Erik Zuurbier
Parser Library Manual
25 March 2005

Introduction
This paper describes the contents and workings of a parser combinator library. We start rightaway with a short description of the actual ‘Contents of the Library’on page 1 and ‘A Quick Example’ on page 2. Both are meant for those who have been exposed to parser combinators before. If parser combinators are new to you, you might start with chapter ‘Background’on page 3. The special features of this particular parser combinator library are highlighted in ‘Multiple Symbol Levels’ on page 4, ‘Error Reporting’ on page 5 and ‘Efficiency’ on page 8. Finally, an example of a complete parser is described in ‘Example Parser’ on page 9.
Chapter ‘Why Another Parser Library?’ on page 3 justifies why all those other parser combinator libraries are not enough.

Contents of the Library
The parser combinator library consists of the modules Parsers, ParsersKernel, ParsersDerived, ParserAccessories and LanguageDependent.
Parsers.icl/dcl
This only imports the other modules. In applications you just write import Parsers.

ParsersKernel.icl/dcl
This module carries the basic combinators. One is infix <&> for sequential composition; (p1 <&> \x -> p2) recognizes phrases that consist of ‘something that p1 recognizes’ followed by ‘something that p2 recognizes’. It fails if either fails. Another is <|> for parallel composition; (p1 <|> p2) recognizes phrases that consist of ‘something that p1 recognizes’ or ‘something that p2 recognizes’. It succeeds if either succeeds. The parser-library is based on a number of complex types whose inner workings are not revealed beyond
ParserKernel.icl.

ParsersDerived.icl/dcl
This module contains 24 handy combinators that can be composed from those in the kernel without knowledge about the inner workings of the complex types mentioned earlier. A well known example is <*>. The parser (<*> p) recognizes phrases that consist of any number of sequential occurrences of ‘something that p recognizes’. An uncommon combinator is scrape; (scrape p1 n p2) has the following operational meaning: Apply p1; then on success rewind to the start, move forward a number of symbols (n) that may depend on p1’s result; then apply p2. This combinator makes it easy to create form scrapers.
ParserAccesories.icl/dcl
This contains a number of basic parsers that should not have to be invented anew in each application, such as ‘number’ which recognizes a string of digits and returns an Integer with the corresponding value. But the most important part of this module is the functions that do error reporting. Failing parsers return a complex object containing hypotheses about the cause of the error. Functions are provided to turn this into a nice textual layout to aid manual error correction. See also chapter ‘Error Reporting’ on page 5.
LanguageDependent
This is a folder containing subfolders for each natural language in which error reporting is supported. Currently these are English, Nederlands, Deutsch and Castellano. Each such subfolder contains a module ParserLanguage.icl/dcl. By setting the right path to such a module, an application may report errors in the appropriate natural language. Deutsch and Castellano definitely need a review by native speakers. LanguageDependent also contains a folder ‘For Testing’, aiming at short error messages, rather than fluent and polite ones.
ParsersTestware.icl
This is not actually part of the library, but it contains a number of examples, and a function testP which can be used to debug parsers.

The function testP takes a parser and a list of tuples :: ([s],String). That is; each tuple contains a list of symbols to be parsed and a String describing the expected result; testP returns a list of tuples :: (TestResult r,String). That is, a phrasing of the actual test result and the description of what was expected, side by side.
MetarDemo

This folder contains a complete parser and a test dialog for a ‘language’ in use in the airline industry to report the weather situation on an airport. See chapter ‘Example Parser’ on page 9 for details.

