf.

The basic concepts behind CLEAN (albeit of one of the very first versions, namely CLEAN 0.8) as well as an explanation of
the basic implementation techniques used can be found in Plasmeijer and Van Eekelen (Adisson-Wesley, 1993). The book
is out of print, but copies can found on

http://wiki.clean.cs.ru.nl/Functional_Programming_and_Parallel_Graph_Rewriting

There are many papers on the concepts introduced by the CLEAN group (such as term graph rewriting (Barendregt et al.,
1987), lazy copying (van Eekelen et al., 1991), abstract reduction (Nocker, 1993), uniqueness typing (Barendsen and
Smetsers, 1993, 1996), CLEAN's I/O concept (Achten, 1996 & 1997), Lazy Copying for Concurrent CLEAN (Kesseler, 1991
& 1996), Type dependent Functions for Dynamics (Pil, 1999), I/O of Dynamics (Vervoort, 2001), a Typed Operating System
(van Weelden, 2001). For the most recent information on papers (http://wiki.clean.cs.ru.nl/Publications) and general
information about CLEAN (http://clean.cs.ru.nl) please check our web pages.

About this Language Report

In this report the syntax and semantics of CLEAN version 2.0 are explained. We always give a motivation why we have
included a certain feature. Although the report is not intended as introduction into the language, we did our best to make it
as readable as possible. Nevertheless, one sometimes has to work through several sections spread all over the report. We
have included links where possible to support browsing through the manual.

At several places in this report context free syntax fragments of CLEAN are given. We sometimes repeat fragments that are
also given elsewhere just to make the description clearer (e.g. in the uniqueness typing chapter we repeat parts of the
syntax for the classical types). We hope that this is not confusing. The complete collection of context free grammar rules is
summarized in Appendix A.



Some Remarks on the Clean Syntax

The syntax of CLEAN is similar to the one used in most other modern functional languages. However, there are a couple of
small syntactic differences we want to point out here for people who don?t like to read language reports.

In CLEAN the arity of a function is reflected in its type. When a function is defined its uncurried type is specified! To avoid
any confusion we want to explicitly state here that in CLEAN there is no restriction whatsoever on the curried use of
functions. However, we don't feel a need to express this in every type. Actually, the way we express types of functions more
clearly reflects the way curried functions are internally treated.

E.qg., the standard map function (arity 2) is specified in CLEAN as follows:

map:: (a -> b) [a]l —> [Db]
map f [] =[]
map f [x:xs] = [f x:map f xs]

Each predefined structure such as a list, a tuple, a record or array has its own kind of brackets: lazy lists are always
denotated with square brackets [ .. .1, strict lists are denotated by [! ...], spine strictlistsby [... !], overloaded lists
by [|...11 , unboxed lists by [#...].Fortuples the usual parentheses are used (..., ...), curly braces are
used for records (indexed by field name) as well as for arrays (indexed by number).

In types funny symbols can appear like ., u:, *, ! which can be ignored and left out if one is not interested in uniqueness
typing or strictness.

There are only a few keywords in CLEAN leading to a heavily overloaded use of : and = symbols:
function::argstype —-> restype // type specification of a function

function pattern

| guard = rhs // definition of a function

selector = graph // definition of a constant/CAF/graph
function args :== rhs // definition of a macro

::Type args = typedef // an algebraic data type definition
::Type args :== typedef // a type synonym definition

:: Type args // an abstract type definition

As is common in modern functional languages, there is a layout rule in CLEAN (see 2.3). For reasons of portability it is
assumed that a tab space is set to 4 white spaces and that a non-proportional font is used.

Function definition in CLEAN making use of the layout rule.

primes:: [Int]
primes = sieve [2..]
where
sieve:: [Int] -> [Int]
sieve [pr:r] = [pr:sieve (filter pr r)]

filter:: Int [Int] -> [Int]
filter pr [n:r]

| n mod pr == = filter pr r

| otherwise = [n:filter pr r]



Notational Conventions Used in this Report
The following notational conventions are used in this report. Text is printed in Microsoft Sans Serif 9pts,

the context free syntax descriptions are given in Microsoft Sans Serif 9pts,
examples of CLEAN programs are given in Courier New 9pts,

Semantic restrictions are always given in a bulleted list-of-points. When these restrictions are not obeyed they will
almost always result in a compile-time error. In very few cases the restrictions can only be detected at run-time

(array index out-of-range, partial function called outside the domain).

The following notational conventions are used in the context-free syntax descriptions:

[notion] means that the presence of notion is optional
{notion} means that notion can occur zero or more times
{notion}+ means that notion occurs at least once

{notion}-list means one or more occurrences of notion separated by commas

terminals are printed in 9 pts courier bold brown

keywords  areprintedin 9 pts courier bold red

terminals that can be left out in layout mode are printed in 9 pts courier bold blue
{notion}/ str means the longest expression not containing the string str

All CLEAN examples given in this report assume that the layout dependent mode has been chosen which means that
redundant semi-colons and curly braces are left out (see 2.3.3).

How to Obtain Clean

CLEAN and the INTEGRATED DEVELOPMENT ENVIRONMENT (IDE) can be used free of charge. They can be obtained
. via World Wide Web (http://clean.cs.ru.nl) or
. via ftp (ftp://ftp.cs.ru.nl in directory pub/Clean)

Current State of the Clean System
Release 2.1 (November 2002).

Compared with the previous version the following changes have been made.
Experimental features of the previous version, such as dynamics (see_Chapter 8), generics (see_Chapter 7) and
strict-lists (see 4.2) have been improved and further incorporated in the language.
Many bugs, most of which appeared in the new features, have been removed.
The quality of the generated code has been improved.

Release 2.0 (November 2001).

