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CLEAN is a practical applicable general-purpose lazy pure functional programming language suited for the development of
real world applications.

CLEAN has many features among which some very special ones.

Functional languages are usually implemented using graph-rewriting techniques. CLEAN has explicit graph rewriting
semantics; one can explicitly define the sharing of structures (cyclic structures as well) in the language (Barendregt et al.,
1987; Sleep et al., 1993, Eekelen et al., 1997). This provides a better framework for controlling the time space behavior of
functional programs.

Of particular importance for practical use is CLEAN’s Uniqueness Type System (Barendsen and Smetsers, 1993a) enabling
the incorporation of destructive updates of arbitrary objects within a pure functional framework and the creation of direct
interfaces with the outside world.

CLEAN’s "unique" features have made it possible to predefine (in CLEAN) a sophisticated and efficient I/O library (Achten
and Plasmeijer, 1992 & 1995). The CLEAN Object I/O library enables a CLEAN programmer to specify interactive window
based I/O applications on a very high level of abstraction. One can define callback functions and I/O components with
arbitrary local states thus providing an object-oriented style of programming (Achten, 1996; Achten and Plasmeijer, 1997).
The library forms a platform independent interface to window-based systems: one can port window based I/O ap-plications
written in CLEAN to different platforms (we support Mac and PC) without modification of source code.

Although CLEAN is by default a lazy language one can smoothly turn it into a strict language to obtain optimal time/space
behavior: functions can be defined lazy as well as (partially) strict in their arguments; any (recursive) data structure can be
defined lazy as well as (partially) strict in any of its arguments.

The rich type system of CLEAN 1.3 (offering high-order types, polymorph types, type classes, uniqueness types,
existentially quantified types, algebraic types, abstract types, synonym types, record types, arrays, lists) is extended with
multi parameter type constructor classes and universally quantified types currently limited to rank 2, rank n is in
preparation). Furthermore, arrays and lists are better integrated in the language. Strict, spine-strict, unboxed and
overloaded lists are predefined in the language.

CLEAN now offers a hybrid type system with both static and dynamic typing. An object (expression) of static type can be
changed into an object of dynamic type (a "Dynamic") and backwards. One can read a Dynamic written by another
CLEAN program with one function call. A Dynamic can contain data as well as (unevaluated) functions. This means that
one can very easy transfer data as well as code (!) from one CLEAN application to another in a type safe manner enabling
mobile code and persistent storage of an expression. This technique involves just-in-time code generation, dynamic linking
and dynamic type unification.

CLEAN offers support for generic programming using an extension of the class overloading mechanism. One can define
functions like equality, map, foldr and the like in a generic way such that these functions are available for any (user
defined) data structure. The generic functions are very flexible since they not only work on types of kind star but also on
higher order kinds.

CLEAN (Brus et al., 1987; Nöcker et al., 1991; Plasmeijer and Van Eekelen, 1993) is not only well known for its many
features but also for its fast compiler producing very efficient code (Smetsers et al., 1991). The new CLEAN 2.0 compiler is
written in CLEAN . The CLEAN compiler is one of the fastest in the world and it produces very good code. For example, the
compiler can compile itself from scratch within a minute.



The CLEAN 2.0 system includes lots of tools and libraries, all written in CLEAN of course. Included is an IDE (Integrated
Development Environment), a dedicated text editor, a project manager, a code generator generating native code (the only
piece of software written in C), a static linker, a dynamic linker, a proof system (Sparkle), a test system (GAST), a heap
profiler, a time profiler, and lots of libraries.

People already familiar with other functional programming languages (such as Haskell; (Hudak et al., 1992), Gofer/Hugs
(Jones, 1993), Miranda (Turner, 1985) and SML (Harper et al., 1986)) will have no difficulty to program in CLEAN. We hope
that you will enjoy CLEAN’s rich collection of features, CLEAN’s compilation speed and the quality of the produced code
(we generate native code for all platforms we support). CLEAN runs on a PC (Windows 2000, ’98, ’95, WindowsNT). There
are also versions running on the Mac and Linux.

Research on CLEAN started in 1984 (the Dutch Parallel Machine Project) in which we had to good idea to focuss on
compilation techniques for classical computer architectures. Many new concepts came out of the research of the CLEAN
team (see below). These ideas are not only incorporated in our own system, many of them have also been adopted by
other languages like Haskell and Mercury.

More Information on Clean

A tutorial teaching how to program in CLEAN can be found on our web pages.
See http://wiki.clean.cs.ru.nl/Functional_Programming_in_Clean.

Information about the libraries (including the I/O library) that are available for CLEAN can also be found on the web, surf to 
http://wiki.clean.cs.ru.nl/Libraries.

There is a manual teaching the use of the Object I/O library. It includes many examples showing you how to write interactive
window based programs.
See http://clean.cs.ru.nl/download/supported/ObjectIO.1.2/doc/tutorial.pdf.

The basic concepts behind CLEAN (albeit of one of the very first versions, namely CLEAN 0.8) as well as an explanation of
the basic implementation techniques used can be found in Plasmeijer and Van Eekelen (Adisson-Wesley, 1993). The book
is out of print, but copies can found on
http://wiki.clean.cs.ru.nl/Functional_Programming_and_Parallel_Graph_Rewriting

There are many papers on the concepts introduced by the CLEAN group (such as term graph rewriting (Barendregt et al.,
1987), lazy copying (van Eekelen et al., 1991), abstract reduction (Nöcker, 1993), uniqueness typing (Barendsen and
Smetsers, 1993, 1996), CLEAN’s I/O concept (Achten, 1996 & 1997), Lazy Copying for Concurrent CLEAN (Kesseler, 1991
& 1996), Type dependent Functions for Dynamics (Pil, 1999), I/O of Dynamics (Vervoort, 2001), a Typed Operating System
(van Weelden, 2001). For the most recent information on papers (http://wiki.clean.cs.ru.nl/Publications) and general
information about CLEAN (http://clean.cs.ru.nl) please check our web pages.

About this Language Report

In this report the syntax and semantics of CLEAN version 2.0 are explained. We always give a motivation why we have
included a certain feature. Although the report is not intended as introduction into the language, we did our best to make it
as readable as possible. Nevertheless, one sometimes has to work through several sections spread all over the report. We
have included links where possible to support browsing through the manual.

At several places in this report context free syntax fragments of CLEAN are given. We sometimes repeat fragments that are
also given elsewhere just to make the description clearer (e.g. in the uniqueness typing chapter we repeat parts of the
syntax for the classical types). We hope that this is not confusing. The complete collection of context free grammar rules is
summarized in Appendix A.



Some Remarks on the Clean Syntax

The syntax of CLEAN is similar to the one used in most other modern functional languages. However, there are a couple of
small syntactic differences we want to point out here for people who don?t like to read language reports.

In CLEAN the arity of a function is reflected in its type. When a function is defined its uncurried type is specified! To avoid
any confusion we want to explicitly state here that in CLEAN there is no restriction whatsoever on the curried use of
functions. However, we don’t feel a need to express this in every type. Actually, the way we express types of functions more
clearly reflects the way curried functions are internally treated.

E.g., the standard map function (arity 2) is specified in CLEAN as follows:

map::(a -> b) [a] -> [b]
map f []   = []
map f [x:xs]  = [f x:map f xs]

Each predefined structure such as a list, a tuple, a record or array has its own kind of brackets: lazy lists are always
denotated with square brackets [...], strict lists are denotated by [! ...], spine strict lists by [... !], overloaded lists
by  [|...]] , unboxed lists by [#Τ]. For tuples the usual parentheses are used (...,...), curly braces are
used for records (indexed by field name) as well as for arrays (indexed by number).

In types funny symbols can appear like ., u:, *, ! which can be ignored and left out if one is not interested in uniqueness
typing or strictness.

There are only a few keywords in CLEAN leading to a heavily overloaded use of : and = symbols:

function::argstype -> restype           // type specification of a function

function pattern
| guard = rhs                           // definition of a function

selector = graph                        // definition of a constant/CAF/graph

function args :== rhs                   // definition of a macro

::Type args = typedef                   // an algebraic data type definition
::Type args :== typedef                 // a type synonym definition
::Type args                             // an abstract type definition

As is common in modern functional languages, there is a layout rule in CLEAN (see 2.3). For reasons of portability it is
assumed that a tab space is set to 4 white spaces and that a non-proportional font is used.

Function definition in CLEAN making use of the layout rule.

primes:: [Int]
primes = sieve [2..]
where
  sieve:: [Int] -> [Int]
  sieve [pr:r]  = [pr:sieve (filter pr r)]

  filter:: Int [Int] -> [Int]
  filter pr [n:r]
  | n mod pr == 0  = filter pr r
  | otherwise    = [n:filter pr r]



Notational Conventions Used in this Report

The following notational conventions are used in this report. Text is printed in Microsoft Sans Serif 9pts,

the context free syntax descriptions are given in  Microsoft Sans Serif 9pts,
examples of CLEAN programs are given in Courier New 9pts,

Semantic restrictions are always given in a bulleted list-of-points. When these restrictions are not obeyed they will
almost always result in a compile-time error. In very few cases the restrictions can only be detected at run-time
(array index out-of-range, partial function called outside the domain).

The following notational conventions are used in the context-free syntax descriptions:
[notion] means that the presence of notion is optional
{notion} means that notion can occur zero or more times
{notion}+ means that notion occurs at least once
{notion}-list means one or more occurrences of notion separated by commas
terminals are printed in 9 pts courier bold brown
keywords are printed in 9 pts courier bold red
terminals that can be left out in layout mode are printed in 9 pts courier bold blue
~ is used for concatenation of notions
{notion}/ str means the longest expression not containing the string str

All CLEAN examples given in this report assume that the layout dependent mode has been chosen which means that
redundant semi-colons and curly braces are left out (see 2.3.3).

How to Obtain Clean

CLEAN and the INTEGRATED DEVELOPMENT ENVIRONMENT (IDE) can be used free of charge. They can be obtained
• via World Wide Web (http://clean.cs.ru.nl) or 
• via ftp (ftp://ftp.cs.ru.nl in directory pub/Clean)

Current State of the Clean System

Release 2.1 (November 2002).

Compared with the previous version the following changes have been made.
Experimental features of the previous version, such as dynamics (see Chapter 8), generics (see Chapter 7) and
strict-lists (see 4.2) have been improved and further incorporated in the language.
Many bugs, most of which appeared in the new features, have been removed.
The quality of the generated code has been improved.

Release 2.0 (November 2001).

There are many changes compared to the previous release (CLEAN 1.3.x). We have added many new features in CLEAN
2.0 we hope you will like.

CLEAN 2.0 has multi-parameter type constructor classes. See Section 6.4.
CLEAN 2.0 has universally quantified data types and functions (rank 2). See Section 3.7.4 and 5.1.4.
The explicit import mechanism has been refined. One can now more precisely address what to import and what not.
See 2.5.1.
Cyclic depedencies between definition modules are allowed. This makes it easier to define implementation modules
that share definitions. See 2.5.1.
Definitions in a definition module need not to be repeated in the corresponding implementation module anymore.
See 2.4.
Due to multi-parameter type constructor classes a better incorporation of the type Array could be made. See 4.4.
CLEAN 2.0 offers an hybrid type system: one can have statically and dynamically typed objects (Dynamics). A
statically typed expression can be changed into a dynamically typed one and backwards. The type of a Dynamic
can be inspected via a pattern match, one can ensure that Dynamics fit together by using run-time type unification,
one can store a Dynamic into a file with one function call or read a Dynamic stored by another CLEAN application.
Dynamics can be used to store and retrieve information without the need for writing parsers, it can be used to
exchange data and code (!) between applications in a type safe manner. Dynamicsmake it easy to create mobile
code, create plug-ins or create a persistent store. The CLEAN run-time system has been extended to support
dynamic type checking, dynamic type unification, lazy dynamic linking and just-in-time code generation (See
Chapter 8).



There is special syntax and support for strict and unboxed lists. One can easily change from lazy to strict and
backwards. Overloaded functions can be defined which work for any list (lazy, strict or unboxed). See 4.2. One can
write functions like ==, map, foldr in a generic way. The generic functions one can define can work on
higher order kinds. With kind indexed functions one can indicated which kind is actually meant (see Chapter 7). A
generic definition can be specialized for a certain concrete type.
The CLEAN system has been changed and extended: a new version of the CLEAN IDE, a new version of the
run-time-system, and a dynamic linker is included. See 8.3.
CLEAN 2.0 comes with an integrated proof system  (Sparkle), all written in CLEAN of course. See
http://www.cs.kun.nl/Sparkle.
CLEAN 2.0 is open source. All source code will be made available on the net.

We have also removed things:

We do not longer support annotations for concurrent evaluations ({P} and {I} annotations. However, we are working
on a library that will support distributed evaluation of CLEAN expressions using Dynamics (see Van Weelden and
Plasmeijer, 2002).
There is no strict let-before expression (let!) anymore in CLEAN 2.x. You still can enforce strict evaluation using
the strict hash let (#!).
One cannot specify default instances anymore that could be used to disambiguate possible ambiguous internal
overloading. Disambiguating can be done by explicitely specifying the required type.

There is also some bad news:

Due to all these changes CLEAN 2.0 is not upwards compatible with CLEAN 1.3.x. Many things are the same but
there are small differences as well. So, one has to put some effort in porting a CLEAN 1.3.x application to CLEAN
2.0. The most important syntactical differences are described below. Note that we do no longer support CLEAN 1.3.
The CLEAN 1.3 compiler is written in C. The CLEAN 2.0 compiler has been rewritten from scratch in CLEAN. The
internal structure of the new compiler is a better than the old one, but the new compiler has become a bit slower
than the previous C version as well. Large programs will take about 1.7 times as much time to compile (which is still
pretty impressive for a lazy functional language).

Syntactic differences between Clean 1.3 and Clean 2.0

CLEAN 2.x is not downward compatible with CLEAN 1.3.x. Probably you have to change your 1.3.x sources to get them
through the CLEAN 2.x compiler.

Differences in Expression Syntax

There is no strict let expression (let!) anymore in CLEAN 2.x. You still can enforce strict evaluation using the strict hash
let (#!).

Differences in the Type System

For multiparameter type classes a small change in the syntax for instance definitions was necessary. In CLEAN
1.3.x it was assumed that every instance definition only has one type argument. So in the following 1.3.x instance
definition

      instance c T1 T2

the type (T1 T2) was meant (the type T1 with the argument T2). This should be written in CLEAN 2.x as

      instance c (T1 T2)

otherwise T1 and T2 will be interpreted as two types.



The type Array has changed. In CLEAN 2.x the Array class has become a multiparameter class, whose first
argument type is the array and whose second argument type is the array element (see ??). Therefore a 1.3
definition like

      MkArray:: !Int (Int -> e) ->.(a e) | Array a & ArrayElem e
      MkArray i f = {f j \ j <- [0..i-1]}

becomes in CLEAN 2.x:

      MkArray:: !Int (Int -> e) ->.(a e) | Array a e
      MkArray i f = {f j \ j <- [0..i-1]}

There is a difference in resolving overloading. Consider the following code:

      class c a :: a -> a

      instance c [Int]
         where
           c [1] = [2]

      f [x:xs]
        = c xs

Although this is accepted by CLEAN 1.3.x, CLEAN 2.x will complain: "Overloading error [...,..,f]: c no instance
available of type [a]." The CLEAN 2.x compiler applies no type unification after resolving overloading. So c is in
function f applied to a list with a polymorph element type ([a]). And this is considered to be different from the
instance type [Int]. If you give f the type [Int] -> [Int] the upper code will be accepted.

CLEAN 2.x handles uniqueness attributes in type synonyms different than CLEAN 1.3.x. Consider the following
definitions:

      :: ListList a :== [[a]]

      f :: *(ListList *{Int}) -> *{Int}
      f [[a]] = { a & [0]=0 }

In CLEAN 1.3.x the ListList type synonym was expanded to

      f :: *[*[*{Int}]] -> *{Int}

which is correct in CLEAN 1.3.x. However, CLEAN 2.x expands it to

      f :: *[[*{Int}]] -> *{Int}

This yields a uniqueness error in CLEAN 2.x because the inner list is shared but contains a unique object. This
problem happens only with type synonyms that have attributes "inbetween". An "inbetween" attribute is neither the
"root" attribute nor the attribute of an actual argument. E.g. with the upper type synonym, the formal argument "a" is
substituted with *{Int}. Note that also the "*" is substituted for "a". Because we wrote *(ListList ...) the
root attribute is "*". The result of expanding *(ListList *{Int}) is *[u:[*{Int]]. "u" is an attribute
"inbetween" because it is neither the root attribute nor the attribute of a formal argument. Such attributes are made
_non_unique_ in CLEAN 2.x and this is why the upper code is not accepted. The code will be accepted if you
redefine ListList to

      :: ListList a :== [*[a]]

Anonymous uniqueness attributes in type contexts are not allowed in CLEAN 2.x. So in the following function type
simply remove the point.

      f :: a | myClass .a



The String type has become a predefined type. As a consequence you cannot import this type explicitly anymore.
So:

      from StdString import :: String

is not valid.

There was a bug in the uniqueness typing system of CLEAN 1.3: Records or data constructors could have
existentially quantified variables, whose uniqueness attribute did _not_ propagate. This bug has been solved in
CLEAN 2.x. As a consequence, the 2.x compiler might complain about your program where the 1.3.x compiler was
happy. The problem might occur when you use the object I/O library and you use objects with a uniquely attributed
local state. Now the object becomes unique as well and may not be shared anymore.

Differences in the Module System

The syntax and semantics of explicit import statements has been completely revised. With CLEAN 2.x it is possible
to discriminate the different namespaces in import statements. In CLEAN 1.3.x the following statement

      from m import F

could have caused the import of a function F together with a type F and a class F with all its instances from m. In
CLEAN 2.x one can precisely describe from which name space one wants to import (see 2.5.2). For example, the
following import statement

      from m import  F,
                     :: T1, :: T2(..), :: T3(C1, C2), :: T4{..}, :: T5{field1, field2},
                     class C1, class C2(..), class C3(mem1, mem2)

causes the following declarations to be imported: the function or macro F, the type T1, the algebraic type T2 with all
it’s constructors that are exported by m, the algebraic type T3 with it’s constructors C1 and C2, the record type T4
with all it’s fields that are exported by m, the record type T5 with it’s fields field1 and field2, the class C1, the
class C2 with all it’s members that are exported by m, the class C3 with it’s members mem1 and mem2.

Previous Releases.The first release of CLEAN was publicly available in 1987 and had version number 0.5 (we thought
half of the work was done, ;-)). At that time, CLEAN was only thought as an intermediate language. Many releases
followed. One of them was version 0.8 which is used in the Plasmeijer & Van Eekelen Bible (Adisson-Wesley, 1993).
Version 1.0 was the first mature version of CLEAN.



Chapter 1

Basic Semantics
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The semantics of CLEAN is based on Term Graph Rewriting Systems (Barendregt, 1987; Plasmeijer and Van Eekelen,
1993). This means that functions in a CLEAN program semantically work on graphs instead of the usual terms. This
enabled us to incorporate CLEAN’s typical features (definition of cyclic data structures, lazy copying, uniqueness typing)
which would otherwise be very difficult to give a proper semantics for. However, in many cases the programmer does not
need to be aware of the fact that he/she is manipulating graphs. Evaluation of a CLEAN program takes place in the same
way as in other lazy functional languages. One of the "differences" between CLEAN and other functional languages is that
when a variable occurs more than once in a function body, the semantics prescribe that the actual argument is shared (the
semantics of most other languages do not prescribe this although it is common practice in any implementation of a
functional language). Furthermore, one can label any expression to make the definition of cyclic structures possible. So,
people familiar with other functional languages will have no problems writing CLEAN programs.

When larger applications are being written, or, when CLEAN is interfaced with the non-functional world, or, when efficiency
counts, or, when one simply wants to have a good understanding of the language it is good to have some knowledge of the
basic semantics of CLEAN which is based on term graph rewriting. In this chapter a short introduction into the basic
semantics of CLEAN is given. An extensive treatment of the underlying semantics and the implementation techniques of
CLEAN can be found in Plasmeijer and Van Eekelen (1993).

1.1 Graph Rewriting

A CLEAN program basically consists of a number of graph rewrite rules (function definitions) which specify how a given
graph (the initial expression) has to be rewritten.

A graph is a set of nodes. Each node has a defining node-identifier (the node-id). A node consists of a symbol and a
(possibly empty) sequence of applied node-id’s (the arguments of the symbol) Applied node-id’s can be seen as references
(arcs) to nodes in the graph, as such they have a direction: from the node in which the node-id is applied to the node of
which the node-id is the defining identifier.

Each graph rewrite rule consists of a left-hand side graph (the pattern) and a right-hand side (rhs) consisting of a graph (the
contractum) or just a single node-id (a redirection). In CLEAN rewrite rules are not comparing: the left-hand side (lhs) graph
of a rule is a tree, i.e. each node identifier is applied only once, so there exists exactly one path from the root to a node of
this graph.

A rewrite rule defines a (partial) function. The function symbol is the root symbol of the left-hand side graph of the rule
alternatives. All other symbols that appear in rewrite rules, are constructor symbols.

The program graph is the graph that is rewritten according to the rules. Initially, this program graph is fixed: it consists of a
single node containing the symbol Start, so there is no need to specify this graph in the program explicitly. The part of the
graph that matches the pattern of a certain rewrite rule is called a redex (reducible expression). A rewrite of a redex to its
reduct can take place according to the right-hand side of the corresponding rewrite rule. If the right-hand side is a
contractum then the rewrite consists of building this contractum and doing a redirection of the root of the redex to root of
the right-hand side. Otherwise, only a redirection of the root of the redex to the single node-id specified on the right-hand
side is performed. A redirection of a node-id n1 to a node-id n2 means that all applied occurrences of n1 are replaced by
occurrences of n2 (which is in reality commonly implemented by overwriting n1 with n2).



A reduction strategy is a function that makes choices out of the available redexes. A reducer is a process that reduces
redexes that are indicated by the strategy. The result of a reducer  is reached as soon as the reduction strategy does not
indicate redexes any more. A graph is in normal form if none of the patterns in the rules match any part of the graph. A
graph is said to be in root normal form when the root of a graph is not the root of a redex and can never become the root of
a redex. In general it is undecidable whether a graph is in root normal form.

A pattern partially matches a graph if firstly the symbol of the root of the pattern equals the symbol of the root of the graph
and secondly in positions where symbols in the pattern are not syntactically equal to symbols in the graph, the
corresponding sub-graph is a redex or the sub-graph itself is partially matching a rule. A graph is in strong root normal form
if the graph does not partially match any rule. It is decidable whether or not a graph is in strong root normal form. A graph in
strong root normal form does not partially match any rule, so it is also in root normal form.

The default reduction strategy used in CLEAN is the functional reduction strategy. Reducing graphs according to this
strategy resembles very much the way execution proceeds in other lazy functional languages: in the standard lambda
calculus semantics the functional strategy corresponds to normal order reduction. On graph rewrite rules the functional
strategy proceeds as follows: if there are several rewrite rules for a particular function, the rules are tried in textual order;
patterns are tested from left to right; evaluation to strong root normal form of arguments is forced when an actual argument
is matched against a corresponding non-variable part of the pattern. A formal definition of this strategy can be found in
(Toyama et al., 1991).

1.1.1 A Small Example

Consider the following CLEAN program:

Add Zero z       =    z                         (1)
Add (Succ a) z   =    Succ (Add a z)            (2)

Start            =    Add (Succ o) o
                      where
                          o = Zero              (3)

In CLEAN a distinction is between function definitions (graph rewriting rules) and graphs (constant definitions). A semantic
equivalent definition of the program above is given below where this distinction is made explicit ("=>" indicates a rewrite
rule whereas "=:" is used for a constant (sub-) graph definition

Add Zero z       =    z                         (1)
Add (Succ a) z   =    Succ (Add a z)            (2)

Start            =    Add (Succ o) o
                      where
                          o =: Zero             (3)

These rules are internally translated to a semantically equivalent set of rules in which the graph structure on both left-hand
side as right-hand side of the rewrite rules has been made explicit by adding node-id’s. Using the set of rules with explicit
node-id’s it will be easier to understand what the meaning is of the rules in the graph rewriting world.



x =: Add y z
y =: Zero        =>   z                         (1)
x =: Add y z
y =: Succ a      =>   m =: Succ n
                      n =: Add a z              (2)

x =: Start       =>   m =: Add n o
                      n =: Succ o
                      o =: Zero                 (3)

The fixed initial program graph that is in memory when a program starts is the following:

The initial graph in linear notation: The initial graph in pictorial notation:
@DataRoot=:Graph

@StartNode=:Start
@DataRoot    =: Graph @StartNode
@StartNode   =: Start

To distinguish the node-id’s appearing in the rewrite rules from the node-id’s appearing in the graph the latter always begin
with a "@".

The initial graph is rewritten until it is in normal form. Therefore a CLEAN program must at least contain a "start rule" that
matches this initial graph via a pattern. The right-hand side of the start rule specifies the actual computation. In this start
rule in the left-hand side the symbol Start is used. However, the symbols Graph and Initial (see 1.2) are internal, so
they cannot actually be addressed in any rule.

The patterns in rewrite rules contain formal node-id’s. During the matching these formal nodeid’s are mapped to the actual
node-id’sof the graph  After that the following semantic actions are performed:

The start node is the only redex matching rule (3). The contractum can now be constructed:

The contractum in linear notation: The contractum in pictorial notation:
@A=:Add

@B=:Succ @C=:Zero
@A =: Add  @B @C
@B =: Succ @C
@C =: Zero

All applied occurrences of @StartNode will be replaced by occurrences of @A. The graph after rewriting is then:

The graph after rewriting: Pictorial notation:
@DataRoot=:Graph

@StartNode=:Start

@A=:Add

@B=:Succ @C=:Zero

@DataRoot    =: Graph @A
@StartNode   =: Start
@A =: Add  @B @C
@B =: Succ @C
@C =: Zero

This completes one rewrite. All nodes that are not accessible from @DataRoot are garbage and not considered any more in
the next rewrite steps. In an implementation once in a while garbage collection is performed in order to reclaim the memory
space occupied by these garbage nodes. In this example the start node is not accessible from the data root node after the
rewrite step and can be left out.



The graph after garbage collection: Pictorial notation:
@DataRoot=:Graph

@A=:Add

@B=:Succ @C=:Zero

@DataRoot   =: Graph @A
@A =: Add  @B @C
@B =: Succ @C
@C =: Zero

The graph accessible from @DataRoot still contains a redex. It matches rule 2 yielding the expected normal form:

The final graph: Pictorial notation:
@DataRoot=:Graph

@D=:Succ

@C=:Zero

@DataRoot =: Graph @D
@D =: Succ @C
@C =: Zero

The fact that graphs are being used in CLEAN gives the programmer the ability to explicitly share terms or to create cyclic
structures. In this way time and space efficiency can be obtained.

1.2 Global Graphs

Due to the presence of global graphs in CLEAN the initial graph in a specific CLEAN program is slightly different from the
basic semantics. In a specific CLEAN program the initial graph is defined as:

@DataRoot    =: Graph @StartNode @GlobId1 @GlobId2 ... @GlobIdn
@StartNode   =: Start
@GlobId1     =: Initial
@GlobId2     =: Initial
...
@GlobIdn     =: Initial

The root of the initial graph will not only contain the node-id of the start node, the root of the graph to be rewritten, but it will
also contain for each global graph (see 10.2) a reference to an initial node (initialized with the symbol Initial). All
references to a specific global graph will be references to its initial node or, when it is rewritten, they will be references to its
reduct.



Chapter 2

Modules and Scopes

CleanCleanCleanCleanClean

A CLEAN program is composed out of modules. Each module is stored in a file that contains CLEAN source code. There
are implementation modules and definition modules, in the spirit of Modula-2 (Wirth, 1982). This module system is used for
several reasons.

- First of all, the module structure is used to control the scope of definitions. The basic idea is that definitions only
have a meaning in the implementation module they are defined in unless  they are exported by the corresponding
definition module.

- Having the exported definitions collected in a separate definition module has as advantage that one in addition
obtains a self-contained interface document one can reach out to others. The definition module is a document that
defines which functions and data types can be used by others without revealing uninteresting implementation
details.

- Furthermore, the module structure enables separate compilation that heavily reduces compilation time. If the
definition module stays the same, a change in an implementation module only will cause the recompilation of that
implementation module. When the definition module is changed as well, only those implementation modules that
are affected by this change need to be recompiled.

In this Chapter we explain the module structure of CLEAN and the influence it has on the scope of definitions. New scopes
can also be introduced inside modules. This is further explained in the Chapters 2 and 3.

In the pictures in the subsections below nested boxes indicate nested scopes.

2.1 Identifiers, Scopes and Name Spaces

2.1.1 Naming Conventions of Identifiers

In CLEAN we distinguish the following kind of identifiers.

ModuleName = LowerCaseId | UpperCaseId | ModuleDirectoryName . ModuleName
ModuleDirectoryName = LowerCaseId | UpperCaseId
FunctionName = LowerCaseId | UpperCaseId | SymbolId
ConstructorName = UpperCaseId | SymbolId
SelectorVariable = LowerCaseId
Variable = LowerCaseId
MacroName = LowerCaseId | UpperCaseId | SymbolId
FieldName = LowerCaseId
TypeName = UpperCaseId | SymbolId
TypeVariable = LowerCaseId
UniqueTypeVariable = LowerCaseId
ClassName = LowerCaseId | UpperCaseId | SymbolId
MemberName = LowerCaseId | UpperCaseId | SymbolId

LowerCaseId = LowerCaseChar~{IdChar}
UpperCaseId = UpperCaseChar~{IdChar}
SymbolId = {SymbolChar}+

LowerCaseChar = a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z

UpperCaseChar = A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

SymbolChar = ~ | @ | # | $ | % | ^ | ? | ! | :
| + | - | * | < | > | \ | / | | | & | =

IdChar = LowerCaseChar
| UpperCaseChar
| Digit
| _ | ‘



Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The convention used is that variables always start with a lowercase character while constructors and types always start with
an uppercase character. The other identifiers can either start with an uppercase or a lowercase character. Notice that for
the identifiers names can be used consisting of a combination of lower and/or uppercase characters but one can also
define identifiers constructed from special characters like +, <, etc. (see Appendix A). These two kinds of identifiers cannot
be mixed. This makes it possible to leave out white space in expressions like a+1 (same as a + 1).

2.1.2 Scopes and Name Spaces

The scope is the program region in which definitions (e.g. function definition, class definition, macro definition, type
definition) with the identifiers introduced (e.g. function name, class name, class variable, macro name, type constructor
name, type variable name) have a meaning.

It must be clear from the context to which definition an identifier is referring. If all identifiers in a scope have different names
than it will always be clear which definition is meant. However, one generally wants to have a free choice in naming
identifiers. If identifiers belong to different name spaces no conflict can arise even if the same name is used. In CLEAN the
following name spaces exist:

• ModuleNames form a name space;
• FunctionNames, ConstructorNames, SelectorVariables, Variables and MacroNames form a name space;
• FieldNames form a name space;
• TypeNames, TypeVariables and UniqueTypeVariables form a name space;
• ClassNames form a name space.

So, it is allowed to use the same identifier name for different purposes as long as the identifier belongs to different name
spaces.

Identifiers belonging to the same name space must all have different names within the same scope. Under certain
conditions it is allowed to use the same name for different functions and operators (overloading, see Chapter 6).

2.1.3 Nesting of Scopes

Reusing identifier names is possible by introducing a new scope level. Scopes can be nested: within a scope a new nested
scope can be defined. Within such a nested scope new definitions can be given, new names can be introduced. As usual it
is allowed in a nested scope to redefine definitions or re-use names given in a surrounding scope: When a name is re-used
the old name and definition is no longer in scope and cannot be used in the new scope. A definition given or a name
introduced in a (nested) scope has no meaning in surrounding scopes. It has a meaning for all scopes nested within it
(unless they are redefined within such a nested scope).

2.2 Modular Structure of Clean Programs

A CLEAN program consists of a collection of definition modules and implementation modules. An implementation module
and a definition module correspond to each other if the names of the two modules are the same. The basic idea is that the
definitions given in an implementation module only have a meaning in the module in which they are defined unless these
definitions are exported by putting them into the corresponding definition module. In that case the definitions also have a
meaning in those other modules in which the definitions are imported (see 2.5).

CleanProgram = {Module}+
Module = DefinitionModule

| ImplementationModule
DefinitionModule = definition module ModuleName ;

{DefDefinition}
| system module ModuleName ;

{DefDefinition}
ImplementationModule = [implementation] module ModuleName ;

{ImplDefinition}



An executable CLEAN program consists at least of one implementation module, the main or start module, which is
the top-most module (root module) of a CLEAN program.
Each CLEAN module has to be put in a separate file.
The name of a module (i.e. the module name) should be the same as the name of the file (minus the suffix) in which
the module is stored.
A definition module should have .dcl as suffix; an implementation module should have .icl as suffix.
A definition module can have at most one corresponding implementation module.
Every implementation module (except the main module, see 2.3.1) must have a corresponding definition module.

2.3 Implementation Modules

2.3.1 The Main or Start Module

In the main module a Start rule has to be defined (see Chapter 1).
Only in the main module one can leave out the keyword implementation in the module header. In that case the
implementation module does not need to have a corresponding definition module (which makes sense for a
topmost module).

A very tiny but complete CLEAN program consisting of one implementation module.

module hello

Start = "Hello World!"

Evaluation of a CLEAN program consists of the evaluation of the application defined in the right-hand side of the Start
rule to normal form (see Chapter 1). The right-hand side of the Start rule is regarded to be the initial expression to be
computed.

It is allowed to have a Start rule in other implementation modules as well. This can be handy for testing functions defined
in such a module: to evaluate such a Start rule simply generate an application with the module as root and execute it. In
the CLEAN IDE one can specify which module has to be regarded as being the root module.

The definition of the left-hand side of the Start rule consists of the symbol Start with one optional argument (of type
*World), which is the environment parameter, which is necessary to write interactive applications.

A CLEAN program can run in two modes.

I/O Using the Console

The first mode is a console mode. It is chosen when the Start rule is defined as a nullary function.

Start:: TypeOfStartFunction
Start = ...                       // initial expression

In the console mode, that part of the initial expression (indicated by the right-hand side of the Start rule), which is in root
normal form (also called the head normal form or root stable form), is printed as soon as possible. The console mode can
be used for instance to test or debug functions.

In the CLEAN IDE one can choose to print the result of a Start expression with or without the data constructors.

For example, the initial expression

Start:: String
Start = "Hello World!"

in mode "show data constructors" will print: "Hello World!", in mode "don’t show data constructors" it will print: Hello
World!



I/O on the Unique World

The second mode is the world mode. It is chosen when the optional additional parameter (which is of type *World) is
added to the Start rule and delivered as result.

Start:: *World -> *World
Start = ...                       // initial expression returning a changed world

The world which is given to the initial expression is an abstract data structure, an abstract world of type *World which
models the concrete physical world as seen from the program. The abstract world can in principle contain anything what a
functional program needs to interact during execution with the concrete world. The world can be seen as a state and
modifications of the world can be realized via state transition functions defined on the world or a part of the world. By
requiring that these state transition functions work on a unique world the modifications of the abstract world can directly be
realized in the real physical world, without loss of efficiency and without losing referential transparency (see Chapter 9)

The concrete way in which the world can be handled in CLEAN is determined by the system programmer. One way to
handle the world is by using the predefined CLEAN I/O library, which can be regarded as a platform independent mini
operating system. It makes it possible to do file I/O, window based I/O, dynamic process creation and process
communication in a pure functional language in an efficient way. The definition of the I/O library is treated in a separate
document (Object IO tutorial, Achten et al., 1997).

2.3.2 Scope of Global Definitions in Implementation Modules

In an implementation module the following global definitions can be specified in any order.

ImplDefinition = ImportDef // see 2.5
| FunctionDef // see Chapter 3
| GraphDef // see 3.6
| MacroDef // see 10.3
| TypeDef // see Chapter 5
| ClassDef // see Chapter 6
| GenericsDef // see Chapter 7

Definitions on the global level (= outermost level in the module,) have in principle the whole implementation module as
scope (see Figure 2.1).

Figure 2.1 (Scope of global definitions inside an implementation module).

implementation module XXX

:: TypeName typevars = type_expression           // definition of a new type

functionName:: type_of_args -> type_of_result    // definition of the type of a function
functionName args = expression                   // definition of a function

selector = expression                            // definition of a constant graph

class className = expression                     // definition of a class

macroName args :==  expression                   // definition of a macro

Types can only be defined globally (see Chapter 5) and therefore always have a meaning in the whole implementation
module.  Type  variables  introduced  on  the  left-hand  side  of  a  (algebraic,  record,  synonym,  overload,  class,
instance, function, graph) type definition have the right-hand side of the type definition as scope.

Functions, the type of these functions, constants (selectors) and macro’s can be defined on the global level as well as on a
local level in nested scopes. When defined globally they have a meaning in the whole implementation module. Arguments
introduced on the left-hand side of a definition (formal arguments) only have a meaning in the corresponding right-hand
side.

