
A Tutorial to the Clean Object I/O

Library - version 1.2

Peter Achten

Martin Wierich

Department of Functional Programming

University of Nijmegen

The Netherlands

February 2, 2000

Contents

1 Preface 9

2 Introduction 11

2.1 What are interactive objects . 11

2.2 How to manage running interactive objects 13

2.2.1 Opening of interactive objects 14

2.2.2 Modi�cation of interactive objects 15

2.2.3 Closing of interactive objects 16

2.3 How to start an interactive program 16

2.4 My �rst Clean object I/O program 17

3 Global structure of the object I/O library 19

3.1 Abstract devices . 19

3.1.1 Menus . 20

3.1.2 Windows . 20

3.1.3 Timers . 21

3.1.4 Receivers . 21

3.2 Interactive processes . 22

3.3 Drawing . 22

3.4 Channels . 22

3.5 General . 23

4 Object identi�cation 25

5 Drawing 29

5.1 Pen attributes . 30

5.2 Drawing classes . 31

5.3 Font and text handling . 32

5.4 Examples . 35

5.4.1 Pen size and position . 36

5.4.2 Drawing lines . 36

5.4.3 Drawing text . 37

2

CONTENTS 3

5.4.4 Drawing ovals . 37

5.4.5 Drawing curves . 39

5.4.6 Drawing rectangles . 40

5.4.7 Drawing boxes . 42

5.4.8 Drawing polygons . 42

5.4.9 Drawing bitmaps . 43

5.4.10 Drawing in xor mode . 45

5.4.11 Drawing in Hilite mode . 46

5.4.12 Drawing in Clipping mode . 46

6 Windows and dialogues 49

6.1 Basic terminology . 49

6.1.1 Anatomy of windows and dialogues 49

6.1.2 Stacking order . 51

6.1.3 Active window or dialogue . 51

6.2 Window and dialogue attributes . 51

6.2.1 Window and Dialog attributes 51

6.2.2 Window attributes . 53

6.2.3 Dialogue attributes . 54

6.3 Opening and closing of windows and dialogues 54

6.4 Handling the document layer . 55

6.4.1 Indirect rendering . 55

6.4.2 Direct rendering . 57

6.4.3 Pragmatics . 58

6.4.4 Example: displaying a bitmap 58

6.5 Handling the control layer . 60

6.6 Handling the window and dialogue frame 60

6.6.1 Opening a window or dialogue frame 61

6.6.2 Changing a window and dialogue frame 61

6.7 Handling keyboard and mouse input 61

6.7.1 Keyboard input . 62

6.7.2 Mouse input . 64

6.8 Modal dialogues . 66

6.8.1 Example: a notice extension 67

7 Control handling 73

7.1 The standard controls . 73

7.1.1 The ButtonControl . 76

7.1.2 The CheckControl . 77

7.1.3 The CustomButtonControl 77

7.1.4 The CustomControl . 78

4 CONTENTS

7.1.5 The EditControl . 79

7.1.6 The PopUpControl . 80

7.1.7 The RadioControl . 81

7.1.8 The SliderControl . 82

7.1.9 The TextControl . 84

7.1.10 The LayoutControl . 84

7.1.11 The CompoundControl . 85

7.2 Control glue . 86

7.2.1 :+: . 87

7.2.2 ListLS and NilLS . 87

7.2.3 AddLS and NewLS . 88

7.3 Control layout . 89

7.3.1 Layout at �xed position . 92

7.3.2 Layout at view frame boundary 92

7.3.3 Layout in lines . 93

7.3.4 Layout o�sets . 93

7.3.5 Layout relative to the previous control 94

7.4 Resizing controls . 94

7.5 Examples . 95

7.5.1 Keyspotting revisited . 95

7.5.2 Mousespotting revisited . 99

8 Menus 101

8.1 Menus and menu elements . 101

8.1.1 The menu attributes . 102

8.1.2 The Menu . 103

8.1.3 The PopUpMenu . 103

8.1.4 The MenuItem . 104

8.1.5 The MenuSeparator . 104

8.1.6 The RadioMenu . 105

8.1.7 The SubMenu . 106

8.2 Menu glue . 107

8.2.1 :+: . 107

8.2.2 ListLS and NilLS . 107

8.2.3 AddLS and NewLS . 108

8.3 The Windows menu . 108

8.4 Menu conventions . 109

8.4.1 Subsetting the available commands 109

8.4.2 Command conventions . 109

8.5 Example: a small menu system . 111

CONTENTS 5

9 Timers 117

9.1 Examples . 118

9.1.1 Expanding circles . 118

9.1.2 Internal clock . 121

10 Receivers 125

10.1 Receiver de�nitions . 125

10.2 Receiver creation . 126

10.3 Message passing . 127

10.3.1 Uni-directional message passing 127

10.3.2 Bi-directional message passing 128

10.4 Examples . 128

10.4.1 Talk windows . 128

10.4.2 Resetting the counter . 132

10.4.3 Reading the counter . 135

11 Interactive processes 139

11.1 De�ning interactive processes . 139

11.2 Interactive process creation . 142

11.3 Examples . 143

11.3.1 Talk revisited . 143

11.3.2 Clock revisited . 146

12 Clipboard handling 153

12.1 Example: a clipboard editor . 154

13 Printing 157

13.1 The user interface for printing . 157

13.2 The print function . 158

13.3 Reusing drawing functions . 162

13.4 The printUpdateFunction function 164

13.5 The printPagePerPage function . 164

13.6 Printing text . 165

14 TCP 171

14.1 Introduction to TCP . 171

14.2 Basic ideas . 172

14.3 Blocking TCP in World programs . 173

14.3.1 Establishing a connection . 173

14.3.2 Basic operations on channels 175

14.3.3 Tearing down a connection 179

14.3.4 Putting it together . 179

6 CONTENTS

14.3.5 Multiplexing . 180

14.3.6 More channels . 184

14.4 Non Blocking TCP in GUI Programs 185

A I/O library 191

A.1 StdBitmap . 191

A.2 StdChannels . 192

A.3 StdClipboard . 195

A.4 StdControl . 196

A.5 StdControlAttribute . 202

A.6 StdControlClass . 206

A.7 StdControlDef . 207

A.8 StdControlReceiver . 209

A.9 StdEventTCP . 210

A.10 StdFileSelect . 211

A.11 StdId . 212

A.12 StdIO . 213

A.13 StdIOBasic . 214

A.14 StdIOCommon . 216

A.15 StdKey . 222

A.16 StdMaybe . 223

A.17 StdMenu . 224

A.18 StdMenuAttribute . 227

A.19 StdMenuDef . 229

A.20 StdMenuElement . 230

A.21 StdMenuElementClass . 232

A.22 StdMenuReceiver . 233

A.23 StdPicture . 234

A.24 StdPictureDef . 240

A.25 StdPrint . 242

A.26 StdPrintText . 245

A.27 StdProcess . 247

A.28 StdProcessAttribute . 248

A.29 StdProcessDef . 249

A.30 StdPSt . 250

A.31 StdPStClass . 251

A.32 StdReceiver . 252

A.33 StdReceiverAttribute . 254

A.34 StdReceiverDef . 255

A.35 StdSound . 256

A.36 StdStringChannels . 257

CONTENTS 7

A.37 StdSystem . 258

A.38 StdTCP . 259

A.39 StdTCPChannels . 260

A.40 StdTCPDef . 263

A.41 StdTime . 265

A.42 StdTimer . 266

A.43 StdTimerAttribute . 267

A.44 StdTimerDef . 268

A.45 StdTimerElementClass . 269

A.46 StdTimerReceiver . 270

A.47 StdWindow . 271

A.48 StdWindowAttribute . 276

A.49 StdWindowDef . 278

8 CONTENTS

Chapter 1

Preface

The functional programming language Clean has an extensive library to build graph-
ical user interface applications, the object I/O library. In this tutorial the basic
concepts of the object I/O library are explained. Many of the concepts are illus-
trated by means of Clean program examples. Clean code will be typeset in type

writer style. The example programs are also available as Clean sources in the
corresponding `Tutorial Examples' folder.

This tutorial is not a technical reference manual: you will not �nd an extensive and
detailed description of every data structure and function of the library. It is also
assumed that the reader is familiar with functional programming and Clean.

In Chapter 2 a brief overview of the object I/O library is given, to give the reader
a taste of what the object I/O system is all about. Chapter 3 presents the global
structure of the object I/O system.

The remaining part of this document explains the individual components of the
library. But before we can explain the graphical user interface elements, we �rst
talk about object identi�cation (Chapter 4), and drawing (Chapter 5).

To users of graphical user interfaces the interface elements are of course the windows
and dialogues. These are discussed in Chapter 6. Windows and dialogues can
contain controls. Because there are many aspects about control handling their
treatment deserves a separate chapter (7). In all graphical user interface systems,
the set of available commands is presented by means of menus, see Chapter 8. To
support timing features, timers can be used, see Chapter 9. Flexible communication
of arbitrary expressions between components can be achieved by using receivers and
message passing, see Chapter 10.

All of the above objects are elements of one interactive process. The object I/O
library enables the programmer to split up a large interactive program into several
interactive processes that can be created and closed dynamically. This is presented
in Chapter 11.

Two �nal chapters remain that deal with issues that are also related to graphical
user interface applications. In Chapter 12 we discuss clipboard handling, a simple
user driven mechanism to transfer data between interactive applications. In Chapter
13, we demonstrate the means that exist to send output to a printer.

In Chapter 10 communication of arbitrary Clean expressions between interactive
objects is discussed. In Chapter 14 it is demonstrated how Clean programs can
communicate with arbitrary programs using TCP.

Appendix A contains the de�nition modules of the Clean object I/O library, version

9

10 CHAPTER 1. PREFACE

1.2. in alphabetic order.

The Clean object I/O library is maintained by Peter Achten. Martin Wierich wrote
the chapters on printing (Chapter 13) and TCP (Chapter 14) and also developed
the corresponding library modules.

Chapter 2

Introduction

In this chapter we give a brief overview of the main features of the object I/O
library. We �rst discuss what the basic components are and how they can be used
to construct more complex components (Section 2.1). When these elements have
been constructed, they must be opened to create an actual working image on the
underlying platform. Elements can be opened and closed dynamically, but it is of
course also possible to change them dynamically (Section 2.2). Once we know how
to construct graphical user interfaces we can start an interactive program. This
is explained in Section 2.3. Finally, to wrap things up Section 2.4 presents the
�rst complete interactive Clean object I/O program of this tutorial, the ubiquitous
\Hello world!".

2.1 What are interactive objects

One way of looking at the object I/O library is to regard it as a collection of building
blocks, the interactive objects, that the programmer can use to construct graphical
user interfaces. For instance, Figure 2.1 summarises the standard set of control
objects that can be placed in a window or dialogue object.

Control object: What does it look like:

ButtonControl

CheckControl

CompoundControl Program de�ned combination of controls
CustomButtonControl Program de�ned button
CustomControl Program de�ned button

EditControl

LayoutControl Program de�ned combination of controls

PopUpControl

RadioControl

SliderControl

TextControl

Figure 2.1: The standard set of controls.

11

12 CHAPTER 2. INTRODUCTION

All interactive objects are de�ned by means of algebraic data types. As an example,
to de�ne the button control element in the table of Figure 2.1 one would write:

button = ButtonControl "Button" []

The constituents of this expression are the data constructor ButtonControl, applied
to the string "Button", and an empty list [] of control attributes. This is de�ned
more concisely by the library type de�nition of a button control element:

:: ButtonControl ls pst

= ButtonControl String [ControlAttribute *(ls,pst)]

It should be noted that the names of the type constructor and the data constructor
are identical (ButtonControl). This convention is used throughout the object I/O
library.

The type de�nition of the button control is parameterised with two type variables:
ls and pst. These correspond to another fundamental characteristic of interactive
objects: an interactive object can have local state, and also have an e�ect on a
process state. The type of the local state is identi�ed by the ls type parameter,
while the type of the process state is identi�ed by the pst type parameter. The
e�ect of an interactive object that has a local state of type ls and a process state
of type pst is de�ned by means of a function of type (ls; pst) ! (ls; pst). Such
a function is called a callback function. For most interactive objects, the callback
function is an attribute of the object. Attributes are also de�ned by means of
algebraic data types. For instance, among many other control attributes, one can
�nd the callback function attribute of controls:

:: ControlAttribute st

= ... | ControlFunction (st->st) | ...

Note that the pair of local state and process state constitute the state of an element.
Themeaning of attributing a control element with a callback function f is that when
that element is selected by the user, and the current state is the value (l; p), then
the new state will be (f(l; p)). In other words, a callback function de�nes a state
transition.

Besides having a bag of interactive objects the object I/O library provides pro-
grammers glue to construct user interfaces. This glue serves two purposes: (a)
from primitive objects one can construct new composite objects, and (b) it puts
restrictions on what components are `glue compatible'.

The object I/O library has one universal glue :+: that can be used to connect two
interactive objects that operate on the same local state of type ls and process state
of type pst. Its type de�nition is as follows:

:: :+: t1 t2 ls pst

= (:+:) infixr 9 (t1 ls pst) (t2 ls pst)

In order to de�ne what components are compatible to be glued type constructor
classes are applied. The type constructor class Controls contains all control ele-
ments (see Figure 2.1) but also de�nes that only Controls members can be glued:

instance Controls ButtonControl,

CheckControl,

2.2. HOW TO MANAGE RUNNING INTERACTIVE OBJECTS 13

CompoundControl c | Controls c,

CustomButtonControl,

CustomControl,

EditControl,

LayoutControl c | Controls c,

PopUpControl,

RadioControl,

SliderControl,

TextControl,

:+: c1 c2 | Controls c1 & Controls c2

This speci�cation says that ButtonControls, CheckControls, and so on, belong
to the same type constructor class, namely Controls. Three of these instances
(CompoundControl, LayoutControl, and :+:) have additional type constructor
variables. The only permissable type constructor for these variables should be an
element of the Controls class. This is expressed by putting a type constructor
context restriction on the variables (the expression followed after |). Let button
and text below de�ne a button and a text control respectively:

button = ButtonControl "Button" []

text = TextControl "Just text" []

then the following expressions are all legal Controls instances: button :+: button,
button :+: text, text :+: button, and text :+: text.

The collection of interactive objects that is supported by the object I/O library is
ordered in four categories, called abstract devices.

Menus: Menus provide the set of commands that are available to the user of an
interactive program. A program can have an arbitrary number of menus.
Menus can be hierarchical, i.e. they can contain menus (sub menus) which can
contain sub menus as well. Menu items correspond with the menu commands
of the program.

Receivers: Receivers are the basic components that interactive objects can use to
communicate messages in a exible way.

Timers: Timers are used by a program to be able to softly synchronise actions.
A timer basically triggers a callback function every passing of a given time
interval.

Windows and Dialogues: Windows provide the primary interface element to the
user of a program. Windows can either be dialogues or general purpose win-
dows. Windows and dialogues can contain arbitrary collections of controls.
Analogous to menus, these control collections can be hierarchical, i.e. they
can contain collections of controls (compound controls), and so on.

2.2 How to manage running interactive objects

In the previous section we have had a glimpse of how to de�ne (compositions of)
interactive objects. In the object I/O library every interactive object can be created
and destroyed dynamically, but we prefer to call this opening and closing which
sounds more peacefully. Once an interactive object is running the program will need
to modify it in several ways. Examples are to enable and disable menu elements,

14 CHAPTER 2. INTRODUCTION

and change the content of a window to reect the state of the program, and so
on. Closing an element is the ultimate modi�cation of a running interactive object.
So interactive objects have a life-cycle which consists of three consecutive phases:
opening, modi�cation, and closing. Below we discuss these phases.

2.2.1 Opening of interactive objects

For each abstract device a function is de�ned that will open an instance, given a
de�nition. Again type constructor classes are used to control what elements are
proper instances of each abstract device. As an example, dialogues are de�ned by
the following type de�nition:

:: Dialog c ls pst

= Dialog Title (c ls pst) [WindowAttribute *(ls,pst)]

Following the naming convention of the object I/O library, the type variables ls
and pst correspond with the local state of the dialogue and the process state of
the program respectively. Callback functions are state transition functions of type
(ls; pst)! (ls; pst), so the window attribute type constructor is parameterised with
(ls; pst). The type constructor class Dialogs �xes the instances of dialogues. A
(Dialog c) is a proper instance of this class, provided that c is a proper instance
of the Controls type constructor class.

class Dialogs ddef where

openDialog :: .ls !(ddef .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport,!PSt .l)

...

instance Dialogs (Dialog c) | Controls c

In Subsection 2.2.2 we will look more closely at the process state argument PSt.

The purpose of the open function of every abstract device is to map the de�nition
of an interactive object to the `physical' graphical user interface object. It is this
`physical' object that can be manipulated by the user of a program (in case of win-
dows, dialogues, and menus) or by the program itself (all abstract devices). The
open function returns a value of type ErrorReport because it is possible that cre-
ating an interactive object fails (lack of system resources or logical inconsistencies).
It is good programming practice to check for errors and provide proper feedback to
the user.

Let's illustrate the use of the openDialog function. Suppose we want to open the
following small and not very useful dialogue:

The program line that does this typically looks something like this:

(error,new_process_state)

2.2. HOW TO MANAGE RUNNING INTERACTIVE OBJECTS 15

= openDialog

my_local_state

(Dialog "" (TextControl "Hello world!" []) [])

the_process_state

2.2.2 Modi�cation of interactive objects

Once an interactive object has been opened and is in its running phase, it can
be modi�ed by the user and the program. For this purpose a running interactive
object must be stored somewhere, and it must be identi�ed by the program. Every
running interactive object is stored in the I/O state of a program. In Section 2.1
we explained that every interactive object has access to a local state and a process
state. The process state is a structured value de�ned by means of the record type
PSt:

:: *PSt l // The process state record type

= { ls :: !l // The local process state

, io :: !*IOSt l // The I/O state

}

:: *IOSt l // IOSt is an abstract data type

A value of abstract type IOSt is created speci�cally for each interactive process by
the object I/O system. In this special value the state of every running interactive
object is stored. The other part of a process state, the ls �eld, can be de�ned
freely by the programmer. In this �eld, the programmer can store all the data
that is required by all interactive objects during the life-cycle of an interactive
process. The example programs in this tutorial are usually very small. For such
small programs for which no sensible `logical' state has to be de�ned, the object
I/O library provides the convenient type constructor Void:

:: Void = Void

The running state of every interactive object is stored in the IOSt. So, a function
that modi�es the running state of such an interactive object is usually of type
(IOSt l) ! (IOSt l). Some functions such as the abstract device open functions
require the PSt record, and consequently have type (PSt l)! (PSt l). Because in
general the IOSt will contain an arbitrary number of windows, dialogues, menus,
timers, and receivers one also has to specify which particular interactive object
one intends to modify. For this purpose interactive objects (and their component
objects) can be identi�ed by means of Ids. An Id is an abstract type that is
generated by the object I/O system. An interactive object is identi�ed by means
of a speci�c Id by adding this Id to the attribute list of the corresponding object
de�nition (see Section 2.1). As an example, for controls the corresponding attribute
is:

:: ControlAttribute st

= ... | ControlId Id | ...

The major part of the object I/O library de�nes the modi�cation functions that
the programmer can use to modify a running interactive object.

As an example, suppose we want to change the content of the text control of the
\Hello world!" example to \Goodbye world!". To do this, we need to identify the

16 CHAPTER 2. INTRODUCTION

text control. A control is identi�ed uniquely by its personal Id. So we add a
ControlId attribute to the attribute list of the text control. If textid identi�es
the text control then the corresponding program fragments look something like:

(error,new_process_state)

= openDialog

my_local_state

(Dialog ""

(TextControl "Hello world!" [ControlId textid])

[]

)

the_process_state

changeText process_state=:{io}

= {process_state & io=setControlText textid "Goodbye world!" io}

2.2.3 Closing of interactive objects

As explained in the previous two subsections, once an interactive object has been
opened it is in its running phase and it will remain in that state until it is explicitly
closed by the program. Note that although it may seem to the user that he is able to
close a window, it is actually the program that responds to a user request to really
close a window. For all abstract devices and their components, there are close
operations. A close operation will remove the `physical' graphical user interface
element and free system resources that were required to operate the interactive
object properly. In addition, it is also removed from the IOSt. Closing an interactive
object also closes its component objects, so closing a dialogue automatically closes
all controls that are part of the dialogue.

2.3 How to start an interactive program

The starting point of every Clean program (interactive or not) is the Start function.
The essence of an interactive program is that it is a function that can change the
world. So for interactive programs the Start function must have type *World !
*World. The typical appearance of the Start function of an interactive program
looks something like:

Start :: *World -> *World

Start world

= ... world

In the previous sections we have seen how to de�ne interactive objects and get them
running. The abstract device open functions require a PSt value, containing an IOSt
value. These are created by the object I/O system using the function startIO.

startIO :: !DocumentInterface !.l !(ProcessInit (PSt .l))

![ProcessAttribute (PSt .l)]

!*World -> *World

:: ProcessInit pst :== IdFun pst

:: IdFun st :== st -> st

2.4. MY FIRST CLEAN OBJECT I/O PROGRAM 17

The details of this function will be explained in Chapter 11. Briey, it creates an
initial process state given the initial local process state of type l. This initial process
state will contain a tailor-made IOSt value. In this way one switches from the world
environment to the process state environment, and the interactive program can be
initialised. This is done by the initialisation function (of type (ProcessInit (PSt

l))). In this function the programmer can create the initial interactive objects that
are required by the program.

After initialisation the interactive process will be evaluated. Evaluation means that
the object I/O system takes care that the proper process state transition functions
will be applied that are speci�ed by the program. For instance, when the user
presses a button or enters text in some text edit �eld, this generates low-level
events. These events are interpreted by the object I/O system and mapped to
abstract events such as \this button was pressed" and \this keyboard input was
entered". If the interactive object has a callback function (given as an attribute)
then this function is applied to its current local state and process state. This returns
a new local state and process state, with which the object I/O system continues.

The evaluation of an interactive process terminates as soon as it becomes closed.
The only way for an interactive process to be closed is by means of the process
modi�cation function closeProcess:

closeProcess :: !(PSt .l) -> PSt .l

This function closes all currently running interactive objects of the interactive pro-
cess and returns a process state that contains an empty IOSt value. All modi�cation
operations have no e�ect when applied to an empty IOSt value. If an interactive
program consists of one interactive process, then the application of closeProcess
su�ces to terminate the evaluation of startIO. In Chapter 11 it is discussed how
an interactive program can open and close interactive processes dynamically. Note
that if an interactive program does not close all of its processes, it will run on
forever.

2.4 My �rst Clean object I/O program

To complete the introduction we present the Clean object I/O version of the well
known \Hello world!" program. Here it is:

module hello

// **

// Clean tutorial example program.

//

// This program creates a dialog that displays the "Hello world!" text.

// **

import StdEnv, StdIO

Start :: *World -> *World

Start world

= startIO NDI Void initialise [] world

where

initialise pst

(error,pst) = openDialog Void hello pst

| error<>NoError = closeProcess pst

| otherwise = pst

hello = Dialog ""

18 CHAPTER 2. INTRODUCTION

(TextControl "Hello world!" []

)

[WindowClose (noLS closeProcess)

]

This program creates an interactive process which opens the same dialogue as shown
earlier in Section 2.2.1. The singleton type Void introduced earlier is used to spec-
ify that this program has no interesting local process state (the second argument
of startIO), and also no interesting local dialogue state (the �rst argument of
openDialog).

The dialogue has one attribute, the callback function that should be applied in case
the user wants to close the dialogue. In this case closing the dialogue will close
the \Hello world!" program. So the callback function can simply be closeProcess.
However, the type of a callback function of an interactive object also operates on
a local state (which is Void in this case). To conveniently transform a function of
type (a ! b) into a function of type (c; a) ! (c; b), the library function noLS ::

(a! b) (c; a)! (c; b) is applied.

Chapter 3

Global structure of the
object I/O library

The application programmer's interface of the Clean object I/O library currently
consists of 49 de�nition modules (they are all given in Appendix A). These modules
contain everything you need to create interactive Clean programs with. No other
modules and no other symbols should be imported from the object I/O library. Vio-
lation of this rule can result in error-prone applications at worst and non portability
at least. In this chapter the module structure of the api is discussed. This will help
you to �nd your way quickly in the object I/O library.

As a global naming convention, all de�nition modules have the pre�x Std. The
module StdIO is a convenience module that collects all modules that you normally
need for graphical user interface programs. The module StdTCP is a convenience
module that collects all modules required for TCP programming. The modules
can be divided roughly into �ve major categories: the abstract devices, interactive
processes, drawing, channels and general.

3.1 Abstract devices

Abstract devices have been introduced in Section 2.1 (page 13). These are the menu,
window, timer, and receiver device. These devices occupy most of the modules and
type de�nitions of the object I/O library. The following naming conventions have
been employed for these modules:

� The names of the modules that contain type de�nitions to de�ne abstract
device instances have post�x Def. So menu de�nitions can be found in the
module StdMenuDef, receiver de�nitions can be found in the module Std-

ReceiverDef, and so on. Although controls are not an abstract device, a
de�nition module also exists for controls, namely StdControlDef.

� For each module that contains type de�nitions to de�ne abstract device in-
stances (so of the form StdObjectDef) there also exists a module that de�nes
basic access functions on its attributes. The corresponding name is formed as
StdObjectAttribute. So, control attribute access functions can be found in
the module StdControlAttribute.

� Abstract device instances that consist of elements use type constructor classes
to enumerate their elements. The corresponding type constructor classes and

19

20 CHAPTER 3. GLOBAL STRUCTURE OF THE OBJECT I/O LIBRARY

standard instances are de�ned in the modules which names end with Class.
So menu elements can be found in the module StdMenuElementClass. The
controls can be found in StdControlClass.

� Receivers are non standard elements of some abstract device instances. Given
the name Object of the parent device instance, you can �nd the type con-
structor class instance declarations in the modules which names are formed
like StdObjectReceiver. So, receiver instances of timers can be found in
StdTimerReceiver.

� The operations on an object Object can be found in the module named Std-

Object. So window operations can be found in the module StdWindow, menu
element operations can be found in the module StdMenuElement, and so on.

Below we discuss the module structure of each of the abstract devices.

3.1.1 Menus

The api for menus and menu elements consists of six modules:

StdMenuDef
contains the type de�nitions of menus, pop up menus, and menu elements.

StdMenuAttribute
de�nes the access functions on menu (element) attributes.

StdMenuElementClass
de�nes the menu element instances for menus and pop up menus. These have
di�erent type constructor classes (MenuElements and PopUpMenuElements re-
spectively) because pop up menus are not allowed to contain sub menus.

StdMenuReceiver
adds receivers as a proper instance of menu elements.

StdMenuElement
contains all operations on menu elements.

StdMenu
contains all operations on menus. Here also the Menus type constructor class
is given together with its two instances Menu and PopUpMenu.

3.1.2 Windows

The api for windows, dialogues, and controls consists of eight modules:

StdWindowDef
contains the type de�nitions of windows and dialogues.

StdControlDef
contains the type de�nitions of controls. These can be placed in windows and
dialogues.

StdWindowAttribute
de�nes basic access functions on window attributes.

3.1. ABSTRACT DEVICES 21

StdControlAttribute
de�nes basic access functions on control attributes.

StdControlClass
de�nes the control instances for windows and dialogues. For windows and
dialogues these belong to the Controls type constructor class.

StdControlReceiver
adds receivers as a proper instance of controls.

StdControl
contains all operations on controls.

StdWindow
contains all operations on windows and dialogues. Here also the Windows

and Dialogs type constructor classes are given together with their instances
Window and Dialog.

3.1.3 Timers

The api for timers consists of �ve modules:

StdTimerDef
contains the type de�nitions of timers and its elements.

StdTimerAttribute
de�nes basic access functions on timer attributes.

StdTimerElementClass
de�nes the timer elements instances. These are currently only glueing in-
stances.

StdTimerReceiver
adds receivers as a proper instance of timer elements. This is actually the
most interesting timer element.

StdTimer
contains all operations on timers.

3.1.4 Receivers

The api for receivers consists of three modules:

StdReceiverDef
contains the type de�nitions for uni-directional and bi-directional receivers.

StdReceiverAttribute
de�nes basic access functions on receiver attributes.

StdReceiver
contains all operations on receivers. Here you can also �nd the message passing
functions.

22 CHAPTER 3. GLOBAL STRUCTURE OF THE OBJECT I/O LIBRARY

3.2 Interactive processes

As stated in Section 2.3, every interactive program has to be opened as an interactive
process. The api for interactive processes consists of three modules:

StdProcessDef
contains the type de�nitions for interactive processes.

StdProcessAttribute
de�nes basic access functions on process attributes.

StdProcess
contains all operations on processes including the functions mentioned in
Chapter 2, startIO and closeProcess. The startIO function is actually
a specialised version of the more general type constructor class Processes

which allows you to create a topology of interactive processes.

3.3 Drawing

In graphical user interface applications graphics play an important role. Virtually
every interface object has a visual representation that is drawn by the underlying
platform. Drawing operations will be required by most applications to give the
user visual feedback on the current documents that are being manipulated or the
status of controls. The manipulation of text is also an issue in drawing information.
Text can be presented in very di�erent fonts, sizes, and variations. Drawing on
screen and printing on paper is very analogous. With some care rendering can be
abstracted from the output device.

The api for drawing consists of �ve modules:

StdPictureDef
contains the type de�nitions of drawable elements, fonts, colours, pen at-
tributes, and some platform dependent constants.

StdPicture
contains all drawing operations on pictures. These are structured by means
of the type constructor classes Drawables for drawing �gures, and Fillables

for �lling �gures. Picture attributes can be retrieved and modi�ed.

StdBitmap
adds bitmaps as a proper instance of the Drawables type constructor class.
Currently the set of bitmap operations is very limited.

StdPrint
de�nes very general printing functions. Printing is the same as drawing, except
that the output is sent to a printer rather than some screen object.

StdPrintText
builds on StdPrint and o�ers some specialised functions to print text.

3.4 Channels

Internally, interactive processes that belong to the same interactive program can
communicate arbitrary functional values by means of receivers (see Section 3.1.4).

3.5. GENERAL 23

To allow (interactive) Clean programs to communicate with other applications an
extensive TCP/IP api is provided. Channels are the medium for communication.

The api for using channels consists of �ve modules:

StdChannels
contains operations to send and receive on channels.

StdTCPDef
contains various type de�nitions needed for event driven communication.

StdTCPChannels
de�nes instances for most of the classes de�ned in StdChannels.

StdStringChannels
de�nes instances to send and receive strings.

StdEventTCP
contains functions for using event driven TCP.

3.5 General

Finally, there are a number of modules that are less easily categorised. These are
the following eleven modules:

StdClipboard

In this module clipboard operations are de�ned. Clipboard operations are
de�ned in more detail in Chapter 12.

StdFileSelect

In this module two functions are de�ned by which a user can open platform
dependent directory browsing dialogues.

StdId

In this module the identi�cation value generating functions are de�ned. This
is discussed in more detail in Chapter 4.

StdIOBasic, StdIOCommon and StdKey

These modules provide a lot of type de�nitions and functions that are needed
by many of the abstract device modules introduced in Section 3.1.

StdMaybe

In this module a type is introduced that is very useful for providing optional
results and optional arguments. It is used by many operations in the abstract
device modules.

StdPSt and StdPStClass

In these modules operations are collected on the process state that are not re-
lated to any abstract device. StdPSt contains several type constructor classes
for �le and time access. Their instances can be found in StdPStClass. Other
frequently used functions in StdPSt are the `lifting' functions de�ned on the
process state. With these lifting functions one can easily transform for in-
stance an IOSt transition function to a PSt transition function.

StdSound

This is an experimental module introduced to provide access to sound �les.

24 CHAPTER 3. GLOBAL STRUCTURE OF THE OBJECT I/O LIBRARY

StdTime

In this module some time access operations can be found that can be used
independently of the timer device.

Chapter 4

Object identi�cation

Before we can really delve into the details of the object I/O library we �rst need
to learn how to identify running interactive objects. As we have briey discussed
in Section 2.2.2, all objects can have an identi�cation attribute. An identi�cation
attribute is a value of type Id. Because attributes are optional, the programmer
is not forced to provide a value for this attribute. Objects without identi�cation
attribute can not be modi�ed at run-time. If the program needs to modify an
interactive object, it must have been provided with an identi�cation attribute.

The type Id is an abstract data type, and you can import it via the module StdId.
All Ids are generated by the system. The type constructor class Ids de�nes the
creation functions. Ids can be created from the World, IOSt, and the PSt environ-
ment. Every new Id taken from these environments is guaranteed to be fresh with
respect to the other Ids generated by any of these functions.

:: Id

class Ids env where

openId :: !*env -> (! Id, !*env)

openIds :: !Int !*env -> (![Id], !*env)

openRId :: !*env -> (! RId m, !*env)

openRIds :: !Int !*env -> (![RId m], !*env)

openR2Id :: !*env -> (! R2Id m r, !*env)

openR2Ids:: !Int !*env -> (![R2Id m r],!*env)

instance Ids World,

IOSt .l,

PSt .l

As the Ids class de�nition shows, Id values are not the only identi�cation values
that are used in the object I/O system. Two special kinds of identi�cation values
of type (RId m) and (R2Id m r) are used to identify receivers that accept messages
of type m in the �rst case, and in addition reply with a message of type r in the
second case. Receivers are discussed in Chapter 10.

The purpose of having Ids is to unambiguously identify running interactive ob-
jects. When assigning Ids to interactive objects, a program must comply to the
Id assignment rule: at all times during the life-time of an interactive program, an

25

26 CHAPTER 4. OBJECT IDENTIFICATION

identi�cation value (Id, RId m, or R2Id m r) must be bound to at most one running
interactive object.

The abstract device open functions check whether the interactive object de�nition
argument is valid with respect to the Id assignment rule. If this is not the case,
the ErrorReport alternative ErrorIdsInUse is returned, and the interactive object
will not be opened. If the Id assignment rule is not violated, and no other error
occured, then the alternative NoError is returned.

For simple programs such as the \Hello world!" program in Section 2.4 no identi�ca-
tion values have to be created. For somewhat longer programs that �t easily inside
one module (such as most examples in this tutorial) it is usually most convenient
to create the required identi�cation values in the Start function and pass these to
the initialisation function argument of startIO (Section 2.3). In the left-hand side
of the initialisation function one can introduce names to these identi�cation values
that can then be used in all locally de�ned callback functions. So the outline of
such a program is as follows:

module name_of_program

import StdEnv, StdIO // Import of standard libraries

Start :: *World -> *World

Start world

(ids,world) = openIds n world // Create n Ids

= startIO SDI Void (initialise ids) [] world // Pass these to initialise

initialise :: [Id] (PSt .l) -> PSt .l

initialise [id1,id2,...idn] pst // Introduce names for all n Ids

= ... // Create interactive objects

where

...

callback (local_state,pst) // Local callback function

= ... id1 ... id2 ... // can now use the Ids

The advantage of this scheme is that if good names are given to the Id values it is
easier to make no mistakes.

Another scheme that is more useful in case it makes less sense to de�ne all callback
functions locally to the initialisation function is to put the Id values in a record in
the local process state. Here, the record �eld names take care of naming the Ids.
One can de�ne a record MyIds that contains all Id entries (possibly hierarchically).
If program states become more involved it is also a good idea to de�ne them as a
record because this makes it easier to change the program in the future. So, one can
also introduce some local process state record MyState containing MyIds. Although
not strictly necessary, it is also convenient to de�ne a function that creates a MyIds
record from any environment that belongs to the Ids type constructor class. Such
a function has the overloaded type:

openMyIds :: !*env -> (!MyIds,!*env) | Ids env

This gives you more exibility where to actually create the MyIds record because
this function can be applied to any environment instance of the Ids type constructor
class. The outline of a program using this scheme is as follows:

module name_of_program

import StdEnv, StdIO // Import of standard libraries

:: MyIds // The record that stores Ids

27

= { id1 :: Id

, id2 :: Id

, ...

, idn :: Id

}

:: MyState // The local process state

= { myIds :: MyIds // contains the MyIds record

, ...

}

openMyIds :: !*env -> (!MyIds,!*env) | Ids env // openMyIds creates the Ids

openMyIds env

([id1,id2...idn],world) = openIds n world // Create n Ids

= ({id1=id1,id2=id2,...,idn=idn},env) // Create MyIds record

Start :: *World -> *World

Start world

(myIds,world) = openMyIds world // Create MyIds record

myState = {...myIds=myIds...} // in the local process state

= startIO SDI myState initialise [] world

callback :: (LocalState,PSt MyState) -> (LocalState,PSt MyState)

callback (ls,pst=:{ls={myIds}}) // Every callback function

= ... myIds.id1 ... myIds.id2 ... // can now use the Ids

28 CHAPTER 4. OBJECT IDENTIFICATION

Chapter 5

Drawing

In a graphical user interface most of the information that is presented to users
is drawn, such as the shape of windows, dialogues, controls, but also handling of
text. This central issue is handled in this chapter. All drawing functions require
an environment of type *Picture. A Picture is created for each interactive object
that can be drawn in. The life-cycle of a Picture environment is equal to the life-
cycle of its parent object. Also for printing a Picture environment is used (printing
is discussed in detail in Chapter 13).

A Picture de�nes a coordinate system for drawing operations (see �gure 5.1).

-x

?

y

�230 0 230

�230

0

230

Figure 5.1: Picture coordinates.

X-axis coordinates increase from left to right, Y-axis coordinates increase from top
to bottom. The range for both axes is de�ned by the macro viewDomainRange that
can be found in module StdIOCommon:

viewDomainRange :== { corner1 = {x = 0-(2^30),y = 0-(2^30)}

, corner2 = {x = 2^30 ,y = 2^30 }

}

Drawing operations on a Picture use the coordinate system to de�ne where objects

29

30 CHAPTER 5. DRAWING

should be drawn. The objects themselves are made up of the pixels, lying between
the coordinates. Figure 5.2 zooms in on the coordinate system from zero and
increasing. The pixels on x-coordinates 0, 5, 10,. . . and y-coordinates 0, 5, 10,. . . are
displayed.

25

20

15

10

5

0

0 5 10 15 20 25

Figure 5.2: Picture coordinates and pixels

5.1 Pen attributes

Drawing a �gure is done using a pen. The pen determines which pixels should
be drawn and in what colour. Like most other elements in the object I/O li-
brary, pens have attributes. These are the following (they can be found in module
StdPictureDef):

:: PenAttribute // Default:

= PenSize Int // 1

| PenPos Point2 // zero

| PenColour Colour // Black

| PenBack Colour // White

| PenFont Font // DefaultFont

PenSize

This attribute de�nes the width and height of the drawing pen. The default
value is 1, which means that drawing a point will �ll an area of 1 pixel wide
and 1 pixel high. Negative or zero values are always set to 1.

PenPos

This attribute determines the current position of the drawing pen. Its default
value is zero. The type de�nition of Point2 is:

:: Point2 = {x::!Int,y::!Int}

instance zero Point2 where

zero = {x=0,y=0}

5.2. DRAWING CLASSES 31

PenColour

This attribute determines the colour drawn pixels will have. The default value
is black. The Colour data type is de�ned in module StdPictureDef:

:: Colour

= Black | DarkGrey | Grey | LightGrey | White

| Red | Green | Blue

| Cyan | Magenta | Yellow

| RGB RGBColour

:: RGBColour

= {r::!Int, g::!Int, b::!Int}

A colour can range between black and white (�rst �ve alternatives de�ning
100%, 75%, 50%, 25%, and 0% blackness), be one of red, green, blue, be one of
cyan, magenta, yellow, or some custom de�ned combination of red, green, blue
components. Currently the library does not support colour tables or palette
management operations, so the use of RGB colours tends to be speculative.

PenBack

This attribute determines the colour erased pixels will have. The default
colour is white.

PenFont

This attribute sets the current font that will be used when drawing text.
Drawing text is not a�ected by the current width and height of the pen.

The current individual pen attributes can be set and retrieved by corresponding
functions setPenAttribute and getPenAttribute respectively. It is also possible to
set several pen attributes at once using setPenAttributes and retrieve all cur-
rent pen attributes with getPenAttributes. These functions can all be found in
StdPicture.

5.2 Drawing classes

The drawing operations are divided into three groups, ordered by means of type
constructor classes:

Drawables
draws (draw and drawAt) or erases (undraw and undrawAt) its instances.
These are characters, strings, vectors, ovals, curves, boxes, rectangles, poly-
gons, and bitmaps.

class Drawables figure where

draw :: !figure !*Picture -> *Picture

drawAt :: !Point2 !figure !*Picture -> *Picture

undraw :: !figure !*Picture -> *Picture

undrawAt:: !Point2 !figure !*Picture -> *Picture

Fillables
�lls (fill and fillAt) or erases (unfill and unfillAt) its instances. These
are ovals, curves, boxes, rectangles, and polygons.

32 CHAPTER 5. DRAWING

class Fillables figure where

fill :: !figure !*Picture -> *Picture

fillAt :: !Point2 !figure !*Picture -> *Picture

unfill :: !figure !*Picture -> *Picture

unfillAt:: !Point2 !figure !*Picture -> *Picture

Hilites
�lls the interior of its instances in such a way that the current picture content
remains visible. Its instances are boxes and rectangles.

class Hilites figure where

hilite :: !figure !*Picture -> *Picture

hiliteAt:: !Point2 !figure !*Picture -> *Picture

Each of these type constructor classes allows its elements to be drawn at the current
pen position or at an absolute pen position. Because of this reason the data type
de�nition of most of these elements do not specify their location. Exceptions are
rectangles, lines, and points.

5.3 Font and text handling

When working with text you frequently will want to know the dimensions of the
text for layout purposes or simply to calculate the size of an element containing
that text. The dimensions of a piece of text depends on two parameters:

� The font is an abstract value that describes the shape of a text. The usual
way to identify a font is by its name, point size, and style variations.

� The drawing environment (Picture) determines the actual size in terms of a
resolution dependent unit. The resolution of the screen is usually a lot smaller
than the resolution of a laser writer.

Because there is a great variance of available fonts and drawing environments per
machine writing a program that handles fonts properly requires some care. Font
operations are ordered in three groups.

The �rst group of font operations return information about the currently available
fonts. The function getFontNames returns a list of the names of all available fonts.
Given an element of this list, the functions getFontStyles and getFontSizes

return for that particular font the available style variations and sizes. Because in
modern font management systems for many fonts no restriction exists on the size,
the function getFontSizes is also parameterised with two bounding size arguments.
Their type de�nitions are:

getFontNames :: !*Picture ->(![FontName], !*Picture)

getFontStyles:: !FontName

!*Picture ->(![FontStyle],!*Picture)

getFontSizes ::!Int !Int !FontName

!*Picture ->(![FontSize], !*Picture)

The second group of font operations opens fonts. The function openFont creates
a value of type Font given a font de�nition. A font de�nition is a record of type
FontDef and is de�ned as follows:

5.3. FONT AND TEXT HANDLING 33

:: FontDef

= { fName :: !FontName

, fStyles :: ![FontStyle]

, fSize :: !FontSize

}

Because there are so many di�erent font systems and style variations both font
names and style variations are of type String. If you want to be sure that you are
selecting an existing font use the functions of the �rst group. In any case, if the
font de�nition argument of openFont does not correspond with an installed font,
then it returns a False Boolean and a font value that is supposed to be the closest
matching font available. If it succeeds to �nd a matching font it will return a True

Boolean and that font. The type of openFont is:

openFont :: !FontDef !*Picture -> (!(!Bool,!Font),!*Picture)

There are two functions that open the font that is used by default in a document
window (openDefaultFont) and the font that is used by the system for dialogs,
controls, window titles and so on (openDialogFont). These fonts are of course
always available. Their types are:

openDefaultFont :: !*Picture -> (!Font,!*Picture)

openDialogFont :: !*Picture -> (!Font,!*Picture)

The last group of font operations is related to font and text metrics. Font metrics
are retrieved by the functions getPenFontMetrics and getFontMetrics. The �rst
retrieves the metrics of the current pen Font, while the second retrieves the metrics
of the argument Font.

getPenFontMetrics:: !*Picture -> (!FontMetrics,!*Picture)

getFontMetrics :: !Font !*Picture -> (!FontMetrics,!*Picture)

The metrics of a font consists of three height related values (leading, ascent, and
descent), illustrated in Figure 5.3 and one width related value.

The width related value (max. width) is the maximum width of all characters in
that particular font. For non-proportional fonts such as Courier this implies that
the width of all characters is identical, so \iii" is just as wide as \mmm". For
proportional fonts such as this text the width of characters can vary a lot. Compare
for instance the width of the text \iii" with \mmm". The metrics of a font are
collected in a record of type FontMetrics:

:: FontMetrics

= { fAscent :: !Int // The ascent of the font

, fDescent :: !Int // The descent of the font

, fLeading :: !Int // The leading of the font

, fMaxWidth:: !Int // The max. width of the font

}

The �nal functions in the last group of font operations are used for calculating the
width of a (list of) character(s), and a (list of) string(s). As with the font metrics
functions, these functions also come in pairs, one using the current pen Font, and
the other using the argument Font.

34 CHAPTER 5. DRAWING

?

6
descent

baseline?

6

ascent

?6 leading

Figure 5.3: Font metrics.

getPenFontCharWidth :: ! Char !*Picture ->(! Int, !*Picture)

getPenFontCharWidths :: ![Char] !*Picture ->(![Int],!*Picture)

getPenFontStringWidth :: ! String !*Picture ->(! Int, !*Picture)

getPenFontStringWidths:: ![String] !*Picture ->(![Int],!*Picture)

getFontCharWidth :: !Font ! Char !*Picture ->(! Int, !*Picture)

getFontCharWidths :: !Font ![Char] !*Picture ->(![Int],!*Picture)

getFontStringWidth :: !Font ! String !*Picture ->(! Int, !*Picture)

getFontStringWidths:: !Font ![String] !*Picture ->(![Int],!*Picture)

There is a subtle di�erence in calculating the width of one character versus the
width of one string. The width of a character is determined by the character only.
The width of a string can depend on the order of the characters it contains. A
font system can take advantage of the fact that some adjacent characters can be
placed more closely together to obtain a better looking result when drawing the
string. This is called kerning. In the object I/O system, the programmer can rely
on the fact that if a piece of text is drawn character by character then the character
width function returns the correct width of the drawn character. If a piece of text
is drawn by using a string, then the string width function returns the correct width
of the drawn string.

Because there is wide variety of fonts available the StdPictureDefmodule provides
a number of macros that help you make a program less dependent on the set of
available fonts. The following macros provide a number of font de�nitions that are
guaranteed to be available on the platform:

Font macros: Example:
SerifFontDef Garamond, Times
SansSerifFontDef Helvetica

SmallFontDef \This is a small text"
NonProportionalFontDef Courier

SymbolFontDef 8 9 � � ()

5.4. EXAMPLES 35

The following macros provide a number of standard font variations that are guar-
anteed to be available on the platform:

Style macros: Example:
ItalicsStyle Madam, I'm Adam
BoldStyle Madam, I'm Adam
UnderlinedStyle Madam, I'm Adam

5.4 Examples

In this section we give small examples of all of the drawable elements. Each of the ex-
amples is de�ned by a drawing function example of type �Picture! �Picture. To
actually get something on the screen one can use the following drawing framework
program drawingframe. Figure 5.4 gives a snapshot of the framework program.