There are many changes compared to the previous release (CLEAN 1.3.x). We have added many new features in CLEAN
2.0 we hope you will like.
CLEAN 2.0 has multi-parameter type constructor classes. See Section 6.4.
CLEAN 2.0 has universally quantified data types and functions (rank 2). See Section 3.7.4 and 5.1.4.
The explicit import mechanism has been refined. One can now more precisely address what to import and what not.
See 2.5.1.
Cyclic depedencies between definition modules are allowed. This makes it easier to define implementation modules
that share definitions. See 2.5.1.
Definitions in a definition module need not to be repeated in the corresponding implementation module anymore.
See 2.4.
Due to multi-parameter type constructor classes a better incorporation of the type Array could be made. See 4.4.
CLEAN 2.0 offers an hybrid type system: one can have statically and dynamically typed objects (Dynamics). A
statically typed expression can be changed into a dynamically typed one and backwards. The type of a Dynamic
can be inspected via a pattern match, one can ensure that Dynamics fit together by using run-time type unification,
one can store a Dynamic into a file with one function call or read a Dynamic stored by another CLEAN application.
Dynamics can be used to store and retrieve information without the need for writing parsers, it can be used to
exchange data and code (!) between applications in a type safe manner. Dynamicsmake it easy to create mobile
code, create plug-ins or create a persistent store. The CLEAN run-time system has been extended to support
dynamic type checking, dynamic type unification, lazy dynamic linking and just-in-time code generation (See

Chapter 8).



There is special syntax and support for strict and unboxed lists. One can easily change from lazy to strict and
backwards. Overloaded functions can be defined which work for any list (lazy, strict or unboxed). See 4.2. One can
write functions like ==, map, foldr in a generic way. The generic functions one can define can work on
higher order kinds. With kind indexed functions one can indicated which kind is actually meant (see Chapter 7). A
generic definition can be specialized for a certain concrete type.

The CLEAN system has been changed and extended: a new version of the CLEAN IDE, a new version of the
run-time-system, and a dynamic linker is included. See 8.3.

CLEAN 2.0 comes with an integrated proof system (Sparkle), all written in CLEAN of course. See
http://www.cs.kun.nl/Sparkle.

CLEAN 2.0 is open source. All source code will be made available on the net.

We have also removed things:

We do not longer support annotations for concurrent evaluations ({P} and {I} annotations. However, we are working
on a library that will support distributed evaluation of CLEAN expressions using Dynamics (see Van Weelden and
Plasmeijer, 2002).

There is no strict let-before expression (1et!) anymore in CLEAN 2.x. You still can enforce strict evaluation using
the strict hash let (#!).

One cannot specify default instances anymore that could be used to disambiguate possible ambiguous internal
overloading. Disambiguating can be done by explicitely specifying the required type.

There is also some bad news:

Due to all these changes CLEAN 2.0 is not upwards compatible with CLEAN 1.3.x. Many things are the same but
there are small differences as well. So, one has to put some effort in porting a CLEAN 1.3.x application to CLEAN
2.0. The most important syntactical differences are described below. Note that we do no longer support CLEAN 1.3.
The CLEAN 1.3 compiler is written in C. The CLEAN 2.0 compiler has been rewritten from scratch in CLEAN. The
internal structure of the new compiler is a better than the old one, but the new compiler has become a bit slower
than the previous C version as well. Large programs will take about 1.7 times as much time to compile (which is still
pretty impressive for a lazy functional language).

Syntactic differences between Clean 1.3 and Clean 2.0

CLEAN 2.x is not downward compatible with CLEAN 1.3.x. Probably you have to change your 1.3.x sources to get them
through the CLEAN 2.x compiler.

Differences in Expression Syntax

There is no strict let expression (1et!) anymore in CLEAN 2.x. You still can enforce strict evaluation using the strict hash
let (#1!).

Differences in the Type System

For multiparameter type classes a small change in the syntax for instance definitions was necessary. In CLEAN
1.3.x it was assumed that every instance definition only has one type argument. So in the following 1.3.x instance
definition

instance ¢ Tl T2

the type (T1 T2) was meant (the type T1 with the argument T2). This should be written in CLEAN 2.x as

instance ¢ (Tl T2)

otherwise T1 and T2 will be interpreted as two types.



The type Array has changed. In CLEAN 2.x the Array class has become a multiparameter class, whose first
argument type is the array and whose second argument type is the array element (see ??). Therefore a 1.3
definition like

MkArray:: !Int (Int -> e) —->.(a e) | Array a & ArrayElem e
MkArray i £ = {f J \ J <= [0..i-1]}

becomes in CLEAN 2.x:

MkArray:: !Int (Int -> e) —->.(a e) | Array a e
MkArray i £ = {f J \ J <= [0..i-1]}

There is a difference in resolving overloading. Consider the following code:
class c a :: a —> a
instance ¢ [Int]

where

c [1] = [2]

f [x:xs]
= Cc XS

Although this is accepted by CLEAN 1.3.x, CLEAN 2.x will complain: "Overloading error [...,..,f]: ¢ no instance
available of type [a]." The CLEAN 2.x compiler applies no type unification after resolving overloading. So c is in
function £ applied to a list with a polymorph element type ([a]). And this is considered to be different from the
instance type [Int]. If you give fthe type [Int] -> [Int] the upper code will be accepted.

CLEAN 2.x handles uniqueness attributes in type synonyms different than CLEAN 1.3.x. Consider the following
definitions:

ListList a :== [[a]]

f :: *(ListList *{Int}) -> *{Int}
f [[a]l]]l = { a & [0]=0 }

In CLEAN 1.3.x the ListList type synonym was expanded to

£f :: *[*[*{Int}]] —-> *{Int}

which is correct in CLEAN 1.3.x. However, CLEAN 2.x expands it to

£f :: *[[*{Int}]] —> *{Int}

This yields a uniqueness error in CLEAN 2.x because the inner list is shared but contains a unique object. This
problem happens only with type synonyms that have attributes "inbetween". An "inbetween" attribute is neither the
"root" attribute nor the attribute of an actual argument. E.g. with the upper type synonym, the formal argument "a" is
substituted with * {Int}. Note that also the "*" is substituted for "a". Because we wrote * (ListList ...) the
root attribute is "*". The result of expanding * (ListList *{Int}) IS *[u:[*{Int]]. "u" is an attribute
"inbetween” because it is neither the root attribute nor the attribute of a formal argument. Such attributes are made
_hon_unique_ in CLEAN 2.x and this is why the upper code is not accepted. The code will be accepted if you
redefine ListList to

ListList a :== [*[a]]

Anonymous uniqueness attributes in type contexts are not allowed in CLEAN 2.x. So in the following function type
simply remove the point.

f :: a | myClass .a



The string type has become a predefined type. As a consequence you cannot import this type explicitly anymore.
So:

from StdString import :: String
is not valid.