Functions, the type of these functions, constants (selectors) and macro’s can also be defined locally in a new scope.
However, new scopes can only be introduced at certain points. In functional languages local definitions are by tradition
defined by using let-expressions (definitions given before they are used in a certain expression, nice for a bottom-up style
of programming) and where-blocks (definitions given afterwards, nice for a top-down style of programming). These
constructs are explained in detail in Chapter 3.



2.3.3 Begin and End of a Definition: the Layout Rule

CLEAN programs can be written in two modes: layout sensitive mode ’on’ and ’off’. The layout sensitive mode is switched
off when a semi-colon is specified after the module name. In that case each definition has to be ended with a semicolon ’;’.
A new scope has to begin with ’{’ and ends with a :}’. This mode is handy if CLEAN code is generated automatically (e.g.
by a compiler).

Example of a CLEAN program not using the layout rule.

module primes;

import StdEnv;

primes:: [Int];
primes = sieve [2..];
where
{   sieve:: [Int] -> [Int]; sieve [pr:r] = [pr:sieve (filter pr r)];

    filter:: Int [Int] -> [Int];
    filter pr [n:r] | n mod pr == 0 = filter pr r;
    | otherwise    = [n:filter pr r];
}

Programs look a little bit old fashion C-like in this way. Functional programmers generally prefer a more mathematical style.
Hence, as is common in modern functional languages, there is a layout rule in CLEAN. When a semicolon does not end
the header of a module, a CLEAN program has become layout sensitive. The layout rule assumes the omission of the
semi-colon (’’’) that ends a definition and of the braces (’{’ and ’}’) that are used to group a list of definitions. These
symbols are automatically added according to the following rules:

In layout sensitive mode the indentation of the first lexeme after the keywords let, #, #!, of, where, or with determines
the indentation that the group of definitions following the keyword has to obey. Depending on the indentation of the first
lexeme on a subsequent line the following happens. A new definition is assumed if the lexeme starts on the same
indentation (and a semicolon is inserted). A previous definition is assumed to be continued if the lexeme is indented more.
The group of definitions ends (and a close brace is inserted) if the lexeme is indented less. Global definitions are assumed
to start in column 0.

We strongly advise to write programs in layout sensitive mode. For reasons of portability it is assumed that a tab space is
set to 4 white spaces and that a non-proportional font is used.

Same program using the layout sensitive mode.

module primes

import StdEnv

primes:: [Int]
primes = sieve [2..]
where
    sieve:: [Int] -> [Int]
    sieve [pr:r] = [pr:sieve (filter pr r)]

    filter:: Int [Int] -> [Int]
    filter pr [n:r] | n mod pr == 0 = filter pr r
    | otherwise    = [n:filter pr r]

2.4 Definition Modules

The definitions given in an implementation module only have a meaning in the module in which they are defined. If you want
to export a definition, you have to specify the definition in the corresponding definition module. Some definitions can only
appear in implementation modules, not in definition modules. The idea is to hide the actual implementation from the outside
world. The is good for software engineering reasons while another advantage is that an implementation module can be
recompiled separately without a need to recompile other modules. Recompilation of other modules is only necessary when
a definition module is changed. All modules depending on the changed module will have to be recompiled as well.
Implementations of functions, graphs and class sinstances are therefore only allowed in implementation modules. They are
exported by only specifying their type definition in the definition module. Also the right-hand side of any type definition can
remain hidden. In this way an abstract data type is created (see 5.4).



In a definition module the following global definitions can be given in any order.

DefDefinition = ImportDef // see 2.5
| FunctionExportTypeDef // see 3.7
| MacroDef // see 10.3
| TypeDef // see Chapter 5
| ClassExportDef // see Chapter 6
| TypeClassInstanceExportDef // see 6.10
| GenericExportDef // see Chapter 7

The definitions given in an implementation module only have a meaning in the module in which they are defined (
see 2.3) unless these definitions are exported by putting them into the corresponding definition module. In  that case
they also have a meaning in those other modules in which the definitions are imported (see 2.5).
In the corresponding implementation module all exported definitions have to get an appropriate implementation (this
holds for functions, abstract data types, class instances).
An abstract data type is exported by specifying the left-hand side of a type rule in the definition module. In the
corresponding implementation module the abstract type has to be defined again but then right-hand side has to be
defined as well. For such an abstract data type only the name of the type is exported but not its definition.
A function,  global graph or class instance is exported by defining the type header in the definition module. For
optimal efficiency it is recommended also to specify strictness annotations (see 10.1). For library functions it is
recommended also to specify the uniqueness type attributes (see Chapter 9). The implementation of a function, a
graph, a class instance has to be given in the corresponding implementation module.
Although it is not required anymore to repeat an exported definition in the corresponding implementation module, it
is a good habit to do so to keep the implementation module readable. If a definition is repeated, the definition given
in the definition module and in the implementation module should be the same (modulo variable names).

Definition module.

definition module ListOperations

::complex                          // abstract type definition

re:: complex -> Real               // function taking the real part of complex number
im:: complex -> Real               // function taking the imaginary part of complex

mkcomplex:: Real Real -> Complex   // function creating a complex number

corresponding implementation module:

implementation module ListOperations

::complex :== (!Real,!Real)        // a type synonym

re:: complex -> Real               // type of function followed by its implementation
re (frst,_) = frst

im:: complex -> Real
im (_,scnd) = scnd

mkcomplex:: Real Real -> Complex
mkcomplex frst scnd = (frst,scnd)

2.5 Importing Definitions

Via an import statement a definition exported by a definition module (see 2.4) can be imported into any other (definition or
implementation) module. There are two kinds of import statements, explicit imports and implicit imports.

ImportDef = ImplicitImportDef
| ExplicitImportDef

A module depends on another module if it imports something from that other module. In CLEAN 2.x cyclic dependencies
are allowed.

2.5.1 Explicit Imports of Definitions

Explicit imports are import statements in which the modules to import from as well as the identifiers indicating the definitions
to import are explicitly specified. All identifiers explicitly being imported in a definition or implementation module will be
included in the global scope level (= outermost scope, see 2.3.2) of the module that does the import.



ExplicitImportDef = from ModuleName import [qualified] {Imports}-list ;
Imports = FunctionName

| ::TypeName [ConstructorsOrFields]
| class ClassName [Members]
| instance ClassName {SimpleType}+
| generic FunctionName

ConstructorsOrFields = (..)
| ({ConstructorName}-list)
| {..}
| {{FieldName}-list}

Members = (..)
| ({MemberName}-list)

One can import functions or macro’s, types with optionally their corresponding constructors, record types with optionally
their corresponding fieldnames, classes, instances of classes and generic functions. The syntax makes it possible to
discriminate between the different namespaces that exist in CLEAN (see 2.1.2)

Example of an explicit import.

implementation module XXX

from m import    F,
                 :: T1, :: T2(..), :: T3(C1, C2), :: T4{..}, :: T5{field1, field2},
                 class C1, class C2(..), class C3(mem1, mem2),
                 instance C4 Int, generic g

With the import statement the following definition exported by module m are imported in module XXX: the function or macro
F, the type T1, the algebraic type T2 with all it’s constructors that are exported by m, the algebraic type T3 with it’s
constructors C1 and C2, the record type T4 with all it’s fields that are exported by m, the record type T5 with it’s fields
field1 and field2, the class C1, the class C2 with all it’s members that are exported by m, the class C3 with it’s members
mem1 and mem2, the instance of class C4 defined on integers, the generic function g.

Importing identifiers can cause error messages because the imported identifiers may be in conflict with other identifiers in
this scope (remember that identifiers belonging to the same name space must all have different names within the same
scope, see 2.1). This problem can be solved by renaming the internally defined identifiers or by renaming the imported
identifiers (eg by adding an additional module layer just to rename things).

2.5.2 Implicit Imports of Definitions

ImplicitImportDef = import [qualified] {ModuleName}-list ;

Implicit imports are import statements in which only the module name to import from is mentioned. In this case all definitions
that are exported from that module are imported as well as all definitions that on their turn are imported in the indicated
definition module, and so on. So, all related definitions from various modules can be imported with one single import. This
opens the possibility for definition modules to serve as a kind of ’pass-through’ module. Hence, it is meaningful to have
definition modules with import statements but without any definitions and without a corresponding implementation module.

Example of an implicit import: all (arithmetic) rules which are predefined can be imported easily with one import statement.

import MyStdEnv

importing implicitly all definitions imported by the definition module ’MyStdEnv’ which is defined below (note that definition
module ’MyStdEnv’ does not require a corresponding implementation module) :

definition module MyStdEnv

import StdBool, StdChar, StdInt, StdReal, StdString

All identifiers implicitly being imported in a definition or implementation module will be included in the global scope level (=
outermost scope, see 2.3.2) of the module that does the import.

Importing identifiers can cause error messages because the imported identifiers may be in conflict with other
identifiers in this scope (remember that identifiers belonging to the same name space must all have different names
within the same scope, see 2.1). This problem can be solved by renaming the internally defined identifiers or by
renaming the imported identifiers (eg by adding an additional module layer just to rename identifiers).



2.6 System Definition and Implementation Modules

System modules are special modules. A system definition module indicates that the corresponding implementation module
is a system implementation module which does not contain ordinary CLEAN rules. In system implementation modules it is
allowed to define foreign functions: the bodies of these foreign functions are written in another language than CLEAN.
System implementation modules make it possible to create interfaces to operating systems, to file systems or to increase
execution speed of heavily used functions or complex data structures. Typically, predefined function and operators for
arithmetic and File I/O are implemented as system modules.

System implementation modules may use machine code, C-code, abstract machine code (PABC-code) or code written in
any other language. What exactly is allowed depends on the CLEAN compiler used and the platform for which code is
generated. The keyword code is reserved to make it possible to write CLEAN programs in a foreign language. This is not
treated in this reference manual.

When one writes system implementation modules one has to be very careful because the correctness of the functions can
no longer be checked by the CLEAN compiler. Therefore, the programmer is now responsible for the following:
! The function must be correctly typed.
! When a function destructively updates one of its (sub-)arguments, the corresponding type of the arguments should

have the uniqueness type attribute. Furthermore, those arguments must be strict.



Chapter 3

Defining Functions and Constants

CleanCleanCleanCleanClean

In this Chapter we explain how functions (actually: graph rewrite rules) and constants (actually: graph expressions) are
defined in CLEAN. The body of a function consists of an (root) expression (see 3.4). With help of patterns (see 3.2) and
guards  (see 3.3) a distinction can be made between several alternative definitions for a function. Functions and constants
can be defined locally in a function definition. For programming convenience (forcing evaluation, observation of unique
objects and threading of sequencial operations) a special let construction is provided (see 3.5.1). The typing of functions is
discussed in Section 3.7. For overloaded functions see Chapter 6. For functions working on unique datatypes see Chapter
9.

3.1 Functions

FunctionDef = [FunctionTypeDef] // see Chapter 4 for typing functions
DefOfFunction

DefOfFunction = {FunctionAltDef ;}+
FunctionAltDef = Function {Pattern} // see 3.2 for patterns

{GuardAlt}
{LetBeforeExpression} // see 3.5.4
FunctionResult
[LocalFunctionAltDefs] // see 3.5

FunctionResult = =[>] FunctionBody
| | Guard GuardRhs // see 3.3 for guards

GuardAlt = {LetBeforeExpression} | BooleanExpr GuardRhs
GuardRhs = {GuardAlt} {LetBeforeExpression} = [>] FunctionBody

| {GuardAlt} {LetBeforeExpression} | otherwise GuardRhs
Function = FunctionName // ordinary function

| (FunctionName) // operator function used prefix
FunctionBody = RootExpression ; // see 3.4

[LocalFunctionDefs] // see 3.5

A function definition consists of one or more definition of a function alternative (rewrite rule). On the left-hand side of such a
function alternative a pattern can be specified which can serve a whole sequence of guarded function bodies (called the
rule alternatives) The root expression (see 3.4) of a particular rule alternative is chosen for evaluation when
• the patterns specified in the formal arguments are matching the corresponding actual arguments of the function

application (see 3.2) and
• the optional guard (see 3.3) specified on the right-hand side evaluates to True.
 The alternatives are tried in textual order. A function can be preceded by a definition of its type (Section 3.7).

Function definitions are only allowed in implementation modules (see 2.3).
It is required that the function alternatives of a function are textually grouped together (separated by semi-colons
when the layout sensitive mode is not chosen).
Each alternative of a function must start with the same function symbol.
A function has a fixed arity, so in each rule the same number of formal arguments must be specified. Functions can
be used curried and applied to any number of arguments though, as usual in higher order functional languages.
The function name must in principle be different from other names in the same name space and same scope (see
2.1). However, it is possible to overload functions and operators (see Chapter 6).



Example of function definitions in a CLEAN module.

module example                                  // module header

import StdInt                                   // implicit import

map:: (a -> b) [a] -> [b]                       // type of map
map f list = [f e \\ e <- list]                 // definition of the function map

Start:: [Int]                                   // type of Start rule
Start = map square [1..1000]                    // definition of the Start rule

An operator is a function with arity two that can be used as infix operator (brackets are left out) or as ordinary prefix function
(the operator name preceding its arguments has to be surrounded by brackets). The precedence (0 through 9) and fixity (
infixleft, infixright, infix) that can be defined in the type definition (see 3.7.1) of the operators determine the priority
of the operator application in an expression. A higher precedence binds more tightly. When operators have equal
precedence, the fixity determines the priority.

When an operator is used in infix position both arguments have to be present. Operators can be used in a curried
way, but then they have to be used as ordinary prefix functions.

Operator definition.

(++) infixr 0:: [a] [a] -> [a]
(++) []      ly  = ly
(++) [x:xs]  ly  = [x:xs ++ ly]

(o) infixr 9:: (a -> b) (c -> a) -> (c -> b)
(o) f g = \x = f (g x)

3.2 Patterns

A pattern specified on the left-hand side of a function definition specifies the formal arguments of a function. A function
alternative is chosen only if the actual arguments of the function application match the formal arguments. A formal
argument is either a constant (some data constructor with its optional arguments that can consist of sub-patterns) or it is a
variable.

Pattern = [Variable =:] BrackPattern
BrackPattern = (GraphPattern)

| Constructor
| PatternVariable
| SpecialPattern
| DynamicPattern // see Chapter 8

GraphPattern = Constructor {Pattern} // Ordinary data constructor
| GraphPattern ConstructorName // Infix data constructor
| GraphPattern 
| Pattern 

PatternVariable = Variable
| _ 

A pattern variable can be a (node) variable or a wildcard. A variable is a formal argument of a function that matches on any
concrete value of the corresponding actual argument and therefore it does not force evaluation of this argument. A wildcard
is an anonymous variable ("_") one can use to indicate that the corresponding argument is not used in the right-hand side
of the function. A variable can be attached to a pattern (using the symbol ’=:’) that makes it possible to identify (label) the
whole pattern as well as its contents. When a constant (data constructor) is specified as formal argument, the actual
argument must contain the same constant in order to have a successful match.



Example of an algebraic data type definition and its use in a pattern match in a function definition.

::Tree a = Node a (Tree a) (Tree a)
         | Nil

Mirror:: (Tree a) -> Tree a
Mirror (Node e left right) = Node e (Mirror right) (Mirror left)
Mirror Nil                 = Nil

Use of anonymous variables.

:: Complex :== (!Real,!Real)                         // synonym type def

realpart:: Complex -> Real
realpart (re,_) = re                                 // re and _ are pattern variables

Use of list patterns, use of guards, use of variables to identify patterns and sub-patterns; merge merges two (sorted) lazy
lists into one (sorted) list.

merge:: [Int] [Int] -> [Int]
merge f []   = f
merge [] s   = s
merge f=:[x:xs] s=:[y:ys]
| x<y        = [x:merge xs s]
| x==y       = merge f ys
| otherwise  = [y:merge f ys]

It is possible that the specified patterns turn a function into a partial function (see 3.7.3). When a partial function is
applied outside the domain for which the function is defined it will result into a run-time error. A compile time
warning is generated that such a situation might arise.

The formal arguments of a function and the function body are contained in a new local scope.

functionName args = expression

All variable symbols introduced at the left-hand side of a function definition must have different names.

For convenience and efficiency special syntax is provided to express pattern match on data structures of predefined type
and record type. They are treated elsewhere (see below).

SpecialPattern = BasicValuePattern // see 4.1.2
| ListPattern // see 4.2.2
| TuplePattern // see 4.3.2
| ArrayPattern // see 4.4.2
| RecordPattern // see 5.2.2
| UnitPattern

3.3 Guards

Guard = BooleanExpr
| otherwise

A guard is a Boolean expression attached to a rule alternative that can be regarded as generalisation of the pattern
matching mechanism: the alternative only matches when the patterns defined on the left hand-side match and its (optional)
guard evaluates to True (see 3.1). Otherwise the next alternative of the function is tried. Pattern matching always takes
place before the guards are evaluated.

The guards are tried in textual order. The alternative corresponding to the first guard that yields True will be evaluated. A
right-hand side without a guard can be regarded to have a guard that always evaluates to True(the ’otherwise’ or ’default’
case). In keyword otherwise is synonym for True for people who like to emphasize the default option.

Only the last rule alternative of a function can have otherwise as guard or can have no guard.
It is possible that the guards turn the function into a partial function (see 3.7.3). When a partial function is applied
outside the domain for which the function is defined it will result into a run-time error. At compile time this cannot be
detected.



Function definition with guards.

filter:: Int [Int] -> [Int]
filter pr [n:str]
| n mod pr == 0   = filter pr str
| otherwise       = [n:filter pr str]

Equivalent definition of previous filter.

filter:: Int [Int] -> [Int]
filter pr [n:str]
| n mod pr == 0   = filter pr str
                  = [n:filter pr str]

Guards can be nested. When a guard on one level evaluates to True, the guards on a next level are tried.

To ensure that at least one of the alternatives of a nested guard will be successful, a nested guarded alternative
must always have a ’default case’ as last alternative.

Example of a nested guard. 

example arg1 arg2
| predicate11 arg1                                   // if predicate11 arg1
    | predicate21 arg2 = calculate1 arg1 arg2        //  then (if predicate21 arg2
    | predicate22 arg2 = calculate2 arg1 arg2        //  elseif predicate22 arg2 then
    | otherwise        = calculate3 arg1 arg2        //  else ...)
| predicate12 arg1     = calculate4 arg1 arg2        // elseif predicate12 arg1 then ...

3.4 Expressions

The main body of a function is called the root expression. The root expression is a graph expression.

RootExpression = GraphExpr

GraphExpr = Application
Application = {BrackGraph}+

| GraphExpr Operator GraphExpr
| GenericAppExpr

BrackGraph = GraphVariable
| Constructor
| Function
| (GraphExpr)
| LambdaAbstr // see 3.4.1
| CaseExpr // see 3.4.2
| LetExpr // see 3.5.1
| SpecialExpression
| DynamicExpression
| MatchesPatternExpr // see 3.4.2

Function = FunctionName
| (FunctionName)

Constructor = ConstructorName
| (ConstructorName)

Operator = FunctionName
| ConstructorName

GraphVariable = Variable
| SelectorVariable

An expression generally expresses an application of a function to its actual arguments or the (automatic) creation of a data
structure simply by applying a data constructor to its arguments. Each function or data constructor can be used in a curried
way and can therefore be applied to any number (zero or more) of arguments. A function will only be rewritten if it is applied
to a number of arguments equal to the arity of the function (see 3.1). Function and constructors applied on zero arguments
just form a syntactic unit (for non-operators no brackets are needed in this case).

All expressions have to be of correct type (see Chapter 5).
All symbols that appear in an expression must have been defined somewhere within the scope in which the
expression appears (see 2.1).
There has to be a definition for each node variable and selector variable within in the scope of the graph expression.



Operators are special functions or data constructors defined with arity two which can be applied in infix position  The
precedence (0 through 9) and fixity (infixleft, infixright, infix) which can be defined in the type definition of the
operators determine the priority of the operator application in an expression. A higher precedence binds more tightly. When
operators have equal precedence, the fixity determines the priority. In an expression an ordinary function application has a
very high priority (10). Only selection of record elements (see 5.2.1) and array elements (see 4.4.1) binds more tightly (11).
Besides that, due to the priority, brackets can sometimes be omitted; operator applications behave just like other
applications.

It is not allowed to apply operators with equal precedence in an expression in such a way tha  their fixity conflict. So,
when in a1 op1 a2 op2 a3 the operators op1 and op2 have the same precedence a conflict arises when op1 is
defined as infixr implying that the expression must be read as a1 op1 (a2 op2 a3) while op2 is defined as
infixl implying that the expression must be read as (a1 op1 a2) op2 a3.
When an operator is used in infix position both arguments have to be present. Operators can be used in a curried
way (applied to less than two arguments), but then they have to be used as ordinary prefix functions / constructors.
When an operator is used as prefix function c.q. constructor, it has to be surrounded by brackets.

There are two kinds of variables that can appear in a graph expression: variables introduced as formal argument of a
function (see 3.1 and 3.2) and selector variables (defined in a selector to identify parts of a graph expression, see 3.6).

Example of a cyclic root expression. y is the root expression referring to a cyclic graph. The multiplication operator * is used
prefix here in a curried way.

ham:: [Int]
ham = y
where y = [1:merge (map ((*) 2) y) (merge (map ((*) 3) y) (map ((*) 5) y))]

For convenience and efficiency special syntax is provided to create expressions of data structures of predefined type and of
record type that is considered as a special kind of algebraic type. They are treated in elsewhere.

SpecialExpression = BasicValue // see 4.1.1
| List // see 4.2.1
| Tuple // see 4.3.1
| Array // see 4.4.1
| ArraySelection // see 4.4.1
| Record // see 5.2.1
| RecordSelection // see 5.2.1
| UnitConstructor

3.4.1 Lambda Abstraction

Sometimes it can be convenient to define a tiny function in an expression "right on the spot". For this purpose one can use
a lambda abstraction. An anonymous function is defined which can have several formal arguments that can be patterns as
common in ordinary function definitions (see Chapter 3). However, only simple functions can be defined in this way: no rule
alternatives, and no local function definitions.

It is also allowed to use the arrow (’->’) to separate  the  formal  arguments from the function body:

LambdaAbstr = \ {Pattern}+ {LambdaGuardAlt} {LetBeforeExpression} LambdaResult
LambdaResult = =  GraphExpr

| -> GraphExpr
| | Guard LambdaGuardRhs

Example of a Lambda expression.

AddTupleList:: [(Int,Int)] -> [Int]
AddTupleList list = map ((x,y) = x+y) list

A lambda expression introduces a new scope (see 2.1).

The arguments of the anonymous function being defined have the only a meaning in the corresponding function body.

\ arg1 arg2 ... argn = function_body

Let-before expressions and guards can be used in lambda abstractions:



LambdaGuardAlt = {LetBeforeExpression} | BooleanExpr LambdaGuardRhs
LambdaGuardRhs = {LambdaGuardAlt} {LetBeforeExpression} LambdaGuardResult
LambdaGuardResult = =  GraphExpr

| -> GraphExpr
| | otherwise LambdaGuardRhs

3.4.2 Case Expression and Conditional Expression

For programming convenience a case expression and conditional expression are added.

CaseExpr = case GraphExpr of
{ {CaseAltDef}+ }

| if BrackGraph BrackGraph BrackGraph
CaseAltDef = {Pattern}

{CaseGuardAlt} {LetBeforeExpression} CaseResult
[LocalFunctionAltDefs]

CaseResult = = [>] FunctionBody
| -> FunctionBody
| | Guard CaseGuardRhs

CaseGuardAlt = {LetBeforeExpression} | BooleanExpr CaseGuardRhs
CaseGuardRhs = {CaseGuardAlt} {LetBeforeExpression} CaseGuardResult
CaseGuardResult = = [>] FunctionBody

| -> FunctionBody
| | otherwise CaseGuardRhs

In a case expression first the discriminating expression is evaluated after which the case alternatives are tried in textual
order. Case alternatives are similar to function alternatives. This is not so strange because a case expression is internally
translated to a function definition (see the example below). Each alternative contains a left-hand side pattern (see 3.2) that
is optionally followed by a let-before (see 3.5.4) and a guard (see 3.3). When a pattern matches and the optional guard
evaluates to True the corresponding alternative is chosen. A new block structure (scope) is created for each case
alternative (see 2.1).

It is also allowed to use the arrow (’->’) to separate the case alternatives

The variables defined in the patterns have the only a meaning in the corresponding alternative.
case expression of
    pattern1 = alternative1
    pattern2 = alternative2
    ...
    patternn = alternativen

All alternatives in the case expression must be of the same type.
When none of the patterns matches a run-time error is generated.

The case expression

h x =    case g x of
         [hd:_]  = hd
         []      = abort "result of call g x in h is empty"

is semantically equivalent to:

h x = mycase (g x)
where
    mycase  [hd:_]  = hd
    mycase  []      = abort "result of call g x in h is empty"

In a conditional expression first the Boolean expression is evaluated after which either the then- or the else-part is chosen.
The conditional expression can be seen as a simple kind of case expression.

The then- and else-part in the conditional expression must be of the same type.
The discriminating expression must be of type Bool.

3.4.3 Matches Pattern Expression

expression =: pattern in an expression yields True if the expression matches the pattern and False otherwise.
Variable names are not allowed in the pattern, but _’s may be used. The compiler converts the expression to a case if
the pattern is more complicated than just a constructor and _’s.



MatchesPatternExpr = GraphExpr =: ConstructorName { _ }
| GraphExpr =: BrackPattern

=: in expressions binds stronger than function application. This includes additional _’s after a ConstructorName, so
x=:(Constructor _ _) may be written without parenthesis as x=:Constructor _ _, for example:

:: T = X Int | Y Int Int | Z;    // algebraic type definition 

isXorY t  =  t=:X _ || t=:Y _ _;

3.5 Local Definitions

Sometimes it is convenient to introduce definitions that have a limited scope and are not visible throughout the whole
module. One can define functions that have a local scope, i.e. which have only a meaning in a certain program region.

Outside the scope the functions are unknown. This locality can be used to get a better program structure: functions that are
only used in a certain program area can remain hidden outside that area.

Besides functions one can also define constant selectors. Constants are named graph expressions (see 3.6).

LocalDef = GraphDef
| FunctionDef

3.5.1 Let Expression: Local Definitions in Expressions

A let expression is an expression that enables to introduce a new scope (see 2.1)  in an expression in which local functions
and constants can be defined. Such local definitions can be introduced anywhere in an expression using a let expression
with the following syntax.

LetExpression = let { {LocalDef}+ } in GraphExpr

The function and selectors defined in the let block only have a meaning within the expression.

let
    function arguments = function_body
    selector = expr
    ...
in  expression

Example of a let expression used within a list comprehension.

doublefibs n = [let a = fib i in (a, a) \\ i <- [0..n]]

3.5.2 Where Block: Local Definitions in a Function Alternative

At the end of each function alternative one can locally define functions and constant graphs in a where block.

LocalFunctionAltDefs = [where] { {LocalDef}+ }

Functions and graphs defined in a where block can be used anywhere in the corresponding function alternative (i.e. in all
guards and rule alternatives following a pattern, see 3.1) as indicated in the following picture showing the scope of a where
block.

The function and selectors defined in the where block can be used locally in the whole function definition.

function formal_arguments
         | guard1    = function_alternative1
         | guard2    = function_alternative2
         | otherwise  = default_alternative
         where
             selector = expr
             local_function args = function_body



sieve and filter are local functions defined in a where block. They have only a meaning inside primes. At the global level the
functions are unknown.

primes::[Int]
primes = sieve [2..]
where
    sieve::[Int] -> [Int]                            // local function of primes
    sieve [pr:r]  = [pr:sieve (filter pr r)]

    filter::Int [Int] -> [Int]                       // local function of primes
    filter pr [n:r]
    | n mod pr == 0   = filter pr r
    | otherwise       = [n:filter pr r]

Notice that the scope rules are such that the formal arguments of the surrounding function alternative are visible to the
locally defined functions and graphs. The arguments can therefore directly be addressed in the local definitions. Such local
definitions cannot always be typed explicitly (see 3.7).

Alternative definition of primes. The function filter is locally defined for sieve.filter can directly access arguments pr of
sieve.

primes::[Int]
primes = sieve [2..]
where
    sieve::[Int] -> [Int]                            // local function of primes
    sieve [pr:r]  = [pr:sieve (filter pr r)]
    where
        filter::Int [Int] -> [Int]                   // local function of sieve
        filter pr [n:r]
        | n mod pr == 0   = filter pr r
        | otherwise       = [n:filter pr r]

3.5.3 With Block: Local Definitions in a Guarded Alternative

One can also locally define functions and graphs at the end of each guarded rule alternative using a with block.

LocalFunctionDefs = [with] { {LocalDef}+ }
LocalDef = GraphDef

| FunctionDef

Functions and graphs defined in a with block can only be used in the corresponding rule alternative as indicated in the
following picture showing the scope of a with block.

The function and selectors defined in the with block can be locally only be used in the corresponding function alternative.

function formal arguments
         | guard1     =   function_alternative1
                          with
                               selector = expr
                               local_function args = function_body

         | guard2     =   function_alternative2
                          with
                               selector = expr
                               local_function args = function_body

Notice that the scope rules are such that the arguments of the surrounding guarded rule alternative are visible to the locally
defined functions and graphs. The arguments can therefore directly be addressed in the local definitions. Such local
definitions cannot always be typed explicitly (see 3.7).



3.5.4 Let-Before Expression: Local Constants defined between Guards

Many of the functions for input and output in the CLEAN I/O library are state transition functions. Such a state is often
passed from one function to another in a single threaded way (see Chapter 9) to force a specific order of evaluation. This is
certainly the case when the state is of unique type. The threading parameter has to be renamed to distinguish its different
versions. The following example shows a typical example:

Use of state transition functions. The uniquely typed state file is passed from one function to another involving a number of
renamings: file, file1, file2)

readchars:: *File -> ([Char], *File)
readchars file
| not ok     = ([],file1)
| otherwise  = ([char:chars], file2)
where
    (ok,char,file1)   = freadc file
    (chars,file2)     = readchars file1

This explicit renaming of threaded parameters not only looks very ugly, these kind of definitions are sometimes also hard to
read as well (in which order do things happen? which state is passed in which situation?). We have to admit: an imperative
style of programming is much easier to read when things have to happen in a certain order such as is the case when doing
I/O. That is why we have introduced let-before expressions.

Let-before expressions are special let expressions that can be defined before a guard or function body. In this way one can
specify sequential actions in the order in which they suppose to happen. Let-before expressions have the following syntax:

LetBeforeExpression = # {GraphDefOrUpdate}+
| #!{GraphDefOrUpdate}+

GraphDefOrUpdate = GraphDef
| Variable & {FieldName {Selection} = GraphExpr}-list ; // see 5.2.1
| Variable & {ArrayIndex {Selection} = GraphExpr}-list [\\ {Qualifier}-list] ; // see 4.4.1

The form with the exclamation mark (#!) forces the evaluation of the node-ids that appear in the left-hand sides of the
definitions. Notice that one can only define constant selectors (GraphDef) in a Let-before expression. One cannot define
functions.

Let-before expressions have a special scope rule to obtain an imperative programming look. The variables in the left-hand
side of these definitions do not appear in the scope of the right-hand side of that definition, but they do appear in the scope
of the other definitions that follow (including the root expression, excluding local definitions in where blocks.

This is shown in the following picture:

Function args
         # selector1  = expression1
         | guard1     = expression2
         # selector2  = expression3
         | guard2     = expression4
         where
             local_definitions

Notice that a variable defined in a let-before expression cannot be used in a where expression. The reverse is true
however: definitions in the where expression can be used in the let before expression.

Use of let before expressions, short notation, re-using names taking use of the special scope of the let before)

readchars:: *File -> ([Char], *File)
readchars file
#   (ok,char,file)    = freadc file
|   not ok            = ([],file)
#   (chars,file)      = readchars file
=   ([char:chars], file)



Equivalent definition renaming threaded parameters

readchars:: *File -> ([Char], *File)
readchars file
#   (ok,char,file1)   = freadc file
|   not ok            = ([],file1)
#   (chars, file2)    = readchars file1
=   ([char:chars], file2)

The notation can also be dangerous: the same name is used on different spots while the meaning of the name is not always
the  same  (one has to  take  the  scope  into account which  changes  from  definition  to  definition).  However,  the
notation  is  rather  safe  when  it  is  used  to  thread  parameters  of  unique  type.  The  type  system  will  spot  it  when
such parameters are not used in a correct single threaded manner. We do not recommend the use of let before
expressions to adopt an imperative programming style for other cases.

Abuse of let before expression.

exchange:: (a, b) -> (b, a)
exchange (x, y)
#   temp = x
    x    = y
    y    = temp
=   (x, y)

3.6 Defining Constants

One can give a name to a constant expression (actually a graph), such that the expression can be used in (and shared by)
other expressions. One can also identify certain parts of a constant via a projection function called a selector (see below).

GraphDef = Selector =[:] GraphExpr ;

Graph locally defined in a function: the graph labeled last is shared in the function StripNewline and computed only
once.

StripNewline:: String -> String
StripNewline "" = ""
StripNewline string
| string !! last<>’\n’ = string
| otherwise            = string%(0,last-1)
where
    last = maxindex string

When a graph is defined actually a name is given to (part) of an expression. The definition of a graph can be compared with
a definition of a constant(data) or aconstant (projection) function. However, notice that graphs are constructed according to
the basic semantics of CLEAN (see Chapter 1) that means that multiple references to the same graph will result in sharing
of that graph. Recursive references will result in cyclic graph structures. Graphs have the property that they are computed
only once and that their value is rememberedwithin the scope they are defined in.

Graph definitions differ from constant function definitions. A constant function definition is just a function defined with arity
zero (see 3.1). A constant function defines an ordinary graph rewriting rule: multiple references to a function just means
that the same definition is used such that a (constant) function will be recomputed again for each occurrence of the function
symbol made. This difference can have consequences for the time and space behavior of function definitions (see 10.2).

The Hamming numbers defined using a locally defined cyclic constant graph and defined by using a globally defined
recursive constant function. The first definition (ham1) is efficient because already computed numbers are reused via
sharing. The second definition (ham2 ) is much more inefficient because the recursive function recomputes everything.

ham1:: [Int]
ham1 = y
where y = [1:merge (map ((*) 2) y) (merge (map ((*) 3) y) (map ((*) 5) y))]

ham2:: [Int]
ham2 = [1:merge (map ((*) 2) ham2) (merge (map ((*) 3) ham2) (map ((*) 5) ham2 ))]



Syntactically the definition of a graph is distinguished from the definition of a function by the symbol which separates the
left-hand side from the right-hand side: "=" or "=>" is used for functions, while "=" is used for local graphs and "=:" for
global graphs. However, in general "=" is used both for functions and local graphs. Generally it is clear from the context
which is meant (functions have parameters, selectors are also easy recognisible). However, when a simple constant is
defined the syntax is ambiguous (it can be a constant function definition as well as a constant graph definition).

To allow the use of the "=" whenever possible, the following rule is followed. Local constant definitions are by default taken
to be graph definitions and therefore shared, globally they are by default taken to be function definitions (see 3.1) and
therefore recomputed. If one wants to obtain a different behavior one has to explicit state the nature of the constant
definition (has it to be shared or has it to be recomputed) by using "=:" (on the global level, meaning it is a constant graph
which is shared) or "=>" (on the local level, meaning it is a constant function and has to be recomputed).

Local constant graph versus local constant function definition: biglist1 and biglist2 is a graph which is computed only
once, biglist3 is a constant function which is computed every time it is applied.

biglist1 =   [1..10000]                 // a graph (if defined locally)
biglist1 =   [1..10000]                 // a constant function (if defined globally)
biglist2 =:  [1..10000]                 // a graph (if defined globally)
biglist3 =>  [1..10000]                 // a constant function (always)

The garbage collector will collect locally defined graphs when they are no longer connected to the root of the program graph
(see Chapter 1).

3.6.1 Selectors

The left-hand side of a graph definition can be a simple name, but is can also be a more complicated pattern called a
selector. A selector is a pattern which introduces one or more new selector variables implicitly defining projection functions
to identify (parts of) a constant graph being defined One can identify the sub-graph as a whole or one can identify its
components. A selector can contain constants (also user defined constants introduced by algebraic type definitions),
variables and wildcards. With a wildcard one can indicate that one is not interested in certain components.

Selectors cannot be defined globally. They can only locally be defined in a let (see 3.5.1), a let-before (see 3.5.4), a
where-block (see 3.5.2), and a with-block (see 3.5.3). Selectors can furthermore appear on the left-hand side of generators
in list comprehensions (see 4.2.1) and array comprehensions (see 4.4.1).

Selector = BrackPattern // for bracket patterns see 3.2

Use of a selector to locally select tuple elements.

unzip::[(a,b)] -> ([a],[b])
unzip []          = ([],[])
unzip [(x,y):xys] = ([x:xs],[y:ys])
where
    (xs,ys) = unzip xys

When a selector on the left-hand side of a graph definition is not matching the graph on the right-hand side it will
result in a run-time error.
The selector variables introduced in the selector must be different from each other and not already be used in the
same scope and name space (see 1.2).
To avoid the specification of patterns that may fail at run-time, it is not allowed to test on zero arity constructors. For
instance, list used in a selector pattern need to be of form [a:_]. [a] cannot be used because it stands for
[a:[]] implying a test on the zero arity constructor []. If the pattern is a record only those fields which contents
one is interested in need to be indicated in the pattern
Arrays cannot be used as pattern in a selector.
Selectors cannot be defined globally.