A Quick Example

For those who have been exposed to combinator parsers before, let us quickly analyse one example in ParsersTestware.icl:

[image: image1.png]-[o) x|
Flo Edi Seorch Project Modble Defouls Envionment Hep Mindow
D@ &
Documents and Settings\Eri\Bureaublad\Parsers\ParsersTestware. =)
13 //Start = test2s |
14myp2s = (<!*> word) <s (symhol '.') =
15 where  word = (<!*> (symbol 'a')) <& (<!+> (symbol 'b'))

16 test25 = testP myP2S [ (['sasaasasassbbbbhbbbbbbhbbasasasaaaasassbbbbbbbbbb. '], "tvo lists of a's"





· Line 14 defines the parser myP25 which recognizes a sequence of words followed by a full stop. <!*> is greedy: it takes all the words it can find. <& discards its right hand side result, so only the sequence of words is delivered.
· Line 15 defines the parser ‘word’ to be the maximal (greedy) sequence of a’s encountered, followed by the maximal sequence of b’s. Again, <& means that the right hand side, here the sequence of b’s, is discarded and the overall parser only returns the a’s. Notice the difference between <!*> and <!+>. The parser (<!*> (symbol ‘a’)) even succeeds when not a single a is encountered: any number of a’s could be zero a’s. On the other hand the parser (<!+> (symbol ‘b’)) requires a least one b to succeed.
· Line 16 calls the parser on a list of characters and predicts that the parser should return two lists of a’s, as the b’s and the full stop are discarded.

Background
Over the years, a good deal of research has been devoted to developing parser combinator libraries. Good starters are the following articles.

Functional Parsers, Jeroen Fokker, http://www.cs.uu.nl/~jeroen/article/parsers/parsers.ps
Parsec: Direct Style Monadic Parser Combinators For The Real World, Daan Leijen, www.cs.uu.nl/~daan/download/papers/parsec-paper.pdf

Several authors, notably Röjemo and Koopman, have independently researched how the efficiency of time and memory usage of combinator parsers can be improved by introducing continuations. The following articles describe this.

Niklas Röjemo Efficient parsing combinators, Part 4 of PhD Thesis Garbage collection and memory efficiency in lazy functional languages, Chalmers University of Technology, 1995, 18 pages.

Pieter Koopman and Rinus Plasmeijer. Efficient combinator parsers. In Implementation of Functional Languages, LNCS, 1595:122–138. Springer-Verlag, 1999.

During the research that led to this new library, a minor shortcoming in Koopman’s combinators surfaced. In some cases the <!>-combinator produced alternatives of both its argument parsers. Pieter Koop​man was kind enough to research and fix this, which was not particularly trivial. This new library is based on the result.
Why Another Parser Library?
As said, various research groups have already developed parser combinator libraries. So why do we need yet another one? When developing such a library, there are quite a number of design decisions to make, with intricate trade offs in speed, memory usage, readability of the resulting parsers, the extent to which properties can be formally or even automatically proven, whether the parsers can handle ambiguous grammars, whether they can handle context sensitive grammars and the extent to which they report the alleged error in the input text in case they fail to produce an analysis of that input text. Some research groups even aim at having errors repaired on the fly. The design guidelines for this particular parser combinator library are as follows.
1. Should be able to handle ambiguous grammars. Some languages to be parsed are ambiguous. An example is the sentence “Angela killed the man with the gun”, where either Angela or the man had the gun. Some parser combinator libraries cannot handle such cases, as their developers strive for parsing speed and maybe other desirable properties, and are therefore willing to restrict application to non ambiguous languages. In the library described here, we use so called nondeterministic combinators to handle ambiguous grammars. Such a combinator simply delivers multiple analyses of a sentence, some of which may be pruned away on a higher level, when more context information becomes available.
2. Should be able to handle context sensitive grammars. Most people who are exposed to syntax specifications for the first time, are taught Backus Naur Form (or BNF). An example is the specification of an IF-statement in some programming language as follows:
<IF-statement> ::= ‘IF’ <condition> ‘THEN’ <statement> ‘ELSE’ <statement> ‘END’.
This specification is context free, which means that during the syntactic analysis (parsing) of the <statement>s no results can be involved from parsing the actual <condition>. This is a severe restriction that excludes large classes of languages from being parsed. The library described here handles context sensitive grammars through monadic style sequential composition. Say we have a language in which valid expressions consist of a decimal number followed by exactly that number of asterisks. Say num is a parser that recognises decimal numbers and delivers them as a number :: Int. And say aster is a function that takes a number :: Int and delivers a parser for that many asterisks. Then the parser for this language is (num <&> aster). It would be impossible to express this little parser in BNF.
3. Should support ‘symbols’ on multiple levels. In most descriptions of parser combinator libraries, expressions being parsed consist of a list of characters as in ASCII characters. Although in many libraries the actual input symbols could be any type, few support symbols on multiple levels: a novel consists of a list of chapters; a chapter consists of a list of pa​ragraphs; a paragraph consists of a list of sentences; a sentence consists of a list of words and a word consists of a list of characters. In the library described here, it is easy to mix parsers working on a list of words with parsers that work on a list of characters composing such words. More on this in chapter ‘Multiple Symbol Levels’ on page 4.