There was a bug in the uniqueness typing system of CLEAN 1.3: Records or data constructors could have
existentially quantified variables, whose uniqueness attribute did _not_ propagate. This bug has been solved in
CLEAN 2.x. As a consequence, the 2.x compiler might complain about your program where the 1.3.x compiler was
happy. The problem might occur when you use the object I/O library and you use objects with a uniquely attributed
local state. Now the object becomes unique as well and may not be shared anymore.

Differences in the Module System

The syntax and semantics of explicit import statements has been completely revised. With CLEAN 2.x it is possible
to discriminate the different namespaces in import statements. In CLEAN 1.3.x the following statement

from m import F

could have caused the import of a function ¥ together with a type F and a class F with all its instances from m. In
CLEAN 2.x one can precisely describe from which name space one wants to import (see 2.5.2). For example, the
following import statement

from m import F,
T1, :: T2(..), =:: T3(Cl, C2), =:: T4{..}, :: T5{fieldl, field2},
class Cl, class C2(..), class C3(meml, mem2)

causes the following declarations to be imported: the function or macro F, the type T1, the algebraic type T2 with all
it's constructors that are exported by m, the algebraic type T3 with it's constructors Cc1 and c2, the record type T4
with all it's fields that are exported by m, the record type T5 with it's fields fieldl and field2, the class C1, the
class c2 with all it's members that are exported by m, the class 3 with it's members meml and mem2.

Previous Releases.The first release of CLEAN was publicly available in 1987 and had version number 0.5 (we thought
half of the work was done, ;-)). At that time, CLEAN was only thought as an intermediate language. Many releases
followed. One of them was version 0.8 which is used in the Plasmeijer & Van Eekelen Bible (Adisson-Wesley, 1993).
Version 1.0 was the first mature version of CLEAN.



The semantics of CLEAN is based on Term Graph Rewriting Systems (Barendregt, 1987; Plasmeijer and Van Eekelen,
1993). This means that functions in a CLEAN program semantically work on graphs instead of the usual terms. This
enabled us to incorporate CLEAN's typical features (definition of cyclic data structures, lazy copying, uniqueness typing)
which would otherwise be very difficult to give a proper semantics for. However, in many cases the programmer does not
need to be aware of the fact that he/she is manipulating graphs. Evaluation of a CLEAN program takes place in the same
way as in other lazy functional languages. One of the "differences" between CLEAN and other functional languages is that
when a variable occurs more than once in a function body, the semantics prescribe that the actual argument is shared (the
semantics of most other languages do not prescribe this although it is common practice in any implementation of a
functional language). Furthermore, one can label any expression to make the definition of cyclic structures possible. So,
people familiar with other functional languages will have no problems writing CLEAN programs.

When larger applications are being written, or, when CLEAN is interfaced with the non-functional world, or, when efficiency
counts, or, when one simply wants to have a good understanding of the language it is good to have some knowledge of the
basic semantics of CLEAN which is based on term graph rewriting. In this chapter a short introduction into the basic
semantics of CLEAN is given. An extensive treatment of the underlying semantics and the implementation techniques of
CLEAN can be found in Plasmeijer and Van Eekelen (1993).

A CLEAN program basically consists of a number of graph rewrite rules (function definitions) which specify how a given
graph (the initial expression) has to be rewritten.

A graph is a set of nodes. Each node has a defining node-identifier (the node-id). A node consists of a symbol and a
(possibly empty) sequence of applied node-id’s (the arguments of the symbol) Applied node-id’s can be seen as references
(arcs) to nodes in the graph, as such they have a direction: from the node in which the node-id is applied to the node of
which the node-id is the defining identifier.

Each graph rewrite rule consists of a left-hand side graph (the pattern) and a right-hand side (rhs) consisting of a graph (the
contractum) or just a single node-id (a redirection). In CLEAN rewrite rules are not comparing: the left-hand side (lhs) graph
of a rule is a tree, i.e. each node identifier is applied only once, so there exists exactly one path from the root to a node of
this graph.

A rewrite rule defines a (partial) function. The function symbol is the root symbol of the left-hand side graph of the rule
alternatives. All other symbols that appear in rewrite rules, are constructor symbols.

The program graph is the graph that is rewritten according to the rules. Initially, this program graph is fixed: it consists of a
single node containing the symbol Start, so there is no need to specify this graph in the program explicitly. The part of the
graph that matches the pattern of a certain rewrite rule is called a redex (reducible expression). A rewrite of a redex to its
reduct can take place according to the right-hand side of the corresponding rewrite rule. If the right-hand side is a
contractum then the rewrite consists of building this contractum and doing a redirection of the root of the redex to root of
the right-hand side. Otherwise, only a redirection of the root of the redex to the single node-id specified on the right-hand
side is performed. A redirection of a node-id nl to a node-id n2 means that all applied occurrences of nl are replaced by
occurrences of n2 (which is in reality commonly implemented by overwriting n1 with n2).



A reduction strategy is a function that makes choices out of the available redexes. A reducer is a process that reduces
redexes that are indicated by the strategy. The result of a reducer is reached as soon as the reduction strategy does not
indicate redexes any more. A graph is in normal form if none of the patterns in the rules match any part of the graph. A
graph is said to be in root normal form when the root of a graph is not the root of a redex and can never become the root of
a redex. In general it is undecidable whether a graph is in root normal form.

A pattern partially matches a graph if firstly the symbol of the root of the pattern equals the symbol of the root of the graph
and secondly in positions where symbols in the pattern are not syntactically equal to symbols in the graph, the
corresponding sub-graph is a redex or the sub-graph itself is partially matching a rule. A graph is in strong root normal form
if the graph does not partially match any rule. It is decidable whether or not a graph is in strong root normal form. A graph in
strong root normal form does not partially match any rule, so it is also in root normal form.

The default reduction strategy used in CLEAN is the functional reduction strategy. Reducing graphs according to this
strategy resembles very much the way execution proceeds in other lazy functional languages: in the standard lambda
calculus semantics the functional strategy corresponds to normal order reduction. On graph rewrite rules the functional
strategy proceeds as follows: if there are several rewrite rules for a particular function, the rules are tried in textual order;
patterns are tested from left to right; evaluation to strong root normal form of arguments is forced when an actual argument
is matched against a corresponding non-variable part of the pattern. A formal definition of this strategy can be found in
(Toyama et al., 1991).