3.7 Typing Functions

Although one is in general not obligated to explicitly specify the type of a function (the CLEAN compiler can in general
infer the type) the explicit specification of the type is highly recommended to increase the readability of the program.

FunctionDef = [FunctionTypeDef]
DefOfFunction

FunctionTypeDef = FunctionName :: FunctionType ;
| (FunctionName) [FixPrec] [:: FunctionType] ;

FixPrec = infixl [Prec]
| infixr [Prec]
| infix [Prec]

Prec = Digit
FunctionType = [{ArgType}+ ->] Type [ClassContext] [UnqTypeUnEqualities]
ArgType = BrackType

| [Strict] [UnqTypeAttrib] (UnivQuantVariables Type [ClassContext])
Type = {BrackType}+
BrackType = [Strict] [UnqTypeAttrib] SimpleType
UnivQuantVariables = A.{TypeVariable }+:

An explicit specification is required when a function is exported, or when the programmer wants to impose additional
restrictions on the application of the function (e.g. a more restricted type can be specified, strictness information can be
added as explained in Chapter 10.1, a class context for the type variables to express overloading can be defined as
explained in Chapter 7, uniqueness information can be added as explained in 3.7.5 Functions with Strict Arguments).

The CLEAN type system uses a combination of Milner/Mycroft type assignment. This has as consequence that the type
system in some rare cases is not capable to infer the type of a function (using the Milner/Hindley system) although it will
approve a given type (using the Mycroft system; see Plasmeijer and Van Eekelen, 1993). Also when universally quantified
types of rank 2 are used (see 3.7.4), explicit typing by the programmer is required.

The Cartesian product is used for the specification of the function type. The Cartesian product is denoted by juxtaposition of
the bracketed argument types. For the case of a single argument the brackets can be left out. In type specifications the
binding priority of the application of type constructors is higher than the binding of the arrow ->. To indicate that one
defines an operator the function name is on the left-hand side surrounded by brackets.

The function symbol before the double colon should be the same as the function symbol of the corresponding
rewrite rule.
The arity of the functions has to correspond with the number of arguments of which the Cartesian product is taken.
So, in CLEAN one can tell the arity of the function by its type.

Showing how the arity of a function is reflected in type.

map:: (a->b) [a] -> [b]                                   // map has arity 2
map f []     =   []
map f [x:xs] =   [f x : map f xs]

domap:: ((a->b) [a] -> [b])                               // domap has arity zero
domap = map

The arguments and the result types of a function should be of kind X.
In the specification of a type of a locally defined function one cannot refer to a type variable introduced in the type
specification of a surrounding function (there is not yet a scope rule on types defined). The programmer can
therefore not specify the type of such a local function. However, the type will be inferred and checked (after it is
lifted by the compiler to the global level) by the type system.



Counter example (illegal type specification). The function g returns a tuple. The type of the first tuple element is the same as
the type of the polymorphic argument of f. Such a dependency (here indicated by "^" cannot be specified).

f:: a -> (a,a)
f x = g x
where
    // g:: b -> (a^,b)
    g y = (x,y)

3.7.1 Typing Curried Functions 

In CLEAN all symbols (functions and constructors) are defined with fixed arity. However, in an application it is of course
allowed to apply them to an arbitrary number of arguments. A curried application of a function is an application of a function
with a number of arguments which is less than its arity (note that in CLEAN the arity of a function can be derived from its
type). With the aid of the predefined internal function _AP a curried function applied on the required number of arguments
is transformed into an equivalent uncurried function application.

The type axiom’s of the CLEAN type system include for all s defined with arity n the equivalence of
s::(t1->(t2->(...(tn->tr)...)) with s::t1 t2 ... tn -> tr.

3.7.2 Typing Operators

An operator is a function with arity two that can be used in infix position. An operator can be defined by enclosing the
operator name between parentheses in the left-hand-side of the function definition. An operator has a precedence (0
through 9, default 9) and a fixity (infixl, infixr or just infix, default infixl). A higher precedence binds more
tightly. When operators have equal precedence, the fixity determines the priority. In an expression an ordinary function
application always has the highest priority (10). See also Section 3.1 and 3.4.

The type of an operator must obey the requirements as defined for typing functions with arity two.
If the operator is explicitly typed the operator name should also be put between parentheses in the type rule.
When an infix operator is enclosed between parentheses it can be applied as a prefix function. Possible recursive
definitions of the newly defined operator on the right-hand-side also follow this convention.

Example of an operator definition and its type.

(o) infix 8:: (x -> y) (z -> x) -> (z -> y)               // function composition
(o) f g = \x -> f (g x)

3.7.3 Typing Partial Functions

Patterns and guards imply a condition that has to be fulfilled before a rewrite rule can be applied (see 3.2 and 3.3). This
makes it possible to define partial function s, functions which are not defined for all possible values of the specified type.

When a partial function is applied to a value outside the domain for which the function is defined it will result into a
run-time error. The compiler gives a warning when functions are defined which might be partial.

With the abort expression (see StdMisc.dcl) one can change any partial function into a total function (the abort
expression can have any type). The abort expression can be used to give a user-defined run-time error message

Use of abort to make a function total.

fac:: Int -> Int
fac 0        = 1
fac n
| n>=1       = n * fac (n - 1)
| otherwise  = abort "fac called with a negative number"

3.7.4 Explicit use of the Universal Quantifier in Function Types

When a type of a polymorphic function is specified in CLEAN, the universal quantifier is generally left out.



The function map defined as usual, no universal quantifier is specified:

map:: (a->b) [a] -> [b]
map f []     =   []
map f [x:xs] =   [f x : map f xs]

Counter Example. The same function map again, but now the implicit assumed universal quantifier has been made visible. It
shows the meaning of the specified type more precisely, but it makes the type definition a bit longer as well. The current
version of Clean does not yet allow universal quantifiers on the topmost level !!

map:: A.a b: (a->b) [a] -> [b]
map f []     =   []
map f [x:xs] =   [f x : map f xs]

Not yet Implemented: In Clean 2.0 it is allowed to explicitly write down the universal quantifier. One can write down the
qualifier A. (for all) direct after the :: in the type definition of a function. In this way one can explicitly introduce the type
variables used in the type definition of the function. As usual, the type variables thus introduced have the whole function
type definition as scope.

FunctionType = [{ArgType}+ ->] Type [ClassContext] [UnqTypeUnEqualities]
ArgType = BrackType

| [Strict] [UnqTypeAttrib] (UnivQuantVariables Type [ClassContext])
Type = {BrackType}+
BrackType = [Strict] [UnqTypeAttrib] SimpleType
UnivQuantVariables = A.{TypeVariable }+:

CLEAN offers Rank 2 polymorphism: it is possible to specify the universal quantifier with as scope the type of an argument
of a function. This makes it possible to pass polymorphic functions as an argument to a function which otherwise would be
treated monomorphic. The advantage of the use of Rank 2 polymorphism is that more programs will be approved by the
type system, but one explicitly (by writing down the universal quantifier) has to specify in the type of function that such a
polymorphic function is expected as argument or delivered as result.

Example: The function h is used to apply a polymorphic function of type (A.a: [a] -> Int) to a list of Intas well as a
list of Char. Due to the explicit use of the universal quantifier in the type specification of h this definition is approved.

h:: (A.a: [a] -> Int) -> Int
h f = f [1..100] + f [’a’..’z’]

Start = h length

Counter Example: The function h2 is used to apply a function of type ([a] -> Int) to a list of Int as well as a list of Char
. In this case the definition is rejected due to a type unification error. It is assumed that the argument of h2 is unifiable with
[a] -> Int, but it is not assumed that the argument of h2 is (A.a: [a] -> Int). So, the type variable a is unified with
both Int and Char, which gives rise to a type error.

h2:: ([a] -> Int) -> Int
h2 f = f [1..100] + f [’a’..’z’]

Start = h2 length

Counter Example: The function h3 is used to apply a function to a list of Int as well as a list of Char. Since no type is
specified the type inference system will assume f to be of type ([a] -> Int) but not of type (A.a: [a] -> Int).
The situation is the same as above and we will again get a type error.

h3 f = f [1..100] + f [’a’..’z’]

Start = h3 length

CLEAN cannot infer polymorphic functions of Rank 2 automatically! One is obligated to explicitly specify universally
quantified types of Rank 2.
Explicit universal quantification on higher ranks than rank 2 (e.g. quantifiers specified somewhere inside the type
specification of a function argument) is not allowed.
A polymorphic function of Rank 2 cannot be used in a curried way for those arguments in which the function is
universally quantified.



Counter Examples: In the example below it is shown that f1 can only be used when applied to all its arguments since its
last argument is universally quantified. The function f2 can be used curried only with respect to its last argument that is not
universally quantified.

f1:: a (A.b:b->b) -> a
f1 x id = id x

f2:: (A.b:b->b) a -> a
f2 id x = id x

illegal1 = f1                               // this will raise a type error

illegal2 = f1 3                             // this will raise a type error

legal1 :: Int
legal1 = f1 3 id where id x = x             // ok

illegal3 = f2                               // this will raise a type error

legal2 :: (a -> a)
legal2 = f2 id where id x = x               // ok

legal3 :: Int
legal3 = f2 id 3 where id x = x             // ok

3.7.5 Functions with Strict Arguments 

In the type definition of a function the arguments can optionally be annotated as being strict. In reasoning about functions it
will always be true that the corresponding arguments will be in strong root normal form (see 2.1) before the rewriting of the
function takes place. In general, strictness information will increase the efficiency of execution (see Chapter 10).

Example of a function with strict annotated arguments.

Acker:: !Int !Int -> Int
Acker 0 j =  inc j
Acker i 0 =  Acker (dec i) 1
Acker i j =  Acker (dec i) (Acker i (dec j))

The CLEAN compiler includes a fast and clever strictness analyzer that is based on abstract reduction (Nöcker, 1993). The
compiler can derive the strictness of the function arguments in many cases, such as for the example above. Therefore
there is generally no need to add strictness annotations to the type of a function by hand. When a function is exported from
a module (see Chapter 2), its type has to be specified in the definition module. To obtain optimal efficiency, the programmer
should also include the strictness information to the type definition in the definition module. One can ask the compiler to
print out the types with the derived strictness information and paste this into the definition module.

Notice that strictness annotations are only allowed at the outermost level of the argument type. Strictness
annotations inside type instances of arguments are not possible (with exception for some predefined types like
tuples and lists). Any (part of) a data structure can be changed from lazy to strict, but this has to be specified in the
type definition (see 5.1.5).



Chapter 4

Predefined Types

CleanCleanCleanCleanClean

Certain types like Integers, Booleans, Characters, Reals, Lists, Tuples and Arrays are that frequently used that they
have been predefined in CLEAN for reasons of efficiency and/or notational convenience. These types and the syntactic
sugar that has been added to create and to inspect (via pattern matching) objects of these popular types are treated in this
chapter.

PredefinedType = BasicType // see 4.1
| ListType // see 4.2
| TupleType // see 4.3
| ArrayType // see 4.4
| ArrowType // see 4.6
| PredefType // see 4.7

In Chapter 5 we will explain how new types can be defined.

4.1 Basic Types: Int, Real, Char and Bool

Basic types are algebraic types (see 5.1) which are predefined for reasons of efficiency and convenience: Int (for 32 bits
integer values), Real (for 64 bit double precision floating point values), Char (for 8 bits ASCII character values) and Bool
(for 8 bits Boolean values). For programming convenience special syntax is introduced to denote constant values (data
constructors) of these predefined types. Functions to create and manipulate objects of basic types can be found in the
CLEAN StdEnv library (as indicated below).

There is also a special notation to denote a string (an unboxed array of characters, see 4.4) as well as to denote a list of
characters (see 4.2.1).

BasicType = Int // see StdInt.dcl
| Real // see StdReal.dcl
| Char // see StdChar.dcl
| Bool // see StdBool.dcl

4.1.1 Creating Constant Values of Basic Type

In a graph expression a constant valueof basic type Int, Real, Bool or Char can be created.

BasicValue = IntDenotation
| RealDenotation
| BoolDenotation
| CharDenotation

IntDenotation = [Sign]{Digit}+ // decimal number
| [Sign]0{OctDigit}+ // octal number
| [Sign]0x{HexDigit}+ // hexadecimal number

Sign = + | -
RealDenotation = [Sign]{Digit}+.{Digit}+[E[Sign]{Digit}+]
BoolDenotation = True | False
CharDenotation = CharDel AnyChar/CharDel CharDel
CharsDenotation = CharDel {AnyChar/CharDel}+ CharDel



AnyChar = IdChar | ReservedChar | SpecialChar
ReservedChar = ( | ) | { | } | [ | ] | ; | , | .
SpecialChar = \n | \r | \f | \b // newline,return,formf,backspace

| \t | \\ | \CharDel // tab,backslash,character delimiter
| \StringDel // string delimiter
| \{OctDigit}+ // octal number 
| \x{HexDigit}+ // hexadecimal number 

Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
OctDigit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
HexDigit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| A | B | C | D | E | F
| a | b | c | d | e | f

CharDel = ’
StringDel = "

Example of denotations.

Integer (decimal):        0|1|2|...|8|9|10| ... |-1|-2| ...
Integer (octal):          00|01|02|...|07|010| ... |-01|-02| ...
Integer (hexadecimal):    0x0|0x1|0x2|...|0x8|0x9|0xA|0xB ... |-0x1|-0x2| ...
Real:                     0.0|1.5|0.314E10| ...
Boolean:                  True | False
Character:                ’a’|’b’|...|’A’|’B’|...
String:                   "" | "Rinus"|"Marko"|...
List of characters:       [’Rinus’]|[’Marko’]|...

4.1.2 Patterns of Basic Type

A constant value of predefined basic type Int, Real, Bool or Char (see 4.1) can be specified as pattern.

The denotation of such a value must obey the syntactic description given in above.

Use of Integer values in a pattern.

nfib:: Int -> Int
nfib 0 = 1
nfib 1 = 1
nfib n = 1 + nfib (n-1) * nfib (n-2)

4.2 Lists

A listis an algebraic data type predefined just for programming convenience. A list can contain an infinite number of
elements. All elements must be of the same type. Lists are very often used in functional languages and therefore the usual
syntactic sugar is provided for the creation and manipulation of lists (dot-dot expressions, list comprehensions) while there
is also special syntax for a list of characters.

Lists can be lazy (default), and optionally be defined as head strict, spine strict, strict (both head and spine strict), head
strict unboxed, and strict unboxed. Lazy, strict and unboxed lists are all objects of different: type. All these different types of
lists have different time and space properties ( see 10.1.3). Because these lists are of different type, conversion functions
are needed to change e.g. a lazy list to a strict list. Functions defined on one type of a list cannot be applied to another type
of list. However, one can define overloaded functions that can be used on any list: lazy, strict as well as on unboxed lists.

ListType = [[ListKind] Type [SpineStrictness]]
ListKind = ! // head strict list

| # // head strict, unboxed list
SpineStrictness = ! // tail (spine) strict list

All elements of a list must be of the same type.



4.2.1 Creating Lists

Because lists are very convenient and very frequently used data structures, there are several syntactical constructs in
CLEAN for creating lists, including dot-dot expressions and ZF-expressions. Since CLEAN is a lazy functional language,
the default list in CLEAN is a lazy list. However, in some cases strict lists, spine strict lists and unboxed lists can be more
convenient and more efficient.

List = ListDenotation
| DotDotExpression
| ZF-expression

All elements of a list must be of the same type.

Lazy Lists

ListDenotation = [[ListKind] [{LGraphExpr}-list [: GraphExpr]] [SpineStrictness] ]
LGraphExpr = GraphExpr

| CharsDenotation

CharsDenotation = CharDel {AnyChar/CharDel}+ CharDel
CharDel = ’

One way to create a list is by explicit enumeration of the list elements. Lists are constructed by adding one or more
elements to an existing list.

Various ways to define a lazy list with the integer elements 1,3,5,7,9.

[1:[3:[5:[7:[9:[]]]]]]
[1:3:5:7:9:[]]
[1,3,5,7,9]
[1:[3,5,7,9]]
[1,3,5:[7,9]]

A special notation is provided for the frequently used list of characters.

Various ways to define a lazy list with the characters ’a’, ’b’ and ’c’.

[’a’:[’b’:[’c’:[]]]]
[’a’,’b’,’c’]
[’abc’]
[’ab’,’c’]

Strict , Unboxed and Overloaded Lists

ListKind = ! // head strict list
| # // unboxed list
| | // overloaded list

SpineStrictness = ! // spine strict list

In CLEAN any data structure can be made (partially) strict or unboxed (see 10.1). This has consequences for the time and
space behavior of the data structure.

For instance, lazy lists are very convenient (nothing is evaluated unless it is really needed for the computation, one can deal
with infinite data structures), but they can be inefficient as well if actually always all lists elements are evaluated sooner or
later. Strict lists are often more efficient, but one has to be certain not to trigger a not used infinite computation. Spine strict
lists can be more efficient as well, but one cannot handle infinite lists in this way. Unboxed lists are head strict. The
difference with a strict list is that the representation of an unboxed list is more compact: instead of a pointer to the lists
element the list element itself is stored in the list. However, unboxed lists have as disadvantage that they can only be used
in certain cases: they can only contain elements of basic type, records and tuples. It does not make sense to offer
unboxing for arbitrary types: boxing saves space, but not if Cons nodes are copied often: the lists elements are copied as
well while otherwise the contents could remain shared using the element pointer instead.



In terms of efficiency it can make quite a difference (e.g. strict lists can sometimes be 6 times faster) which kind of list is
actually used. But, it is in general not decidable which kind of list is best to use. This depends on how a list is used in a
program. A wrong choice might turn a program from useful to useless (too inefficient), from terminating to non-terminating.

Because lists are so frequently used, special syntax is provided to make it easier for a programmer to change from one type
of list to another, just by changing the kind of brackets used. One can define a list of which the headelement is strict but the
spine is lazy (indicated by [! ]), a list of which the spine is strict but the head element is lazy (indicated by [ !]) and a
completely evaluated list (indicated by [! !]). One can have an unboxed list with a strict head element (indicated by [# ]
) and a completely evaluated unboxed list of which in addition the spine is strict as well (indicated by [# !]

Note that all these different lists are of different type and consequently these lists cannot be mixed and unified with each
other. With conversion functions offered in the CLEAN libraries it is possible to convert one list type into another. It is also
possible to define an overloaded list and overloaded functions that work on any list (see hereafter).

Various types of lists.
[  fac 10 : expression  ]                   // lazy list
[! fac 10 : expression  ]                   // head strict list
[! fac 10 : expression !]                   // head strict and tail strict list
[# fac 10 : expression  ]                   // head strict list, unboxed
[# fac 10 : expression !]                   // head strict and tail strict list, unboxed

Unboxed data structures can only contain elements of basic type, records and arrays.

One can create an overloaded list that will fit on any type of list (lazy, strict or unboxed)

Example of an overloaded list.

[| fac 10 : expression ]                    // overloaded list

Other ways to create lists are via dot-dot expressions and list comprehensions.

DotDot Expressions

DotDotExpression = [[ListKind] GraphExpr [,GraphExpr]..[GraphExpr] [SpineStrictness] ]

With a dot-dot expression the list elements can be enumerated by giving the first element (n1), an optional second element
(n2) and an optional last element (e).

Alternative ways to define a list a dot dot expression.

[1,3..9]                                        // [1,3,5,7,9]
[1..9]                                          // [1,2,3,4,5,6,7,8,9]
[1..]                                           // [1,2,3,4,5 and so on ...
[’a’..’c’]                                      // [’abc’]

The generated list is in general calculated as follows:

from_then_to:: !a !a !a -> .[a] | Enum a
from_then_to n1 n2 e
| n1 <= n2   = _from_by_to n1 (n2-n1) e
             = _from_by_down_to n1 (n2-n1) e
where
    from_by_to n s e
    | n<=e   = [n : _from_by_to (n+s) s e]
             = []

    from_by_down_to n s e
    | n>=e   = [n : _from_by_down_to (n+s) s e]
             = []



The step size is one by default. If no last element is specified an infinite list is generated.

With a dot-dot expression one can also define a lazy list, a strict list, an unboxed list or an overloaded list.

Different types of lists (lazy, strict, unboxed and overloaded can be defined with a dot dot expression as well.

[  1,3..9  ]                            // a lazy list
[! 1,3..9  ]                            // a head strict list
[! 1,3..9 !]                            // a strict list (head and spine)
[# 1,3..9  ]                            // a head strict list, unboxed
[# 1,3..9 !]                            // a strict list (head and spine), unboxed
[| 1,3..9  ]                            // an overloaded list

Dot-dot expression can only be used if one imports StdEnum from the standard library.
Dot-dot expressions are predefined on objects of type Int, Real and Char, but dot-dots can also be applied to any
user defined data structure for which the class enumeration type has been instantiated (see CLEANs Standard
Environment).

List Comprehensions

ZF-expression = [[ListKind] GraphExpr \\ {Qualifier}-list [SpineStrictness]]
Qualifier = Generators {, let { {LocalDef}+ } } {|Guard}
Generators = Generator {& Generator}
Generator = Selector <- ListExpr // select from a lazy list

| Selector <|- ListExpr // select from an overloaded list
| Selector <-: ArrayExpr // select from an array

Selector = BrackPattern // for brack patterns see 3.2
ListExpr = GraphExpr
ArrayExpr = GraphExpr
Guard = BooleanExpr
BooleanExpr = GraphExpr
ListKind = ! // head strict list

| # // unboxed list
| | // overloaded list

SpineStrictness = ! // spine strict list

With a list generator called a ZF-expression one can construct a list composed from elements drawn from other lists or
arrays. With a list generatorone can draw elements from lazy list. The symbol ’<-’ is used to draw elements from a lazy list,
the symbol ’<|-’ can be used to draw elements from any (lazy, strict, unboxed) list. With an array generator (use symbol  ’
<-:’) one can draw elements from any array. One can define several generators in a row separated by a comma. The last
generator in such a sequence will vary first. One can also define several generators in a row separated by a ’&’. All
generators in such a sequence will vary at the same time but the drawing of elements will stop as soon of one the
generators is exhausted. This construct can be used instead of the zip-functions that are commonly used. Selectors are
simple patterns to identify parts of a graph expression. They are explained in Section 3.6. Only those lists produced by a
generator that match the specified selector are taken into account. Guards can be used as filter in the usual way.

The scope of the selector variables introduced on the left-hand side of a generator is such that the variables can be used in
the guards and other generators that follow. All variables introduced in this way can be used in the expression before the
\\ (see the picture below).

[ expression \\  selector  <- expression
             |   guard
             ,   selector  <- expression
             |   guard
]



ZF-expression:
expr1 yields [(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2)]
expr2 yields [(0,0), (1,1), (2,2)].
expr3 yields [(0,0), (1,0), (1,1), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2), (3,3)])

expr1 = [(x,y) \\ x <- [0..3] , y <- [0..2]]
expr2 = [(x,y) \\ x <- [0..3] & y <- [0..2]]
expr3 = [(x,y) \\ x <- [0..3] , y <- [0..x]]

ZF-expression: a well-know sort.

sort:: [a] -> [a] | Ord a
sort []      = []
sort [p:ps]  = sort [x \\ x<-ps | x<=p] ++ [p] ++ sort [x \\ x<-ps | x>p]

ZF-expression sorting a strict (head and tail strict) list.

ssort:: [!a!] -> [!a!] | Ord a
ssort [!!]       = [!!]
ssort [!p:ps!]   = ssort [!x \\ x<|-ps |x<=p!] ++ [!p!] ++ ssort [!x \\ x <|-ps | x>p!]

Overloaded ZF-expression sorting any list (lazy, strict or unboxed).

gsort:: (l a) -> (l a) | Ord a & List l a
gsort [|]        = [|]
gsort [|p:ps]    = gsort [|x \\ x<|-ps | x<=p] ++ [|p] ++ gsort [|x \\ x <|-ps | x>p]

ZF-expression: converting an array into a list.

ArrayA = {1,2,3,4,5}

ListA:: [a]
ListA = [a \\ a <-: ArrayA]

Local definitions can be introduced in a ZF expression after generator(s) using , let:

Qualifier = Generators { , let { {LocalDef}+ } } {|Guard}

The variables introduced in this way can be used in the guard and local definitions, other qualifiers that follow, and the
expression before the \\.

4.2.2 List Patterns

An object of the predefined algebraic type list can be specified as pattern in a function, case expression or list generator.

ListPattern = [[ListKind][{LGraphPattern}-list [: GraphPattern]] [SpineStrictness]]
LGraphPattern = GraphPattern

| CharsDenotation
ListKind = ! // head strict list

| # // unboxed head strict list
| | // overloaded list

SpineStrictness = ! // spine strict list

Notice that only simple list patterns can be specified (one cannot use a dot-dot expression or list comprehension to define a
list pattern).



Use of list patterns, use of guards, use of variables to identify patterns and sub-patterns; merge merges two (sorted) lazy
lists into one (sorted) list.

merge:: [Int] [Int] -> [Int]
merge f []   = f
merge [] s   = s
merge f=:[x:xs] s=:[y:ys]
| x<y        = [x:merge xs s]
| x==y       = merge f ys
| otherwise  = [y:merge f ys]

merge_u merges two (sorted) head strict unboxed lists into one strict unboxed (sorted) list.

merge_u:: [#Int] [#Int] -> [#Int]
merge_u f [#] = f
merge_u [#] s = s
merge_u f=:[#x:xs] s=:[#y:ys]
| x<y         = [#x:merge_u xs s]
| x==y        = merge_u f ys
| otherwise   = [#y:merge_u f ys]

merge_l merges two (sorted) lists into one (sorted) list. Any list (lazy, strict or unboxed) can be merged, but both lists have
to be the same (both lazy, strict, head strict, tail strict or unboxed)

merge_l:: (l a)(l a) -> (l a) | List l a
merge_l f [|] = f
merge_l [|] s = s
merge_l f=:[|x:xs] s=:[|y:ys]
| x<y         = [|x:merge_l xs s]
| x==y        = merge_l f ys
| otherwise   = [|y:merge_l f ys]

4.3 Tuples

A tuple is an algebraic data type predefined for reasons of programming convenience and efficiency. Tuples have as
advantage that they allow bundling a finite number of objects of arbitrary type into a new object without being forced to
define a new algebraic type for such a new object. This is in particular handy for functions that return several values.

4.3.1 Creating Tuples

Tuples can be created that can be used to combine different (sub-)graphs into one data structure without being forced to
define a new type for this combination. The elements of a tuple need not be of the same type. Tuples are in particular
handy for functions that return multiple results.

Tuple = (GraphExpr,{GraphExpr}-list)

Example of a Tuple of type (String,Int,[Char]).

("this is a tuple with",3,[’elements’])

One can turn a lazy tuple element into a strict one by putting strictness annotations in the corresponding type instance on
the tuple elements that one would like to make strict. When the corresponding tuple is put into a strict context the tuple and
the strict annotated tuple elements will be evaluated. As usual one has to take care that these elements do not represent
an infinite computation.

Strict and lazy tuples are regarded to be of different type. However, unlike is the case with any other data structure, the
compiler will automatically convert strict tuples into lazy ones, and the other way around. This is done for programming
convenience. Due to the complexity of this automatic transformation, the conversion is done for tuples only! For the
programmer it means that he can freely mix tuples with strict and lazy tuple elements. The type system will not complain
when a strict tuple is offered while a lazy tuple is required. The compiler will automatically insert code to convert non-strict
tuple elements into a strict version and backwards whenever this is needed.



Example of a complex number as tuple type with strict components.

::Complex :== (!Real,!Real)

(+) infixl 6:: !Complex !Complex -> Complex
(+) (r1,i1) (r2,i2) = (r1+r2,i1+i2)

which is equivalent to

(+) infixl 6:: !(!Real,!Real) !(!Real,!Real) -> (!Real,!Real)
(+) (r1,i1) (r2,i2) = (r1+r2,i1+i2)

when for instance G is defined as

G:: Int -> (Real,Real)

than the following application is approved by the type system:

Start = G 1 + G

4.3.2 Tuple Patterns

An object of the predefined algebraic type tuple can be specified as pattern in a function, case expression or list generator.

TuplePattern = (GraphPattern,{GraphPattern}-list)

Example of the use of a pattern match on Tuples to access components of a Complex number.

:: complex :== (Real,Real)         // complex is defined as type synonym for (real,Real)

realpart:: Complex -> Real
realpart (re,_) = re               // selecting the real part of a Complex number

imagpart:: Complex -> Real
imagpart (_,im) = im               // selecting the imaginary part of a Complex number

4.4 Arrays

An array is an algebraic data type predefined for reasons of efficiency. Arrays contain a finite number of elements that all
have to be of the same type. An array has as property that its elements can be accessed via indexing in constant time. An
array index must be an integer value between 0 and the number of elements of the array-1. Destructive update of array
elements is possible thanks to uniqueness typing. For programming convenience special syntax is provided for the
creation, selection and updating of array elements (array comprehensions) while there is also special syntax for strings (i.e.
unboxed arrays of characters). Arrays have as disadvantage that their use increases the possibility of a runtime error
(indices that might get out-of-range).

To obtain optimal efficiency in time and space, arrays are implemented different depending on the concrete type of the array
elements. By default an array is implemented as a lazy array (type {a}), i.e. an array consists of a contiguous block of
memory containing pointers to the array elements. The same representation is chosen if strict arrays (define its type as
{!a}) are being used. The difference is that all elements of a strict array will be evaluated if the array is evaluated. It
makes no sense to make a distinction between head strictness and tail strictness for arrays as is the case for lists. As usual
one has to take care that the strict elements do not represent an infinite computation.

For elements of basic type, record type and tuple type an unboxed array (define its type as {#a}) can be used. In that latter
case the pointers are replaced by the array elements themselves. Lazy, strict and unboxed arrays are considered  to be
objects of different type. However, most predefined operations on arrays are overloaded such that they can be used on
lazy, on strict as well as on unboxed arrays.

ArrayType = {[ArrayKind] Type}
ArrayKind = ! // strict array

| # // unboxed array



4.4.1 Creating Arrays and Selection of field Elements

An array is a tuple/record-like data structure in which all elements are of the same type. Instead of selection by position or
field name the elements of an array can be selected very efficiently in constant time by indexing. The update of arrays is
done destructively in CLEAN and therefore arrays have to be unique (see Chapter 9) if one wants to use this feature.
Arrays are very useful if time and space consumption is becoming very critical (CLEAN arrays are implemented very
efficiently). If efficiency is not a big issue we recommend not to use arrays but to use lists instead: lists induce a much
better programming style. Lists are more flexible and less error prone: array elements can only be accessed via indices
and if you make a calculation error, indices may point outside the array bounds. This is detected, but only at run-time. In
CLEAN, array indices always start with 0. More dimensional arrays (e.g. a matrix) can be defined as an array of arrays.

For efficiency reasons, arrays are available of several types: there are lazy arrays (type {a}), strict arrays (type {!a}) and
unboxed arrays (e.g. type{#Int}). All these arrays are considered to be of different type. By using the overloading
mechanism (type constructor classes) one can still define (overloaded) functions that work on any of these arrays.

Array = ArrayDenotation
| ArrayUpdate
| ArrayComprehension

All elements of an array need to be of same type.

Simple Array

A new array can be created in a number of ways. A direct way is to simply list the array elements.

ArrayDenotation = {[ArrayKind] {GraphExpr}-list}
| StringDenotation

StringDenotation = StringDel{AnyChar/StringDel}StringDel
StringDel = "

By default this array denotation is overloaded. The type determines whether a lazy, strict or unboxed array is created. The
created array is unique (the * or . attribute in front of the type, see Chapter 9) to make destructive updates possible.

A lazy array is a box with pointers pointing to the array elements. One can also create a strict array by adding a ! after { (or
explicitly define its type as {!Int}), which will have the property that the elements to which the array box points will
always be evaluated. One can furthermore create an unboxed array by adding a # (or explicitly define its type as {#Int}),
which will have the property that the evaluated elements (which have to be of basic value) are stored directly in the array
box itself. Clearly the last one is the most efficient representation (see also Chapter 10).

Creating a lazy array, strict and unboxed unique array of integers with elements 1,3,5,7,9.

MyLazyArray:: .{Int}
MyLazyArray = {1,3,5,7,9}   // overloaded array denotation

MyStrictArray:: .{!Int}
MyStrictArray = {!1,3,5,7,9}

MyUnboxedArray:: .{#Int}
MyUnboxedArray = {#1,3,5,7,9}

Creating a two dimensional array, in this case a unique array of unique arrays of unboxed integers.

MatrixA:: {.{#Int}}
MatrixA = {{1,2,3,4},{5,6,7,8}}

To make it possible to use operators such as array selection on any of these arrays (of actually different type) a multi
parameter type constructor class has been defined (in StdArray) which expresses that "some kind of array structure is
created". The compiler will therefore deduce the following general type:

Array :: .(a Int)| Array a Int
Array = {1,3,5,7,9}



A string is predefined type which equivalent to an unboxed array of characters {#Char}. Notice that this array is not
unique, such that a destructive update of a string is not allowed. There is special syntax to denote strings.

Some ways to define a string, i.e. an unboxed array of character.

"abc"
{’a’,’b’,’c’}

There are a number of handy functions for the creation and manipulation of arrays predefined in CLEAN ’s Standard
Environment. These functions are overloaded to be able to deal with any type of array. The class restrictions for these
functions express that "an array structure is required" containing "an array element".

Type of some predefined functions on Arrays.

createArray  :: !Int e ->.(a e) | Array a e             // size arg1, a.[i] = arg2
size         :: (a e) -> Int | Array a                  // number of elements in array

Array Update and Array Comprehensions

It is also possible to construct a new array out of an existing one (a functional array update).

ArrayUpdate = { ArrayExpr & {ArrayIndex {Selection} = GraphExpr}-list [\\ {Qualifier}-list]}
ArrayComprehension = {[ArrayKind] GraphExpr \\ {Qualifier}-list}
Selection = .FieldName

| .ArrayIndex
ArrayExpr = GraphExpr

Left from the & (a & [i] = v is pronounced as: array a with for a.[i] the value v. The old array has to be specified
which has to be of unique type to make destructive updating possible. On the right from the & those array elements are
listed in which the new array differs from the old one. One can change any element of the array or any field or array
element of a record or array stored in the array. The &-operator is strict in its arguments.

An array expression must be of type array.
The array expression to the left of the update operator ’&’ should yield an object of type unique array.
An array index must be an integer value between 0 and the number of elements of the array-1. An index out of this
range will result in a run-time error.
Unboxed arrays can only be of basic type, record type or array type.
A unique array of any type created by an overloaded function cannot be converted to a non-unique array.

Important: For reasons of efficiency we have defined the updates only on arrays which are of unique type (*{..}), such
that the update can always be done destructively (!) which is semantically sound because the original unique array is
known not to be used anymore.

Creating an array with the integer elements 1,3,5,7,9 using the update operator.

{CreateArray 5 0 & [0] = 1, [1] = 3, [2] = 5, [3] = 7, [4] = 9}
{CreateArray 5 0 & [1] = 3, [0] = 1, [3] = 7, [4] = 9, [2] = 5}

One can use an array comprehension to list these elements compactly in the same spirit as with a list comprehension (see
4.2.1).

Array comprehensions can be used in combination with the update operator. Used in combination with the update operator
the original uniquely typed array is updated destructively. The combination of array comprehensions and update operator
makes it possible to selectively update array elements on a high level of abstraction.

Creating an array with the integer elements 1,3,5,7,9 using the update operator in combination with array and list
comprehensions.

{CreateArray 5 0 & [i] = 2*i+1 \\ i <- [0..4]}
{CreateArray 5 0 & [i] = elem \\ elem <-: {1,3,5,7,9} & i <- [0..4]}
{CreateArray 5 0 & elem \\ elem <-: {1,3,5,7,9}}



Array comprehensions used without update operator automatically generate a whole new array. The size of this new array
will be equal to the size of the first array or list generator from which elements are drawn. Drawn elements that are rejected
by a corresponding guard result in an undefined array element on the corresponding position.

Creating an array with the integer elements 1,3,5,7,9 using array and list comprehensions.

{elem \\ elem <-: {1,3,5,7,9}}
{elem \\ elem <-  [1,3,5,7,9]}

Array creation, selection, update). The most general types have been defined. One can of course always restrict to a more
specific type.