Figure 5.4: The framework window.

module drawingframe

// **

// Clean tutorial example program.

//

// This program defines a framework in which one can test drawing functions.

// The program relies on a function, example, of type *Picture -> *Picture.

// **

import StdEnv,StdIO

Start :: *World -> *World

Start world

= startIO SDI

Void

(snd o openWindow Void testwindow)

[ProcessClose closeProcess]

world

testwindow

= Window "Test Drawing" NilLS

[WindowViewSize size

, WindowClose (noLS closeProcess)

, WindowLook True (_ _->example)

, WindowViewDomain {corner1=origin,corner2=maxdomain}

]

where

size = {w=200,h=50}

origin = {x=(-20),y=(-20)}

maxdomain = {x=origin.x+size.w,y=origin.y+size.h}

// Here, example draws the string "Pop" at zero

example = drawAt zero "Pop"

36 CHAPTER 5. DRAWING

5.4.1 Pen size and position

Given a pen position {x,y}, drawing a point, line, always occurs to the right and
below the pen position. Figure 5.5 illustrates these cases: from left to right the
following example functions are applied respectively:

example = drawPointAt zero o (setPenSize 1)

example = drawPointAt zero o (setPenSize 2)

example = drawPointAt zero o (setPenSize 3)

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.5: Drawing a point at zero with di�erent pen sizes.

5.4.2 Drawing lines

The shape of a line is inuenced by the PenSize attribute in the same way as the
shape of points. Figure 5.6 shows the result of drawing lines with pen sizes 1, 2,
and 3 respectively:

example = drawLine zero {x=5,y=5} o (setPenSize 1)

example = drawLine zero {x=5,y=5} o (setPenSize 2)

example = drawLine zero {x=5,y=5} o (setPenSize 3)

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.6: Drawing a line from zero to fx=5,y=5g with di�erent pen sizes.

There are several ways to draw lines. The function drawLineTo draws a line from
the current pen position to the argument point. If these happen to be equal, then
the result is the same as drawPointAt with the same argument. The new pen
position is the same as the target point. The function drawLine draws a line from
the �rst argument point to the second argument point without changing the pen
position.

Lines can also be drawn using the Vector2 instance functions from the Drawables
type constructor class. The function draw applied to a vector {vx,vy} draws a line

5.4. EXAMPLES 37

from the current pen position {x,y} to the point {x=x+vx,y=y+vy}. The function
drawAt applied to a point {x,y} and a vector {vx,vy} draws a line from {x,y} to
the point {x=x+vx,y=y+vy}.

5.4.3 Drawing text

Given a pen position {x,y}, drawing a piece of text (Char or String) will always
draw the text using the current PenFont. The shape of the drawn characters relies
only on the font information, not on the current PenSize. Text can be drawn in any
of the available colours. The baseline of the particular font determines the position
of the �rst character, which is drawn with its left baseline starting at {x,y}. Figure
5.7 shows the result of the following example function:

example = drawAt zero "Pop"

5

0

-5

-10

0 5 10 15 20 25

Figure 5.7: Drawing the text \Pop" at zero.

The new pen position is, in this case, {x=24,y=0}. One might expect the new
pen position to be {x=22,y=0}, but usually the horizontal character space is also
included. This facilitates drawing text character by character. But some caution
should be taken. One might expect that the function

example = draw "p" o (draw "o") o (draw "P")

produces the same result, but this depends on the font (as explained in Section 5.3),
so in general one should not assume that this is the case. The only certain way to
know how much the pen position will change in case of text is by calculating the
width of the same text, or by comparing the pen positions before and after drawing.

5.4.4 Drawing ovals

An Oval is a transformed unit circle de�ned by a horizontal radius, oval_rx and a
vertical radius, oval_ry. For each point {x,y} on a unit circle, its corresponding
point on the oval is given by {x=x*oval_rx,y=y*oval_ry}. The type de�nition of
an Oval is:

:: Oval = {oval_rx::!Int, oval_ry::!Int}

Both radius values are always taken to be at least zero. If any of these values is neg-
ative, then zero is used instead. Ovals are drawn using the Oval instance functions

38 CHAPTER 5. DRAWING

from the Drawables type constructor class. The function draw uses the current pen
position as the center of the oval. The function drawAt uses the argument Point2
as the center of the oval. Drawing an oval does not change the pen position. In
case one of the radius values is taken to be zero drawing the oval displays nothing.
Figure 5.8 shows the result of drawing three ovals at zero de�ned as follows:

example = drawAt zero {oval_rx=5,oval_ry=3}

example = drawAt zero {oval_rx=5,oval_ry=5}

example = drawAt zero {oval_rx=3,oval_ry=5}

5

0

-5

-5 0 5

5

0

-5

-5 0 5

5

0

-5

-5 0 5

Figure 5.8: Three oval shapes drawn at zero.

The shape of an oval is also a�ected by the current PenSize attribute. Increasing
the pen size does not increase the outline of the oval. The only pixels that are
a�ected are inside the oval. Figure 5.9 shows the center oval of Figure 5.8 when
drawn with pen size of 1, 2, and 3.

example = drawAt zero {oval_rx=5,oval_ry=5} o (setPenSize 1)

example = drawAt zero {oval_rx=5,oval_ry=5} o (setPenSize 2)

example = drawAt zero {oval_rx=5,oval_ry=5} o (setPenSize 3)

5

0

-5

-5 0 5

5

0

-5

-5 0 5

5

0

-5

-5 0 5

Figure 5.9: Three oval shapes drawn with increasing pen sizes.

Ovals are also an instance of the Fillables type constructor class. The function
fill and fillAt �ll rather than draw the oval. Filling an oval includes its outline
and its interior. Figure 5.10 shows the same three ovals as given in Figure 5.8, but
now �lled.

example = fillAt zero {oval_rx=5,oval_ry=3}

example = fillAt zero {oval_rx=5,oval_ry=5}

example = fillAt zero {oval_rx=3,oval_ry=5}

5.4. EXAMPLES 39

5

0

-5

-5 0 5

5

0

-5

-5 0 5

5

0

-5

-5 0 5

Figure 5.10: Three �lled oval shapes.

5.4.5 Drawing curves

A Curve is a section of an Oval. A curve is de�ned by the source oval, curve_oval,
a starting angle, curve_from and an ending angle, curve_to, both taken in radians,
and the direction in which the section should be taken, curve_clockwise which is
a Boolean value. The type de�nition of a Curve is:

:: Curve

= { curve_oval :: !Oval

, curve_from :: !Real

, curve_to :: !Real

, curve_clockwise :: !Bool

}

The start and end point of the section are again derived from the unit circle.
Given an angle alpha, and a source oval de�ned by {oval rx, oval ry}, then
the point on the curve (oval) corresponding with alpha is {x=oval rx*cos alpha,

y=oval ry*sin alpha}. If curve clockwise is True then the section is taken clock-
wise from the start point to the end point, otherwise it is taken counter clockwise.
Figure 5.11 shows two sections of an Oval. In both cases the curve from angle is �

6

and the curve to angle is 3�

2
. The left section is taken counter clockwise, and the

right section is taken clockwise. For your convenience, the value � is approximated
in the module StdPictureDef by the macro PI.

curve = { curve_oval = {oval_rx=5,oval_ry=3}

, curve_from = PI/6.0

, curve_to = 3.0*PI/2.0

, curve_clockwise = True

}

example = drawAt zero curve

example = drawAt zero {curve & curve_clockwise = False}

Figure 5.11 not only shows the curve sections that are taken from an oval, but
also what happens when these sections are drawn at a speci�c position. In both
cases the curves are drawn at zero. The starting point, indicated by the starting
angle, is determined by the current pen position in case of the draw function of the
Drawables type constructor class, and is determined by the Point2 argument of
the drawAt function of the Drawables type constructor class.

Drawing a Curve with varying PenSizes is the same as taking the section of the
corresponding Oval drawn with that pen size. Figure 5.12 shows three times the
same curve taken but drawn with pen sizes 1,2, and 3 respectively. The source oval

40 CHAPTER 5. DRAWING

5

0

-5

-5 0 5

5

0

-5

-10 -5 0

Figure 5.11: Two curves taken clockwise and counter clockwise.

is the same as the one drawn in Figure 5.9. The section is taken counter clockwise
from �

4
to 1 3

4
�.

oval = { curve_oval = {oval_rx=5,oval_ry=5}

, curve_from = PI/4.0

, curve_to = 1.75*PI

, curve_clockwise = False

}

example = drawAt zero oval o (setPenSize 1)

example = drawAt zero oval o (setPenSize 2)

example = drawAt zero oval o (setPenSize 3)

5

0

-5

-5 0 5

5

0

-5

-5 0 5

5

0

-5

-5 0 5

Figure 5.12: Three curves drawn with increasing pen sizes.

Curves are also an instance of the Fillables type constructor class. When �lling
a curve, the interior formed by the drawn curve and two lines connecting the center
of the source oval and the end points of the curve is �lled. Figure 5.13 shows the
two curves of Figure 5.11, but now using fill rather than draw.

curve = { curve_oval = {oval_rx=5,oval_ry=3}

, curve_from = PI/6.0

, curve_to = 3.0*PI/2.0

, curve_clockwise = True

}

example = fillAt zero curve

example = fillAt zero {curve & curve_clockwise = False}

5.4.6 Drawing rectangles

A Rectangle is a shape of four connected lines that is de�ned by two diagonally
oriented corner Point2s, corner1 and corner2. The type de�nition of a Rectangle
is as follows:

5.4. EXAMPLES 41

5

0

-5

-5 0 5

5

0

-5

-10 -5 0

Figure 5.13: Two �lled curves taken clockwise and counter clockwise.

:: Rectangle = {corner1::!Point2, corner2::!Point2}

The Rectangle type constructor is an instance of the Drawables type constructor
class. The drawAt function is not very useful because it ignores its Point2 argument
and proceeds as draw. Any two Point2s are valid corner points of a Rectangle. In
case a Rectangle has a zero width or zero height drawing that rectangle will show
nothing. It does not matter in what order the two corner points are given. This is
illustrated by the following Rectangle de�nitions, displayed in Figure 5.14.

example = draw {zero & corner2={x=10,y=6}}

example = draw {zero & corner2={x=6, y=6}}

example = draw {zero & corner1={x=10,y=6}}

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.14: Three rectangle shapes.

The shape of a rectangle is also a�ected by the current PenSize attribute. Increasing
the pen size does not increase the outline of the rectangle. The only pixels that are
a�ected are inside the rectangle. Figure 5.15 shows the Rectangle {corner1=zero,

corner2={x=10,y=10}} when drawn with pen size 1, 2, and 3.

example = draw {zero & corner2={x=10,y=10}} o (setPenSize 1)

example = draw {zero & corner2={x=10,y=10}} o (setPenSize 2)

example = draw {zero & corner2={x=10,y=10}} o (setPenSize 3)

Rectangles are also an instance of the Fillables type constructor class. The
function fill and fillAt �ll rather than draw the rectangle. Filling a rectangle
includes its outline and its interior. Figure 5.16 shows the same three rectangles as
given in Figure 5.14, but now �lled.

example = fill {zero & corner2={x=10,y=6}}

example = fill {zero & corner2={x=6, y=6}}

example = fill {zero & corner1={x=10,y=6}}

42 CHAPTER 5. DRAWING

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.15: A rectangle drawn with increasing pen size.

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.16: Three �lled rectangles.

5.4.7 Drawing boxes

A Box is a Rectangle but without �xing a position. It is therefore only de�ned by
a width, box_w and height, box_h. The type de�nition of a Box is:

:: Box = {box_w::!Int, box_h::!Int}

The position of a Box is determined by the drawing functions of the type constructor
class Drawables. In case of draw, the current pen position is the base point. In
case of drawAt, the Point2 argument is the base point. Given this base point
base={x,y}, and a box {box w,box h}, drawing the box is the same as drawing
the rectangle {corner1=base, corner2={x=x+box w,y=y+box h}}. Any value for
box_w or box_h is permitted (so also zero or negative values).

Boxes are drawn and �lled in the same way as Rectangles are. So the e�ect of
using di�erent PenSizes is the same as well as �lling boxes.

5.4.8 Drawing polygons

A Polygon is an object which shape is formed by a number of Vector2s, such as
triangles, rectangles, but also more exotic shapes. The type de�nition of a Polygon
is:

:: Polygon = {polygon_shape::![Vector2]}

A Polygon is always a closed shape. A shape polygon shape is closed if the fol-
lowing equation holds:

foldr (+) zero polygon shape = zero

5.4. EXAMPLES 43

The object I/O library will always close the polygon shape if this is not the case,
so you don't have to worry about this. Drawing a polygon of shape polygon shape

is simply drawing the closed list of vectors in sequence:

seq (map draw polygon shape)

Similar to Boxes, Polygons do not specify their location. Again, this is determined
by the drawing functions of the type constructor class Drawables. In case of draw,
the base point is de�ned by the current pen position. In case of drawAt, the base
point is de�ned by the Point2 argument. Figure 5.17 shows three polygons de�ned
by the following shapes:

example = drawAt zero {polygon_shape=[{vx=8,vy=0},{vx=(-4),vy=8}]}

example = drawAt zero {polygon_shape=[{vx=8,vy=0},{vx=0, vy=8}

,{vx=(-8),vy=0}]}

example = drawAt zero {polygon_shape=[{vx=8,vy=0},{vx=(-8),vy=8}

,{vx=8, vy=0}]}

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.17: Three polygon shapes.

Because a polygon is a collection of vectors, its shape is a�ected by the current
PenSize attribute. Figure 5.18 shows the three polygons of Figure 5.17 drawn with
pen size 2.

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.18: Three polygons drawn with pen size 2.

Polygons are also an instance of the Fillables type constructor class. The function
fill and fillAt �ll rather than draw the polygon. Filling a polygon includes its
outline and its interior. Figure 5.19 shows the same three polygons as given in
Figure 5.17, but now �lled.

5.4.9 Drawing bitmaps

Using the drawing operations discussed so far one can produce images that have an
`algorithmic' nature: they consist of text, lines, curves, and polygons. Not every

44 CHAPTER 5. DRAWING

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.19: Three �lled polygons.

image can be expressed (easily) in this way (consider for instance the image in
Figure 5.20). To produce more complex images bitmaps are very useful. A bitmap
is a prefabricated image of a certain size (in pixels) that is stored in the �le system.

Figure 5.20: A non algorithmic image.

You can use your favourite drawing package and create and store images as a bitmap.
The �le format depends on the platform. Currently the following formats are sup-
ported:

Platform: Format:
Macintosh pict

Windows(95/NT) bmp

The bitmap operations can be found in module StdBitmap (Appendix A.1). Bit-
maps can be read from �le using the function openBitmap:

openBitmap::!{#Char} !*env -> (!Maybe Bitmap,!*env) | FileSystem env

Given the full path name of a bitmap �le, openBitmap reads the bitmap in mem-
ory. If this is successful, (Just bitmap) is returned. Reasons for failure are ille-
gal �le name arguments, wrong �le formats, lack of heap space (in case of Win-
dows(95/NT)), or lack of extra memory (in case of Macintosh)1.

A Bitmap is an abstract data type. Bitmaps can be drawn in any size you like. For
this purpose you can change its size by using resizeBitmap. The only information
one can retrieve from a Bitmap value is its size.

1In the current implementation bitmaps are not garbage collected. This puts a restriction on

the number of bitmaps that can be used inside one application. In a future version bitmaps will

be garbage collected.

5.4. EXAMPLES 45

resizeBitmap :: !Size !Bitmap -> Bitmap

getBitmapSize :: !Bitmap -> Size

Bitmaps are instances of the Drawables type constructor class. Given a current
pen position pos={x,y} and a bitmap bitmap of size {w,h}, the functions (draw
bitmap) and (drawAt pos bitmap) both place the bitmap exactly inside the rect-
angle {corner1=pos, corner2={x=x+w,y=y+h}}.

5.4.10 Drawing in xor mode

For many programs it is sometimes useful to be able to temporarily draw �gures
over an existing drawing, and being able to remove them without a�ecting the
source picture. Examples are ashing cursors, selection track boxes, and selection
anchor points. For this purpose drawing in xor mode is supported. The func-
tions appXorPicture and accXorPicture handle this. Both apply their argument
function to the argument picture in xor mode. The latter function also allows its
argument function to return a result.

appXorPicture:: !.(IdFun *Picture) !*Picture -> *Picture

accXorPicture:: !.(St *Picture .x) !*Picture -> (.x,!*Picture)

Drawing in xor mode has the important property that drawing the same �gure
twice results in the same picture. Given a drawing function f, the following equa-
tions hold:

(appXorPicture f) o (appXorPicture f) = id

(snd o (accXorPicture f)) o (snd o (appXorPicture f)) = id

Let's explain what happens in the Picture when one uses xor mode. Consider a
source picture, source, shown left in Figure 5.21, which is a circle. Next to the
source picture is the picture to be drawn in xor mode, a fat rectangle, drawn by a
drawing function f.

5

0

-5

-5 0 5

5

0

-5

-5 0 5

5

0

-5

-5 0 5

Figure 5.21: A source picture, the �gure to be drawn in xor mode, and the result.

If one interprets the white pixels of both pictures as False, and the black pixels of
both pictures as True then the result of drawing f in xor mode in source is the
same as taking the Boolean exclusive or on all such interpreted pixels on the same
coordinates. So all pixels that have the same colour become white (False), while
all pixels of di�erent colour become black (True). The result of this is shown in the
right picture of Figure 5.21. Applying f once more in xor mode to this new picture
yields a picture equal to source.

What happens when using more interesting colours than black and white is basically
the same thing. In one way or another, the exclusive or is taken from the source

46 CHAPTER 5. DRAWING

picture and the drawing operations in such a way that repeating it gives the source
picture again. What the colours of the `xor-ed' picture are depends on the platform,
and is not speci�ed by the object I/O library.

5.4.11 Drawing in Hilite mode

Programs that want to indicate selections (for instance text segments in a word
processor, or image components in a drawing program) can do this by drawing the
selected area in hilite mode. For this purpose the type constructor class Hilites is
used. Its type de�nition is:

class Hilites figure where

hilite :: !figure !*Picture -> *Picture

hiliteAt :: !Point2 !figure !*Picture -> *Picture

The instances of Hilites are Box and Rectangle. The pixels that are a�ected by
hilite and hiliteAt are the same as for fill and fillAt. Drawing in hilite mode
has the same property as drawing in xor mode that drawing the same �gure twice
on a source picture leaves the source picture unchanged. Given a �gure figure, the
following equations hold:

(hilite figure) o (hilite figure) = id

(hiliteAt figure) o (hiliteAt figure) = id

The visual e�ect of hiliting these areas depends on the platform. On some platforms
hiliting an area will change the colour of all pixels that have the background colour
to a special hilite colour, ignoring all other pixels. Hiliting the area once more
will revert the hilite colours back to the background colour. If a platform does not
support hilite mode, the area will be drawn in xor mode (shown in Figure 5.22).
The source picture is the text \Pop" of Figure 5.7.

example = hilite {corner1={x=0,y=2},corner2={x=24,y=(-10)}}

o (drawAt zero "Pop")

5

0

-5

-10

0 5 10 15 20 25

Figure 5.22: Hiliting a rectangular area using xor mode.

5.4.12 Drawing in Clipping mode

Drawing in clipping mode is a powerful technique to create graphics that can not
be drawn (or using much more complicated expressions) using only the drawing

5.4. EXAMPLES 47

primitives discussed before. In clipping mode, the programmer speci�es a region
that works like a mask: drawing proceeds as described above, but only those pixels
that are inside the clipping region are actually drawn.

A region is an abstract data type, Region. Regions are created by composing
Rectangles and Polygons, using the type constructor class toRegion. When com-
posing regions, using the list and :^: instance, the union of the argument regions
is taken.

class toRegion area :: !area -> Region

:: PolygonAt

= { polygon_pos :: !Point2

, polygon :: !Polygon

}

instance toRegion Rectangle

instance toRegion PolygonAt

instance toRegion [r] | toRegion r

instance toRegion (:^: r1 r2) | toRegion r1 & toRegion r2

Clipping is done using the functions appClipPicture and accClipPicture:

appClipPicture::!Region !.(IdFun *Picture) !*Picture->*Picture

accClipPicture::!Region !.(St *Picture .x) !*Picture->(.x,!*Picture)

Suppose we have the following drawing function, f, which draws a number of hori-
zontal lines with a result as shown in Figure 5.23:

f = seq [drawLine {x=0,y=y} {x=9,y=y} \\ y<-[0,2..8]]

10

5

0

0 5 10

Figure 5.23: The source picture.

As clipping regions the polygons shown in Figure 5.17 are used. Figure 5.24 shows
the result of the following clipping functions:

example = appClipPicture

(toRegion { polygon_pos =zero

, polygon_shape=[{vx=8,vy=0},{vx=(-4),vy=8}]

}

) f

example = appClipPicture

(toRegion { polygon_pos =zero

, polygon_shape=[{vx=8,vy=0},{vx=0, vy=8}

48 CHAPTER 5. DRAWING

,{vx=(-8),vy=0}]

}

) f

example = appClipPicture

(toRegion { polygon_pos =zero

, polygon_shape=[{vx=8,vy=0},{vx=(-8),vy=8}

,{vx=8, vy=0}]

}

) f

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.24: The clipped source picture.

Chapter 6

Windows and dialogues

In most graphical user interfaces the major top level interactive objects a user is
confronted with are windows and dialogues. This is also the case for the object I/O
library. Windows and dialogues share the same set of controls and many library
functions. Dialogues are considered to be specialised windows. Depending on the
platform, dialogues usually o�er a special, enhanced, user interface. Another dif-
ference is that dialogues can be opened modally. In this mode the user is forced by
the program to handle the dialogue completely before continuing with the program.
To emphasize the similarity between windows and dialogues, their algebraic type
de�nitions are almost identical (these can be found in module StdWindowDef):

:: Window c ls pst

= Window Title (c ls pst) [WindowAttribute *(ls,pst)]

:: Dialog c ls pst

= Dialog Title (c ls pst) [WindowAttribute *(ls,pst)]

Before delving into details, we �rst introduce basic terminology for windows and
dialogues in Section 6.1 and discuss their attributes in Section 6.2. Opening and
closing of windows and dialogues is handled in Section 6.3. We then discuss the ways
to handle the components windows and dialogues are made of in sections 6.4, 6.5,
and 6.6. Handling keyboard and mouse input is presented in Section 6.7. Finally,
this chapter is concluded with a treatment on modal dialogues in Section 6.8.

6.1 Basic terminology

The main purpose of a window is to present to the user a view on a document,
graphically represented as an object of type Picture. Pictures have been discussed
in Chapter 5. By using the mouse and keyboard, the user can manipulate the
document. Controls in a window can add further manipulation functionality. The
main purpose of a dialogue is to present to the user a structured way of passing
information to perform actions. This structured communication is realised by means
of controls.

6.1.1 Anatomy of windows and dialogues

Although from a user's perspective windows and dialogues appear to be `solid'
objects (Figure 6.1) it is illustrative to have a look at a window from a di�erent
perspective.

49

50 CHAPTER 6. WINDOWS AND DIALOGUES

Figure 6.1: A window seen from the user perspective.

A window is composed of three layers, see Figure 6.2. The bottom layer, the
document layer, is formed by the rendered document, the Picture. The middle
layer, the control layer, contains all controls of the window. The top layer, the
window frame, typically consists of a title bar, and window components to close
and resize the window. The window frame can have any size and is restricted only
by the screen size and a platform dependent minimum size. The window frame
serves as a clipping area of the document layer. Windows usually contain scrollbars
to help the user change the current view on the document layer. The current part
of the document layer that is visible is called the view frame. The default drawing
domain of the document layer Picture ranges from 0 to 230 in both axes. This is
in general to large for rendering the document. A window can limit the displayable
range of a window by setting its view domain.

window frame

control layer

document layer

Figure 6.2: A di�erent perspective at a window.

In contrast with windows, a dialogue is composed of only two layers, the control
layer and the window frame, or also called the dialogue frame. Instead of a document
layer, a dialogue has a platform dependent background. The program can not draw

6.2. WINDOW AND DIALOGUE ATTRIBUTES 51

into nor navigate the background. The dialogue frame can not be resized by the
user and is usually big enough to display the whole control layer.

For both windows and dialogues, the programmer has full control over the view
frame, control layer, and document layer. Section 6.4 discusses how to handle the
document layer. Handling the control layer is discussed in Section 6.5. The window
and dialogue frame are controlled by the platform, see Section 6.6.

6.1.2 Stacking order

In general, a program can have an arbitrary number of windows and dialogues
opened at the same time. These elements appear in a stacking order, seen by
the application user in top to bottom order. For normal windows and dialogues
the stacking order is not �xed. Modal dialogues however always appear topmost.
Windows and modeless dialogues that are opened while (several) modal dialogues
are open always appear below the bottom most modal dialogue.

6.1.3 Active window or dialogue

When a user works with a program, exactly one window or dialogue receives all
keyboard and mouse input. This element is called the active window/dialogue
and it has the input focus. With the exception of modal dialogues, the active
window/dialogue does not necessarily occupy the top most stacking position.

6.2 Window and dialogue attributes

WindowAttribute is the type of window and dialogue attributes. The table below
shows which attributes are valid for which element.

Window attributes
For windows and dialogues: For windows only: For dialogs only:
WindowActivate WindowCursor WindowCancel

WindowClose WindowHScroll WindowOk

WindowDeactivate WindowKeyboard

WindowHMargin WindowLook

WindowId WindowMouse

WindowIndex WindowOrigin

WindowInit WindowPen

WindowInitActive WindowSelectState

WindowItemSpace WindowViewDomain

WindowOuterSize WindowVScroll

WindowPos

WindowViewSize

WindowVMargin

6.2.1 Window and Dialog attributes

WindowActivate and WindowDeactivate

These attributes de�ne the behaviour of the window in case the window be-
comes the active window (WindowActivate), and is no longer the active win-
dow (WindowDeactivate) respectively (see also 6.1.3). If no attribute is pro-
vided, this information will not be passed to the program.

52 CHAPTER 6. WINDOWS AND DIALOGUES

WindowClose

This attribute adds the platform dependent close facility to the window/dia-
logue. The associated function will be evaluated in case this control is trig-
gered. Actually closing the window/dialogue is the responsibility of this func-
tion. In case no WindowClose attribute is provided, the window/dialogue can
not be closed in that way.

WindowHMargin and WindowVMargin

These attributes determine the left-right, and top-bottom margin of a win-
dow/dialogue respectively. Their default value in case of windows is zero, and
platform dependent for dialogues.

WindowId

This attribute identi�es the window/dialogue to which it is associated. If you
do not provide a WindowId, the object I/O system open function creates a
fresh Id for the window/dialogue.

WindowIndex

This attribute determines the initial stacking position of the window/dialogue
(see also 6.1.2). If no WindowIndex attribute is provided, then the win-
dow/dialogue will be opened frontmost. Modal dialogues are always opened
frontmost.

WindowInit

This attribute de�nes an action that should be performed immediately after
opening the window/dialogue. This is equivalent to the process initialisa-
tion action (see Section 2.3 and Chapter 11). If no WindowInit attribute is
provided, no additional action is performed.

WindowInitActive

This attribute de�nes which control should have the initial input focus when
its parent window/dialogue is opened. If no WindowInitActive attribute is
provided, the �rst keyboard sensitive control is selected.

WindowItemSpace

This attribute determines the space between controls if no further o�sets
are provided in the layouts of controls. The default values are identical for
windows and dialogues.

WindowOuterSize and WindowViewSize

These two attributes determine the initial size of the window/dialogue. The
�rst attribute de�nes the size in terms of the window/dialogue frame size. The
second attribute de�nes the size in terms of the window/dialogue view frame
size. If neither attribute is provided, then the system will derive a proper size.
In case of dialogues the size is determined by the set of controls, margins, and
item spaces. In case of windows the screen size is chosen.

WindowPos

This attribute determines the initial position of the window/dialogue (see
also Section 7.3). Relative Ids that occur in the ItemPos refer to other win-
dows/dialogues. The object I/O system will always place a window/dialogue
visibly on the current screen. If you do not provide a WindowPos to a win-
dow, then the window will be placed at the left top of the screen. If you do
not provide a WindowPos to a dialogue, then the dialogue will be placed at a
position conform the platform user interface (typically centered).

6.2. WINDOW AND DIALOGUE ATTRIBUTES 53

6.2.2 Window attributes

WindowCursor

This attribute de�nes the shape of the cursor in case the mouse is over the
window and not inside a control that may overrule this shape. In case no
attribute is provided moving the mouse over the window will not change its
shape.

WindowHScroll and WindowVScroll

These attributes add a horizontal scrollbar and a vertical scrollbar to the
window. If no attribute is given, no scrollbars are added.

WindowKeyboard and WindowMouse

These attributes allow a window to respond to user actions with the mouse
(WindowMouse) and keyboard (WindowKeyboard). If no attribute is provided,
then this information will not be passed to the program. Both attributes can
de�ne an additional �lter to ignore some input actions. If the SelectState

of the window is Unable then neither function will obtain input.

WindowLook

This attribute de�nes a function that, given the current SelectState of the
window and information about which part of the window should be displayed,
de�nes what the window should look like. The default look �lls the window
with the platform dependent background colour. (The Look function plays
a similar role for CustomButtonControls (Section 7.1.3), CustomControls
(Section 7.1.4), and CompoundControls (Section 7.1.11. It can also be used
for printing (Chapter 13)).

In addition to the Look function, the WindowLook attribute also has a boolean
argument. If this attribute is True, then the object I/O system assumes that
the content of the window is independent of the actual view frame orientation.
In that case scrolling and changing the size of the window can be done more
e�ciently. If the attribute is False, then the Look function is always applied
to the whole current view frame. See also Section 6.4.1 for more information
on using this attribute.

WindowOrigin

This attribute determines the initial position of the ViewFrame, the rectan-
gular part of the ViewDomain that is currently visible in the window. This
position is always veri�ed to be within the given ViewDomain. If no Window-

Origin attribute is provided, then the left-top coordinates of the ViewDomain
are used.

WindowPen

This attribute determines the initial pen that is used to draw in the Picture
of the window. If no WindowPen attribute is provided, then the default pen
attributes are used (see also Section 5.1).

WindowSelectState

This attribute de�nes whether the window accepts user keyboard or mouse
input (Able) or not (Unable). The default value is Able. Note that although
a window can be active, it can also be disabled. This only means that all
input is ignored by the window.

WindowViewDomain

This attribute de�nes the drawing coordinate system of the document layer
(see also 6.1.1). Drawing operations outside this area will be clipped. If

54 CHAPTER 6. WINDOWS AND DIALOGUES

no ViewDomain is provided, then the window will obtain the ViewDomain

fviewDomainRange & corner1=zerog.

6.2.3 Dialogue attributes

WindowCancel and WindowOk

These attributes indicate which control should act conform the platform user
interface `cancel' control and `con�rm' control respectively. If such an at-
tribute is not provided, then no control is selected.

6.3 Opening and closing of windows and dialogues

Windows and dialogues are opened using the appropriate instances of the respec-
tive type constructor classes Windows and Dialogs (module StdWindow, Appendix
A.47). Windows and dialogues share the same set of controls. To enforce this by
the type system, the instance declarations of windows and dialogues are provided
with a type constructor class restriction on the type constructor variable c, which
must be an instance of the Controls type constructor class.

class Windows wdef where

openWindow :: .ls !(wdef .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport,!PSt .l)

...

class Dialogs ddef where

openDialog :: .ls !(ddef .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport,!PSt .l)

...

instance Windows (Window c) | Controls c

instance Dialogs (Dialog c) | Controls c

To close windows and dialogues the function closeWindow has to be used. In many
contexts one wants to close the active window or dialogue. For these cases the
convenience function closeActiveWindow is provided.

closeWindow :: !Id !(PSt .l) -> PSt .l

closeActiveWindow :: !(PSt .l) -> PSt .l

A typical example of using closeActiveWindow is the callback function for the
WindowClose attribute. If it is allowed to close the window or dialogue under all
circumstances (nothing needs to be saved for instance) then the following attribute
de�nition is su�cient:

WindowClose (noLS closeActiveWindow)

Note that noLS is used to obtain a function of the requested type (:ls; PSt :l) !
(:ls; PSt :l).

6.4. HANDLING THE DOCUMENT LAYER 55

6.4 Handling the document layer

The document layer of a window is used to present visual feedback to the user on
the current status of the document that is being manipulated. Only windows have
a document layer. Below we discuss two ways of drawing into the document layer.
The �rst method, indirect rendering (Section 6.4.1), uses the look function, the
second method, direct rendering (Section 6.4.2), draws directly into the document
layer. Some programming pragmatics are discussed in Section 6.4.3. We conclude
with an example in Section 6.4.4.

6.4.1 Indirect rendering

Two WindowAttributes play a paramount role with respect to the document layer:
WindowViewDomain and WindowLook. Let's have a closer look at them. Here are
their type de�nitions (in module StdWindowDef):

:: WindowAttribute st

= ...

| WindowLook Bool Look

| WindowViewDomain ViewDomain

| ...

The document layer is rendered using a Picture. As we have seen in Section 6.2,
the default drawing range of a Picture is (0; 230) in both axes. This range can be
changed by the WindowViewDomain attribute. It has a ViewDomain argument which
is de�ned as a Rectangle:

:: Rectangle

= { corner1 :: !Point2, corner2 :: !Point2 }

:: Point2

= { x :: !Int , y :: !Int }

A Rectangle is a record consisting of the two diagonally opposite corner points of
the new drawing range. The view domain can have any value that is between the
viewDomainRange macro de�ned in StdIOCommon:

viewDomainRange :== { corner1 = {x = 0-(2^30),y = 0-(2^30)}

, corner2 = {x = 2^30 ,y = 2^30 }

}

The only illegal value is to have identical x or y coordinates for the corner points
of a view domain. It causes your application to abort with the message \Error
in rule validateWindowDomain [windowvalidate]: Window has illegal ViewDomain
argument".

The view domain de�nes the coordinates for your window to draw into. If a window
has a view domain that is smaller than the available screen estate, it is possible that
the size of a window exceeds the size of its view domain. So the view frame of a
window may be larger than the view domain of the window. It is allowed to draw
in the extra area as well. The coordinate system simply extends to the right and
downwards. A window never displays an area that lies to the left or above the
minimum view domain values.

The Picture of the document layer is rendered using the WindowLook attribute.
This attribute has a Look function argument. It is de�ned as follows:

56 CHAPTER 6. WINDOWS AND DIALOGUES

:: Look :== SelectState -> UpdateState -> *Picture -> *Picture

Whenever it is necessary to render (part of) the visible document layer, the object
I/O system will apply the look function of the WindowLook attribute. It will be pa-
rameterised with the current SelectState of the window and detailed information
about which part of the current view frame needs to be rendered. This information
is presented by means of the UpdateState record:

:: UpdateState

= { oldFrame :: !ViewFrame

, newFrame :: !ViewFrame

, updArea :: !UpdateArea

}

:: ViewFrame :== Rectangle

:: UpdateArea :== [ViewFrame]

The three �elds of the UpdateState record contain the following information:

oldFrame

If the size or orientation of the window was changed, then this �eld contains
the view frame before that change. If this is not the cause, then this �eld
contains the current view frame.

newFrame

If the size or orientation of the window was changed, then this �eld contains
the view frame after that change (so, the current view frame). If this is not
the cause, then this �eld contains the current view frame.

updArea

This �eld contains a list of Rectangles (not necessarily disjoint) that de�ne
the parts of the visible current view frame that need to be drawn. This
list always consists of at least one element. Each of its elements is always
completely inside the current view frame. The remark that the rectangles
need not necessarily be disjoint is important in case one draws in xor, or
hilite mode (see Sections 5.4.10 and 5.4.11). Drawing in overlapping areas
using one of these modes results in undoing the intended e�ect.

Given the current SelectState of the window and the UpdateState, the look
function is applied to the current Picture of the document layer. For this reason,
the look function must be written in such a way that it works correctly for any
argument Picture. You can not make any assumptions on the current content of
the update area rectangles except that they are very unlikely to be correct.

In addition to the Look function, the WindowLook attribute has a Bool argument.
If this value is False, then you have full control over drawing in a window. For
instance, when the size of a window is decreased, the UpdateState passed to the
Look will contain in its oldFrame the larger view frame before resizing, and in
newFrame the decreased view frame after resizing. In addition, the updArea will
consist of one rectangle only, equal to newFrame. In this way you can let the
content of the image depend on the current window view frame. The following
Look function draws a box the size of its new view frame and its two diagonal lines
(see �gure 6.3):

crossbox _ {oldFrame,newFrame} picture

6.4. HANDLING THE DOCUMENT LAYER 57

picture = seq (map undraw (crossboxlines oldFrame)) picture

picture = seq (map draw (crossboxlines newFrame)) picture

= picture

crossboxlines {corner1=a,corner2=b}

= [{line_end1=p1,line_end2=p2}

\\ (p1,p2)<-[(a,c),(a,d),(a,b),(b,c),(b,d),(c,d)]

]

where c = {b & y=a.y}; d = {a & y=b.y}

Figure 6.3: Letting the Look function follow the window size.

The purpose of the WindowLook attribute function is to describe the look of the
current state of the document layer. If the document does not change, then this
function always correctly renders the document. However, for most windows the
state of the document changes during its life-cycle. The WindowLook attribute
can be changed and retrieved using the StdWindow functions setWindowLook and
getWindowLook:

setWindowLook :: !Id !Bool !(!Bool,!Look) !(IOSt .l) -> IOSt .l

getWindowLook :: !Id !(IOSt .l)

-> (!Maybe (Bool,Look),!IOSt .l)

setWindowLook changes the current WindowLook attribute of the window indicated
by the Id argument with the new (Bool,Look) argument, provided this window is
present and does not refer to a dialogue. If the �rst Bool argument is False then
that's all. If it is True, then the look function will be applied to the window in the
way described above.

6.4.2 Direct rendering

Instead of using only the Look function of a window, one can also draw directly
in the Picture of the window's document layer. This is done using the functions
appWindowPicture and accWindowPicture (StdWindow, Appendix A.47):

appWindowPicture:: !Id !.(IdFun *Picture) !(IOSt .l) -> IOSt .l

accWindowPicture:: !Id !.(St *Picture .x) !(IOSt .l)

-> (!Maybe .x,!IOSt .l)

58 CHAPTER 6. WINDOWS AND DIALOGUES

Figure 6.4: The bitmap program in action.

appWindowPicture applies the argument drawing function to the Picture in the
document layer of the window indicated by the Id argument if this window is
present and does not refer to a dialogue. accWindowPicture is the same, except
that its argument function returns a result of some type. If the indicated window
was indeed found, and the argument function returned a value x, then the result of
accWindowPicture is (Just x). In all other cases it is Nothing.

For some visual feedback such as drawing blinking cursors or track boxes this
method is more suitable than the indirect way of using the Look function. The timer
example in Section 9.1.1 shows a window in which the direct rendering method is
applied.

6.4.3 Pragmatics

The WindowLook function is used by the object I/O system for all cases that the
content of the window needs to rendered. Among others, causes are when the view
frame, size, stacking order, or selectstate of a window changes. It is very annoying
for the application user when these actions take to much time. Therefore it is
worth your while to spend some e�ort in getting a good performance out of the list
of drawing functions.

6.4.4 Example: displaying a bitmap

In this example we create a program that allows the user to select an arbitrary
bitmap which will be displayed in a window (see Figure 6.4).

The �rst thing to do is to give the user the opportunity to select a bitmap. For
this purpose the library function selectInputFile in module StdFileSelect (Ap-
pendix A.10) is provided. Applying this function opens the platform standard �le
selector dialogue. When a �le has been selected by the user the return value contains
the full pathname of the selected �le. If no �le has been selected, then Nothing is
returned. This function belongs to the FileSelectEnv type constructor class which
contains two other functions: selectOutputFile (which allows a user to select a
(new) output �le) and selectDirectory (which allows a user to select a directory).

class FileSelectEnv env where

selectInputFile :: !*env -> (!Maybe String,!*env)

selectOutputFile:: !String !String !*env -> (!Maybe String,!*env)

selectDirectory :: !*env -> (!Maybe String,!*env)

6.4. HANDLING THE DOCUMENT LAYER 59

The �rst part of the program looks as follows (if no �le was selected the program
simply terminates):

Start :: *World -> *World

Start world

(maybeFile,world) = selectInputFile world

| isNothing maybeFile

= world

Given a selected input �le pathname, the function openBitmap (StdBitmap, Ap-
pendix A.1) can be used to read in the bitmap (see also Section 5.4.9).

openBitmap:: !{#Char} !*env-> (!Maybe Bitmap,!*env) | FileSystem env

openBitmap returns a bitmap if it could be read in successfully, otherwise it returns
Nothing (in that case we also let the program terminate). This part of the program
is as follows:

bitmapfile = fromJust maybeFile

(maybeBitmap,world) = openBitmap bitmapfile world

| isNothing maybeBitmap

= world

Having successfully read in the bitmap, we can determine its size using the Std-

Bitmap function getBitmapSize.

bitmap = fromJust maybeBitmap

bitmapsize = getBitmapSize bitmap

The window that displays the bitmap has the same initial size as the bitmap (setting
the (WindowViewSize bitmapsize) attribute). In this example we use the indirect
rendering method. This is done by setting the (WindowLook True (_ _-> drawAt

zero bitmap) attribute. Finally, when the user requests closing of the window, the
application simply terminates. This is done by setting the (WindowClose (noLS

closeProcess)) attribute. So we obtain the following window de�nition:

window = Window "Bitmap" NilLS

[WindowViewSize bitmapsize

, WindowLook True (_ _->drawAt zero bitmap)

, WindowClose (noLS closeProcess)

]

The �nal step is to create an interactive process that contains the window by ap-
plying the startIO function (StdProcess, Appendix A.27). The only initialisation
action of the process is to open the window. In case the user requests the process
to terminate, the application obeys. This is done by setting the (ProcessClose
closeProcess) attribute.

= startIO SDI

Void

(snd o openWindow Void window)

[ProcessClose closeProcess]

world

60 CHAPTER 6. WINDOWS AND DIALOGUES

This completes the program. Here is the complete program code.

module showbitmap

// **

// Clean tutorial example program.

//

// This program creates a window that displays a user selected bitmap.

// Make sure that this application has sufficient heap or extra memory.

// **

import StdIO, StdEnv

Start :: *World -> *World

Start world

(maybeFile,world) = selectInputFile world

| isNothing maybeFile

= world

bitmapfile = fromJust maybeFile

(maybeBitmap,world) = openBitmap bitmapfile world

| isNothing maybeBitmap

= world

| otherwise

bitmap = fromJust maybeBitmap

bitmapsize = getBitmapSize bitmap

window = Window "Bitmap" NilLS

[WindowViewSize bitmapsize

, WindowLook True (_ _->drawAt zero bitmap)

, WindowClose (noLS closeProcess)

]

= startIO SDI

Void

(snd o openWindow Void window)

[ProcessClose closeProcess]

world

6.5 Handling the control layer

The control layer contains the controls of a window or dialogue. Windows and
dialogues can have the same set of controls. As we have seen in Section 6.3, this
has been made explicit by the type constructor class instance declarations of the
respective type constructor classes.

The standard set of Controls instances is de�ned in the module StdControlClass
(Appendix A.6). Many operations with respect to the control layer are identical to
operations on controls that are element of CompoundControls. Controls and their
operations are discussed in detail in Chapter 7.

6.6 Handling the window and dialogue frame

The window and dialogue frame are the `physical' borders of windows and dialogues.
A user can grab them using the mouse or some keyboard interface and drag them
around, change the size (in case of windows), or dispose of them. The program
has very limited inuence on both the appearence and functionality of the frame.
When opening a window or dialogue, the WindowAttributes are important. This
is discussed in Section 6.6.1. User actions on the window or dialogue frame are
handled by the program via the callback function mechanism. The program can
also change frame properties. This is discussed in Section 6.6.2.

6.7. HANDLING KEYBOARD AND MOUSE INPUT 61

6.6.1 Opening a window or dialogue frame

The attributes of a window and dialogue de�nition that inuence the window and
dialogue frame are of course the Title and the following WindowAttributes:

WindowOuterSize and WindowViewSize

These attributes give the prefered size of the window or dialogue frame and the
prefered size of the window or dialogue view frame respectively. By convention,
if the attribute list of a window or dialogue contains both attributes, then only
the �rst of these is valid.

WindowClose

If this attribute is present, then the window or dialogue frame is provided
with a platform dependent interface element to allow the user to request the
program to close that window or dialogue.

WindowHScroll and WindowVScroll

Although the horizontal and vertical scrollbar of a window are element of the
control layer (Figure 6.2), their behaviour is intimately connected with the
size of the view frame and therefore also with the size of the window and
dialogue frame.

6.6.2 Changing a window and dialogue frame

The two most apparant changes to the window or dialogue frame are changes of
orientation and size. In case of windows, these can be caused by the application
user, depending on the attributes as explained in Section 6.6.1.

The program can also change the size of the frame for both windows and dialogues.
For dialogues this can be done only indirectly by opening or closing controls. For
windows this can also be done directly. If the program changes the view frame
(either its size or orientation) then the layout of controls is changed in the same
way as if the user had caused this change.

6.7 Handling keyboard and mouse input

Of all windows and dialogues that are in control by an application, at most one
receives the keyboard and mouse input. This window is the active window.

Except when modal dialogues are open, the application user can always select one
of the visible windows or dialogues to become the new active window. Windows
and dialogues can be noti�ed of these events by adding two WindowAttributes:
WindowActivate and WindowDeactivate. Both attributes are parameterised with
a function that will be applied by the object I/O system as soon as that win-
dow becomes active or has become inactive respectively. It is guaranteed that the
WindowDeactivate attribute function is applied before the WindowActivate func-
tion.

The underlying platform always gives visual clues to the application user about
which window or dialogue is currently active. The program can retrieve this in-
formation using the getActiveWindow function (Appendix A.47). One should be
aware that it is not correct to assume that the active window or dialogue has the top-
most stack order position. As an example, one might try to get the Id of the active
window by taking the Id from the �rst element of the result list of getWindowStack,
but this only returns the top most window and not the active window.

62 CHAPTER 6. WINDOWS AND DIALOGUES

The program can also activate windows and dialogues. This is done with the
setActiveWindow function (Appendix A.47). Because modal dialogues are always
front-most and the front-most modal dialogue is active, one can not activate a
window or modeless dialogue while modal dialogues are open. Instead, setActive-
Window restacks such a window or dialogue immediately behind the bottom-most
modal dialogue without making it the active window.

The active window receives all keyboard and mouse input. If this window contains
controls it can be the case that the input is channelled to one of these controls. That
particular control then has the input focus. If no control has the input focus, then
all input is handled by the active window. In case the active window is a dialogue its
response to input is de�ned entirely by the underlying platform. In case of windows
the program can customise the behaviour by adding a WindowKeyboard attribute for
keyboard input (Section 6.7.1) and by adding a WindowMouse attribute for mouse
input (Section 6.7.2). Both attributes have a �lter function (KeyboardStateFilter
and MouseStateFilter respectively) which is applied before the actual callback
function is evaluated. Only if the �lter returns True then the callback function is
evaluated.