1.1.1 A Small Example

Consider the following CLEAN program:

Add Zero z = z (1)
Add (Succ a) z = Succ (Add a z) (2)
Start = Add (Succ o) o
where
o = Zero (3)

In CLEAN a distinction is between function definitions (graph rewriting rules) and graphs (constant definitions). A semantic
equivalent definition of the program above is given below where this distinction is made explicit ("=>" indicates a rewrite
rule whereas "=:" is used for a constant (sub-) graph definition

Add Zero z = z (1)
Add (Succ a) z = Succ (Add a z)
Start = Add (Succ o) o
where
o =: Zero (3)

These rules are internally translated to a semantically equivalent set of rules in which the graph structure on both left-hand
side as right-hand side of the rewrite rules has been made explicit by adding node-id’s. Using the set of rules with explicit
node-id’s it will be easier to understand what the meaning is of the rules in the graph rewriting world.



X =: Add y z
y =: Zero => z (1)
X =: Add y z
y =: Succ a => m =: Succ n

n =: Add a z (2)
x =: Start => m =: Add n o

n =: Succ o

o =: Zero (3)

The fixed initial program graph that is in memory when a program starts is the following:

The initial graph in linear notation: The initial graph in pictorial notation:
@DataRoot=:Graph

@DataRoot =: Graph @StartNode

@StartNode =: Start @StartNode=:Start

To distinguish the node-id’s appearing in the rewrite rules from the node-id’s appearing in the graph the latter always begin
with a "@".

The initial graph is rewritten until it is in normal form. Therefore a CLEAN program must at least contain a "start rule" that
matches this initial graph via a pattern. The right-hand side of the start rule specifies the actual computation. In this start
rule in the left-hand side the symbol start is used. However, the symbols Graph and Initial (see 1.2) are internal, so
they cannot actually be addressed in any rule.

The patterns in rewrite rules contain formal node-id’s. During the matching these formal nodeid’s are mapped to the actual
node-id’sof the graph After that the following semantic actions are performed:

The start node is the only redex matching rule (3). The contractum can now be constructed:

The contractum in linear notation: The contractum in pictorial notation:
@A=:Add

@A =: Add @B @C 2~ "\

@B =: Succ @C @B=:Succ @C=:Zero

@C =: Zero

All applied occurrences of @StartNode will be replaced by occurrences of @a. The graph after rewriting is then:

The graph after rewriting: Pictorial notation:
@DataRoot=:Graph

@DataRoot =: Graph QA

@StartNode =: Start @StartNode=:Start

@A =: Add @B @C

@B =: Succ @C @A=:Add

@QC =: Zero ‘(/ \\*

@B=:Succ @QC=:Zero

-

This completes one rewrite. All nodes that are not accessible from @DataRoot are garbage and not considered any more in
the next rewrite steps. In an implementation once in a while garbage collection is performed in order to reclaim the memory
space occupied by these garbage nodes. In this example the start node is not accessible from the data root node after the
rewrite step and can be left out.



The graph after garbage collection: Pictorial notation:
@DataRoot=:Graph

@DataRoot =: Graph @A

@A =: Add @B @QC @A=:Add

@B =: Succ QC

@C =: Zero @B=:Succ @C=:Zero

The graph accessible from @DataRoot still contains a redex. It matches rule 2 yielding the expected normal form:

The final graph: Pictorial notation:
@DataRoot=:Graph
@DataRoot =: Graph @D ¢
@D =: Succ @C @D=:Succ
@C =: Zero ¢

@C=:Zero

The fact that graphs are being used in CLEAN gives the programmer the ability to explicitly share terms or to create cyclic
structures. In this way time and space efficiency can be obtained.

1.2  Global Graphs

Due to the presence of global graphs in CLEAN the initial graph in a specific CLEAN program is slightly different from the
basic semantics. In a specific CLEAN program the initial graph is defined as:

@DataRoot =: Graph @StartNode @GlobIdl @GlobId2 ... Q@GlobIdn
@StartNode =: Start

@GlobIdl =: Initial

@GlobId2 =: Initial

@GlobIdn =: Initial

The root of the initial graph will not only contain the node-id of the start node, the root of the graph to be rewritten, but it will
also contain for each global graph (see 10.2) a reference to an initial node (initialized with the symbol Initial). All
references to a specific global graph will be references to its initial node or, when it is rewritten, they will be references to its
reduct.



A CLEAN program is composed out of modules. Each module is stored in a file that contains CLEAN source code. There
are implementation modules and definition modules, in the spirit of Modula-2 (Wirth, 1982). This module system is used for
several reasons.

First of all, the module structure is used to control the scope of definitions. The basic idea is that definitions only
have a meaning in the implementation module they are defined in unless they are exported by the corresponding
definition module.

Having the exported definitions collected in a separate definition module has as advantage that one in addition
obtains a self-contained interface document one can reach out to others. The definition module is a document that
defines which functions and data types can be used by others without revealing uninteresting implementation
details.

Furthermore, the module structure enables separate compilation that heavily reduces compilation time. If the
definition module stays the same, a change in an implementation module only will cause the recompilation of that
implementation module. When the definition module is changed as well, only those implementation modules that
are affected by this change need to be recompiled.

In this Chapter we explain the module structure of CLEAN and the influence it has on the scope of definitions. New scopes
can also be introduced inside modules. This is further explained in the Chapters 2 and 3.

In the pictures in the subsections below nested boxes indicate nested scopes.

In CLEAN we distinguish the following kind of identifiers.

ModuleName = LowerCaseld | UpperCaseld | ModuleDirectoryName . ModuleName
ModuleDirectoryName = LowerCaseld | UpperCaseld
FunctionName = LowerCaseld | UpperCaseld | Symbolid
ConstructorName = UpperCaseld | Symbolid
SelectorVariable = LowerCaseld
Variable = LowerCaseld
MacroName = LowerCaseld | UpperCaseld | Symbolld
FieldName = LowerCaseld
TypeName = UpperCaseld | Symbolld
TypeVariable = LowerCaseld
UniqueTypeVariable = LowerCaseld
ClassName = LowerCaseld | UpperCaseld | Symbolid
MemberName = LowerCaseld | UpperCaseld | Symbolid
LowerCaseld = LowerCaseChar{ldChar}
UpperCaseld = UpperCaseChar{ldChar}
Symbolld = {SymbolChar}+
LowerCaseChar = a | b | e | d]|] e | £| g | | i ] 3] k| 1 | m
| n | ol plal | s |t ]|]ul|v]|]w]=x|y]| =z
UpperCaseChar = a| B|]c|D|E|F | | B | I | Jg]| K| | M
| | o | P | o | R | s | T]|]U|V]W]X]|Y]| 2z
SymbolChar = ~ | e | # 1 $ | | ~ | =211 | :
I + 1 -1 1 <1l>01 N1/ 111s&]=
IdChar = LowerCaseChar
| UpperCaseChar
| Digit
I

Digit =0 | 1] 2| 3| 4| 5| 6| 7| 8| 9



The convention used is that variables always start with a lowercase character while constructors and types always start with
an uppercase character. The other identifiers can either start with an uppercase or a lowercase character. Notice that for
the identifiers names can be used consisting of a combination of lower and/or uppercase characters but one can also
define identifiers constructed from special characters like +, <, etc. (see Appendix A). These two kinds of identifiers cannot
be mixed. This makes it possible to leave out white space in expressions like a+1 (same as a + 1).