4. Should have extensive error reporting – no automatic error correction. The earliest parser combinator libraries did not do any error reporting. They returned a list of valid analyses of an input sentence, which was simply empty if there was an error in the input text. In most applications this is unacceptable. So in the library described here, errors are reported. However, for any interesting language being parsed, an error can never be pinpointed with 100% certainty. For instance, in the language of valid arithmetic propositions, where is the error in 2+3=6? Should the 2 actually be a 3; should + be ×; should 3 be 4; should = be <; should 6 actually be 5? Or should the whole expression actually be 17–8=9? The convention followed in this library is that the parser advances as far as possible to the right in the input text; when it cannot advance any further in any alternative branch while a complete expression has not been identified yet, it assumes there is an error right at that point. It then lists the alternatives that would have been allowed there, each with extensive context information. More on this in section ‘Error Reporting’ on page 5.
5. Should have extensive means to create fast and memory efficient parsers. The earliest par​ser combinator libraries had basic and intermediate parsers that each produced a list of alternatives. Those lists would then be taken apart again and recombined in new list, which in turn would be taken apart etc. until the final results would be delivered. This production and consumption of intermediate results, if not cleverly optimised away by the compiler, results in parsers that cannot compete in speed and memory usage with equivalent ‘hand written’ parsers. Continuations are used in this library to solve that problem. See the articles mentioned in chapter ‘Background’ on page 3. We follow Koopman’s approach with three continuations, with the fix mentioned on page 3. Besides this, there are other means to speed up the parsers. That is by providing special purpose combinators to cut of branches from the search trees that are known beforehand not to contain any valid analyses. An example is <!> as opposed to <|>. Say in the parser (p1 <|> p2) applied to a particular input text, p1 recognises an item. Then still eventually p2 will be applied to that same portion of the input text, just in case it would also deliver a valid analysis. But there are cases where if p1 succeeds, we are absolutely sure that p2 cannot succeed. Trying p2 nonetheless would be a mere waste of time. In such cases we can write (p1 <!> p2) which skips p2 altogether when p1 succeeds. More on this in chapter ‘Efficiency’ on page 8.
Multiple Symbol Levels

In the airline industry weather reports are very important. In the days when mechanical telex machines were among the most important communication equipment, a language was designed to report the actual weather on an airport. Such weather reports, called METAR’s are still in use today. Type METAR on Google to find out more. An example METAR for a particular airport is:

251025Z 25013KT 9999 VCSH SCT025 06/02 Q0993 NOSIG

The first few words of this METAR have the following meanings:

	251025Z
	25th of the month, local time 10:25

	25013KT
	Wind direction 250 degrees, wind speed 13 knots

	9999
	Visibility ≥ 9999 meters

	VCSH
	In the vicinity (VC) there are showers (SH).

	SCT025
	Clouds are scattered (SCT) on an altitude of 2500 feet

	06/02
	The temperature is 6 degrees Centigrade, the dew point is 2 degrees Centigrade.