6.7.1 Keyboard input

Every keyboard sensitive interface object has a KeyboardFunction which is a pro-
cess state transition function that receives, as a �rst argument, a value of type
KeyboardState. This value represents one keyboard event. Keyboard events are
always generated in sequences that are characterised by a value of type KeyState

in the following order:

(KeyDown False) (KeyDown True)� KeyUp

A keyboard event concerns either the input of an ascii character (CharKey alter-
native) or a special key (SpecialKey alternative). The alternative KeyLost is gen-
erated whenever the sequence above was interrupted for some reason (for instance,
when another window has become active).

:: KeyboardState

= CharKey Char KeyState

| SpecialKey SpecialKey KeyState Modifiers

| KeyLost

The SpecialKeys are imported via the module StdKey (Appendix A.15). Among
others they de�ne the function keys, arrow keys, page and line keys. The Modifiers
type is de�ned in StdIOCommon. It is a record that refers to the state of the meta
keys of the keyboard. Because some ascii characters are generated using these
meta keys they are not provided at the CharKey alternative. So pressing shift `a'
simply generates the value (CharKey 'A' (KeyDown False)).

The object I/O system guarantees that at all times only one keyboard alternative
is being handled. Assume that a user is pressing the `a' key on the keyboard. This
generates a character `a' key down event (CharKey 'a' (KeyDown False)), and
then a sequence of character `a' repeat key events (CharKey 'a' (KeyDown True)).
If the user now also presses the `b' key, the object I/O system inserts two virtual
events that force the program to believe that the user �rst released the `a' key with
a character `a' key up event (CharKey 'a' KeyUp), and then pressed the `b' key
with a character `b' key down event (CharKey 'b' (KeyDown False)). These are
followed by character `b' repeat key events.

6.7. HANDLING KEYBOARD AND MOUSE INPUT 63

Figure 6.5: The keyspotting program in action.

Example: keyspotting

To illustrate the use of keyboard handling we create a program that has a window
in which the last keyboard input is displayed. Figure 6.5 presents a snapshot of the
program.

To allow the window to track keyboard input, it must have the WindowKeyboard

attribute. Because we intend to monitor every keyboard input the attribute's key-
board �lter function argument must accept every KeyboardState. This can be
de�ned conveniently by (const True), using the StdFunc library function const.
Of course the keyboard function must handle keyboard input, so the SelectState
attribute is Able. The keyboard function, spotting is not interested in the local
state of the window which can be ignored by using the lifting function noLS1. The
keyboard function is parameterised with the Id of the window, wid. This gives us
the following de�nition of the WindowKeyboard attribute:

WindowKeyboard (const True) Able (noLS1 (spotting wid))

The keyboard function spotting uses the indirect rendering method (discussed in
Section 6.4.1) to display the last keyboard input. It applies the setWindowLook

function (StdWindow, Appendix A.47) to change the Look function of the window
each time new keyboard input reaches the window. For this reason, spotting is
parameterised with the Id of the window. In StdIOCommon for all type de�nitions
that do not contain function types an instance is de�ned for toString. The type
of spotting can be generalised so that it works for any second argument for which
an instance of the overloaded function toString exists.

spotting :: Id x (PSt .l) -> PSt .l | toString x

spotting wid x pst

= appPIO (setWindowLook wid True (False,look (toString x))) pst

The Look function of the window is parameterised with the string that should be
displayed. It simply centers this string in the current view frame. The size of the
view frame (a value of type Rectangle) can be determined using the StdIOBasic

function rectangleSize. The size of the string, when drawn with the current pen,
can be determined using the StdPicture function getPenFontStringWidth (see
also Section 5.3).

look :: String SelectState UpdateState *Picture -> *Picture

look text _ {newFrame} picture

picture = unfill newFrame picture

(width,picture) = getPenFontStringWidth text picture

64 CHAPTER 6. WINDOWS AND DIALOGUES

= drawAt {x=(w-width)/2,y=h/2} text picture

where

{w,h} = rectangleSize newFrame

Setting up look in this way has the advantage that the window's appearance adapts
itself to its actual size.

The only things that need to be done to get a complete program is to create an Id

value for the window, and start an interactive process that opens the window. This
is shown below in the complete code of the keyspotting example.

module keyspotting

// **

// Clean tutorial example program.

//

// This program monitors keyboard input that is sent to a Window.

// **

import StdEnv,StdIO

Start :: *World -> *World

Start world

(wid,world) = openId world

window = Window "keyspotting" NilLS

[WindowKeyboard (const True) Able (noLS1 (spotting wid))

, WindowId wid

, WindowClose (noLS closeProcess)

]

= startIO SDI

Void

(snd o openWindow Void window)

[ProcessClose closeProcess]

world

where

spotting :: Id x (PSt .l) -> PSt .l | toString x

spotting wid x pst

= appPIO (setWindowLook wid True (False,look (toString x))) pst

look :: String SelectState UpdateState *Picture -> *Picture

look text _ {newFrame} picture

picture = unfill newFrame picture

(width,picture) = getPenFontStringWidth text picture

= drawAt {x=(w-width)/2,y=h/2} text picture

where

{w,h} = rectangleSize newFrame

6.7.2 Mouse input

Every mouse sensitive interface object has a MouseFunctionwhich is a process state
transition function that receives, as a �rst argument, a value of type MouseState.
This value represents one mouse event.

:: MouseState

= MouseMove Point2 Modifiers

| MouseDown Point2 Modifiers Int

| MouseDrag Point2 Modifiers

| MouseUp Point2 Modifiers

| MouseLost

The Point2 and Modifiers types are de�ned in the modules StdIOBasic and
StdIOCommon respectively. The Point2 argument gives the position of the mouse

6.7. HANDLING KEYBOARD AND MOUSE INPUT 65

in terms of the view domain coordinates of the interactive object that contains the
speci�c MouseFunction. The Modifiers type constructor is a record that refers to
the state of the meta keys of the keyboard that were pressed at the mouse event.

Mouse events are always generated in sequences that are characterised by the alter-
native constructor of the MouseState type constructor:

fMouseMoveg� MouseDown fMouseDragg� MouseUp

The Int argument of the MouseDown alternative gives the number of times the
mouse was down within the mouse double down time. The mouse double down time
is a platform dependent time interval that distinguishes two sequential mouse down
events from a double click event. Although an integer is used for this count, its
maximum value is usually three. If a mouse down event with count i has occured
and a new mouse down event is generated within the mouse double down time, then
the next mouse down event has count i + 1. If the next mouse down event is not
generated within the mouse double down time, then the next mouse down event
has count 1.

The MouseLost alternative is generated whenever for some reason the sequence
above is interrupted (for instance when another window has become active).

The object I/O system guarantees that every MouseFunction of a mouse sensitive
interface object is applied to a sequence of mouse events as characterised above.
Assume that a certain window is active and the user is pressing the mouse. This
generates �rst a mouse down event (MouseDown alternative), followed by a sequence
of mouse drag events (MouseDrag alternative). If for some reason another window
is being activated, the object I/O system inserts a virtual event that forces the
program to believe that the user has released the mouse button with a mouse up
event (MouseUp alternative). If the new window is also mouse sensitive, then its
MouseFunction is applied to a new virtual event that forces the program to believe
that the user has pressed the mouse again with a mouse down event (MouseDown
alternative). These are followed again by mouse drag events.

Example: mousespotting

To illustrate the use of mouse handling we create a program that monitors the mouse
input of a window (see Figure 6.6). This program is almost identical to the keyspot-
ting example in the Section 6.7.1. The only di�erences are the title of the window
and the replacement of the WindowKeyboard attribute by a WindowMouse attribute.
Here we take advantage of the fact that the spotting function is overloaded. For
completeness, the mousespotting example is shown here.

module mousespotting

// **

// Clean tutorial example program.

//

// This program monitors mouse input that is sent to a Window.

// **

import StdEnv,StdIO

Start :: *World -> *World

Start world

(wid,world) = openId world

window = Window "mousespotting" NilLS

[WindowMouse (const True) Able (noLS1 (spotting wid))

66 CHAPTER 6. WINDOWS AND DIALOGUES

Figure 6.6: The mousespotting program in action.

, WindowId wid

, WindowClose (noLS closeProcess)

]

= startIO SDI

Void

(snd o openWindow Void window)

[ProcessClose closeProcess]

world

where

spotting :: Id x (PSt .l) -> PSt .l | toString x

spotting wid x pst

= appPIO (setWindowLook wid True (False,look (toString x))) pst

look :: String SelectState UpdateState *Picture -> *Picture

look text _ {newFrame} picture

picture = unfill newFrame picture

(width,picture) = getPenFontStringWidth text picture

= drawAt {x=(w-width)/2,y=h/2} text picture

where

{w,h} = rectangleSize newFrame

6.8 Modal dialogues

Windows and dialogues have many aspects in common. One important di�erence,
which was also mentioned in the introduction of this chapter, is that only dialogues
can be opened modally. When a program opens a modal dialogue, the user is
forced to completely handle the dialogue before any other operation can occur.
When a modal dialogue is open, other modal dialogues can also be opened, but
these must also be completely handled. In this way a stack of modal dialogues
can be created. An example of such a situation is the behaviour of the platform
dependent output �le selector dialogue (which is opened by the StdFileSelect

function selectOutputFile), see Figure 6.7. If the user selects an existing �le,
another modal dialogue is opened that asks the user if it is allright to overwrite that
�le. The user must answer this dialogue before the output �le selector dialogue can
be closed.

The type constructor class Dialogs contains an additional function to create dia-
logues in a modal way:

class Dialogs wdef where

openDialog :: .ls !(wdef .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport, !PSt .l)

openModalDialog :: .ls !(wdef .ls (PSt .l)) !(PSt .l)

6.8. MODAL DIALOGUES 67

Figure 6.7: Two modal dialogues created by the selectOutputFile function.

-> (!(!ErrorReport,!Maybe .ls),!PSt .l)

...

The arguments of openModalDialog and openDialog are identical: the dialogue
has a local state of type .ls and it has some de�nition of type (wdef .ls (PSt

.l)). Both functions return an ErrorReport to inform the program if the di-
alogue could be created. The major di�erence between these two class member
functions is that openDialog opens its argument dialogue and terminates immedi-
ately. The function openModalDialog opens its argument dialogue and terminates
only when it is closed. This situation can only be reached by applying closeWindow
or closeActiveWindow (StdWindow, Appendix A.47) or by terminating the parent
interactive process using closeProcess (StdProcess, Appendix A.27). After the
modal dialogue has been closed, its �nal local state value is returned. This provides
a comfortable way of passing additional information from the closed modal dialogue
to the calling function, as we will see in the next section.

6.8.1 Example: a notice extension

In this example we show the use of modal dialogues by making new Dialogs class
instances for notices. A notice is a very simple dialogue, containing only some
line(s) of text, and a (number of) button(s) that close the notice. Notices can be
used by programs to briey inform the user about some situation. The con�rmation
dialogue in Figure 6.7 is an example of such a notice. We will �rst make the notice
module which contains the new Dialogs instance in Section 6.8.1. Using this new
interactive object we can rephrase the \Hello world" program (Section 2.4). This
is done in Section 6.8.1.

The notice module

We want to make a special instance of the Dialogs type constructor class that
speci�es a notice. As said, a notice is a dialogue that contains some line(s) of text,
and a (number of) button(s). As done for every object I/O element, a notice will
be de�ned by means of an algebraic data type:

:: Notice ls pst

= Notice [String] (NoticeButton *(ls,pst)) [NoticeButton *(ls,pst)]

68 CHAPTER 6. WINDOWS AND DIALOGUES

:: NoticeButton st

= NoticeButton String (IdFun st)

The �rst argument of a Notice is a list of text lines. These will be shown below
each other. By using one additional NoticeButton argument we can make sure
that a notice always consists of at least one notice button. This mandatory notice
button is placed to the right of the notice. The notice buttons will appear from
right to left. A notice button is de�ned by NoticeButton. It is parameterised with
the title and a program de�ned function. This function is applied after the button
has been pressed and the notice has been closed.

The Notice type constructor will become an instance of the Dialogs type con-
structor class. This would actually be su�cient to allow a program to create both
non modal and modal notices, using the class member functions openDialog and
openModalDialog. To simplify creation of notices even further, we want to make
the following additional function with a simpler type:

openNotice :: (Notice .ls (PSt .l)) (PSt .l) -> PSt .l

This speci�cation is bundled in the notice de�nition module, which now looks as
follows:

definition module notice

// **

// Clean tutorial example program.

//

// This program defines a new instance of the Dialogs class to create notices.

// **

import StdWindow

:: Notice ls pst

= Notice [String] (NoticeButton *(ls,pst)) [NoticeButton *(ls,pst)]

:: NoticeButton st

= NoticeButton String (IdFun st)

instance Dialogs Notice

openNotice :: (Notice .ls (PSt .l)) (PSt .l) -> PSt .l

Let's work out the notice implementation module. Because a notice is a specialised
dialogue, it is su�cient to map a notice de�nition to a dialogue de�nition. This
mapping is done by the function noticeToDialog. For programming convenience,
we will convert the text lines into text controls, and the notice buttons into button
controls. Although controls are not properly introduced yet, we hope this does not
frustate your attempt to understand what's going on here.

Each notice text line is mapped to a text control. A text control is parameterised
with a string, and can have a position attribute. All texts will be left-aligned. This
is expressed by setting the (ControlPos (Left,zero)) attribute. For any list of
strings texts this mapping can be conveniently expressed via a list comprehension
(the ListLS data constructor is required for reasons explained in Chapter 7):

ListLS [TextControl text [ControlPos (Left,zero)] \\ text<-texts]

We want to place the lines together in a box without additional item space (the
default item space and margin values of a dialogue are platform dependent). To

6.8. MODAL DIALOGUES 69

make sure that we get our preferred values we override the dialogue item space and
margin attributes with our own (using zero margins and an item space of three in
both directions). This is done via a LayoutControl. The �nal mapping of the text
lines results in:

texts`= LayoutControl

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-texts

]

)

[ControlHMargin 0 0,ControlVMargin 0 0,ControlItemSpace 3 3]

Let's �rst introduce a function noticebutton that maps one notice button to a
button control. When a notice button is selected, it should �rst close the notice
(using closeActiveWindow), and then apply the argument function. This action
is handled by the argument function of the ControlFunction attribute. We allow
other attributes such as placement and so on to be appended to the button control
by passing it as an additional argument of noticebutton.

noticebutton (NoticeButton text f) atts

= ButtonControl text [ControlFunction f`:atts]

where

f` (lst,pst) = f (lst,closeActiveWindow pst)

Using noticebuttonwe can map the notice buttons to button controls. The manda-
tory notice button is mapped to the \con�rm" control using the window attribute
WindowOk (Section 6.2.1). We assume that okid refers to this Id. In addition, the
mandatory button is right-aligned in the dialogue. So, if ok is the mandatory notice
button, then it is mapped to the following button control:

ok` = noticebutton ok [ControlPos (Right,zero),ControlId okid]

The optional notice buttons appear to the left of the previous notice button. Again,
we can use a list comprehension to do this mapping for a list of notice buttons
buttons:

buttons` = ListLS

[noticebutton button [ControlPos (LeftOfPrev,zero)]

\\ button<-buttons

]

Given a Notice value (Notice texts ok buttons), noticeToDialog creates a ti-
tleless Dialog and glues the mapped notice controls using the expression (texts`
:+: ok` :+: buttons`) (glueing controls is also discussed in the next chapter):

noticeToDialog okid (Notice texts ok buttons)

= Dialog "" (texts`:+:ok`:+:buttons`) [WindowOk okid]

Given the mapping function noticeToDialog it is now a trivial task to de�ne the
new instance declaration of the type constructor class Dialogs:

instance Dialogs Notice where

70 CHAPTER 6. WINDOWS AND DIALOGUES

openDialog ls notice pst

(okId,pst) = accPIO openId pst

= openDialog ls (noticeToDialog okId notice) pst

openModalDialog ls notice pst

(okId,pst) = accPIO openId pst

= openModalDialog ls (noticeToDialog okId notice) pst

getDialogType _

= "Notice"

Also the de�nition of the convenience function openNotice now becomes trivial:

openNotice :: (Notice .ls (PSt .l)) (PSt .l) -> PSt .l

openNotice notice pst

= snd (openModalDialog undef notice pst)

For completeness, the notice implementation module is given here.

implementation module notice

// **

// Clean tutorial example program.

//

// This program defines a new instance of the Dialogs class to create notices.

// **

import StdTuple, StdMisc, StdFunc

import StdId, StdPSt, StdWindow

:: Notice ls pst

= Notice [String] (NoticeButton *(ls,pst)) [NoticeButton *(ls,pst)]

:: NoticeButton st

= NoticeButton String (IdFun st)

instance Dialogs Notice where

openDialog ls notice pst

(okId,pst) = openId pst

= openDialog ls (noticeToDialog okId notice) pst

openModalDialog ls notice pst

(okId,pst) = openId pst

= openModalDialog ls (noticeToDialog okId notice) pst

getDialogType _

= "Notice"

openNotice :: (Notice .ls (PSt .l)) (PSt .l) -> PSt .l

openNotice notice pst

= snd (openModalDialog undef notice pst)

noticeToDialog :: Id !(Notice .ls (PSt .l))

-> Dialog (:+: (LayoutControl (ListLS TextControl))

(:+: ButtonControl (ListLS ButtonControl)

)) .ls (PSt .l)

noticeToDialog okid (Notice texts ok buttons)

= Dialog "" (texts`:+:ok`:+:buttons`) [WindowOk okid]

where

texts` = LayoutControl

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-texts

]

) [ControlHMargin 0 0,ControlVMargin 0 0,ControlItemSpace 3 3]

ok` = noticebutton ok [ControlPos (Right,zero),ControlId okid]

buttons` = ListLS

6.8. MODAL DIALOGUES 71

Figure 6.8: The hello world program, now using a notice.

[noticebutton button [ControlPos (LeftOfPrev,zero)]

\\ button<-buttons

]

noticebutton (NoticeButton text f) atts

= ButtonControl text [ControlFunction f`:atts]

where

f` (lst,pst) = f (lst,closeActiveWindow pst)

Hello world revisited

We can now use our new notice instance to make another implementation of the
\Hello world" program. It is very similar to the original version in Section 2.4 but
instead of a Dialog it now uses a Notice. Figure 6.8 shows the notice. The program
code is given below.

module usenotice

// **

// Clean tutorial example program.

//

// This program shows "Hello world!" using a Notice.

// **

import StdEnv, StdIO

import notice

Start :: *World -> *World

Start world

= startIO NDI Void (openNotice hello) [] world

where

hello = Notice ["Hello world!"] (NoticeButton "Quit" (noLS closeProcess)) []

72 CHAPTER 6. WINDOWS AND DIALOGUES

Chapter 7

Control handling

In the previous chapter windows and dialogues have been introduced. These top
level interface elements can contain sets of controls, which are the subject of this
chapter. Controls can be hierarchical, i.e. they can be composed of controls them-
selves. Using controls helps a program to provide a consistent and structured user
interface. There are a lot of issues involved when working with controls.

First of all we introduce each of the standard controls in Section 7.1. Then the
glue is introduced to build larger control structures in Section 7.2. An important
aspect of controls is to manage their layout, presented in Section 7.3. Related to
layout is what should happen in case a window containing controls is resized. This
is discussed in Section 7.4. Finally, Section 7.5 contains a number of examples that
demonstrate the use of controls.

7.1 The standard controls

The data type de�nitions of the standard set of object I/O library controls is given
in module StdControlDef (Appendix A.7). They can be divided into three groups:

Platform standard controls
These are the controls that exist on all platforms and that have a well-de�ned
look and feel that is platform de�ned. Adding these elements to your appli-
cation will give your program a standardised interface that experienced users
feel comfortable with.

Control object: What does it look like:

ButtonControl

CheckControl

EditControl

PopUpControl

RadioControl

SliderControl

TextControl

Customised controls
Although the use of platform standard controls increases the familiarity of

73

74 CHAPTER 7. CONTROL HANDLING

your application, sometimes you need to create controls with additional look
and feel. For this purpose the library provides two customised controls. The
look of the CustomButtonControl is program de�ned, but the library handles
its feel as if it were a button. The CustomControl can be used when the
program wants to de�ne every aspect of its look and feel.

Hierarchical controls
One simple way of combining controls is to place them in a hierarchical control.
Hierarchical controls always introduce a new layout scope. This functionality
is provided by the LayoutControl. The CompoundControl is very analogous
to a window in a control: it can have scrollbars, it has a Picture for its
background, and so on.

Controls have an extensive set of attributes as one can see in the table below. The
hierarchical controls have a number of special attributes. They are strongly related
to window and dialogue attributes.

General control attributes: Hierarchical control attributes:
ControlActivate ControlHMargin

ControlDeactivate ControlHScroll

ControlFunction ControlItemSpace

ControlHide ControlLook

ControlId ControlOrigin

ControlKeyboard ControlOuterSize

ControlMinimumSize ControlViewDomain

ControlModsFunction ControlViewSize

ControlMouse ControlVMargin

ControlPen ControlVScroll

ControlPos

ControlResize

ControlSelectState

ControlTip

ControlWidth

We defer the explanation of the hierarchical control attributes until Section 7.1.11.
Let's have a look at the attributes in the left column of the table.

ControlActivate and ControlDeactivate

In every interactive program that has windows and dialogues, there is one
window or dialogue that receives the user input, the active window. If this
window or dialogue contains controls, then the user input is further directed
to that particular control that has the input focus. When a control obtains
the input focus, the function associated with its ControlActivate attribute
is evaluated. When a control looses the input focus, the same thing happens
with its ControlDeactivate attribute function.

ControlFunction and ControlModsFunction

These two attributes are the primary callback function attributes of controls.
The �rst function is evaluated whenever the associated control is selected by
the user. The same happens for the second function, except that it is also
provided with the modi�er keys that have been pressed at the moment the
user selected the control. If these two attributes both appear in an attribute
list, then the �rst of the two is selected.

7.1. THE STANDARD CONTROLS 75

ControlHide

This attribute de�nes that the control is initially invisible. It does occupy
space. By default controls are visible when element of a window or dialogue.
Of course, when some parent object is invisible, then all child controls are
invisible as well.

ControlId

This attribute identi�es the control to which it is associated. If you do not
provide an Id, the control can not be modi�ed by the program (as explained
in Chapter 4).

ControlKeyboard and ControlMouse

These attributes add keyboard and mouse handling callback functions to the
associated control. For most platform standard controls these attributes are
ignored because the platform already de�nes their response to these inputs.

ControlMinimumSize

This attribute de�nes the minimum size of the control. This value is relevant
in case of resizing (see Section 7.4). If no ControlMinimumSize is provided,
the default value zero is chosen.

ControlPen

When set, this attribute de�nes the initial pen attributes that the look func-
tion of customised controls uses for drawing. Pen attributes were introduced
in Section 5.1. If not present, the default pen values are used.

ControlPos

This attribute determines the layout position (see Section 7.3) of the associ-
ated control. By default, a control is placed right next to the previous control
(if it happens to be the �rst control, it will be positioned at the left-top).

ControlResize

This attribute de�nes that the control is resizeable. A control is resizable if
it responds to user or program resize actions of a parent object. By default
controls do not resize on these events. See Section 7.4 about the resizing
behaviour of controls.

ControlSelectState

This attribute de�nes whether the control accepts user input (Able) or not
(Unable). Most platform standard controls give some visual clue to the user
about their current select state. By default the SelectState of controls is
Able.

ControlTip

The tip attribute provides the user of your application with a textual expla-
nation of the functionality of the control in a platform dependent way. This
explanation should be very brief (a few words only).

ControlWidth

For all platform standard controls their height is determined by their de-
manded attributes. The program can inuence the width of such controls by
setting the ControlWidth attribute. The argument of this attribute is a value
of type ControlWidth which has the following type de�nition:

:: ControlWidth

= PixelWidth Int

| TextWidth String

| ContentWidth String

76 CHAPTER 7. CONTROL HANDLING

The PixelWidth alternative de�nes the width in terms of the number of pixels.
The TextWidth alternative speci�es that the control should have the width
exactly identical to the width of the argument string when drawn in the dialog
font. If the associated control is text oriented, then the alternative Content-
Width speci�es that the control should have the width as if it would contain
the argument string.

In the remaining part of this section we introduce each of the standard controls.
We �rst show the non hierarchical controls in alphabetical order, and end with the
hierarchical controls. Of each control we give the set of types you must use to de�ne
it. Of the general control attributes it is indicated which are valid. This information
can also be retrieved from the object I/O library. In the de�nition module Std-

ControlAttribute of each control there is a predicate function that de�nes which
attributes are valid. Finally, a simple example of a control de�nition is given.

7.1.1 The ButtonControl

The button control represents an action that should occur given the current state
of the window or dialogue. The de�nition of a button control is as follows:

:: ButtonControl ls pst

= ButtonControl String [ControlAttribute *(ls,pst)]

A button control has a title, given by a string. The string should not contain
control characters because they will generally produce rubbish on the screen. The
& character can be used to add keyboard interface to the user, depending on the
platform. The escape sequence is &&. Valid control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlActivate ControlMouse

ControlDeactivate ControlPen

ControlFunction
p

ControlPos
p

ControlHide
p

ControlResize

ControlId
p

ControlSelectState
p

ControlKeyboard ControlTip
p

ControlMinimumSize ControlWidth
p

ControlModsFunction
p

The initial size of a button control is determined by its initial text line and Control-
Width attribute. When the button is selected by the user the �rst of Control-
Function and ControlModsFunction in the attribute list is evaluated. If the name
of the button control is modi�ed to a new text line, then its size is not changed.

A button control can be the con�rm or cancel button of a window or dialogue (see
Section 6.2.1). It must have the ControlId attribute set. The Id value must then
be given to the WindowOk or WindowCancel attribute respectively.

Here is a ButtonControl with a title that contains newlines:

buttoncontrol

= ButtonControl "A &Button && its text" []

7.1. THE STANDARD CONTROLS 77

7.1.2 The CheckControl

A check control is a group of check control items of which an arbitrary number
can be selected. All alternatives are visible. The de�nition of a check control is as
follows:

:: CheckControl ls pst

= CheckControl [CheckControlItem *(ls,pst)] RowsOrColumns

[ControlAttribute *(ls,pst)]

:: RowsOrColumns

= Rows Int

| Columns Int

:: CheckControlItem st

:== (String,Maybe ControlWidth,MarkState,IdFun st)

The RowsOrColumns argument indicates the local layout of the items. Rowwise
layout is given by the Rows alternative, and columnwise layout by the Columns

alternative. Of each check item its title, width, initial mark state, and callback
function is speci�ed. Valid control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlActivate ControlMouse

ControlDeactivate ControlPen

ControlFunction ControlPos
p

ControlHide
p

ControlResize

ControlId
p

ControlSelectState
p

ControlKeyboard ControlTip
p

ControlMinimumSize ControlWidth

ControlModsFunction

When a check control item is selected its mark state will be toggled (from Mark to
NoMark and vice versa). No other check control items are a�ected. The correspond-
ing callback function is then evaluated.

Here is an example of a CheckControl that consists of �ve items, placed in two
columns. Each odd numbered item has a check mark.

checkcontrol

= CheckControl

[("Check item &"+++toString i

, Nothing

, if (isOdd i) Mark NoMark

, id

)

\\ i<-[1..5]

] (Columns 2) []

7.1.3 The CustomButtonControl

A custom button control is a control that feels like a button control, but which look is
customised by the program. The de�nition of a custom button control is as follows:

:: CustomButtonControl ls pst

= CustomButtonControl Size Look [ControlAttribute *(ls,pst)]

78 CHAPTER 7. CONTROL HANDLING

:: Size = {w::!Int,h::!Int}

:: SelectState = Able | Unable

:: UpdateState = { oldFrame :: !ViewFrame

, newFrame :: !ViewFrame

, updArea :: !UpdateArea

}

:: ViewFrame :== Rectangle

:: UpdateArea :== [ViewFrame]

:: Look :== SelectState -> UpdateState -> *Picture -> *Picture

Both the initial size and look of a custom button control are de�ned by the program.
The look of a custom button control is identical to the look of a window as discussed
in Section 6.4.1. The UpdateState argument contains zero based rectangles of the
same size as the custom button control itself. Every custom button control has
a *Picture environment to which the look drawing functions are applied. Valid
control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlActivate ControlMouse

ControlDeactivate ControlPen
p

ControlFunction
p

ControlPos
p

ControlHide
p

ControlResize
p

ControlId
p

ControlSelectState
p

ControlKeyboard ControlTip
p

ControlMinimumSize
p

ControlWidth

ControlModsFunction
p

When the custom button control is selected by the user the �rst of ControlFunction
and ControlModsFunction in its attribute list is evaluated.

A button control can be the con�rm or cancel button of a window or dialogue (see
Section 6.2.1). It must have the ControlId attribute set. The Id value must then
be given to the WindowOk or WindowCancel attribute respectively.

The look of this CustomButtonControl depends on its SelectState. The picture
on the left shows the custom button control in Able state, the picture on the right
in Unable state.

custombuttoncontrol

= CustomButtonControl {w=50,h=50} look []

where

look Able {newFrame} picture

picture = setPenColour DarkGrey picture

picture = fill newFrame picture

picture = setPenColour Black picture

picture = draw newFrame picture

= picture

look Unable {newFrame} picture

picture = setPenColour LightGrey picture

picture = fill newFrame picture

= picture

7.1.4 The CustomControl

A custom control is a control of which both the look and feel are program de�ned.
The de�nition of a custom control is as follows:

7.1. THE STANDARD CONTROLS 79

:: CustomControl ls pst

= CustomControl Size Look [ControlAttribute *(ls,pst)]

:: Size = {w::!Int,h::!Int}

:: SelectState = Able | Unable

:: UpdateState = { oldFrame :: !ViewFrame

, newFrame :: !ViewFrame

, updArea :: !UpdateArea

}

:: ViewFrame :== Rectangle

:: UpdateArea :== [ViewFrame]

:: Look :== SelectState -> UpdateState -> *Picture -> *Picture

Both the initial size and look of a custom control are de�ned by the program. The
look of a custom control is identical to the look of a window as discussed in Section
6.4.1. The UpdateState argument contains zero based rectangles of the same size
as the custom control itself. Every custom control has a *Picture environment to
which the look drawing functions are applied. Valid control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlActivate

p
ControlMouse

p
ControlDeactivate

p
ControlPen

p
ControlFunction ControlPos

p
ControlHide

p
ControlResize

p
ControlId

p
ControlSelectState

p
ControlKeyboard

p
ControlTip

p
ControlMinimumSize

p
ControlWidth

ControlModsFunction
p

The feel of a custom control is de�ned by its mouse and keyboard callback functions.
If the user selects the custom control with the mouse, then the mouse callback
function handles all input. If the custom control has the input focus, and the user
is typing, then the keyboard callback function handles the keyboard input.

The look of this CustomControl depends on its SelectState. The picture on the
left shows the custom control in Able state, the picture on the right in Unable state.

custombuttoncontrol

= CustomControl {w=50,h=50} look []

where

look Able {newFrame} picture

picture = setPenColour DarkGrey picture

picture = fill newFrame picture

picture = setPenColour Black picture

picture = draw newFrame picture

= picture

look Unable {newFrame} picture

picture = setPenColour LightGrey picture

picture = fill newFrame picture

= picture

7.1.5 The EditControl

The edit control is used to provide the user with an interface to edit (typically small
amounts of) textual data. The de�nition of an edit control is as follows:

80 CHAPTER 7. CONTROL HANDLING

:: EditControl ls pst

= EditControl String ControlWidth NrLines

[ControlAttribute *(ls,pst)]

:: NrLines :== Int

An edit control initially displays some text line. If the textline contains newlines
then these are interpreted as line breaks. The edit control has an initial interior
width (de�ned by the ControlWidth argument) and shows an integral number of
lines. Valid control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlActivate

p
ControlMouse

ControlDeactivate
p

ControlPen

ControlFunction ControlPos
p

ControlHide
p

ControlResize
p

ControlId
p

ControlSelectState
p

ControlKeyboard
p

ControlTip
p

ControlMinimumSize ControlWidth

ControlModsFunction

If the SelectState of an edit control is Unable, the user can not type in text.
The program can keep track of the inserted text by setting the ControlKeyboard
attribute. For each typed key the keyboard function is evaluated. If the edit
control has the ControlId attribute set, then its content can be retrieved using the
getControlText function of module StdControl (Appendix A.4).

Here is an example of an EditControl with interior width 80 pixels and a height
of three text lines.

editcontrol

= EditControl "This is an EditControl"

(PixelWidth 80) 3 []

7.1.6 The PopUpControl

A pop up control is a group of pop up control items of which exactly one item is
selected. The items of a pop up control are presented in a pop up menu. Usually only
the currently selected item is displayed. For this reason pop up controls consume
much less space than the functionally equivalent radio controls (discussed in Section
7.1.7). The de�nition of a pop up control is as follows:

:: PopUpControl ls pst

= PopUpControl [PopUpControlItem *(ls,pst)] Index

[ControlAttribute *(ls,pst)]

:: PopUpControlItem st :== (String,IdFun st)

:: IdFun st :== st -> st

The initially selected item is indicated by the Index value. As a convention in the
object I/O library, when indicating elements indices range from 1 upto the number
of elements. So n elements are indexed by 1. . .n. In case the index is out of range,
i.e. less than 1 or larger than n, it is set to 1 and n respectively. Valid control
attributes are:

7.1. THE STANDARD CONTROLS 81

ControlAttribute: Valid: ControlAttribute: Valid:
ControlActivate

p
ControlMouse

ControlDeactivate
p

ControlPen

ControlFunction ControlPos
p

ControlHide
p

ControlResize

ControlId
p

ControlSelectState
p

ControlKeyboard ControlTip
p

ControlMinimumSize ControlWidth
p

ControlModsFunction

When a pop up control item is selected the previously selected item is unchecked
and the new item becomes the selected item. The corresponding callback function
is then evaluated. The callback function is also evaluated if the currently selected
item is selected.

Here is an example of a PopUpControl that consists of �ve items. The �rst item is
the initially selected item.

popupcontrol

= PopUpControl

[("PopUpItem "+++toString i,id)

\\ i<-[1..5]

] 1 []

7.1.7 The RadioControl

A radio control is a group of radio control items of which exactly one item is selected.
All alternatives are visible. The radio control is functionally equivalent with the
pop up control (Section 7.1.6), but it consumes more space. The de�nition of a
radio control is almost identical to that of a check control (Section 7.1.2):

:: RadioControl ls pst

= RadioControl [RadioControlItem *(ls,pst)] RowsOrColumns Index

[ControlAttribute *(ls,pst)]

:: RowsOrColumns

= Rows Int

| Columns Int

:: RadioControlItem st

:== (String,Maybe ControlWidth,IdFun st)

:: IdFun st :== st -> st

:: Index :== Int

The RowsOrColumns argument indicates the local layout of the items. Rowwise
layout is given by the Rows alternative, and columnwise layout by the Columns

alternative. The initially selected item is indicated by the Index value. As a
convention in the object I/O library, when indicating elements indices range from 1
upto the number of elements. So n elements are indexed by 1. . .n. In case the index
is out of range, i.e. less than 1 or larger than n, it is set to 1 and n respectively.
Of each radio item its title, width, and callback function is speci�ed. Valid control
attributes are:

82 CHAPTER 7. CONTROL HANDLING

ControlAttribute: Valid: ControlAttribute: Valid:
ControlActivate ControlMouse

ControlDeactivate ControlPen

ControlFunction ControlPos
p

ControlHide
p

ControlResize

ControlId
p

ControlSelectState
p

ControlKeyboard ControlTip
p

ControlMinimumSize ControlWidth

ControlModsFunction

When a radio control item is selected the previously selected radio control item
will be unselected, and the new radio control item gets the selection mark. The
corresponding callback function is then evaluated. The callback function is also
evaluated when choosing the currently selected item.

Here is an example of a RadioControl that consists of �ve items, placed in two
rows. The �rst item is initially selected.

radiocontrol

= RadioControl

[("RadioItem &"+++toString i

,Nothing

,id

)

\\ i<-[1..5]

] (Rows 2) 1 []

7.1.8 The SliderControl

Slider controls are used to select a value within a range of values. The de�nition of
a slider control is as follows:

:: SliderControl ls pst

= SliderControl Direction ControlWidth SliderState

(SliderAction *(ls,pst))

[ControlAttribute *(ls,pst)]

:: Direction = Horizontal | Vertical

:: SliderState = { sliderMin :: !Int

, sliderMax :: !Int

, sliderThumb:: !Int

}

:: SliderAction st :== SliderMove -> st -> st

:: SliderMove = SliderIncSmall | SliderDecSmall

| SliderIncLarge | SliderDecLarge

| SliderThumb Int

A slider control can be given a horizontal direction (the Horizontal alternative
of Direction) or a vertical direction (the Vertical alternative of Direction). In
this direction it can have a certain length, which is given by the ControlWidth

attribute.

The value range of a slider control is de�ned by the SliderState record. The
initial slider state determines the integer range: sliderMin gives the minimum
value, sliderMax gives the maximum value. In case these values are given in the
wrong order, they will be ordered properly. The initially chosen value is given by

7.1. THE STANDARD CONTROLS 83

the sliderThumb value. This value must be inclusively between sliderMin and
sliderMax. If a value smaller than the minimum range is given, then it is set to
the minimum. If a value larger than the maximum range is given, then it is set to
the maximum.

Valid control attributes for the SliderControl are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlActivate ControlMouse

ControlDeactivate ControlPen

ControlFunction ControlPos
p

ControlHide
p

ControlResize
p

ControlId
p

ControlSelectState
p

ControlKeyboard ControlTip
p

ControlMinimumSize ControlWidth

ControlModsFunction

A slider control typically has �ve regions that can be selected by the user. These
regions are shown in Figure 7.1

decrement
arrow

?

increment
arrow

?

page
decrement

?

page
increment

?

thumb
move

?

SliderDecSmall

6

SliderIncSmall

6

SliderDecLarge

6

SliderIncLarge

6

SliderThumb

6

Figure 7.1: The regions of the SliderControl.

When the user is working with the slider control, its callback function is evaluated.
The algebraic data type SliderMove has an alternative constructor for each of the
regions of the slider control:

SliderDecSmall decrement arrow
SliderIncSmall increment arrow
SliderDecLarge page down region
SliderIncLarge page up region
SliderThumb thumb move

84 CHAPTER 7. CONTROL HANDLING

The program can decide what to do with this information. It is the responsibility
of the programmer that the application responds the way the user expects.

Here is an example of a SliderControl that is orientied horizontally and has a
length of 200 pixels. It results in the slider control shown in Figure 7.1.

slidercontrol

= SliderControl Horizontal 200

{sliderMin=(-100),sliderMax=100,sliderThumb=0}

(_ st->st) []

7.1.9 The TextControl

A text control displays one line of text that can not be changed by the user. The
de�nition of a text control is as follows:

:: TextControl ls pst

= TextControl String [ControlAttribute *(ls,pst)]

Valid control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlActivate ControlMouse

ControlDeactivate ControlPen

ControlFunction ControlPos
p

ControlHide
p

ControlResize

ControlId
p

ControlSelectState

ControlKeyboard ControlTip
p

ControlMinimumSize ControlWidth
p

ControlModsFunction

The initial size of a text control is determined by its initial text line and its Control-
Width attribute. Text controls are not resizeable, and they will also not change in
size in case their text line is modi�ed by the program.

Here is an example of a text control.

textcontrol

= TextControl "This is a TextControl" []

7.1.10 The LayoutControl

A layout control is a control that contains other controls. It introduces a new layout
scope: i.e. controls inside it are positioned relative to the bounds of the layout
control. The de�nition of a layout control is as follows:

:: LayoutControl c ls pst

= LayoutControl (c ls pst) [ControlAttribute *(ls,pst)]

instance Controls (LayoutControl c) | Controls c

As you can see from the type de�nition, the type variable c appears on a type
constructor position. The instance declaration of LayoutControl of the Controls
type constructor class adds the restriction that c must be a Controls instance itself.
Valid control attributes are:

7.1. THE STANDARD CONTROLS 85

ControlAttribute: Valid: ControlAttribute: Valid:
ControlActivate ControlOrigin

ControlDeactivate ControlOuterSize
p

ControlFunction ControlPen

ControlHide
p

ControlPos
p

ControlHMargin
p

ControlResize
p

ControlHScroll ControlSelectState
p

ControlId
p

ControlTip

ControlItemSpace
p

ControlViewDomain

ControlKeyboard ControlViewSize
p

ControlLook ControlVMargin
p

ControlMinimumSize
p

ControlVScroll

ControlModsFunction ControlWidth

ControlMouse

The size of a layout control, if not provided as a ControlOuterSize or Control-
ViewSize attribute, is derived by the system from its control elements (see Section
7.3 for more information on the layout of controls). Related to its size and element
layout are a number of attributes. The ControlMinimumSize attribute determines
the minimum size of the layout control (see resizing controls, Section 7.4), the
ControlResize attribute controls the resize behaviour (see also Section 7.4), the
ControlItemSpace, ControlHMargin, and ControlVMargin attributes de�ne the
distance between the elements themselves and the horizontal and vertical distance
of the elements to the border of the layout control respectively. If a layout control
does not specify any of these attributes, it obtains the same attribute values as its
parent object.

7.1.11 The CompoundControl

The compound control is a control that contains other controls. It introduces a new
layout scope (see the LayoutControl in Section 7.1.10). The type de�nition of a
compound control is almost identical to that of a LayoutControl:

:: CompoundControl c ls pst

= CompoundControl (c ls pst) [ControlAttribute *(ls,pst)]

instance Controls (CompoundControl c) | Controls c

Despite the equivalence of their type de�nitions, a compound control provides pro-
grammers with a lot more functionality than its cousin layout control. This becomes
clear when you have a look at its valid control attributes:

86 CHAPTER 7. CONTROL HANDLING

ControlAttribute: Valid: ControlAttribute: Valid:
ControlActivate

p
ControlOrigin

p
ControlDeactivate

p
ControlOuterSize

p
ControlFunction ControlPen

p
ControlHide

p
ControlPos

p
ControlHMargin

p
ControlResize

p
ControlHScroll

p
ControlSelectState

p
ControlId

p
ControlTip

p
ControlItemSpace

p
ControlViewDomain

p
ControlKeyboard

p
ControlViewSize

p
ControlLook

p
ControlVMargin

p
ControlMinimumSize

p
ControlVScroll

p
ControlModsFunction ControlWidth

ControlMouse
p

The size of a compound control, if not provided as a ControlOuterSize or Control-
ViewSize attribute, is derived by the system from its control elements (see Section
7.3 for more information on the layout of controls). Related to its size and element
layout are a number of attributes. The ControlMinimumSize attribute determines
the minimum size of the compound control (see resizing controls, Section 7.4), the
ControlResize attribute controls the resize behaviour (see also Section 7.4), the
ControlItemSpace, ControlHMargin, and ControlVMargin attributes de�ne the
distance between the elements themselves and the horizontal and vertical distance
of the elements to the border of the compound control respectively. If a compound
control does not specify any of these attributes, it obtains the same attribute values
as its parent object.

The compound control anatomy is the same as that of a window (Section 6.1.1). It
consists of the same three layers as a window except that we call its top layer the
compound frame rather than window frame. The compound frame has no title nor
features like resize controls and so on.

Analogous to windows, compound controls have a view domain. As explained in
Section 6.1.1, a view domain de�nes a �nite area in which can be drawn (Chapter
5), it can also be used as an area to place controls (Section 7.3). Also for compound
controls scrolling attributes can be added: ControlHScroll and ControlVScroll.
These attributes control the current view frame orientation of the compound control.
The left top point of the view frame that is currently visible is called the origin.
This value can be set initially with the ControlOrigin attribute. The Control-

Look attribute is used by the object I/O library to render the document layer of
the compound control in exactly the same way as is being done for windows.

The feel of a compound control is of course partially determined by its element
controls. If the ControlMouse (ControlKeyboard) attribute is given, then the
compound control can handle all mouse (keyboard) events that are directed to it.

7.2 Control glue

In the previous section the standard set of controls has been discussed. This list
does not cover all controls class instances. In the library module StdControlClass
(Appendix A.6) a number of additional instances are de�ned, namely the type
constructors :+:, ListLS, NilLS, and AddLS, NewLS (their de�nition can be found
in module StdIOBasic, Appendix A.13). These additional instances are required
to glue controls. They are treated below.

7.2. CONTROL GLUE 87

7.2.1 :+:

The most common constructor to glue controls is :+:. Its type constructor de�nition
and Controls class instance declaration are as follows:

:: :+: t1 t2 ls cs

= (:+:) infixr 9 (t1 ls cs) (t2 ls cs)

instance Controls ((:+:) c1 c2) | Controls c1 & Controls c2

Assume we have two Controls instances c1 and c2, working on the same local
state of type ls and context state of type cs. Now the glued expression c1:+:c2

is also a Controls instance working on the same local state and context state.
Because :+: is right associative, the expression c1:+:c2:+:c3 should be read as
c1:+:(c2:+:c3).

As an example, reconsider the button control de�nition buttoncontrol in Section
7.1.1, and the edit control de�nition editcontrol in Section 7.1.5:

buttoncontrol

= ButtonControl "A &Button && its text" []

editcontrol

= EditControl "This is an EditControl" (PixelWidth 80) 3 []

Now the following expressions are legal combinations: (buttoncontrol :+: edit-

control) and (editcontrol :+: buttoncontrol).

7.2.2 ListLS and NilLS

The :+: type constructor is not always the most appropriate glue. When con-
structing sets of controls of the same type, it is much more convenient to use lists
and list comprehensions. When constructing an unknown number of controls, it is
even impossible to use :+:. Again, lists provide more exibility. List-like glue is
provided by the type constructor ListLS. The type constructor NilLS is a short-
hand for ListLS []. It can also be conveniently used to state that a hierarchical
control, window, or dialogue has no controls. Here are the de�nitions:

:: ListLS t ls cs = ListLS [t ls cs]

:: NilLS ls cs = NilLS

instance Controls (ListLS c) | Controls c

instance Controls NilLS

Given a list of Controls instances xs = [c1...cn], working on the same local
state of type ls and context state cs, the expression ListLS xs is also a Controls

instance working on the same local state and context state.

As an example, assume that you have a list of text labels, labels, and that you
want to create a set of controls in the following way: for each label in labels, create
a text control with content that label, and right to that text control an empty edit
control that has a width of 100 pixels. The edit controls have to be positioned at
the same x-coordinate. The method has to work for any list length and of course
handle labels of di�erent length. One additional nasty property is that text controls
and edit controls can have di�erent heights (platform dependent).

Here's how to do it. First you determine the longest label size:

88 CHAPTER 7. CONTROL HANDLING

maxlength = maxList (map size labels)

Given this value, you select the longest label from labels:

maxlabel = hd (filter (\l->size l==maxlength) labels)

Now you can use ListLS to create an arbitrary number of text controls glued with
edit controls, using a list comprehension:

ListLS

[TextControl label [ControlWidth (ContentWidth maxlabel)

,ControlPos (Left,zero)

]

:+:

EditControl "" (PixelWidth 100) 1 []

\\ label<-labels

]

When applied to the following value of labels:

labels = ["A short label"

, "A fairly long and verbose label"

, "Another lengthy label"

]

and put it in a dialogue, the result is as in Figure 7.2.