Some names may be prepended with the module name from which they are imported using a qualified import. These are
qualified identifiers.

QFunctionName = QlLowerCaseld | QUpperCaseld | QSymbolld
QConstructorName = QUpperCaseld | QSymbolld
QTypeName = QUpperCaseld | QSymbolld
QClassName = QlLowerCaseld | QUpperCaseld | QSymbolld
QLowerCaseld = [ModuleQualifier]LowerCaseld

QUpperCaseld = [ModuleQualifier]UpperCaseld

QSymbolld = [ModuleQualifier space]Symbolld

ModuleQualifier = ’ModuleName’ .

2.1.2 Scopes and Name Spaces

The scope is the program region in which definitions (e.g. function definition, class definition, macro definition, type
definition) with the identifiers introduced (e.g. function name, class name, class variable, macro name, type constructor
name, type variable name) have a meaning.

It must be clear from the context to which definition an identifier is referring. If all identifiers in a scope have different names
than it will always be clear which definition is meant. However, one generally wants to have a free choice in naming
identifiers. If identifiers belong to different name spaces no conflict can arise even if the same name is used. In CLEAN the
following name spaces exist:

. ModuleNames form a name space;

. FunctionNames, ConstructorNames, SelectorVariables, Variables and MacroNames form a name space;
. FieldNames form a name space;

. TypeNames, TypeVariables and UniqueTypeVariables form a name space;

. ClassNames form a name space.

So, it is allowed to use the same identifier name for different purposes as long as the identifier belongs to different name
spaces.

Identifiers belonging to the same name space must all have different names within the same scope. Under certain
conditions it is allowed to use the same name for different functions and operators (overloading, see Chapter 6).

2.1.3 Nesting of Scopes

Reusing identifier names is possible by introducing a new scope level. Scopes can be nested: within a scope a new nested
scope can be defined. Within such a nested scope new definitions can be given, new names can be introduced. As usual it
is allowed in a nested scope to redefine definitions or re-use names given in a surrounding scope: When a name is re-used
the old name and definition is no longer in scope and cannot be used in the new scope. A definition given or a hame
introduced in a (nested) scope has no meaning in surrounding scopes. It has a meaning for all scopes nested within it
(unless they are redefined within such a nested scope).

2.2 Modular Structure of Clean Programs

A CLEAN program consists of a collection of definition modules and implementation modules. An implementation module
and a definition module correspond to each other if the names of the two modules are the same. The basic idea is that the
definitions given in an implementation module only have a meaning in the module in which they are defined unless these
definitions are exported by putting them into the corresponding definition module. In that case the definitions also have a
meaning in those other modules in which the definitions are imported (see 2.5).

CleanProgram = {Module}+

Module DefinitionModule

ImplementationModule

definition module ModuleName ,
{DefDefinition}

system module ModuleName ;
{DefDefinition}

[implementation] module ModuleName ;
{ImplDefinition}

DefinitionModule

ImplementationModule



An executable CLEAN program consists at least of one implementation module, the main or start module, which is
the top-most module (root module) of a CLEAN program.

Each CLEAN module has to be put in a separate file.

The name of a module (i.e. the module name) should be the same as the name of the file (minus the suffix) in which
the module is stored.

A definition module should have .dcl as suffix; an implementation module should have .icl as suffix.

A definition module can have at most one corresponding implementation module.

Every implementation module (except the main module, see 2.3.1) must have a corresponding definition module.

2.3 Implementation Modules
2.3.1 The Main or Start Module
In the main module a Start rule has to be defined (see Chapter 1).
Only in the main module one can leave out the keyword implementation in the module header. In that case the
implementation module does not need to have a corresponding definition module (which makes sense for a
topmost module).
A very tiny but complete CLEAN program consisting of one implementation module.
module hello
Start = "Hello World!"
Evaluation of a CLEAN program consists of the evaluation of the application defined in the right-hand side of the start
rule to normal form (see Chapter 1). The right-hand side of the start rule is regarded to be the initial expression to be
computed.
It is allowed to have a start rule in other implementation modules as well. This can be handy for testing functions defined
in such a module: to evaluate such a Start rule simply generate an application with the module as root and execute it. In

the CLEAN IDE one can specify which module has to be regarded as being the root module.

The definition of the left-hand side of the Start rule consists of the symbol start with one optional argument (of type
*World), which is the environment parameter, which is necessary to write interactive applications.

A CLEAN program can run in two modes.
1/0 Using the Console
The first mode is a console mode. It is chosen when the Start rule is defined as a nullary function.

Start:: TypeOfStartFunction
Start = ... // initial expression

In the console mode, that part of the initial expression (indicated by the right-hand side of the Start rule), which is in root
normal form (also called the head normal form or root stable form), is printed as soon as possible. The console mode can
be used for instance to test or debug functions.

In the CLEAN IDE one can choose to print the result of a start expression with or without the data constructors.

For example, the initial expression

Start:: String
Start = "Hello World!"

in mode "show data constructors” will print: "Hello World!", in mode "don’'t show data constructors" it will print: Hello
World!



1/0 on the Unique World

The second mode is the world mode. It is chosen when the optional additional parameter (which is of type *World) is
added to the start rule and delivered as result.