What we see here is that not only do the words have a specific word order, but also within a word there is significant structure. So we might have a parser that takes a list of words to handle a METAR as a whole. For many of the words we might want to use a parser that takes a list of characters. In parser combinator libraries, such parsers have different types, as their type depends on the type of the input symbols. In this library, we have the combinator

drill :: (Parser s r r) String -> Parser [s] r t

It takes a parser that works on a list of s-symbols and returns a parser that works on a list of [s]-symbols. In the METAR-example, it would take a parser that works on a list of Char-sym​bols and return a parser that works on a list of [Char]-symbols. The String-parameter is a description of the sub-symbol for use in error messages. Here we could supply “Character” as the name of a sub-symbol.

Error messages report the furthest point in the input text that could be reached by the parser. In ‘flat’ texts that would be merely ‘character 251’. When using multiple symbol levels, that could be ‘word 17, character 7’ (two levels) or ‘paragraph 3, sentence 5, word 17, character 7’ (four levels).

If you want to try your own METAR’s or check the METAR parser, see chapter ‘Example Parser’ on pase 9.

Error Reporting

Röjemo shows how to combine the use of continuations with saving error positions during parsing. This library extends that with other information about an error. Firstly we have to be able to attach a name or description to a parser, for which we adopt and extend the syntax in the Parsec-library:
(:>) infixl 8 :: String (Parser s r t) -> Parser s r t

This simply attaches a name to a parser, for instance (“if statement” :> ifStm).

(:=>) infixl 8 :: (r -> String) (r -> Parser s r t) ->

(r -> Parser s r t)

This does the same for parsers that still need to be supplied an argument, such as the right-hand side of a monadic style sequential combinator.
Inserting such names/descriptions on the appropriate places in the parsers is the only thing one needs to do, to have the application generate extensive error messages. If one foresees that the application will be used for several different natural languages, it may be wise not to use direct string literals (in double quotes as “if statement” in the example) but to use names that refer to a separate language module as follows:
	module MyParser

import Language

...

myParser = (ifStmDescr :> ifStm) <!> ...

	definition module Language

ifStmDescr  :== “if-statement”

forStmDescr :== “for-statement”


The actual path settings for the compiler/code generator can then be used to select the appropriate natural language module.
Say we have a METAR (see chapter ‘Example Parser’ on page 9) that starts with “VRB01KV 2900 ...”
Here KV is actually incorrect. The error message is:
	Error message text
	Explanation

	Can’t analyse as of:
	Fixed text.

	METAR, word 1, position 6.
	METAR is the name attached to the par​ser when it is started; ‘word’ is the name attached to its type of symbols; ‘position’ is the name attached to the particular sub symbols in this parser. 

	The options to solve this are:
	Fixed text.

	Surface Wind [1], and within that:
	‘Surface Wind’ is the name attached to the outer level parser that failed. This parser works on the outer level symbols, hence [1] to indicate word 1; ‘and within that’ is a fixed text.

	
Wind Speed Unit, and within that:
	The first option (Gust is the second). ‘Wind Speed Unit’ is the name attached to an intermediate level parser that failed. It works on sub symbols, the position is word 1, position 6. Repeating this from line 3 above is omitted

	

Knots, i.e. Nautical Miles per Hour (KT)
	The first option (of three) on this level. ‘Knots, i.e. Nautical Miles per Hour (KT)’ is the name attached to a low level parser to recognise ‘KT’.

	

Kilometers per Hour (KMH)
	

	

Statute Miles per Hour (MPH)
	

	
Gust, and within that:
	The second option – besides inserting a Wind Speed Unit – to correct the error.

	

Symbol G
	

	
end of word
	This is the third option to correct the error: end the word here.


Another example. Say we have a parser for an IF-statement in a programming language, and the parser has names/descriptions attached on various levels: the if-statement as a whole, the then-clause, the else-clause, sub-statements, variable names etc. A particular IF-statement is as on the following line.