Figure 7.2: Glueing with list comprehensions.

7.2.3 AddLS and NewLS

The previously discussed glueing type constructors always glue controls that work
on the same local state and context state. Two other glueing constructors are
de�ned to extend and change the local state, AddLS and NewLS.

Given a Controls instance c1 that works on a local state of type ls and a context
state of type cs, one can add another Controls instance c2 that works on an
extended local state of type (new,ls) and the same context state of type cs. Let
x be a value of type new, then this is done by the expression c1 :+: {addLS=x,

addDef=c2}.

:: AddLS t ls cs = E. .new: { addLS::new, addDef::t *(new,ls) cs }

instance Controls (AddLS c) | Controls c

7.3. CONTROL LAYOUT 89

Given a Controls instance c1 that works on a local state of type ls and a context
state of type cs, one can add another Controls instance c2 that works on a new
local state of type new and the same context state of type cs. Let x be a value of
type new, then this is done by the expression c1 :+: {newLS=x, newDef=c2}.

:: NewLS t ls cs = E. .new: { newLS::new, newDef::t new cs }

instance Controls (NewLS c) | Controls c

In both cases the extended part of the local state and the new local state are
encapsulated completely from the external context using existential quanti�cation.

As an example of glueing controls in this way, let's implement a manually incre-
mentable counter control. To do this we �ll a LayoutControl with three other
controls. To display the current count value an Unable EditControl is used. Two
ButtonControls are used to decrement and increment the counter.

counter displayid

= {newLS =count0

,newDef=LayoutControl

(EditControl (toString count0) (ContentWidth "000") 1

[ControlSelectState Unable

,ControlPos (Left,zero)

,ControlId displayid

]

:+: ButtonControl "-" [ControlFunction (count (-1))]

:+: ButtonControl "+" [ControlFunction (count 1)]

) [ControlHMargin 0 0

,ControlVMargin 0 0

,ControlItemSpace 0 0

]

}

where

count0 = 0

count :: Int (Int,PSt .l) -> (Int,PSt .l)

count dx (count,pst=:{io})

= (count+dx

, appPIO (setControlText displayid (toString (count+dx))) pst

)

Figure 7.3 shows the counter after some user manipulations that resulted in the
counter value -15.

Figure 7.3: The counter control.

7.3 Control layout

The object I/O library o�ers the programmer an expressive layout mechanism to
de�ne the layout of controls. As we have seen before, controls can be element

90 CHAPTER 7. CONTROL HANDLING

of windows, dialogues, layout and compound controls. The layout rules that are
discussed in this section apply to each of these cases. Some layout rules refer to the
view domain and view frame of the parent object. In case of dialogues and layout
controls these two are identical: they are zero based rectangles with a size equal to
the interior size of the parent object.

As we have seen, every control can have a ControlPos attribute. This attribute is
de�ned as follows:

:: ControlAttribute st

= ... | ControlPos ItemPos | ...

:: ItemPos

:== (ItemLoc,ItemOffset)

:: ItemLoc

= Fix

| LeftTop | RightTop | LeftBottom | RightBottom

| Left | Center | Right

| LeftOf Id | RightTo Id | Above Id | Below Id

| LeftOfPrev | RightToPrev | AbovePrev | BelowPrev

:: ItemOffset

= NoOffset

| OffsetVector Vector2

| OffsetFun ParentIndex OffsetFun

:: ParentIndex

:== Int

:: OffsetFun

:== (ViewDomain,Point2) -> Vector2

instance zero ItemOffset

The layout position of a control consists of two values: an ItemLoc value and an
ItemOffset value. The ItemLoc actually determines the location of the control,
the ItemOffset value adds an o�set to this position (which of course inuences the
position of other controls). The ItemLoc values can be divided into four groups:

Fixed position
This is only the Fix alternative of ItemLoc. Fix places the left top corner of
the associated control at the left top value of the view domain of its parent
object. The ItemOffset determines the actual position in the view domain,
and is given in the coordinate system of the view domain of the parent object.

You can use this layout attribute when you want to `pin' a control on the
document layer of a parent object, rather than its control layer (see Section
6.1.1). For dialogues and layout controls, that do not have a document layer,
this layout attribute is identical to the boundary aligned attribute LeftTop.
In a window or compound control, scrolling the view frame will also scroll all
controls that have a �xed position.

Boundary aligned
These are the alternatives LeftTop, RightTop, LeftBottom and RightBottom.
These attributes place their associated control at the left-top, right-top, left-
bottom, and right-bottom respectively of the current view frame of the parent
object.

Line aligned
These are the alternatives Left, Center, and Right. These attributes place

7.3. CONTROL LAYOUT 91

their associated control below all previous line aligned controls in the vertical
position, and left-aligned, centered, or right-aligned respectively with respect
to the current view frame of the parent object in the horizontal direction.

Relative position
These are the alternatives LeftOf, RightTo, Above, Below, and LeftOfPrev,
RightToPrev, AbovePrev, and BelowPrev. The �rst four alternatives must
be parameterised with the Id of a control that is element of the same parent
object, otherwise a runtime error will occur. The latter four alternatives can
be de�ned in terms of the �rst four but have the advantage that you do not
have to create Id values for controls that you only want to relatively place
other controls to. Placing controls relatively to other controls must construct
a tree of related controls: cyclic references are not allowed and result also in
a runtime error.

Controls that have a relative position layoutform a layout tree with one layout
root control. The layout attribute of the layout root control determines the layout
positions of the whole layout tree. If it is at a �xed position, the layout tree obtains
a �xed position. If it is boundary aligned, the layout tree is aligned at the same
boundary. If it is line aligned, the layout tree is line aligned.

Except for the �rst layout root control the default layout attribute for controls
is (RightToPrev,zero). For the �rst layout root control the default attribute is
(Left,zero). Consequently, the default layout order is from left to right in one
single line.

Controls are allowed to overlap partially or completely. This is particularly useful
in case of combinations of hidden and visible controls when at all times only one
is visible. It allows the program to change the control structure in an easy way by
hiding and showing controls.

In the remaining part of this section a number of examples are given to illustrate
control layout. In each of the examples we assume that the controls that are being
laid out are placed in a parent object with a view domain and view frame as given
in Figure 7.4. The x axis (the horizontal arrow) and y axis (the vertical arrow)
intersect at the coordinate zero.

?

-

view domain

view frame

Figure 7.4: View domain and view frame.

c0c1 c2

c3

c4

Figure 7.5: A layout tree
of �ve controls.

92 CHAPTER 7. CONTROL HANDLING

Controls are being displayed as boxes. Figure 7.5 shows the control con�guration
that is used in the examples. It consists of �ve equally sized controls, c0...c4. The
layout root control is c0. The controls c1...c4 have a relative layout to c0 with
layout attributes LeftOf, RightTo, Above, and Below respectively. The o�sets are
zero.

7.3.1 Layout at �xed position

Controls and layout trees that have a Fix layout attribute are being placed relative
to the view domain of the parent object. So their visibility depends on the current
orientation of the parent view frame (recall that the view frame clips everything
that is outside of it). Figure 7.6 shows the control con�guration of Figure 7.5 when
the layout root control has the attribute (Fix,zero).

Figure 7.6: The layout tree at (Fix,zero).

7.3.2 Layout at view frame boundary

Placing a control at a boundary aligned position ensures that the control is always
visible, because its position is relative to the view frame of its parent object (pro-
vided that the view frame is large enough). If this control is the layout root, then
the visibility of the controls in its layout tree depend on their relative position.
For instance, if a layout root control is placed at the left- top of the view frame
(using LeftTop), then relatively placed controls at its left and above it are invisible,
assuming all controls have zero o�sets.

Figure 7.7: The layout tree at LeftTop, RightTop, LeftBottom, and RightBottom.

7.3. CONTROL LAYOUT 93

This is illustrated in Figure 7.7. It shows the positions of the control con�guration
of Figure 7.5 when positioned at every corner of the view frame using LeftTop,
RightTop, LeftBottom, and RightBottom respectively with zero o�sets.

7.3.3 Layout in lines

Laying out controls and layout trees in lines is similar to writing characters in an
English piece of text: each next control is placed right next to the previous control
until a new line is started. A new line starts below the previous line. Lines can
be left aligned, centered, or right aligned. The layout attributes Left, Center, and
Right introduce a new line and its alignment. The �rst line starts at the top of the
view frame. If the view frame is not large enough to hold all the lines, then the
controls in these lines will not be visible.

Figure 7.8: The layout tree at Left, Center, and Right.

This is illustrated in Figure 7.8. It shows the positions of the control con�guration
of Figure 7.5 when positioned at Left, Center, and Right respectively, using zero

o�sets.

7.3.4 Layout o�sets

So far we have used zero o�sets in the layout attribute examples. The layout
position of a control is changed by an o�set vector value v = {vx,vy} as follows:
�rst, the layout position of the control is calculated as explained above, using a
zero o�set. Now assume that this results in the exact location pos = {x,y}. Then
the real position of the control is {x=x+vx, y=y+vy}. Figure 7.9 illustrates this.
Given two controls c0 and c1 it shows the result of placing c1 at RightTo control c0
with an o�set value v = {vx,vy}. The dashed box shows the location of c1 using
a zero o�set.

c0

c1

@
@
@R

-vx

?

vy

Figure 7.9: Laying out controls using an o�set vector.

94 CHAPTER 7. CONTROL HANDLING

7.3.5 Layout relative to the previous control

As explained earlier in this section, the default layout attribute of a control is
(RightToPrev,zero). The other layout attributes that refer to the previous control
are LeftOfPrev, AbovePrev, and BelowPrev. In this section we explain what the
previous control is.

Section 7.2 introduced the glue to create control structures. The best way to look at
such a control structure is to have a look at its numbered graph structure. Consider
the following expression: (a:+:b:+:c) with a, b, and c standard Controls class
instances as introduced in Section 7.1. Figure 7.10 shows the graph structure (recall
that :+: is right associative).

a
1

��	

:+:
2

@@R
:+:

4

��	
b 3

@@R
c

5

Figure 7.10: The numbered graph of (a:+:b:+:c).

Each node in the graph has an index. If a node is a glue node, then �rst number
the left sub tree, then the node itself, then the right sub tree. If a node is a
standard Controls class instance, then number it. The nodes of the sub tree of a
CompoundControl are not numbered. Proceeding in this way, one obtains the index
�gures at each of the nodes in Figure 7.10. If a node in the graph with index i

represents one of the standard Controls class instances then its previous control
is represented by that node in the graph that has the highest index less than i

and represents also one of the standard Controls class instances. So the previous
control of c is not :+:4 but b3 because we assumed that b is an instance of the
standard Controls class. Analogously, the previous element of b is neither one of
the two :+: nodes, but a1. Finally, a has no previous control.

7.4 Resizing controls

The object I/O system has a simple mechanism to let controls respond to resize
actions of their parent object. If a control wants to respond to resize events, it
should have a ControlResize attribute. It is de�ned as follows:

:: ControlAttribute st

= ... | ControlResize ControlResizeFunction | ...

:: ControlResizeFunction

:== Size -> Size -> Size -> Size

The control resize function is applied to the current outer size of the associated
control, the old view frame size of its parent object, and the new view frame size
of its parent object. The result size is supposed to be its new outer size. This
calculation is performed for all controls that are part of the object that is being
resized. If a hierarchical control has a resize function, and its new size is di�erent
from its old size, then this computation continues recursively, otherwise the layout
of its elements is not recalculated. Given the new sizes of the controls, the layout is

7.5. EXAMPLES 95

recalculated and adjusted accordingly. The e�ect of this strategy is that the relative
layout of controls is never changed.

As an example, consider one wants to have a CompoundControl that always dis-
plays three CustomControls next to each other at the top of its view frame. The
CompoundControl takes care that its view frame width is always dividable by three,
using its own ControlResize function compoundresize. Its ControlLook function
draws a rectangle �tting its current view frame.

compound = CompoundControl

(ListLS [custom,custom,custom])

[ControlResize compoundresize

,ControlViewSize compoundsize

,ControlLook True (_ {newFrame}->draw newFrame)

,CompoundHMargin 0 0

,CompoundVMargin 0 0

,CompoundItemSpace 0 0

]

compoundsize = {w=60,h=75}

compoundresize _ _ newparentsize=:{w}

= {newparentsize & w=w/3*3}

The CustomControls resize their widths according to the new width of their parent
control, using the ControlResize function customresize. For their look function
we reuse the look function mentioned in Section 6.4.1, page 57. This function draws
a rectangle �tting its current view frame and its two diagonals.

custom

= CustomControl {w=compoundsize.w/3,h=6} crossbox

[ControlResize customresize]

customresize customsize _ {w}

= {customsize & w=w/3}

Figure 7.11 shows what happens with the controls when the parent object is resized.
At the left the initial state of the CompoundControl and its CustomControls is
displayed. As explained in Section 7.3, the three custom controls form a layout
tree with the layout root control having the layout attribute (Left,zero) and the
other CustomControls (RightToPrev,zero). In the middle, the CompoundControl
is resized to the right and bottom. This resize action causes �rst recalculation of
the size of the CompoundControl, using compoundresize. Because this value di�ers
from the old size, recalculation continues for each CustomControl. The �nal result
is shown at the right.

7.5 Examples

Here are a number of additional examples of using controls. The key spotting and
mouse spotting examples already handled in the previous chapter are revisited.

7.5.1 Keyspotting revisited

In this example we extend the keyspotting example in Section 6.7.1 with the pos-
sibility to monitor also the keyboard input of controls. We create a Window that

96 CHAPTER 7. CONTROL HANDLING

���PPP���PPP���PPP ���PPP���PPP���PPP

Q
QQs

���
�XXXX���

�XXXX���
�XXXX

Figure 7.11: Resizing a CompoundControl with three CustomControls.

Figure 7.12: The keyspotting program in action.

contains a CompoundControl that contains a CustomControl. Before we discuss
each of the components below, we have a look at the way they handle keyboard
input. A screenshot of the program is given in Figure 7.12.

Each of the components is keyboard sensitive and uses the same KeyboardFunction,
spotting. This function is almost identical to the one presented in Section 6.7.1.
The only di�erence is that the keyboard input is now shown in the CustomControl
instead of the window. For this purpose spotting is parameterised with the Id of
the CustomControl. It is also parameterised with a string that states who currently
has the input focus. Now spotting changes the Look function of the CustomControl
and forces its update (by using a True boolean).

spotting cid who x pst

= appPIO (setControlLook cid True (True,look text)) pst

where

text = who+++":"+++toString x

The Look function, look, of the CustomControl is almost identical to the original
look function: except that it centers its argument string it also draws a rectangle
around it, so that we can easily see where the components are.

look text _ {newFrame} picture

picture = unfill newFrame picture

picture = draw newFrame picture

(width,picture)= getPenFontStringWidth text picture

= drawAt {x=(w-width)/2,y=h/2} text picture

where

7.5. EXAMPLES 97

{w,h} = rectangleSize newFrame

The CustomControl, custom, displays which component is currently receiving what
keyboard input. The control is identi�ed by cid. It parameterises its Keyboard-
Function spotting with its Id and the string "Control". Its initial look draws a
box around itself. The control is resizable, speci�ed by adding the ControlResize
attribute. Whenever the parent object is resized, custom changes its size in exactly
the same amount.

custom = CustomControl customsize (look "")

[ControlKeyboard (const True) Able

(noLS1 (spotting cid "Control"))

, ControlId cid

, ControlResize resize

]

resize oldCSize oldParentSize newParentSize

= { w = oldCSize.w+newParentSize.w-oldParentSize.w

, h = oldCSize.h+newParentSize.h-oldParentSize.h

}

The CompoundControl, compound, contains only custom. It parameterises its Key-
boardFunction spotting with the Id of custom and the string "Compound". Its
initial view frame size is chosen such that it is large enough to display custom

completely. It conveniently uses the look function to draw a box around itself. The
compound control is also resizable, and uses the same resize function as custom.

compound = CompoundControl custom

[ControlKeyboard (const True) Able

(noLS1 (spotting cid "Compound"))

, ControlViewSize {w=customsize.w+2*margin

,h=customsize.h+2*margin

}

, ControlResize resize

, ControlLook True (look "")

]

Finally, the Window, window, contains only compound. It parameterises its spotting
function with the Id of custom and the string "Window". Its initial size is chosen
such that it is large enough to display compound completely. For this purpose also
the margin attributes are set. Termination of the program is taken care of by having
the program quit when the user closes the window.

window = Window "keyspotting" compound

[WindowKeyboard (const True) Able

(noLS1 (spotting cid "Window"))

, WindowViewSize {w=customsize.w+4*margin

,h=customsize.h+4*margin

}

, WindowHMargin margin margin

, WindowVMargin margin margin

, WindowClose (noLS closeProcess)

]

98 CHAPTER 7. CONTROL HANDLING

Remaining details that need to be de�ned are the actual creation of the interac-
tive program and its window. For completeness, we include the program code of
keyspotting below.

module keyspotting

// **

// Clean tutorial example program.

//

// This program monitors keyboard input that is sent to a Window which consists

// of a CompoundControl which consists of a CustomControl.

// **

import StdEnv,StdIO

Start :: *World -> *World

Start world

(cid,world) = openId world

custom = CustomControl customsize (look "")

[ControlKeyboard (const True) Able

(noLS1 (spotting cid "Control"))

, ControlId cid

, ControlResize resize

]

compound = CompoundControl custom

[ControlKeyboard (const True) Able

(noLS1 (spotting cid "Compound"))

, ControlViewSize {w=customsize.w+2*margin

,h=customsize.h+2*margin

}

, ControlResize resize

, ControlLook True (look "")

]

window = Window "keyspotting" compound

[WindowKeyboard (const True) Able

(noLS1 (spotting cid "Window"))

, WindowViewSize {w=customsize.w+4*margin

,h=customsize.h+4*margin

}

, WindowHMargin margin margin

, WindowVMargin margin margin

, WindowClose (noLS closeProcess)

]

= startIO SDI Void (snd o openWindow Void window)

[ProcessClose closeProcess] world

where

customsize = {w=550,h=100}

margin = 10

resize oldCSize oldParentSize newParentSize

= { w = oldCSize.w+newParentSize.w-oldParentSize.w

, h = oldCSize.h+newParentSize.h-oldParentSize.h

}

spotting cid who x pst

= appPIO (setControlLook cid True (True,look text)) pst

where

text = who+++":"+++toString x

look text _ {newFrame} picture

picture = unfill newFrame picture

picture = draw newFrame picture

(width,picture) = getPenFontStringWidth text picture

= drawAt {x=(w-width)/2,y=h/2} text picture

where

{w,h} = rectangleSize newFrame

7.5. EXAMPLES 99

Figure 7.13: The mousespotting program in action.

7.5.2 Mousespotting revisited

In this example we extend the mouse spotting example of Section 6.7.2. Just like
then, the revised mouse spotting example is almost identical to the revised keyspot-
ting example discussed above. The only di�erences are the title of the window and
the replacement of the keyboard attributes by mouse attributes. A screenshot of
the program is given in Figure 7.13. For completeness, we show the code of the
revised mouse spotting example below.

module mousespotting

// **

// Clean tutorial example program.

//

// This program monitors mouse input that is sent to a Window which consists

// of a CompoundControl which consists of CustomControl.

// **

import StdEnv,StdIO

Start :: *World -> *World

Start world

(cid,world) = openId world

custom = CustomControl customsize (look "")

[ControlMouse (const True) Able

(noLS1 (spotting cid "Control"))

, ControlId cid

, ControlResize resize

]

compound = CompoundControl custom

[ControlMouse (const True) Able

(noLS1 (spotting cid "Compound"))

, ControlViewSize {w=customsize.w+2*margin

,h=customsize.h+2*margin

}

, ControlResize resize

, ControlLook True (look "")

]

window = Window "mousespotting" compound

[WindowMouse (const True) Able

(noLS1 (spotting cid "Window"))

, WindowViewSize {w=customsize.w+4*margin

,h=customsize.h+4*margin

}

, WindowHMargin margin margin

, WindowVMargin margin margin

, WindowClose (noLS closeProcess)

]

100 CHAPTER 7. CONTROL HANDLING

= startIO SDI Void (snd o openWindow Void window)

[ProcessClose closeProcess] world

where

customsize = {w=550,h=100}

margin = 10

resize oldCSize oldParentSize newParentSize

= { w = oldCSize.w+newParentSize.w-oldParentSize.w

, h = oldCSize.h+newParentSize.h-oldParentSize.h

}

spotting cid who x pst

= appPIO (setControlLook cid True (True,look text)) pst

where

text = who+++":"+++toString x

look text _ {newFrame} picture

picture = unfill newFrame picture

picture = draw newFrame picture

(width,picture) = getPenFontStringWidth text picture

= drawAt {x=(w-width)/2,y=h/2} text picture

where

{w,h} = rectangleSize newFrame

Chapter 8

Menus

Many interactive applications allow a user to manipulate a number of documents.
As we saw in the previous chapter, the user can issue these manipulations by means
of the keyboard and mouse. Another common source of manipulations is by issueing
commands to the application. This is where menus come in. Menus help a program
to structure the set of available commands. To the user of an application, the use
of menus provides a consistent and easily browsable graphical display of the set
of available commands. For these reasons it is recommended to use menus in a
program.

In Section 8.1 we introduce the standard set of menu de�nitions that are at a
programmers disposal. There are two top-level menus, the common menu, and
the pop up menu. Then the glue is introduced to create larger menu structures
in Section 8.2. One special menu is available for interactive processes that have
the multiple document interface (MDI) attribute, the windows menu. This menu
enumerates the currently open and visible windows of that process and give some
commands to organise them. This is treated in Section 8.3. Menus provide a
consistent graphical interface to users. To enhance the consistency, a number of
programming conventions have evolved. These are discussed in Section 8.4.

8.1 Menus and menu elements

Menus and menu elements can be de�ned by means of the type de�nitions in module
StdMenuDef (Appendix A.19). There are two top-level menu objects: the menu that
can be found in the menu bar of an application, and the pop up menu that can be
opened at any place in the application area (usually in a window). Menu objects
are instances of the type constructor class Menus. This class and the instance
declarations can be found in StdMenu.

class Menus mdef where

openMenu :: .ls !(mdef .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport,!PSt .l)

...

instance Menus (Menu m) | MenuElements m

instance Menus (PopUpMenu m) | PopUpMenuElements m

Menus and pop up menus share most of the menu elements. The only exception is
that pop up menus are not allowed to have sub menus. This restriction is enforced

101

102 CHAPTER 8. MENUS

by the two separate menu element classes for the two menus, MenuElements and
PopUpMenuElements respectively.

Menus and their elements share the same set ofmenu attributes. Before we introduce
each of the menu components, we will focus on the attributes �rst.

8.1.1 The menu attributes

The menu attributes are used by both menus and menu elements. They are the
following:

:: MenuAttribute st

= MenuId Id

| MenuSelectState SelectState

| MenuIndex Int

| MenuInit (IdFun st)

| MenuFunction (IdFun st)

| MenuMarkState MarkState

| MenuModsFunction (ModifiersFunction st)

| MenuShortKey Char

MenuId

This attribute identi�es the menu or menu element to which it is associated.
If you do not provide a MenuId the menu (element) can not be modi�ed by
the program.

MenuSelectState

This attribute de�nes whether the menu (element) can be used by the user
(Able) or not (Unable). Usually this will a�ect the look of the menu (element).
The default value is Able.

MenuIndex

This attribute de�nes the index position of a menu. Index positions range
from one (for the �rst menu) upto the number of menus. A negative or zero
MenuIndex attribute value will place the menu in front of all current menus.
A MenuIndex attribute value that is larger than the current number of menus
will place the menu behind all current menus. Other MenuIndex attribute
values place the menu behind the menu with that index value.

MenuInit

This attribute de�nes an action that should be performed immediately after
opening the menu. This is equivalent to the window initialisation action (see
Section 6.2.1). If no MenuInit attribute is provided, no additional action is
performed.

MenuFunction and MenuModsFunction

These two attributes add callback functions to menu elements that are eval-
uated when the menu element to which they are associated is selected by the
user. The di�erence between these two attributes is that the former is simply
evaluated whenever the menu element is selected, and that the latter provides
the callback function with the modi�er keys that have been pressed at the
moment of selecting the menu element. In a MenuAttribute list, the �rst of
these two attributes is chosen.

MenuMarkState

This attribute adds a check mark symbol (Mark) or leaves it out (NoMark) to
a menu element. The default value is NoMark.

8.1. MENUS AND MENU ELEMENTS 103

MenuShortKey

This attribute de�nes a character that can be used by user to select the menu
element to which the character is associated by means of the keyboard. The
menu element can be selected by pressing that character and some special,
platform dependent modi�er key.

The object I/O library also supports the standardWindows keyboard interface
of user selection of menus and menu elements. In this interface, a menu
(element) can be selected by the keyboard by marking one of the characters
in its title. A character is marked by pre�xing it with `&'. The escape sequence
is `&&'.

8.1.2 The Menu

A menu is a top level interface element that contains a group of related commands.
The menu appears in the menu bar of the interactive process. The de�nition of a
menu is as follows:

:: Menu m ls pst = Menu Title (m ls pst) [MenuAttribute *(ls,pst)]

instance Menus (Menu m) | MenuElements m

The usual appearance of a menu is by its title, which is displayed in the menu bar.
The user can browse through its commands by mouse or by a platform dependent
keyboard interface. Valid menu attributes are:

MenuAttribute: Valid: MenuAttribute: Valid:
MenuFunction MenuMarkState

MenuId
p

MenuModsFunction

MenuIndex
p

MenuSelectState
p

MenuInit
p

MenuShortKey

Example The left picture shows the menu when not selected by the user, the right
picture when selected by the user.

menu

= Menu "File"

(MenuItem "Open..." [MenuShortKey 'o']

:+: MenuItem "Close" [MenuSelectState Unable

,MenuShortKey 'w'

]

:+: MenuSeparator []

:+: MenuItem "Quit" [MenuShortKey 'q']

) []

8.1.3 The PopUpMenu

A pop up menu is a top level interface element that contains a group of related
commands. It can appear at any place in an interactive process. Its de�nition is
actually a restricted version of that of a menu:

104 CHAPTER 8. MENUS

:: PopUpMenu m ls pst = PopUpMenu (m ls pst)

instance Menus (PopUpMenu m) | PopUpMenuElements m

Pop up menus have no title and no attributes.

Example Here is an example of a pop up menu, containing the same elements as
the menu example above. The image to the left shows the menu when opened,
the image to the right when the user selects an item.

menu

= PopUpMenu

(MenuItem "Open..." [MenuShortKey 'o']

:+: MenuItem "Close" [MenuSelectState Unable

,MenuShortKey 'w'

]

:+: MenuSeparator []

:+: MenuItem "Quit" [MenuShortKey 'q']

)

8.1.4 The MenuItem

The menu item is the standard element that refers to a command. The de�nition
of a menu item is as follows:

:: MenuItem ls pst = MenuItem Title [MenuAttribute *(ls,pst)]

instance MenuElements MenuItem

instance PopUpMenuElements MenuItem

The title of a menu element is displayed as a member of its parent menu. When
the user selects the menu item its Menu(Mods)Function attribute is evaluated if the
menu item, and all of its parent menus are Able. The appearance of the menu item
reects this state. Valid menu item attributes are:

MenuAttribute: Valid: MenuAttribute: Valid:
MenuFunction

p
MenuMarkState

p
MenuId

p
MenuModsFunction

p
MenuIndex MenuSelectState

p
MenuInit MenuShortKey

p

An example of a menu item is given in the previous sections 8.1.2 and 8.1.3.

8.1.5 The MenuSeparator

The menu separator is a menu element that is only used to provide users with visual
clues that separate groups of related menu elements within a parent menu. Graph-
ically, a menu separator usually inserts some vertical space and a horizontal divider
within a menu. Menu separators have no further functionality. The de�nition of a
menu separator is as follows:

8.1. MENUS AND MENU ELEMENTS 105

:: MenuSeparator ls pst = MenuSeparator [MenuAttribute *(ls,pst)]

instance MenuElements MenuSeparator

instance PopUpMenuElements MenuSeparator

Because menu separators have no other purpose than providing some `white space'
between menu elements, the only valid menu separator attribute is the MenuId

(which can be used to remove a separator dynamically):

MenuAttribute: Valid: MenuAttribute: Valid:
MenuFunction MenuMarkState

MenuId
p

MenuModsFunction

MenuIndex MenuSelectState

MenuInit MenuShortKey

In the menu examples in the sections 8.1.2 and 8.1.3 menu separators have been
used.

8.1.6 The RadioMenu

A radio menu element is a group of menu items of which exactly one menu item is
selected. All alternatives are visible. The de�nition of a radio menu is as follows:

:: RadioMenu ls pst = RadioMenu [MenuRadioItem *(ls,pst)] Index

[MenuAttribute *(ls,pst)]

:: MenuRadioItem st :== (Title,Maybe Id,Maybe Char,IdFun st)

instance MenuElements RadioMenu

instance PopUpMenuElements RadioMenu

The initially selected item is indicated by the Index argument. As a convention
in the object I/O library, when indicating elements indices range from 1 upto the
number of elements. So n elements are indexed by 1. . .n. In case the index is out
of range, i.e. less than 1 or larger than n, it is set to 1 and n respectively. Valid
radio menu attributes are:

MenuAttribute: Valid: MenuAttribute: Valid:
MenuFunction MenuMarkState

MenuId
p

MenuModsFunction

MenuIndex MenuSelectState
p

MenuInit MenuShortKey

When an item of the radio menu is selected the previously selected radio menu
item will be unchecked, and the new radio menu item gets the check mark. The
corresponding callback function is then evaluated. The callback function is also
evaluated if the currently selected radio menu item is selected.

Example A radio menu and its initial look (it is instructive to compare this with
the radio control example at page 82).

radiomenu

106 CHAPTER 8. MENUS

= RadioMenu

[("Radio item "+++toString i,Nothing,Just (iChar i),id)

\\ i<-[1..5]

] 1 []

where

iChar i = toChar (toInt '1'+i-1)

8.1.7 The SubMenu

The sub menu is a menu element that contains other menu elements. So it is a
menu within a menu, and can of course contain sub menus as well. The de�nition
of a sub menu is therefore very similar to that of a menu:

:: SubMenu m ls pst

= SubMenu Title (m ls pst) [MenuAttribute *(ls,pst)]

instance MenuElements (SubMenu m) | MenuElements m

The usual appearance of a sub menu is by its title. This title appears in the menu
that contains the sub menu. On most system some additional visual feedback is
provided to inform the user that this item is a sub menu. The user can browse
through its elements by mouse or by a platform dependent keyboard interface.
Valid sub menu attributes are:

MenuAttribute: Valid: MenuAttribute: Valid:
MenuFunction MenuMarkState

MenuId
p

MenuModsFunction

MenuIndex MenuSelectState
p

MenuInit MenuShortKey

Example This sub menu has the same de�nition as the menu at page 103 except
that it has a SubMenu data constructor rather than the Menu data constructor
and a di�erent title. The left picture shows the sub menu when not selected
by the user, the right picture when selected by the user.

submenu

= SubMenu "Sub Menu"

(MenuItem "Open..." [MenuShortKey 'o']

:+: MenuItem "Close" [MenuSelectState Unable

,MenuShortKey 'w'

]

:+: MenuSeparator []

:+: MenuItem "Quit" [MenuShortKey 'q']

) []

8.2. MENU GLUE 107

8.2 Menu glue

In the previous section the standard set of menus and menu elements has been
discussed. This list is not complete. In the library module StdMenuElementClass

(Appendix A.21) a number of additional instances are de�ned, namely the type
constructors :+:, ListLS, NilLS, and AddLS, NewLS (their de�nition can be found
in Appendix A.14). These additional instances are required to glue menu elements.
They are treated below.

8.2.1 :+:

The most common constructor to glue menu elements is :+:. Its type constructor
de�nition and MenuElements class instance declaration are as follows:

:: :+: t1 t2 ls cs

= (:+:) infixr 9 (t1 ls cs) (t2 ls cs)

instance MenuElements ((:+:) m1 m2) | MenuElements m1

& MenuElements m2

instance PopUpMenuElements ((:+:) m1 m2) | PopUpMenuElements m1

& PopUpMenuElements m2

Assume that we have two MenuElements (or PopUpMenuElements) instances m1

and m2, working on the same local state of type ls and context state cs. Now the
glued expression m1:+:m2 is also a MenuElements (PopUpMenuElements) instance
working on the same local state and context state. Because :+: is right associative,
the expression m1 :+: m2 :+: m3 should be read as m1 :+: (m2 :+: m3).

As an example, consider the following two menu elements:

item = MenuItem "Hello there!" []

separator = MenuSeparator []

Now the expressions (item :+: separator) and (separator :+: item) are legal
combinations.

8.2.2 ListLS and NilLS

The :+: type constructor is not always the most appropriate glue. When con-
structing sets of menu elements of the same type, it is much more convenient to
use lists and list comprehensions. When constructing an unknown number of menu
elements, it is even impossible to use :+:. Again, lists provide more exibility. List-
like glue is provided by the type constructor ListLS. The type constructor NilLS
is a shorthand for ListLS []. It can also be conveniently used to state that a sub
menu or top level menu has no menu elements. Here are the de�nitions.

108 CHAPTER 8. MENUS

:: ListLS t ls cs = ListLS [t ls cs]

:: NilLS ls cs = NilLS

instance MenuElements (ListLS m) | MenuElements m

instance MenuElements NilLS

instance PopUpMenuElements (ListLS m) | PopUpMenuElements m

instance PopUpMenuElements NilLS

Given a list of MenuElements (PopUpMenuElements) instances ms = [m1 ...mn],
working on the same local state of type ls and context state cs, then the expression
ListLS ms is also a MenuElements (PopUpMenuElements) instance working on the
same local state and context state.

8.2.3 AddLS and NewLS

The previously discussed glueing type constructors always glue menu elements that
work on the same local state and context state. Two other glueing constructors are
de�ned to extend and change the local state, AddLS and NewLS.

:: AddLS t ls cs = E. .new: { addLS::new, addDef::t *(new,ls) cs }

instance MenuElements (AddLS m) | MenuElements m

instance PopUpMenuElements (AddLS m) | PopUpMenuElements m

Given a MenuElements (PopUpMenuElements) instance m1 that works on a local
state of type ls and a context state of type cs, one can add another MenuElements
(PopUpMenuElements) instance m2 that works on an extended local state of type
(new,ls) and the same context state of type cs. Let x be a value of type new, then
this is done by the expression m1 :+: faddLS=x, addDef=m2g.

:: NewLS t ls cs = E. .new: { newLS::new, newDef::t new cs }

instance MenuElements (NewLS m) | MenuElements m

instance PopUpMenuElements (NewLS m) | PopUpMenuElements m

Given a MenuElements (PopUpMenuElements) instance m1 that works on a local
state of type ls and a context state of type cs, one can add another MenuElements
(PopUpMenuElements) instance m2 that works on a new local state of type new and
the same context state of type cs. Let x be a value of type new, then this is done
by the expression m1 :+: fnewLS=x, newDef=m2g.
In both cases the extended part of the local state and the new local state are
encapsulated completely from the external context using existential quanti�cation.
Section 8.5 contains an example of the use of NewLS.

8.3 The Windows menu

For programs using interactive processes that have the multiple document interface
(for MDI processes, see Section 11.1) one special menu is added by the object I/O
system to the menu system of such an interactive process. This is the Windows
menu. This menu contains a number of commands to arrange the current set of
visible windows, and a list of all window titles. The set of arrange commands is
platform dependent, but contains at least the following three commands:

8.4. MENU CONVENTIONS 109

Cascade:
This command arranges all windows to have equal size. They will be placed in
diagonal order: from the left top to the right bottom of the process window.
The windows will always be shown completely inside the process window.
If there are to many windows, the arrangements starts over again for the
remaining windows, which will therefore overlap the other windows.

Tile Horizontally:
This command arranges all windows in rows without overlapping. It is tried
to give all windows the same size.

Tile Vertically:
This command arranges all windows in columns without overlapping. It is
tried to give all windows the same size.

Separated from these commands by a MenuSeparator is the list of open windows in
lexicographical order on the window title. The currently active window is checked.
Selecting any of these windows activates that window. (This causes the previously
active window to become deactivated, and the new window to become active.)

8.4 Menu conventions

The use of menus provides application users with a consistent and uniform access to
the available set of commands. In this section we discuss a number of conventions
that are usually followed to increase the level of consistency.

8.4.1 Subsetting the available commands

In general when using an interactive application, the application will move through
several states. In each state a particular subset of the complete set of available
commands will be applicable to the user while the remaining commands should
not be selected. A well designed application should make this clear to the user by
subsetting the available commands.

The easiest way to subset commands is by disabling and enabling the menu elements
that should be unselectable and selectable respectively. For this purpose the func-
tions enableMenuElements and disableMenuElements (module StdMenuElement,
Appendix A.20) are available to enable and disable individual menu elements. Com-
plete menus can be enabled and disabled using the functions enableMenus and
disableMenus (module StdMenu, Appendix A.17). This module also contains two
functions to enable and disable the whole current set of menus: enableMenuSystem
and disableMenuSystem.

Another way to subset commands is to have at all times only those menus and menu
elements open that should be available. A disadvantage of this technique is that it
can become complicated quickly, and that it leaves the user disoriented when the
set of commands changes frequently.

8.4.2 Command conventions

In this section we discuss some frequently used conventions in applications with
respect to commands.

110 CHAPTER 8. MENUS

Clipboard commands

Applications that support the use of the clipboard (Chapter 12) to cut, copy, and
paste private and external data usually are found in an "Edit" menu. Conventions
are:

Cut:
This command should be enabled only if the application is in a state that
an object has been selected that can be transfered to the clipboard. Issueing
this command should remove that object from its context and place it in the
clipboard. Its name should be "Cut" and it should have the shortkey attribute
'x'.

Copy:
This command should be enabled only if the application is in a state that an
object has been selected that can be transfered to the clipboard. Issueing this
command should place it in the clipboard, but not remove it from its context.
Its name should be "Copy" and it should have the shortkey attribute 'c'.

Paste:
This command should be enabled only if the clipboard contains an object
that can be currently incorporated in the application. Issueing this command
should read the clipboard and put that object in the application. Its name
should be "Paste" and it should have the shortkey attribute 'v'.

Undo command

Applications that allow users to manipulate documents by sequences of commands
can support an undo command. The undo command can also be undone by a redo
command. These commands are usually found in an "Edit" menu. Conventions
are:

Undo:
This command should be enabled only if the user has issued a sequence of
commands that can be undone. The number of undoable commands depends
on the sophistication of the application. The name of this command is "Undo"
and it has the shortkey attribute 'z'.

Redo:
This command should be enabled only if a (sequence of) undo command has
been issued. At each selection it restores the changes of the undo command.
The name of this command is "Redo" and it has the shortkey attribute 'y'.

Document commands

The document commands are frequently found commands to create new documents,
open existing documents, and save and close open documents. These commands
are usually found in a "File" menu. Conventions are:

New:
This command should be enabled only if the application can modify a new
document. Issueing this command should create or reuse a window containing
the new document. Its name should be "New" and it should have the shortkey
attribute 'n'.

8.5. EXAMPLE: A SMALL MENU SYSTEM 111

Open:
This command should be enabled only if the application can modify an ad-
ditional, existing document. Issueing this command should give the user the
opportunity to search for a �le that will be opened by the application. For
this purpose the StdFileSelect function selectInputFile can be used (Ap-
pendix A.10). The name of the command should be "Open..." and it should
have the shortkey attribute 'o'.

Close:
This command should be enabled only if the application has an open document
window or dialogue. Issueing this command should close the currently active
window or dialogue. It is good programming practice to check if the document
has been recently saved. If this is not the case, then the user should be asked
if the document should be saved before closing. The name of this command
should be "Close" and it should have the shortkey attribute 'w'.

Save:
This command should be enabled only if the currently active document win-
dow version di�ers from a (possibly not present) �le version. Issueing this
command should save the current state of the document in the active window
to �le. If there is no �le associated yet, then the application should �rst ask for
a �le name. For this purpose the StdFileSelect function selectOutputFile

can be used (Appendix A.10). The name of the command should be "Save"
and it should have the shortkey attribute 's'.

Save As:
This command should be enabled only if the application has an open document
window. Issueing this command should give the user the possibility to browse
the �le system and provide a �le name. For this purpose the StdFileSelect
function selectOutputFile can be used (Appendix A.10). The name of the
command should be "Save As..."

Quit or Exit command

Users can leave an application using the quit or exit command. A user should
always be allowed to leave the application. It is good programming practice to
check if there are any unsaved documents in the application. If this is the case then
the user should be asked if these documents should be saved before closing. The
name of the quit command is usually "Quit" (with shortkey attribute value 'q')
or "Exit". This command is usually found in a "File" menu.

8.5 Example: a small menu system

In this section we show a program that creates an interactive process with a multiple
document interface. It can serve as a framework for writing your own multiple doc-
ument interface programs. The interactive process contains one menu, File, which
contains three commands: a command to open a new window, New; a command
to close the active window, Close; and a command to leave the application, titled
Quit. The New and Quit commands are always available. The Close command will
be subsetted using enabling and disabling (as described in Section 8.4.1). We start
with the commands, and proceed with the menu and process de�nition.

The New command is a MenuItem with a local state of type Int. The local state is
used to give every new window a new title by appending the current value to the

112 CHAPTER 8. MENUS

string "Window". The initial value is one. Here is the de�nition of the command:

{ newLS =1

, newDef=MenuItem "&New" [MenuShortKey 'n',MenuFunction new]

}

The callback function of the New command, new, uses the local integer state. For
each successfully created window the value is incremented. In addition, the Close
command is enabled. For now, assume that the Close command is identi�ed by the
Id value closeid. If the window can not be created a notice is opened, using the
notice library developed in Section 6.8.1.

new :: (Int,PSt .l) -> (Int,PSt .l)

new (i,pst)

(error,pst) = openWindow Void window pst

| error<>NoError

notice = Notice ["MDI could not open new window"]

(NoticeButton "Ok" id)

[]

= (i,openNotice notice pst)

| otherwise

= (i+1,appPIO (enableMenuElements [closeid]) pst)

The Close command is identi�ed by the Id closeid. The application starts with
no windows, so its initial SelectState is Unable:

MenuItem "&Close" [MenuShortKey 'w',MenuFunction (noLS close)

,MenuId closeid, MenuSelectState Unable

]

The callback function close closes the active window with the StdWindow function
closeActiveWindow. It is then checked if there still are open windows. If this is
not the case, then close should disable the Close command. The function get-

WindowsStack returns the list of Ids of all currently open windows. So if this list
is empty, then there are no more windows open. We get the following de�nition:

close :: (PSt .l) -> PSt .l

close pst

pst = closeActiveWindow pst

(rest,pst) = accPIO getWindowsStack pst

| isEmpty rest = appPIO (disableMenuElements [closeid]) pst

| otherwise = pst

Because we are not interested in the window details, we keep its implementation
very simple. It contains no controls, which expressed by the value NilLS. If the
user requests to close the window, the Close command callback function close is
evaluated. The look of the window draws the current view frame rectangle and the
lines between the diagonally opposite corner points.

window = Window ("Window "+++toString i)

NilLS

[WindowClose (noLS close)

, WindowViewSize {w=300,h=300}

8.5. EXAMPLE: A SMALL MENU SYSTEM 113

Figure 8.1: The termination notice.

, WindowLook True look

]

look :: SelectState UpdateState *Picture -> *Picture

look _ {newFrame=frame=:{corner1,corner2}} picture

picture = unfill frame picture

picture = draw frame picture

picture = drawLine corner1 corner2 picture

= drawLine {corner1 & x=corner2.x} {corner2 & x=corner1.x} picture

The Quit command has a straightforward de�nition:

MenuItem "&Quit" [MenuShortKey 'q',MenuFunction (noLS quit)]

Its callback function quit asks the user to con�rm this choice. For this purpose
we use another notice. If the user con�rms the choice, then the application is
terminated, otherwise nothing happens. Figure 8.1 shows the notice.

quit :: (PSt .l) -> PSt .l

quit pst

= openNotice notice pst

where

notice = Notice ["Do you really want to quit?"]

(NoticeButton "&Ok" (noLS closeProcess))

[NoticeButton "&Cancel" id]

The de�nition of the File menu simply glues the de�nitions of the commands as
described above into one menu de�nition.

menu

= Menu "&File"

({ newLS =1

, newDef=MenuItem "&New" [MenuShortKey 'n',MenuFunction new]

}

:+: MenuItem "&Close" [MenuShortKey 'w',MenuFunction (noLS close)

,MenuId closeid, MenuSelectState Unable

]

:+: MenuSeparator []

:+: MenuItem "&Quit" [MenuShortKey 'q',MenuFunction (noLS quit)]

) []

The remaining details that need to be arranged are the creation of the Id value
closeid, the creation of the menu, and the creation of the parent interactive process
of the menu. We conveniently reuse the quit function to handle user requests to
close the interactive process by setting the (ProcessClose quit) attribute. Here
is the full program code.

114 CHAPTER 8. MENUS

module MDI

// **

// Clean tutorial example program.

//

// This program creates a Multiple Document Interface process with a Window menu.

// **

import StdEnv, StdIO

import notice

Start :: *World -> *World

Start world

(id,world) = openId world

= startIO MDI Void (initialise id) [ProcessClose quit] world

quit :: (PSt .l) -> PSt .l

quit pst

= openNotice notice pst

where

notice = Notice ["Do you really want to quit?"]

(NoticeButton "&Ok" (noLS closeProcess))

[NoticeButton "&Cancel" id]

initialise :: Id (PSt .l) -> PSt .l

initialise closeid pst

(error,pst) = openMenu 0 menu pst

| error<>NoError= abort "MDI could not open File Menu"

| otherwise = pst

where

menu= Menu "&File"

({ newLS =1

, newDef=MenuItem "&New" [MenuShortKey 'n',MenuFunction new]

}

:+: MenuItem "&Close" [MenuShortKey 'w',MenuFunction (noLS close)

,MenuId closeid, MenuSelectState Unable

]

:+: MenuSeparator []

:+: MenuItem "&Quit" [MenuShortKey 'q',MenuFunction (noLS quit)]

) []

new :: (Int,PSt .l) -> (Int,PSt .l)

new (i,pst)

(error,pst) = openWindow Void window pst

| error<>NoError

notice = Notice ["MDI could not open new window"]

(NoticeButton "Ok" id)

[]

= (i,openNotice notice pst)

| otherwise

= (i+1,appPIO (enableMenuElements [closeid]) pst)

where

window = Window ("Window "+++toString i)

NilLS

[WindowClose (noLS close)

, WindowViewSize {w=300,h=300}

, WindowLook True look

]

look :: SelectState UpdateState *Picture -> *Picture

look _ {newFrame=frame=:{corner1,corner2}} picture

picture = unfill frame picture

picture = draw frame picture

picture = drawLine corner1 corner2 picture

= drawLine {corner1 & x=corner2.x} {corner2 & x=corner1.x} picture

close :: (PSt .l) -> PSt .l

8.5. EXAMPLE: A SMALL MENU SYSTEM 115

close pst

pst = closeActiveWindow pst

(rest,pst) = accPIO getWindowsStack pst

| isEmpty rest = appPIO (disableMenuElements [closeid]) pst

| otherwise = pst

116 CHAPTER 8. MENUS

Chapter 9

Timers

Timers provide interactive programs with a tool to let actions occur at regular
time intervals. These actions respond to timer events, and so they can be properly
de�ned as callback functions. Typical examples of timer applications are blinking
cursors, clocks, and time-out mechanisms.