MkArray:: !Int (Int -> e) ->.(a e) | Array a e
MkArray i f = {f j \\ j <- [0..i-1]}

SetArray:: *(a e) Int e ->.(a e) | Array a e
SetArray a i v = {a & [i] = v}

CA:: Int e ->.(a e) | Array a e
CA i e = createArray i e

InvPerm:: {Int} ->.{Int}
InvPerm a = {CA (size a) 0 & [a.[i]] = i \\ i <- [0..maxindex a]}

ScaleArray:: e (a e) ->.(a e) | Array a e & Arith e
ScaleArray x a = {x * e \\ e <-: a}

MapArray:: (a -> b) (ar a) ->.(ar b) | Array ar a & Array ar b
MapArray f a = {f e \\ e <-: a}

inner:: (a e) (a e) ->.(a e) | Array a e & Arith e
inner v w
| size v == size w    = {vi * wi \\ vi <-: v & wi <-: w}
| otherwise           = abort "cannot take inner product"

ToArray:: [e] ->.(a e) | Array a e
ToArray list = {e \\ e <- list}

ToList:: (a e) ->.[e] | Array a e
ToList array = [e \\ e <-: array]

Example of operations on 2 dimensional arrays generating new arrays.

maxindex n :== size n - 1

Adj:: {{#Int}} ->.{.{#Int}}
Adj ma = {{ma.[i,j] \\ i <- rowindex} \\ j <- colindex}
    where
    rowindex = [0..maxindex ma]
    colindex = [0..maxindex ma.[0]]

    Multiply:: {{#Int}} {{#Int}} ->.{.{#Int}}
    Multiply a b =   {  {sum [a.[i,j]*b.[j,k] \\ j <- colindex] \\ k <- rowindex}
                     \\ i <- rowindex
                     }
    where
        rowindex = [0..maxindex a]
        colindex = [0..maxindex a.[0]]



Updating unique arrays using a unique array selection.

MyArray:: .{#Real}
MyArray = {1.5,2.3,3.4}

ScaleArrayElem:: *{#Real} Int Real -> .{#Real}
ScaleArrayElem ar i factor
# (elem,ar) = ar![i]
= {ar & [i] = elem*factor}

Scale2DArrayElem:: {*{#Real}} (Int,Int) Real -> {.{#Real}}
Scale2DArrayElem ar (i,j) factor
# (elem,ar)       = ar![i].[j]
= {ar & [i].[j]   = elem*factor}

Scale2DArrayElem2:: {*{#Real}} (Int,Int) Real -> {.{#Real}}
Scale2DArrayElem2 ar (i,j) factor
# (elem,ar)       = ar![i,j]
= {ar & [i,j]     = elem*factor}

# with Array Update

variable = {variable & updates} after # or #! can be abbreviated to variable & updates, by omitting =
{variable and }.

| Variable & {ArrayIndex {Selection} = GraphExpr}-list [\\ {Qualifier}-list] ;

For example

# a & [i] = x
instead of
# a = {a & [i] = x}

Multiple indices and fields are also possible, for example: (for record updates see 5.2.1 below)

# r & a.[i].x = y
instead of
# r = {r & a.[i].x = y}

Selection of an Array Element

ArraySelection =  ArrayExpr.ArrayIndex {Selection}
| [ArrayExpr!ArrayIndex {Selection}

ArrayIndex = [{IntegerExpr}-list]
IntegerExpr = GraphExpr
Selection = .FieldName

| .ArrayIndex

With an array selection (using the ’.’ symbol) one can select an array element. When an object a is of type Array, the ith
element can be selected (computed) via a.[i]. Array selection is left-associative: a.[i,j,k] means
((a.[i]).[j]).[k]. A "unique" selection using the ’!’ symbol returns a tuple containing the demanded array element
and the original array. This type of array selection can be very handy for destructively updating of uniquely typed arrays
with values that depend on the current contents of the array. Array selection binds more tightly (priority 11) than application
(priority 10).

4.4.2 Array Patterns

An object of type array can be specified as pattern. Notice that only simple array patterns can be specified on the left-hand
side (one cannot use array comprehensions). Only those array elements which contents one would like to use in the
right-hand side need to be mentioned in the pattern.

All array elements of an array need to be of same type.
An array index must be an integer value between 0 and the number of elements of the array-1. Accessing an array
with an index out of this range will result in a run-time error.



ArrayPattern = {{GraphPattern}-list}
| {{ArrayIndex = Variable}-list}
| StringDenotation

It is allowed in the pattern to use an index expression in terms of the other formal arguments (of type Int) passed to the
function to make a flexible array access possible.

Use of array patterns.

Swap:: !Int !Int !*(a e) ->.(a e) | Array a e
Swap i j a=:{[i]=ai,[j]=aj} = {a & [i]=aj,[j]=ai}

4.5 Predefined Type Constructors

Predefined types can also be used in curried way. To make this possible a type constructor has been predefined for all
predefined types of higher order kind (see also 5.1.2). The kind X stands for any so-called first-order type: a type expecting
no further arguments ((Int, Bool, [Int], etcetera). All function arguments are of kind X. The kind X -> Xstands for
a type that can be applied to a (first-order) type, which then yields another first-order type, X -> X -> X expects two type
arguments, and so on.

Int, Bool, [Int], Tree [Int]   :: X
[], Tree, (,) Int, (->) a, {}  :: X -> X
(,), (->)                      :: X -> X -> X
(,,)                           :: X -> X -> X -> X

PredefinedTypeConstructor = [] // list type constructor
| [! ] // head strict list type constructor
| [ !] // tail strict list type constructor
| [!!] // strict list type constructor
| [#] // unboxed head strict list type
| [#!] // unboxed strict list type
| ({,}+) // tuple type constructor (arity >= 2)
| {} // lazy array type constructor
| {!} // strict array type constructor
| {#} // unboxed array type constructor
| (->) // arrow type constructor
| () // unit type constructor

So, all predefined types can be written down in prefix notation as well, as follows:
[] a         is equivalent with [a]
[! ] a       is equivalent with [!a]
[ !] a       is equivalent with [a!]
[!!] a       is equivalent with [!a!]
[# ] a       is equivalent with [#a]
[#!] a       is equivalent with [#a!]
(,) a b      is equivalent with (a,b)
(,,) a b c   is equivalent with (a,b,c) and so on for n-tuples
{} a         is equivalent with {a}
{!} a        is equivalent with {!a}
{#} a        is equivalent with {#a}
(->) a b     is equivalent with (a -> b)

4.6 Arrow Types

The arrow type is a predefined type constructor used to indicate function objects (these functions have at least arity one).
One can use the Cartesian product (uncurried version) to denote the function type (see 3.7) to obtain a compact notation.
Curried functions applications and types are automatically converted to their uncurried equivalent versions.

ArrowType = (Type -> Type)

Example of an arrow type.

((a b -> c) [a] [b] -> [c])

being equivalent with:

((a -> b -> c) -> [a] -> [b] -> [c])



4.7 Predefined Abstract Types

Abstract data types are types of which the actual definition is hidden (see 5.4). In CLEAN the types World and File are
predefined abstract data types. They are recognised by the compiler and treated specially, either for efficiency or because
they play a special role in the language. Since the actual definition is hidden it is not possible to denotate constant values
of these predefined abstract types. There are functions predefined in the CLEAN library for the creation and manipulation
of these predefined abstract data types. Some functions work (only) on unique objects.

An object of type *World (* indicates that the world is unique) is automatically created when a program is started. This
object is optionally given as argument to the Start function  (see 2.3). With this object efficient interfacing with the outside
world (which is indeed unique) is possible.

An object of type File or *File (unique File) can be created by means of the functions defined in StdFileIO (see
CLEANs Standard Library). It makes direct manipulation of persistent data possible. The type File is predefined for
reasons of efficiency: CLEAN Files are directly coupled to concrete files.

The type String is a predefined synonym type that is predefined for convenience. The type is synonym for an unboxed array
of characters {#Char}.

PredefType = World // see StdWorld.dcl
| File // see StdFileIO.dcl
| String // synonym for {#Char}



Chapter 5

Defining New Types

CleanCleanCleanCleanClean

CLEAN is a strongly typed language: every object (graph) and function (graph rewrite rule) in CLEAN has a type. The basic
type system of CLEAN is based on the classical polymorphic Milner/Hindley/Mycroft (Milner  1978; Hindley 1969, Mycroft,
1984) type system. This type system is adapted for graph rewriting systems and extended with basic types, (possibly
existentially and universally quantified) algebraic types, record types, abstract types and synonym types.

New types can be defined in an implementation as well as in a definition module. Types can only be defined on the global
level. Abstract types can only be defined in a definition module hiding the actual implementation in the corresponding
implementation module.

TypeDef = AlgebraicTypeDef // see 5.1
| RecordTypeDef // see 5.2
| SynonymTypeDef // see 5.3
| AbstractTypeDef // see 5.4
| AbstractSynonymTypeDef
| ExtensibleAlgebraicTypeDef
| AlgebraicTypeDefExtension

5.1 Defining Algebraic Data Types

With an algebraic data type one assigns a new type constructor (a new type) to a newly introduced data structure. The data
structure consists of a new constant value (called the data constructor) that can have zero or more arguments (of any
type). Every data constructor must unambiguously have been (pre) defined in an algebraic data type definition  Several
data constructors can be introduced in one algebraic data type definition which makes it possible to define alternative data
structures of the same algebraic data type. The data constructors can, just like functions, be used in a curried way. Also
type constructors can be used in a curried way, albeit only in the type world of course.

Polymorphic algebraic data types can be defined by adding (possibly existentially or universally quantified, see below) type
variables to the type constructors on the left-hand side of the algebraic data type definition. The arguments of the data
constructor in a type definition are type instances of types (that are defined or are being defined).

Types can be preceded by uniqueness type attributes (see Chapter 9). The arguments of a defined data constructor can
optionally be annotated as being strict (see 5.1.5).

AlgebraicTypeDef = ::TypeLhs = ConstructorDef
{| ConstructorDef} ;

TypeLhs = [*] TypeConstructor {TypeVariable}
TypeConstructor = TypeName
ConstructorDef = [ExistQuantVariables] ConstructorName {ArgType} {& ClassConstraints}

| [ExistQuantVariables] (ConstructorName) [FixPrec] {ArgType} {& ClassConstraints}
FixPrec = infixl [Prec]

| infixr [Prec]
| infix [Prec]

Prec = Digit

BrackType = [Strict] [UnqTypeAttrib] SimpleType
ArgType = BrackType

| [Strict] [UnqTypeAttrib] (UnivQuantVariables Type [ClassContext])
ExistQuantVariables = E.{TypeVariable }+:
UnivQuantVariables = A.{TypeVariable }+:



Example of an algebraic type definition and its use.

::Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
::Tree a = NilTree
         | NodeTree a (Tree a) (Tree a)

MyTree:: (Tree Int)                    // constant function yielding a Tree of Int
MyTree = NodeTree 1 NilTree NilTree

An algebraic data type definition can be seen as the specification of a grammar in which is specified what legal data objects
are of that specific type. Notice that all other CLEAN types (basic, list, tuple, array, record, abstract types) can be regarded
as special cases of an algebraic type.

Constructors with two arguments can be defined as infix constructor, in a similar way as function operators (with fixity (
infixl, infixr or just infix, default infixl) and precedence (0 through 9, default 9). If infix constructors are
surrounded by brackets they can also be used in prefix position (see 3.1 and 3.4). In a pattern match they can be written
down in infix position as well.

When a constructor operator is used in infix position (in an expression or in a in a pattern) both arguments have to
be present. Constructor operators can be used in a curried way, but then they have to be used as ordinary prefix
constructors (see 3.1 and 3.4).

Algebraic type definition and constructor pattern in function definition.

::Tree2 a    = (/\) infixl 0 (Tree a) (Tree a)
             | Value a

Mirror:: (Tree2 a) -> Tree2 a
Mirror (left/\right)  = Mirror right/\Mirror left
Mirror leaf           = leaf

Example of an algebraic type defining an infix data constructor and a function on this type; notice that one cannot use a ’:’
because this character is already reserved.

::List a = (<:>) infixr 5 a (List a)
         | Nil

Head:: (List a) -> a
Head (x<:>xs) = x

All data constructors being defined in the scope must have different names, to make type inferencing possible.

Scope of type definitions.

implementation module XYZ

:: Type_contructor type_vars = expression

other_definitions

5.1.1 Using Constructors in Patterns

An algebraic data type can be used in a pattern. The pattern consists of the data constructor (see 3.2) with its optional
arguments which on its turn can contain sub-patterns. A constructor pattern forces evaluation of the corresponding actual
argument to strong root normal form since the strategy has to determine whether the actual argument indeed is equal to
the specified constructor.

GraphPattern = Constructor // Zero arity Constructor
| (Constructor {Pattern}) // Constructor pattern
| GraphPattern ConstructorName // Infix Constructor operator

GraphPattern



Example of an algebraic data type definition and its use in a pattern in function definition.

::Tree a = Node a (Tree a) (Tree a)
         | Nil

Mirror:: (Tree a) -> Tree a
Mirror (Node e left right) = Node e (Mirror right) (Mirror left)
Mirror Nil                 = Nil

The data constructor used in a patter must have been defined in an algebraic data type definition.

5.1.2 Using Higher Order Types

In an algebraic type definition ordinary types can be used (such as a basic type, e.g. Int, or a list type, e.g. [Int], or an
instantiation of a user defined type, e.g. Tree Int), but one can also use higher order types. Higher order types can be
constructed by curried applications of the type constructors. Higher order types can be applied in the type world in a similar
way as higher order functions in the function world. The use of higher order types increases the flexibility with which
algebraic types can be defined. Predefined types can also be used in curried way (see 4.5). Higher order types play an
important role in combination with type classes (see Chapter 6).

Of course, one needs to ensure that all types are applied in a correct way. To be able to specify the rules that indicate
whether a type itself is correct, we introduce the notion of kind. A kind can be seen as the ’type of a type’ In our case, the
kind of a type expresses the number of type arguments this type may have. The kind X stands for any so-called first-order
type: a type expecting no further arguments ((Int, Bool, [Int], etcetera). All function arguments are of kind X. The kind
X -> X stands for a type that can be applied to a (first-order) type, which then yields another first-order type, X -> X ->
X expects two type arguments, and so on.

In CLEAN each top-level type should have kind X. A top-level type is a type that occurs either as an argument or result type
of a function or as argument type of a data constructor (in some algebraic type definition). The rule for determining the
kinds of the type variables (which can be of any order) is fairly simple: The kind of a type variable directly follows from its
use. If a variable has no arguments, its kind is X. Otherwise its kind corresponds to the number of arguments to which the
variable is applied. The kind of type variable determines its possible instantiations, i.e. it can only be instantiated with a
type, which is of the same kind as the type variable itself.

Example of an algebraic type using higher order types; the type variable tin the definition of Tree2 s of kind X -> X.
Tree2 is instantiated with a list (also of kind X -> X) in the definition of MyTree2.

::Tree2 t    = NilTree
             | NodeTree (t Int) (Tree2 t) (Tree2 t)

MyTree2:: Tree2 []
MyTree2 = NodeTree [1,2,3] NilTree NilTree

5.1.3 Defining Algebraic Data Types with Existentially Quantified Variables

An algebraic type definition can contain existentially quantified type variable s (or, for short, existential type variables) (
Läufer 1992). These special variables are defined on the right-hand side of the type definition and are indicated by
preceding them with "E.". Existential types are useful if one wants to create (recursive) data structures in which objects of
different types are being stored (e.g. a list with elements of different types).

AlgebraicTypeDef = ::TypeLhs = ConstructorDef
{| ConstructorDef} ;

ConstructorDef = [ExistQuantVariables] ConstructorName {ArgType} {& ClassConstraints}
| [ExistQuantVariables] (ConstructorName) [FixPrec] {ArgType} {& ClassConstraints}

ExistQuantVariables = E.{TypeVariable}+:



Example of the use of an existentially quantified type. In this example a record (see 5.2) is defined containing an
existentially quantified state s, a method to change this state  s, and a method to convert the state s into a String. Notice
that upon creation of the record MyObject the type of the internal state and the methods defined on the state are
consistent (in this case the state is of type Int). The methods stored in the object Object can (only) be applied on the
state of that object thus enabling an object-oriented style of programming. The concrete type of the state hidden in the
object is not visible from outside. To show it to the outside world one has to convert the state, which can be of any type, to
an ordinary not existentially quantified type. For instance,PrintState converts the any state into a String. Objects that
have states of different type are considered to be of the same type and can for instance be part of the same list.

::Object = E.s: {state::s, method::s->s, tostring:: s -> String }

MyObject =   { state = 3
             , method = (+) 1
             , tostring = toString
             }

IncrementObject obj=:{method,state} = {obj & state = method state}

PrintState obj=:{tostring,state} = tostring state

Start = PrintState (IncrementObject MyObject)        // the result will be 4

To ensure correctness of typing, there is a limitation imposed on the use of existentially quantified data structures.

Once a data structure containing existentially quantified parts is created the type of these components are forgotten.
This means that, in general, if such a data structured is passed to another function it is statically impossible to
determine the actual types of those components: it can be of any type. Therefore, a function having an existentially
quantified data structure as input is not allowed to make specific type assumptions on the parts that correspond to
the existential type variables. This implies that one can only instantiate an existential type variable with a concrete
type when the object is created. In all other cases it can only be unified with a universally quantified type.

Counter Example. Illegal use of an object with existentially quantified components.

Start = (IncrementObject MyObject).state

5.1.4 Defining Algebraic Data Types with Universally Quantified Variables

An algebraic type definition can contain universally quantified type variables (or, for short, universal type variables) of Rank
2 (on the argument position of a data constructor). These special variables are defined on the right-hand side of a type
definition on the arguments position of the data constructor being defined and have to be preceded by an  "A." (meaning:
"for all"). It can be used to store polymorphic functions that work on arguments of ’any’ type. The universal type is very
useful for constructing dictionaries for overloaded functions (see Chapter 6).

AlgebraicTypeDef = ::TypeLhs = ConstructorDef
{| ConstructorDef} ;

ConstructorDef = [ExistQuantVariables] ConstructorName {ArgType} {& ClassConstraints}
| [ExistQuantVariables] (ConstructorName) [FixPrec] {ArgType} {& ClassConstraints}

BrackType = [Strict] [UnqTypeAttrib] SimpleType
ArgType = BrackType

| [Strict] [UnqTypeAttrib] (UnivQuantVariables Type)
UnivQuantVariables = A.{TypeVariable}+:

Counter Example. The following program is ill typed. Although an identity function is stored in T2, T2 can contain any
function that can be unified with b -> b (for instance Int -> Int will do). Therefore a type error is given for f2 since g
is applied to both an Int and a Char.

:: T2 b = C2 (b -> b)

f2:: (T2 b) -> (Int,Char)
f2 (C2 g) = (g 1, g ’a’)

Id::a -> a
Id x = x

Start = f2 (C2 Ids)



Example of the use of a universally quantified type. In contrast with the example above it is now specified that T must
contain a universally quantified function b -> b. The identity function Id can be stored in T, since its type Id::a -> a is
actually a shorthand for Id::A.a:a -> a.  A function from Int -> Int cannot be stored in T since this type is not
unifiable with A.a:a -> a.
:: T = C (A.b: b -> b)

f:: (T b) -> (Int,Char)
f (C g) = (g 1, g ’a’)

Id::a -> a
Id x = x

Start = f (C Ids)

5.1.5 Strictness Annotations in Type Definitions

Functional programs will generally run much more efficient when strict data structures are being used instead of lazy ones.
If the inefficiency of your program becomes problematic one can think of changing lazy data structures into strict ones. This
has to be done by hand in the definition of the type.

AlgebraicTypeDef = ::TypeLhs = ConstructorDef
{| ConstructorDef} ;

ConstructorDef = [ExistQuantVariables] ConstructorName {ArgType} {& ClassConstraints}
| [ExistQuantVariables] (ConstructorName) [FixPrec] {ArgType} {& ClassConstraints}

Strict = !

In the type definition of a constructor (in an algebraic data type definition or in a definition of a record type) the arguments of
the data constructor can optionally be annotated as being strict. So, some arguments can be defined strict while others can
be defined as being lazy. In reasoning about objects of such a type it will always be true that the annotated argument will
be in strong root normal form when the object is examined. Whenever a new object is created in a strict context, the
compiler will take care of the evaluation of the strict annotated arguments. When the new object is created in a lazy
context, the compiler will insert code that will take care of the evaluation whenever the object is put into a strict context. If
one makes a data structure strict in a certain argument, it is better not define infinite instances of such a data structure to
avoid non-termination.

So, in a type definition one can define a data constructor to be strict in zero or more of its arguments. Strictness is a
property of data structure that is specified in its type.

In general (with the exceptions of tuples) one cannot arbitrary mix strict and non-strict data structures because they
are considered to be of different type.

When a strict annotated argument is put in a strict context while the argument is defined in terms of another strict annotated
data structure the latter is put in a strict context as well and therefore also evaluated. So, one can change the default lazy
semantics of CLEAN into a (hyper) strict semantics as demanded. The type system will check the consistency of types and
ensure that the specified strictness is maintained.

There is no explicit notation for creating unboxed versions of an algebraic data type. The compiler will automatically choose
the most efficient representation for a given data type. For algebraic data type definitions containing strict elements of basic
type, record type and array type an unboxed representation will be chosen.

Example: both integer values in the definition of Point are strict and will be stored unboxed since they are known to be of
basic type. The integer values stored in MyPoint are strict as well, but will be stored unboxed since MyTuple is
polymorphic.

::Point = (!Int,!Int)

::MyTuple a = Pair !a !a

::MyPoint :== MyTuple Int



A user defined lazy list similar to type [a] could be defined in algebraic type definition as follows:

::LazyList a      =   LazyCons a (LazyList a)
                  |   LazyNil

A head strict list similar to type [!a] could be defined in algebraic type definition as follows:

::HeadSList a     =   HeadSCons !a (HeadSList a)
                  |   HeadSNil

A tail strict list similar to type [a!] could be defined in algebraic type definition as follows:

::TailSList a     =   TailSCons a !(TailSList a)
                  |   TailSNil

A strict listssimilar to type [!a!] could be defined in algebraic type definition as follows:

::StrictList a    =   StrictCons !a !(StrictList a)
                  |   StrictNil

An unboxed list similar to type [#Int]could be defined in algebraic type definition as follows:

::UnboxedIList    =   UnboxedICons !Int  UnboxedIList
                  |   UnboxedINil

An unboxed list similar to type [#Int!] could be defined in algebraic type definition as follows:

::UnboxedIList    =   UnboxedICons !Int  !UnboxedIList
                  |   UnboxedINil

5.1.6 Semantic Restrictions on Algebraic Data Types

Other semantic restrictions on algebraic data types:

The name of a type must be different from other names in the same scope and name space (see 2.1).
The name of a type variable must be different from other type variable names in the same scope and name space
All type variables used on the right-hand side are bound, i.e. must either be introduced on the left-hand side of the
algebraic type being defined, or they must be bound by an existential quantifier on the right-hand side, or, they must
be bound by a universal quantifier specified on the corresponding argument.
A data constructor can only be defined once within the same scope and name space. So, each data constructor
unambiguously identifies its type to make type inferencing possible.
When a data constructor is used in infix position both arguments have to be present. Data constructors can be used
in a curried way in the function world, but then they have to be used as ordinary prefix constructors.
Type constructors can be used in a curried way in the type world; to use predefined bracket-like type constructors
(for lists, tuples, arrays) in a curried way they must be used in prefix notation.
The right-hand side of an algebraic data type definition should yield a type of kindX, all arguments of the data
constructor being defined should be of kind X as well.
A type can only be instantiated with a type that is of the same kind.
An existentially quantified type variable specified in an algebraic type can only be instantiated with a concrete type
(= not a type variable) when a data structure of this type is created.

5.2 Defining Record Types

A record type is basically an algebraic data type in which exactly one constructor is defined. Special about records is that a
field name is attached to each of the arguments of the data constructor and that

records cannot be used in a curried way.

Compared with ordinary algebraic data structures the use of records gives a lot of notational convenience because the field
names enable selection by field name instead of selection by position. When a record is created all arguments of the
constructor have to be defined but one can specify the arguments in any order. Furthermore, when pattern matching is
performed on a record, one only has to mention those fields one is interested in (see 5.2.2). A record can be created via a
functional update (see 5.2.1). In that case one only has to specify the values for those fields that differ from the old record.
Matching and creation of records can hence be specified in CLEAN in such a way that after a change in the structure of a
record only those functions have to be changed that are explicitly referring to the changed fields.



Existential and universal type variables (see 5.1.3 and 5.1.4) are allowed in record types (as in any other type). The
arguments of the constructor can optionally be annotated as being strict (see 10.1). The optional uniqueness attributes are
treated in Chapter 9.

RecordTypeDef = ::TypeLhs = [ExistQuantVariables] [Strict] {{FieldName ::FieldType}-list} ;
FieldType = [Strict] Type

| UnivQuantVariables [Strict] Type
| [Strict] [UnqTypeAttrib] (UnivQuantVariables Type)

As data constructor for a record the name of the record type is used internally.

The semantic restrictions that apply for algebraic data types also hold for record types.
The field names inside one record all have to be different. It is allowed to use the same field name in different
records. If the same names are used in different records, one can explicitly specify the intended record type when
the record is constructed.

Example of a record definition.

::Complex    =   { re :: Real
                 , im :: Real
                 }

The combination of existential type variables in record types are of use for an object oriented style of programming.

Example of the use of an existentially quantified record. One can create an object of a certain type that can have different
representations.

::Object = E.x:  { state  :: x
                 , get :: x -> Int
                 , set :: x Int -> x
                 }

CreateObject1:: Object
CreateObject1 = {state = [], get = myget, set = myset}
where
    myget:: [Int] -> Int
    myget [i:is] = i
    myget []     = 0

    myset:: [Int] Int -> [Int]
    myset is i = [i:is]

CreateObject2 = {state = 0.0, get = myget, set = myset}
where
    myget:: Real -> Int
    myget r = toInt r

    myset:: Real Int -> Real
    myset r i = r + toReal i

Get:: Object -> Int
Get {state,get} = get state

Set:: Object Int -> Object
Set o=:{state,set} i = {o & state = set state i}

Start:: [Object]
Start = map (Set 3) [CreateObject1,CreateObject2]



Example of a complex number as record type with strict components.

::Complex    =   {    re:: !Real
                 ,    im:: !Real
                 }

(+) infixl 6:: !Complex !Complex -> Complex
(+) {re=r1,im=i1} {re=r2,im=i2} = {re=r1+r2,im=i1+i2}

The compiler often unboxes records to make the generated code more efficient. However in some cases this is less
efficient, for example for abstract data types, large unique records that can be updated in place, or when records are
shared. Therefore unboxing can be prevented by adding an ! before the { in the record type definition.

5.2.1 Creating Records and Selection of Record Fields

A record is a tuple-like algebraic data structure that has the advantage that its elements can be selected by field name
rather than by position.

Record = RecordDenotation
| RecordUpdate

Simple Records

The first way is to create a record is by explicitly defining a value for each of its fields.

RecordDenotation = {[TypeName|] {FieldName = GraphExpr}-list]}

Creation of a record.

::Point      =   { x:: Real                         // record type definition
                 , y:: Real
                 }
::ColorPoint =   { p:: Point                        // record type definition
                 , c:: Color
                 }
::Color      =   Red | Green | Blue                 // algebraic type definition

CreateColorPoint:: (Real,Real) Color -> ColorPoint  // type of function
CreateColorPoint (px,py) col = { c = col            // function creating a new record
                               , p = { x = px
                                     , y = py
                                     }
                               }

A record can only be used if its type has been defined in a record type definition; the field names used must be
identical to the field names specified in the corresponding type.
When creating a record explicitly, the order in which the record fields are instantiated is irrelevant, but all fields have
to get a value; the type of these values must be an instantiation of the corresponding type specified in record type
definition. Curried use of records is not possible.
When creating a record, its type constructor that can be used to disambiguate the record from other records; the
type constructor can be left out if there is at least one field name is specified which is not being defined in some
other record.

Record Update

The second way is to construct a new record out of an existing one (a functional record update).

RecordUpdate = {[TypeName|][RecordExpr &][{FieldName {Selection} = GraphExpr}-list]}
Selection = .FieldName

| .ArrayIndex
RecordExpr = GraphExpr

The record expression must yield a record.



The record written to the left of the & (r & f = v is pronounced as: r with for f the value v) is the record to be
duplicated.  On the right from the & the structures are specified in which the new record differs from the old one. A structure
can be any field of the record or a selection of any field or array element of a record or array stored in this record. All other
fields are duplicated and createdimplicitly. Notice that the functional update is not an update in the classical, destructive
sense since a new record is created.  The functional update of records is performed very efficient such that we have not
added support for destructive updates of records of unique type. The &-operator is strict in the record argument and
arguments for strict fields.

Updating a record within a record using the functional update.

MoveColorPoint:: ColorPoint (Real,Real) -> ColorPoint
MoveColorPoint cp (dx,dy) = {cp & p.x = cp.p.x + dx, p.y = c.p.y + dy}

# with Record Update

variable = {variable & updates} after # or #! can be abbreviated to variable & updates, by omitting =
{variable and } (same as for array updates in section 4.4.1).

| Variable & {FieldName {Selection} = GraphExpr}-list ;

For example:

# r & x = 1
instead of
# r = {r & x = 1}

Multiple updates are also allowed, for example:

# r & x=1, y=2, z.c=’a’
instead of
# r = {r & x=1, y=2, z.c=’a’}

Selection of a Record Field

RecordSelection = RecordExpr [.TypeName].FieldName {Selection}
| RecordExpr [.TypeName]!FieldName {Selection}

Selection = .FieldName
| .ArrayIndex

With a record selection (using the ’.’ symbol) one can select the value stored in the indicated record field. A "unique"
selection using the ’!’ symbol returns a tuple containing the demanded record field and the original record. This type of
record selection can be very handy for destructively updating of uniquely typed records with values that depend on the
current contents of the record. Record selection binds more tightly (priority 11) than application (priority 10).

Record selection.

GetPoint:: ColorPoint -> Point
GetPoint cp = cp.p                                  // selection of a record field

GetXPoint:: ColorPoint -> Real
GetXPoint cp = cp.p.x                               // selection of a record field

GetXPoint2:: *ColorPoint -> (Real,.ColorPoint)
GetXPoint2 cp = cp!p.x                              // selection of a record f

5.2.2 Record Patterns

An object of type record can be specified as pattern. Only those fields which contents one would like to use in the right-hand
side need to be mentioned in the pattern.

RecordPattern = {[TypeName |] {FieldName [= GraphPattern]}-list}

The type of the record must have been defined in a record type definition.
The field names specified in the pattern must be identical to the field names specified in the corresponding type.
When matching a record, the type contructor which can be used to disambiguate the record from other records, can
only be left out if there is at least one field name is specified which is not being defined in some other record.



Use of record patterns.

::Tree a     =    Node (RecTree a)
             |    Leaf a
::RecTree a  =    { elem  :: a
                  , left  :: Tree a
                  , right  :: Tree a
                  }

Mirror:: (Tree a) -> Tree a
Mirror (Node tree=:{left=l,right=r})    = Node {tree & left=r,right=l}
Mirror leaf                             = leaf

The first alternative of function Mirror defined in another equivalent way:

Mirror (Node tree=:{left,right}) = Node {tree & left=right,right=left}

or (except tree may be evaluated lazily):

Mirror (Node tree) = Node {tree & left=tree.right,right=tree.left}

5.3 Defining Synonym Types

Synonym types permit the programmer to introduce a new type name for an existing type.

SynonymTypeDef = ::TypeLhs :== Type ;

For the left-hand side the same restrictions hold as for algebraic types.
Cyclic definitions of synonym types (e.g. ::T a b :== G a b; ::G a b :== T a b) are not allowed.

Example of a type synonym definition.

::Operator a :== a a -> a

map2:: (Operator a) [a] [a] -> [a]
map2 op [] []             = []
map2 op [f1:r1] [f2:r2]   = [op f1 f2 :map2 op r1 r2]

Start:: Int
Start = map2 (*) [2,3,4,5] [7,8,9,10]

5.4 Defining Abstract Data Types

A type can be exported by defining the type in a CLEAN definition module (see Chapter 2). For software engineering
reasons it sometimes better only to export the name of a type but not its concrete definition (the right-hand side of the type
definition). The type then becomes an abstract data type. In CLEAN this is done by specifying only the left-hand-side of a
type in the definition module while the concrete definition (the right-hand side of the type definition) is hidden in the
implementation module. So, CLEAN’s module structure is used to hide the actual implementation. When one wants to do
something useful with objects of abstract types one needs to export functions that can create and manipulate objects of this
type as well.

Abstract data type definitions are only allowed in definition modules, the concrete definition has to be given in the
corresponding implementation module.
The left-hand side of the concrete type should be identical to (modulo alpha conversion for variable names) the
left-hand side of the abstract type definition (inclusive strictness and uniqueness type attributes).

AbstractTypeDef = ::TypeLhs ;

Example of an abstract data type.

definition module stack

::Stack a

Empty    ::   (Stack a)
isEmpty  ::   (Stack a) -> Bool
Top      ::   (Stack a) -> a
Push     :: a (Stack a) -> Stack a
Pop      ::   (Stack a) -> Stack a



implementation module stack

::Stack a :== [a]

Empty:: (Stack a)
Empty = []

isEmpty:: (Stack a) -> Bool
isEmpty [] = True
isEmpty s  = False

Top:: (Stack a) -> a
Top [e:s] = e

Push:: a (Stack a) -> Stack a
Push e s = [e:s]

Pop:: (Stack a) -> Stack a
Pop [e:s] = s

5.4.1 Defining Abstract Data Types with Synonym Type Definition

Because the concrete definition of an abstract data type does not appear in the definition module, the compiler cannot
generate optimal code. Therefore, if the concrete type is a synonym type, the right-hand-side of the definition may be
included surrounded by brackets:

AbstractSynonymTypeDef = ::TypeLhs ( :== Type ) ;

The type of the implementation is still hidden as for other abstract data types, except that the compiler uses it only to
generate the same code as for a synonym type.



Chapter 6

Overloading

CleanCleanCleanCleanClean

CLEAN allows functions and operators to be overloaded. Type classes and type constructor classes are provided (which
look similar to Haskell (Hudak et  al. 1992) and Gofer (Jones, 1993), although our classes have slightly different semantics)
with which a restricted context can be imposed on a type variable in a type specification.

If one defines a function it should in general have a name that is different from all other function names defined within the
same scope and name space (see 2.1). However, it is sometimes very convenient to overload certain  functions and
operators (e.g. +,-,==), i.e. use identical names for different functions or operators that perform similar tasks albeit on
objects of different types.

In principle it is possible to simulate a kind of overloading by using records. One simply defines a record (see 5.2) in which a
collection of functions are stored that somehow belong to each other. Now the field name of the record can be used as
(overloaded) synonym for any concrete function stored on the corresponding position. The record can be regarded as a
kind of dictionary in which the concrete function can be looked up.

Example of the use of a dictionary record to simulate overloading. sumlist can use the field name add as synonym for any
concrete function obeying the type as specified in the record definition. The operators +., +^, -. and -^ are assumed to
be predefined primitives operators for addition and subtraction on the basic types Real and Int.

::Arith a =  {    add      :: a a -> a 
             ,    subtract :: a a -> a 
             } 

ArithReal = { add = (+.), subtract = (-.) } 
ArithInt  = { add = (+^), subtract = (-^) } 

sumlist:: (Arith a) [a] [a] -> [a] 
sumlist arith [x:xs] [y:ys]    =  [arith.add x y:sumlist arith xs ys] 
sumlist arith x y              =  [] 

Start = sumlist ArithInt [1..10] [11..20]

A disadvantage of such a dictionary record is that it is syntactically not so nice (e.g. one explicitly has to pass the record to
the appropriate function) and that one has to pay a huge price for efficiency (due to the use of higher order functions) as
well. CLEAN’s overloading system as introduced below enables the CLEAN system to automatically create and add
dictionaries as argument to the appropriate function definitions and function applications. To avoid efficiency loss the
CLEAN compiler will substitute the intended concrete function for the overloaded function application where possible. In
worst case however CLEAN’s overloading system will indeed have to generate a dictionary record that is then
automatically passed as additional parameter to the appropriate function.



6.1 Type Classes

In a type class definition one gives a name to a set of overloaded functions (this is similar to the definition of a type of the
dictionary record as explained above). For each overloaded function or operator which is a member of the class the
overloaded name and its overloaded type is specified. The type class variables are used to indicate how the different
instantiations of the class vary from each other. CLEAN offers multi-parameter type constructor classes, similar to those
available in Haskell.

TypeClassDef = class ClassName TypeVariable+ [ClassContext]
[[where] { {ClassMemberDef}+ }] ;

| class FunctionName TypeVariable+ :: FunctionType;
| class (FunctionName) [FixPrec] TypeVariable+ :: FunctionType;

ClassMemberDef = FunctionTypeDef
[MacroDef]

Example of the definition of a type class; in this case the class named Arith contains two overloaded operators.

class Arith a
where
    (+) infixl 6:: a a -> a
    (-) infixl 6:: a a -> a

Example. Classes can have several type class variables.

class Arith2 a b c
where
    (:+:) infixl 6:: a b -> c

With an instance declaration an instance of a given class can be defined (this is similar to the creation of a dictionary
record). When the instance is made one has to be specify for which concrete type an instance is created. For each
overloaded function in the class an instance of the overloaded function or operator has to be defined. The type of the
instance can be found via uniform substitution of the type class variables by the corresponding type instances specified in
the instance definition.