IF x=3 THEN x := x+1; y := y + “abc” ELSE x := 0 END

^1     ^8             ^23      ^32
If the language does not allow string literals to be added, the error message may say

…

The options to solve this are:

If-statement [1], and within that:


Then-clause [8], and within that:


Assignment-statement [23], and within that:




Numeric literal [32]

Variable name [32]

Here, we see that the various levels, each with their own assumed starting point in the input text, are reported.
Although this type of error reporting is quite sophisticated, we must still realise that only one error is reported at a time. If an input text contains twenty consecutive errors, the parser will report only the first one. This seems to be unavoidable if we want context sensitive parsers as we do. Conventional ways to circumvent this problem are:

· Break up the input text in small pieces to be parsed separately. An example is treating a newline character as the break and hoping that this newline is not actually an error. There is no special support for this in the library.
· Recover after an error. Some parser libraries have a means to identify a position in the remaining input text where it resumes parsing. But in many cases this is actually the wrong position, causing an avalanche of error messages all caused by the first error. The library described here does not support this.

Efficiency

A number of efficiency measures have been investigated and described by other authors. See the articles by Röjemo and Koopman mentioned in chapter ‘Background’ on page 3. We are not going to spell them out here. The main ideas also adopted in this library are:
· Introduce a success-continuation and a fail-continuation to avoid construction and subsequent destruction of intermediate parse results.

· Introduce special combinators for special cases, such as the one mentioned earlier: instead of (p1 <|> p2) write (p1 <!> p2) if p2 can be skipped altogether once p1 succeeds.

There is one special case where this library diverts from both Röjemo and Koopman. Say we want to parse a language in which some constructs are introduced by keywords. For instance some statements in a programming language may start with keywords ‘IF’, ‘FOR’, ‘CASE’ etc. We could start out by writing a parser to recognise statements (stm) like:
stm = ifStm <!> forStm <!> caseStm <!> ...

But then, what happens if ifStm correctly recognises the keyword ‘IF’ but fails somewhere in the remainder of the if-statement? The semantics of <!> dictate that since ifStm as a whole failed, forStm should still be tried. In vain of course, because the actual keyword is known to be ‘IF’.

Röjemo and Koopman have different ways to solve this. But in this library we adopt a combinator that takes three parsers p1, p2 and p3. In the example p1 would be the parser for the keyword ‘IF’, p2 would be the parser recognising the remainder of the if-statement and p3 would represent the alternative statements, starting with the for-statement. The semantics of the combinator is as follows:

	If p1 succeeds,
	proceed with
	p2
	and ignore
	p3.

	If p1 fails,
	ignore
	p2
	and proceed with
	p3.


Now we need an appealing syntax for this triadic combinator. The unoptimised version without the special syntax would be:

stm = ifKeyword <&>  \x ( remainderIfStm  <!> forStm ...

         (p1)                 (p2)                 (p3)

In the special syntax that we adopt, this becomes:
stm = ifKeyword <&-> \x ( remainderIfStm <-!> forStm ...

         (p1)                 (p2)                 (p3)

Here <&-> is not a function, but an infix constructor. The actual combinator is the infix <‑!> which takes the <&-> construction on the left and forStm ... on the right. The fixity-levels of <&> and <&-> are equal, as are those of <!> and <-!>. That makes it easy to optimise existing parsers by simply inserting dashes at the right positions.
Apart from the monadic-style sequential combinator <&>, the library also supplies an arrow-style sequential combinator <++>. The constructor <++-> is its counterpart to establish the semantics described above. See the module ParserKernel.icl for details (MonadicSeq and ArrowSeq).
Limited tests have revealed that <&->, <++-> and <-!> mostly save storage space, but it would also be possible to construct examples where they significantly speed up the parsers.

Example Parser

An actual parser was written for the METAR-language introduced in chapter ‘Multiple Symbol Levels’ on page 4. The zip file contains the parser (MetarParser.icl/dcl). This demonstrates how names/descriptions can be attached to parsers. It also demonstrates another advantage of being able to mix parser code with ordinary programming: intermediate parse-results are being converted – for instance kilometres per hour to knots. The module also contains code to report some of the aspects of the parse results, such as the wind direction and the temperature.
Module TestMetarParser.icl contains an Object I/O dialog to edit a METAR and to see either how it decodes or the error message. The error messages should be clear enough even to learn how to compose METAR’s. There is a file with examples of valid METAR’s.



3/9