The de�nition types of timers can be found in module StdTimerDef, Appendix
A.44. The main type de�nitions are as follows:

:: Timer t ls pst

= Timer TimerInterval (t ls pst) [TimerAttribute *(ls,pst)]

:: TimerInterval

:== Int

:: TimerAttribute st

= TimerFunction (TimerFunction st)

| TimerId Id

| TimerInit (IdFun st)

| TimerSelectState SelectState

:: TimerFunction st

:== NrOfIntervals -> st -> st

A TimerInterval is an integer value that must be at least zero. The time unit
is platform dependent and is de�ned by the function ticksPerSecond (module
StdSystem, Appendix A.37).

The TimerAttributes are the following:

TimerFunction:
This attribute is the callback function that is evaluated when a timer event
is handled. Its �rst argument is the number of whole timer intervals that
have elapsed since its previous evaluation, so this value is at least 1. If the
timer interval is zero, then this number is always 1. Enabling a timer from a
disabled state resets the last evaluation time.

TimerId:
This attribute identi�es the timer. If you do not provide a TimerId then timer
can not be modi�ed or closed by the program (except by closing the parent
interactive process).

TimerInit:
This attribute de�nes an action that should be performed immediately after

117

118 CHAPTER 9. TIMERS

opening the timer. This is equivalent to the window and menu initialisation
actions (sections 6.2.1 and 8.1.1). If no TimerInit attribute is provided, no
additional action is performed.

TimerSelectState:
This attribute de�nes whether the timer will respond to timer events (Able)
or not (Unable). The default value is Able.

The Timer type constructor is parameterised with a type constructor variable. Anal-
ogous to menus that contain menu elements, timers can contain timer elements. The
instances must be member of the TimerElements class. This is expressed by the
Timers timer creation member function, openTimer which can be found in module
StdTimer (Appendix A.42):

class Timers tdef where

openTimer :: .ls !(tdef .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport,!PSt .l)

instance Timers (Timer t) | TimerElements t

Currently, the instances of the TimerElements class are receivers and the usual
glueing type constructors that we have already encountered for controls (Section
7.2) and menu elements (Section 8.2), namely :+:, ListLS, NilLS, and AddLS,
NewLS. The receiver instances are declared in module StdTimerReceiver (Appendix
A.46). Receivers are handled in Chapter 10. The glueing constructors are declared
in the same module StdTimerElementClass that contains the TimerElements class
(Appendix A.45).

9.1 Examples

In this section we give some examples to illustrate the use of timers.

9.1.1 Expanding circles

In this example we create a program that uses a timer to continuously draw a
number of expanding concentric circles in a window. It also opens a menu containing
only the quit command. Figure 9.1 shows the program in action. We discuss these
object I/O components in reverse order (menu, window, timer).

The menu de�nition is very simple, as it contains only one command to terminate
the example program. Recall that to terminate an interactive process the Std-

Process function closeProcess must be used. The StdIOBasic function noLS

suitably turns closeProcess into the desired type. Here is the menu de�nition.

mdef = Menu "&Circles"

(MenuItem "&Quit" [MenuFunction (noLS closeProcess)

,MenuShortKey 'q'

]

) []

The window is also simple. The initial view frame size of the window in which the
circles are to be drawn is windowEdge by windowEdge (200 in the example). To

9.1. EXAMPLES 119

Figure 9.1: The circles program in action.

ease drawing, we take care that the view domain of the window has the origin zero

exactly in the center of the view domain. This can be done conveniently by de�ning
the WindowViewDomain attribute to be:

viewDomain

= { corner1 = {x= ~windowEdge/2,y= ~windowEdge/2}

, corner2 = {x= windowEdge/2,y= windowEdge/2}

}

The window does not contain controls (expressed by the Controls type instance
NilLS). It is identi�ed by the Id value wid. The window de�nition is as follows:

wdef = Window "Circles" NilLS

[WindowId wid

,WindowViewSize (rectangleSize viewDomain)

,WindowViewDomain viewDomain

]

The timer draws a number of concentric circles that have an increasing radius. For
this purpose it uses a local state of the following type and initial value:

:: TimerState

= { nrCircles :: Int

, equiDistance :: Int

, minRadius :: Int

}

initTimerState = { nrCircles=4, equiDistance=2, minRadius=0 }

The nrCircles �eld contains the number of circles that are drawn. The equi-

Distance �eld is the di�erence of radius between two neighbouring circles. The
minRadius �eld keeps track of the radius of the smallest visible circle.

The timer interval is set to a twentieth of a second (ticksPerSecond/20). The
timer contains no timer elements. Its de�nition is as follows:

tdef = Timer (ticksPerSecond/20) NilLS [TimerFunction timer]

120 CHAPTER 9. TIMERS

The timer function timerwill be evaluated by the object I/O system every twentieth
of a second (if possible). The timer function actually ignores the number of elapsed
intervals and simply draws the next sequence of circles. There are two cases to
distinguish:

� If the smallest circle still �ts entirely inside the window (tested by minRadius

< windowEdge/2), then timer undraws the smallest circle and draws the new
circle which should have a radius equal to minRadius + nrCircles * equi-

Distance. Finally, the minRadius �eld is changed to reect the fact that the
smallest visible circle now has radius minRadius + equiDistance.

� If the smallest circle does not �t entirely inside the window, then timer com-
pletely un�lls the window. By setting the new local TimerState back to
initTimerState the circles are drawn again from the center.

timer _ (lst=:{nrCircles,equiDistance,minRadius},pst)

| minRadius<windowEdge/2

lst = {lst & minRadius=minRadius+equiDistance}

newRadius= minRadius+nrCircles*equiDistance

pst = appPIO (appWindowPicture wid

(draw {oval_rx=newRadius,oval_ry=newRadius}

o undraw {oval_rx=minRadius,oval_ry=minRadius}

)) pst

= (lst,pst)

| otherwise

pst = appPIO (appWindowPicture wid (unfill viewDomain)) pst

= (initTimerState,pst)

The last details that remain to be de�ned are the actual opening of the menu,
window, and timer, the opening of the interactive process, and the creation of wid.
For completeness we show the complete program code.

module circles

// **

// Clean tutorial example program.

//

// This program creates a window that displays growing concentric circles.

// For this purpose it uses a timer.

// **

import StdEnv, StdIO

:: TimerState

= { nrCircles :: Int

, equiDistance :: Int

, minRadius :: Int

}

Start :: *World -> *World

Start world

= circles (openId world)

circles :: (Id,*World) -> *World

circles (wid,world)

= startIO SDI

Void

(snd o seqList [openWindow Void wdef

,openMenu Void mdef

9.1. EXAMPLES 121

,openTimer initTimerState tdef

]

) []

world

where

windowEdge = 200

viewDomain = { corner1={x= ~windowEdge/2,y= ~windowEdge/2}

, corner2={x= windowEdge/2,y= windowEdge/2}

}

wdef = Window "Circles" NilLS

[WindowId wid

, WindowViewSize (rectangleSize viewDomain)

, WindowViewDomain viewDomain

]

mdef = Menu "&Circles"

(MenuItem "&Quit" [MenuFunction (noLS closeProcess)

,MenuShortKey 'q'

]

) []

tdef = Timer (ticksPerSecond/20) NilLS

[TimerFunction timer

]

initTimerState = { nrCircles = 4

, equiDistance= 2

, minRadius = 0

}

timer _ (lst=:{nrCircles,equiDistance,minRadius},pst)

| minRadius<windowEdge/2

lst = {lst & minRadius=minRadius+equiDistance}

newRadius = minRadius+nrCircles*equiDistance

pst = appPIO (appWindowPicture wid

(draw {oval_rx=newRadius,oval_ry=newRadius}

o undraw {oval_rx=minRadius,oval_ry=minRadius}

)) pst

= (lst,pst)

| otherwise

pst = appPIO (appWindowPicture wid (unfill viewDomain)) pst

= (initTimerState,pst)

9.1.2 Internal clock

In this example we create a program that uses three timers to track the elapsed
time since program startup. The timers track the elapsed seconds, minutes, and
hours respectively. A dialogue is used to provide visual feedback. Figure 9.2 shows
the application in action. We �rst have a look at the dialogue, and then the three
timers.

Figure 9.2: The timing program in action.

The dialogue ddef simply uses TextControls to display the hours, minutes, and
seconds. These controls are identi�ed by the Id values hoursId, minutesId, and

122 CHAPTER 9. TIMERS

secondsId respectively. LayoutControls are used to get the layout in the desired
way. Observe the use of list comprehensions and the ListLS Controls class in-
stance. In this example closing the dialogue also terminates the application. Here
is the dialogue de�nition:

ddef

= Dialog "Clock"

(LayoutControl

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-["Hours:","Minutes:","Seconds:"]

]

) []

:+: LayoutControl

(ListLS [TextControl "0" [ControlPos (Left,zero)

,ControlId id

,ControlWidth (ContentWidth "00")

]

\\ id<-[hoursId,minutesId,secondsId]

]

) []

) [WindowClose (noLS closeProcess)]

Because the operation of each of the three timers is very similar, we use one function
tdef to de�ne them and parameterise it with their respective TimerIntervals, dt.
The timers do not contain any timer elements. Each timer has a local integer state
(initially zero) that keeps the current number of evaluated time units modulo their
maximum number, maxunit. The timer function tick uses the NrOfIntervals pa-
rameter. Given the current number of evaluated time units in its local integer state,
each timer function adds the NrOfIntervals value nrElapsed to it. Depending on
dt, the proper modulo value is taken (using maxunit). This new value is the new
local state and is also drawn in the dialogue by setting the text of the corresponding
text control.

tdef dt

= Timer dt NilLS [TimerFunction tick]

where

tick nrElapsed (time,pst)

time = (time+nrElapsed) mod maxunit

= (time,appPIO (setControlText id (toString time)) pst)

(id,maxunit) = if (dt==second) (secondsId,60)

(if (dt==minute) (minutesId,60)

(hoursId, 24))

The last details that remain to be de�ned are the actual opening of the three timers,
the dialogue, the opening of the interactive process, and the creation of the proper
Ids. For completeness we show the complete program code.

module clock

// **

// Clean tutorial example program.

//

// This program creates a window that tracks the elapsed time since startup.

// For this purpose it uses three timers to track the seconds, minutes, and hours

// separately.

9.1. EXAMPLES 123

// **

import StdEnv,StdIO

:: DialogIds

= { secondsId :: Id

, minutesId :: Id

, hoursId :: Id

}

second :== ticksPerSecond

minute :== 60*second

hour :== 60*minute

openDialogIds :: *env -> (DialogIds,*env) | Ids env

openDialogIds env

([secondsid,minutesid,hoursid:_],env) = openIds 3 env

= ({ secondsId=secondsid, minutesId=minutesid, hoursId=hoursid },env)

Start :: *World -> *World

Start world

(dialogIds,world) = openDialogIds world

= startIO NDI Void (initialise dialogIds) [] world

initialise :: DialogIds (PSt .l) -> (PSt .l)

initialise {secondsId,minutesId,hoursId} pst

(errors,pst) = seqList [openTimer 0 (tdef timerinfo)

\\ timerinfo<-[second,minute,hour]

] pst

| any ((<>) NoError) errors

= closeProcess pst

(error,pst) = openDialog Void ddef pst

| error<>NoError

= closeProcess pst

| otherwise

= pst

where

tdef dt

= Timer dt NilLS [TimerFunction tick]

where

tick nrElapsed (time,pst)

time = (time+nrElapsed) mod maxunit

= (time,appPIO (setControlText id (toString time)) pst)

(id,maxunit) = if (dt==second) (secondsId,60)

(if (dt==minute) (minutesId,60)

(hoursId, 24))

ddef= Dialog "Clock"

(LayoutControl

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-["Hours:","Minutes:","Seconds:"]

]

) []

:+: LayoutControl

(ListLS [TextControl "0" [ControlPos (Left,zero)

,ControlId id

,ControlWidth (ContentWidth "00")

]

\\ id<-[hoursId,minutesId,secondsId]

]

) []

) [WindowClose (noLS closeProcess)]

124 CHAPTER 9. TIMERS

Chapter 10

Receivers

All the interactive object I/O components discussed so far have in common that the
events to which they respond are abstract. In this context abstract means that it is
not speci�ed in detail what concrete events cause a speci�c callback function to be
evaluated. For instance, a callback function associated with a MenuItem (Section
8.1.4) is evaluated when it has been selected by the user. How this selection takes
place is not speci�ed.

In this section we discuss an interactive object I/O component that responds to
program de�ned events, or rather messages. This component is the receiver. It
plays an important role in the construction of interactive components. There are
no restrictions on the kind of messages that can be sent or received, provided that
they are type correct. The latter is obtained by using special identi�cation values
for receivers, the receiver ids (Chapter 4).

There are also receivers that are able to receive data from other programs via a
network. These receivers are not topic of this chapter but of Chapter 14.

We will �rst have a look at the de�nition of receivers in Section 10.1. Receivers can
be opened as top level object I/O components, but also as elements of windows,
dialogues, menus, and timers. This is discussed in Section 10.2. Knowing how to
de�ne and open receivers, we show which functions are available to send messages
in Section 10.3. Section 10.4 contains a number of examples to demonstrate the use
of receivers.

10.1 Receiver de�nitions

There are two kinds of receivers. Uni-directional receivers respond only to mes-
sages. Bi-directional receivers respond to messages and also reply with a message.
The types needed to de�ne receivers can be found in the module StdReceiverDef,
Appendix A.34.

A uni-directional receiver that responds to messages of type msg and that has a
local state of type ls and process state of type pst) is de�ned by an expression of
type (Receiver msg ls pst):

:: Receiver msg ls pst

= Receiver (RId msg) (ReceiverFunction msg *(lst,pst))

[ReceiverAttribute *(lst,pst)]

:: ReceiverFunction msg st

125

126 CHAPTER 10. RECEIVERS

:== msg -> st -> st

A bi-directional receiver that responds to messages of type msg and returns a re-
sponse message of type resp and that has a local state of type ls and process state
pst) is de�ned by an expression of type (Receiver2 msg resp ls pst):

:: Receiver2 msg resp ls pst

= Receiver2 (R2Id msg resp) (Receiver2Function msg resp *(ls,pst))

[ReceiverAttribute *(ls,pst)]

:: Receiver2Function msg resp st

:== msg -> st -> (resp,st)

The set of receiver attributes is currently limited to the ReceiverSelectState

which default value is Able.

The receiver attributes are de�ned as follows:

:: ReceiverAttribute st

= ReceiverInit (IdFun st)

| ReceiverSelectState SelectState

| ReceiverConnectedReceivers [Id]

The ReceiverInit attribute de�nes an action that should be performed immedi-
ately after opening the receiver. This is equivalent to the window, menu, and timer
initialisation actions (sections 6.2.1, 8.1.1, and 9). If no ReceiverInit attribute is
provided, no additional action is performed. The ReceiverSelectState attribute
indicates whether the receiver responds (Able) or ignores (Unable) messages. Its
default value is Able. The ReceiverConnectedReceivers attribute is discussed in
Section 14.

10.2 Receiver creation

Receivers can be opened as top level interface elements. This is done in the usual,
overloaded way. Module StdReceiver, Appendix A.32) declares the type construc-
tor class Receivers with the top level receiver creation member function open-

Receiver. Uni-directional and bi-directional receivers are proper instances of this
class.

class Receivers rdef where

openReceiver :: .ls !*(*rdef .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport,!PSt .l)

...

instance Receivers (Receiver msg)

instance Receivers (Receiver2 msg resp)

Receivers can also be opened as elements of windows, dialogues, menus, and timers.
So, for instance in a window one can not only add the set of controls as discussed
in Chapter 7 but also receivers. This is accomplished by declaring receivers to be
instances of the Controls type constructor class in module StdControlReceiver

(Appendix A.8). Receivers are declared to be instances of menu elements in mod-
ule StdMenuReceiver (Appendix A.22), and timer elements in module StdTimer-

Receiver (Appendix A.46).

10.3. MESSAGE PASSING 127

10.3 Message passing

In contrast with the previously discussed object I/O components, receivers must
have an identi�cation value. The message passing functions require this identi�ca-
tion value to ensure that a message of the correct type is sent. The message passing
functions can be found in module StdReceiver, Appendix A.32.

All message passing functions return a report about the message passing action.
This report is an algebraic type SendReport, which has the following alternatives:

:: SendReport

= SendOk

| SendUnknownReceiver

| SendUnableReceiver

| SendDeadlock

| OtherSendReport !String

For all functions, the alternative value SendOk is returned in case message pass-
ing was successful. The alternative SendUnknownReceiver is returned in case the
indicated receiver is not open at the moment of sending the message. The other
SendReport alternatives are discussed below.

We start with message passing to uni-directional receivers in Section 10.3.1. Bi-
directional message passing is discussed in Section 10.3.2.

10.3.1 Uni-directional message passing

There are two functions a programmer can use to send a message to a uni-directional
receiver: asyncSend and syncSend which have the same function types.

asyncSend :: !(RId msg) msg !(PSt .l) -> (!SendReport,!PSt .l)

syncSend :: !(RId msg) msg !(PSt .l) -> (!SendReport,!PSt .l)

Using asyncSend, a message is placed at the end of the asynchronous message queue
of the indicated receiver and will, at some point, be handled by that receiver. It
is unspeci�ed when that event occurs. Asynchronous messages that are sent in
sequence will be evaluated in that sequence. Asynchronous message passing only
fails in case the indicated receiver is not open, as discussed above. You should
observe that successfully queueing an asynchronous message does not guarantee
that the message will be handled. The receiver might be disabled or closed before
all of its messages have been handled.

If you want to enforce a receiver to handle a message, you should use syncSend.
This function does not place the message in the message queue of the indicated
receiver, but instead applies the receiver function of that receiver to the message.
This implies that syncSend has to switch context because the indicated receiver is
part of another object I/O component. Another consequence is that synchronous
messages may overtake asynchronous messages. Synchronous messages that are sent
in sequence will be evaluated in that order.

Sending a synchronous message fails in case the indicated receiver does not exist. If
the indicated receiver does exist, but its ReceiverSelectState attribute is Unable,
then the message is also not handled. In this case, the SendReport alternative Send-
UnableReceiver is returned. Finally, even if the indicated receiver exists and is
Able communication can still fail. This is possible when the indicated receiver itself

128 CHAPTER 10. RECEIVERS

is involved in a synchronous message passing transaction and waiting for termina-
tion. If this transaction involves the original receiver, then a deadlock situation is
detected. In that case, syncSend also fails and returns with SendDeadlock.

Examples of uni-directional message passing are given in Section 10.4. The �rst
example, in Section 10.4.1, demonstrates the use of asynchronous message passing,
while the second example, in Section 10.4.2, demonstrates synchronous message
passing.

10.3.2 Bi-directional message passing

Bi-directional message passing is synchronous. A message is sent using the function
syncSend2:

syncSend2 :: !(R2Id msg resp) msg !(PSt .l)

-> (!(!SendReport,!Maybe resp), !PSt .l)

Analogous to syncSend, syncSend2 locates the indicated bi-directional receiver and
applies the argument message immediately to the corresponding receiver function.
If this receiver could be found and happens to be Able, evaluation of the receiver
function will yield a response message resp. In this case the SendReport result of
syncSend2 is SendOk, and the response value is returned as (Just resp). In all
exceptional cases, there is no response value and Nothing is returned. To evaluate
the receiver function, syncSend2 has to switch context as well.

Bi-directional receivers can be used to retrieve local encapsulated data. Example
10.4.3 demonstrates this.

10.4 Examples

In this section we give some examples to illustrate the use of receivers.

10.4.1 Talk windows

In this example we create a program that uses receivers to send keyboard input
from one window to another window, and vice versa. This results in a talk like
application (although it is not very useful as a talk application because it runs on
one computer). Figure 10.1 shows the application in action.

The initialisation action of the talk program, de�ned by the function initialise,
�rst creates a menu that has only one quit menu item. This command ensures
that we can always terminate the application. Then two RId values are generated
that will be used to identify the two receivers. The function openTalkWindow is
then applied twice to create the two windows. Its parameters are the name of
the window and the two receiver ids. The �rst receiver id parameter identi�es the
private receiver, while the second identi�es the other receiver.

initialise :: (PSt .l) -> PSt .l

initialise pst

menu = Menu "&Talk"

(MenuItem "&Quit" [MenuShortKey 'q'

,MenuFunction (noLS closeProcess)

]

10.4. EXAMPLES 129

Figure 10.1: The talk program in action.

) []

(error,pst)= openMenu undef menu pst

| error<>NoError

= abort "talk could not open menu."

| otherwise

(a,pst) = accPIO openRId pst

(b,pst) = accPIO openRId pst

pst = openTalkWindow "A" a b pst

pst = openTalkWindow "B" b a pst

= pst

openTalkWindow creates a window in which the user can type text, using an edit
control, and see the messages of the other talk window, also by means of an edit
control. The messages of the other talk window are of course handled by a receiver.

The �rst edit control is identi�ed by an Id value inId. The user keyboard input is
handled by function input. This function is parameterised with the Id of the edit
control and the RId of the receiver of the other window. Because we only want to
send new input to the other window receiver, the keyboard �lter function input-

filter �lters out key up events. The edit control shares the window view frame
real estate with the other edit control. When the window is being resized, it adopts
its width to the new width of the window and consumes half the height. This is
expressed by the function resizeHalfHeight _ _ fw,hg = fw=w,h=h/2g.

input = EditControl "" (PixelWidth (hmm 50.0)) 5

[ControlId inId

, ControlKeyboard inputfilter Able (noLS1 (input inId you))

, ControlResize resizeHalfHeight

]

inputfilter :: KeyboardState -> Bool

inputfilter keystate = getKeyboardStateKeyState keystate<>KeyUp

The keyboard input function input �rst gets the current state of its parent win-
dow, using the StdControl library function getParentWindow. From this value the
current content of its edit control can be retrieved, using the function getControl-

Text. This new content, which is a String, is being sent asynchronously to the
other receiver.

input :: Id (RId String) KeyboardState (PSt .l) -> PSt .l

130 CHAPTER 10. RECEIVERS

input inId you _ pst

(Just wst,pst) = accPIO (getParentWindow inId) pst

text = fromJust (snd (getControlText inId wst))

= snd (asyncSend you text pst)

The second edit control is used to display the received text from the other window
receiver. Because it is used only for output its SelectState is Unable. To be able
to change its text content it is identi�ed by the Id value outId. Its position is
below the �rst edit control. Its resize behaviour is identical to that of the �rst edit
control. Here is its de�nition:

output = EditControl "" (PixelWidth (hmm 50.0)) 5

[ControlId outId

, ControlPos (BelowPrev,zero)

, ControlSelectState Unable

, ControlResize resizeHalfHeight

]

The �nal component of the window is the receiver that obtains the new string
content of the other window input edit control. Its receiver function receive is
parameterised with the Id of the output edit control. For every string message
received from the other talk window, it replaces the current content of the output
edit control with the received text. This is done using the function setControl-

Text. The function setEditControlCursor makes sure that the end of the text is
visible.

receiver = Receiver me (noLS1 (receive outId)) []

receive :: Id String (PSt .l) -> PSt .l

receive outId text pst=:{io}

io = setControlText outId text io

io = setEditControlCursor outId (size text) io

= {pst & io=io}

These are the three components of the window. The only task of openTalkWindow
is to create the two Id values that identify the input and output edit controls, and
open the window containing the two edit controls and the receiver control. We
also want the initial window view frame size to be equal to the width and added
height of the two edit controls. Because the height of the edit controls is given
indirectly (by specifying that it should be as high as �ve text lines) we have to ask
the system to calculate the size of the edit controls. This is done by the StdControl
function controlSize. Its �rst argument is the Controls instance which size has
to be calculated. The second argument, a boolean, must be true if the controls are
supposed to be opened in a window and false if they are to be opened in a dialogue.
This value is required because of the di�erent platform margins and item spaces. If
you want to provide your own horizontal and vertical margins and item spaces then
this can be done in the following three arguments. Choosing Nothing results in the
default values. The result size of controlSize can now be used correctly as the
initial view frame size of the window. Here is the de�nition of openTalkWindow.

openTalkWindow:: String (RId String) (RId String) (PSt .l) -> PSt .l

openTalkWindow name me you pst

(inId, pst)= accPIO openId pst

10.4. EXAMPLES 131

(outId,pst)= accPIO openId pst

input = EditControl "" (PixelWidth (hmm 50.0)) 5

[ControlId inId

, ControlKeyboard inputfilter Able

(noLS1 (input inId you))

, ControlResize resizeHalfHeight

]

output = EditControl "" (PixelWidth (hmm 50.0)) 5

[ControlId outId

, ControlPos (BelowPrev,zero)

, ControlSelectState Unable

, ControlResize resizeHalfHeight

]

(size,pst) = controlSize (input:+:output)

True Nothing Nothing Nothing pst

receiver = Receiver me (noLS1 (receive outId)) []

wdef = Window ("Talk "+++name) (input:+:output:+:receiver)

[WindowViewSize size]

(error,pst)= openWindow undef wdef pst

| error<>NoError= abort "talk could not open window."

| otherwise = pst

For completeness the whole program is shown here.

module talk

// **

// Clean tutorial example program.

//

// This program creates two windows that communicate with each other using message

// passing. Text that has been typed in one window is being sent to the other, and

// vice versa.

// **

import StdEnv, StdIO

Start :: *World -> *World

Start world

= startIO MDI Void initialise [] world

where

initialise :: (PSt .l) -> PSt .l

initialise pst

menu = Menu "&Talk"

(MenuItem "&Quit" [MenuShortKey 'q'

, MenuFunction (noLS closeProcess)

]

) []

(error,pst) = openMenu undef menu pst

| error<>NoError

= abort "talk could not open menu."

| otherwise

(a,pst) = accPIO openRId pst

(b,pst) = accPIO openRId pst

pst = openTalkWindow "A" a b pst

pst = openTalkWindow "B" b a pst

= pst

openTalkWindow :: String (RId String) (RId String) (PSt .l) -> PSt .l

openTalkWindow name me you pst

(inId, pst) = accPIO openId pst

(outId,pst) = accPIO openId pst

input = EditControl "" (PixelWidth (hmm 50.0)) 5

132 CHAPTER 10. RECEIVERS

[ControlId inId

, ControlKeyboard inputfilter Able

(noLS1 (input inId you))

, ControlResize resizeHalfHeight

]

output = EditControl "" (PixelWidth (hmm 50.0)) 5

[ControlId outId

, ControlPos (BelowPrev,zero)

, ControlSelectState Unable

, ControlResize resizeHalfHeight

]

(size,pst) = controlSize (input:+:output) True Nothing Nothing Nothing pst

receiver = Receiver me (noLS1 (receive outId)) []

wdef = Window ("Talk "+++name) (input:+:output:+:receiver)

[WindowViewSize size

]

(error,pst) = openWindow undef wdef pst

| error<>NoError= abort "talk could not open window."

| otherwise = pst

where

inputfilter :: KeyboardState -> Bool

inputfilter keystate

= getKeyboardStateKeyState keystate<>KeyUp

input :: Id (RId String) KeyboardState (PSt .l) -> PSt .l

input inId you _ pst

(Just wst,pst) = accPIO (getParentWindow inId) pst

text = fromJust (snd (getControlText inId wst))

= snd (asyncSend you text pst)

receive :: Id String (PSt .l) -> PSt .l

receive outId text pst=:{io}

io = setControlText outId text io

io = setEditControlCursor outId (size text) io

= {pst & io=io}

resizeHalfHeight :: Size Size Size -> Size

resizeHalfHeight _ _ {w,h} = {w=w,h=h/2}

10.4.2 Resetting the counter

In this example we extend the example counter in Section 7.2.3 (page 89) with a
means to reset the counter to zero. We proceed in a bottom-up style: the counter
control is a layout control extended with a receiver that, when it receives a message,
will reset the counter to zero. The counter control encapsulates its local counter
state. Out of the local state scope of the counter control we add button control
that, when selected, sends a message to the receiver component of the counter
control. The whole is being placed in a dialogue. Figure 10.2 gives a snapshot of
the program.

Figure 10.2: The counter control with reset button.

10.4. EXAMPLES 133

The main component is of course the counter control, de�ned by counter. It
encapsulates an integer local state with initial value initcount. We have changed
its de�nition from the original one shown on page 89 to give another example of
using control layout. It is also di�erent in that it contains a receiver.

counter

= { newLS = initcount

, newDef = LayoutControl

(EditControl (toString initcount)

(PixelWidth (hmm 50.0)) 1

[ControlSelectState Unable

,ControlId displayid

]

:+: ButtonControl "-"

[ControlFunction (count (-1))

,ControlWidth (PixelWidth (hmm 25.0))

,ControlPos (BelowPrev,zero)

]

:+: ButtonControl "+"

[ControlFunction (count 1)

,ControlWidth (PixelWidth (hmm 25.0))

]

:+: Receiver resetid reset []

) [ControlPos (Center,zero)

,ControlHMargin 0 0

,ControlVMargin 0 0

,ControlItemSpace 0 0

]

}

The only purpose of the receiver is to reset the current local counter value to
initcount and show this by changing the text of the edit control. Note that the
receiver function reset is not interested at all in the message.

reset :: m (Int,PSt .l) -> (Int,PSt .l)

reset _ (_,pst)

= (initcount

, appPIO (setControlText displayid (toString initcount)) pst

)

The reset button is a straightforward ButtonControl. It is centered below the
counter control. Its ControlFunction argument only has to send a message syn-
chronously to the receiver component of the counter control. Because this compo-
nent does not care about the message, the button function can be as bold to send
the StdMisc library function undef. This function, when evaluated, aborts the
application. This demonstrates that message passing is truely lazy in the message
argument.

resetbutton

= ButtonControl "Reset"

[ControlFunction (noLS (snd o syncSend resetid undef))

,ControlPos (Center,zero)

]

134 CHAPTER 10. RECEIVERS

The �nal details of the program are to generate the proper identi�cation values and
to create the initial process and dialogue. For completeness, the program code is
given here.

module counterreset

// **

// Clean tutorial example program.

//

// This program defines a Controls component that implements a manually settable

// counter. A receiver is used to add a reset option.

// **

import StdEnv, StdIO

Start :: *World -> *World

Start world

= startIO NDI Void initialise [] world

where

initialise pst

(displayid,pst) = accPIO openId pst

(resetid, pst) = accPIO openRId pst

(error, pst) = openDialog Void (dialog displayid resetid) pst

| error<>NoError

= abort "counter could not open Dialog."

| otherwise

= pst

dialog displayid resetid

= Dialog "Counter" (counter :+: resetbutton) [WindowClose (noLS closeProcess)]

where

counter

= { newLS = initcount

, newDef = LayoutControl

(EditControl (toString initcount) (PixelWidth (hmm 50.0)) 1

[ControlSelectState Unable

,ControlId displayid

]

:+: ButtonControl "-" [ControlFunction (count (-1))

,ControlWidth (PixelWidth (hmm 25.0))

,ControlPos (BelowPrev,zero)

]

:+: ButtonControl "+" [ControlFunction (count 1)

,ControlWidth (PixelWidth (hmm 25.0))

]

:+: Receiver resetid reset []

) [ControlPos (Center,zero)

,ControlHMargin 0 0

,ControlVMargin 0 0

,ControlItemSpace 0 0

]

}

where

initcount = 0

count :: Int (Int,PSt .l) -> (Int,PSt .l)

count dx (count,pst)

= (count+dx,appPIO (setControlText displayid (toString (count+dx))) pst)

reset :: m (Int,PSt .l) -> (Int,PSt .l)

reset _ (_,pst)

= (initcount,appPIO (setControlText displayid (toString initcount)) pst)

resetbutton

= ButtonControl "Reset"

[ControlFunction (noLS (snd o syncSend resetid undef))

,ControlPos (Center,zero)

10.4. EXAMPLES 135

]

10.4.3 Reading the counter

In this example we extend the counter example once more and add a dialogue that
reads the local counter value. To be able to do this a bi-directional receiver is added
to the counter. Figure 10.3 gives a snapshot of the program.

Figure 10.3: Reading the counter control with reset button.

The �rst change is to extend the counter component with a bi-directional receiver
component de�ned by the expression (Receiver2 readid read []), where readid
is a R2Id identi�cation value. The receiver function read is very straightforward:
it returns the current local counter value without changing anything (also in this
case read is not interested in the input message type):

read :: m (Int,PSt .l) -> (Int,(Int,PSt .l))

read _ (count,pst) = (count,(count,pst))

From the type of this function we can derive that the type of the R2Id value of its
associated receiver must be (R2Id m Int).

The initialisation action opens another dialogue de�ned by display that obtains
and shows the counter value on request. This request can be done by a user by
pressing the button control labeled "Read". Again, an Unable edit control is used
to display the read value.

display displayid readid

= Dialog "Read"

(EditControl "" (PixelWidth (hmm 50.0)) 1

[ControlSelectState Unable

,ControlId displayid

]

:+: ButtonControl "Read" [ControlFunction (noLS read)

,ControlPos (Center,zero)

]

) [WindowClose (noLS closeProcess)]

When the "Read" button has been selected, its callback function read is evaluated.
It sends a message to the bi-directional receiver component of the counter control
using syncSend2. If this action fails it aborts the program. Although this situation
will never occur, this check has been added for program hygiene. In a success-
full communication, value will be (Just count), and it is this value that is then
displayed in the display edit control of the dialogue.

136 CHAPTER 10. RECEIVERS

read pst

((error,value),pst)= syncSend2 readid undef pst

| error<>SendOk

= abort "could not read counter value"

| otherwise

= appPIO (setControlText displayid

(toString (fromJust value))

) pst

The initialisation action creates the necessary identi�cation values and the two
dialogues. Here is the complete program code.

module counterread

// **

// Clean tutorial example program.

//

// This program defines a Controls component that implements a manually settable

// counter.

// A bi-directional receiver is added to give external access to the counter value.

// **

import StdEnv, StdIO

Start :: *World -> *World

Start world

= startIO NDI Void initialise [] world

where

initialise pst

(displayid,pst) = accPIO openId pst

(resetid, pst) = accPIO openRId pst

(readid, pst) = accPIO openR2Id pst

(error, pst) = openDialog Void (dialog displayid resetid readid) pst

| error<>NoError

= abort "counter could not open counter dialog."

(displayid,pst) = accPIO openId pst

(error, pst) = openDialog Void (display displayid readid) pst

| error<>NoError

= abort "counter could not open display dialog."

| otherwise

= pst

dialog displayid resetid readid

= Dialog "Counter" (counter:+:resetbutton) [WindowClose (noLS closeProcess)]

where

counter

= { newLS = initcount

, newDef = LayoutControl

(EditControl (toString initcount) (PixelWidth (hmm 50.0)) 1

[ControlSelectState Unable

,ControlId displayid

]

:+: ButtonControl "-" [ControlFunction (count (-1))

,ControlWidth (PixelWidth (hmm 25.0))

,ControlPos (BelowPrev,zero)

]

:+: ButtonControl "+" [ControlFunction (count 1)

,ControlWidth (PixelWidth (hmm 25.0))

]

:+: Receiver resetid reset []

:+: Receiver2 readid read []

) [ControlPos (Center,zero)

,ControlHMargin 0 0

,ControlVMargin 0 0

,ControlItemSpace 0 0

10.4. EXAMPLES 137

]

}

where

initcount = 0

count :: Int (Int,PSt .l) -> (Int,PSt .l)

count dx (count,pst)

= (count+dx,appPIO (setControlText displayid (toString (count+dx))) pst)

reset :: m (Int,PSt .l) -> (Int,PSt .l)

reset _ (_,pst)

= (initcount,appPIO (setControlText displayid (toString initcount)) pst)

read :: m (Int,PSt .l) -> (Int,(Int,PSt .l))

read _ (count,pst) = (count,(count,pst))

resetbutton

= ButtonControl "Reset"

[ControlFunction (noLS (snd o syncSend resetid undef))

,ControlPos (Center,zero)

]

display displayid readid

= Dialog "Read"

(EditControl "" (PixelWidth (hmm 50.0)) 1

[ControlSelectState Unable

,ControlId displayid

]

:+: ButtonControl "Read" [ControlFunction (noLS read)

,ControlPos (Center,zero)

]

) [WindowClose (noLS closeProcess)]

where

read pst

((error,value),pst) = syncSend2 readid undef pst

| error<>SendOk

= abort "could not read counter value"

| otherwise

= appPIO (setControlText displayid (toString (fromJust value))) pst

138 CHAPTER 10. RECEIVERS

Chapter 11

Interactive processes

The examples discussed so far used the StdProcess library function startIO. This
function creates one interactive process that engages in some graphical user in-
terface actions with a user and then terminates, using the StdProcess function
closeProcess. In this chapter we show how an interactive process can spawn new
interactive processes that will run interleaved. It is also possible to create a number
of processes at once.

We start the discussion by looking at the ways to de�ne interactive processes in
Section 11.1. This is followed by the functions to open interactive processes. Finally
we give some examples to illustrate their application.

11.1 De�ning interactive processes

All interactive processes are de�ned as an instance of the following type de�nition
(module StdProcessDef, see Appendix A.29):

:: Process

= E. .l: Process

DocumentInterface

l

(ProcessInit (PSt l))

[ProcessAttribute (PSt l)]

:: DocumentInterface

= NDI | SDI | MDI

The DocumentInterface argument of an interactive process speci�es its kind of
document interface. The document interface concept is based on the idea that an
interactive process provides the user with an interface to manipulate documents
(even if they don't look like documents at all). Depending on the number of doc-
uments a process o�ers (zero, one, or many) the library provides the process with
a platform dependent infrastructure. Three kinds of document interfaces are spec-
i�ed:

No Document Interface (NDI)
An interactive process with this document interface does not present a doc-
ument to a user. It has no menus and no windows. It is typically used for
`background' interactive processes or very simple programs that have only a

139

140 CHAPTER 11. INTERACTIVE PROCESSES

dialogue. The interactive process is allowed to open dialogues, timers, and
receivers.

Single Document Interface (SDI)
An interactive process with this document interface presents exactly one doc-
ument at a time to the user. Usually all interactive components are presented
within one window frame. The interactive process is allowed to open dia-
logues, timers, and receivers. At any time, at most one window can be open.
It is allowed to close a window and then open a new one.

Multiple Document Interface (MDI)
An interactive process with this document interface can present an arbitrary
number of documents to the user.

If some callback function or initialisation function attempts to open an interactive
object that violates its document interface, then the ErrorReport result of that
particular object opening function is ErrorViolateDI.When de�ning an interactive
process, you should choose the most `minimal' document interface that �ts that
process.

The interactive process type constructor introduces an initial local process state of
some type l and encapsulates it using existential quanti�cation. When the inter-
active process is created, the object I/O system creates the PSt record with for its
ls �eld the value of this argument. Because of the limited sizes of the example
programs so far, the value we have used so far was Void. In addition to the local
process state value, the object I/O system creates an initial, empty I/O state of
type IOSt.

Given the initial process state record, the object I/O system lets the interactive pro-
cess initialise itself by applying the third argument of the Process type constructor
which has type (ProcessInit (PSt l)) .

:: ProcessInit pst :== IdFun pst

:: IdFun st :== st -> st

When this function has been evaluated, and the interactive process has not been
terminated by the closeProcess function, the interactive process is in its running
phase. It should be noted that it is unspeci�ed when the initialisation of the process
takes place: it is guaranteed only that this function is the �rst action on the process
state.

The �nal argument of the Process type constructor are its attributes. These are
the following:

:: ProcessAttribute st

= ProcessActivate (IdFun st)

| ProcessDeactivate (IdFun st)

| ProcessClose (IdFun st)

| ProcessOpenFiles (ProcessOpenFilesFunction st)

| ProcessWindowPos ItemPos

| ProcessWindowSize Size

| ProcessWindowResize (ProcessWindowResizeFunction st)

| ProcessToolbar [ToolbarItem st]

| ProcessNoWindowMenu

The meaning of these attributes are:

11.1. DEFINING INTERACTIVE PROCESSES 141

ProcessActivate and ProcessDeactivate

These two attributes correspond closely to the WindowActivate and Window-

Deactivate attributes. Recall that keyboard and mouse input is always di-
rected to the active window. The parent interactive process that contains this
window is the active process. If the input focus is moved to a window that is
not owned by the interactive process then the ProcessDeactivate attribute
function is evaluated to inform the program that the interactive process has
become inactive. If an inactive process obtains the input focus, its Process-
Activate attribute function is evaluated to inform the program that it has
become active again.

ProcessClose

This attribute corresponds closely to the WindowClose attribute. If for some
reason the interactive process is requested to be closed, its ProcessClose

attribute function is evaluated. It can take the opportunity to save data to
disk and to ask the user if the process can be closed safely. It is however the
responsibility of the program to terminate the process. It is good programming
practice to always include this attribute because the user of your program
expects to be able to close your application in this way.

ProcessOpenFiles

Associating this attribute to an interactive process means that the interactive
process can respond to user requests to open a number of �les. The callback
function has the somewhat verbose type ProcessOpenFilesFunction:

:: ProcessOpenFilesFunction st :== [String] -> st -> st

The [String] argument contains the full pathnames of the �les to be opened.
It is good programming practice to include this attribute if your application
allows users to open �les because it will let your application behave in the
platform conform way.

ProcessWindowPos, ProcessWindowSize, and ProcessWindowResize

In the current implementation these attributes have no e�ect. When they
will, it will be the following: the process window is the root window in which
all top-level user interface elements are created of an interactive process are
located. On a Macintosh the process window is simply the screen. On the
Windows platform it is also the screen in case of NDI processes. For SDI and
MDI processes it is a window frame that can be resized by the user. For the
latter case, the -Pos and -Size attribute specify the initial position and size
in terms of the screen. In addition, if the user resizes the process window
(by actually resizing the window or by changing the screen resolution), and
a ProcessWindowResize attribute has been speci�ed, then a function of type
ProcessWindowResizeFunction is evaluated:

:: ProcessWindowResizeFunction st

:== Size -> Size -> st -> st

The �rst Size argument is the size of the process window before the resize
occurred, and the second argument is the size afterwards.

ProcessToolbar

The process toolbar is a combination of menus and controls. The purpose of
the toolbar is to present to the user of your application a list of the most fre-
quently used commands, also called tools in this context. These commands are

142 CHAPTER 11. INTERACTIVE PROCESSES

supposed to be visualised via easily recognisable icons, currently represented
by means of bitmaps. An optional string argument provides a brief textual
description of the tool, in a similar way as the ControlTip attributes do (dis-
cussed in Section 7.1). It is also possible to include a separation between
groups of related tools by using the ToolbarSeparator alternative.

:: ToolbarItem st

= ToolbarItem Bitmap (Maybe String) (IdFun st)

| ToolbarSeparator

The current implementation does not support enabling and disabling of tools,
nor does it allow the callback function to receive modi�er keys.

ProcessNoWindowMenu

This attribute is valid only for MDI processes. In the default case every
MDI process has a special Windows menu (discussed in Section 8.3). If this
attribute is set, then this menu is not added to the menu system of the inter-
active process.

11.2 Interactive process creation

The basic function to create individual processes from a World environment is
startIO, which we have encountered many times in the preceding chapters. For
completeness we repeat its type de�nition:

startIO :: !DocumentInterface

!.l

!(ProcessInit (PSt .l))

![ProcessAttribute (PSt .l)]

!*World

-> *World

Its arguments are identical to the arguments of the Process type constructor given
in Section 11.1. The function startIO creates an interactive process with the same
arguments and terminates only when this process and its child processes have termi-
nated. It is a specialised function which uses the more general overloaded function
startProcesses of the type constructor class Processes.

class Processes pdef where

startProcesses :: !pdef !*World -> *World

openProcesses :: !pdef !(PSt .l) -> PSt .l

The type constructor Process is of course an instance of this class. The actual
implementation of startIO is nothing but a shorthand for this instance:

startIO :: !DocumentInterface !.l !(ProcessInit (PSt .l))

![ProcessAttribute (PSt .l)]

!*World -> *World

startIO documentInterface local init atts world

= startProcesses

(Process documentInterface

local

11.3. EXAMPLES 143

init

(if (documentInterface==MDI)

[ProcessNoWindowMenu:atts]

atts

)

) world

The other Processes member function openProcesses also creates an interactive
process, but now in the context of an interactive process itself. Interactive processes
can not use startIO because the World environment is not available from the PSt
environment. When applied to an interactive process de�nition, openProcesses
adds an initial version of that interactive process to the process state administration.
At some point in time that interactive process will be initialised and joins the game.
So process creation is asynchronous.

In addition to the Process type constructor instance, you can also create a list of
interactive processes using the above Processes class member functions. This is
stated concisely with the following type class instance declaration in module Std-

Process:

instance Processes [pdef] | Processes pdef

So, if p1 . . . pn are Processes instances, then the expression (openProcesses

[p1..pn]) is a process state transition function that creates these interactive pro-
cess instances.

There is no special parent-child relationship between an interactive process and the
interactive processes that it creates. For instance, termination of one interactive
process (using closeProcess) has no consequence for the other processes. Indeed,
the only entity that can terminate an interactive process is the interactive process
itself (or, using brute force from the Operating System). This is one of the reasons
why it is good programming practice to always add the ProcessClose attribute to
every of your process de�nitions to allow graceful termination of your program.

11.3 Examples

In this section we give some examples of the use of interactive processes.

11.3.1 Talk revisited

In this example we have a new look at the talk example of Section 10.4.1. In that
version, the program created one interactive process, using startIO, which opened
the two talk windows. In the new version instead of a talk window we create a
SDI process. Receivers are still used to send the user typed messages to each of the
talk windows. The menu is now created for both processes. Below we discuss the
di�erences. Figure 11.1 shows the program in action.

The initialisation of the new talk program is of course di�erent. Instead of the
function openTalkWindow that opened a talk window we now de�ne a function talk

that de�nes a talk process which contains the talk window, menu, and receiver. This
implies that the RId values have to be created beforehand. We obtain the following
Start rule:

Start :: *World -> *World

144 CHAPTER 11. INTERACTIVE PROCESSES

Figure 11.1: The talk program in action.

Start world

(a, world) = openRId world

(b, world) = openRId world

(talkA,world) = talk "A" a b world

(talkB,world) = talk "B" b a world

= startProcesses [talkA,talkB] world

The menu de�nition is now moved inside the talk process. It is almost identical
to the old version. The only di�erence is termination of the application. In the
old version termination was no issue because there was only one interactive process
with two talk windows. In the new version, closing one talk process won't close
the other. Instead, before closing its parent process, the quit function sends a
new message alternative Quit to the other process to request termination. So the
message type is changed into:

:: Message = NewLine String | Quit

and, accordingly, the menu function quit into:

quit :: (RId Message) (PSt .l) -> PSt .l

quit you pst = closeProcess (snd (syncSend you Quit pst))

Of course the de�nition of the receiver function receive now handles two alterna-
tives. When receiving (NewLine text), it proceeds as before, and when it receives
Quit it only needs to terminate its parent process, knowing that the requesting
process will terminate itself.

receive :: Id Message (PSt .l) -> PSt .l

receive outId (NewLine text) pst=:{io}

= {pst & io=setEditControlCursor outId (size text) (

11.3. EXAMPLES 145

setControlText outId text io)

}

receive _ Quit pst

= closeProcess pst

These are the major di�erences. Here is the complete program.

module talk

// **

// Clean tutorial example program.