TypeClassInstanceDef = instance ClassName Type+ [ClassContext]
[where] { {FunctionDef}+ } ;

Example of the definition of an instance of a type class Arith for type Int. The type of the concrete functions can be
obtained via uniform substitution of the type class variable in the class definition by the corresponding type specified in the
instance definition. One is not obliged to repeat the type of the concrete functions instantiated (nor the fixity or associativity
in the case of operators).

instance Arith Int
where
    (+):: Int Int -> Int
    (+) x y = x +^ y

    (-):: Int Int -> Int
    (-) x y = x -^ y

Example of the definition of an instance of a type class Arith for type Real.

instance Arith Real
where
    (+) x y = x +. y
    (-) x y = x -. y



Example. Instantiation of Arith2 using the instantiations of Arith specified above.

instance Arith2 Int  Int  Int  where (:+:) x y = x + y
instance Arith2 Int  Real Real where (:+:) x y = toReal x + y
instance Arith2 Real Int  Real where (:+:) x y = x + toReal y
instance Arith2 Real Real Real where (:+:) x y = x + y

One can define as many instances of a class as one likes. Instances can be added later on in any module that has imported
the class one wants to instantiate.

When an instance of a class is defined a concrete definition has to be given for all the class members.

6.2 Functions Defined in Terms of Overloaded Functions

When an overloaded name is encountered in an expression, the compiler will determine which of the corresponding
concrete functions/operators is meant by looking at the concrete type of the expression. This type is used to determine
which concrete function to apply.

All instances of a type variable of a certain class have to be of a flat type (see the restrictions mentioned in 6.11).

If it is clear from the type of the expression which one of the concrete instantiations is meant the compiler will in principle
substitute the concrete function for the overloaded one, such that no efficiency is lost.

Example of the substitution of a concrete function for an overloaded one. Given the definitions above the function

inc n = n + 1

will be internally transformed into

inc n = n +^ 1

However, it is very well possible that the compiler, given the type of the expression, cannot decide which one of the
corresponding concrete functions to apply. The new function then becomes overloaded as well.

For instance, the function

add x y = x + y

becomes overloaded as well because it cannot be determined which concrete instances can be applied: addcan be applied
to arguments of any type, as long as addition (+) is defined on them.

This has as consequence that an additional restriction must be imposed on the type of such an expression. A class context
has to be added to the function type to express that the function can only be applied provided that the appropriate type
classes have been instantiated (in fact one specifies the type of the dictionary record which has to be passed to the
function in worst case). Such a context can also be regarded as an additional restriction imposed on a type variable,
introducing a kind of bounded polymorphism.

FunctionType = [{ArgType}+ ->] Type [ClassContext] [UnqTypeUnEqualities]
ClassContext = | ClassConstraints {& ClassConstraints}
ClassConstraints = ClassOrGenericName-list {SimpleType}+
ClassOrGenericName = ClassName

| FunctionName {|TypeKind|}

Example of the use of a class context to impose a restriction on the instantiation of a type variable. The function add can be
applied on arguments of any type under the condition that an instance of the class Arith is defined on them.

add:: a a -> a | Arith a
add x y = x + y

CLEAN’s type system can infer class contexts automatically. If a type class is specified as a restricted context the type
system will check the correctness of the specification (as always a type specification can be more restrictive than is
deduced by the compiler).



6.3 Type Classes Defined in Terms of Overloaded Functions

The concrete functions defined in a class instance definition can also be defined in terms of (other) overloaded functions.
This is reflected in the type of the instantiated functions. Both the concrete type and the context restriction have to be
specified.

Example of an instance declaration with a type which is depending on the same type class. The function + on lists can be
defined in terms of the overloaded operator +on the list elements. With this definition +is defined not only on lists, but also
on a list of lists etcetera.

instance Arith [a] | Arith a                        // on lists
where
    (+) infixl 6:: [a] [a] -> [a] | Arith a
    (+) [x:xs] [y:ys] = [x + y:xs + ys]
    (+) _       _     = []

    (-) infixl 6:: [a] [a] -> [a] | Arith a
    (-) [x:xs] [y:ys] = [x - y:xs - ys]
    (-) _      _      = []

Equality class.

class Eq a
where
  (==) infix 2:: a a -> Bool

instance Eq [a] | Eq a                              // on lists
where
    (==) infix 2:: [a] [a] -> Bool | Eq a
    (==) [x:xs] [y:ys] = x == y && xs == ys
    (==) []     []     = True
    (==) _      _      = False

6.4 Type Constructor Classes

The CLEAN type system offers the possibility to use higher order types (see 3.7.1). This makes it possible to define type
constructor classes (similar to constructor classes as introduced in Gofer, Jones (1993)). In that case the overloaded type
variable of the type class is not of kind X, but of higher order, e.g. X -> X, X -> X -> X, etcetera. This offers the
possibility to define overloaded functions that can be instantiated with type constructors of higher order (as usual, the
overloaded type variable and a concrete instantiation of this type variable need to be of the same kind). This makes it
possible to overload more complex functions like map and the like.

Example of a definition of a type constructor class. The class Functor including the overloaded function map which varies
in type variable f of kind X -> X.

class Functor f
where
    map:: (a -> b) (f a) -> (f b)

Example of an instantiation of a type constructor class. An instantiation of the well-known function map applied on lists ([]
is of kind X -> X), and a map function defined on Tree’s (Tree is of kind X -> X).

instance Functor []
where
    map:: (a -> b) [a] -> [b]
    map f [x:xs] = [f x : map f xs]
    map f []     = []

::Tree a = (/\) infixl 0 (Tree a) (Tree a)
         | Leaf a

instance Functor Tree
where
    map:: (a -> b) (Tree a) -> (Tree b)
    map f (l/\r)      = map f l /\ map f r
    map f (Leaf a)    = Leaf (f a)



CLEAN 2.0 offers the possibility to define generic functions. With generic functions one is able to define a function like map
once that works for any type (see ???).

6.5 Overlapping Instances

Identical instances of the same class are not allowed. The compiler would not know which instance to choose. However, it
is not required that all instances are of different type. It is allowed to specify an instance of a class of which the types
overlap with some other instance given for that class, i.e. the types of the different class instances are different but they can
be unified with each other. It is even allowed to specify an instance that works for any type, just by instantiating with a type
variable instead of instantiating with a concrete type. This can be handy to define a simple default case (see also the
section one generic definitions). If more than one instance is applicable, the compiler will always choose the most specific
instantiation.

Example of overlapping instances. Below there are three instances given for the class Eq: one for Integer values, one for
Real values, and one for objects of any type. The latter instance is more general and overlaps with both the other instances
that are more specific. If Integers or Reals are compared, the corresponding equality function will be chosen. For all
other types for which no specific instances for equality are defined, the general instance will be chosen.

class Eq a
where
    (==) infix 2:: a a -> Bool

instance Eq Int                                  // on Integers
where
    (==) x y = x ==^ y

instance Eq Real                                 // on Reals
where
    (==) x y = x ==. y

instance Eq a                                   // generic instance for Eq
where
    (==) x y = False

It is sometimes unclear which of the class instances is the most specific. In that case the lexicographic order is chosen
looking at the specified instances (with type variables always <= type constructors).

Example of overlapping instances. The two instances of class C overlap with each other. In the Start rule the function f is
applied to two Boolean values. In this case any of the two instances of f could be chosen. They both can be applied (one
has type f::Bool a -> Bool, the other f::a Bool -> Bool, Start requires f:: Bool Bool -> Bool). The
compiler will choose the first instance, because in lexicographical order  instance C Bool dontcare <= instance C
dontcare Bool.

class C a1 a2
where
    f:: a1 a2 -> Bool

instance C Bool dontcare
where
    f b x  = b

instance C dontcare Bool
where
    f x b  = b

Start = f True False                     // the result will yield True

6.6 Internal Overloading

It is possible that a CLEAN expression using overloaded functions is internally ambiguously overloaded. The problem can
occur when an overloaded function is used which has on overloaded type in which an overloaded type variable appears on
the right-hand side of the ->. If such a function is applied in such a way that the overloaded type does not appear in the
resulting type of the application, any of the available instances of the overloaded function can be used.

In that case that an overloaded function is internally ambiguously overloaded the compiler cannot determine which
instance to take: a type error is given.



Counter example (ambiguous internal overloaded expression). The function body of f is internally ambiguously overloaded
which results in a type error. It is not possible to determine whether its argument should be converted to an Int or to a
Bool.

class Read  a:: a -> String

class Write a:: String -> a

instance Read  Int, Bool                        // export of class instance, see 6.10

instance Write Int, Bool

f:: String -> String
f x = Write (Read x)                            // ! This results in a type error !

One can solve such an ambiguity by splitting up the expression in parts that are typed explicitly such that it becomes clear
which of the instances should be used.

f:: String -> String
f x = Write (MyRead x)
where
    MyRead:: Int -> String
    MyRead x = Read x

Counter example (ambiguous internal overloaded expression). The function :+: is internally ambiguously overloaded which
results in a type error. The compiler is not able to infer the result type c of the multi parameter type class Arith2 a b c.
The reason is that the compiler will first do the type unification and then tries to solve the overloading. In this case solving
the overloading will have consequences for other overloading situations. The system can only solve one overloaded
situation at a time and solving the overloading may not have any effect on other unifications.

Start :: Int
Start = 2 :+: 3 :+: 4

Example (ambiguous internal overloaded expression). By explicitly specifying types the overloading can be solved. The
following program is accepted.

Start:: Int
Start = 2 :+: more
where
    more:: Int
    more = 3 :+: 4

6.7 Defining Derived Members in a Class

The members of a class consist of a set of functions or operators that logically belong to each other. It is often the case that
the effect of some members (derived members) can be expressed in others. For instance, <> can be regarded as synonym
for not (==). For software engineering (the fixed relation is made explicit) and efficiency (one does not need to include
such derived members in the dictionary record) it is good to make this relation explicit. In CLEAN the existing macro
facilities (see Chapter 10.3) are used for this purpose.



Classes with macro definitions to specify derived members.

class Eq a
where
    (==) infix 2:: a a -> Bool

    (<>) infix 2:: a a ->  Bool | Eq a
    (<>) x y :== not (x == y)

class Ord a
where
    (<) infix 2:: a a ->  Bool

    (>) infix 2:: a a ->  Bool | Ord a
    (>) x y :== y < x

    (<=) infix 2:: a a ->  Bool | Ord a
    (<=) x y :== not (y<x)

    (>=) infix 2:: a a ->  Bool | Ord a
    (>=) x y :== not (x<y)

min:: a a -> a | Ord a
min x y :== if (x<y) x y

max:: a a -> a | Ord a
max x y :== if (x<y) y x

6.8 A Shorthand for Defining Overloaded Functions

A class definition seems sometimes a bit overdone when a class actually only consists of one member. Special syntax is
provided for this case.

TypeClassDef = class ClassName TypeVariable+ [ClassContext]
[[where] { {ClassMemberDef}+ }] ;

| class FunctionName TypeVariable+ :: FunctionType;
| class (FunctionName) [FixPrec] TypeVariable+ :: FunctionType;

Example of an overloaded function/operator.

class (+) infixl 6 a:: a a -> a

which is shorthand for:

class + a
where
     (+) infixl 6:: a a -> a

The instantiation of such a simple one-member class is done in a similar way as with ordinary classes, using the name of
the overloaded function as class name.

Example of an instantiation of an overloaded function/operator.

instance + Int
where
    (+) x y = x +^ y

6.9 Classes Defined in Terms of Other Classes

In the definition of a class one can optionally specify that other classes that already have been defined elsewhere are
included. The classes to include are specified as context after the overloaded type variable. It is not needed (but it is
allowed) to define new members in the class body of the new class. In this way one can give a new name to a collection of
existing classes creating a hierarchy of classes (cyclic dependencies are forbidden). Since one and the same class can be
included in several other classes, one can combine classes in different kinds of meaningful ways. For an example have a
closer look at the CLEAN standard library (see e.g. StdOverloaded and StdClass)



Example of defining classes in terms of existing classes. The class Arith consists of the class + and -.

class (+) infixl 6 a:: a a -> a

class (-) infixl 6 a:: a a -> a

class Arith a | +,- a

6.10 Exporting Type Classes

To export a class one simply repeats the class definition in the definition module (see Chapter 2). To export an instantiation
of a class one simply repeats the instance definition in the definition module, however without revealing the concrete
implementation (which can only be specified in the implementation module).

TypeClassInstanceExportDef = instance ClassName InstanceExportTypes ;
InstanceExportTypes = {Type+ [ClassContext]}-list

| Type+ [ClassContext] [where] {{FunctionTypeDef}+ }
| Type+ [ClassContext] [Special]

Special = special {{TypeVariable = Type}-list { ; {TypeVariable = Type}-list }}

Exporting classes and instances.

definition module example

class Eq a                         // the class Eq is exported
where
    (==) infix 2:: a a -> Bool

instance Eq [a] | Eq a             // an instance of Eq on lists is exported
special  a = Int                   // with an additional specialised version for [Int]
         a = Real                  // and an additional specialised version for [Real]

instance Eq  a                     // a general instance of Eq is exported

For reasons of efficiency the compiler will always make specialized efficient versions of overloaded functions inside an
implementation module. For each concrete application of an overloaded function a specialized version is made for the
concrete type the overloaded function is applied to. So, when an overloaded function is used in the implementation module
in which the overloaded function is defined, no overhead is introduced.

However, when an overloaded function is exported it is unknown with which concrete instances the function will be applied.
So, a dictionary record is constructed in which the concrete function can be stored as is explained in the introduction of this
Section. This approach can be very inefficient, especially in comparison to a specialized version. One can therefore ask the
compiler to generate specialized versions of an overloaded function that is being exported. This can be done by using the
keyword special. If the exported overloaded function will be used very frequently, we advise to specialize the function for
the most important types it will be applied on.

A specialised function can only be generated if for all type variables which appear in the instance definition of a
class a concrete type is defined.

6.11 Semantic Restrictions on Type Classes

Semantic restrictions:
When a class is instantiated a concrete definition must be given for each of the members in the class (not for
derived members).
The type of a concrete function or operator must exactly match the overloaded type after uniform substitution of the
overloaded type variable by the concrete type as specified in the corresponding type instance declaration.
The overloaded type variable and the concrete type must be of the same kind.
A type instance of an overloaded type must be a flat type, i.e. a type of the form T a1 ... an where ai are type
variables which are all different.
It is not allowed to use a type synonym as instance.
The start rule cannot have an overloaded type.
For the specification of derived members in a class the same restrictions hold as for defining macros.
A restricted context can only be imposed on one of the type variables appearing in the type of the expression.
The specification of the concrete functions can only be given in implementation modules.
A specialised function can only be generated if for all type variables which appear in the instance definition of a
class a concrete type is defined.
A request to generate a specialised function for a class instance can only be defined in a definition module.



Chapter 7

Generic Programming

CleanCleanCleanCleanClean

7.1 Basic Ideas Behind Generic Programming

In the previous Chapter on overloading it is explained how type classes can be used to define different functions or
operators that have the same name and perform similar tasks albeit on objects of different types. These tasks are
supposed to be similar, but they are in general not exactly the same. The corresponding function bodies are often slightly
different because the data structures on which the functions work differ. As a consequence, one has to explicitly specify an
implementation for every concrete instance of an overloaded function.

Equality class. The equality function on lists and trees. The programmer has to specify explicitly the function bodies for each
concrete instantiation of equality.

:: List a    =   Nil a
             |   Cons a (List a)
:: Tree a    =   Leaf a
             |   Node (Tree a) (Tree a)

class Eq a
where
   (==) infix 2 :: a a -> Bool

instance Eq (List a) | Eq a
where
   (==) infix 2 :: (List a) (List a) -> Bool | Eq a
   (==) Nil Nil                = True
   (==) (Cons x xs) (Cons x xs)= x == y && xs == ys
   (==) _      _               = False

instance Tree a | Eq a
where
   (==) infix 2 :: (Tree a) (Tree a) -> Bool | Eq a
   (==) (Leaf x) (Leaf y)          = x == y
   (==) (Node lx rx)  (Node ly ry) = lx == ly && rx == ry
   (==) _      _                   = False

In the example above the programmer explicitly defines equality on lists and trees. For each new data type that we want to
compare for equality, we have to define a similar instance. Moreover, if such a data type changes, the corresponding
instance should be changed accordingly as well. Though the instances are similar, they are not the same since they
operate on different data types.

What is similar in these instances? Both instances perform pattern match on the arguments. If the constructors are the
same, they compare constructor arguments pairwise. For constructors with no arguments True is returned. For
constructors with several arguments, the results on the arguments are combined with &&. If constructors are not the same,
False is returned. In other words, equality on a data type is defined by looking at the structure of the data type. More
precisely, it is defined by induction on the structure of types. There are many more functions than just equality that expose
the same kind of similarity in their instances. Below is the mapping function that can be defined for type constructors of kind
*->*.



The Functor provides the mapping function for a type constructor of kind *->* (see also 6.4).

class Functor f
where
    fmap :: (a -> b) (f a) -> (f b)

instance Functor List
where
    fmap :: (a -> b) (List a) -> (List b)
    fmap f Nil         = Nil
    fmap f (Cons x xs) = Cons (f x) : Cons (fmap f xs)

instance Functor Tree
where
    fmap :: (a -> b) (Tree a) -> (Tree b)
    fmap f (Leaf a)   = Leaf (f a)
    fmap f (Node l r) = Node (fmap f l) (fmap f r)

Again, both instances are similar: they perform pattern match on constructors and pairwise mapping of their arguments. The
results are packed back in the same constructor.

Generic programming enables the programmer to capture this kind of similarities and define a single implementation for all
instances of such a class of functions. To do so we need a universal structural representation of all data types. A generic
function can then be defined ones and forall on that universal representation. A specific type is handled using its structural
representation. In the rest of this section we will explain roughly how it all works. First we focus on the universal structural
representation of types; then we show how a generic function can be defined on it; and at last we show how the generic
definition is specialized to a concrete type. See also (Alimarine & Plasmeijer, 2001, A Generic Programming Extension for
Clean).

In CLEAN data types are algebraic: they are built in of sums of products of type terms. For example, the List type is a sum
of two things: nullary product for Nil and a binary product of the head and the tail for Cons. The Tree type is a sum of
unary product of elements for Leaf and binary product of trees for Node. Having this in mind we can uniformly represent
CLEAN data types using binary sums and products.

Binary sum and product types defined in StdGeneric.dcl. These types are needed to represent CLEAN types as sums of
products of types for the purpose of generic programming.

:: UNIT a        = UNIT a
:: PAIR a b      = PAIR a b
:: EITHER l r    = LEFT l | RIGHT r

The UNIT type represents a nullary product. The PAIR type is a binary product. The EITHER type is a binary sum. We do
not need a type for nullary sums, as in CLEAN data types have at least one alternative. As one can imagine, we want
sum-product representation of types to be equivalent (i.e. isomorphic) to the original data types. In the following example
we give representations for List and Tree with conversion functions that implement the required isomorphisms.

Sum-product representation of the structure of List and Tree with conversion functions that implement isomorphisms
between the types and their sum-product representations.

:: ListS a :== EITHER UNIT (PAIR a (List a))

listToStruct    :: (List a)  -> _ListS a
listToStruct Nil                   = LEFT UNIT
listToStruct (Cons x xs)           = RIGHT (PAIR x xs)

listFromStruct   :: (ListS a) -> _List a
listFromStruct (LEFT UNIT)         = Nil
listFromStruct (RIGHT (PAIR x xs)  = Cons x xs

:: TreeS a :== EITHER a (PAIR (Tree a) (Tree a))

treeToStruct     :: (Tree a)   -> _TreeS a
treeFromStruct   :: (TreeS a)  -> _Tree a



As we said, all algebraic types can be represented in this way. Basic types are not algebraic, but there are only few of them:
they are represented by themselves. Arrow types are represented by the arrow type constructor (->). To define a function
generically on the structure of a type it is enough to define instances on the components the structure can be built from.
These are binary sums, binary products, basic types, and the arrow type.

Equality on sums, products and primitive types. Equality cannot be feasibly defined for the arrow type, so the instance is
omitted.

instance UNIT
where
    (==) infix 2 :: UNIT UNIT -> Bool
    (==) UNIT UNIT            = True

instance PAIR a b | Eq a & Eq b
where
    (==) infix 2 :: (PAIR a b) (PAIR a b) -> Bool
    (==) (PAIR a1 b1) (PAIR a2 b2) = a1 == a2 && b1 == b2

instance EITHER a b | Eq a & Eq b
where
    (==) infix 2 :: (EITHER a b) (EITHER a b) -> Bool
    (==) (LEFT x)  (Leaf y)   = x == y
    (==) (RIGHT x) (RIGHT y)  = x == y
    (==) x_         y_        = False

instance Int
where
    (==) infix 2 :: Int Int -> Bool
    (==) x y = eqInt x y             // primitive equality on integers

Having defined instances on the structure components we can generate instances for all other types automatically.

Equality for lists and trees that can be automatically generated. Arguments are first converted to the structural
representations which are then compared.

instance Eq (List a) | Eq a
where
    (==) infix 2 :: (List a) (List a) -> Bool | Eq a
    (==) xs ys = listToStruct xs == listToStruct ys

instance Tree a | Eq a
where
    (==) infix 2 :: (Tree a) (Tree a) -> Bool | Eq a
    (==) xs ys = treeToStruct xs == treeToStruct ys

Not only instances of one class expose similarity in the definition of instances.

The Bifunctor provides the mapping function for a type constructor of kind *->*->*. Instances are defined in a similar way to
instances of Functor.

:: Tree2 a b      = Tip a
                  | Bin b (Tree a b) (Tree a b)

class Bifunctor f
where
    bmap :: (a1 -> b1) (a2 -> b2) (f a1 a2) -> (f b1 b2)

instance Bifunctor Tree
where
    bmap :: (a1 -> b1) (a2 -> b2) (Tree2 a1 a2) -> (Tree b1 b2)
    bmap f1 f2 (Tip x) = Tip (f1 x)
    bmap f1 f2 (Bin x l r) = Bin (f2 x) (bmap f1 f2 l) (bmap f1 f2 r)



The instance in the example above also works in a similar way as the instance of Functor: it also maps substructures
component-wise. Both Functor and Bifunctor provide mapping function. The difference is that one provides mapping for
type constructors of kind *->* and the other for type constructors of kind *->*->*. In fact instances of mapping functions for
all kinds are similar.

7.2 Defining Generic Functions

The generic feature of CLEAN is able to derive instances for types of different kinds from a single generic definition. Such
generic functions are known as kind-indexed generic functions (Alimarine & Plasmeijer, A Generic Programming Extension
for Clean). Actually, a generic function in CLEAN stands for a set of classes and instances of the same function for different
kinds. Since CLEAN allows function to be used in a Curried manner (see 3.7.1), the compiler is in general not able to
deduce which kind of map is meant. Therefore the kind of a generic function application has to be specified explicitly.

To define a generic function the programmer has to provide to things: the base type of the generic function and the base
cases (instances) of the generic function.

GenericsDef = GenericDef ;
| GenericCase;
| DeriveDef ;

GenericDef = generic FunctionName TypeVariable+ [GenericDependencies] :: FunctionType
GenericDependencies = | {FunctionName TypeVariable+ }-list
GenericCase = FunctionName {|GenericTypeArg|} {Pattern}+ = FunctionBody
GenericTypeArg = GenericMarkerType [of Pattern]

| TypeName
| TypeVariable

GenericMarkerType = CONS
| OBJECT
| RECORD
| FIELD

In the generic definition, recognised by the keyword generic, first the type of the generic function has to be specified. The
type variables mentioned after the generic function name are called generic type variables. Similar to type classes, they are
substituted by the actual instance type. A generic definition actually defines a set of type constructor classes. There is one
class for each possible kind in the set. Such a generic funcion is sometimes called a kind-indexed class. The classes are
generated using the type of the generic function. The classes always have one class variable, even if the generic function
has several generic variables. The reason for this restriction is that the generic function can be defined by induction on one
argument only.

Example. The generic definition of equality.

generic gEq a ::         a            a             -> Bool
gEq {|Int|}              x            y             = x == y
gEq {|Char|}             x            y             = x == y
gEq {|Bool|}             x            y             = x == y
gEq {|Real|}             x            y             = x == y
gEq {|UNIT|}             UNIT         UNIT          = True
gEq {|PAIR|}   eqx eqy   (PAIR x1 y1) (PAIR x2 y2)  = eqx x1 x2 && eqy y1 y2
gEq {|EITHER|} eql eqr   (LEFT x)     (LEFT y)      = eql x y
gEq {|EITHER|} eql eqr   (RIGHT x)    (RIGHT y)     = eqr x y
gEq {|EITHER|} eql eqr   x            y             = False
gEq {|CONS|}   eq        (CONS x)     (CONS y)      = eq x y
gEq {|OBJECT|} eq        (OBJECT x)   (OBJECT y)    = eq x y
gEq {|RECORD|} eq        (RECORD x)   (RECORD y)    = eq x y
gEq {|FIELD|}  eq        (FIELD x)    (FIELD y)     = eq x y

Example. The generic definition of map.

generic gMap a b ::        a            -> b
gMap {|c|}        x                     = x
gMap {|PAIR|}     fx fy    (PAIR x y)   = PAIR (fx x) (fy y)
gMap {|EITHER|}   fl fr    (LEFT x)     = LEFT (fl x)
gMap {|EITHER|}   fl fr    (RIGHT x)    = RIGHT (fr x)
gMap {|CONS|}     fx       (CONS x)     = CONS (fx x)
gMap {|OBJECT|}   fx       (OBJECT x)   = OBJECT (fx x)
gMap {|RECORD|}   fx       (RECORD x)   = RECORD (fx x)
gMap {|FIELD|}    fx       (FIELD x)    = FIELD (fx x)



Classes that are automatically generated for the generic map function given above.

class gMap{|*|} t              :: t -> t
class gMap{|*->*|} t           :: (a -> b) (t a) -> t b
class gMap{|*->*->*|} t        :: (a1 -> b1) (a2 -> b2) (t a1 a2) -> t b1 b2
...

Roughly the algorithm for deriving classes is the following.

Algorithm for generating classes. Suppose we have a generic function genFun with type GenFun.

:: GenFun a1 .. an :== ..
generic genFun a1 .. an :: GenFun a1 .. an

A class for kind k.

class genFun{|k|} t     :: GenFun{|k|} t .. t

Is derived by induction on the structure of kind

:: GenFun{|*|} a1 ... an   :== GenFun a1.. an
:: GenFun{|k->l|} a1 ..an  :==
    A.b1 .. bn: (GenFun{|k|} b1 .. bn) -> GenFun{|l|} (a1 b1) .. (an bn)

The programmer provides a set of basic cases for a generic function. Based on its basic cases a generic function can be
derived for other types. See the next section for detailed discussion on types for which a generic function can and cannot
be derived. Here we discuss what can be specified as the type argument in the definition of a generic base case

A Generic structural representation type: UNIT, PAIR, EITHER, CONS, OBJECT, RECORD and FIELD. The
programmer must always provide these cases as they cannot be derived by the compiler. Without these cases a
generic function cannot be derived for basically any type.
Basic type. If a generic function is supposed to work on types that involve basic types, instances for basic types
must be provided.
Type variable. Type variable stands for all types of kind *. If a generic function has a case for a type variable it
means that by default all types of kind star will be handled by that instance. The programmer can override the
default behavior by defining an instance on a specific type.
Arrow type (->). If a generic function is supposed to work with types that involve the arrow type, an instance on the
arrow type has to be provided.
Type constructor. A programmer may provide instances on other types. This may be needed for two reasons:
1. The instance cannot be derived for the reasons explained in the next section.
2. The instance can be generated, but the programmer is not satisfied with generic behavior for this type and

wants to provide a specific behavior.

7.3 Deriving Generic Functions

The user has to tell the compiler instances of which generic functions on which types are to be generated. This is done with
the derive clause.

DeriveDef = derive FunctionName {DerivableType}-list
| derive class ClassName {DerivableType}-list

DerivableType = TypeName
| PredefinedTypeConstructor

Deriving instances of generic mapping and generic equality for List , Tree and standard list

derive gEq  List, Tree, []
derive gMap List, Tree, []

A generic function can be automatically specialized only to algebraic types that are not abstract in the module where the
derive directive is given. A generic function cannot be automatically derived for the following types:



Generic structure representation types: UNIT, PAIR, EITHER, CONS, OBJECT, RECORD, FIELD. See also the
previous section. It is impossible to derive instances for these types automatically because they are themselves
used to build structural representation of types that is needed to derive an instance. Deriving instances for then
would yield non-terminating cyclic functions. Instances on these types must be provided for the user. Derived
instances of algebraic types call these instances.
Arrow  type  (->). An instance on the arrow type has to be provided by the programmer, if he or she wants the
generic function to work with types containing arrows.
Basic types like Int, Char, Real, Bool. In principle it is possible to represent all these basic types as algebraic
types but that would be very inefficient. The user can provide a user defined instance on a basic type.
Array types as they are not algebraic. The user can provide a user defined instance on an array type.
Synonym types. The user may instead derive a generic function for the types involved on the right-hand-side of a
type synonym type definition.
Abstract types. The compiler does not know the structure of an abstract data type needed to derive the instance.
Quantified types. The programmer has to manually provide instances for type definitions with universal and
existential quantification.

The compiler issues an error if there is no required instance for a type available. Required instances are determined by the
overloading mechanism.

7.4 Applying Generic Functions

The generic function in Clean stands for a set of overloaded functions. There is one function in the set for each kind. When
a generic function is applied, the compiler must select one overloaded function in the set. The compiler cannot derive the
required kind automatically. For this reason a kind has to be provided explicitly at each generic function application.
Between the brackets {| and |} one can specify the intended kind. The compiler then resolves overloading of the selected
overloaded function as usually.

GenericAppExpression = FunctionName {|TypeKind|} GraphExpr
TypeKind = *

| TypeKind -> TypeKind
| IntDenotation
| (TypeKind)
| {|TypeKind|}

Example: a generic equality operator can be defined as equality on types of kind *.

(===) infix 2 :: a a -> Bool | gEq{|*|} a
(===) x y = gEq{|*|} x y

Example: a mapping function fmap for functors and bmap for bifunctors can be defined in terms of the generic mapping
function defined above just by specializing it for the appropriate kind.

fmap :: (a -> b) (f a) -> (f b) | gMap{|*->*|} f
fmap f x y = gMap{|*->*|} f x y

bmap :: (a1 -> b1) (a2 -> b2) (f a1 a2) -> (f b1 b2) | gMap{|*->*->*|} f
bmap f1 f2 x y = gMap{|*->*->*|} f1 f2 x y

Equality makes sense not only on for kind *. In the example we alter the standard way of comparing elements. Equality for
kind * and *->* are explicitly used.

eqListFsts :: [(a, b)] [(a, c)] -> Bool | gEq{|*|} a
eqListFsts xs ys = gEq{|*->*|} (\x y -> fst x === fst y) ys

eqFsts :: (f (a, b)) (f (a, c)) -> Bool | gEq{|*->*|} f & gEq{|*|} a
eqFsts xs ys     = gEq{|*->*|} (\x y -> fst x === fst y) ys

Examples of generic applications

Start =
    ( gEq{|*|} [1,2,3] [2,3,3]                          // True
    , [1,2,3] === [1,2,3]                               // True
    , gEq{|*->*|} (\x y -> True) [1,2,3] [4,5,6]        // True
    )



7.5 Using Constructor Information

As it was outlined above, the structural representation of types lacks information about specific constructors and record
fields, such as name, arity etc. This is because this information is not really part of the structure of types: different types can
have the same structure. However, some generic functions need this information. Consider, for example a generic toString
function that converts a value of any type to a string. It needs to print constructor names. For that reason the structural
representation of types is extended with special constructor and field markers that enable us to pass information about
fields and constructors to a generic function.

Definition of the constructor and field marker types (in StdGeneric.dcl).

:: CONS a        = CONS a
:: OBJECT a      = OBJECT a
:: RECORD a      = RECORD a
:: FIELD a       = FIELD a

The markers themselves do not contain any information about constructors and fields. Instead, the information is passed to
instances of a generic function on these markers.

Examples of structural representation with constructor and field information

:: ListS a   :== EITHER (CONS UNIT) (CONS (PAIR a (List a)))
:: TreeS a   :== EITHER (CONS a) (CONS (PAIR (Tree a) (Tree a)))

:: Complex   = { re   :: Real, im   :: Real }
:: ComplexS  :== PAIR (FIELD Real) (FIELD Real)

GenericTypeArg = GenericMarkerType [of Pattern]
| TypeName
| TypeVariable

GenericMarkerType = CONS
| OBJECT
| RECORD
| FIELD

Definition of the algebraic type, constructor, record type and field descriptors (StdGeneric.dcl)
The algebraic type descriptor is passed after of in the OBJECT case of a generic function.
:: GenericTypeDefDescriptor =
    { gtd_name       :: String
    , gtd_arity      :: Int
    , gtd_num_conses :: Int
    , gtd_conses     :: [GenericConsDescriptor]
    }
The constructor descriptor is passed after of in the CONS case of a generic function.
:: GenericConsDescriptor =
    { gcd_name       :: String
    , gcd_arity      :: Int
    , gcd_prio       :: GenConsPrio              // priority and associativity
    , gcd_type_def   :: GenericTypeDefDescriptor // type def of the constructor
    , gcd_type       :: GenType                  // type of the constructor
    , gcd_index      :: Int                      // index of the contructor in the type def
    }
The record descriptor is passed after of in the RECORD case of a generic function.
:: GenericRecordDescriptor =
    { grd_name       :: String
    , grd_arity      :: Int
    , grd_type_arity :: Int                      // arity of the type
    , grd_type       :: GenType                  // type of the constructor
    , grd_fields     :: [String]
    }
The field descriptor is passed after of in the FIELD case of a generic function.
:: GenericFieldDescriptor =
    { gfd_name       :: String
    , gfd_index      :: Int                      // index of the field in the record
    , gfd_cons       :: GenericRecordDescriptor  // the record constructor
    }



Generic pretty printer.

generic gToString a ::        String    a            -> String
gToString {|Int|}             sep       x            = toString x
gToString {|UNIT|}            sep       x            = x
gToString {|PAIR|} fx fy      sep       (PAIR x y)   = fx sep x +++ sep +++ fy sep y
gToString {|EITHER|} fl fr    sep       (LEFT x)     = fl sep x
gToString {|EITHER|} fl fr    sep       (RIGHT x)    = fr sep x
gToString {|CONS of c|} fx    sep       (CONS x)
    | c.gcd_arity == 0
         = c.gcd_name
    | isEmpty c.gcd_fields
         = "(" +++ c.gcd_name +++ " " +++ fx " "  x +++ ")"
    | otherwise
        = "{" +++ c.gcd_name +++ " | " +++ fx ", " x +++ "}"
gToString {|FIELD of f|} fx   sep       (FIELD x)    = f.gfd_name +++ "=" +++ fx x

toStr :: a -> String | gToString{|*|} a
toStr   x = gToString{|*|} "" x

7.6 Generic Functions and Uniqueness Typing

Uniqueness is very important in Clean. The generic extension can deal with uniqueness. The mechanism that derives
generic types for different kinds is extended to deal with uniqueness information. Roughly speaking it deals with
uniqueness attribute variables in the same way as it does with normal generic variables.

The type of standard mapping for lists with uniqueness

map :: (.a -> .b) ![.a] -> [.b]

Generic mapping with uniqueness.  The instance on lists has the same uniqueness typing as the standard map

generic gMap a b :: .a -> .b

Uniqueness information specified in the generic function is used in typing of generated code.

Generated classes

class gMap{|*|} t             :: .t -> .t
class gMap{|*->*|} t          :: (.a -> .b) (.t .a) -> .t .b
class gMap{|*->*->*|} t       :: (.a1 -> .b1) (.a2 -> .b2) (.t .a1 .a2) -> .t .b1 .b2

Current limitations with uniqueness: generated types for higher order types require local uniqueness inequalities which are
currently not supported.

Counter Example due to limitation in the current version of Clean.

class gMap{|(*->*)->*|} t  ::
    (A. (a:a) (b:b): (.a -> .b) -> (f:f a:a) -> g:g a:a, [f <= a, g <= b])
    (.t .f) -> .t .g
    , [f <= t, g <= t]

7.7 Exporting Generic Functions

Generic declarations and generic cases - both provided and derived - can be exported from a module. Exporting a generic
function is done by giving the generic declaration in the DCL module. Exporting provided and derived generic cases is done
by means of derive.

GenericExportDef = GenericDef ;
| derive FunctionName {DeriveExportType [UsedGenericDependencies]}-list ;
| derive class ClassName {DerivableType}-list ;

GenericDef = generic FunctionName TypeVariable+ :: FunctionType



DeriveExportType = TypeName
| GenericMarkerType [of UsedGenericInfoFields]
| PredefinedTypeConstructor
| TypeVariable

UsedGenericInfoFields = {[{FieldName}-list]}
| Variable

UsedGenericDependencies = with {UsedGenericDependency}
UsedGenericDependency = Variable

| _

Example. Exporting of generic mapping. Definition as given in module GenMap.dcl

generic gMap a b :: .a -> .b
derive gMap c, PAIR, EITHER, CONS, FIELD, []

A generic function cannot be derived for an abstract data type, but it can be derived in the module where the abstract type
defined. Thus, when one may export derived instance along with the abstract data type.