Start:: *World -> *World
Start = ... // initial expression returning a changed world

The world which is given to the initial expression is an abstract data structure, an abstract world of type *World which
models the concrete physical world as seen from the program. The abstract world can in principle contain anything what a
functional program needs to interact during execution with the concrete world. The world can be seen as a state and
modifications of the world can be realized via state transition functions defined on the world or a part of the world. By
requiring that these state transition functions work on a unique world the modifications of the abstract world can directly be
realized in the real physical world, without loss of efficiency and without losing referential transparency (see Chapter 9)

The concrete way in which the world can be handled in CLEAN is determined by the system programmer. One way to
handle the world is by using the predefined CLEAN I/O library, which can be regarded as a platform independent mini
operating system. It makes it possible to do file 1/0, window based 1I/O, dynamic process creation and process
communication in a pure functional language in an efficient way. The definition of the 1/O library is treated in a separate
document (Object 10 tutorial, Achten et al., 1997).

2.3.2 Scope of Global Definitions in Implementation Modules

In an implementation module the following global definitions can be specified in any order.

ImplDefinition = ImportDef Il see 2.5
|  FunctionDef Il see Chapter 3
|  GraphDef Il see 3.6
|  MacroDef /l see 10.3
|  TypeDef Il see Chapter 5
| ClassDef Il see Chapter 6
| GenericsDef Il see Chapter 7

Definitions on the global level (= outermost level in the module,) have in principle the whole implementation module as
scope (see Figure 2.1).

Figure 2.1 (Scope of global definitions inside an implementation module).

implementation module XXX

TypeName|typevars = type_expression | // definition of a new type
functionName:: [type _of args —> type of result| // definition of the type of a function
functionName W‘ // definition of a function
selector =|expression | // definition of a constant graph
class [className = expression | // definition of a class
macroName |args :== expression | // definition of a macro

Types can only be defined globally (see Chapter 5) and therefore always have a meaning in the whole implementation
module. Type variables introduced on the left-hand side of a (algebraic, record, synonym, overload, class,
instance, function, graph) type definition have the right-hand side of the type definition as scope.

Functions, the type of these functions, constants (selectors) and macro’s can be defined on the global level as well as on a
local level in nested scopes. When defined globally they have a meaning in the whole implementation module. Arguments
introduced on the left-hand side of a definition (formal arguments) only have a meaning in the corresponding right-hand
side.

Functions, the type of these functions, constants (selectors) and macro’s can also be defined locally in a new scope.
However, new scopes can only be introduced at certain points. In functional languages local definitions are by tradition
defined by using let-expressions (definitions given before they are used in a certain expression, nice for a bottom-up style
of programming) and where-blocks (definitions given afterwards, nice for a top-down style of programming). These
constructs are explained in detail in Chapter 3.



2.3.3 Begin and End of a Definition: the Layout Rule

CLEAN programs can be written in two modes: layout sensitive mode 'on’ and ’off’. The layout sensitive mode is switched
off when a semi-colon is specified after the module name. In that case each definition has to be ended with a semicolon ’; .
A new scope has to begin with '{’ and ends with a :}’. This mode is handy if CLEAN code is generated automatically (e.g.
by a compiler).

Example of a CLEAN program not using the layout rule.

module primes;

import StdEnv;

primes:: [Int];

primes = sieve [2..];

where

{ sieve:: [Int] -> [Int]; sieve [pr:r] = [pr:sieve (filter pr r)l;

filter:: Int [Int] -> [Int];
filter pr [n:r] | n mod pr == 0 = filter pr r;
| otherwise = [n:filter pr rl;

Programs look a little bit old fashion C-like in this way. Functional programmers generally prefer a more mathematical style.
Hence, as is common in modern functional languages, there is a layout rule in CLEAN. When a semicolon does not end
the header of a module, a CLEAN program has become layout sensitive. The layout rule assumes the omission of the
semi-colon ('’’) that ends a definition and of the braces ('{’ and '}’) that are used to group a list of definitions. These
symbols are automatically added according to the following rules:

In layout sensitive mode the indentation of the first lexeme after the keywords let, #, #!, of, where, or with determines
the indentation that the group of definitions following the keyword has to obey. Depending on the indentation of the first
lexeme on a subsequent line the following happens. A new definition is assumed if the lexeme starts on the same
indentation (and a semicolon is inserted). A previous definition is assumed to be continued if the lexeme is indented more.
The group of definitions ends (and a close brace is inserted) if the lexeme is indented less. Global definitions are assumed
to start in column 0.

We strongly advise to write programs in layout sensitive mode. For reasons of portability it is assumed that a tab space is
set to 4 white spaces and that a non-proportional font is used.

Same program using the layout sensitive mode.
module primes

import StdEnv

primes:: [Int]
primes = sieve [2..]
where
sieve:: [Int] -> [Int]
sieve [pr:r] = [pr:sieve (filter pr r)]

filter:: Int [Int] -> [Int]
filter pr [n:r] | n mod pr == = filter pr r
| otherwise = [n:filter pr r]

2.4  Definition Modules

The definitions given in an implementation module only have a meaning in the module in which they are defined. If you want
to export a definition, you have to specify the definition in the corresponding definition module. Some definitions can only
appear in implementation modules, not in definition modules. The idea is to hide the actual implementation from the outside
world. The is good for software engineering reasons while another advantage is that an implementation module can be
recompiled separately without a need to recompile other modules. Recompilation of other modules is only necessary when
a definition module is changed. All modules depending on the changed module will have to be recompiled as well.
Implementations of functions, graphs and class instances are therefore only allowed in implementation modules. They are
exported by only specifying their type definition in the definition module. Also the right-hand side of any type definition can
remain hidden. In this way an abstract data type is created (see 5.4).



In a definition module the following global definitions can be given in any order.

DefDefinition

= ImportDef /Il see 2.5

|  FunctionExportTypeDef Il see 3.7

|  MacroDef /l see 10.3

|  TypeDef Il see Chapter 5
| ClassExportDef Il see Chapter 6
| TypeClassinstanceExportDef /l see 6.10

| GenericExportDef Il see Chapter 7

The definitions given in an implementation module only have a meaning in the module in which they are defined (
see 2.3) unless these definitions are exported by putting them into the corresponding definition module. In that case
they also have a meaning in those other modules in which the definitions are imported (see 2.5).

In the corresponding implementation module all exported definitions have to get an appropriate implementation (this
holds for functions, abstract data types, class instances).

An abstract data type is exported by specifying the left-hand side of a type rule in the definition module. In the
corresponding implementation module the abstract type has to be defined again but then right-hand side has to be
defined as well. For such an abstract data type only the name of the type is exported but not its definition.