//

// This program creates two interactive processes that communicate via message

// passing.

// In a future distributed version this program can be used as a graphical talk

// application.

//

// **

import StdEnv, StdIO

:: Message // The message type:

= NewLine String // transmit a line of text

| Quit // request termination

Start :: *World -> *World

Start world

(a, world) = openRId world

(b, world) = openRId world

(talkA,world) = talk "A" a b world

(talkB,world) = talk "B" b a world

= startProcesses [talkA,talkB] world

talk :: String (RId Message) (RId Message) *env -> (Process,*env) | Ids env

talk name me you env

(outId,env) = openId env

(inId, env) = openId env

input = EditControl "" (PixelWidth (hmm 50.0)) 5

[ControlId inId

, ControlKeyboard inputfilter Able

(noLS1 (input inId you))

, ControlResize resizeHalfHeight

]

output = EditControl "" (PixelWidth (hmm 50.0)) 5

[ControlId outId

, ControlPos (BelowPrev,zero)

, ControlSelectState Unable

, ControlResize resizeHalfHeight

]

receiver = Receiver me (noLS1 (receive outId)) []

talkwindow = Window ("Talk "+++name) (input:+:output:+:receiver)

[WindowViewSize {w=hmm 50.0,h=120}

]

menu = Menu ("&Talk "+++name)

(MenuItem "&Quit"

[MenuShortKey 'q',MenuFunction (noLS (quit you))]

) []

= (Process SDI

Void

(snd o seqList [openWindow Void talkwindow,openMenu Void menu])

[ProcessClose (quit you)]

, env

)

where

inputfilter :: KeyboardState -> Bool

inputfilter keystate

146 CHAPTER 11. INTERACTIVE PROCESSES

= getKeyboardStateKeyState keystate<>KeyUp

input :: Id (RId Message) KeyboardState (PSt .l) -> PSt .l

input inId you _ pst

(Just window,pst) = accPIO (getParentWindow inId) pst

text = fromJust (snd (getControlText inId window))

= snd (asyncSend you (NewLine text) pst)

receive :: Id Message (PSt .l) -> PSt .l

receive outId (NewLine text) pst=:{io}

= {pst & io=setEditControlCursor outId (size text) (

setControlText outId text io)

}

receive _ Quit pst

= closeProcess pst

quit :: (RId Message) (PSt .l) -> PSt .l

quit you pst

= closeProcess (snd (syncSend you Quit pst))

resizeHalfHeight :: Size Size Size -> Size

resizeHalfHeight _ _ {w,h} = {w=w,h=h/2}

11.3.2 Clock revisited

In this example we are going to turn the clock example of Section 9.1.2 into a
stopwatch component that can be added in an arbitrary interactive process. The
stopwatch commands will be to reset timing, pause timing, continue timing, and
close the stopwatch component. All stopwatch de�nitions are placed in the module
stopwatch.icl. The function stopwatch de�nes the stopwatch component. A
main module, usestopwatch.icl that opens and controls the stopwatch is also
de�ned. This module de�nes an interactive process with a menu to control the
stopwatch component. Figure 11.2 gives a snapshot of the program in action. We
�rst look at the stopwatch and then at the main program.

Figure 11.2: The stopwatch and control processes.

The stopwatch component

The original clock program created an interactive process with three timers and
a dialogue. Each of the three timers changes a local state that keeps track of the
elapsed seconds, minutes, and hours. This situation is schematised in Figure 11.3.

The stopwatch process is controlled by sending messages to a `gateway' receiver.
The timers are extended with a receiver component that handles the commands
reset, pause, and continue. These commands will be sent to them by the gateway

11.3. EXAMPLES 147

Timer hours

Timer minutes

Timer seconds

Dialog

clock process

Figure 11.3: The structure of the clock process.

receiver. This gateway receiver handles the close command. Finally, the stopwatch
process creates the same dialogue as the original clock program. The stopwatch
process is schematised in Figure 11.4.

- Receiver �
���
-
A
AAU Timer hours

Receiver

Timer minutes
Receiver

Timer seconds
Receiver

Dialog

stopwatch process

Figure 11.4: The structure of the stopwatch process.

So the new components are the gateway receiver and the receiver components of
the timers. We �rst look at the gateway receiver and then timer receivers. Both
receivers accept messages of the following type:

:: StopwatchCommands = Reset

| Pause

| Continue

| Close

The alternatives of the algebraic type StopwatchCommands correspond of course
with the stopwatch commands reset, pause, continue, and close. The gateway re-
ceiver function receive, on receiving the Close message simply terminates the
interactive process by applying closeProcess to its process state. Every other
message is routed to the timer receiver components which are identi�ed by the list
timerinfos. Here is the function de�nition of receive:

receive :: StopwatchCommands (PSt .l) -> PSt .l

receive Close pst

= closeProcess pst

receive msg pst

= snd (seqList [syncSend timerRId msg\\{timerRId}<-timerinfos] pst)

The timer receiver components receive only the StopwatchMessage alternatives
Reset, Pause, and Continue. In the clock example, the timer was parameterised
with its timer interval. In this example, we need to add parameters to identify the
timer (because it is going to be reset) and its receiver component (because receivers
must have an identi�cation value). So the de�nition of a stopwatch timer now is:

148 CHAPTER 11. INTERACTIVE PROCESSES

tdef :: TimerInfo

-> Timer (Receiver StopwatchCommands) Int (PSt .l)

tdef {timerId,timerRId,timerInterval}

= Timer timerInterval (Receiver timerRId receive [])

[TimerId timerId

, TimerFunction tick

]

The reset command should set the timer back to zero. One might suppose that
it is su�cient to change only the value of the local state to zero, but that is not
completely true. Resetting the stopwatch can occur at any moment. At that mo-
ment the timer should be synchronised with its local state. This can be done by
�rst disabling and then enabling the timer. For this purpose the StdTimer func-
tions disableTimer and enableTimer should be used. The reason that it works
is because enableTimer, when applied to a disabled timer, synchronises the timer
with the moment of evaluation. It does nothing in case the indicated timer was
already enabled. Finally, on receiving the Reset message, the timer receiver com-
ponent must set the corresponding text �eld of the dialogue to zero. This gives the
following de�nition of the Reset alternative.

receive Reset (time,pst=:{io})

io = disableTimer timerId io

io = enableTimer timerId io

io = setControlText textid "00" io

= (0,{pst & io=io})

The pause command should halt the timer until further notice (either reset or con-
tinue). This is easily done by disabling the timer:

receive Pause (time,pst=:{io})

= (time,{pst & io=disableTimer timerId io})

The continue command should let the timer continue from where it was paused.
This is easily done by enabling the timer:

receive Continue (time,pst=:{io})

= (time,{pst & io=enableTimer timerId io})

The �nal details of the stopwatch component are to create the proper identi�cation
values for the timers and their receiver components, and to export its de�nition
as an interactive process. This is done by the function stopwatch. The stopwatch
process is de�ned as a process group with no interesting local or public process state
(using the ubiquitous Void singleton type constructor). Its initialisation action �rst
creates the required Ids for the dialogue, and then the parameters required for the
timers. Then initialisation proceeds as described above.

stopwatch :: (RId StopwatchCommands) -> Process

stopwatch rid

= Process NDI Void initialise` []

where

initialise` pst

(dialogIds, pst) = accPIO openDialogIds pst

(timerInfos,pst) = accPIO openTimerInfos pst

= initialise rid dialogIds timerInfos pst

11.3. EXAMPLES 149

For completeness, the de�nition module and implementation module of the stop-
watch component are given below.

definition module stopwatch

// **

// Clean tutorial example program.

//

// This module exports the types and functions needed to incorporate a stopwatch

// component.

// **

import StdIO

:: StopwatchCommands

= Reset

| Pause

| Continue

| Close

stopwatch :: (RId StopwatchCommands) -> Process

implementation module stopwatch

// **

// Clean tutorial example program.

//

// This program defines a stopwatch process component.

// It uses three timers to track the seconds, minutes, and hours separately.

// Message passing is used to reset, pause, and continue timing.

// The current time is displayed using a dialogue.

// **

import StdEnv,StdIO

:: DialogIds

= { secondsId :: Id

, minutesId :: Id

, hoursId :: Id

}

:: TimerInfo

= { timerId :: Id

, timerRId :: RId StopwatchCommands

, timerInterval :: TimerInterval

}

:: StopwatchCommands

= Reset

| Pause

| Continue

| Close

second :== ticksPerSecond

minute :== 60*second

hour :== 60*minute

openDialogIds :: *env -> (DialogIds,*env) | Ids env

openDialogIds env

([secondsid,minutesid,hoursid:_],env) = openIds 3 env

= ({ secondsId=secondsid,minutesId=minutesid,hoursId=hoursid }, env)

openTimerInfos :: *env -> ([TimerInfo],*env) | Ids env

openTimerInfos env

(tids,env) = openIds 3 env

(rids,env) = openRIds 3 env

intervals = [second,minute,hour]

= ([{timerId=tid,timerRId=rid,timerInterval=i}

\\ tid<-tids & rid<-rids & i<-intervals

150 CHAPTER 11. INTERACTIVE PROCESSES

]

, env

)

stopwatch :: (RId StopwatchCommands) -> Process

stopwatch rid

= Process NDI Void initialise` []

where

initialise` pst

(dialogIds, pst) = accPIO openDialogIds pst

(timerInfos,pst) = accPIO openTimerInfos pst

= initialise rid dialogIds timerInfos pst

initialise :: (RId StopwatchCommands) DialogIds [TimerInfo] (PSt .l) -> PSt .l

initialise rid {secondsId,minutesId,hoursId} timerinfos pst

(errors,pst) = seqList [openTimer 0 (tdef timerinfo)

\\ timerinfo<-timerinfos

] pst

| any ((<>) NoError) errors

= closeProcess pst

(error,pst) = openDialog Void ddef pst

| error<>NoError

= closeProcess pst

(error,pst) = openReceiver Void rdef pst

| error<>NoError

= closeProcess pst

| otherwise

= pst

where

tdef {timerId,timerRId,timerInterval}

= Timer timerInterval (Receiver timerRId receive [])

[TimerId timerId

, TimerFunction tick

]

where

tick nrElapsed (time,pst=:{io})

time = (time+nrElapsed) mod maxunit

io = setControlText textid (toString time) io

= (time,{pst & io=io})

receive Reset (time,pst=:{io})

io = disableTimer timerId io

io = enableTimer timerId io

io = setControlText textid "00" io

= (0,{pst & io=io})

receive Pause (time,pst=:{io})

= (time,{pst & io=disableTimer timerId io})

receive Continue (time,pst=:{io})

= (time,{pst & io=enableTimer timerId io})

(textid,maxunit) = if (timerInterval==second) (secondsId,60)

(if (timerInterval==minute) (minutesId,60)

(hoursId, 24))

ddef = Dialog "Stopwatch"

(LayoutControl

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-["Hours:","Minutes:","Seconds:"]

]

) []

:+: LayoutControl

(ListLS [TextControl "0" [ControlPos (Left,zero)

,ControlId id

,ControlWidth (ContentWidth "00")

]

\\ id<-[hoursId,minutesId,secondsId]

]

11.3. EXAMPLES 151

) []

) [WindowClose (noLS closeProcess)]

rdef = Receiver rid (noLS1 receive) []

where

receive Close pst

= closeProcess pst

receive msg pst

= snd (seqList [syncSend timerRId msg \\ {timerRId}<-timerinfos] pst)

Using the stopwatch

Given the stopwatch component module stopwatch, we can create a program that
opens, uses, and closes the stopwatch. The program will be as simple as possible.
Its �rst action is to create the (RId StopwatchCommands) value, so that it can be
given conveniently to the initialisation function of the interactive process. As this
process will only have a menu, it is a single document interface process.

Start :: *World -> *World

Start world

(stopwatchid,world) = openRId world

= startIO SDI Void (initialise stopwatchid) [] world

The initialisation function of the interactive process �rst creates the menu, mdef
and then the stopwatch.

initialise :: (RId StopwatchCommands) (PSt .l) -> PSt .l

initialise stopwatchid pst

(error,pst) = openMenu Void mdef pst

| error<>NoError = closeProcess pst

| otherwise = openProcesses (stopwatch stopwatchid) pst

The menu triggers the stopwatch commands reset, pause, continue, and close. In
addition, a quit command is added to terminate the whole program.

mdef

= Menu "&Stopwatch"

(MenuItem "&Reset" [MenuFunction (noLS (send Reset))]

:+: MenuItem "&Pause" [MenuFunction (noLS (send Pause))]

:+: MenuItem "C&ontinue" [MenuFunction (noLS (send Continue))]

:+: MenuItem "&Close" [MenuFunction (noLS (send Close))]

:+: MenuSeparator []

:+: MenuItem "&Quit" [MenuFunction (noLS (closeProcess o

(send Close)))]

) []

Each of the stopwatch command menu functions is de�ned by the send function
which is parameterised with the corresponding StopwatchCommandsmessage alter-
native. Its purpose is to send its argument message to the gateway receiver of the
stopwatch process, identi�ed by stopwatchid. If this fails it emits a system beep.
Here is its de�nition:

send msg pst

(error,pst) = syncSend stopwatchid msg pst

| error<>SendOk = appPIO beep pst

| otherwise = pst

152 CHAPTER 11. INTERACTIVE PROCESSES

Here is the complete code of the main program.

module usestopwatch

// **

// Clean tutorial example program.

//

// This program creates a simple program that uses the stopwatch process.

// The program only has a menu to open the stopwatch and control it.

// **

import StdEnv, StdIO

import stopwatch

Start :: *World -> *World

Start world

(stopwatchid,world) = openRId world

= startIO SDI Void (initialise stopwatchid) [] world

initialise :: (RId StopwatchCommands) (PSt .l) -> PSt .l

initialise stopwatchid pst

(error,pst) = openMenu Void mdef pst

| error<>NoError= closeProcess pst

| otherwise = openProcesses (stopwatch stopwatchid) pst

where

mdef = Menu "&Stopwatch"

(MenuItem "&Reset" [MenuFunction (noLS (send Reset))]

:+: MenuItem "&Pause" [MenuFunction (noLS (send Pause))]

:+: MenuItem "C&ontinue" [MenuFunction (noLS (send Continue))]

:+: MenuItem "&Close" [MenuFunction (noLS (send Close))]

:+: MenuSeparator []

:+: MenuItem "&Quit" [MenuFunction (noLS (closeProcess o

(send Close)))]

) []

send msg pst

(error,pst) = syncSend stopwatchid msg pst

| error<>SendOk = appPIO beep pst

| otherwise = pst

Chapter 12

Clipboard handling

The clipboard is a simple communication metaphor that can be used between and
within applications. An application can write some data to the clipboard (typically
text or pictures) which can be read at a later point of time by the same or another
application. This mechanism is supported by the functions in the de�nition module
StdClipboard. At the moment only text can be handled. Because we intend to
incorporate pictures as well in the near future the current version is set up in such
a way that it can be extended upward compatibly. For this purpose an abstract
data type, ClipboardItem, is de�ned. Two overloaded functions from the type
constructor class Clipboard take care that data types can be converted to and
from ClipboardItems:

:: ClipboardItem

class Clipboard item where

toClipboard :: !item -> ClipboardItem

fromClipboard :: !ClipboardItem -> Maybe item

instance Clipboard {#Char}

By convention applications should provide several `popular' data formats for the
same clipboard content in descending order of accuracy. For instance, a text pro-
cessor can �rst store its private format for the laid out text including font and style
information, followed by an ascii version of the same text, followed by a picture
of the laid out text. For this reason the function setClipboard that writes the
clipboard is not applied to one single clipboard data item but a list of them. The
previous content will be erased. Programs are supposed to provide only one data
item of each format, so setClipboard removes all duplicate formats from this list.
Note that providing setClipboard with an empty list erases the clipboard.

setClipboard :: ![ClipboardItem] !(PSt .l) -> PSt .l

The function that reads the clipboard, getClipboard, returns the list of the current
clipboard content in descending order of accuracy. With the conversion function
fromClipboard an application can determine easily if some data item is present
that it can handle.

getClipboard :: !(PSt .l) -> (![ClipboardItem],!PSt .l)

153

154 CHAPTER 12. CLIPBOARD HANDLING

Finally, because reading in a complete clipboard can be time-consuming or space-
consuming the function clipboardHasChanged is provided that checks whether the
clipboard has been updated since the last time the program checked it.

clipboardHasChanged :: !(PSt .l) -> (!Bool,!PSt .l)

12.1 Example: a clipboard editor

To illustrate the use of the clipboard, we construct a small program that shows
the current content of the clipboard and that can write some text to the clipboard
(see Figure 12.1). It will create only one dialogue with two text �elds. In the �rst
text �eld, the show �eld, the content of the clipboard can be loaded by pressing
the button to its right. In the second text �eld, the set �eld, the content of the
clipboard can be stored by pressing the button to its right.

Figure 12.1: The clipboard program.

The show text �eld and its activating button can be de�ned as follows:

showclip

= EditControl "" width nrlines [ControlSelectState Unable

,ControlId showid

,ControlPos (Left,zero)

]

:+:

ButtonControl "Show" [ControlFunction (noLS show)]

The show text �eld is an edit text control that will not respond to keyboard input
(because its SelectState attribute is Unable). It is identi�ed by some Id of value
showid. It will have some width and a height de�ned by the number of lines
nrlines. The \Show" button, when selected, must read the content of the clipboard
and �gure out if there was a text clipboard item. It then sets the text of the show
text �eld to the loaded clipboard content (an empty string if nothing was found).
This action can be de�ned as follows:

show pst

(content,pst) = getClipboard pst

12.1. EXAMPLE: A CLIPBOARD EDITOR 155

text = getString content

= appPIO (setControlText showid text) pst

getString [clip:clips]

| isNothing item= getString clips

| otherwise = fromJust item

where

item = fromClipboard clip

getString []

= ""

The set text �eld and its activating button are de�ned as follows:

setclip

= EditControl "" width nrlines [ControlId setid

,ControlPos (Left,zero)

]

:+:

ButtonControl "Set" [ControlFunction (noLS set)]

The set text �eld is an edit text control which accepts keyboard input. It is identi�ed
by some Id of value setid. It has the same dimensions as the show text control.
The \Set" button, when selected, must get the content of the set text control and
write this to the clipboard. This action is de�ned as follows:

set pst

(wst,pst)= accPIO (getParentWindow showid) pst

text = fromJust (snd (getControlText setid (fromJust wst)))

= setClipboard [toClipboard text] pst

The de�nition of the clipboard viewing dialogue simply summaries these elements
and adds a \Quit" button to terminate the program:

clipview = Dialog "Clipboard Viewer"

(showclip :+: setclip :+: quit)

[]

quit = ButtonControl "Quit"

[ControlFunction (noLS closeProcess)

,ControlPos (Center,zero)

]

The last details that remain to be de�ned are the opening of the interactive program.
Here is the complete program code.

module clipboardview

// **

// Clean tutorial example program.

//

// This program creates a dialogue to display and change the current content

// of the clipboard.

// **

import StdEnv, StdIO

156 CHAPTER 12. CLIPBOARD HANDLING

Start :: *World -> *World

Start world

(showid,world) = openId world

(setid, world) = openId world

= startProcesses (Process NDI Void (initialise showid setid) []) world

initialise showid setid pst

(error,pst) = openDialog Void clipview pst

| error<>NoError= closeProcess pst

| otherwise = pst

where

clipview= Dialog "Clipboard Viewer" (showclip :+: setclip :+: quit) []

showclip= EditControl "" width nrlines [ControlSelectState Unable

, ControlId showid

, ControlPos (Left,zero)

]

:+:

ButtonControl "Show" [ControlFunction (noLS show)]

setclip = EditControl "" width nrlines [ControlId setid

, ControlPos (Left,zero)

]

:+:

ButtonControl "Set" [ControlFunction (noLS set)]

quit = ButtonControl "Quit" [ControlFunction (noLS closeProcess)

, ControlPos (Center,zero)

]

width = PixelWidth (hmm 50.0)

nrlines = 4

show pst

(content,pst) = getClipboard pst

text = getString content

= appPIO (setControlText showid text) pst

set pst

(wst,pst) = accPIO (getParentWindow showid) pst

text = fromJust (snd (getControlText setid (fromJust wst)))

= setClipboard [toClipboard text] pst

getString [clip:clips]

| isNothing item= getString clips

| otherwise = fromJust item

where

item = fromClipboard clip

getString []

= ""

Chapter 13

Printing

In this chapter we introduce two modules that enable Clean programs to print:
StdPrint (Appendix A.25) and StdPrintText (Appendix A.26). At �rst we will
discuss the dialogues the user is confronted with when he wants to print something
(Section 13.1). The StdPrint module can be used to print any arbitrary output. It
is illustrated in the Sections 13.2 to 13.5. The StdPrintText module can be used
when only text should be printed. Its use is explained in Section 13.6.

13.1 The user interface for printing

When a user wants to get some printed output, he has to specify several parameters
for printing. These parameters can be divided into two groups: the print setup
parameters determine the printer and the paper format that are used and the page
orientation (portrait or landscape). The print job parameters include the number
of copies and the range of pages to print. According to these two sets there are two
dialogues to specify these parameters and two Clean types for objects that store
this information. The dialogues are the print setup dialogue (Figure 13.1) and the
print job dialogue (Figure 13.2). The types are the abstract data type PrintSetup
and the JobInfo record (see Section 13.2). The print job dialogue launches the
print job if the user does not cancel. In most applications the user has to answer
this dialogue just before printing, but using the print setup dialogue is optional.

There is always a default PrintSetup which is returned by the defaultPrintSetup
function. Such a PrintSetup can be edited with the print setup dialogue when it
is applied to the printSetupDialog function. These functions have the following
signatures:

:: PrintSetup

defaultPrintSetup :: !*env -> (!PrintSetup, !*env)

| FileEnv env

printSetupDialog :: !PrintSetup

!*env -> (!PrintSetup, !*env)

| PrintEnvironments env

The env parameter can be the World,Files, or the PSt. For the defaultPrint-

Setup function the env parameter can also be the IOSt.

On Macintosh computers the print setup dialogue and the print job dialogue are

157

158 CHAPTER 13. PRINTING

Figure 13.1: A print setup dialogue

typically reachable from two di�erent menu items. On Windows(95/NT) the print
setup dialogue can usually only be reached by clicking on a button in the print
job dialogue. The StdSystem module function printSetupTypical can be used to
determine whether a separate menu item for the print setup dialogue is typical on
the used platform.

13.2 The print function

The print function in the StdPrint module has the following signature:

print :: !Bool !Bool

.(PrintInfo !*Picture -> ([IdFun *Picture],!*Picture))

!PrintSetup !*env

-> (!PrintSetup,!*env)

| PrintEnvironments env

:: PrintInfo

= { printSetup:: PrintSetup

, jobInfo :: JobInfo

}

:: JobInfo

= { range :: !(!Int,!Int)

, copies :: !Int

}

The parameters of (print doDialog emulateScreen pages printSetup env) have
the following meaning:

doDialog

13.2. THE PRINT FUNCTION 159

Figure 13.2: A print job dialogue

If True, the print job dialogue will pop up, otherwise printing will happen in
the default way.

emulateScreen

I� True, the screen resolution will be emulated, see Section 13.3.

pages

This function de�nes the printed output. It generates a list of drawing func-
tions. Each drawing function corresponds to one page. The function can
access a PrintInfo record and a Picture. The Picture parameter can be
used to retrieve information like font metrics or string widths from a printer
Picture that will have the same properties as the Picture environment used
for printing the pages.

printSetup

The print setup. As mentioned before, the user can change this print setup
from the print job dialogue under Windows(95/NT).

env

A print environment can be Files, World or PSt. If the print environment is
the PSt, then the print function can update the contents of windows during
printing (to be more exact: between the rendering of two pages). This is
important on the Windows(95/NT) platforms, since printing can take some
time. On the Macintosh platform printing is a blocking operation, so no
window updating is necessary. If the print environment is either Files or the
World, then no window updating will happen, and, on the Windows(95/NT)
platform, no cancel dialogue for printing will pop up.

The PrintInfo record contains information that will be needed for generating the
list of drawing functions. The �elds of the JobInfo part of this record have the
following meaning:

range

This �eld contains the numbers of the �rst and last page which the user has
chosen via the print dialogue. If the user has chosen \all pages", then the �rst
page will be 1, and the last page will be 9999.

160 CHAPTER 13. PRINTING

Figure 13.3: Page measurements

copies

These are the number of copies to generate. This will not necessarily be equal
to the number of copies as speci�ed in the print job dialogue. Some printer
drivers take care of producing the appropriate number of copies themselves.
In that case the value of this �eld will be 1.

The PrintInfo record also contains a printSetup �eld. This print setup will be
used for printing. The PrintSetup value can be passed to the getPageDimensions
function:

getPageDimensions :: !PrintSetup !Bool -> PageDimensions

:: PageDimensions

= { page :: !Size

, margins :: !Rectangle

, resolution :: !(!Int,!Int)

}

The PageDimensions record �elds have the following meaning:

page

This �eld contains the size of the drawable area of a sheet in pixels, see
Figure 13.3. The print function sets the origin of such a Picture to zero.
So any drawing in a rectangle from zero to fx=page.w-1, y=page.h-1g will
be visible on the printed paper.

margins

This �eld contains information about the size of a whole sheet of paper. This
is not only the area in which the printer can draw, but also the margins of
the paper. The x-axis and y-axis coordinate values of corner1 are negative,
while the x-axis and y-axis coordinate values of corner2 are greater than the
corresponding values of the page �eld, see Figure 13.3.

resolution

This �eld contains the horizontal and vertical resolution of the printer in dpi
(dots per inch).

13.2. THE PRINT FUNCTION 161

These measurements of a printer picture depend on whether the screen resolution is
emulated or not. Only if the Boolean parameter of the getPageDimensions function
is True, then the values for a printer picture that emulates the screen resolution are
returned.

The print function returns the PrintSetup that is stored in the PrintInfo record.

Here is an easy example program, printExample1, that uses the print function:

module printExample1

// **

// Clean tutorial example program.

//

// This program demonstrates the use of the "print" function.

// It prints two pages, one with the text "Hello Printer", and one that informs

// about the printer resolution.

// **

import StdEnv, StdIO

Start :: *World -> *World

Start world

(defaultPS, world) = defaultPrintSetup world

= snd (print True False pages defaultPS world)

where

pages :: PrintInfo *Picture -> ([IdFun *Picture],*Picture)

pages {printSetup, jobInfo={range=(first,last), copies}} picture

{resolution=(xRes,_)}

= getPageDimensions printSetup False

twoPages = [drawAt { x=100, y=100 } "Hello Printer"

, drawAt { x=100, y=100 } ("Horizontal Resolution: "

+++ toString xRes

+++ " dpi."

)

]

oneCopy = twoPages % (first-1,last-1)

= (flatten (repeatn copies oneCopy), picture)

On the Macintosh platform, a Clean program needs \extra memory" for printing.
In the \Application Options" dialogue of the CleanIDE, this value should be set to
about 200K, otherwise the program may crash.

Running printExample1 will pop up the print job dialogue. Let's assume that the
user chooses to print only one copy of the �rst two pages. These values will be
passed to the pages function, via its �rst argument of type PrintInfo. So the
values of first and copies are one, and the value of last is two. The list of
drawing functions, which is returned by the pages function is then equal to two-

Pages. It contains two drawing functions, so two pages will be printed. The �rst
printed page will contain the text \Hello Printer", and the second page will contain
the printer resolution.

If the user chooses to print only the �rst page, then the value of last is also one.
The % operator selects only the �rst element of bothPages and so only one page
is printed. If the user chooses to print all pages, then the value of last is 9999.
The % operator then selects both pages, which will subsequently be printed. The
application of repeatn ensures that the right number of copies is generated.

In general, printing is done in the same way as drawing on the screen, namely by
applying drawing functions on a Picture environment. In the rest of this chapter
printer Pictures and screen Pictures are distinguished. There are two di�erences
between these two kinds of Pictures:

1. Functions which hilite parts of a Picture, or perform a xor operation, will

162 CHAPTER 13. PRINTING

have no e�ect on a printer Picture.

2. Bitmapped fonts cannot be drawn on both kinds of Pictures with the same
sizes. This is because the pixel resolutions of both output devices are, in
general, di�erent. TrueType fonts work well for both kinds.

13.3 Reusing drawing functions

In many cases an application should be able to draw a certain content on printer
Pictures as well as on screen Pictures. Ideally, such a program should use the
same code for both output devices. But a problem arises because in the object I/O
library two di�erent units of measurement are used for drawing, namely points and
pixels (see also Chapter 5).

The physical extent and position of a graphical object on the paper or on the screen
always depends on Int values, which are passed to a drawing function. These values
are interpreted either as point values or as pixel values. Point values occur only
when the size of a font is speci�ed. In all other cases pixel values are used, e.g. in
drawAt fx=100,y=100g.
A point is approximately 1

72
of an inch. A pixel has of course also a physical extent,

which can be measured in inches. But unlike a point, the size of a pixel varies from
output device to output device: the size of a printer pixel can be about 3 to 4 times
smaller than the size of a screen pixel. This implies that the result of applying a
drawing function on a printer Picture will result in smaller images compared with
screen Pictures. Only when text is drawn, this shrinking does not happen, because
the size of the used font is speci�ed in points, a resolution independent speci�cation
of physical extent.

Consider for example the following function:

myDrawfunction picture

picture = drawAt {x=20,y=80} string picture

picture = drawAt {x=18,y=68} box picture

= picture

where

string = "This text is boxed"

box = {box_w=120,box_h=15}

could cause a screen to contain the following:

This text is boxed

but the printed output could look like this:

This text is boxed

The reason is that the upper code uses constants to express pixel values. There a
two ways to deal with this problem: implicit and explicit scaling.

Implicit scaling
Setting the second Boolean argument of the print function to True enables
implicit scaling. This causes printer Pictures to emulate the screen resolution.
This will suppress the shrinking e�ect. This approach has the advantage that

13.3. REUSING DRAWING FUNCTIONS 163

it's very easy to write a function that can be used for drawing on both a
screen and printer Picture. But not everything can be printed very well by
using this option. For instance lines on the paper can not be thinner than
on the screen. Further problems arise when the printer resolution is not a
whole multiple of the screen resolution. This causes rounding errors in the
emulation process. If the ratio between printer and screen resolution is for
instance 3:5, then the emulation of line drawing with a pen size of one screen
pixel will result in a line on the paper that is only 3 printer pixels wide. The
following drawing function draws �ve hundred horizontal lines:

seq [drawAt {x=0,y=y} {vx=500,vy=0} \\ y<-[0..500]]

On paper space appears between the lines, but not on the screen.

Explicit scaling
In most cases using implicit scaling is preferrable because it leads to simple
programs. But if the disadvantages of implicit scaling are not acceptable,
the application has to perform the scaling itself. One way to obtain this is
to avoid constant pixel values. Consider for instance a program that draws a
string on a certain place in a window or sheet. The position of the string could
be speci�ed by using values that are related to string widths or font metrics.
Since string width and font metrics always depend on a Picture, they will
reect the resolution of the output device. The upper myDrawfunction on
page 162 could be rewritten to:

myDrawfunction picture

(metrics,picture)= getPenFontMetrics picture

(mwidth,descent) = (metrics.fMaxWidth,metrics.fDescent)

height = fontLineHeight metrics

(swidth,picture) = getPenFontStringWidth string picture

box = {box_w=swidth+6*mwidth/5,box_h=0-height}

picture = drawAt {x=20, y=80} string picture

picture = drawAt {x=20-mwidth/5,y=80+descent} box picture

= picture

where

string = "This text is boxed"

The constants in this example are not pixel values, because they are multiplied
with pixel values like height. This example also shows that writing resolution
independent drawing functions results in more complex code.

Another way to perform scaling is to use the printer and screen resolution
explicitly. Then the code fragment on page 162 could be rewritten to:

myDrawfunction (sclNom,sclDenom) picture

picture = drawAt {x=scl 20,y=scl 80} string picture

picture = drawAt {x=scl 18,y=scl 68} box picture

= picture

where

string = "This text is boxed"

box = {box_w=scl 120,box_h=scl 15}

scl x = sclNom*x/sclDenom

For printing, sclNom should be the printer resolution, and sclDenom should
be the resolution of the screen. For drawing on the screen, both values should

164 CHAPTER 13. PRINTING

be one. The StdPicture module function getResolution will return the
horizontal and vertical resolution of a screen or printer picture:

getResolution :: !*Picture -> (!(!Int,!Int),!*Picture)

The accScreenPicture function (see Appendix A.30) can be handy in this
context. The printer resolution can of course also be found in the PageDimen-
sions record.

13.4 The printUpdateFunction function

The printUpdateFunction function in StdPrint is a good example of using implicit
scaling. This function o�ers a very easy way to print the contents of a window. It
has the following signature:

printUpdateFunction :: !Bool

(UpdateState -> *Picture -> *Picture)

[Rectangle]

!PrintSetup !*env

-> (!PrintSetup,!*env)

| PrintEnvironments env

The �rst and the last two parameters are identical to the �rst and last two pa-
rameters of the print function. Also the result has the same semantics as shown
with the print function. Let's assume that an application has opened a window.
The contents of the window is de�ned by its WindowLook attribute. This attribute
contains a Look function which updates the contents of a window everytime this is
required (see also Section 6.4.1). The Look is de�ned as:

:: Look :== SelectState -> UpdateState -> *Picture -> *Picture

If such a Look function is curried with a SelectState, it can be passed to the
printUpdateFunction function as the second argument.

The list of rectangles parameter speci�es the parts of the view domain that should
be printed. If such a rectangle is too big for one sheet of paper, it will be distributed
on several pages.

13.5 The printPagePerPage function

The third function in the StdPrint module is the printPagePerPage function.
The printUpdateFunction and the print functions are both specialisations of
this function. This function performs a state transition function on a polymorphic
state. The state transition function itself has to be passed to the printPagePerPage
function. With each application of this state transition function the contents of the
actually printed page is drawn. Furtheron this state transition function returns a
Boolean value which indicates whether there are further pages to print. So it will
be applied repeatedly, until this value becomes True.

The function printPagePerPage has the following signature (slightly changed for
readability):

13.6. PRINTING TEXT 165

printPagePerPage

:: !Bool !Bool

.unq

(.unq PrintInfo *Picture -> ((Bool,Point2),(.state,*Picture)))

((.state,*Picture) -> ((Bool,Point2),(.state,*Picture)))

!PrintSetup !*env

-> (Alternative .unq .state,!*env)

| PrintEnvironments env

:: Alternative unq state = Cancelled unq | StartedPrinting state

instance PrintEnvironments Files, World, (PSt .l)

The arguments of

printPagePerPage doDialog emulateScreen unq prepare stateTrans env

have the following meaning:

doDialog, emulateScreen, printSetup, and env

Analogous to those in the print function.

unq

If a unique object unq, e.g. a text �le, has to be accessed and passed back
by printPagePerPage it should be passed via this parameter. If the user
cancels printing via the print job dialogue, (Cancelled unq) will be returned.
Otherwise the prepare function is applied to this value.

prepare

Calculates the initial state. In order to do so it can access the PrintInfo

record and a printer Picture. Drawing in that Picture will have no e�ect on
the printed output. The prepare also returns a Boolean and a Point2 value.
The Boolean value is False i� there is another page to print. The Point2

will be the origin of the next page, if there is one.

stateTrans

This argument is the state transition function that generates the pages to
be printed. Just like the prepare function, each application of stateTrans
returns a Boolean and a Point2 value with the same meaning. If the user did
not cancel printing via the cancel dialogue, the printPagePerPage function
will return the �nal state in the StartedPrinting alternative constructor
of Alternative. Since this state is polymorphic, any arbitrary value can be
returned, e.g. the PrintInfo record.

13.6 Printing text

The module StdPrintText (Appendix A.26) o�ers functions to print text. These
functions are overloaded in the argument that speci�es the text to print. In this
way the source of the text can be an arbitrary data structure, e.g. a text �le or a
list of characters.

The printText1 function has the following signature:

166 CHAPTER 13. PRINTING

printText1 :: !Bool !WrapMode

!FontDef !Int

!*charStream

!PrintSetup !*env

-> ((!*charStream,!PrintSetup),!*env)

| CharStreams charStream & PrintEnvironments env

class CharStreams cs where

getChar :: !*cs -> (!Bool,!Char,!*cs)

savePos :: !*cs -> *cs

restorePos :: !*cs -> *cs

eos :: !*cs -> (!Bool,!*cs)

:: WrapMode :== Int

NoWrap :== 0

LeftJustify :== 1

RightJustify :== 2

This function simply prints the text contained in the charStream object.

The �rst and the two last parameters are identical to the �rst and last two param-
eters of the print function. Also the returned PrintSetup and print environment
have their usual semantics. The other parameters have the following meaning:

WrapMode

This parameter determines how lines are handled that are too long to �t on the
paper. NoWrap suppresses wrapping, while LeftJustify and RightJustify

wrap long lines and adjust the rest of the line to the left and right margin
respectively.

FontDef

This parameter determines the font of the text.

Int

This parameter controls the tab width, measured in the number of space
characters.

A CharStreams instance contains the text to be printed. Its functionality is anal-
ogous to the behaviour of a text �le. So a CharStreams value contains a �nite
sequence of characters and a position pointer that points to the actual character.
Applying getChar retrieves this actual character and increases the position pointer.
The Boolean return value is True i� this operation was successful. Characters can
be read sequentially, until the eos (end of stream) function returns True. The ac-
tual position of a CharStreams value can be saved with the savePos function. The
restorePos function resets the position pointer to the previously saved position.

The following example illustrates how to print a text that is stored in a list of
characters. Therefore the CharStreams class is instanciated with a proper type
ListCharStream.

module printCharList

// **

// Clean tutorial example program.

//

// This program demonstrates the use of the function printText1.

13.6. PRINTING TEXT 167

// It instantiates the CharStreams class with the ListCharStream type. Objects

// of type ListCharstream contain a list of characters, which should be printed.

// **

import StdEnv, StdIO

:: *ListCharStream

= { list :: [Char]

, savedPos:: [Char]

}

instance CharStreams ListCharStream where

getChar sc=:{list}

= (not empty, if empty ' ' (hd list), {sc & list=if empty list (tl list)})

where

empty = isEmpty list

savePos sc

= { sc & savedPos=sc.list }

restorePos sc

= { sc & list=sc.savedPos }

eos sc=:{list}

= (isEmpty list,sc)

fontDef = { fName="Courier New", fStyles=[], fSize=9 }

Start world

(defaultPS, world) = defaultPrintSetup world

= printText1 True NoWrap fontDef 4

{ list=['Hello again, printer'], savedPos=[] }

defaultPS

world

The StdPrintTextmodule instanciates the CharStreams class with the *FileChar-
Stream type. The following example illustrates how to print a text �le, and how to
use the functions fileToCharStream and charStreamToFile.

module printFile

// **

// Clean tutorial example program.

//

// This program demonstrates printing a text file by using the function printText1.

// **

import StdEnv, StdIO

fileName = "printFile.icl"

fontDef = { fName="Courier New", fStyles=[], fSize=9 }

Start world

(ok,file,world) = fopen fileName FReadData world

| not ok

= abort ("file "+++fileName+++" not found")

(defaultPS,world) = defaultPrintSetup world

((charStream,_),world)= printText1 True NoWrap fontDef 4

(fileToCharStream file)

defaultPS world

(ok,world) = fclose (charStreamToFile charStream) world

| not ok

= abort "can't close file"

| otherwise

= world

The printText2 function allows you to print text with a header on each page.
This function expects the same parameters as printText1, but takes in addition

168 CHAPTER 13. PRINTING

two strings. The �rst string will appear on the left corner of each header, and the
second string, concatenated with the current page number, will appear on the right
side of each header. The previous example can be altered as follows:

module printFileWithHeader

// **

// Clean tutorial example program.

//

// This program demonstrates printing a text file by using the function printText2.

// **

import StdEnv, StdIO

fileName = "printFileWithHeader.icl"

fontDef = { fName="Courier New", fStyles=[], fSize=9 }

Start world

(ok,file,world) = fopen fileName FReadData world

| not ok

= abort ("file "+++fileName+++" not found")

(defaultPS,world) = defaultPrintSetup world

((charStream,_),world)= printText2 "This file is printed with Clean" "page "

True NoWrap fontDef 4

(fileToCharStream file)

defaultPS world

(ok,world) = fclose (charStreamToFile charStream) world

| not ok

= abort "can't close file"

| otherwise

= world

Finally, the function printText3 permits full control over the look of a header
and/or trailer (or footer) on each page. Its signature is:

printText3

:: !Bool !WrapMode !FontDef !Int

(PrintInfo *Picture -> (userInfo,(Int,Int),*Picture))

(userInfo Int *Picture -> *Picture)

!*charStream !PrintSetup !*env

-> (!(!*charStream,!PrintSetup),!*env)

| CharStreams charStream & PrintEnvironments printEnv

The �fth and sixth parameter of

printText3 doDialog wrapMode fontParams spacesPerTab

textRangeFunc

eachPageDrawFunc

charStream printSetup env

have the following meaning:

textRangeFunc

This function takes a PrintInfo record and a printer Picture and returns a
triple. The �rst result can be any data of arbitrary type. This data will be
passed by printText3 to eachPageDrawFunc. The second triple result is a
pair (top,bottom), where top < bottom (printText3 aborts if this is not the
case). The printed text will appear between these y-coordinates only, leaving
you room to print a header and a trailer for each page.

13.6. PRINTING TEXT 169

eachPageDrawFunc

This function is responsible for drawing a header and trailer. As parameters
it takes the data produced by textRangeFunc, the actual page number, and
a Picture. This function will be called from printText3 for each page. It
should return the Picture in which the header and/or trailer for the current
page are drawn. Drawing is not restricted to any particular area on the printer
Picture.

170 CHAPTER 13. PRINTING

Chapter 14

TCP

In this chapter we cover Clean's TCP interface. Blocking is an inherent problem
with network I/O: a function blocks when it can not be reduced further until some
external condition changes. A program can not do anything while a function blocks1.
An example of blocking is a program that tries to receive some data. Such a program
could block until the data arrives.

It makes a di�erence whether a Clean program engages in event driven I/O or not.
Programs engage in event driven I/O by evaluation of functions such as startIO
or startProcesses (described in Chapter 11). Because the TCP interface can be
used on the World environment (World programs) and the GUI environments PSt
and IOSt (GUI programs) we will distinguish between these kinds of programs in
this chapter. For World programs blocking is not a real problem. This is not true
for GUI programs: they should not block, or at least not block a \long" time. The
\ 1

10
second rule" says that a GUI program should not take longer than 1

10
second to

process an event. Hence a GUI program should not block longer than this time (if
the programmer respects that rule). The reason for this rule is that the user of an
GUI program should have the impression that the program responds immediately
to his actions. Furtheron, window update events should also be handled by the
program promptly. Failing to do so can make your desktop windows look really
ugly and uninformative.

After a short introduction to TCP in Section 14.1 some basic ideas are discussed
in Section 14.2. Section 14.3 is about the blocking approach which is applicable
in World programs. The non blocking approach for GUI programs is discussed in
Section 14.4.

14.1 Introduction to TCP

TCP (Transmission Control Protocol) o�ers the possibility to transfer data between
programs which are running on di�erent computers via a network. TCP is a con-
nection oriented protocol. Before data can be transferred a connection between
two running programs has to be established. A TCP connection is always a duplex
connection. This means that both sides can send and receive data when they are
connected. After all data has been sent and received, the connection has to be teard
down.

1The Clean compiler produces sequential code. This is the reason why a program can not do

anything else while it is blocking. If the Clean compiler would be able to produce non sequential

code, blocking would be much less of a problem.

171

172 CHAPTER 14. TCP

When establishing a connection between two programs, one of them plays the role
of the server, and the other the client. The client has to know the address of the
server. The address consists of two parts: an IP address and a port number. The
IP address uniquely identi�es every computer on the internet. An IP address is
a 32 bit quantity, which is often written down in \dotted decimal form" like e.g.
\131.174.33.11". It is possible to establish di�erent connections to one computer
at the same time. The port number discriminates these connections. The port
number is a 16 bit quantity. For some services some port numbers are reserved.
For example, \HTTP" is reachable via the port number 80 and \telnet" via port
number 23.

When a connection is established, the following happens: �rst the server has to
listen on a certain port. Listening on a port means being prepared for receiving
connection requests from clients. The client knows both this port number and the
IP address of the computer, where the server is running. So he issues a connection
request, which will reach the server via the internet. If the server accepts the
connection request, the connection is established. Now data can be transferred.
The sent data will reach the other side without being duplicated or altered in its
chronological order.

A service called DNS (Dynamic Name System) helps us human beings to avoid
having to remind IP addresses. The DNS service translates alphanumerical aliases
such as \www.cs.kun.nl" into IP adresses.

14.2 Basic ideas

In Clean's TCP interface channels play an important role. Intuitively a channel
is like a pipe: what you put in on one end comes out on the other end after a
while. We do not transport material goods like water or gas with our pipes, but
information or rather messages. It is well possible that many messages reside within
a channel at the same time while they are on their way to the other end. But it is
not possible that they come out in another order than they were put in (we do not
support out of band data). The most important things you can do with a channel
are of course sending and receiving.

In our approach each channel type has a message type. This means, that we can
only send and receive messages with that message type on a certain channel. But
of course it is possible to de�ne several channel types. For instance the following
channel type is de�ned:

:: *TCP_RCharStream :== TCP_RCharStream_ Char

The TCP RCharStream type is a channel type with the message type Char. You don't
have to know how TCP RCharStream is de�ned (note the underscore). In general
a channel type is a type constructor with one argument, its message type. If you
want to receive messages on such a channel you can apply the receive function:

receive :: !*(*ch .a) !*env -> (!.a,!*(*ch .a),!*env)

| ChannelEnv env & Receive ch

To help you understand this weird de�nition, let's give an example how to specialise
this type. It is necessary to know that TCP CharStream is an instance of the Receive
class, and that a ChannelEnv can be a World, IOSt or PSt environment. The type
of receive is de�ned as general as possible. The following function de�nition has
a type that is more restrictive than it could be:

14.3. BLOCKING TCP IN WORLD PROGRAMS 173

receive2 :: TCP_RCharStream *World -> (Char,TCP_RCharStream,*World)

receive2 ch env = receive ch env

The type of receive2 is obtained by uniform substitution of !*(*ch .a) with
TCP RCharStream and !.a with Char. From the type of receive2 we see that we
can receive a Char, if we apply the receive2 function on a TCP RCharStream in a
World. Channel types are uniquely attributed.

14.3 Blocking TCP in World programs

Since this section is about blocking use of TCP, the described methods are appli-
cable for World programs. Section 14.4 discusses non blocking use of TCP in GUI
programs.