Chapter 8

Dynamics

CleanCleanCleanCleanClean

Dynamics are a new experimental feature of CLEAN. The concept is easy to understand, but the implementation is not so
straightforward (see Vervoort and Plasmeijer, 2002). So, it will take some time before all bits and pieces are implemented
and the system will work flawlessly. Please be patient.

What can you do with "Dynamics"? With "Dynamics" it is possible to store and exchange a CLEAN expression between
(different) CLEAN applications in an easy and type-safe way. The expression may contain (unevaluated!) data and
(unevaluated!) function applications. Here are some examples of its use.

Almost all applications store and fetch information to and from disk (settings and the like). Traditionally, information
written to file first has to be converted by the programmer to some (String) format. When the file is read in again a
parser has to be constructed to parse the input and to convert the String back to the appropriate data structure.
With Dynamics one can store and retrieve (almost) any CLEAN data structure in a type-safe way with just one (!)
function call. Not only data can be saved, but also code (unevaluated functions, higher order functions), which is
part of the data structure being stored. Dynamics make it easier to write a persistent application: an application that
stores the settings in such a way that the next time the user will see everything in the same way as the last time the
application was used.
Different independently programmed CLEAN applications, even applications distributed across a network, can easily
communicate arbitrary expressions that can contain data as well as code (unevaluated functions) in a type-safe way.
Dynamics can be communicated via files or via message passing primitives offered by the CLEAN libraries. The
fact that CLEAN applications can communicate code means that a running CLEAN application can be extended
with additional functionality. So, plug-ins and mobile code can be realized very easily and everything is type-safe.

To make all this possible we need some special facilities in the CLEAN language. But, in the CLEAN run-time system
special support is needed as well. This includes dynamic type checking, dynamic type unification, dynamic encoding and
decoding of arbitrary CLEAN expressions and types, dynamic linking, garbage collection of dynamics objects on disk, and
just-in-time code generation.

In CLEAN 2.0 we have added a dynamic type system such that CLEAN now offers a hybrid type system with both static as
well as dynamic typing. An object (expression) of static type can be packed into an object of dynamic type (a "Dynamic")
and backwards. The type of a Dynamic can only be checked at run-time. An application can also check whether types of
several Dynamics can be unified with each other, without a need to know what types are exactly stored into a Dynamic. In
this way CLEAN applications can be used as control language to manage processes and plug-ins (see Van Weelden and
Plasmeijer, 2002).

In this Chapter we first explain how a Dynamic can be constructed (see 8.1). In Section 8.2 we explain how the type of a
Dynamic can be inspected via a pattern match, and how one can ensure that Dynamics fit together by using run-time type
unification.

We explain in Section 8.3 how dynamics can be used to realize type safe communication of expressions between
independently executing applications. In Section 8.4 we explain the basic architecture of the CLEAN run-time system that
makes this all possible. Semantic restrictions and restrictions of the current implementation are summarized in Section 8.5.

8.1 Packing Expressions into a Dynamic

Since CLEAN is a strongly typed language (see Chapter 5), every expression in CLEAN has a static type determined at
compile time. The CLEAN compiler is in general able to infer the static type of any expression or any function.



Example of CLEAN expressions and their static type:

3::Int
map::(a -> b) [a] -> [b]
map ((+) 1)::[Int] ->[Int]
MoveColorPoint Green::(Real,Real) -> ColorPoint

By using the keyword dynamic one can (in principle) change anyexpression of static type :: τ into a dynamically typed
object of static type ::Dynamic. Such a "dynamic" is an object (a record to be precise) that contains the original
expression as well as an encoding of the original static type of the expression. Both the expression as well as the encoding
of its static type, are packed into a dynamic. At run-time, the contents of a dynamic (the value of the expression as well the
encoded type) can be inspected via a dynamic pattern match (see 8.2).

DynamicExpression = dynamic GraphExpr [:: [UnivQuantVariables] Type [ClassContext]]

Example showing how one can pack an expression into a Dynamic. Optionally, the static type of the expression one wants
to pack into a Dynamic can be specified.

dynamic 3
dynamic 3::Int
dynamic map::A.a b:(a->b) [a] -> [b]
dynamic map::(Int -> Real) [Int] -> [Real]
dynamic map ((+) 1)
dynamic MoveColorPoint Green

Example of a (constant) function creating a dynamic containing an expression of type Tree Int.

:: Tree a = Node a (Tree a) (Tree a) | Leaf

MyTree::Dynamic
MyTree = dynamic (DoubleTree 1 mytree)
where
    Doubletree rootvalue tree = Node rootvalue tree tree

    mytree = (Node 2 (Node 3 Leaf Leaf) Leaf)

Only the compiler is able to combine an expression with its type into a dynamic, such that it is guaranteed that the encoded
type is indeed the type of the corresponding packed expression. However, as usual it is allowed to specify a more specific
type than the one the compiler would infer. The compiler will check the correctness of such a (restricted) type specification.
Polymorphic types can be stored as well.

If an expression of polymorphic type is packed into a dynamic one needs to explicitly specify the universal
quantifiers as well (see the example above).

In principle (there are a few exceptions), any algebraic data type can be packed into a dynamic, including basic types,
function types, user defined types, polymorphic types, record types, all types of arrays, all types of lists, and existentially
quantified types. The system can deal with synonym types as well. Restrictions hold for packing abstract data types,
uniqueness types and overloaded functions, see the sub-sections below.

The static type of the object created with the keyword "dynamic" is the predefined type Dynamic. Since all objects created
in this way are of type Dynamic, the compiler is in general not able anymore to determine the static type hidden in the
Dynamic and it cannot check its type consistency anymore. The type stored into a Dynamic has to be checked at run-time
(see 8.2 and 8.3).

8.1.1 Packing Abstract Data Types

Certain types simply cannot be packed into a Dynamic for fundamental reasons. Examples are objects of abstract
predefined type that have a special meaning in the real world, such as objects of type World and of type File. It is not
sound to pack objects of these types into a Dynamic, because their real world counterpart cannot be packed and stored.

Abstract data types that have a meaning in the real world (such as World, File) cannot be packed into Dynamic.



A compile time error message will be given in those cases were the  compiler refuses to pack an expression into a
Dynamic.

In the current implementation there are additional restrictions on the kind of types that can be packed into aDynamic.
Currently it is not possible to pack any abstract data type into a dynamic at all. The reason is that the test on equality of
abstract types is not easy: it does not seem to be enough to test the equality of the definitions of the types involved. We
should also test whether the operations defined on these abstract data types are exactly the same. The most
straightforward way to do this would be to require that abstract data types  are coming from the same module (repository).

Expressions containing objects of abstract data type cannot be packed into a Dynamic. We are working on this.
Check the latest version of the Clean system.

8.1.2 Packing Overloaded Functions

Overloaded functions can also be packed into a Dynamic. In that case the corresponding type classes (see 6.1) are
packed as additional dictionary argument of the function into the Dynamic. When the Dynamic is unpacked in a pattern
match, the same type classes have to be defined in the receiving function, otherwise the pattern match will fail (see 8.2.2).

Example: storing an overloaded function into a Dynamic.

OverloadedDynamic:: Dynamic
OverloadedDynamic = dynamic plus :: A.a:a a -> a | + a
where
    plus:: a a -> a | + a
    plus x y = x + y

Currently, when an overloaded function is packed into a dynamic, one explicitly has to specify the type, including the forall
quantifier and the class context.

8.1.3 Packing Expressions of Unique Type

Expressions of unique type (see Chapter 9) can also be packed into a Dynamic. However, the run-time system cannot deal
with uniqueness type variables or with coercion statements (attribute variable inequalities). One can only use the type
attribute "*". Furthermore, one has to explicitly define the desired unicity in the type of the expression to be packed into a
Dynamic. Otherwise the unicity properties of the packed expression will not be stored. As usual, the compiler will check
whether the specified type (including the uniqueness type attributes) of the packed expression is correct.

Example: packing a function into a Dynamic that can write a character to a unique file.

MyDynamic:: Dynamic
MyDynamic = dynamic fwritec :: Char *File -> *File

Uniqueness type variables and coercion statements cannot be part of a type packed into a Dynamic.
Uniqueness type attributes are only taken into account if they are explicitly specified in the type of the packed
dynamic.

Counter Example: Dynamics cannot deal with uniqueness type variables or with attribute variable inequalities.

MyDynamic:: Dynamic
MyDynamic = dynamic append :: [.a] u:[.a] -> v:[.a]        , [u<=v]

8.1.4 Packing Arguments of Unknown Type

The compiler is not in all cases capable to infer the concrete type to be assigned to a Dynamic. For instance, when a
polymorphic function is defined it is in general unknown what the type of the actual argument will be. If it is polymorphic, it
can be of any type.

An argument of polymorphic type cannot be packed into a Dynamic.



Counter Example of a function creating a Dynamic. Arguments of polymorphic type cannot be packed into a Dynamic.

WrongCreateDynamic:: t -> Dynamic
WrongCreateDynamic any = dynamic any

If one wants to define a function that can wrap an arbitrary argument into a Dynamic, not only the value, but also the
concrete static type of that argument has to be passed to the function. For efficiency reasons, we of course do not want to
pass the types of all arguments to all functions. Therefore, we have to know which of the arguments might be packed into a
Dynamic. A special class context restriction is used to express this. So, instead of a polymorphic function one has to define
an overloaded function (see Chapter 6). The class TC (for Type Code) is predefined and an instance of this class is
required whenever an argument of unknown type is packed into a dynamic. The compiler will automatically generate an
appropriate instance of the TC when needed.

Example of an overloaded function that can wrap an argument of arbitrary type into a Dynamic.

CreateDynamic:: t -> Dynamic | TC t
CreateDynamic any = dynamic any

MyTree:: Dynamic
MyTree = CreateDynamic (Node 2 (Node 3 Leaf Leaf) Leaf)

8.1.5 Using Dynamic Typing to Defeat the Static Type System

Dynamic typing can also be used to do things the static type system would forbid. For instance, lists require that all lists
elements are of the same type. Since all dynamic expressions are of type Dynamic, one can combine objects of static
different type into a list by turning them into a Dynamic.

Example: three ways to pack objects of different type into a list. The first method is to define a new type in which all types
one likes to pack into a list are summarized with an appropriate constructor to distinguish them. For unpacking one can
make a case distinction on the different constructors in a pattern match. Everything is nice statically typed but one can only
pack and unpack the types that are mentioned in the wrapper type.

:: WrapperType = I Int | R Real | C Char

MyWrapperList = [I 1, R 3.14, C ’a’]

The next way to pack objects of different types is by defining a list structure using an existential type (see 5.1.3). Any type
can be packed now but the disadvantage is that there is no simple way to distinguish the elements and unpack them once
they are packed.

:: ExstList = E.a: Cons a ExstList | Nil

MyExstList = Cons 1 (Cons 3.14 (Cons ’a’ Nil)

The third way is to wrap the values into a Dynamic. Any type can be packed and via a pattern match one can unwrap them
as well. It is very inefficient though and one can only unwrap a value by explicitly naming the type in the pattern match (see
8.2).

MyDynamicList = [dynamic 1, dynamic 3.14, dynamic ’a’]

It is possible to write CLEAN programs in which all arguments are dynamically typed. You can do it, but it is not a good thing
to do: programs with dynamics are less reliable (run-time type errors might occur) and much more inefficient. Dynamics
should be used for the purpose they are designed for: type-safe storage, retrieval, and communication of arbitrary
expressions between (independent) applications.



8.2 Unpacking Dynamics Using a Dynamic Pattern Match

When a Dynamic is created (see above), its static type is the type Dynamic. The compiler is in general not able anymore
to determine what the original type was of the expression that is packed into a Dynamic. The only way to figure that out is
at run-time (that why it is called a Dynamic), by inspecting the dynamic via a pattern match (see 3.2) or a case construct (
see 3.4.2). With a pattern match on a Dynamic one cannot only inspect the value of the expression that was packed into a
Dynamic, but also its original type. So, with Dynamics run-time type checking and dynamic type unification is possible in
CLEAN with all the advantages (more expressions can be typed) and disadvantages (type checking may fail at run-time) of
a dynamic type system. The programmer has to take care of handling the case in which the pattern match fails due to a
non-matching dynamic type.

DynamicPattern = (GraphPattern :: DynamicType)
DynamicType = [UnivQuantVariables] {DynPatternType}+ [ClassContext]
DynPatternType = Type

| TypePatternVariable
| OverloadedTypePatternVariable

TypePatternVariable = Variable
OverloadedTypeVariable = Variable^

Any expression that can be packed into a dynamic can also be unpacked using a dynamic pattern match. With a pattern
match on Dynamics a case distinction can be made on the contents of the Dynamic. If the actual Dynamic matches the
type and the value specified in the pattern, the corresponding function alternative is chosen. Since it is known in that case
that the Dynamic matches the specified type, this knowledge is used by the static type system: dynamics of known type
can be handled as ordinary expressions in the body of the function. In this way dynamics can be converted back to
ordinary statically typed expressions again. The static type checker will use the knowledge to check the type consistency in
the body of the corresponding function alternative.

Example: Use of a dynamic pattern match to check whether a Dynamic is of a specific predefined type. The first alternative
of the function transform matches if the Dynamic contains the Integer of value 0. The second alternative is chosen if the
Dynamic contains any Integer (other than 0). The third alternative demands a function from [Int] to [Int]. The next
alternative is chosen if the Dynamic is a pair of two [Int]. If none of the alternatives match, the last alternative is chosen.
The program will yield an empty list in that case.

transform :: Dynamic -> [Int]
transform (0 :: Int)               = []
transform (n :: Int)               = [n]
transform (f :: [Int]->[Int])      = f [1..100]
transform ((x,y) :: ([Int],[Int])) = x ++ y
transform other                    = []

Warning: when defining a pattern match on Dynamics, one should always be aware that the pattern match might fail. So,
we advise you to alwaysinclude an alternative that can handle non-matching dynamics. The application will otherwise abort
with an error message that none of the function alternatives matched.



Example: use of a dynamic pattern match to check whether a Dynamic is of a specific user defined algebraic data type. If
the Dynamic contains a Tree of Int, the function CountDynamicLeafs will count the number of leafs in this tree.
Otherwise CountDynamicLeafs  will return 0.

:: Tree a = Node a (Tree a) (Tree a) | Leaf

CountDynamicLeafs :: Dynamic -> Int
CountDynamicLeafs (tree :: Tree Int)  = countleafs tree
CountDynamicLeafs other               = 0
where
    countleafs :: (Tree Int) -> Int
    countleafs  tree = count tree 0
    where
        count:: (Tree a) Int -> Int
        count Leaf nleafs              = nleafs + 1
        count (Node left right) nleafs = count left (count right nleafs)

MyTree :: Dynamic
MyTree = dynamic (Node 1 (Node 2 (Node 3 Leaf Leaf) Leaf) (Node 4 Leaf Leaf))

Start :: Int
Start = CountDynamicLeafs MyTree

Example: use of a dynamic pattern match to check whether a Dynamic is a polymorphic function (the identity function in
this case).

TestId :: Dynamic a -> a
TestId (id :: A.b: b -> b) x = id x
TestId else x                = x

To avoid confusion with type pattern variables (see 8.2.4 and 8.2.5), polymorphic type variables have to be explicitly
introduced with the forall quantifier (A.).
Quantifiers are only allowed on the outermost level (Rank 1).

Dynamics can be created by functions in other modules or even come from other (totally different) Clean applications (see
8.3). It is therefore possible that in a Dynamic a type with a certain name is stored, yet this type might have a type
definition which is (slightly or totally) different from the type known in the matching function. So, the context in which a
dynamic is packed might be totally different from the context in which the dynamic is unpacked via a pattern match. Hence,
it is not enough that matching type constructors have identical names; they should also have exactly the same type
definition. If not, the match will fail.

Two types are considered to be equal if and only if all the type definitions (type constructors, data constructors, class
definitions) are syntactically identical modulo the names of type variables (alpha conversion is allowed). Type equivalence
of type constructors is automatically checked by the Clean run-time system, even if these types are defined in totally
different Clean applications. To make this possible, we had to change the architecture of the Clean run-time system (see
8.4).

So, when a pattern match on a dynamic takes place, the following things are checked in the indicated order (case
constructs are handled in a similar way):

1) All the type constructors (either of basic type, predefined or user defined) specified in a dynamic pattern will be
compared with the name of the corresponding actual type constructors stored in the dynamics. If corresponding
type constructors have different names, the pattern match fails and the next alternative is tried.

2) If in the pattern match, corresponding type’s constructors have the same name, the run-time system will check
whether their type definitions (their type might have been defined in different Clean applications or different Clean
modules) are the same as well. The system knows where to find these type definitions (see 8.3 and 8.4). If the
definitions are not the same, the types are considered to be different. The pattern match fails and the next
alternative is tried.

3) If the types are the same, the actual data constructors (constant values) are compared with the data constructors
specified in the patterns, as usual in a standard pattern match (see 3.2) without dynamics. If all the specified
constants match the actual values, the match is successful and the corresponding function alternative is chosen.
Otherwise, the pattern match fails and the next alternative is tried.



In the current implementation there are additional restrictions on the kind of types that can be packed into a Dynamic and
therefore also be unpacked from a Dynamic (see 8.2.1, 8.2.2, and 8.2.3).

In a dynamic pattern match one can explicitly specify to match on a certain type constructors (e.g. Tree Int). One can
also use a type pattern variable (see 8.2.4) to specify a type scheme with which the actual type has to be unified. By using
overloaded variables (see 8.2.5) defined in the type of the function, the static context in which a function is used can have
influence on the kind of dynamic that is accepted. So, there are two special types of variables that can occur in a type
pattern: type pattern variables and overloaded type pattern variables.

8.2.1 Unpacking Abstract Data Types

It is not yet possible to pack or unpack an abstract data type. See also 8.1.1.

8.2.2 Unpacking of Overloaded Functions

One can specify a class restriction in the type in a dynamic pattern match. The system will check whether the actual
dynamic contains a function that is indeed overloaded with exactly the same class context restriction as specified in the
pattern. Two class definitions are regarded to be equal if all involved class definitions are syntactically equal, modulo alpha
conversion of the type variables.

One is obligated for overloaded type variables to introduce them via the forall quantifier in the pattern, to avoid
confusion with type pattern variables (see 8.2.4 and 8.2.5).
Quantifiers are only allowed on the outermost level.

Example: Unpacking of an overloaded function. The pattern match will only be successful if the dynamic contains a function
overloaded in +. The corresponding class definitions will be checked: the definition of the class + has to be the same as the
class + known in the context where the dynamic has been created. Due to the application of plus 2 3, the type checker
will require an instance for + on integer values.

CheckDynamic:: Dynamic -> Int
CheckDynamic (plus :: A.a : a a -> a | + a) = plus 2 3
CheckDynamic else                           = 0

8.2.3 Unpacking Expressions of Unique Type

Expressions of unique type (see Chapter 9) can also be unpacked via a dynamic pattern match. However, the run-time
system cannot deal with uniqueness type variables or with coercion statements (attribute variable inequalities). One can
only use the type attribute "*". The match will only be successful if the specified types match and all type attributes also
match. No coercion from unique to non-unique or the other way around will take place.

Example: Unpacking a function that can write a character to a unique file.

WriteCharDynamic:: Dynamic Char *File -> *File
WriteCharDynamic (fwc :: Char *File -> *File) char myfile = fwc char myfile
WriteCharDynamic else char myfile                         = myfile

Uniqueness type variables and coercion statements cannot be used in a dynamic pattern match.
The type attributes of the formal argument and the actual argument have to be exactly the same. No coercion from
unique to non-unique or the other way around will take place.

8.2.4 Checking and Unifying Types Schemes using Type Pattern Variables

In an ordinary pattern match one can use data constructors (to test whether an argument is of a specific value) and
variables (which match on any concrete value in the domain). Similarly, in a pattern match on a dynamic type one can use
type constructors (to test whether a dynamic contains an expression of a specific type) and type pattern variables (which
match on any type). However, there are differences between ordinary variables and type pattern variables as well. All
ordinary variable symbols introduced at the left-hand side of a function definition must have different names (see 3.2). But,
the same type variable symbol can be used several times in the left-hand side (and, of course, also in the right-hand side)
of a function definition. Type pattern variables have the function alternative as scope and can appear in a pattern as well as
in the right-hand side of a function in the context of a dynamic type.



TypePatternVariable = Variable

Each time the same type variable is used in the left-hand side, the pattern matching mechanism will try to unify the type
variable with the concrete type stored in the dynamic. If the same type variable is used several times on the left hand-side,
the most general unifier is determined that matches on all corresponding types in the dynamics. If no general unifier can be
found, the match will fail. As usual, of all corresponding type constructors it will be checked whether they are indeed the
same: the corresponding type definitions have to be equivalent (see 8.2). Type equivalence of matching type constructors
is automatically checked by the Clean run-time system, even if these types are defined in different Clean applications.

Type pattern variables are very handy. They can be used to check for certain type schemes or to check the internal type
consistency between different Dynamics, while the checking function does not exactly has to know which concrete types
are actually stored in a dynamic. One can make use of type pattern variables to manage and control plug-ins in a flexible
way see 8.3).

The function dynApply has two arguments of type Dynamic and yields a value of type Dynamic as well. The first
Dynamic has to contain a function unifiable with type (a -> b), the second argument has to be unifiable with the
argument type a the function is expecting. In this way we can ensure that it is type technically safe to apply the function to
the argument, without exactly knowing what the actual types are. The result will have the statically unknown type b, but, by
packing this result into a Dynamic again, the static type system is happy: it is a Dynamic. If the dynamics types cannot be
unified, it is not type safe to apply the function to the argument, and the next alternative of dynApply is chosen. It yields an
error message stored into a dynamic.

dynApply :: Dynamic Dynamic -> Dynamic
dynApply (f :: a -> b) (x :: a)    = dynamic (f x :: b)
dynApply  df            dx         = dynamic ("cannot apply ",df," to ",dx)

Start = dynApply (dynamic (map ((+) 1)) (dynamic [1..10])

Type pattern variables behave similar as existentially quantified type variables (see 5.1.3). It is statically impossible to
determine what the actual type of a type pattern variable is. So, in the static type system one cannot define an expression
which type is depending on the value of a type pattern variable. The static type system cannot deal with it, since it does no
know its value. However, an expression which type is depending on the type assigned to a type pattern variable can be
packed into a dynamic again, because this is done at run-time. See the dynAppy example above.

	It is not allowed to create an expression which static type is depending on the value of a type pattern variable.

Counter Example: It is not possible to let a static type depend on the value of a type pattern variable. The actual value of
the type b in WrongDynApply is unknown at run-time. This example will result into a type error. See 8.2.5 for a legal
variant of this function.

WrongDynApply :: Dynamic Dynamic -> ???
WrongDynApply (f :: a -> b) (x :: a)  = f x
WrongDynApply df            dx        = abort "cannot perform the dyanmic application"

Start = WrongDynApply (dynamic (map ((+) 1)) (dynamic [1..10]) ++ [11..99]

Note: don’t confuse type pattern variables with the other variables that can appear in a dynamic type to indicate polymorphic
or overloaded functions or constructors. The latter are introduced via a quantifier in the type. See also 8.2.5.

8.2.5 Checking and Unifying Unknown Types using Overloaded Type Variables

In a dynamic pattern match one can explicitly state what type of a Dynamic is demanded. But it is also possible to let the
static context in which a function is used impose restrictions on the Dynamic to be accepted. This can be realized by using
overloaded type variables in a dynamic pattern. Such an overloaded type variable has to be introduced in the type of the
function itself and the variable should have the predefined type class TC (see 8.1.1) as context restriction. This makes it
possible to let the overloading mechanism determine what the demanded type of a Dynamic has to be (the "type
dependent functions" as introduced by Marco Pil, 1999). By using such an overloaded type variable in a dynamic pattern,
the type assigned by the static overloading mechanism to this variable is used as specification of the required type in the
dynamic pattern match. The caret symbol (^) is used as suffix of a type pattern variable in a dynamic pattern match to
indicate that an overloaded type variable is used, instead of a type pattern variable. Overloaded type variables have the
whole function definition as scope, including the type of the function itself.



OverloadedTypeVariable = Variable^

An overloaded type pattern variable has to be introduced in the type definition of the function.
The predefined type class TC (see 8.1.1) has to be specified as context restriction on the global type pattern
variable.
As is usual with overloading (see 6.6), in some cases the compiler is not able to resolve overloading, e.g. due to
internally ambiguously overloading.

Example: The function Start appends [11..99]to the result of FlexDynApply. So, it is clear that FlexDynApply will
have to deliver a [Int] to the function Start. The additional context restriction TC b turns FlexDynApply into an
overloaded function in b. The function FlexDynApply will not deliver some dynamic type b, but the static type b
that is demanded by the context applying FlexDynApply. The overloading mechanism will automatically pass as
additional parameter information about the static type b that is required by the context. This type is then used to check the
actual type of the dynamic in the dynamic pattern match

FlexDynApply :: Dynamic Dynamic -> b | TC b
FlexDynApply (f :: a -> b^) (x :: a)   = f x
FlexDynApply df            dx          = abort "cannot perform the dyanmic application"

Start = FlexDynApply (dynamic (map ((+) 1)) (dynamic [1..10]) ++ [11..99]

Example: The function lookup will look up a value of a certain type a in its lists of Dynamics. The type it will search for
depends on the context in which the function lookup is used. In Start the lookup function is used twice. In the first case an
integer value is demanded (due to + 5), in the second case a real value (due to + 2.5) is required. The program will be
aborted if a value of the required type cannot be found in the list.

lookup :: [Dynamic] -> a  | TC a
lookup [(x :: a^):xs] = x
lookup [x:xs]         = lookup xs
lookup []             = abort "dynamic type error"

Start = (lookup DynamicList + 5, lookup DynamicList + 2.5)  // result will be (6,5.64)

DynamicList = [dynamic 1, dynamic 3.14, dynamic ’a’]

Note: don’t confuse overloaded type variables with type pattern variables or the other variables that can appear in a
dynamic type to indicate polymorphic or overloaded functions or constructors. The latter are introduced via a quantifier in
the type.

Example: the following artificial example the kinds of type variables that can be used in a dynamic pattern are shown. In the
first alternative a type variable a is used (introduced by the forall quantifier). This alternative only matches on a polymorphic
function. In the second alternative an overloaded type variable is used (indicated by a^) referring to the overloaded type
variable a | TC a introduced in the function body. It will match on a function of the same type as the actual type of the
second argument of AllSortsOfVariables. The last alternative uses type pattern variables a and b. It matches on any
function type, although this function is not used.

AllSortsOfVariables :: Dynamic  a -> a | TC a
AllSortsOfVariables (id::A.a : (a -> a)) x  = id x
AllSortsOfVariables (f::a^ -> a^)        x  = f x
AllSortsOfVariables (f::a -> b)          x  = x

8.3 Type Safe Communication using Dynamics

As explained in the introduction of this Chapter, the most important practical use of Dynamics is enabling type safe
communication of data and code between different (distributed) CLEAN applications. When a Dynamic is stored or
communicated it will be encoded (serialized) to a string. So, in principle almost any communication media can be used to
communicate Dynamics. In this section we only explain how to store and retrieve a Dynamic from a File. It is also
possible to communicate a Dynamic directly via a channel or via send / receive communication primitives. The actual
possibilities are depending on the facilities offered by CLEAN libraries. This is outside the scope of this CLEAN language
report.

If a CLEAN application stores a Dynamic into a File any other (totally different) CLEAN application can read the Dynamic
from it. Since a Dynamic can contain data as well as code (unevaluated function applications), this means that any part of
one CLEAN program can be plugged into another. Since CLEAN is using compiled code, this has a high impact on the
run-time system (see 8.4).



One can read and write a Dynamic with just one function call. In the CLEAN library StdDynamic the functions
readDynamic and writeDynamic are predefined. As usual in CLEAN, uniqueness typing is used for performing I/O (see
9.1). When a Dynamicis written, the whole expression (the graph expression and its static type) is encoded symbolically to
a String and stored on disk. When a Dynamic is read, it is read in lazily. Only when the evaluation of the Dynamic is
demanded (which can only happen after a successful pattern match), the String is decoded back to a Dynamic. If new
function definitions have to be plugged in, this will be done automatically (see 8.4). This lazy reading is also done for
Dynamics stored into a Dynamic. So, a Dynamic can only be plugged in if its type is approved in a Dynamic pattern
match.

Standard functions for reading and writing of a Dynamic.

definition module StdDynamic

...

writeDynamic :: Dynamic String *World -> *(Bool,*World)

readDynamic :: String *World -> *(Bool, Dynamic, *World)

The use of Dynamics is shown in the examples below. Each example is a complete CLEAN application.

Example of a CLEAN application writing a Dynamic containing a value of type Tree Int to a File named
DynTreeValue. This example shows that data can be stored to disk using the CLEAN function writeDynamic.

module TreeValue

import StdDynamic, StdEnv

:: Tree a = Node a (Tree a) (Tree a) | Leaf

Start world
# (ok,world) = writeDynamic "DynTreeValue" MyTree world
| not ok     = abort "could not write MyTree to file named DynTreeValue"
| otherwise  = world
where
    MyTree::Dynamic
    MyTree = dynamic (Node 1 mytree mytree)
    where
        mytree = (Node 2 (Node 3 Leaf Leaf) Leaf)



Example of another CLEAN application writing a Dynamic containing the function countleafs to a File named
CountsLeafsinTrees. This function can count the numbers of leafs in a Tree and is of type (Tree Int) -> Int. This
examples shows that code (in this case the function CountLeafs) can be stored on disk as well, just using
WriteDynamic.

module CountLeafs

import StdDynamic, StdEnv

:: Tree a = Node a (Tree a) (Tree a) | Leaf

Start world
# (ok,world) = writeDynamic "CountsLeafsinTrees" CountLeafs world
| not ok     = abort "could not write dynamic"
| otherwise  = world
where
    CountLeafs = dynamic countleafs

    countleafs:: (Tree Int) -> Int
    countleafs  tree = count tree 0
    where
        count:: (Tree a) Int -> Int
        count Leaf nleafs               = nleafs + 1
        count (Node left right) nleafs  = count left (count right nleafs)
        count else                      = abort "count does not match"

The third CLEAN application reads in the file TreeValue containing a Tree Int and the function countleafs (a plugin)
that can counts the number of Leafs in a Tree. So, new functionality is added to the running application Apply. By using
the function dynapply the new plugged in function countleafs is applied to the tree that has been read in as well. The
application Apply itself has a function to count the number of nodes and applies this function on the tree read in.
Note that this application will only work if all the type Trees defined in the different applications are exactly the same
(module the names for the type variables used).

module Apply

import StdDynamic, StdEnv

:: Tree a = Node a (Tree a) (Tree a) | Leaf

Start world
# (ok,countleafs,world)   = read "CountsLeafsinTrees" world
| not ok                  = abort ("could not read CountsLeafsinTrees")
# (ok,treevalue,world)    = read "TreeValue" world
| not ok                  = abort ("could not read TreeValue")
| otherwise  =   (    countnodes (case treevalue of (v::(Tree Int))= v) 0
                 ,    dynapply countleafs treevalue
                 )
where
    dynapply :: Dynamic Dynamic -> Dynamic
    dynapply (f::a -> b) (v::a)  = dynamic (f v)
    dynapply df          dv     = dynamic "incorrectly typed dynamic application"

    countnodes Leaf nnodes              = nnodes
    countnodes (Node left right) nnodes = countnodes left (countnodes right (nnodes+1))

8.4 Architecture of the implementation

From the examples above we learn that a Dynamic stored on disk can contain data as well as code (unevaluated functions
and function applications). How is this information stored into a file and how is a running CLEAN application extended with
new data and new functionality? To understand this one has to know a little bit more about how a CLEAN application is
generated.



Implementation of Dynamics

CLEAN applications are not interpreted via an interpreter. Executables are generated using compiled machine code. Storing
a Dynamic into disk and retrieving it again from disk cannot simply be done by (re) interpretation of CLEAN source code.
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The CLEAN compiler (written in CLEAN) compiles CLEAN implementation modules (.icl and .dcl files) to machine
independent abc-code (.abc files). The CLEAN definition modules are used to check the type consistency between the
separately programmed CLEAN modules. The abc-code contains machine instructions for a virtual abstract machine, the
abc-machine (see Plasmeijer and van van Eekelen, 1993). The abc-code is a kind of platform independent byte code
specially designed for CLEAN. The Code Generator (the one and only application in the Clean system which is written in
C) translates the abc-code into platform dependent symbolic machine code (.obj files under Windows). The code generator
can generate code for different platforms such as for Intel (Windows, Linux), Motorola (Mac) and Sparc (Unix) processors.
The Static Linker (written in CLEAN) links all the object modules of one CLEAN program together into a click able
executable application (.exe file under Windows). The compilation scheme described above can be used even if Dynamics
are internally used in an application. But, as soon as Dynamics are communicated to File or communicated to another
program, a different run-time support is needed and the traditional compilation scheme is changed to prepare this.
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In the changed compilation scheme, the static linker not only generates an application (actually, currently it is a .bat file), but
it also generates two additional files. One is called the code repository (.lib file). All object codes of your application are
collected here. The other file (.typ file) is a repository that contains all type definitions. The repositories serve as a database
which is accessed by the Dynamic Linker. Whenever an (other) running application needs code for a plug in or a type that
has to be checked, the Dynamic Linker will look it up in the appropriate repository. Each time a CLEAN program is
recompiled, new repositories are created. Repositories should not be removed by hand because it might make the
Dynamics stored on disk unreadable. A special garbage collector is provided that can remove unused repositories.



When a CLEAN application doing dynamic I/O is started, a special linker (the Dynamic Linker, written in CLEAN) is started
with it as well (if it is not already running). The Dynamic Linker is a server application on the computer. It will serve all
running CLEAN programs that read or write Dynamics. The Dynamic Linker will construct the application or plug-in at
run-time in the same way as the Static Linker would do at compile-time for a conventional CLEAN program. There is no
efficiency penalty once the code is linked in.

When a Dynamic is written to disk using the function writeDynamic, two (!) files are created: a .dyn file and a .sysdyn file.
The .sysdyn file contains the actual information: a String encoding of the dynamic. This sysdyn file is used by the Dynamic
Linker and should not be touched by the user because it might make the Dynamics stored on disk unreadable. The special
garbage collector provided will also remove unused .sysdyn files.

The user may only touch and use the .dyn file that contains references to the actual dynamic stored in the .sysdyn file. The
.dyn file can be seen as a "typed" file. It can be handled like any other user file. It can be renamed, moved or deleted
without any danger.

When a Dynamicis written to a file, an encoding of the graph and its type are written to disk. The graph is encoded in such
a way that sharing will be maintained when the graph is read in again. The stored graph may contain unevaluated
functions. In a Dynamic on disk, functions are represented by symbolic pointers to the corresponding code repositories.
The types stored in a Dynamic on disk point to the corresponding type definitions stored in the type repositories.

No plug-in will be plugged in unless its type is approved. When a Dynamic stored on disk is read in by an (other)
application, first only a pointer to the stored Dynamicis used in the CLEAN program. To use a Dynamic in an application
one first has to examine it in a pattern match. In the pattern match the type of the Dynamic is unified with a specified type
or with the type of another Dynamics. If the run-time type unification is successful, the Dynamic Linker will check whether
all type definitions of the types involved are identical as well. This type information is fetched from the corresponding type
repository when needed. If the types are identical and the conventional pattern match succeeds as well, the corresponding
function body can be evaluated. Only when the evaluation of the stored Dynamic is demanded, the graph encoded in the
Dynamic on disk is reconstructed as far as needed (Dynamics nested in a Dynamic are reconstructed lazily). The
Dynamic Linker links in the code corresponding to the unevaluated functions stored in the Dynamic. It is fetched from the
code repository and plugged in the running (!) application. In some cases the Dynamic Linker will ask the Code Generator
to generate new code (just-in-time code generation) to construct the required image. The Dynamic Linker has to ensure
that identical data types defined in different applications are linked in such a way that they are indeed considered to be of
the same type at run-time.

8.5 Semantic Restrictions on Dynamics

The following types cannot be packed/unpacked: abstract data types, uniqueness types, overloaded types. We are
working on it.



Chapter 9

Uniqueness Typing

CleanCleanCleanCleanClean

Although CLEAN is purely functional, operations with side-effects (I/O operations, for instance) are permitted. To achieve
this without violating the semantics, the classical types are supplied with so called uniqueness attributes. If an argument of
a function is indicated as unique, it is guaranteed that at run-time the corresponding actual object is local, i.e. there are no
other references to it. Clearly, a destructive update of such a "unique object" can be performed safely.

The uniqueness type system makes it possible to define direct interfaces with an operating system, a file system (updating
persistent data), with GUI’s libraries, it allows to create arrays, records or user defined data structures that can be updated
destructively. The time and space behavior of a functional program therefore greatly benefits from the uniqueness typing.

Uniqueness types are deduced automatically. Type attributes are polymorphic: attribute variables and inequalities on these
variables can be used to indicate relations between and restrictions on the corresponding concrete attribute values.

Sometimes the inferred type attributes give some extra information on the run-time behavior of a function. The uniqueness
type system is a transparent extension of classical typing that means that if one is not interested in the uniqueness
information one can simply ignore it.