A function, global graph or class instance is exported by defining the type header in the definition module. For
optimal efficiency it is recommended also to specify strictness annotations (see 10.1). For library functions it is
recommended also to specify the uniqueness type attributes (see_Chapter 9). The implementation of a function, a
graph, a class instance has to be given in the corresponding implementation module.

Although it is not required anymore to repeat an exported definition in the corresponding implementation module, it
is a good habit to do so to keep the implementation module readable. If a definition is repeated, the definition given
in the definition module and in the implementation module should be the same (modulo variable names).

Definition module.

definition module ListOperations

::complex // abstract type definition

re:: complex —-> Real // function taking the real part of complex number
im:: complex —-> Real // function taking the imaginary part of complex
mkcomplex:: Real Real —> Complex // function creating a complex number

corresponding implementation module:

implementation module ListOperations

::complex :== (!Real, !Real) // a type synonym
re:: complex —> Real // type of function followed by its implementation
re (frst,_) = frst

im::

im

complex —> Real

(_,scnd) = scnd

mkcomplex:: Real Real —-> Complex

mkcomplex frst scnd = (frst,scnd)

2.5

Importing Definitions

Via an import statement a definition exported by a definition module (see 2.4) can be imported into any other (definition or
implementation) module. There are two kinds of import statements, explicit imports and implicit imports.

ImportDef = ImplicitimportDef

|  ExplicitimportDef

A module depends on another module if it imports something from that other module. Cyclic dependencies are allowed.

2.5.1 Explicit Imports of Definitions

Explicit imports are import statements in which the modules to import from as well as the identifiers indicating the definitions
to import are explicitly specified. All identifiers explicitly being imported in a definition or implementation module will be
included in the global scope level (= outermost scope, see 2.3.2) of the module that does the import.



ExplicitimportDef
Imports

from ModuleName import [qualified]{Imports}-list ;
FunctionName

: : TypeName [ConstructorsOrFields]
class ClassName [Members]
instance ClassName {SimpleType}+
generic FunctionName

(..)

({ConstructorName}-list)

{..}

{{FieldName}-list}

(..)

({MemberName}-list)

ConstructorsOrFields

Members

One can import functions or macro’s, types with optionally their corresponding constructors, record types with optionally
their corresponding fieldnames, classes, instances of classes and generic functions. The syntax makes it possible to
discriminate between the different namespaces that exist in CLEAN (see 2.1.2)

Example of an explicit import.
implementation module XXX

from m import F,
T1, :: T2(..), =:: T3(Cl, C2), =:: T4{..}, :: T5{fieldl, field2},
class Cl, class C2(..), class C3(meml, mem2),
instance C4 Int, generic g

With the import statement the following definitions exported by module m are imported in module xxx: the function or macro
F, the type T1, the algebraic type T2 with all it's constructors that are exported by m, the algebraic type T3 with it's
constructors C1 and c2, the record type T4 with all it's fields that are exported by m, the record type T5 with it's fields
fieldl and field2, the class C1, the class c2 with all it's members that are exported by m, the class C3 with it's members
meml and mem2, the instance of class c4 defined on integers, the generic function g.

Importing identifiers can cause error messages because the imported identifiers may be in conflict with other identifiers in
this scope (remember that identifiers belonging to the same name space must all have different names within the same
scope, see 2.1). This problem can be solved by renaming the internally defined identifiers or by renaming the imported
identifiers (eg by adding an additional module layer just to rename things).

2.5.2 Implicit Imports of Definitions

ImplicitimportDef = import [qualified] {ModuleName}-list ;

Implicit imports are import statements in which only the module name to import from is mentioned. In this case all definitions
that are exported from that module are imported as well as all definitions that on their turn are imported in the indicated
definition module, and so on. So, all related definitions from various modules can be imported with one single import.

This opens the possibility for definition modules to serve as a kind of pass-through’ module. Hence, it is meaningful to have
definition modules with import statements but without any definitions.

Example of an implicit import: all (arithmetic) rules which are predefined can be imported easily with one import statement.
import MyStdEnv

importing implicitly all definitions imported by the definition module 'MyStdEnv’ which is defined below:

definition module MyStdEnv

import StdBool, StdChar, StdInt, StdReal, StdString

All identifiers implicitly being imported in a definition or implementation module will be included in the global scope level (=
outermost scope, see 2.3.2) of the module that does the import.

Importing identifiers can cause error messages because the imported identifiers may be in conflict with other
identifiers in this scope (remember that identifiers belonging to the same name space must all have different names
within the same scope, see 2.1). This problem can be solved by renaming the internally defined identifiers or by
renaming the imported identifiers (eg by adding an additional module layer just to rename identifiers).



2.6  System Definition and Implementation Modules

System modules are special modules. A system definition module indicates that the corresponding implementation module
is a system implementation module which does not contain ordinary CLEAN rules. In system implementation modules it is
allowed to define foreign functions: the bodies of these foreign functions are written in another language than CLEAN.
System implementation modules make it possible to create interfaces to operating systems, to file systems or to increase
execution speed of heavily used functions or complex data structures. Typically, predefined function and operators for
arithmetic and File I/O are implemented as system modules.

System implementation modules may use machine code, C-code, abstract machine code (PABC-code) or code written in
any other language. What exactly is allowed depends on the CLEAN compiler used and the platform for which code is
generated. The keyword code is reserved to make it possible to write CLEAN programs in a foreign language. This is not
treated in this reference manual.

When one writes system implementation modules one has to be very careful because the correctness of the functions can

no longer be checked by the CLEAN compiler. Therefore, the programmer is now responsible for the following:

! The function must be correctly typed.

! When a function destructively updates one of its (sub-)arguments, the corresponding type of the arguments should
have the uniqueness type attribute. Furthermore, those arguments must be strict.



In this Chapter we explain how functions (actually: graph rewrite rules) and constants (actually: graph expressions) are
defined in CLEAN. The body of a function consists of an (root) expression (see 3.4). With help of patterns (see 3.2) and
guards (see 3.3) a distinction can be made between several alternative definitions for a function. Functions and constants
can be defined locally in a function definition. For programming convenience (forcing evaluation, observation of unique
objects and threading of sequencial operations) a special let construction is provided (see 3.5.1). The typing of functions is
discussed in Section 3.7. For overloaded functions see Chapter 6. For functions working on unique datatypes see Chapter
9.