The library modules that are relevant for this section are StdChannels, StdTCPDef
and StdTCPChannels (see Appendixes A.2, A.40 and A.39). The module StdTCP

imports all these modules similar to the StdEnv and StdIO modules.

In general, a TCP session is divided into three phases: the connection establishment
phase, the data transfer phase, and the disconnect phase. These three phases will be
covered in the Sections 14.3.1 to 14.3.3. In these sections small example functions
are described. These functions are combined to give an example for a client and
a server program in Section 14.3.4. The technique of multiplexing is discussed in
Section 14.3.5 which includes a fancy chat server example program. Section 14.3.6
introduces some further channels that can be used.

14.3.1 Establishing a connection

We show the process of establishing a connection �rst for client programs, and then
for server programs.

The client program has to know the IP address and port number of the server
program. There is a function that uses the DNS to get an IP Address:

lookupIPAddress :: !String !*env -> (!Maybe IPAddress,!*env)

| ChannelEnv env

The String that is passed can be an alphanumerical internet address such as
martinpc.cs.kun.nl, but also a dotted decimal notation such as 131.174.33.11.
To establish a new connection, the client simply calls the connectTCP MT function:

connectTCP_MT :: !(Maybe !Timeout) !(!IPAddress,!Port) !*env

-> (!TimeoutReport,!Maybe TCP_DuplexChannel,!*env)

| ChannelEnv env

:: Port :== Int

:: Timeout :== Int

:: TimeoutReport = TR_Expired

| TR_Success

| TR_NoSuccess

The optional Timeout value is measured in (platform dependent) ticks. The Time-
outReport informs about success or failure of the attempt to connect. I� this value
is TR Success then Just a TCP DuplexChannel is returned. A TCP DuplexChannel

is a record that contains two channels: one TCP channel to send and one to receive:

174 CHAPTER 14. TCP

:: *TCP_DuplexChannel

:== DuplexChannel *TCP_SChannel_ *TCP_RChannel_ ByteSeq

:: DuplexChannel sChannel rChannel a

= { sChannel :: sChannel a

, rChannel :: rChannel a

}

:: *TCP_SChannel :== TCP_SChannel_ ByteSeq

:: *TCP_RChannel :== TCP_RChannel_ ByteSeq

The TCP SChannel and the TCP RChannel types are channel types. The type of
the messages that can be received is the abstract data type ByteSeq. This type
resembles sequences of bytes. So with one message a sequence of bytes can be sent
or received (see Appendix A.40).

Example
We de�ne a function that looks up an IP address and tries to connect to that
machine on port 2000. For simplicity we let the program abort if any of the
operations fails. If no failure occurs, the result is a TCP DuplexChannel.

clientConnect :: !*World -> (!TCP_DuplexChannel,!*World)

clientConnect world

(mbIPAddr,world)= lookupIPAddress "martinpc.cs.kun.nl" world

| isNothing mbIPAddr

= abort "DNS lookup failed"

ipAddr = fromJust mbIPAddr

(tReport,mbDuplex,world)

= connectTCP_MT Nothing (ipAddr,2000) world

| tReport<>TR_Success

= abort "can't connect to port 2000"

| otherwise

duplexChannel = fromJust mbDuplex

= (duplexChannel,world)

Now we discuss the process of establishing a connection for a server program. The
server has to call the openTCP Listener function to listen on a given port:

openTCP_Listener :: !Port !*env

-> (!OkBool,!Maybe TCP_Listener,!*env)

| ChannelEnv env

:: *TCP_Listener :== TCP_Listener_ (IPAddress,TCP_DuplexChannel)

:: OkBool :== Bool

The Port parameter should be the desired port number. I� listening on the given
port succeeds, then the OkBool result will be True and the Maybe result will be Just
a TCP Listener. If another program on the same machine already listens on the
given port, this attempt will fail. A TCP Listener is a channel on which connection
requests from remote clients can be received. So the server does this by applying
the receive function on the TCP Listener:

receive :: !*(*ch .a) !*env -> (!.a,!*(*ch .a),!*env)

| ChannelEnv env & Receive ch

14.3. BLOCKING TCP IN WORLD PROGRAMS 175

From the type de�nition of TCP Listener you can see that the message type a is a
pair that consists of an IPAddress and a TCP DuplexChannel. Receiving a message
of such a type establishes a new connection. The IPAddress is the IP address of the
remote client that wants to connect. The TCP DuplexChannel is the new connection
itself.

So a TCP Listener is a channel on which channels can be received. With one
receive on a TCP Listener a TCP SChannel (to send) and a TCP RChannel (to
receive) are obtained. (If you are familiar with the sockets api you will recognise
that a receive on a TCP Listener resembles the accept call.)

Example
The following function listens on port 2000 and accepts one connection:

serverConnect :: !*World -> (!TCP_DuplexChannel,!*World)

serverConnect world

(ok,mbListener,world) = openTCP_Listener 2000 world

| not ok

= abort "can't open Listener on port 2000"

listener = fromJust mbListener

((_,duplexChannel),listener,world)

= receive listener world

world = closeRChannel listener world

= (duplexChannel,world)

The closeRChannel function is discussed in Section 14.3.3.

14.3.2 Basic operations on channels

In the previous section we came in contact with three channel types: the TCP -

Listener, the TCP SChannel, and the TCP RChannel. These types are instances of
type constructor classes that are de�ned in module StdChannels (Appendix A.2).
The TCP Listener and the TCP RChannel are instances of the Receive class:

class Receive ch where

receive_MT :: !(Maybe !Timeout) !*(*ch .a) !*env

-> (!TimeoutReport,!Maybe !.a,!*(*ch .a), !*env)

| ChannelEnv env

available :: !*(*ch .a) !*env

-> (!Bool, !*(*ch .a), !*env)

| ChannelEnv env

eom :: !*(*ch .a) !*env

-> (!Bool, !*(*ch .a), !*env)

| ChannelEnv env

...

Each of these functions gets and returns a channel and an environment. \MT" is a
shorthand for maybe timeout. The receive MT function tries to receive a message
of type a on the channel. This function might block until the message arrives. A
timeout value can be given to limit this time. The timeout value is given in (platform
dependent) ticks. The returned TimeoutReport indicates whether the receive was
succesful (TR Success), whether the timeout expired (TR Expired), or whether the
other side teard down the connection (TR NoSuccess). The available function

176 CHAPTER 14. TCP

polls on the channel to check if a message is currently available. The eom (end of
messages) function returns True i� it is sure that availablewill never become True
anymore. To understand these functions, the following model of receive channels is
handy:

A receive channel consists of a message queue and is always in one of
three states: the idle, available, or eom state, as shown in Figure 14.1.

available

idle

m1 m2 m3 m4 m. . .
n

messages
arrive from
somewhere

first message

eom

Figure 14.1: Model of a receive channel

I� the receive channel is in the available state, then there is a message in
the message queue. I� the channel is in the idle or eom state, then the
message queue is empty. If a message arrives, then the state can change
from idle to available, but if the channel is in the eom state, no message
will arrive anymore. In this case the state does not change anymore.
This happens when the other side tears down the connection.

To ease programming there are some specialisations of the functions above:

receive :: !*(*ch .a) !*env -> (! .a, !*(*ch .a),!*env)

| ChannelEnv env & Receive ch

nreceive :: !Int !*(*ch .a) !*env -> (![.a],!*(*ch .a),!*env)

| ChannelEnv env & Receive ch

The receive function receives one message from the channel and (nreceive n)

receives n messages. These functions are only partially de�ned. If the receive
channel state is eom or becomes eom while the function blocks, then the program
will abort! These functions should only be used if it is certain that the speci�ed
amount of data will be received.

Example
The following function receives a byte sequence and compares it with a given
string. If the strings are di�erent, the program aborts.

serverReceive :: String TCP_RChannel *World

-> (TCP_RChannel,*World)

serverReceive expectedMessage rChannel world

(message,rChannel,world) = receive rChannel world

| toString message<>expectedMessage

= abort "received wrong message"

| otherwise

= (rChannel, world)

14.3. BLOCKING TCP IN WORLD PROGRAMS 177

A special role is played by channels on which channels can be received, currently
only the TCP Listener. If a message is available on such a channel it might be
possible that a subsequent receive MT will return Nothing. This happens when a
client tries to connect to a server, but disconnects again before the connection is
accepted (received) from the server. Furtheron eom will never get True for this kind
of channels.

On all other channels it holds that if available is True, receiving on that channel
will not block and will return Just a message.

Before we discuss the basic operations on send channels, we introduce a model for
these channels, see Figure 14.2.

sendable

full

disconnected

buffer of unsent bytes

Figure 14.2: Model of a send channel

A send channel has also three states: sendable, full, and disconnected.
Furtheron there is a bu�er of unsent bytes. If the channel is in the
disconnected state, then no sending of data is possible. This happens
when the remote side tears down the connection. The disconnected state
is the �nal state (similar to the eom state for receive channels).

Sending on a channel can be blocking. Since this is not as obvious as in the receive
case, here is a scenario where sending becomes blocking: let's assume a TCP con-
nection, where data is sent only in one direction, from a \producer" program to a
\consumer" program. Let's also assume that the producer sends much faster than
the consumer, e.g. the producer sends one MByte per second but the consumer
receives only one KByte per second, because he doesn't want to receive faster. It
is obvious, that this does not work forever. At a certain point in time all bu�ers
in the two participating computers and in the computers between them get full.
The producer has to be stopped in his overproduction then, which means, that the
producer's sending operation will block.

This explains why there are sendable and full states, and the message queue. I�
a channel is in the full state, then trying to send will not pump any data into the
internet. Instead, the data will be queued locally in the channel's internal bu�er.
I� the channel state changes from full to sendable then it's reasonable to ush this
bu�er. The bu�er is a part of the Clean heap and does not have a limited size
(apart from the usual memory limitations).

Now let's have a look at the basic operations on send channels:

class Send ch where

send_MT :: !(Maybe !Timeout) !.a !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*(*ch .a), !*env)

178 CHAPTER 14. TCP

| ChannelEnv env

nsend_MT :: !(Maybe !Timeout) ![.a] !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*(*ch .a), !*env)

| ChannelEnv env

flushBuffer_MT:: !(Maybe !Timeout) !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*(*ch .a), !*env)

| ChannelEnv env

disconnected :: !*(*ch .a) !*env

-> (!Bool, !*(*ch .a), !*env)

| ChannelEnv env

bufferSize :: !*(*ch .a)

-> (!Int, !*(*ch .a))

...

The send MT function sends a message and the nsend MT function sends a list of
messages. Both functions take a (Maybe Timeout) argument. If not all of the
data could be sent within the timeout period, the rest will be queued in the send
channels internal bu�er. This internal bu�er will not be sent automatically, it can
be sent (ushed) with the flushBuffer MT function. This function tries to send
as much as possible from the internal bu�er. The Int value that is returned by
these three functions is the number of sent bytes. If the timeout expires before
everything could be sent, then the returned TimeoutReport will be TR Expired.
If the send channel's state changed to disconnected during the send operation the
TimeoutReport will be TR NoSucces. Only if all data was sent, this value will be
TR Success. The size of the internal bu�er in bytes is returned by the bufferSize
function. The disconnected function is used to poll whether the channel is in the
disconnected state.

The following functions are provided to avoid having to specify timeouts for sending.
They are specialisations of the functions in the Send class.

send :: !.a !*(*ch .a) !*env -> (!*(*ch .a),!*env)

| ChannelEnv env & Send ch

nsend :: ![.a] !*(*ch .a) !*env -> (!*(*ch .a),!*env)

| ChannelEnv env & nsend_MT ch

Example
The following function sends the message \hello server".

clientSend :: TCP_SChannel *World -> (TCP_SChannel,*World)

clientSend sChannel world

= send (toByteSeq "hello server") sChannel world

The MaxSize class allows to limit the size of the received byte sequences for receive
channels. For further details see the StdChannels module.

Any object whose type is an instance of the toString class can be converted into
a ByteSeq:

toByteSeq :: x -> ByteSeq | toString x

And vice versa: ByteSeqs can be converted into strings, because they are an instance
of toString.

14.3. BLOCKING TCP IN WORLD PROGRAMS 179

14.3.3 Tearing down a connection

Using TCP there are basically two ways to tear down a connection: graceful and
abortive disconnects. The abortive disconnect happens when the abortConnection
function is applied on a send channel. If the channel should be closed gracefully,
then the closeChannel MT function should be applied. Both functions are member
of the Send class:

class Send ch where

closeChannel_MT :: !(Maybe !Timeout) !*(*ch .a) !*env

-> (!TimeoutReport,!Int, !*env)

| ChannelEnv env

abortConnection :: !*(*ch .a) !*env

-> !*env

| ChannelEnv env

...

The closeChannel MT function takes a (Maybe Timeout) argument because it tries
to send the channel's internal bu�er before closing the channel. This function has
also a specialized version without a timeout:

closeChannel :: !*(*ch .a) !*env -> !*env | ChannelEnv env & Send ch

The internal bu�er will not be sent when the abortConnection function is used.
Furthermore, it is possible that data that is already sent will not reach the other
side, when this function is used.

To close receive channels the closeRChannel function should be used:

class closeRChannel ch :: !*(*ch .a) !*env -> !*env | ChannelEnv env

This function will not block.

14.3.4 Putting it together

The example functions that were introduced in Section 14.3.1 and 14.3.2 are now
assembled together into two programs: client and server. The client attempts to
connect to the server and sends the message \hello server". The server checks if the
received message matches that text. Both sides close the connection gracefully after-
wards. It is assumed that the server runs on a machine called martinpc.cs.kun.nl.

Here is the client program:

module client

// **

// Clean tutorial example program.

//

// This program implements a minimal TCP session (client).

// **

import StdEnv, StdIO, StdTCP

clientConnect :: !*World -> (!TCP_DuplexChannel,!*World)

clientConnect world

(mbIPAddr,world) = lookupIPAddress "martinpc.cs.kun.nl" world

| isNothing mbIPAddr

180 CHAPTER 14. TCP

= abort "DNS lookup failed"

ipAddr = fromJust mbIPAddr

(tReport,mbDuplex,world) = connectTCP_MT Nothing (ipAddr,2000) world

| tReport<>TR_Success

= abort "can't connect to port 2000"

| otherwise

duplexChannel = fromJust mbDuplex

= (duplexChannel,world)

clientSend :: TCP_SChannel *World -> (TCP_SChannel,*World)

clientSend sChannel world = send (toByteSeq "hello server") sChannel world

Start world

({sChannel,rChannel},world) = clientConnect world

(sChannel,world) = clientSend sChannel world

world = closeChannel sChannel world

world = closeRChannel rChannel world

= world

And here is the server:

module server

// **

// Clean tutorial example program.

//

// This program implements a minimal TCP session (server).

// **

import StdEnv, StdIO, StdTCP

serverConnect :: !*World -> (!TCP_DuplexChannel,!*World)

serverConnect world

(ok,mbListener,world) = openTCP_Listener 2000 world

| not ok

= abort "can't open Listener on port 2000"

| otherwise

listener = fromJust mbListener

((_,duplexChannel),listener,world)= receive listener world

world = closeRChannel listener world

= (duplexChannel,world)

serverReceive :: String TCP_RChannel *World -> (TCP_RChannel,*World)

serverReceive expectedMessage rChannel world

(message,rChannel,world) = receive rChannel world

| toString message<>expectedMessage = abort "received wrong message"

| otherwise = (rChannel, world)

Start world

({sChannel,rChannel},world) = serverConnect world

(rChannel,world) = serverReceive "hello server" rChannel world

world = closeChannel sChannel world

world = closeRChannel rChannel world

= world

14.3.5 Multiplexing

The selectChannel MT function allows you to determine on which channel in a
set of channels operations can be used in a non blocking way. This is very useful
to determine that particular channel in a set for which data has arrived �rst. It's
signature is:

selectChannel_MT :: !(Maybe !Timeout)

14.3. BLOCKING TCP IN WORLD PROGRAMS 181

!*r_channels !*s_channels !*World

-> (![(!Int, !SelectResult)],

!*r_channels, !*s_channels, !*World)

| SelectReceive r_channels & SelectSend s_channels

:: SelectResult

= SR_Available

| SR_EOM

| SR_Sendable

| SR_Disconnected

The r_channels parameter can be a set of lists of receive channels. These lists can
be combined with the :^: constructor (Appendix A.14). For instance, the following
is de�ned:

:: *TCP_RChannels = TCP_RChannels [TCP_RChannel]

:: *TCP_Listeners = TCP_Listeners [TCP_Listener]

If tcpRChs is a list of TCP RChannels and tcpLists is a list of TCP Listeners then
the following expression is a valid value for the r_channels parameter:

TCP_RChannels tcpRChs :^: TCP_Listeners tcpLists

The :^: constructor allows us to combine lists of channels of di�erent types. Similar
sets of send channels can be created for the s_channels argument. To specify an
empty set of channels, it's also possible to pass Void as a value for r_channels or
s_channels.

If the timeout expires, the function will return an empty list. Otherwise the Int

part of each result pair will identify one of the channels out of r_channels or
s_channels for which the SelectResult holds. Suppose for instance that both
lists tcpRChs and tcpLists contain two elements. In the fragment:

r_channels = TCP_RChannels tcpRChs :^: TCP_Listeners tcpLists

([(who,what):_],r_channels,_,world)

= selectChannel_MT Nothing r_channels Void world

(TCP_RChannels tcpRChs :^: TCP_Listeners tcpLists)

= r_channels

a set of four receive channels is passed via the r_channels parameter to the select
function. So the who value will be inbetween zero and three. Let's assume here
for simplicity that the list that is returned by the selectChannel MT function only
contains one element. If at �rst some data would have arrived for the �rst channel in
the tcpRChs list, then who equals zero, for the other element of that list who equals
one. Since the TCP Listeners data constructor is the right argument of :^:, the
who value would be two or three respectively, if at �rst a connection request would
have arrived for one of the listeners. In all these cases the value for what would
have been SR Available. But if at �rst one of the TCP RChannels would get into
the eom state, then the result would be SR EOM. Since only receive channels are
passed to the selectChannel MT function, the SelectResult result can only be
SR Available or SR EOM. The SR Sendable and the SR Disconnected values can
only be returned if some send channels are part of the s_channels parameter. As
an example we pass a list tcpSChs of TCP SendChannels to the selectChannel MT

function.

182 CHAPTER 14. TCP

([(who,what):_],_,TCP_SChannels tcpSChs,world)

= selectChannel_MT Nothing Void (TCP_SChannels tcpSChs) world

The who value will identify one of the send channels in the list (tcpSChs!!who).
Since no receive channels were passed to the selectChannel MT function, the what
value can only be SR Sendable or SR Disconnected. These values indicate that
the channel is in the sendable or disconnected state respectively.

Of course it is also possible to pass receive channels and send channels to select-

Channel MT. The SelectResult result tells you whether a receive channel or a send
channel is identi�ed by the Int result. The numbering of channels starts with zero
for receive channels and for send channels. If more than one channel could be
selected by selectChannel MT, then priority is given from left to right.

As an example program we'll discuss a server for a chat application. A chat client
program (see Figure 14.3) will ask its user for a nickname and the address of the host
where the server is running. After connecting to that server the client application
will pop up a window with two edit controls. In the upper �eld the user can type
some text which will be broadcasted via the server to all other people who are
currently connected to the server. The client program is not a topic here, because
it is a GUI program, but it is incorporated in the examples part of this tutorial.

Havanna

Fernando: How is weather in Tunis ?
Ali: Hot, and in Bangkok ?
Supinda: Fine. This summer I'll

 come to Cuba.

I'll show you arou

Tunis

Fernando: How is weather in Tunis ?
Ali: Hot, and in Bangkok ?
Supinda: Fine. This summer I'll

 come to Cuba.

Why don't you come to Tun

Bangkok

Fernando: How is weather in Tunis ?
Ali: Hot, and in Bangkok ?
Supinda: Fine. This summer I'll

 come to Cuba.

server

Figure 14.3: Chatting via the internet

The server program �rst opens a listener on the port 2000. It uses a list of ChanInfo
records. Each element of this list corresponds to one connection to a client. Apart
from the two channels for the communication, the nickname for the connection
is stored in a ChanInfo record. The set of receive channels that is passed to the
selectChannel MT function consists of the listener and the receive channels for each
open connection. There are three cases to handle: a new connection is made, data
has been sent, a connection is closed.

module chatServer

// **

// Clean tutorial example program.

14.3. BLOCKING TCP IN WORLD PROGRAMS 183

//

// This program demonstrates the usage of the selectChannel_MT function

// **

import StdEnv, StdTCP, StdIO

chatPort :== 2000

:: *ChanInfo

= { sndChan :: TCP_SChannel

, rcvChan :: TCP_RChannel

, nickname:: String

}

Start :: !*World -> *World

Start world

(ok,mbListener,world) = openTCP_Listener chatPort world

| not ok

= abort ("chatServer: can't listen on port "+++toString chatPort)

| otherwise

(console,world) = stdio world

= loop (fromJust mbListener) [] console world

loop :: !TCP_Listener ![ChanInfo] !*File !*World -> *World

loop listener channels console world

(sChans,rChans,nicknames) = unzip3 channels

glue = TCP_Listeners [listener]

:^:

TCP_RChannels rChans

([(who,what):_],glue,_,world) = selectChannel_MT Nothing glue Void world

(TCP_Listeners [listener:_]) :^: (TCP_RChannels rChans)

= glue

channels = zip3 sChans rChans nicknames

| who==0 // Case 1: someone wants to join the chatroom

(tReport,mbNewMember,listener,world)

= receive_MT (Just 0) listener world

| tReport<>TR_Success // The potential new member changed his mind

= loop listener channels console world

(_,{sChannel,rChannel})

= fromJust mbNewMember

(byteSeq,rChannel,world)

= receive rChannel world

nickname = toString byteSeq

message = "*** "+++nickname+++" joined the group."

console = fwrites (message+++"\n") console

channel = {sndChan=sChannel,rcvChan=rChannel,nickname=nickname}

channels = [channel:channels]

(channels,world) = broadcastString message channels [] world

| nickname%(0,3)=="quit"

= quit listener channels world

// otherwise

= loop listener channels console world

| what==SR_Available // Case 2: somebody has something to say

(channel=:{rcvChan, nickname},channels)

= selectList (who-1) channels

(byteSeq,rcvChan,world)

= receive rcvChan world

message = toString byteSeq

channels = channels++[{channel & rcvChan=rcvChan}]

(channels,world) = broadcastString (nickname+++": "+++message)

channels [] world

= loop listener channels console world

| what==SR_EOM // Case 3: somebody leaves the group

({sndChan,rcvChan,nickname},channels)

184 CHAPTER 14. TCP

= selectList (who-1) channels

message = "*** "+++nickname+++" left the group"

console = fwrites (message+++"\n") console

(channels,world) = broadcastString message channels [] world

world = seq [closeChannel sndChan,closeRChannel rcvChan] world

= loop listener channels console world

broadcastString :: !String ![ChanInfo] ![ChanInfo] !*World -> ([ChanInfo],!*World)

broadcastString string [] accu world

= (reverse accu, world)

broadcastString string [channel=:{sndChan}:channels] accu world

(sndChan,world) = send (toByteSeq string) sndChan world

= broadcastString string channels [{channel & sndChan=sndChan}:accu] world

selectList :: !Int [.a] -> (!.a,![.a])

selectList n l

(left,[element:right]) = splitAt n l

= (element, left++right)

quit listener channels world

= closeChannels channels (closeRChannel listener world)

closeChannels [] world

= world

closeChannels [{sndChan, rcvChan}: channels] world

world = closeChannel sndChan world

world = closeRChannel rcvChan world

= closeChannels channels world

unzip3 :: ![!ChanInfo] -> (![TCP_SChannel], ![TCP_RChannel], ![String])

unzip3 []

= ([],[],[])

unzip3 [{sndChan, rcvChan, nickname}:t]

(a,b,c) = unzip3 t

= ([sndChan:a], [rcvChan:b], [nickname:c])

zip3 :: ![TCP_SChannel] ![TCP_RChannel] ![String] -> [!ChanInfo]

zip3 [] [] []

= []

zip3 [sndChan:a] [rcvChan:b] [nickname:c]

= [{sndChan=sndChan, rcvChan=rcvChan, nickname=nickname} : zip3 a b c]

Server processes typically run in the background. Macintosh users should be aware
that the MacOS was not designed as a multitasking operating system. Hence it is
not a default property of programs to be able to run in the background. But the
desired behaviour can be obtained if the `Can Background' bit of the `size' resource
of the executable is set. The program that allows to edit these resources of �les is
called `ResEdit'.

14.3.6 More channels

Sometimes it is very handy if every single byte can be sent or received atomically.
For this purpose we implemented the following two channels:

:: *TCP_SCharStream :== TCP_SCharStream_ Char

:: *TCP_RCharStream :== TCP_RCharStream_ Char

On a TCP_S(R)CharStream characters can be sent (received). The functions to-

SCharStream and toRCharStream convert TCP_S(R)Channels into TCP_S(R)Char-
Streams. The nsend and nreceive functions are handy to use with this kind of
channels. The following function takes a TCP SChannel, converts it into a character
stream, and sends the characters \hello partner".

14.4. NON BLOCKING TCP IN GUI PROGRAMS 185

s :: !TCP_SChannel !*World -> (!TCP_SCharStream, !*World)

s tcp_SChannel world

sCharStream = toSCharStream tcp_SChannel

= nsend ['hello partner'] sCharStream world

If rCharStream is the corresponding TCP RCharStream and world the World, then
the other side could receive these thirteen characters with the following function
application:

nreceive 13 rCharStream world

Another kind of channels are the so called string channels. One handicap in using
raw TCP is that the ByteSeq packets are not atomic. That means, that sending
two byte sequences with sizes of for instance 10 and 14 bytes could be received on
the other side as one byte sequence with a size of 24 bytes. String channels use
their own protocol, which is built on top of the TCP protocol. If a string is sent on
a string channel, then at �rst a representation of the size of that string is sent, and
afterwards the contents. In this way it is possible to send empty strings as well as
strings with sizes of several megabytes. On the corresponding receive channel these
strings will be received as a whole. String channels should communicate only with
other string channels, since these channels use their very own protocol. It is possible
to use the setMaxSize function of the MaxSize class to limit the size of receivable
strings. In this way an application can be protected against bogus programs, which
claim to send strings that are to huge to �t in the memory of the used computer.

The de�nitions and instanciations for string channels can be found in the module
StdStringChannels (Appendix A.36). We only show here the following:

:: *StringSChannel :== StringSChannel_ String

:: *StringRChannel :== StringRChannel_ String

The character streams and the string channels can be passed to the selectChan-

nel MT function. The naming convention is that the data constructors for the
objects that are passed to the selectChannel MT function end with an additional
\s". For example, it is possible to pass TCP RCharStreams and StringRChannels

to the selectChannel MT function:

selectChannel_MT

Nothing

(TCP_RCharStreams [ch0,ch1] :^: StringRChannels [ch2,ch3])

Void

world

14.4 Non Blocking TCP in GUI Programs

As said before, GUI programs should not block for a \long" time. To explain how
this condition can be solved we take a look at a very similar method of handling
input, namely keyboard input. In World programs we simply can write something
like:

(line, console) = freadline console

186 CHAPTER 14. TCP

The program would block until the user presses the \Enter" key. In a GUI pro-
gram we should not use the freadline function to get keyboard input. We have
seen in Section 6.7.1 that we should specify a callback function as a part of the
WindowKeyboard attribute. When the user presses a key, the runtime system will
look up this callback function (which is stored in the PSt) and apply it to the key
code and the PSt. The callback function performs the necessary actions on the
program state as a reaction on the user's keyboard input.

With TCP connections similar things happen. One obvious di�erence is that a
callback function for TCP is not speci�ed as a part of a WindowAttribute. Instead
it is speci�ed as a ReceiverFunction which is a part of a receiver de�nition (see
Chapter 10). To receive data we have to open a receiver. If via a TCP connection
some data arrives, the ReceiverFunction of a receiver will be applied to this data.
But not only arrival of data will cause a ReceiverFunction to be applied. In
general, if a channel's state changes, the runtime system will generate a certain
event on which a ReceiverFunction will be applied. There are two events for
receive channels:

:: ReceiveMsg m = Received m | EOM

and two events for send channels:

:: SendEvent = Sendable | Disconnected

A (ReceiveMsg m) event informs the application that the message m has arrived.
The EOM event informs about closure of the channel. The two SendEvents inform the
application that the state of a send channel changed to sendable or disconnected.

Another underlying idea is the following: when receivers are opened, receive chan-
nels are eaten but send channels are not eaten!

Eating has to do with the uniqueness typing system of Clean. A function eats an
object if the type of that object is uniquely attributed, and not returned.

Example
Let's have a look at the following two functions:

sum_eating :: *{Int} -> Int

sum_eating {[0]=a0,[1]=a1} = a0+a1

sum_not_eating :: *{Int} -> (Int, *{Int})

sum_not_eating a=:{[0]=a0,[1]=a1} = (a0+a1,a)

sum eating eats its unique array argument, but sum not eating doesn't. As a
consequence, the array can not be used anymore if it is passed to sum eating.
The following application would be rejected by the type system:

Start = sum_eating a + a.[0]

where

a = {47,11}

Value a is not unique on the right hand of the equal sign, because it is used
twice. It was tried to use a in the expression a.[0], although sum eating has
eaten a. Fortunately we can calculate the desired sum with the following rule:

14.4. NON BLOCKING TCP IN GUI PROGRAMS 187

Start

(s1,a) = sum_not_eating a

= s1 + a.[0]

where

a = {47,11}

As a consequence, it is impossible to apply any function to a receive channel, after
a receiver was opened for such a channel.

Let's examine, how we can open receivers for receive channels.

For each receive channel there is an algebraic receiver de�nition type that is used
for opening a receiver. An object of such a type is passed to the openReceiver

function, as shown in Chapter 10. For TCP RChannels there is a TCP Receiver:

:: *TCP_Receiver ls pst

= TCP_Receiver

Id TCP_RChannel

(ReceiverFunction (ReceiveMsg ByteSeq) *(ls,pst))

[ReceiverAttribute *(ls,pst)]

:: ReceiverFunction m st :== m -> st -> st

To open such a receiver, an Id, a TCP RChannel, a ReceiverFunction, and Recei-

verAttributes have to be speci�ed. The Id can be used to disable or close the
receiver. If data has arrived on the channel, the ReceiverFunction will be called
with the Received alternative. If the connection is teard down by the remote
peer, then the ReceiverFunction will be called with the EOM alternative. Simi-
lar de�nitions are the TCP ListenerReceiver (for TCP Listeners), the TCP Char-

Receiver (for receiving character by character) and the StringChannelReceiver

(for StringRChannels) (see Appendixes A.40 and A.36).

Example
We show a function f that opens a receiver for string channels. The Receiver-
Function rcvFun stores the received strings in a �le which is also passed to f.
The �le is put in the local state of the receiver. When the EOM event occurs,
the receiver will be closed by the runtime system after evaluation of the EOM
alternative. It is not necessary to close such a receiver explicitly.

f :: StringRChannel *File (PSt .l) -> PSt .l

f stringChannel file pst

(rId, pst) = openRId pst

(error,pst) = openReceiver

file

(StringChannelReceiver

rId

stringChannel rcvFun []

) pst

| error<>NoError = abort "an error occurred"

| otherwise = pst

where

rcvFun (Received string) (file,pst)

= (fwrites string file, pst)

rcvFun EOM (file, pst)

= (undef, snd (fclose file pst))

188 CHAPTER 14. TCP

Now lets turn our attention to receivers for send channels. This kind of receiver
is called SendNotifier. To open a SendNotifier we use the function openSend-

Notifier which does not eat its channel argument:

openSendNotifier :: .ls !(SendNotifier *(*ch .a) .ls (PSt .l))

!(PSt .l)

-> (!ErrorReport,!*(*ch .a), ! PSt .l)

| accSChannel ch & Send ch

:: SendNotifier sChannel ls pst

= SendNotifier

sChannel

(ReceiverFunction SendEvent *(ls,pst))

[ReceiverAttribute *(ls,pst)]

As you can see no Id is used. Indeed, an Id is not needed because the only thing
we want to do with a SendNotifier is to close it. This is done automatically when
we close the corresponding send channel.

Because the send channel will not be eaten, it has to be stored somewhere in the
program state.

To send some data we can apply the following functions, which are de�ned in the
StdChannels module. These functions simply call their MT counterpart with a
timeout of zero (\NB" is a shorthand for \non blocking"):

send_NB :: !.a !*(*ch .a) !*env -> (!*(*ch .a),!*env)

| ChannelEnv env & Send ch

flushBuffer_NB :: !*(*ch .a) !*env -> (!*(*ch .a),!*env)

| ChannelEnv env & Send ch

Typically a GUI program uses the send NB function to send data in a non blocking
way. If not all of the data can be sent immediately because the send channel's state
changed to full, then send NB stores the unsent data in the send channel's inter-
nal bu�er. When the ow conditions permit sending, the runtime system applies
the SendNotifier's ReceiverFunction on the Sendable event. The Receiver-

Function should then try to ush the internal bu�er by using the flushBuffer NB

function.

As an example we will discuss a server program that accepts one connection and
echoes the incoming data. To do this it opens two receivers in its initialisation
function: for the receive channel a receiver that handles the incoming data, and for
the send channel a send noti�er. The send noti�er allows the application to perform
ow control. It should be possible that the remote side wants to receive the echoed
data much slower than it wants to send. The echo server monitors the size of the
internal bu�er of the send channel. If this bu�er size is greater than zero, then the
receiver which receives the incoming data will be disabled. It will be enabled only
when due to a Sendable event the bu�er can be ushed again.

module echoServer

// **

// Clean tutorial example program.

//

// This program demonstrates the usage of functions for event driven TCP.

// It listens on port 7, accepts a connection, and echoes the input.

// **

14.4. NON BLOCKING TCP IN GUI PROGRAMS 189

import StdEnv, StdTCP, StdIO

echoPort :== 7

:: *State

= { duplex:: TCP_DuplexChannel // The channel

, eom :: Bool // EOM occurred on receive channel

}

Start :: *World -> *World

Start world

(_,mbListener,world) = openTCP_Listener echoPort world

((_,duplex),listener,world) = receive (fromJust mbListener) world

world = closeRChannel listener world

= startIO NDI {duplex=duplex,eom=False} initialise [] world

/* initialise - the function to initialise the PSt.

*/

initialise :: (PSt State) -> PSt State

initialise pst=:{ls=ls=:{duplex={rChannel,sChannel}},io}

(tcpRcvId,io) = openId io

pst = {pst & ls={ls & duplex={rChannel=undef,sChannel=undef}}

, io=io

}

// Open a receiver for the receive channel

(error1,pst) = openReceiver tcpRcvId

(TCP_Receiver tcpRcvId rChannel rcvFun []) pst

// Open a receiver for the send channel

(error2,sChannel,pst)= openSendNotifier tcpRcvId

(SendNotifier sChannel sndFun []) pst

| error1<>NoError || error2<>NoError

= abort "error: can't open receiver"

| otherwise

= {pst & ls={ls & duplex={rChannel=undef,sChannel=sChannel}}}

/* rcvFun - the callback function for the receive channels receiver.

*/

rcvFun :: (ReceiveMsg ByteSeq) (Id,PSt State) -> (Id,PSt State)

rcvFun (Received byteSeq) (tcpRcvId,pst=:{ls=ls=:{duplex=dc=:{sChannel}},io})

(sChannel,io) = send_NB byteSeq sChannel io

(buffSize,sChannel) = bufferSize sChannel

ls = {ls & duplex={dc & sChannel=sChannel}}

| buffSize==0

= (tcpRcvId,{pst & ls=ls,io=io})

| otherwise // Disable this receiver if the send channel is full

io = disableReceivers [tcpRcvId] io

= (tcpRcvId,{pst & ls=ls,io=io})

rcvFun EOM (tcpRcvId,pst=:{ls=ls=:{duplex=dc=:{sChannel}},io})

(buffSize,sChannel) = bufferSize sChannel

pst = {pst & ls={ls & duplex = {dc & sChannel=sChannel}

, eom = True

}

, io=io

}

| buffSize==0 // All data has been sent, so close program

= (tcpRcvId,closeProcess (close pst))

| otherwise

= (tcpRcvId,pst)

/* sndFun - the callback function for the send channels receiver.

*/

sndFun :: SendEvent (Id,PSt State) -> (Id,PSt State)

sndFun Sendable (tcpRcvId,pst=:{ls=ls=:{duplex=dc=:{sChannel},eom},io})

(sChannel,io) = flushBuffer_NB sChannel io

(buffSize,sChannel) = bufferSize sChannel

pst = {pst & ls={ls & duplex={dc & sChannel=sChannel}}

190 CHAPTER 14. TCP

, io=io

}

// Reenable the receive channel's receiver if the send channel is still sendable.

pst = case (buffSize,eom) of

(0,False) -> appPIO (enableReceivers [tcpRcvId]) pst

(0,True) -> close pst

_ -> pst

= (tcpRcvId,pst)

sndFun Disconnected (ls,pst)

= (ls,closeProcess pst)

close :: (PSt State) -> PSt State

close pst=:{ls=ls=:{duplex},io}

io = closeChannel duplex.sChannel io

= {pst & ls={ls & duplex={duplex & sChannel=undef}},io=io}

Is it forbidden to use blocking functions in GUI programs? This question arises
because using blocking functions usually results in nicer programs. The answer is:
of course it is not forbidden. The only problem that arises when using blocking
functions is that the program will simply do not anything else while it blocks.
In particular it will not update the contents of windows. The programmer has to
estimate himself whether this is acceptable or not. Furthermore it depends on many
factors whether the functions will block or not. For example there is no problem to
send data in a blocking way to a program that is known to receive fast enough.

Appendix A

I/O library

A.1 StdBitmap

definition module StdBitmap

// **

// Clean Standard Object I/O library, version 1.2

//

// StdBitmap contains functions for reading bitmap files and drawing bitmaps.

// **

import StdMaybe

from StdFile import FileSystem

from osbitmap import Bitmap

import StdPicture

export FileSystem World

openBitmap :: !{#Char} !*env -> (!Maybe Bitmap,!*env) | FileSystem env

/* openBitmap reads in a bitmap from file.

The String argument must be the file name of the bitmap.

If the bitmap could be read, then (Just bitmap) is returned, otherwise Nothing

is returned.

*/

getBitmapSize :: !Bitmap -> Size

/* getBitmapSize returns the size of the given bitmap.

In case the bitmap is the result of an erroneous openBitmap, then the size is

zero.

*/

resizeBitmap :: !Size !Bitmap -> Bitmap

/* zooms or stretches a bitmap. The second argument is the size

of the resulting bitmap

*/

instance Drawables Bitmap

/* draw bitmap

draws the given bitmap with its left top at the current pen position.

drawAt pos bitmap

draws the given bitmap with its left top at the given pen position.

undraw(At)

equals unfill(At) the box {box_w=w,box_h=h} with {w,h} the size of the

bitmap.

*/

191

192 APPENDIX A. I/O LIBRARY

A.2 StdChannels

definition module StdChannels

// **

// Clean Standard Object I/O library, version 1.2

//

// StdChannels defines operations on channels

// **

from StdMaybe import Maybe

from StdOverloaded import ==, toString

from tcp import ChannelEnv

instance ChannelEnv World

// **

// receive channels

// **

class Receive ch where

receive_MT :: !(Maybe !Timeout) !*(*ch .a) !*env

-> (!TimeoutReport, !Maybe !.a,!*(*ch .a), !*env)

| ChannelEnv env

receiveUpTo :: !Int !*(*ch .a) !*env

-> (![.a], !*(*ch .a), !*env)

| ChannelEnv env

available :: !*(*ch .a) !*env

-> (!Bool, !*(*ch .a), !*env)

| ChannelEnv env

eom :: !*(*ch .a) !*env

-> (!Bool, !*(*ch .a), !*env)

| ChannelEnv env

/* receive_MT

tries to receive on a channel. This function will block until data can be

received, eom becomes true, or the timeout expires.

receiveUpTo max ch env

receives messages on a channel until available becomes False or max

messages have been received.

available

polls on a channel whether some data is ready to be received. If the

returned Boolean is True, then a following receive_MT will not block and

return TR_Success.

eom ("end of messages")

polls on a channel whether data can't be received anymore.

*/

class closeRChannel ch :: !*(*ch .a) !*env -> !*env | ChannelEnv env

// Closes the channel

// **

// send channels

// **

class Send ch where

send_MT :: !(Maybe !Timeout) !.a !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*(*ch .a), !*env)

| ChannelEnv env

nsend_MT :: !(Maybe !Timeout) ![.a] !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*(*ch .a), !*env)

| ChannelEnv env

flushBuffer_MT :: !(Maybe !Timeout) !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*(*ch .a), !*env)

| ChannelEnv env

closeChannel_MT :: !(Maybe !Timeout) !*(*ch .a) !*env

A.2. STDCHANNELS 193

-> (!TimeoutReport, !Int, !*env)

| ChannelEnv env

abortConnection :: !*(*ch .a) !*env

-> !*env

| ChannelEnv env

disconnected :: !*(*ch .a) !*env

-> (!Bool, !*(*ch .a), !*env)

| ChannelEnv env

bufferSize :: !*(*ch .a)

-> (!Int, !*(*ch .a))

/* send_MT mbTimeout a ch env

adds the data a to the channels internal buffer and tries to send this

buffer.

nsend_MT mbTimeout l ch env

adds the data l to the channels internal buffer and tries to send this

buffer.

flushBuffer_MT

tries to send the channels internal buffer.

closeSChannel_MT

first tries to send the channels internal buffer and then closes the

channel.

abortConnection

will cause an abortive disconnect (sent data can be lost).

disconnected

polls on a channel, whether data can't be sent anymore. If the returned

Boolean is True, then a following send_MT will not block and return

TR_NoSuccess.

bufferSize

returns the size of the channels internal buffer in bytes.

The integer value that is returned by send_MT, nsend_MT, flushBuffer_MT, and

closeSChannel_MT is the number of sent bytes.

*/

// **

// miscellaneous

// **

class MaxSize ch where

setMaxSize :: !Int !*(*ch .a) -> *(*ch .a)

getMaxSize :: !*(*ch .a) -> (!Int, !*(*ch .a))

clearMaxSize :: !*(*ch .a) -> *(*ch .a)

// Set, get, or clear the maximum size of the data that can be received

:: DuplexChannel sChannel rChannel a

= { sChannel:: sChannel a

, rChannel:: rChannel a

}

:: TimeoutReport

= TR_Expired

| TR_Success

| TR_NoSuccess

:: Timeout :== Int // timeout in ticks

:: ReceiveMsg m = Received m

| EOM

// Receiving "EOM" automatically closes the receiver

:: SendEvent = Sendable

| Disconnected

// Receiving "Disconnected" automatically closes the receiver

instance == TimeoutReport

instance toString TimeoutReport

194 APPENDIX A. I/O LIBRARY

// **

// derived functions

// **

nreceive_MT :: !(Maybe !Timeout) !Int !*(*ch .a) !*env

-> (!TimeoutReport, ![.a],!*(*ch .a),!*env)

| Receive ch & ChannelEnv env

/* nreceive_MT mbTimeout n ch env

tries to call receive_MT n times. If the result is (tReport, l, ch2, env2),

then the following holds:

tReport==TR_Succes <=> length l==n

tReport==TR_NoSuccess => length l<n

*/

/* The following two receive functions call their "_MT" counterpart with no

timeout. If the data can't be received because eom became True the function will

abort.

*/

receive :: !*(*ch .a) !*env

-> (!.a, !*(*ch .a), !*env)

| ChannelEnv env & Receive ch

nreceive :: !Int !*(*ch .a) !*env

-> (![.a], !*(*ch .a), !*env)

| ChannelEnv env & Receive ch

/* The following three send functions call their "_MT" counterpart with no timeout.

*/

send :: !.a !*(*ch .a) !*env

-> (!*(*ch .a), !*env)

| ChannelEnv env & Send ch

nsend :: ![.a] !*(*ch .a) !*env

-> (!*(*ch .a), !*env)

| ChannelEnv env & nsend_MT ch

closeChannel :: !*(*ch .a) !*env

-> !*env

| ChannelEnv env & Send ch

/* The following two send functions call their "_MT" counterpart with timeout == 0.

"NB" is a shorthand for "non blocking"

*/

send_NB :: !.a !*(*ch .a) !*env

-> (!*(*ch .a), !*env)

| ChannelEnv env & Send ch

flushBuffer_NB :: !*(*ch .a) !*env

-> (!*(*ch .a), !*env)

| ChannelEnv env & Send ch

A.3. STDCLIPBOARD 195

A.3 StdClipboard

definition module StdClipboard

// **

// Clean Standard Object I/O library, version 1.2

//

// StdClipboard specifies all functions on the clipboard.

// **

import StdMaybe

from iostate import PSt, IOSt

// Clipboard data items:

:: ClipboardItem

class Clipboard item where

toClipboard :: !item -> ClipboardItem

fromClipboard :: !ClipboardItem -> Maybe item

/* toClipboard

makes an item transferable to the clipboard.

fromClipboard

attempts to retrieve an item of the instance type from the clipboard item.

If this fails, the result is Nothing, otherwise it is (Just item).

*/

instance Clipboard {#Char}

// Access to the current content of the clipboard:

setClipboard :: ![ClipboardItem] !(PSt .l) -> PSt .l

getClipboard :: !(PSt .l) -> (![ClipboardItem],!PSt .l)

/* setClipboard

replaces the current content of the clipboard with the argument list.

Of the list only the first occurence of a ClipboardItem of the same type

will be stored in the clipboard.

Note that setClipboard [] erases the clipboard.

getClipboard

gets the current content of the clipboard without changing the content.

*/

clipboardHasChanged :: !(PSt .l) -> (!Bool,!PSt .l)

/* clipboardHasChanged holds if the current content of the clipboard is different

from the last access to the clipboard.

*/

196 APPENDIX A. I/O LIBRARY

A.4 StdControl

definition module StdControl

// **

// Clean Standard Object I/O library, version 1.2

//

// StdControl specifies all control operations.

// **

import StdControlClass

controlSize :: !(cdef .ls (PSt .l)) !Bool

!(Maybe (Int,Int)) !(Maybe (Int,Int)) !(Maybe (Int,Int))

!(PSt .l)

-> (!Size,!PSt .l) | Controls cdef

/* controlSize calculates the size of the given control definition as it would be

opened as an element of a window/dialog.

The Boolean argument determines whether a window (True) or a dialog (False) is

intended.

The Maybe arguments are the prefered horizontal margins, vertical margins, and

item spaces (see also the (Window/Control)(H/V)Margin and

(Window/Control)ItemSpace attributes). If Nothing is specified, their

default values with respect to the window/dialog are used.

*/

/* Functions that change the set of controls in windows/dialogues.

*/

openControls :: !Id .ls (cdef .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport,!PSt .l)

| Controls cdef

openCompoundControls :: !Id .ls (cdef .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport,!PSt .l)

| Controls cdef

openPopUpControlItems :: !Id !Index ![PopUpControlItem (PSt .l)]

!(IOSt .l) -> IOSt .l

/* openControls

adds the given controls argument to the indicated window or dialog.

openCompoundControls

adds the given controls argument to the indicated compound control.

openPopUpControlItems

adds the PopUpControlItems to the indicated PopUpControl behind the item at

the given index position (counted from 1).