Since the uniqueness typing is a rather complex matter we explain this type system and the motivation behind it in more
detail. The first Section (9.1) explains the basic motivation for and ideas behind uniqueness typing. Section 9.2 focuses on
the so-called uniqueness propagation property of (algebraic) type constructors. Then we show how new data structures
can be defined containing unique objects (Section 9.3). Sharing may destroy locality properties of objects. In Section 9.4
we describe the effect of sharing on uniqueness types. In order to maintain referential transparency, it appears that function
types have to be treated specially. The last Section (9.5) describes the combination of uniqueness typing and overloading.
Especially, the subsections on constructor classes and higher-oder type definitions are very complex: we suggest that the
reader skips these sections at first instance.

9.1 Basic Ideas behind Uniqueness Typing

The uniqueness typing is an extension of classical Milner/Mycroft typing. In the uniqueness type system uniqueness type
attributes  are attached to the classical types. Uniqueness type attributes appear in the type specifications of functions see
9.4) but are also permitted in the definitions of new data types (see 9.3). A classical type can be prefixed by one of the
following uniqueness type attributes:

Type = {BrackType}+
BrackType = [Strict] [UnqTypeAttrib] SimpleType
UnqTypeAttrib = * // type attribute "unique"

| UniqueTypeVariable: // a type attribute variable
| . // an anonymous type attribute variable



The basic idea behind uniqueness typing is the following. Suppose a function, say F, has a unique argument (an argument
with type *σ, for some σ). This attribute imposes an additional restriction on applications of F.

It is guaranteed that F will have private ("unique") access to this particular argument (see Barendsen and Smetsers, 1993;
Plasmeijer and Van Eekelen, 1993): the object will have a reference count of 1 at the moment it is inspected by the
function. It is important to know that there can be more than 1 reference to the object before this specific access takes
place. If a uniquely typed argument is not used to construct the function result it will become garbage (the reference has
dropped to zero). Due to the fact that this analysis is performed statically the object can be garbage collected (see Chapter
1) at compile-time. It is harmless to reuse the space occupied by the argument to create the function result. In other words:
it is allowed to update the unique object destructively without any consequences for referential transparency.

Example: the I/O library function fwritecis used to write a character to a file yielding a new file as result. In general it is
semantically not allowed to overwrite the argument file with the given character to construct the resulting file. However, by
demanding the argument file to be unique by specifying

fwritec:: Char *File -> *File

It is guaranteed by the type system that fwritec has private access to the file such that overwriting the file can be done
without violating the functional semantics of the program. The resulting file is unique as well and can therefore be passed
as continuation to another call of e.g. fwritec to make further writing possible.

WriteABC:: *File -> *File
WriteABC file = fwritec ’c’ (fwritec ’b’ (fwritec ’a’ file))

Observe that a unique file is passed in a single threaded way (as a kind of unique token) from one function to another
where each function can safely modify the file knowing that is has private access to that file.

One can make these intermediate files more vissible by by writing the WriteABC as follows.

WriteABC file = file3
where
    file1 = fwritec ’a’ file
    file2 = fwritec ’b’ file1
    file3 = fwritec ’c’ file2

or, alternatively (to avoid the explicit numbering of the files),

WriteABC file
    #   file = fwritec ’a’ file
        file = fwritec ’b’ file
    =   fwritec ’c’ file

The type system makes it possible to make no distinction between a CLEAN file and a physical file of the real world: file I/O
can be treated as efficiently as in imperative languages. The uniqueness typing prevents writing while other readers/writers
are active. E.g. one cannot apply fwritec to a file being used elsewhere.

For instance, the following expression is not approved by the type system:

(file, fwritec ’a’ file)

Function arguments with no uniqueness attributes added to the classical type are considered as "non-unique": there
are no reference requirements for these arguments. The function is only allowed to have read access (as usual in a
functional language) even if in some of the function applications the actual argument appears to have reference
count 1.



freadc:: File -> (Char, File)

The function freadc can be applied to both a unique as well as non-unique file. This is fine since the function only wants
read access on the file. The type indicates that the result is always a non-unique file. Such a file can be passed for further
reading, but not for further writing.

To indicate that functions don’t change uniqueness properties of arguments, one can use attribute variables.

The simplest example is the identity functions that can be typed as follows:

id:: u:a -> u:a
id x = x

Here a is an ordinary type variable, whereas u is an attribute variable. If id is applied to an unique object the result is also
unique (in that case u is instantiated with the concrete attribute *). Of course, if id is applied to a non-unique object, the
result remains non-unique. As with ordinary type variables, attribute variables should be instantiated uniformly.

A more interesting example is the function freadc that is typed as

freadc:: u:File -> u:(Char, u:File)

Again freadc can be applied to both unique and non-unique files. In the first case the resulting file is also unique and can,
for example, be used for further reading or writing. Moreover, observe that not only the resulting file is attributed, but also
the tuple containing that file and the character that has been read. This is due to the so called uniqueness propagation rule;
see below.

To summarize, uniqueness typing makes it possible to update objects destructively within a purely functional language. For
the development of real world applications (which manipulate files, windows, arrays, databases, states etc.) this is an
indispensable property.

9.2 Attribute Propagation

Having explained the general ideas of uniqueness typing, we can now focus on some details of this typing system.

If a unique object is stored in a data structure, the data structure itself becomes unique as well. This uniqueness
propagation rule prevents that unique objects are shared indirectly via the data structure in which these objects are stored.
To explain this form of hidden sharing, consider the following definition of the function head

head:: [*a] -> *a
head [hd:tl] = hd

The pattern causes head to have access to the �eeper" arguments hd and tl. Note that head does not have any
uniqueness requirements on its direct list argument. This means that in an application of head the list might be shared, as
can be seen in the following function heads

heads list = (head list, head list)

If one wants to formulate uniqueness requirements on, for instance, the hd argument of head, it is not sufficient to attribute
the corresponding type variable a with *; the surrounding list itself should also become unique. One can easily see that,
without this additional requirement the heads example with type

heads:: [*a] -> (*a,*a)
heads list = (head list, head list)

would still be valid although it delivers the same object twice. By demanding that the surrounding list becomes unique as
well, (so the type of head becomes head:: *[*a] -> *a) the function heads is rejected. In general one could say that
uniqueness propagates outwards.

Some of the readers will have noticed that, by using attribute variables, one can assign a more general uniqueness type to
head:

head:: u:[u:a] -> u:a



The above propagation rule imposes additional (implicit) restrictions on the attributes appearing in type specifications of
functions.

Another explicit way of indicating restrictions on attributes is by using coercion statements. These statements consist of
attribute variable inequalities of the form u <= v. The idea is that attribute substitutions are only allowed if the resulting
attribute inequalities are valid, i.e. not resulting in an equality of the form

’non-unique ≤ unique’.

The use of coercion statements is illustrated by the next example in which the uniqueness type of the well-known append
function is shown.

append:: v:[u:a] w:[u:a] -> x:[u:a],    [v<=u, w<=u, x<=u,w<=x]

The first three coercion statements express the uniqueness propagation for lists: if the elements a are unique (by choosing
* for u) these statements force v,w and x to be instantiated with * also. (Note that u <= * iff u = *.) The statement w
<= x expresses that the spine uniqueness of append’s result depends only on the spine attribute w of the second
argument.

In CLEAN it is permitted to omit attribute variables and attribute inequalities that arise from propagation properties; these
will be added automatically by the type system. As a consequence, the following type for append is also valid.

append:: [u:a] w:[u:a] -> x:[u:a],    [w<=x]

Of course, it is always allowed to specify a more specific type (by instantiating type or attribute variables). All types given
below are valid types for append.

append:: [u:a] x:[u:a] -> x:[u:a],
append:: *[*Int] *[*Int] -> *[*Int],
append:: [a] *[a] -> *[a].

To make types more readable, CLEAN offers the possibility to use anonymous attribute variables. These can be used as a
shorthand for indicating attribute variables of which the actual names are not essential. This allows us to specify the type
for append as follows.

append:: [.a] w:[.a] -> x:[.a],   [w<=x]

The type system of CLEAN will substitute real attribute variables for the anonymous ones. Each dot gives rise to a new
attribute variable except for the dots attached to type variables: type variables are attributed uniformly in the sense that all
occurrences of the same type variable will obtain the same attribute. In the above example this means that all dots are
replaced by one and the same new attribute variable.

9.3 Defining New Types with Uniqueness Attributes

AlgebraicTypeDef = ::TypeLhs = ConstructorDef
{| ConstructorDef} ;

ConstructorDef = [ExistQuantVariables] ConstructorName {ArgType} {& ClassConstraints}
| [ExistQuantVariables] (ConstructorName) [FixPrec] {ArgType} {& ClassConstraints}

TypeLhs = [*]TypeConstructor {TypeVariable}
TypeConstructor = TypeName

ExistQuantVariables = E.{TypeVariable }+:
UnivQuantVariables = A.{TypeVariable }+:

BrackType = [Strict] [UnqTypeAttrib] SimpleType
ArgType = BrackType

| [Strict] [UnqTypeAttrib] (UnivQuantVariables Type [ClassContext])
UnqTypeAttrib = *

| UniqueTypeVariable:
| .



As can be inferred from the syntax, the attributes that are actually allowed in data type definitions are ’*’ and ’.’; attribute
variables are not permitted. The (unique) * attribute can be used at any subtype whereas the (anonymous). attribute is
restricted to non-variable positions.

If no uniqueness attributes are specified, this does not mean that one can only build non-unique instances of such a data
type. Attributes not explicitly specified by the programmer are added automatically by the type system. To explain this
standard uniqueness attribution mechanism, first remember that the types of data constructors are not specified by the
programmer but derived from their corresponding data type definition.

For example, the (classical) definition of the List type

:: List a = Cons a (List a) | Nil

leads to the following types for its data constructors:

Cons:: a (List a) -> List a
Nil:: List a

To be able to create unique instances of data types, the standard attribution of CLEAN will automatically derive appropriate
uniqueness variants for the types of the corresponding data constructors. Such a uniqueness variant is obtained via a
consistent attribution of all types and subtypes appearing in a data type definition. Here, consistency means that such an
attribution obeys the following rules (assume that we have a type definition for some type T).
1) Attributes that are explicitly specified are adopted.
2) Each (unattributed) type variable and each occurrence of T will receive an attribute variable. This is done in a

uniform way: equal type variables will receive equal attributes, and all occurrence of T are also equally attributed.
3) Attribute variables are added at non-variable positions if they are required by the propagation properties of the

corresponding type constructor. The attribute variable that is chosen depends on the argument types of this
constructor: the attribution scheme takes the attribute variable of first argument appearing on a propagating position
(see example below).

4) All occurrences of the .attribute are replaced by the attribute variable assigned to the occurrences of T.

Example of standard attribution for data constructors. For Cons the standard attribution leads to the type

Cons:: u:a v:(List u:a) -> v:List u:a, [v<=u]

The type of Nil becomes

Nil:: v:List u:a, [v<=u]

Consider the following Tree definition

:: Tree a  =  Node a [Tree a]

The type of the data constructor Node is

Node:: u:a v:[v:Tree u:a] -> v:Tree u:a, [v<=u]

Another Tree variant.

:: *Tree *a  =  Node a *[Tree a]

leading to

Node:: *a *[*Tree *a] -> *Tree *a

Note that, due to propagation, all subtypes have become unique.

Next, we will formalize the notion of uniqueness propagation. We say that an argument of a type constructor, say T, is
propagating if the corresponding type variable appears on a propagating position in one of the types used in the right-hand
side of T’s definition. A propagating position is characterized by the fact that it is not surrounded by an arrow type or by a
type constructor with non-propagating arguments. Observe that the definition of propagation is cyclic: a general way to
solve this problem is via a fixed-point construction.



Example of the propagation rule. Consider the (record) type definition for Object.

Object a b::  {state:: a, fun:: b -> a}

The argument a is propagating. Since b does not appear on a propagating position inside this definition, Object is not
propagating in its second argument.

9.4 Uniqueness and Sharing

The type inference system of CLEAN will derive uniqueness information after the classical Milner/Mycroft types of functions
have been inferred (see 4.3). As explained in Section 9.1, a function may require a non-unique object, a unique object or a
possibly unique object. Uniqueness of the result of a function will depend on the attributes of its arguments and how the
result is constructed. Until now, we distinguished objects with reference count 1 from objects with a larger reference count:
only the former might be unique (depending on the uniqueness type of the object itself). In practice, however, one can be
more liberal if one takes the evaluation order into account. The idea is that multiple reference to an (unique) object are
harmless if one knows that only one of the references will be present at the moment it is accessed destructively. This has
been used in the following function.

AppendAorB:: *File -> *File
AppendAorB file
|   fc == ’a’ = fwritec ’a’ file
              = fwritec ’b’ file
where
    (fc,nf)   = freadc file

When the right-hand side of AppendAorB is evaluated, the guard is determined first (so access from freadc to file is
not unique), and subsequently one of the alternatives is chosen and evaluated. Depending on cond, either the reference
from the first fwritec application to function file or that of the second application is left and therefore unique.

For this reason, the uniqueness type system uses a kind of sharing analysis.  This sharing analysis is input for the
uniqueness type system itself to check uniqueness type consistency (see 9.3). The analysis will label each reference in the
right-hand side of a function definition as read-only (if destructive access might be dangerous) or write-permitted
(otherwise). Objects  accessed via a read-only reference are always non-unique. On the other hand, uniqueness of objects
accessed via a reference labeled with write-permitted solely depends on the types of the objects themselves.

Beforecg describing the labeling mechanism of CLEAN we mention that the "lifetime" of references is determined on a
syntactical basis. For this reason we classify references to the same expression in a function definition (say for f)
according to their estimated run-time use, as alternative, observing and parallel.
• Two references are alternative if they belong to different alternatives of f. Note that alternatives are distinguished by

patterns (including case expressions) or by guards.
• A reference r is observing w.r.t. a reference r’ if the expression containing r’ is either (1) guarded by an

expression or (2) preceded by a strict let before expression containing r.
• Otherwise, references are in parallel.

The rules used by the sharing analysis to label each reference are the following.
• A reference, say r, to a certain object is labeled with read-only if there exist another reference, say r’, to the same

object such that either r is observing w.r.t r’ or r and r’are in parallel.
• Multiple references to cyclic structures are always labeled as read-only.
• All other references are labeled with write-permitted.

Unfortunately, there is still a subtlety that has to be dealt with. Observing references belonging in a strict context do not
always vanish totally after the expression containing the reference has been evaluated: further analysis appears to be
necessary to ensure their disappearance. More concretely, suppose e[r] denotes the expression containing r. If the type
of e[r] is a basic type then, after evaluation, e[r] will be reference-free. In particular, it does not contain the reference r
anymore. However, If the type of e[r] is not a basic type it is assumed that, after evaluation, e[r] might still refer to r. But
even in the latter case a further refinement is possible. The idea is, depending on e[r], to correct the type of the object to
which r refers partially in such way that only the parts of this object that are still shared lose their uniqueness.



Consider, for example, the following rule

f l =
#! x = hd (hd l)
= (x, l)

Clearly, x and l share a common substructure; x is even part of l. But the whole "spine" of l (of type [[...]]) does not
contain any new external references. Thus, if l was spine-unique originally, it remains spine unique in the result of f.
Apparently, the access to l only affected part of l’s structure. More technically, the type of l itself is corrected to take the
partial access on l into account. In the previous example, x, regarded as a function on l has type [[a]] -> a. In f’s
definition the part of l’s type corresponding to the variable a is made non-unique. This is clearly reflected in the derived
type for f, being

f:: u:[w:[a]] -> (a,v:[x:[a]]), [w <= x, u <= v]

In CLEAN this principle has been generalized: If the strict let expression e[r] regarded as a function on r has type
T (... a...) -> a

Then the a-part of the type of the object to which r refers becomes non-unique; the rest of the type remains unaffected. If
the type of e[r] is not of the indicated form, r is not considered as an observing reference (w.r.t. some reference r’), but,
instead, as in parallel with r’.

9.4.1 Higher Order Uniqueness Typing

Higher-order functions give rise to partial (often called curried) applications, i.e. applications in which the actual number of
arguments is less than the arity of the corresponding symbol. If these partial applications contain unique sub-expressions
one has to be careful.

Consider, for example the following the function fwritec with type

fwritec:: *File Char -> *File

in the application

fwritec unifile

(assuming that unifile returns a unique file). Clearly, the type of this application is of the form o:(Char -> *File). The
question is: what kind of attribute is o? Is it a variable, is it *, or, is it not unique? Before making a decision, one should
notice that it is dangerous to allow the above application to be shared. For example, if the expression fwritec unifile
is passed to a function

WriteAB write_fun = (write_fun ’a’, write_fun ’b’)

Then the argument of fwritec is no longer unique at the moment one of the two write operations take place. Apparently,
the fwritec unifile expression is essentially unique: its reference count should never become greater than 1. To
prevent such an essentially unique expression from being copied, CLEAN considers the -> type constructor in combination
with the * attribute as special: it is not permitted to discard its uniqueness. Now, the question about the attribute o can be
answered: it is set to *. If WriteAB is typed as follows

WriteAB:: (Char -> u:File) -> (u:File, u:File)
WriteAB write_fun = (write_fun ’a’, write_fun ’b’)

the expression WriteAB (fwritec unifile) is rejected by the type system because it does not allow the argument of
type *(Char -> *File) to be coerced to (Char -> u:File). One can easily see that it is impossible to type
WriteAB in such a way that the expression becomes typable.

To define data structures containing Curried applications it is often convenient to use the (anonymous) . attribute. Example
:: Object a b = { state:: a, fun::.(b -> a) }
new:: * Object *File Char
new = { state = unifile, fun = fwritec unifile }

By adding an attribute variable to the function type in the definition of Object, it is possible to store unique functions in this
data structure. This is shown by the function new . Since new contains an essentially unique expression it becomes
essentially unique itself. So, new can never lose its uniqueness, and hence, it can only be used in a context in which a
unique object is demanded.



Determining the type of a curried application of a function (or data constructor) is somewhat more involved if the type of that
function contains attribute variables instead of concrete attributes. Mostly, these variables will result in additional coercion
statements. as can be seen in the example below.

Prepend:: u:[.a] [.a] -> v:[.a],  [u<=v]
Prepend a b = Append b a

PrependList:: u:[.a] -> w:([.a] -> v:[.a]),    [u<=v, w<=u]
PrependList a = Prepend a

Some explanation is in place. The expression (PrependList some_list) yields a function that, when applied to
another list, say other_list, delivers a new list extended consisting of the concatenation of other_list and
some_list. Let’s call this final result new_list. If new_list should be unique (i.e. v becomes *) then, because of the
coercion statement u<=v the attribute u also becomes *. But, if u = * then also w = *, for, w<=u. This implies that
(arrow) type of the original expression (PrependList some_list) becomes unique, and hence this expression cannot
be shared.

9.4.2 Uniqueness Type Coercions

As said before, offering a unique object to a function that requires a non-unique argument is safe (unless we are dealing
with unique arrow types; see above). The technical tool to express this is via a coercion (subtype) relation based on the
ordering

’unique’ ≤ ’non-unique’

on attributes. Roughly, the validity of σ ≤ σ’ depends subtype-wise on the validity of u ≤ u’ with u,u’ attributes in σ,σ‘. One
has, for example

u:[v:[w:Int]] ≤ u’:[v’:[w’:Int]] iff u ≤ u’, v ≤ v’, w ≤ w’.

However, a few refinements are necessary. Firstly, the uniqueness constraints expressed in terms of coercion statements
(on attribute variables) have to be taken into account. Secondly, the coercion restriction on arrow types should be handled
correctly. And thirdly, due to the so-called contravariance of -> in its first argument we have that

u:(σ -> σ’) ≤ u:(τ -> τ’) iff τ ≤ σ, σ’ ≤ τ’

Since -> may appear in the definitions of algebraic type constructors, these constructors may inherit the co- and
contravariant subtyping behavior with respect to their arguments. We can classify the ’sign’ of the arguments of each type
constructor as + (positive, covariant), - (negative, contravariant) or top (both positive and negative). In general this is done
by analysing the (possible mutually recursive) algebraic type definitions by a fixed-point construction, with basis sign(->) =
(-,+).

Example: a has sign T, b has sign + in

::FunList a b = FunCons (a, a -> b) (FunList a b)
              | FunNil

This leads to the following coercion rules
5) Attributes of two corresponding type variables as well as of two corresponding arrow types must be equal.
6) The sign classification of each type constructor is obeyed. If, for instance, the sign of Τ’s argument is negative, then

Τ σ ≤ Τ σ’ iff σ’ ≤ σ
7) In all other cases, the validity of a coercion relation depends on the validity of u ≤ u’, where u,u’ are attributes of

the two corresponding subtypes.

The presence of sharing inherently causes a (possibly unique) object to become non-unique, if it is accessed via a
read-only reference. In CLEAN this is achieved by a type correction operation that converts each unique type S to its
smallest non-unique supertype, simply by making the outermost attribute of S non-unique. Note that this operation fails if S
is a function type.



9.5 Combining Uniqueness Typing and Overloading

An overloaded function actually stands for a collection of real functions. The types of these real functions are obtained from
the type of the overloaded function by substituting the corresponding instance type for the class variable. These instance
types may contain uniqueness information, and, due to the propagation requirement, the above-mentioned substitution
might give rise to uniqueness attributes overloaded type specification.

Consider, for instance, the identity class

class id a:: a -> a

If we want to define an instance of id for lists, say id L, which leaves uniqueness of the list elements intact, the (fully
expanded) type of idL becomes

instance id L v:[u:a] -> v:[u:a]

However, as said before, the type specification of such an instance is not specified completely: it is derived from the
overloaded type in combination with the instance type (i.e. [...] in this particular example).

In CLEAN we require that the type specification of an overloaded operator anticipates on attributes arising from uniqueness
propagation, that is, the uniqueness attribute of the class variable should be chosen in such a way that for any instance
type this ’class attribute’ does not conflict with the corresponding uniqueness attribute(s) in the fully expanded type of this
instance. In the above example this means that the type of id becomes

class id a:: a -> a

Another possibility is

class id a:: *a -> *a

However, the latter version of id will be more restrictive in its use, since it will always require that its argument is unique.

9.5.1 Constructor Classes

The combination of uniqueness typing and constructor classes (with their higher-order class variables) introduces another
difficulty. Consider, for example, the overloaded map function.

class map m:: (a -> b) (m a) -> m b

Suppose we would add (distinct) attribute variables to the type variables a and b (to allow ’unique instances’ of map)

class map m:: (.a ->.b) (m .a) -> m .b

The question that arises is: Which attributes should be added to the two applications of the class variable m? Clearly, this
depends on the actual instance type filled in for m. E.g., if m is instantiated with a propagating type constructor (like []), the
attributes of the applications of m are either attribute variables or the concrete attribute ’unique’. Otherwise, one can choose
anything.



Example

instance map []
where
    map f l = [ f x // x <- l ]

::  T a = C (Int -> a)

instance map T
where
    map f (C g) = C (f o g)

In this example, the respective expanded types of the instances are

map:: (u:a -> v:b) w:[u:a] -> x:[v:b], w <= u, x <= v
map:: (u:a -> v:b) (T u:a) -> T v:b

The type system of CLEAN requires that a possible propagation attribute is explicitly indicated in the type specification of
the overloaded function. In order to obtain versions of map producing spine unique data structures, its overloaded type
should be specified as follows:

class map m:: (.a ->.b).(m. a) ->.(m. b)

This type will provide that for an application like

map inc [1,2,3]

indeed yields a spine unique list.

Observe that if you would omit the (anonymous) attribute variable of the second argument, the input data structure cannot
contain unique data on propagating positions, e.g. one could not use such a version of map for mapping a destructive write
operator on a list of unique files.

In fact, the propagation rule is used to translate uniqueness properties of objects into uniqueness properties of the data
structures in which these objects are stored. As said before, in some cases the actual data structures are unknown.

Consider the following function

DoubleMap f l = (map f l, map f l)

The type of this function is something like

Clearly, l is duplicated. However, this does not necessarily mean that a cannot be unique anymore. If, for instance, m is
instantiated with a non-propagating type constructor (like Τ as defined on the previous page) then uniqueness of a is still
permitted. On the other hand, if m is instantiated with a propagating type constructor, a unique instantiation of a should be
disapproved. In CLEAN, the type system ’remembers’ sharing of objects (like l in the above example) by making the
corresponding type attribute non-unique. Thus, the given type for DoubleMap is exactly the type inferred by CLEAN?s type
system. If one tries to instantiate m with a propagating type constructor, and, at the same type, a with some unique type,
this will fail.

The presence of higher-order class variables, not only influences propagation properties of types, but also the coercion
relation between types. These type coercions depend on the sign classification of type constructors. The problem with
higher-order polymorphism is that in some cases the actual type constructors substituted for the higher order type variables
are unknown, and therefore one cannot decide whether coercions in which higher-order type variable are involved, are
valid.

Consider the functions

double x = (x,x)
dm f l = double (map f l)



Here, map’s result (of type .(m .a)) is coerced to the non-unique supertype (m .a). However, this is only allowed if m is
instantiated with type constructors that have no coercion restrictions. E.g., if one tries to substitute *WriteFun for m, where

WriteFun a = C.(a -> *File)

this should fail, for, *WriteFun is essentially unique. The to solve this problem is to restrict coercion properties of type
variable applications (m σ) to

u:(m σ) = u:(m τ) iff σ ≤ τ && τ ≤ σ

A slightly modified version of this solution has been adopted in CLEAN. For convenience, we have added the following
refinement. The instances of type constructors classes are restricted to type constructors with no coercion restrictions.
Moreover, it is assumed that these type constructors are uniqueness propagating. This means that the WriteFun cannot
be used as an instance for map. Consequently, our coercion relation we can be more liberal if it involves such class
variable applications.

Overruling this requirement can be done adding the anonymous attribute. the class variable. E.g.

class map.m:: (.a ->.b).(m. a) ->.(m. b)

Now

instance map WriteFun 
where
    map...

is valid, but the coercions in which (parts of) map’s type are involved are now restricted as explained above. To see the
difference between the two indicated variants of constructor variables, we slightly modify map?s type.

To see the difference between the two indicated variants of constructor variables, we slightly modify map’s type.

class map m:: (.a ->.b) *(m. a) ->.(m. b)

Without overruling the instance requirement for m the type of dm (dm as given on the previous page) becomes.

dm:: (.a ->.b) *(m.a) ->.(m b, m b)

Observe that the attribute of disappeared due to the fact that each type constructor substituted for m is assumed to be
propagating.

If one explicitly indicates that there are no instance restriction for the class variable m (by attributing m with.), the function dm
becomes untypable.

9.6 Higher-Order Type Definitions

We will describe the effect of uniqueness typing on type definitions containing higher-order type variables. At it turns out,
this combination introduces a number of difficulties which would make a full description very complex. But even after
skipping a lot of details we have to warn the reader that some of the remaining parts are still hard to understand.

As mentioned earlier, two properties of newly defined type constructor concerning uniqueness typing are important, namely,
propagation and sign classification. One can probably image that, when dealing with higher-order types the determination
on these properties becomes more involved. Consider, for example, the following type definition.

::  T m a = C (m a)

The question whether T is propagating in its second argument cannot be decided by examining this definition only; it
depends on the actual instantiation of the (higher-order) type variable m. If m is instantiated with a propagating type
constructor, like [], then T becomes propagating in its second argument as well. Actually, propagation is not only a
property of type constructors, but also of types themselves, particularly of ’partial types’ For example, the partial type [] is
propagating in its (only) argument (Note that the number of arguments a partial type expects, directly follows from the kinds
of the type constructors that have been used). The type T [] is also propagating in its argument, so is the type T ((,)
Int)).



The analysis in CLEAN that determines propagation properties of (partial) types has been split into two phases. During the
first phase, new type definitions are examined in order to determine the propagation dependencies between the arguments
of each new type constructor. To explain the idea, we return to our previous example.

::  T m a = C (m a)

First observe that the propagation of the type variable m is not interesting because m does not stand for ’real data’ (which is
always of kind *). We associate the propagation of m in T with the position(s) of the occurrence(s) of m’s applications. So in
general, T is propagating in a higher-order variable m if one of m’s applications appears on a propagating position in the
definition of T. Moreover, for each higher order type variable, we determine the propagation properties of all first order type
variables in the following way: m is propagating in a, where m and a are higher-order respectively first-order type variables
of T, if a appears on a propagating position in one of m’s applications. In the above example, m is propagating in a, since a
is on a propagating position in the application (m a). During the second phase, the propagation properties of (partial) types
are determined using the results of the first phase. This (roughly) proceeds as follows. Consider the type T σ for some
(partial) type σ, and T as defined earlier. First, determine (recursively) the propagation of σ. Then the type T σ is
propagating if (1) σ is propagating, (2) T is propagating in m, and moreover (3) m is propagating in a (the second argument
of the type constructor). With T as defined above, (2) and (3) are fulfilled. Thus, for example T [] is propagating and
therefore also T (T []). Now define

::  T2 a = C2 (a -> Int)

Then T T2 is not propagating.

The adjusted uniqueness propagation rule (see also...) becomes:

• Let σ,τ be two uniqueness types. Suppose σ has attribute u. Then, if τ is propagating the application (τ σ) should
have an attribute v such that v ≤ u.

Some of the readers might have inferred that this propagation rule is a ’higher-order’ generalization of the old ’first-order’
propagation rule.

As to the sign classification, we restrict ourselves to the remark that that sign analysis used in CLEAN is adjusted in a
similar way as described above for the propagation case.

Example

::  T m a = C ((m a) -> Int)

The sign classification of T if (-,⊥). Here ⊥ denotes the fact the a is neither directly used on a positive nor on a negative
position. The sign classification of m w.r.t. a is +. The partial type T [] has sign -, which e.g. implies that
T [] Int ≤ T [] *Int

The type T T2 (with T2 as defined on the previous page) has sign +, so
T T2 Int ≥ T T2 *Int

It will be clear that combining uniqueness typing with higher-order types is far from trivial: the description given above is
complex and moreover incomplete. However explaining all the details of this combination is far beyond the scope of the
reference manual.



9.7 Destructive Updates using Uniqueness Typing

So, it is allowed to update a uniquely typed function argument (*) destructively when the argument does not reappear in the
function result. The question is: when does the compiler indeed make use of this possibility.

Destructive updates takes place in some predefined functions and operators which work on predefined data structures such
arrays (&-operator) and files (writing to a file). Arrays and files are intended to be updated destructively and their use can
have a big influence on the space and time behavior of your application (a new node does not have to be claimed and
filled, the garbage collector is invoked less often and the locality of memory references is increased).

Performing destructive updates is only sensible when information is stored in nodes. Arguments of basic type (Int, Real,
Char or Bool) are stored on the B-stack or in registers and it therefore does not make sense to make them unique.

The CLEAN compiler also has an option to re-use user-defined unique data structures: the space being occupied by a
function argument of unique type will under certain conditions be reused destructively to construct the function result when
(part of) this result is of the same type. So, a more space and time efficient program can be obtained by turning heavily
used data structures into unique data structures. This is not just a matter of changing the uniqueness type attributes (like
turning a lazy data structure into a strict one). A unique data structure also has to be used in a ’single threaded’ way (see
Chapter 4). This means that one might have to restructure parts of the program to maintain the unicity of objects.

The compiler will do compile-time garbage collection for user defined unique data-structures only in certain cases. In that
case run-time garbage collection time is reduced. It might even drop to zero. It is also possible that you gain even more
than just garbage collection time due to better cache behavior.



Chapter 10

Strictness, Macros and Efficiency

CleanCleanCleanCleanClean

Programming in a functional language means that one should focus on algorithms and without worrying about all kinds of
efficiency details. However, when large applications are being written it may happen that this attitude results in a program
that is unacceptably inefficient in time and/or space.

In this Chapter we explain several kinds of annotations and directives that can be defined in CLEAN. These annotations
and directives are designed to give the programmer some means to influence the time and space behavior of CLEAN
applications.

CLEAN is by default a lazy language: applications will only be evaluated when their results are needed for the final outcome
of the program. However, lazy evaluation is in general not very efficient. It is much more efficient to compute function
arguments in advance (strict evaluation) when it is known that the arguments will be used in the function body. By using
strictness annotations in type definitions the evaluation order of data structures and functions can be changed from lazy to
strict. This is explained in Section 10.1.

One can define constant graphs on the global level also known as Constant Applicative Forms (see Section 10.2).
Unlike constant functions, these constant graphs are shared such that they are computed only one. This generally reduces
execution time possibly at the cost of some heap space needed to remember the shared graph constants.

Macro’s (Section 10.3) are special functions that will already be substituted (evaluated) at compile-time. This generally
reduces execution time (the work has already been done by the compiler) but it will lead to an increase of object code.

10.1 Annotations to Change Lazy Evaluation into Strict Evaluation

CLEAN uses by default a lazy evaluation strategy: a redex is only evaluated when it is needed to compute the final result.
Some functional languages (e.g. ML, Harper et al.) use an eager  (strict) evaluation strategy and always evaluate all
function arguments in advance.

10.1.1 Advantages and Disadvantages of Lazy versus Strict Evaluation

Lazy evaluation has the following advantages (+) / disadvantages (-) over eager (strict) evaluation:
• only those computations which contribute to the final result are computed (for some algorithms this is a clear

advantage while it generally gives a greater expressive freedom);
• one can work with infinite data structures (e.g. [1..])
• it is unknown when a lazy expression will be computed (disadvantage for debugging, for controlling evaluation

order);
• strict evaluation is in general much more efficient, in particular for objects of basic types, non-recursive types and

tuples and records which are composed of such types;
+/- in general a strict expression (e.g. 2 + 3 + 4) takes less space than a lazy one, however, sometimes the other way

around (e.g. [1..1000]);



10.1.2 Strict and Lazy Context

Each expression in a function definition is considered to be either strict (appearing in a strict context: it has to be evaluated
to strong root normal form) or lazy (appearing in a lazy context : not yet to be evaluated to strong root normal form)  The
following rules specify whether or not a particular expression is lazy or strict:
• a non-variable pattern is strict;
• an expression in a guard is strict;
• the expressions specified in a strict let-before expression are strict;
• the root expression is strict;
• the arguments of a function or data constructor in a strict context are strict when these arguments are being

annotated as strict in the type definition of that function (manually or automatically) or in the type definition of the
data constructor;

• all the other expressions are lazy.

Evaluation of a function will happen in the following order: patterns, guard, expressions in a strict let before expression, root
expression (see also 3.1).

10.1.3 Space Consumption in Strict and Lazy Context

The space occupied by CLEAN structures depend on the kind of structures one is using, but also depends on whether
these data structures appear in a strict or in a lazy context. To understand this one has to have some knowledge about the
basic implementation of CLEAN (see Plasmeijer and Van Eekelen, 1993).

Graphs (see Chapter 1) are stored in a piece of memory called the heap. The amount of heap space needed highly
depends on the kind of data structures that are in use. Graph structures that are created in a lazy context can occupy more
space than graphs created in a strict context. The garbage collector in the run-time system of CLEAN automatically collects
graphs that are not being used. The arguments of functions being evaluated are stored on a stack. There are two stacks:
the A-stack, which contains references to graph nodes stored in the heap and the BC-stack which contains arguments of
basic type and return addresses. Data structures in a lazy context are passed via references on the A-stack. Data
structures of the basic types (Int, Real, Char or Bool) in a strict context are stored on the B-stack or in registers. This is
also the case for these strict basic types when they are part of a record or tuple in a strict context.

Data structures living on the B-stack are passed unboxed. They consume less space (because they are not part of a node)
and can be treated much more efficiently. When a function is called in a lazy context its data structures are passed in a
graph node (boxed). The amount of space occupied is also depending on the arity of the function.

In the table below the amount of space consumed in the different situations is summarised (for the lazy as well as for the
strict context). For the size of the elements one can take the size consumed in a strict context.

Type Arity Lazy context (bytes) Strict context (bytes) Comment
Int,Bool - 8 4
Int (0≤n≤32), Char  - - 4 node is shared
Real - 12 8
Small Record n 4 + Σ size elements Σ size elements total length≤12
Large Record n 8 + Σ size elements Σ size elements
Tuple 2 12 Σ size elements

>2 8  + 4*n Σ size elements
{a} n 20 + 4*n 12 + 4*n
 !Int n 20 + 4*n 12 + 4*n
 !Bool,!Char n 20 + 4*ceil(n/4) 12 + 4*ceil(n/4)
 !Real n 20 + 8*n 12 + 8*n
 !Tuple, !Record n 20 + size rec/tup*n 12 + size rec/tup*n
Hnf 0 - 4 + size node node is shared 

1 8 4 + size node
2 12 4 + size node also for [a]
>2 8  + 4*n 4 + size node

Pointer to node - 4 4
Function 0,1,2 12 -

>2 4  + 4*n -



10.1.4 Time Consumption in Strict and Lazy Context

Strict arguments of functions can sometimes be handled much more efficiently than lazy arguments, in particular when the
arguments are of basic type.

Example: functions with strict arguments of basic type are more efficient.