FunctionDef = [FunctionTypeDef] /I see Chapter 4 for typing functions
DefOfFunction
DefOfFunction = {FunctionAltDef ; }+
FunctionAltDef = Function {Pattern} I see 3.2 for patterns
{GuardAlt}
{LetBeforeExpression} /l see 3.5.4
FunctionResult
[LocalFunctionAltDefs] /] see 3.5
FunctionResult = =[>] FunctionBody
| | Guard GuardRhs /I see 3.3 for guards
GuardAlt = {LetBeforeExpression} | BooleanExpr GuardRhs

GuardRhs = {GuardAlt} {LetBeforeExpression} = [>] FunctionBody
| {GuardAlt} {LetBeforeExpression} | otherwise GuardRhs
Function = FunctionName /I ordinary function
| (FunctionName) /I operator function used prefix
FunctionBody = RootExpression ; /l see 3.4
[LocalFunctionDefs] /] see 3.5

A function definition consists of one or more definition of a function alternative (rewrite rule). On the left-hand side of such a
function alternative a pattern can be specified which can serve a whole sequence of guarded function bodies (called the
rule alternatives) The root expression (see 3.4) of a particular rule alternative is chosen for evaluation when

. the patterns specified in the formal arguments are matching the corresponding actual arguments of the function
application (see 3.2) and
. the optional guard (see 3.3) specified on the right-hand side evaluates to True.

The alternatives are tried in textual order. A function can be preceded by a definition of its type (Section 3.7).

Function definitions are only allowed in implementation modules (see 2.3).

It is required that the function alternatives of a function are textually grouped together (separated by semi-colons
when the layout sensitive mode is not chosen).

Each alternative of a function must start with the same function symbol.

A function has a fixed arity, so in each rule the same number of formal arguments must be specified. Functions can
be used curried and applied to any number of arguments though, as usual in higher order functional languages.

The function name must in principle be different from other names in the same name space and same scope (see
2.1). However, it is possible to overload functions and operators (see Chapter 6).



Example of function definitions in a CLEAN module.

module example // module header

import StdInt // implicit import

map:: (a —> b) [a] -> [b] // type of map

map f list = [f e \\ e <- list] // definition of the function map
Start:: [Int] // type of Start rule

Start = map square [1..1000] // definition of the Start rule

An operator is a function with arity two that can be used as infix operator (brackets are left out) or as ordinary prefix function
(the operator name preceding its arguments has to be surrounded by brackets). The precedence (0 through 9) and fixity (
infixleft, infixright, infix) that can be defined in the type definition (see 3.7.1) of the operators determine the priority
of the operator application in an expression. A higher precedence binds more tightly. When operators have equal
precedence, the fixity determines the priority.

When an operator is used in infix position both arguments have to be present. Operators can be used in a curried
way, but then they have to be used as ordinary prefix functions.

Operator definition.

(++) infixr 0:: [a] [a] —> [a]
(++) [1 ly = ly
(++) [x:xs] ly = [x:xs ++ ly]

(o) infixr 9:: (a —> b) (c -> a) —-> (c —> b)
(o) £ g=\x=f£f (g x)

3.2 Patterns

A pattern specified on the left-hand side of a function definition specifies the formal arguments of a function. A function
alternative is chosen only if the actual arguments of the function application match the formal arguments. A formal
argument is either a constant (some data constructor with its optional arguments that can consist of sub-patterns) or it is a
variable.

Pattern
BrackPattern

[Variable =:] BrackPattern

(GraphPattern)

QConstructor

PatternVariable

SpecialPattern

DynamicPattern Il see Chapter 8

GraphPattern = QConstructor {Pattern} // Ordinary data constructor
GraphPattern QConstructorName // Infix data constructor
GraphPattern
| Pattern

PatternVariable = Variable

A pattern variable can be a (node) variable or a wildcard. A variable is a formal argument of a function that matches on any
concrete value of the corresponding actual argument and therefore it does not force evaluation of this argument. A wildcard
is an anonymous variable ("_") one can use to indicate that the corresponding argument is not used in the right-hand side
of the function. A variable can be attached to a pattern (using the symbol '=:’) that makes it possible to identify (label) the
whole pattern as well as its contents. When a constant (data constructor) is specified as formal argument, the actual

argument must contain the same constant in order to have a successful match.



Example of an algebraic data type definition and its use in a pattern match in a function definition.

::Tree a = Node a (Tree a) (Tree a)
| Ni1
Mirror:: (Tree a) -> Tree a
Mirror (Node e left right) = Node e (Mirror right) (Mirror left)

Mirror Nil = Nil

Use of anonymous variables.

Complex :== (!Real, !Real) // synonym type def
realpart:: Complex —-> Real
realpart (re,_) = re // re and _ are pattern variables

Use of list patterns, use of guards, use of variables to identify patterns and sub-patterns; merge merges two (sorted) lazy
lists into one (sorted) list.

merge:: [Int] [Int] -> [Int]
merge f [] = f

merge [] s = s

merge f=:[x:xs] s=:[y:ys]

| X<y = [x:merge Xxs s]
| X==y = merge f ys

| otherwise = [y:merge f ys]

It is possible that the specified patterns turn a function into a partial function (see 3.7.3). When a partial function is
applied outside the domain for which the function is defined it will result into a run-time error. A compile time
warning is generated that such a situation might arise.

The formal arguments of a function and the function body are contained in a new local scope.

functionNameIarqs = expression I

All variable symbols introduced at the left-hand side of a function definition must have different names.

For convenience and efficiency special syntax is provided to express pattern match on data structures of predefined type
and record type. They are treated elsewhere (see below).

SpecialPattern = BasicValuePattern /l see 4.1.2
| ListPattern /l see 4.2.2
|  TuplePattern Il see 4.3.2
| ArrayPattern Il see 4.4.2
| RecordPattern /l see 5.2.2
|  UnitPattern Il see 4.8

3.3 Guards

Guard = BooleanExpr

otherwise

A guard is a Boolean expression attached to a rule alternative that can be regarded as generalisation of the pattern
matching mechanism: the alternative only matches when the patterns defined on the left hand-side match and its (optional)
guard evaluates to True (see 3.1). Otherwise the next alternative of the function is tried. Pattern matching always takes
place before the guards are evaluated.

The guards are tried in textual order. The alternative corresponding to the first guard that yields True will be evaluated. A
right-hand side with