Ackerman:: !Int !Int -> Int
Ackerman 0 j = j+1
Ackerman i 0 = Ackerman (i-1) 1
Ackerman i j = Ackerman (i-1) (Ackerman i (j-1))

The computation of a lazy version of Ackerman 3 7 takes 14.8 seconds + 0.1 seconds for garbage collection on an old
fashion MacII (5Mb heap). When both arguments are annotated as strict (which in this case will be done automatically by
the compiler) the computation will only take 1.5 seconds + 0.0 seconds garbage collection. The gain is one order of
magnitude. Instead of rewriting graphs the calculation is performed using stacks and registers where possible. The speed
is comparable with a recursive call in highly optimised C or with the speed obtainable when the function was programmed
directly in assembly.

10.1.5 Changing Lazy into Strict Evaluation

So, lazy evaluation gives a notational freedom (no worrying about what is computed when) but it might cost space as well
as time. In CLEAN the default lazy evaluation can therefore be turned into eager evaluation by adding strictness
annotations to types.

Strict = !

This can be done in several ways:
• The CLEAN compiler has a built-in strictness analyzer based on abstract reduction Nöcker, 1993) (it can be

optionally turned off). The analyzer searches for strict arguments of a function and annotate them internally as strict
(see 10.1.1). In this way lazy arguments are automatically turned into strict ones. This optimization does not
influence the termination behavior of the program. It appears that the analyzer can find much information. The
analysis itself is quite fast.

• The strictness analyzer cannot find all strict arguments. Therefore one can also manually annotate a function as
being strict in a certain argument or in its result (see 10.1.1).

• By using strictness annotations, a programmer can define (partially) strict data structures Nöcker and Smetsers,
1993; see 10.1.3). Whenever such a data structure occurs in a strict context (see 10.1.1), its strict components will
be evaluated.

• The order of evaluation of expressions in a function body can also be changed from lazy to strict by using a strict
let-before expression see 3.5.4).

One has to be careful though. When a programmer manually changes lazy evaluation into strict evaluation, the termination
behavior of the program might change. It is only safe to put strictness annotations in the case that the function or data
constructor is known to be strict in the corresponding argument which means that the evaluation of that argument in
advance does not change the termination behavior of the program. The compiler is not able to check this.

10.2 Defining Graphs on the Global Level

Constant graphs can also be defined on a global level (for local constant graphs see 3.6).

GraphDef = Selector =[:] GraphExpr ;



A global graph definition defines a global constant (closed) graph, i.e. a graph which has the same scope as a global
function definition (see 2.1). The selector variables that occur in the selectors of a global graph definition have a global
scope just as globally defined functions.

Special about global graphs (in contrast with local graphs) is that they are not garbage collected during the evaluation of the
program  A global graph can be compared with a CAF (Constant Applicative Form): its value is computed at most once and
remembered at run-time. A global graph can save execution-time at the cost of permanent space consumption.

Syntactically the definition of a graph is distinguished from the definition of a function by the symbol which separates the
left-hand side from the right-hand side: "=" or "=>" is used for functions, while "=" is used for local graphs and "=:" for
global graphs. However, in general "=" is used both for functions and local graphs. Generally it is clear from the context
which is meant (functions have parameters, selectors are also easy recognisible). However, when a simple constant is
defined the syntax is ambiguous (it can be a constant function definition as well as a constant graph definition).

To allow the use of the "=" whenever possible, the following rule is followed. Locally constant definitions are by default taken
to be graph definitions and therefore shared, globally they are by default taken to be function definitions (see 3.1) and
therefore recomputed. If one wants to obtain a different behavior one has to explicit state the nature of the constant
definition (has it to be shared or has it to be recomputed) by using "=:" (on the global level, meaning it is a constant graph
which is shared) or "=>" (on the local level, meaning it is a constant function and has to be recomputed).

Global constant graph versus global constant function definition: biglist1 is a graph which is computed only once,
biglist3 and biglist2 is a constant function which is computed every time it is applied.

biglist1 =   [1..10000]                // a constant function (if defined globally)
biglist2 =:  [1..10000]                // a graph (if defined globally)
biglist3 =>  [1..10000]                // a constant function

A graph saves execution-time at the cost of space consumption. A constant function saves space at the cost of execution
time. So, use graphs when the computation is time-consuming while the space consumption is small and constant
functions in the other case.

10.3 Defining Macros

Macros are functions (rewrite rules) which are applied at compile-time instead of at run-time. Macro’s can be used to define
constants, create in-line substitutions, rename functions, do conditional compilation etc. With a macro definition one can,
for instance, assign a name to a constant such that it can be used as pattern on the left-hand side of a function definition.

At compile-time the right-hand side of the macro definition will be substituted for every application of the macro in the scope
of the macro definition. This saves a function call and makes basic blocks larger (see Plasmeijer and Van Eekelen, 1993)
such that better code can be generated. A disadvantage is that also more code will be generated. Inline substitution is also
one of the regular optimisations performed by the CLEAN compiler. To avoid code explosion a compiler will generally not
substitute big functions. Macros give the programmer a possibility to control the substitution process manually to get an
optimal trade-off between the efficiency of code and the size of the code.

MacroDef = [MacroFixityDef]
DefOfMacro

MacroFixityDef = (FunctionName) [FixPrec] ;
DefOfMacro = Function {Variable} :== FunctionBody ;

[LocalFunctionAltDefs]

The compile-time substitution process is guaranteed to terminate. To ensure this some restrictions are imposed on Macro’s
(compared to common functions). Only variables are allowed as formal argument. A macro rule always consists of a single
alternative. Furthermore,
8) Macro definitions are not allowed to be cyclic to ensure that the substitution process terminates.

Example of a macro definition.

Black    :== 1                                       // Macro definition
White    :== 0                                       // Macro definition

:: Color :== Int                                     // Type synonym definition

Invert:: Color -> Color                              // Function definition
Invert Black = White
Invert White = Black



Example: macro to write (a?b) for lists instead of [a:b] and its use in the function map.

(?) infixr 5                                         // Fixity of Macro
(?) h t :== [h:t]                                    // Macro definition of operator

map:: (a -> b) [a] -> [b]
map f (x?xs) = f x ? map f xs
map f []     = []

Notice that macros can contain local function definitions. These local definitions (which can be recursive) will also be
substituted inline. In this way complicated substitutions can be achieved resulting in efficient code.

Example: macros can be used to speed up frequently used functions. See for instance the definition of the function foldl
in StdList.

foldl op r l :== foldl r l                           // Macro definition
where
    foldl r []    = r
    foldl r [a:x] = foldl (op r a) x

sum list = foldl (+) 0 list

After substitution of the macro foldl a very efficient function sum will be generated by the compiler:

sum list = foldl 0 list
where
    foldl r []    = r
    foldl r [a:x] = foldl ((+) r a) x

The expansion of the macros takes place before type checking. Type specifications of macro rules are not possible. When
operators are defined as macros, fixity and associativity can be defined.

10.4 Efficiency Tips

Here are some additional suggestions how to make your program more efficient:
• Use the CLEAN profiler to find out which frequently called functions are consuming a lot of space and/or time. If you

modify your program, these functions are the ones to have a good look at.
• Transform a recursive function to a tail-recursive function.
• It is better to accumulate results in parameters instead of in the right-hand side results.
• It is better to use records instead of tuples.
• Arrays can be more efficient than lists since they allow constant access time on their elements and can be

destructive updated.
• When functions return multiple ad-hoc results in a tuple put these results in a strict tuple instead (can be indicated in

the type).
• Use strict data structures whenever possible.
• Export the strictness information to other modules (the compiler will warn you if you don’t).
• Make function strict in its arguments whenever possible.
• Use macros for simple constant expressions or frequently used functions.
• Use CAF’s and local graphs to avoid recalculation of expressions.
• Selections in a lazy context can better be transformed to functions which do a pattern match.
• Higher order functions are nice but inefficient (the compiler will try to convert higher order function into first order

functions).
• Constructors of high arity are inefficient.
• Increase the heap space in the case that the garbage collector takes place too often.



Chapter 11

Foreign Language Interface
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The tool htoclean can be used to generate interfaces to C functions. This is not discussed in this manual.

How to call Clean functions from C is discussed in section 11.1.

ABC instructions of the virtual machine for Clean can be used. This is explained in section 11.2.

11.1 Foreign Export

Some Clean functions can be called from C using foreign export. This is possible if:
• The function is exported.
• All arguments are annotated as being strict (see 3.7.5).
• The arguments and result type is either of the following:

• Int
• Real
• {#Char}
• {#Int}
• {#Real}
• A tuple of these strictly annotated types (including tuples).

The following syntax is used in an implementation module to export a function to a foreign language:

ForeignExportDef = foreign export [ ccall | stdcall ] FunctionName ;

The calling convention may be specified by prefixing the function name with ccall or stdcall. The default is ccall.

To pass an argument from C of type:
• Int, use a C integer type that has the same size as an Int in Clean. On 32 bit platforms this is 4 bytes, on 64 bit

platforms 8 bytes. Usually long has the right size, except on 64 bit Windows __int64 can be used instead.
• Real, use type double.
• {#Char}, pass the address of the string. The first 4 (on 32 bit platforms) or 8 (on 64 bit platforms) bytes should

contain the number of characters. The characters of the string are stored in the following bytes. The string is copied
to the heap of Clean, and this copy is used in Clean.

• {#Int}, pass the address of the array. The elements of the array have the same size as an Int in Clean. The number
of elements should be stored in 4 bytes at offset -8 (32 bit) or 8 bytes at offset -16 (64 bit). The array is copied to
the heap of Clean, and this copy is used in Clean.

• {#Real}, pass the address of the array. The elements of the array have the same size as a Real in Clean (8 bytes)
and a double in C. The number of elements should be stored in the same way as for {#Int}. The array is copied to
the heap of Clean, and this copy is used in Clean.

• Tuple. The elements are passed as separate arguments as described above, in the same order as in the tuple.

Preferably, the macros in the file Clean.h (part of the tool htoclean) should be used to access strings and arrays.



If result of the function is not a tuple, the result is passed in the same way as an argument, except that strings and arrays
are not copied. The address of the string or array in the heap of Clean is passed to C. This string or array may only be used
until the next call or return to Clean, because the Clean runtime system may deallocate or move the array.

If multiple values are yielded, because the result is a tuple, the result type in C is void. To return the values, for each value
an additional argument with the address where the result should be stored is added (at the end, in the same order as in the
tuple). For example, if the result has type (Real, Int), an additional double * and long * (__int64 * for 64 bit Windows) is
added.

11.2 Using ABC instructions

Function can be implemented using ABC instructions from the virtual machine used by Clean:

ABCCodeFunctionDef = Function {Pattern} = code [inline] { ABCInstructions }

By adding inline the ABC instructions will be inlined if the function is called in a strict context.

This is used to define primitive functions of the StdEnv, for example integer addition. htoclean generates calls to C functions
using the ABC instruction ccall.



Appendix A

Context-Free Syntax Description
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In this appendix the context-free syntax of CLEAN is given. Notice that the layout rule (see 2.3.3) permits the omission of
the semi-colon (’;’) which ends a definition and of the braces (’{’ and ’}’) which are used to group a list of definitions.

The following notational conventions are used in the context-free syntax descriptions:
[notion] means that the presence of notion is optional
{notion} means that notion can occur zero or more times
{notion}+ means that notion occurs at least once
{notion}-list means one or more occurrences of notion separated by commas
terminals are printed in 9 pts courier bold brown
keywords are printed in 9 pts courier bold red
terminals that can be left out in layout mode are printed in 9 pts courier bold blue
{notion}/ str means the longest expression not containing the string str

A.1 Clean Program

CleanProgram = {Module}+
Module = DefinitionModule

| ImplementationModule
DefinitionModule = definition module ModuleName ;

{DefDefinition}
| system module ModuleName ;

{DefDefinition}
ImplementationModule = [implementation] module ModuleName ;

{ImplDefinition}

ImplDefinition = ImportDef // see A.2
| FunctionDef // see A.3
| GraphDef // see A.3
| MacroDef // see A.4
| TypeDef // see A.5
| ClassDef // see A.6
| GenericsDef // see A.7
| ForeignExportDef // see A.8

DefDefinition = ImportDef // see A.2
| FunctionExportTypeDef // see A.3
| MacroDef // see A.4
| TypeDef // see A.5
| ClassExportDef // see A.6
| GenericExportDef // see A.7

A.2 Import Definition

ImportDef = ImplicitImportDef
| ExplicitImportDef

ImplicitImportDef = import [qualified] {ModuleName}-list ;



ExplicitImportDef = from ModuleName import [qualified] {Imports}-list ;
Imports = FunctionName

| ::TypeName [ConstructorsOrFields]
| class ClassName [Members]
| instance ClassName {SimpleType}+
| generic FunctionName

ConstructorsOrFields = (..)
| ({ConstructorName}-list)
| {..}
| {{FieldName}-list}

Members = (..)
| ({MemberName}-list)

A.3 Function Definition

FunctionDef = [FunctionTypeDef]
DefOfFunction

DefOfFunction = {FunctionAltDef ;}+
| ABCCodeFunctionDef

FunctionAltDef = Function {Pattern}
{GuardAlt} {LetBeforeExpression} FunctionResult
[LocalFunctionAltDefs]

FunctionResult = =[>] FunctionBody
| | Guard GuardRhs

GuardAlt = {LetBeforeExpression} | BooleanExpr GuardRhs
GuardRhs = {GuardAlt} {LetBeforeExpression} = [>] FunctionBody

| {GuardAlt} {LetBeforeExpression} | otherwise GuardRhs

Function = FunctionName
| (FunctionName)

LetBeforeExpression = # {GraphDefOrUpdate}+
| #!{GraphDefOrUpdate}+

GraphDefOrUpdate = GraphDef
| Variable & {FieldName {Selection} = GraphExpr}-list ;
| Variable & {ArrayIndex {Selection} = GraphExpr}-list [\\ {Qualifier}-list] ;

GraphDef = Selector =[:] GraphExpr ;
Selector = BrackPattern

Guard = BooleanExpr
| otherwise

BooleanExpr = GraphExpr

FunctionBody = RootExpression ;
[LocalFunctionDefs]

RootExpression = GraphExpr

LocalFunctionAltDefs = [where] { {LocalDef}+ }
LocalDef = GraphDef

| FunctionDef
LocalFunctionDefs = [with] { {LocalDef}+ }

ABCCodeFunctionDef = Function {Pattern} = code [inline] { ABCInstructions }

A.3.1 Types of Functions

FunctionTypeDef = FunctionName :: FunctionType ;
| (FunctionName) [FixPrec] [:: FunctionType] ;

FunctionType = [{ArgType}+ ->] Type [ClassContext] [UnqTypeUnEqualities]
ClassContext = | ClassConstraints {& ClassConstraints}
ClassConstraints = ClassOrGenericName-list {SimpleType}+
UnqTypeUnEqualities = {{UniqueTypeVariable}+ <= UniqueTypeVariable}-list
ClassOrGenericName = ClassName

| FunctionName {|TypeKind|}



FunctionExportTypeDef = FunctionName :: FunctionType [Special] ;
| (FunctionName) [FixPrec] :: FunctionType [Special] ;

A.3.2 Patterns

Pattern = [Variable =:] BrackPattern
BrackPattern = PatternVariable

| Constructor
| (GraphPattern)
| SpecialPattern
| DynamicPattern

PatternVariable = Variable
| _

Constructor = ConstructorName
| (ConstructorName)

GraphPattern = Constructor {Pattern}
| GraphPattern ConstructorName GraphPattern 
| Pattern 

SpecialPattern = BasicValuePattern
| ListPattern
| TuplePattern
| ArrayPattern
| RecordPattern
| UnitPattern

BasicValuePattern = BasicValue
BasicValue = IntDenotation // see B.3

| RealDenotation // see B.3
| BoolDenotation // see B.3
| CharDenotation // see B.3

ListPattern = [[ListKind][{LGraphPattern}-list [: GraphPattern]] [SpineStrictness]]
LGraphPattern = GraphPattern

| CharsDenotation // see B.3

TuplePattern = (GraphPattern,{GraphPattern}-list)

RecordPattern = {[TypeName |] {FieldName [= GraphPattern]}-list}

ArrayPattern = {{GraphPattern}-list}
| {{ArrayIndex = Variable}-list}
| StringDenotation

UnitPattern = ()

DynamicPattern = (GraphPattern :: DynamicType)
DynamicType = [UnivQuantVariables] {DynPatternType}+ [ClassContext]
DynPatternType = Type

| TypePatternVariable
| OverloadedTypePatternVariable

TypePatternVariable = Variable
OverloadedTypeVariable = Variable^

A.3.3 Graph Expressions

GraphExpr = Application

Application = {BrackGraph}+
| GraphExpr Operator GraphExpr
| GenericAppExpr

Operator = FunctionName // see A.9
| ConstructorName // see A.9



BrackGraph = GraphVariable
| Constructor
| Function
| (GraphExpr)
| LambdaAbstr
| CaseExpr
| LetExpr
| SpecialExpression
| DynamicExpression
| MatchesPatternExpr

GraphVariable = Variable // see A.9
| SelectorVariable // see A.9

LambdaAbstr = \ {Pattern}+ {LambdaGuardAlt} {LetBeforeExpression} LambdaResult
LambdaResult = =  GraphExpr

| -> GraphExpr
| | Guard LambdaGuardRhs

LambdaGuardAlt = {LetBeforeExpression} | BooleanExpr LambdaGuardRhs
LambdaGuardRhs = {LambdaGuardAlt} {LetBeforeExpression} LambdaGuardResult
LambdaGuardResult = =  GraphExpr

| -> GraphExpr
| | otherwise LambdaGuardRhs

CaseExpr = case GraphExpr of
{ {CaseAltDef}+ }

| if BrackGraph BrackGraph BrackGraph
CaseAltDef = {Pattern}

{CaseGuardAlt} {LetBeforeExpression} CaseResult
[LocalFunctionAltDefs]

CaseResult = = [>] FunctionBody
| -> FunctionBody
| | Guard CaseGuardRhs

CaseGuardAlt = {LetBeforeExpression} | BooleanExpr CaseGuardRhs
CaseGuardRhs = {CaseGuardAlt} {LetBeforeExpression} CaseGuardResult
CaseGuardResult = = [>] FunctionBody

| -> FunctionBody
| | otherwise CaseGuardRhs

LetExpression = let { {LocalDef}+ } in GraphExpr

SpecialExpression = BasicValue
| List
| Tuple
| Array
| ArraySelection
| Record
| RecordSelection
| UnitConstructor

List = ListDenotation
| DotDotExpression
| ZF-expression

ListDenotation = [[ListKind] [{LGraphExpr}-list [: GraphExpr]] [SpineStrictness] ]
LGraphExpr = GraphExpr

| CharsDenotation // see B.3
DotDotExpression = [[ListKind] GraphExpr [,GraphExpr]..[GraphExpr] [SpineStrictness] ]
ZF-expression = [[ListKind] GraphExpr \\ {Qualifier}-list [SpineStrictness]]
Qualifier = Generators {, let { {LocalDef}+ } } {|Guard}
Generators = Generator {& Generator}
Generator = Selector <- ListExpr // select from a lazy list

| Selector <|- ListExpr // select from an overloaded list
| Selector <-: ArrayExpr // select from an array

Selector = BrackPattern // for brack patterns see 3.2
ListExpr = GraphExpr
ArrayExpr = GraphExpr



Tuple = (GraphExpr,{GraphExpr}-list)

Array = ArrayDenotation
| ArrayUpdate
| ArrayComprehension
| ArraySelection

ArrayDenotation = {[ArrayKind] {GraphExpr}-list}
| StringDenotation // see B.3

ArrayUpdate = { ArrayExpr & {ArrayIndex {Selection} = GraphExpr}-list [\\ {Qualifier}-list]}
ArrayComprehension = {[ArrayKind] GraphExpr \\ {Qualifier}-list}
ArraySelection =  ArrayExpr.ArrayIndex {Selection}

|  ArrayExpr!ArrayIndex {Selection}
Selection = .FieldName

| .ArrayIndex
ArrayExpr = GraphExpr
ArrayIndex = [{IntegerExpr}-list]
IntegerExpr = GraphExpr

Record = RecordDenotation
| RecordUpdate

RecordDenotation = {[TypeName|] {FieldName = GraphExpr}-list]}
RecordUpdate = {[TypeName|][RecordExpr &][{FieldName {Selection} = GraphExpr}-list]}
RecordExpr = GraphExpr
RecordSelection = RecordExpr [.TypeName].FieldName {Selection}

| RecordExpr [.TypeName]!FieldName {Selection}

UnitConstructor = ()

DynamicExpression = dynamic GraphExpr [:: [UnivQuantVariables] Type [ClassContext]]

MatchesPatternExpr = GraphExpr =: ConstructorName { _ }
| GraphExpr =: BrackPattern

A.4 Macro Definition

MacroDef = [MacroFixityDef]
DefOfMacro

MacroFixityDef = (FunctionName) [FixPrec] ;
DefOfMacro = Function {Variable} :== FunctionBody ;

[LocalFunctionAltDefs]

A.5 Type Definition

TypeDef = AlgebraicTypeDef
| RecordTypeDef
| SynonymTypeDef
| AbstractTypeDef
| AbstractSynonymTypeDef
| ExtensibleAlgebraicTypeDef
| AlgebraicTypeDefExtension

AlgebraicTypeDef = ::TypeLhs = ConstructorDef
{| ConstructorDef} ;

ConstructorDef = [ExistQuantVariables] ConstructorName {ArgType} {& ClassConstraints}
| [ExistQuantVariables] (ConstructorName) [FixPrec] {ArgType} {& ClassConstraints}

TypeLhs = [*] TypeConstructor // see A.9
{TypeVariable}

ExistQuantVariables = E.{TypeVariable }+:

FixPrec = infixl [Prec]
| infixr [Prec]
| infix [Prec]

Prec = Digit // see A.9



BrackType = [Strict] [UnqTypeAttrib] SimpleType

Strict = !

UnqTypeAttrib = *
| UniqueTypeVariable: // see A.9
| .

Type = {BrackType}+
ArgType = BrackType

| [Strict] [UnqTypeAttrib] (UnivQuantVariables Type [ClassContext])

UnivQuantVariables = A.{TypeVariable }+:

RecordTypeDef = ::TypeLhs = [ExistQuantVariables] [Strict] {{FieldName :: FieldType}-list} ;
FieldType = [Strict] Type

| UnivQuantVariables [Strict] Type
| [Strict] [UnqTypeAttrib] (UnivQuantVariables Type)

SynonymTypeDef = ::TypeLhs :== Type ;

AbstractTypeDef = ::TypeLhs ;

AbstractSynonymTypeDef = ::TypeLhs (:== Type ) ;

ExtensibleAlgebraicTypeDef = ::TypeLhs = {ConstructorDef |} ..;

AlgebraicTypeDefExtension = ::TypeLhs | ConstructorDef  {| ConstructorDef} ;

A.5.1 Types Expression

SimpleType = TypeVariable // see A.9
| TypeName
| (Type)
| PredefinedType
| PredefinedTypeConstructor

PredefinedType = BasicType
| ListType
| TupleType
| ArrayType
| ArrowType
| PredefType

BasicType = Int
| Real
| Char
| Bool

ListType = [[ListKind] Type [SpineStrictness]]
ListKind = ! // head strict list

| # // head strict, unboxed list
SpineStrictness = ! // tail (spine) strict list

TupleType = ([Strict] Type,{[Strict] Type}-list)

ArrayType = {[ArrayKind] Type}
ArrayKind = ! // strict array

| # // unboxed array

PredefType = World // see StdWorld.dcl
| File // see StdFileIO.dcl
| String // synonym for {#Char}



PredefinedTypeConstructor = [] // list type constructor
| [! ] // head strict list type constructor
| [ !] // tail strict list type constructor
| [!!] // strict list type constructor
| [#] // unboxed head strict list type
| [#!] // unboxed strict list type
| ({,}+) // tuple type constructor (arity >= 2)
| {} // lazy array type constructor
| {!} // strict array type constructor
| {#} // unboxed array type constructor
| (->) // arrow type constructor
| () // unit type constructor

A.6 Class and Instance Definitions

ClassDef = TypeClassDef
| TypeClassInstanceDef

TypeClassDef = class ClassName TypeVariable+ [ClassContext]
[[where] { {ClassMemberDef}+ }] ;

| class FunctionName TypeVariable+ :: FunctionType;
| class (FunctionName) [FixPrec] TypeVariable+ :: FunctionType;

ClassMemberDef = FunctionTypeDef
[MacroDef]

TypeClassInstanceDef = instance ClassName Type+ [ClassContext]
[where] { {FunctionDef}+ } ;

ClassExportDef = TypeClassDef
| TypeClassInstanceExportDef

TypeClassInstanceExportDef = instance ClassName InstanceExportTypes ;
InstanceExportTypes = {Type+ [ClassContext]}-list

| Type+ [ClassContext] [where] {{FunctionTypeDef}+ }
| Type+ [ClassContext] [Special]

Special = special {{TypeVariable = Type}-list { ; {TypeVariable = Type}-list }}

A.7 Generic Definitions

GenericsDef = GenericDef ;
| GenericCase;
| DeriveDef ;

GenericDef = generic FunctionName TypeVariable+ [GenericDependencies] :: FunctionType
GenericDependencies = | {FunctionName TypeVariable+ }-list
GenericCase = FunctionName {|GenericTypeArg|} {Pattern}+ = FunctionBody
GenericTypeArg = GenericMarkerType [of Pattern]

| TypeName
| TypeVariable

GenericMarkerType = CONS
| OBJECT
| RECORD
| FIELD

DeriveDef = derive FunctionName {DerivableType}-list
| derive class ClassName {DerivableType}-list

DerivableType = TypeName
| PredefinedTypeConstructor

GenericAppExpression = FunctionName {|TypeKind|} GraphExpr
TypeKind = *

| TypeKind -> TypeKind
| IntDenotation
| (TypeKind)
| {|TypeKind|}



GenericExportDef = GenericDef ;
| derive FunctionName {DeriveExportType [UsedGenericDependencies]}-list ;
| derive class ClassName {DerivableType}-list ;

DeriveExportType = TypeName
| GenericMarkerType [of UsedGenericInfoFields]
| PredefinedTypeConstructor
| TypeVariable

UsedGenericInfoFields = {[{FieldName}-list]}
| Variable

UsedGenericDependencies = with {UsedGenericDependency}
UsedGenericDependency = Variable

| _

A.8 Foreign Export Definition

ForeignExportDef = foreign export [ ccall | stdcall ] FunctionName ;

A.9 Names

ModuleName = LowerCaseId | UpperCaseId | ModuleDirectoryName . ModuleName
ModuleDirectoryName = LowerCaseId | UpperCaseId
FunctionName = LowerCaseId | UpperCaseId | SymbolId
ConstructorName = UpperCaseId | SymbolId
SelectorVariable = LowerCaseId
Variable = LowerCaseId
MacroName = LowerCaseId | UpperCaseId | SymbolId
FieldName = LowerCaseId
TypeName = UpperCaseId | SymbolId
TypeVariable = LowerCaseId
UniqueTypeVariable = LowerCaseId
ClassName = LowerCaseId | UpperCaseId | SymbolId
MemberName = LowerCaseId | UpperCaseId | SymbolId

LowerCaseId = LowerCaseChar~{IdChar}
UpperCaseId = UpperCaseChar~{IdChar}
SymbolId = {SymbolChar}+

LowerCaseChar = a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z

UpperCaseChar = A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

SymbolChar = ~ | @ | # | $ | % | ^ | ? | ! | :
| + | - | * | < | > | \ | / | | | & | =

IdChar = LowerCaseChar
| UpperCaseChar
| Digit // see B.3
| _ | ‘
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In this appendix the lexical structure of CLEAN is given. It describes the kind of tokens recognised by the scanner/parser. In
particular it summarizes the keywords, symbols and characters which have a special meaning in the language.

B.1 Lexical Program Structure

In this Section the lexical structure of CLEAN is given. It describes the kind of tokens recognised by the scanner/parser. In
particular it summarizes the keywords, symbols and characters which have a special meaning in the language.

LexProgram = { Lexeme | {Whitespace}+ }
Lexeme = ReservedKeywordOrSymbol // see Section B.4

| ReservedChar // see Section B.3
| Literal
| Identifier

Identifier = LowerCaseId // see A.9
| UpperCaseId // see A.9
| SymbolId // see A.9

Literal = IntDenotation // see B.3
| RealDenotation // see B.3
| BoolDenotation // see B.3
| CharDenotation // see B.3
| CharsDenotation // see B.3
| StringDenotation // see B.3

Whitespace = space // a space character
| tab // a horizontal tab
| newline // a newline char
| formfeed // a formfeed
| verttab // a vertical tab
| Comment // see Section B.2

B.2 Comments

Comment = // AnythingTillNL newline
| /* AnythingTill/* Comment // comments may be nested

AnythingTill*/ */
| /* AnythingTill*/ */

AnythingTillNL = {AnyChar/ newline} // no newline
AnythingTill/* = {AnyChar/ /*} // no "/*"
AnythingTill*/ = {AnyChar/ */} // no "*/"
AnyChar = IdChar // see A.9

| ReservedChar
| SpecialChar

B.3 Denotations

IntDenotation = [Sign]{Digit}+ // decimal number
| [Sign]0{OctDigit}+ // octal number
| [Sign]0x{HexDigit}+ // hexadecimal number

Sign = + | -
RealDenotation = [Sign]{Digit}+.{Digit}+[E[Sign]{Digit}+]
BoolDenotation = True | False
CharDenotation = CharDel AnyChar/CharDel CharDel
StringDenotation = StringDel{AnyChar/StringDel}StringDel
CharsDenotation = CharDel {AnyChar/CharDel}+ CharDel



AnyChar = IdChar | ReservedChar | SpecialChar
ReservedChar = ( | ) | { | } | [ | ] | ; | , | .
SpecialChar = \n | \r | \f | \b // newline,return,formf,backspace

| \t | \\ | \CharDel // tab,backslash,character delimiter
| \StringDel // string delimiter
| \{OctDigit}+ // octal number 
| \x{HexDigit}+ // hexadecimal number 
| \IdChar // escape any other character 

Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
OctDigit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
HexDigit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| A | B | C | D | E | F
| a | b | c | d | e | f

CharDel = ’
StringDel = "

B.4 Reserved Keywords and Symbols

Below the keywords and symbols are listed which have a special meaning in the language. Some symbols only have a
special meaning in a certain context. Outside this context they can be freely used if they are not a reserved character (see
B.3). In the comment it is indicated for which context (name space) the symbol is predefined.

ReservedKeywordOrSymbol =
// in all contexts: /* // begin of comment block

| */ // end of comment block
| // // rest of line is comment
| :: // begin of a type definition
| :== // in a type synonym or macro definition
| = // in a function, graph, alg type, rec field, case, lambda
| =: // labeling a graph definition
| => // in a function definition
| ; // end of a definition (if no layout rule)
| foreign // begin of foreign export

// in global definitions: | from // begin of symbol list for imports
| definition // begin of definition module,
| implementation // begin of implementation module
| import // begin of import list
| module // in module header
| system // begin of system module

// in function definitions: | -> // in a case expression, lambda abstraction
| [ // begin of a list
| : // cons node
| ] // end of a list
| \\ // begin of list or array comprehension
| <- // list gen. in list or array comprehension
| <-: // array gen. in list or array comprehension
| { // begin of a record or array, begin of a scope
| } // end of a record or array, end of a scope
| . // a record or array selector
| ! // a record or array selector (for unique objects)
| & // an update of a record or array, zipping gener.
| case // begin of case expression
| code // begin code block in a syst impl. module
| if // begin of a conditional expression
| in // end of (strict) let expression
| let // begin of let expression
| # // begin of let expression (for a guard)
| #! // begin of strict let expression (for a guard)
| of // in case expression
| where // begin of local def of a function alternative
| with // begin of local def in a rule alternative



// in type specifications: | ! // strict type
| . // uniqueness type variable
| # // unboxed type
| * // unique type
| : // in a uniqueness type variable definition
| -> // function type constructor
| [],[!],[!!],[#],[#!] // lazy list, head strict, strict, unboxed, unboxed strict
| [|] // overloaded list
| (,),(,,),(,,,),... // tuple type constructors
| {},{!},{#} // lazy, strict, unboxed array type constr.
| infix // infix indication in operator definition
| infixl // infix left indication in operator definition
| infixr // infix right indication in operator definition
| special // to create a specialized instance
| Bool // type Boolean
| Char // type character
| File // type file
| Int // type integer
| Real // type real
| World // type world

// in class  definitions: | class // begin of type class definition
| instance // def of instance of a type class
| derive // derive instance of generic function
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Appendix D

Compiler Extensions

CleanCleanCleanCleanClean

This appendix lists extensions and modifications to Clean that are supported by a compiler. Unfortunately they are not yet
described in the previous chapters and appendices of this manual.

D.1 Clean 3.0 Compiler Extensions

D.1.1 New imports

Identifiers can be imported qualified by adding qualified after import in the import statement. For example:

import qualified StdList;

from StdList import qualified drop,++;

Identifiers imported in this way can be used by prefixing the identifier with the module name between single quotes and a
dot. If an identifier consists of special characters (for example ++) an additional single space is required between the dot
and the identifier.

For example:

f l = ’StdList’.drop 1 (l ’StdList’. ++ [2]);

Currently field names of records are not imported by an implicit qualified import, but can be imported with an explicit
qualified import.

Qualified names may only be used if a qualified import is used, not if the identifier is only imported by a normal (unqualified)
import. An identifier may be imported both unqualified and qualified.

Qualified imports may be used in definition modules, but qualified identifiers cannot be imported from a (definition) module.



D.1.2 Uniqueness typing additions

Updates of unique array elements:

A unique array element of a (unique) array of unique elements can be selected and updated, if the selection (using ![ ])
and update (with the same index) occur in the same function and the array is not used in between (only the selected
element is used).

For example, below a unique row is selected, updated by inc_a and finally the row of the array is updated.

inc_row :: !*{#*{#Int}} !Int -> *{#*{#Int}};
inc_row a row_i
    # (row,a) = a![row_i];
      row = inc_a 0 row;
    = {a & [row_i]=row};

inc_a :: !Int !*{#Int} -> *{#Int};
inc_a i a
    | i<size a
        # (n,a) = a![i];
          a & [i]=n+1;
        = inc_a (i+1) a;
        = a;

D.1.3 New strictness annotations

Strictness annotations in types of class instance members

Types of class instance members may contain additional strictness annotations. For example:

class next a where
    next :: a -> a

instance next Int where
    next :: !Int -> Int
    next x = x+1

If such an instance is exported, the type of the instance member must be included in the definition module:

instance next Int where
    next :: !Int -> Int

If no additional strictness annotations are specified, it can still be exported without the type by:

instance next Int

D.1.4 Hierarchical modules

The module name can be used to specify the directory containing the module. In that case the module name is the list of
folder names of the directory, separated by .’s, followed by a . and the file name. For example the implementation module
X.Y.Z is stored in file X/Y/Z.icl (file Z.icl in subfolder Y of folder Z). The path containing the first folder (X in this case)
should be a module search path for the compiler.



D.1.5 New types

The predefined unit type.

:: () = ()

Extensible algebraic types can be defined by adding | .. to the algebraic type definition (or just .. without
constructors). In other modules additional constructors may be added (once per module) by using | in the definition
instead of =.

For example, to define extensible type T with constructor A:

:: T = A Int | ..

To extended T with constructor B in another module:

:: T | B Int Int

D.1.6 Generics additions

Instances of generic functions for the generic representation types (UNIT,PAIR,EITHER,OBJECT,CONS,RECORD,
FIELD) may be defined in definition modules (instead of a derive) using the same syntax as used in implementation
modules. This makes it possible for the compiler to optimise derived generic functions in other modules.
In definition modules the used generic info fields for generic instances of OBJECT, CONS, RECORD and FIELD can
be specified by adding: of and the pattern, at the end of the derive statement. The compiler uses this to optimize
the generated code.

For example if g2 is defined as:

generic g2 a :: a -> Int;
g2{|CONS of {gcd_name}|} _ _ = size gcd_name;

add: of {gcd_name} in the definition module:

derive g2 CONS of {gcd_name};

g2 for CONS will be called with just a gcd_name, instead of a GenericConsDescriptor record.

Generic function definitions that depend on other generic functions, can be defined by adding a | followed by the
required generic functions, separated by commas.

For example, to define h using g1 and g2:

generic g1 a :: a -> Int;
generic g2 a :: a -> Int;
generic h a | g1 a, g2 a :: a -> Int;

h{|OBJECT of {gtd_name}|} _ g1 _ (OBJECT a)
    = g1 a+size (gtd_name);

In definition modules unused generic function dependencies for generic instances can be specified by adding: with
followed by the list of dependencies, but an _ for unused dependencies. The compiler uses this to optimize the
generated code.

For example for the previous definition add: with _ g1 _ in the definition module:

derive h OBJECT of {gtd_name} with _ g1 _;

h for OBJECT will be called without a function argument for h (for a of OBJECT), with g1 and without g2, because h and g2
are not used by the implementation.



D.2 Clean Development Compiler Extensions

types of instance members in definition modules.
generic functions can have dependent generic functions (also in Clean 3.0).
type GenericInfo (in module StdGeneric) changed.
generic instances of generic representation types (e.g. CONS) may occur in definition modules.

D.3 Clean ITask Compiler Extensions

Function arguments may have contexts with universally quantified type variables.
Constructors may have contexts (for normal and universally quantified type variables).
dynamic types may have contexts.
derive class.
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