The window/dialog is not resized.

These functions have no effect in case the indicated window/dialog/compound

control could not be found (ErrorUnknownObject) or if controls are opened with

duplicate Ids (ErrorIdsInUse).

*/

closeControls :: !Id [Id] !Bool !(IOSt .l) -> IOSt .l

/* closeControls removes the indicated controls (second argument) from the

indicated window (first argument) and recalculates the layout iff the Boolean

argument is True.

*/

closeAllControls :: !Id !(IOSt .l) -> IOSt .l

/* closeAllControls removes all controls from the indicated window.

*/

closePopUpControlItems :: !Id ![Index] !(IOSt .l) -> IOSt .l

/* closePopUpControlItems closes PopUpControlItems by their Index position of the

indicated PopUpControl.

A.4. STDCONTROL 197

If the currently checked element of a PopUpControl is closed, the first

remaining element of that PopUpControl will be checked.

*/

setControlPos :: !Id ![(Id,ItemPos)] !(IOSt .l) -> (!Bool,!IOSt .l)

/* setControlPos changes the current layout position of the indicated controls to

their new positions.

If there are relatively laynout controls, then their layout also changes. The

window is not resized.

The Boolean result is False iff the window is unknown.

*/

/* Functions that change the state of controls.

Only those Id arguments that refer to controls within the same interactive

process are used to change the corresponding controls.

*/

showControls :: ![Id] !(IOSt .l) -> IOSt .l

showControl :: ! Id !(IOSt .l) -> IOSt .l

hideControls :: ![Id] !(IOSt .l) -> IOSt .l

hideControl :: ! Id !(IOSt .l) -> IOSt .l

/* (show/hide)Control(s) makes the indicated control(s) visible/invisible.

Hiding a control overrides the visibility of its elements, which become

invisible.

Showing a hidden control re-establishes the visibility state of its elements.

*/

enableControls :: ![Id] !(IOSt .l) -> IOSt .l

enableControl :: ! Id !(IOSt .l) -> IOSt .l

disableControls :: ![Id] !(IOSt .l) -> IOSt .l

disableControl :: ! Id !(IOSt .l) -> IOSt .l

/* (en/dis)ableControl(s) (en/dis)ables the indicated control(s).

Disabling a control overrides the SelectStates of its elements, which become

unselectable.

Enabling a disabled control re-establishes the SelectStates of its elements.

*/

markCheckControlItems :: !Id ![Index] !(IOSt .l) -> IOSt .l

unmarkCheckControlItems :: !Id ![Index] !(IOSt .l) -> IOSt .l

/* (unm/m)arkCheckControlItems unmarks/marks the indicated check items of the given

CheckControl. Indices range from 1 to the number of check items. Illegal indices

are ignored.

*/

selectRadioControlItem :: !Id !Index !(IOSt .l) -> IOSt .l

/* selectRadioControlItem marks the indicated radio item of a RadioControl, causing

the mark of the previously marked radio item to disappear. The item is given by

the Id of the RadioControl and its index position (counted from 1).

*/

selectPopUpControlItem :: !Id !Index !(IOSt .l) -> IOSt .l

/* selectPopUpControlItem marks the indicated popup item of a PopUpControl, causing

the mark of the previously marked popup item to disappear. The item is given by

the Id of the PopUpControl and its index position (counted from 1).

*/

moveControlViewFrame :: !Id Vector2 !(IOSt .l) -> IOSt .l

/* moveControlViewFrame moves the orientation of the CompoundControl over the given

vector, and updates the control if necessary. The control frame is not moved

outside the ViewDomain of the control. MoveControlViewFrame has no effect if the

indicated control has no ControlDomain attribute.

*/

setControlViewDomain :: !Id ViewDomain !(IOSt .l) -> IOSt .l

/* setControlViewDomain sets the view domain of the indicated CompoundControl as

198 APPENDIX A. I/O LIBRARY

given. The control view frame is moved such that a maximum portion of the view

domain is visible. The control is not resized.

In case of unknown Ids, or non CompoundControls, setControlViewDomain has no

effect.

*/

setControlScrollFunction:: !Id Direction ScrollFunction !(IOSt .l) -> IOSt .l

/* setControlScrollFunction set the ScrollFunction of the indicated CompoundControl

in the given Direction if it has one.

In all other cases, setControlScrollFunction has no effect.

*/

setControlTexts :: ![(Id,String)] !(IOSt .l) -> IOSt .l

setControlText :: !Id !String !(IOSt .l) -> IOSt .l

/* setControlText(s) sets the text of the indicated (Text/Edit/Button)Control(s).

If the indicated control is a (Text/Button)Control, then AltKey are interpreted

by the system.

If the indicated control is an EditControl, then the text is taken as it is.

*/

setEditControlCursor :: !Id !Int !(IOSt .l) -> IOSt .l

/* setEditControlCursor sets the cursor at position @2 of the current content of

the EditControl.

In case @2<0, then the cursor is set at the start of the current content.

In case @2>size content, then the cursor is set at the end of the current

content.

*/

setControlLooks :: ![(Id, Bool,(Bool,Look))] !(IOSt .l) -> IOSt .l

setControlLook :: !Id !Bool (Bool,Look) !(IOSt .l) -> IOSt .l

/* setControlLook(s) sets the (render,look) attribute of the indicated

(Custom(Button)/Compound)Control(s). If this concerns a transparant

CompoundControl then it becomes non-transparant.

An indicated control is only redrawn if the first Boolean is True.

*/

setSliderStates :: ![(Id, IdFun SliderState)] !(IOSt .l) -> IOSt .l

setSliderState :: !Id (IdFun SliderState) !(IOSt .l) -> IOSt .l

setSliderThumbs :: ![(Id,Int)] !(IOSt .l) -> IOSt .l

setSliderThumb :: !Id Int !(IOSt .l) -> IOSt .l

/* setSliderState(s)

applies the function to the current SliderState of the indicated

SliderControl(s) and redraws the settings if necessary.

setSliderThumb(s)

sets the new thumb value of the indicated SliderControl(s) and redraws the

settings if necessary.

*/

appControlPicture :: !Id !.(IdFun *Picture) !(IOSt .l) -> IOSt .l

accControlPicture :: !Id !.(St *Picture .x) !(IOSt .l)

-> (!Maybe .x,!IOSt .l)

/* (app/acc)ControlPicture applies the given drawing function to the Picture of

the indicated (Custom(Button)/Compound)Control. If the CompoundControl is

transparant, or the indicated control could not be found then this operation

has no effect. In that case, accControlPicture also returns Nothing.

*/

updateControl :: !Id !(Maybe ViewFrame) !(IOSt .l) -> IOSt .l

/* updateControl applies the Look attribute function of the indicated

(Compound/Custom(Button))Control.

The Look attribute function is applied to the following arguments:

The current SelectState of the control, and

the UpdateState argument

{oldFrame=viewframe,newFrame=viewframe,updArea=[frame]}

where viewframe is the current ViewFrame of the control;

and frame depends on the optional ViewFrame argument:

A.4. STDCONTROL 199

in case of (Just rectangle):

the intersection of viewframe and rectangle.

in case of Nothing:

viewframe.

updateControl has no effect in case of unknown controls, or if the indicated

control is not a (Compound/Custom(Button))Control, or the optional viewframe

argument is an empty rectangle.

*/

/* Access functions on WState. To read the state of a control, a WState is

required which can be obtained by the getWindow function. The WState value

represents the state of a window or dialogue at that particular moment.

*/

:: WState

getWindow :: !Id !(IOSt .l) -> (!Maybe WState, !IOSt .l)

getParentWindow :: !Id !(IOSt .l) -> (!Maybe WState, !IOSt .l)

/* getWindow returns a read-only WState for the indicated window.

In case the indicated window does not exist Nothing is returned.

getParentWindow returns a read-only WState for the parent window/dialogue

of the indicated control. In case the Id does not correspond with a

control, Nothing is returned.

*/

getControlTypes :: !WState -> [(ControlType,Maybe Id)]

getCompoundTypes :: !Id !WState -> [(ControlType,Maybe Id)]

/* getControlTypes

yields the list of ControlTypes of the component controls of this window.

getCompoundTypes

yields the list of ControlTypes of the component controls of this

CompoundControl.

For both functions (Just id) is yielded if the component control has a

(ControlId id) attribute, and Nothing otherwise. Component controls are not

collected recursively through CompoundControls.

If the indicated CompoundControl is not a CompoundControl, then [] is yielded.

*/

/* Functions that return the current state of controls.

For each access there is one singular and one plural version. In case of the

plural version the result list is of equal length as the argument Id list. Each

result list element corresponds in order with the argument Id list.

In both versions the first Boolean result is False in case of invalid Ids (if so

dummy values are returned - see comment).

Important: controls with no ControlId attribute, or illegal ids, can not be

found in the WState!

*/

getControlLayouts :: ![Id] !WState -> [(Bool,(Maybe ItemPos,Vector2))]

getControlLayout :: ! Id !WState -> (Bool,(Maybe ItemPos,Vector2))

/* getControlLayout(s) yields (Just ControlPos) if the indicated control had a

ControlPos attribute and Nothing otherwise. The Vector2 offset is the exact

current location of the indicated control (LeftTop,OffsetVector offset).

*/

getControlViewSizes :: ![Id] !WState -> [(Bool,Size)]

getControlViewSize :: ! Id !WState -> (Bool,Size)

getControlOuterSizes :: ![Id] !WState -> [(Bool,Size)]

getControlOuterSize :: ! Id !WState -> (Bool,Size)

/* getControlViewSize(s) yields the current ViewFrame size of the indicated

control. Note that this is the exact size of the control for any control

other than the CompoundControl. In case of unknown Ids zero is returned.

getControlOuterSize(s) yields the current ControlOuterSize of the indicated

control. Note that this is the exact size of the control. In case of unknown

Ids zero is returned.

200 APPENDIX A. I/O LIBRARY

*/

getControlSelectStates :: ![Id] !WState -> [(Bool,SelectState)]

getControlSelectState :: ! Id !WState -> (Bool,SelectState)

/* getControlSelectState(s) yields the current SelectState of the indicated

control. In case of unknown Ids Able is returned.

*/

getControlShowStates :: ![Id] !WState -> [(Bool,Bool)]

getControlShowState :: ! Id !WState -> (Bool,Bool)

/* getControlShowState(s) yields True if the indicated control is visible, and

False otherwise. The latter is also returned in case of unknown Ids.

*/

getControlTexts :: ![Id] !WState -> [(Bool,Maybe String)]

getControlText :: ! Id !WState -> (Bool,Maybe String)

/* getControlText(s) yields (Just text) of the indicated (PopUp/Text/Edit/Button)

Control. If the control is not such a control, then Nothing is yielded.

*/

getControlNrLines :: ![Id] !WState -> [(Bool,Maybe NrLines)]

getControlNrLine :: ! Id !WState -> (Bool,Maybe NrLines)

/* getControlNrLine(s) yields (Just nrlines) of the indicated EditControl.

If the control is not such a control, then Nothing is yielded.

*/

getControlLooks :: ![Id] !WState -> [(Bool,Maybe (Bool,Look))]

getControlLook :: ! Id !WState -> (Bool,Maybe (Bool,Look))

/* getControlLook(s) yields the (render/look) of the indicated

(Custom/CustomButton/Compound)Control. If the control is not such a control, or

is a transparant CompoundControl, then Nothing is yielded.

*/

getControlMinimumSizes :: ![Id] !WState -> [(Bool,Maybe Size)]

getControlMinimumSize :: ! Id !WState -> (Bool,Maybe Size)

/* getControlMinimumSize(s) yields (Just minimumsize) if the indicated control had

a ControlMinimumSize attribute and Nothing otherwise.

*/

getControlResizes :: ![Id] !WState -> [(Bool,Maybe ControlResizeFunction)]

getControlResize :: ! Id !WState -> (Bool,Maybe ControlResizeFunction)

/* getControlResize(s) yields (Just resizefunction) if the indicated control had a

ControlResize attribute and Nothing otherwise.

*/

getRadioControlItems :: ![Id] !WState -> [(Bool,Maybe [String])]

getRadioControlItem :: ! Id !WState -> (Bool,Maybe [String])

/* getRadioControlItem(s) yields the TextLines of the items of the indicated

RadioControl. If the control is not such a control, then Nothing is yielded.

*/

getRadioControlSelections:: ![Id] !WState -> [(Bool,Maybe Index)]

getRadioControlSelection :: ! Id !WState -> (Bool,Maybe Index)

/* getRadioControlSelection(s) yields the index of the selected radio item of the

indicated RadioControl. If the control is not such a control, then Nothing is

yielded.

*/

getCheckControlItems :: ![Id] !WState -> [(Bool,Maybe [String])]

getCheckControlItem :: ! Id !WState -> (Bool,Maybe [String])

/* getCheckControlItem(s) yields the TextLines of the items of the indicated

CheckControl. If the control is not such a control, then Nothing is yielded.

*/

getCheckControlSelections:: ![Id] !WState -> [(Bool,Maybe [Index])]

getCheckControlSelection :: ! Id !WState -> (Bool,Maybe [Index])

/* getCheckControlSelection(s) yields the indices of the selected checkitems of the

A.4. STDCONTROL 201

indicated CheckControl. If the control is not such a control, then Nothing is

yielded.

*/

getPopUpControlItems :: ![Id] !WState -> [(Bool,Maybe [String])]

getPopUpControlItem :: ! Id !WState -> (Bool,Maybe [String])

/* getPopUpControlItem(s) yields the TextLines of the items of the indicated

PopUpControl. If the control is not such a control, then Nothing is yielded.

*/

getPopUpControlSelections:: ![Id] !WState -> [(Bool,Maybe Index)]

getPopUpControlSelection :: ! Id !WState -> (Bool,Maybe Index)

/* getPopUpControlSelection(s) yields the Index of the indicated PopUpControl.

If the control is not such a control, then Nothing is yielded.

*/

getSliderDirections :: ![Id] !WState -> [(Bool,Maybe Direction)]

getSliderDirection :: ! Id !WState -> (Bool,Maybe Direction)

/* getSliderDirection(s) yields (Just Direction) of the indicated SliderControl.

If the control is not such a control, then Nothing is yielded.

*/

getSliderStates :: ![Id] !WState -> [(Bool,Maybe SliderState)]

getSliderState :: ! Id !WState -> (Bool,Maybe SliderState)

/* getSliderState(s) yields (Just SliderState) of the indicated SliderControl.

If the control is not such a control, then Nothing is yielded.

*/

getControlViewFrames :: ![Id] !WState -> [(Bool,Maybe ViewFrame)]

getControlViewFrame :: ! Id !WState -> (Bool,Maybe ViewFrame)

/* getControlViewFrame(s) yields (Just ViewFrame) of the indicated CompoundControl.

If the control is not such a control, then Nothing is yielded.

*/

getControlViewDomains :: ![Id] !WState -> [(Bool,Maybe ViewDomain)]

getControlViewDomain :: ! Id !WState -> (Bool,Maybe ViewDomain)

/* getControlViewDomain(s) yields (Just ViewDomain) of the indicated

CompoundControl. If the control is not such a control, then Nothing is yielded.

*/

getControlScrollFunctions

:: ![Id] !WState

-> [(Bool,Maybe ((Direction,Maybe ScrollFunction)

,(Direction,Maybe ScrollFunction)

))]

getControlScrollFunction:: ! Id !WState

-> (Bool,Maybe ((Direction,Maybe ScrollFunction)

,(Direction,Maybe ScrollFunction)

))

/* getControlScrollFunction(s) yields the ScrollFunctions of the indicated

CompoundControl. If the control is not such a control, then Nothing is yielded.

*/

getControlItemSpaces :: ![Id] !WState -> [(Bool,Maybe (Int,Int))]

getControlItemSpace :: ! Id !WState -> (Bool,Maybe (Int,Int))

/* getControlItemSpace(s) yields (Just (horizontal space,vertical space)) of the

indicated (Compound/Layout)Control. If the control is not such a control, then

Nothing is yielded.

*/

getControlMargins :: ![Id] !WState -> [(Bool,Maybe ((Int,Int),(Int,Int)))]

getControlMargin :: ! Id !WState -> (Bool,Maybe ((Int,Int),(Int,Int)))

/* getControlMargins yields (Just (ControlHMargin,ControlVMargin)) of the

indicated (Compound/Layout)Control. If the control is not such a control, then

Nothing is yielded.

*/

202 APPENDIX A. I/O LIBRARY

A.5 StdControlAttribute

definition module StdControlAttribute

// **

// Clean Standard Object I/O library, version 1.2

//

// StdControlAttribute specifies which ControlAttributes are valid for each of the

// standard controls.

// Basic comparison operations and retrieval functions are also included.

// **

import StdControlDef

/* The following functions specify the valid attributes for each standard control.

*/

isValidButtonControlAttribute :: !(ControlAttribute .st) -> Bool

/* ButtonControl (y = valid, . = invalid)

ControlActivate . | ControlKeyboard . | ControlPos y |

ControlDeactivate . | ControlLook . | ControlResize . |

ControlFunction y | ControlMinimumSize . | ControlSelectState y |

ControlHide y | ControlModsFunction y | ControlTip y |

ControlHMargin . | ControlMouse . | ControlViewDomain . |

ControlHScroll . | ControlOrigin . | ControlViewSize . |

ControlId y | ControlOuterSize . | ControlVMargin . |

ControlItemSpace . | ControlPen . | ControlVScroll . |

| ControlWidth y |

*/

isValidCheckControlAttribute :: !(ControlAttribute .st) -> Bool

/* CheckControl (y = valid, . = invalid)

ControlActivate . | ControlKeyboard . | ControlPos y |

ControlDeactivate . | ControlLook . | ControlResize . |

ControlFunction . | ControlMinimumSize . | ControlSelectState y |

ControlHide y | ControlModsFunction . | ControlTip y |

ControlHMargin . | ControlMouse . | ControlViewDomain . |

ControlHScroll . | ControlOrigin . | ControlViewSize . |

ControlId y | ControlOuterSize . | ControlVMargin . |

ControlItemSpace . | ControlPen . | ControlVScroll . |

| ControlWidth . |

*/

isValidCompoundControlAttribute :: !(ControlAttribute .st) -> Bool

/* CompoundControl (y = valid, . = invalid)

ControlActivate y | ControlKeyboard y | ControlPos y |

ControlDeactivate y | ControlLook y | ControlResize y |

ControlFunction . | ControlMinimumSize y | ControlSelectState y |

ControlHide y | ControlModsFunction . | ControlTip y |

ControlHMargin y | ControlMouse y | ControlViewDomain y |

ControlHScroll y | ControlOrigin y | ControlViewSize y |

ControlId y | ControlOuterSize y | ControlVMargin y |

ControlItemSpace y | ControlPen y | ControlVScroll y |

| ControlWidth . |

*/

isValidCustomButtonControlAttribute :: !(ControlAttribute .st) -> Bool

/* CustomButtonControl (y = valid, . = invalid)

ControlActivate . | ControlKeyboard . | ControlPos y |

ControlDeactivate . | ControlLook . | ControlResize y |

ControlFunction y | ControlMinimumSize y | ControlSelectState y |

ControlHide y | ControlModsFunction y | ControlTip y |

ControlHMargin . | ControlMouse . | ControlViewDomain . |

ControlHScroll . | ControlOrigin . | ControlViewSize . |

A.5. STDCONTROLATTRIBUTE 203

ControlId y | ControlOuterSize . | ControlVMargin . |

ControlItemSpace . | ControlPen y | ControlVScroll . |

| ControlWidth . |

*/

isValidCustomControlAttribute :: !(ControlAttribute .st) -> Bool

/* CustomControl (y = valid, . = invalid)

ControlActivate y | ControlKeyboard y | ControlPos y |

ControlDeactivate y | ControlLook . | ControlResize y |

ControlFunction . | ControlMinimumSize y | ControlSelectState y |

ControlHide y | ControlModsFunction . | ControlTip y |

ControlHMargin . | ControlMouse y | ControlViewDomain . |

ControlHScroll . | ControlOrigin . | ControlViewSize . |

ControlId y | ControlOuterSize . | ControlVMargin . |

ControlItemSpace . | ControlPen y | ControlVScroll . |

| ControlWidth . |

*/

isValidEditControlAttribute :: !(ControlAttribute .st) -> Bool

/* EditControl (y = valid, . = invalid)

ControlActivate y | ControlKeyboard y | ControlPos y |

ControlDeactivate y | ControlLook . | ControlResize y |

ControlFunction . | ControlMinimumSize . | ControlSelectState y |

ControlHide y | ControlModsFunction . | ControlTip y |

ControlHMargin . | ControlMouse . | ControlViewDomain . |

ControlHScroll . | ControlOrigin . | ControlViewSize . |

ControlId y | ControlOuterSize . | ControlVMargin . |

ControlItemSpace . | ControlPen . | ControlVScroll . |

| ControlWidth . |

*/

isValidLayoutControlAttribute :: !(ControlAttribute .st) -> Bool

/* LayoutControl (y = valid, . = invalid)

ControlActivate . | ControlKeyboard . | ControlPos y |

ControlDeactivate . | ControlLook . | ControlResize y |

ControlFunction . | ControlMinimumSize y | ControlSelectState y |

ControlHide y | ControlModsFunction . | ControlTip . |

ControlHMargin y | ControlMouse . | ControlViewDomain . |

ControlHScroll . | ControlOrigin . | ControlViewSize y |

ControlId y | ControlOuterSize y | ControlVMargin y |

ControlItemSpace y | ControlPen . | ControlVScroll . |

| ControlWidth . |

*/

isValidPopUpControlAttribute :: !(ControlAttribute .st) -> Bool

/* PopUpControl (y = valid, . = invalid)

ControlActivate y | ControlKeyboard . | ControlPos y |

ControlDeactivate y | ControlLook . | ControlResize . |

ControlFunction . | ControlMinimumSize . | ControlSelectState y |

ControlHide y | ControlModsFunction . | ControlTip y |

ControlHMargin . | ControlMouse . | ControlViewDomain . |

ControlHScroll . | ControlOrigin . | ControlViewSize . |

ControlId y | ControlOuterSize . | ControlVMargin . |

ControlItemSpace . | ControlPen . | ControlVScroll . |

| ControlWidth y |

*/

isValidRadioControlAttribute :: !(ControlAttribute .st) -> Bool

/* RadioControl (y = valid, . = invalid)

ControlActivate . | ControlKeyboard . | ControlPos y |

ControlDeactivate . | ControlLook . | ControlResize . |

ControlFunction . | ControlMinimumSize . | ControlSelectState y |

ControlHide y | ControlModsFunction . | ControlTip y |

ControlHMargin . | ControlMouse . | ControlViewDomain . |

ControlHScroll . | ControlOrigin . | ControlViewSize . |

ControlId y | ControlOuterSize . | ControlVMargin . |

ControlItemSpace . | ControlPen . | ControlVScroll . |

204 APPENDIX A. I/O LIBRARY

| ControlWidth . |

*/

isValidSliderControlAttribute :: !(ControlAttribute .st) -> Bool

/* SliderControl (y = valid, . = invalid)

ControlActivate . | ControlKeyboard . | ControlPos y |

ControlDeactivate . | ControlLook . | ControlResize y |

ControlFunction . | ControlMinimumSize . | ControlSelectState y |

ControlHide y | ControlModsFunction . | ControlTip y |

ControlHMargin . | ControlMouse . | ControlViewDomain . |

ControlHScroll . | ControlOrigin . | ControlViewSize . |

ControlId y | ControlOuterSize . | ControlVMargin . |

ControlItemSpace . | ControlPen . | ControlVScroll . |

| ControlWidth . |

*/

isValidTextControlAttribute :: !(ControlAttribute .st) -> Bool

/* TextControl (y = valid, . = invalid)

ControlActivate . | ControlKeyboard . | ControlPos y |

ControlDeactivate . | ControlLook . | ControlResize . |

ControlFunction . | ControlMinimumSize . | ControlSelectState . |

ControlHide y | ControlModsFunction . | ControlTip y |

ControlHMargin . | ControlMouse . | ControlViewDomain . |

ControlHScroll . | ControlOrigin . | ControlViewSize . |

ControlId y | ControlOuterSize . | ControlVMargin . |

ControlItemSpace . | ControlPen . | ControlVScroll . |

| ControlWidth y |

*/

/* The following functions return True only iff the attribute equals the

indicated name.

*/

isControlActivate :: !(ControlAttribute .st) -> Bool

isControlDeactivate :: !(ControlAttribute .st) -> Bool

isControlFunction :: !(ControlAttribute .st) -> Bool

isControlHide :: !(ControlAttribute .st) -> Bool

isControlHMargin :: !(ControlAttribute .st) -> Bool

isControlHScroll :: !(ControlAttribute .st) -> Bool

isControlId :: !(ControlAttribute .st) -> Bool

isControlItemSpace :: !(ControlAttribute .st) -> Bool

isControlKeyboard :: !(ControlAttribute .st) -> Bool

isControlLook :: !(ControlAttribute .st) -> Bool

isControlMinimumSize :: !(ControlAttribute .st) -> Bool

isControlModsFunction :: !(ControlAttribute .st) -> Bool

isControlMouse :: !(ControlAttribute .st) -> Bool

isControlOrigin :: !(ControlAttribute .st) -> Bool

isControlOuterSize :: !(ControlAttribute .st) -> Bool

isControlPen :: !(ControlAttribute .st) -> Bool

isControlPos :: !(ControlAttribute .st) -> Bool

isControlResize :: !(ControlAttribute .st) -> Bool

isControlSelectState :: !(ControlAttribute .st) -> Bool

isControlTip :: !(ControlAttribute .st) -> Bool

isControlViewDomain :: !(ControlAttribute .st) -> Bool

isControlViewSize :: !(ControlAttribute .st) -> Bool

isControlVMargin :: !(ControlAttribute .st) -> Bool

isControlVScroll :: !(ControlAttribute .st) -> Bool

isControlWidth :: !(ControlAttribute .st) -> Bool

/* The following functions return the attribute value if appropriate.

THESE ARE PARTIAL FUNCTIONS! They are only defined on the corresponding

attribute.

*/

getControlActivateFun :: !(ControlAttribute .st) -> IdFun .st

getControlDeactivateFun :: !(ControlAttribute .st) -> IdFun .st

getControlFun :: !(ControlAttribute .st) -> IdFun .st

A.5. STDCONTROLATTRIBUTE 205

getControlHMarginAtt :: !(ControlAttribute .st) -> (Int,Int)

getControlHScrollFun :: !(ControlAttribute .st) -> ScrollFunction

getControlIdAtt :: !(ControlAttribute .st) -> Id

getControlItemSpaceAtt :: !(ControlAttribute .st) -> (Int,Int)

getControlKeyboardAtt :: !(ControlAttribute .st) -> (KeyboardStateFilter

, SelectState

, KeyboardFunction .st

)

getControlLookAtt :: !(ControlAttribute .st) -> (Bool,Look)

getControlMinimumSizeAtt:: !(ControlAttribute .st) -> Size

getControlModsFun :: !(ControlAttribute .st) -> ModifiersFunction .st

getControlMouseAtt :: !(ControlAttribute .st) -> (MouseStateFilter

, SelectState

, MouseFunction .st

)

getControlOriginAtt :: !(ControlAttribute .st) -> Point2

getControlOuterSizeAtt :: !(ControlAttribute .st) -> Size

getControlPenAtt :: !(ControlAttribute .st) -> [PenAttribute]

getControlPosAtt :: !(ControlAttribute .st) -> ItemPos

getControlResizeFun :: !(ControlAttribute .st) -> ControlResizeFunction

getControlSelectStateAtt:: !(ControlAttribute .st) -> SelectState

getControlTipAtt :: !(ControlAttribute .st) -> String

getControlViewDomainAtt :: !(ControlAttribute .st) -> ViewDomain

getControlViewSizeAtt :: !(ControlAttribute .st) -> Size

getControlVMarginAtt :: !(ControlAttribute .st) -> (Int,Int)

getControlVScrollFun :: !(ControlAttribute .st) -> ScrollFunction

getControlWidthAtt :: !(ControlAttribute .st) -> ControlWidth

206 APPENDIX A. I/O LIBRARY

A.6 StdControlClass

definition module StdControlClass

// **

// Clean Standard Object I/O library, version 1.2

//

// StdControlClass define the standard set of controls instances.

// **

import StdControlDef

from windowhandle import ControlState

from StdPSt import PSt, IOSt

class Controls cdef where

controlToHandles :: !(cdef .ls (PSt .l)) !(PSt .l)

-> (![ControlState .ls (PSt .l)], !PSt .l)

getControlType :: (cdef .ls .pst)

-> ControlType

instance Controls (AddLS c) | Controls c

instance Controls (NewLS c) | Controls c

instance Controls (ListLS c) | Controls c

instance Controls NilLS

instance Controls ((:+:) c1 c2) | Controls c1 & Controls c2

instance Controls ButtonControl

instance Controls CheckControl

instance Controls (CompoundControl c) | Controls c

instance Controls CustomButtonControl

instance Controls CustomControl

instance Controls EditControl

instance Controls (LayoutControl c) | Controls c

instance Controls PopUpControl

instance Controls RadioControl

instance Controls SliderControl

instance Controls TextControl

A.7. STDCONTROLDEF 207

A.7 StdControlDef

definition module StdControlDef

// **

// Clean Standard Object I/O library, version 1.2

//

// StdControl contains the types to define the standard set of controls.

// **

import StdIOCommon, StdPictureDef

:: ButtonControl ls pst

= ButtonControl String [ControlAttribute *(ls,pst)]

:: CheckControl ls pst

= CheckControl [CheckControlItem *(ls,pst)] RowsOrColumns

[ControlAttribute *(ls,pst)]

:: CompoundControl c ls pst

= CompoundControl (c ls pst) [ControlAttribute *(ls,pst)]

:: CustomButtonControl ls pst

= CustomButtonControl Size Look [ControlAttribute *(ls,pst)]

:: CustomControl ls pst

= CustomControl Size Look [ControlAttribute *(ls,pst)]

:: EditControl ls pst

= EditControl String ControlWidth NrLines [ControlAttribute *(ls,pst)]

:: LayoutControl c ls pst

= LayoutControl (c ls pst) [ControlAttribute *(ls,pst)]

:: PopUpControl ls pst

= PopUpControl [PopUpControlItem *(ls,pst)] Index

[ControlAttribute *(ls,pst)]

:: RadioControl ls pst

= RadioControl [RadioControlItem *(ls,pst)] RowsOrColumns Index

[ControlAttribute *(ls,pst)]

:: SliderControl ls pst

= SliderControl Direction ControlWidth SliderState (SliderAction *(ls,pst))

[ControlAttribute *(ls,pst)]

:: TextControl ls pst

= TextControl String [ControlAttribute *(ls,pst)]

:: CheckControlItem st :== (String, Maybe ControlWidth, MarkState, IdFun st)

:: PopUpControlItem st :== (String, IdFun st)

:: RadioControlItem st :== (String, Maybe ControlWidth, IdFun st)

:: NrLines :== Int

:: RowsOrColumns

= Rows Int

| Columns Int

:: ControlWidth // The width of the control:

= PixelWidth Int // the exact number of pixels

| TextWidth String // the exact string width in dialog font

| ContentWidth String // width of the control as if string is its content

:: ControlAttribute st // Default:

// General control attributes:

= ControlActivate (IdFun st) // id

| ControlDeactivate (IdFun st) // id

| ControlFunction (IdFun st) // id

| ControlHide // initially visible

| ControlId Id // no id

| ControlKeyboard KeyboardStateFilter SelectState (KeyboardFunction st)

// no keyboard input/overruled

| ControlMinimumSize Size // zero

| ControlModsFunction (ModifiersFunction st) // ControlFunction

| ControlMouse MouseStateFilter SelectState (MouseFunction st)

// no mouse input/overruled

208 APPENDIX A. I/O LIBRARY

| ControlPen [PenAttribute] // default pen attributes

| ControlPos ItemPos // (RightTo previous,zero)

| ControlResize ControlResizeFunction // no resize

| ControlSelectState SelectState // control Able

| ControlTip String // no tip

| ControlWidth ControlWidth // system derived

// For CompoundControls only:

| ControlHMargin Int Int // system dependent

| ControlHScroll ScrollFunction // no horizontal scrolling

| ControlItemSpace Int Int // system dependent

| ControlLook Bool Look // control is transparant

| ControlOrigin Point2 // Left top of ViewDomain

| ControlOuterSize Size // enclose elements

| ControlViewDomain ViewDomain // {zero,max range}

| ControlViewSize Size // enclose elements

| ControlVMargin Int Int // system dependent

| ControlVScroll ScrollFunction // no vertical scrolling

:: ControlResizeFunction

:== Size -> // current control outer size

Size -> // old parent view size

Size -> // new parent view size

Size // new control outer size

:: ControlType

:== String

A.8. STDCONTROLRECEIVER 209

A.8 StdControlReceiver

definition module StdControlReceiver

// **

// Clean Standard Object I/O library, version 1.2

//

// StdControlReceiver defines Receiver(2) controls instances.

// **

import StdReceiverDef, StdControlClass

instance Controls (Receiver m)

instance Controls (Receiver2 m r)

210 APPENDIX A. I/O LIBRARY

A.9 StdEventTCP

definition module StdEventTCP

// **

// Clean Standard Object I/O library, version 1.2

//

// StdEventTCP provides functions for using event driven TCP

// **

import StdChannels, StdTCPDef

from StdString import String

from StdReceiver import Receivers, ReceiverType

from StdPSt import PSt, IOSt

from StdIOCommon import ErrorReport

from tcp_bytestreams import TCP_SCharStream_

from StdPStClass import FileEnv, Files, TimeEnv, Date, Tick, Time

instance ChannelEnv (PSt .l), (IOSt .l)

instance Receivers TCP_ListenerReceiver

instance Receivers TCP_Receiver

instance Receivers TCP_CharReceiver

openSendNotifier :: .ls !(SendNotifier *(*ch .a) .ls (PSt .l))

!(PSt .l)

-> (!ErrorReport,!*(*ch .a),!PSt .l)

| accSChannel ch & Send ch

/* opens a send notifier, which informs the application, that sending on the

channel is again possible due to flow conditions. Possible error reports are

NoError and ErrorNotifierOpen

*/

closeSendNotifier :: !*(*ch .a) !(IOSt .l)

-> (!*(*ch .a), !IOSt .l)

| accSChannel ch

/* to close a send notifier. This function will be called implicitly if a send

channel is closed, so there is no need to do it explicitly then.

*/

lookupIPAddress_async :: !String !(InetLookupFunction (PSt .l)) !(PSt .l)

-> (PSt .l)

/* lookupIPAddress_async asynchronously looks up an IP address. The String can be

in dotted decimal form or alphanumerical. The InetLookupFunction will be called

with the IP address, if this address was found, otherwise with Nothing.

*/

connectTCP_async :: !(!IPAddress,!Port) !(InetConnectFunction (PSt .l))

!(PSt .l)

-> (PSt .l)

/* connectTCP_async asynchronously tries to establish a new connection. The

InetConnectFunction will be called with the new duplex channel if this attempt

was succesful, otherwise with Nothing

*/

class accSChannel ch :: (TCP_SChannel -> (x, TCP_SChannel)) *(*ch .a)

-> (x, *(*ch .a))

/* This overloaded function supports the openSendNotifier function. It applies an

access function on the underlying TCP_SChannel

*/

instance accSChannel TCP_SChannel_

instance accSChannel TCP_SCharStream_

A.10. STDFILESELECT 211

A.10 StdFileSelect

definition module StdFileSelect

// **

// Clean Standard Object I/O library, version 1.2

//

// StdFileSelect defines the standard file selector dialogue.

// **

import StdMaybe, StdString

class FileSelectEnv env where

selectInputFile :: !*env -> (!Maybe String,!*env)

selectOutputFile:: !String !String !*env -> (!Maybe String,!*env)

selectDirectory :: !*env -> (!Maybe String,!*env)

/* selectInputFile

opens a dialogue in which the user can browse the file system to select an

existing file.

If a file has been selected, the String result contains the complete

pathname of the selected file.

If the user has not selected a file, Nothing is returned.

selectOutputFile

opens a dialogue in which the user can browse the file system to save a

file.

The first argument is the prompt of the dialogue (default: "Save As:")

The second argument is the suggested filename.

If the indicated directory already contains a file with the indicated name,

selectOutputFile opens a new dialogue to confirm overwriting of the existing

file.

If either this dialogue is not confirmed or browsing is cancelled then

Nothing is returned, otherwise the String result is the complete pathname of

the selected file.

selectDirectory

opens a dialogue in which the user can browse the file system to select a

directory.

If a directory has been selected, the String result contains the complete

pathname of the selected directory.

If the user has not selected a directory, Nothing is returned.

*/

instance FileSelectEnv World

212 APPENDIX A. I/O LIBRARY

A.11 StdId

definition module StdId

// **

// Clean Standard Object I/O library, version 1.2

//

// StdId specifies the generation functions for identification values.

// **

from StdMaybe import Maybe, Just, Nothing

from id import Id, RId, R2Id, RIdtoId, R2IdtoId, toString, ==

from iostate import PSt, IOSt

class Ids env where

openId :: !*env -> (!Id, !*env)

openIds :: !Int !*env -> (![Id], !*env)

openRId :: !*env -> (!RId m, !*env)

openRIds :: !Int !*env -> (![RId m], !*env)

openR2Id :: !*env -> (!R2Id m r, !*env)

openR2Ids :: !Int !*env -> (![R2Id m r], !*env)

/* There are three types of identification values:

- RId m: for uni-directional message passing (see StdReceiver)

- R2Id m r: for bi-directional message passing (see StdReceiver)

- Id: for all other Object I/O library components

Of each generation function there are two variants:

- to create exactly one identification value.

- to create a number of identification values.

If the integer argument <=0, then an empty list of identification values

is generated.

*/

instance Ids World,

IOSt .l,

PSt .l

getParentId :: !Id !(IOSt .l) -> (!Maybe Id,!IOSt .l)

/* getParentId returns the Id of the parent top-level GUI object

of the GUI component identified by the argument Id.

If the GUI component could not be found then Nothing is returned.

*/

A.12. STDIO 213

A.12 StdIO

definition module StdIO

// **

// Clean Standard Object I/O library, version 1.2

//

// StdIO contains all definition modules of the Object I/O library.

// **

import

StdId, // The operations that generate identification values

StdIOBasic, // Function and type definitions used in the library

StdIOCommon, // Function and type definitions used in the library

StdKey, // Function and type definitions on keyboard

StdMaybe, // The Maybe data type

StdPSt, // Operations on PSt that are not device related

StdPStClass, // PSt/IOSt instances of common classes

StdSystem, // System dependent operations

StdFileSelect, // File selector dialogues

StdPictureDef, // Type definitions for picture handling

StdPicture, // Picture handling operations

StdBitmap, // Defines an instance for drawing bitmaps

StdProcessDef, // Type definitions for process handling

StdProcessAttribute, // ProcessAttribute access operations

StdProcess, // Process handling operations

StdClipboard, // Clipboard handling operations

StdPrint, // General printing functions

StdPrintText, // Specialised text printing functions

StdControlDef, // Type definitions for controls

StdControlAttribute, // ControlAttribute access operations

StdControlClass, // Standard controls class instances

StdControlReceiver, // Receiver controls class instances

StdControl, // Control handling operations

StdMenuDef, // Type definitions for menus

StdMenuAttribute, // MenuAttribute access operations

StdMenuElementClass, // Standard menus class instances

StdMenuReceiver, // Receiver menus class instances

StdMenuElement, // Menu element handling operations

StdMenu, // Menu handling operations

StdReceiverDef, // Type definitions for receivers

StdReceiverAttribute, // ReceiverAttribute access operations

StdReceiver, // Receiver handling operations

StdTimerDef, // Type definitions for timers

StdTimerAttribute, // TimerAttribute access operations

StdTimerElementClass, // Standard timer class instances

StdTimerReceiver, // Receiver timer class instances

StdTimer, // Timer handling operations

StdTime, // Time related operations

StdWindowDef, // Type definitions for windows

StdWindowAttribute, // WindowAttribute access operations

StdWindow // Window handling operations

214 APPENDIX A. I/O LIBRARY

A.13 StdIOBasic

definition module StdIOBasic

// **

// Clean Standard Object I/O library, version 1.2

//

// StdIOBasic defines basic types and access functions for the I/O library.

// **

import StdOverloaded, StdString

/* General type constructors for composing context-independent data structures.

*/

:: :^: t1 t2 = (:^:) infixr 9 t1 t2

/* General type constructors for composing context-dependent data structures.

*/

:: :~: t1 t2 cs = (:~:) infixr 9 (t1 cs) (t2 cs)

:: ListCS t cs = ListCS [t cs]

:: NilCS cs = NilCS

/* General type constructors for composing local and context-dependent

data structures.

*/

:: :+: t1 t2 ls cs = (:+:) infixr 9 (t1 ls cs) (t2 ls cs)

:: ListLS t ls cs = ListLS [t ls cs]

:: NilLS ls cs = NilLS

:: NewLS t ls cs = E..new: {newLS::new, newDef:: t new cs}

:: AddLS t ls cs = E..add: {addLS::add, addDef:: t *(add,ls) cs}

noLS :: (.a->.b) (.c,.a) -> (.c,.b) // Lift function a -> b

// to (c,a)->(c,b)

noLS1:: (.x->.a->.b) .x (.c,.a) -> (.c,.b) // Lift function x-> a -> b

// to x->(c,a)->(c,b)

:: Index :== Int

:: Title :== String

:: Vector2 = {vx::!Int,vy::!Int}

instance == Vector2 // @1-@2==zero

instance + Vector2 // {vx=@1.vx+@2.vx,vy=@1.vy+@2.vy}

instance - Vector2 // {vx=@1.vx-@2.vx,vy=@1.vy-@2.vy}

instance zero Vector2 // {vx=0,vy=0}

instance ~ Vector2 // zero-@1

instance toString Vector2

class toVector x :: !x -> Vector2

:: Size = {w ::!Int,h ::!Int}

instance == Size // @1.w==@2.w && @1.h==@2.h

instance zero Size // {w=0,h=0}

instance toVector Size // {w,h}->{vx=w,vy=h}

instance toString Size

:: Point2

A.13. STDIOBASIC 215

= { x :: !Int

, y :: !Int

}

:: Rectangle

= { corner1 :: !Point2

, corner2 :: !Point2

}

instance == Point2 // @1-@2==zero

instance + Point2 // {x=@1.x+@2.x,y=@1.y+@2.y}

instance - Point2 // {x=@1.x-@2.x,y=@1.y-@2.y}

instance zero Point2 // {x=0,y=0}

instance ~ Point2 // zero-@1

instance toVector Point2 // {x,y}->{vx=x,vy=y}

instance toString Point2

instance == Rectangle // @1.corner1==@2.corner1

// && @1.corner2==@2.corner2

instance zero Rectangle // {corner1=zero,corner2=zero}

instance toString Rectangle

rectangleSize :: !Rectangle -> Size // {w=abs (@1.corner1-@1.corner2).x,

// h=abs (@1.corner1-@1.corner2).y}

movePoint :: !Vector2 !Point2 -> .Point2 // {vx,vy} {x,y} -> {vx+x,vy+y}

:: IdFun st :== st -> st

:: Void = Void

216 APPENDIX A. I/O LIBRARY

A.14 StdIOCommon

definition module StdIOCommon

// **

// Clean Standard Object I/O library, version 1.2

//

// StdIOCommon defines common types and access functions for the I/O library.

// **

import StdOverloaded, StdString

import StdBitmap, StdIOBasic, StdKey, StdMaybe

from id import Id, RId, R2Id, RIdtoId, R2IdtoId, toString, ==

/* The SelectState and MarkState types. */

:: SelectState = Able | Unable

:: MarkState = Mark | NoMark

enabled :: !SelectState -> Bool // @1 == Able

marked :: !MarkState -> Bool // @1 == Mark

instance == SelectState // Constructor equality

instance == MarkState // Constructor equality

instance ~ SelectState // Able <-> Unable

instance ~ MarkState // Mark <-> NoMark

instance toString SelectState

instance toString MarkState

/* The KeyboardState type. */

:: KeyboardState

= CharKey Char KeyState // ASCII character input

| SpecialKey SpecialKey KeyState Modifiers

// Special key input

| KeyLost // Key input lost while key was down

:: KeyState

= KeyDown IsRepeatKey // Key is down

| KeyUp // Key goes up

:: IsRepeatKey // Flag on key down:

:== Bool // True iff key is repeating

:: Key

= IsCharKey Char

| IsSpecialKey SpecialKey

:: KeyboardStateFilter // Predicate on KeyboardState:

:== KeyboardState -> Bool // evaluate KeyFunction only if True

getKeyboardStateKeyState:: !KeyboardState -> KeyState // KeyUp if KeyLost

getKeyboardStateKey :: !KeyboardState -> Maybe Key // Nothing if KeyLost

instance == KeyboardState // Equality on KeyboardState

instance == KeyState // Equality on KeyState

instance toString KeyboardState

instance toString KeyState

/* The MouseState type. */

:: MouseState

= MouseMove Point2 Modifiers // Mouse is up (position,modifiers)

| MouseDown Point2 Modifiers Int // Mouse goes down (and nr down)

| MouseDrag Point2 Modifiers // Mouse is down (position,modifiers)

A.14. STDIOCOMMON 217

| MouseUp Point2 Modifiers // Mouse goes up (position,modifiers)

| MouseLost // Mouse input lost while mouse was down

:: ButtonState

= ButtonStillUp // MouseMove

| ButtonDown // MouseDown _ _ 1

| ButtonDoubleDown // _ _ 2

| ButtonTripleDown // _ _ >2

| ButtonStillDown // MouseDrag

| ButtonUp // MouseUp/MouseLost

:: MouseStateFilter // Predicate on MouseState:

:== MouseState -> Bool // evaluate MouseFunction only if True

getMouseStatePos :: !MouseState -> Point2 // zero if MouseLost

getMouseStateModifiers :: !MouseState -> Modifiers // NoModifiers if MouseLost

getMouseStateButtonState:: !MouseState -> ButtonState // ButtonUp if MouseLost

instance == MouseState // Equality on MouseState

instance == ButtonState // Constructor equality

instance toString MouseState

instance toString ButtonState

/* The SliderState type. */

:: SliderState

= { sliderMin :: !Int

, sliderMax :: !Int

, sliderThumb :: !Int

}

instance == SliderState // @1.sliderMin == @2.sliderMin

// @1.sliderMax == @2.sliderMax

// @1.sliderThumb == @2.sliderThumb

instance toString SliderState

/* The UpdateState type. */

:: UpdateState

= { oldFrame :: !ViewFrame

, newFrame :: !ViewFrame

, updArea :: !UpdateArea

}

:: ViewDomain :== Rectangle

:: ViewFrame :== Rectangle

:: UpdateArea :== [ViewFrame]

instance toString UpdateState

RectangleToUpdateState :: !Rectangle -> UpdateState

// r -> {oldFrame=newFrame=r,updArea=[r]}

/* viewDomainRange defines the minimum and maximum values for ViewDomains.

viewFrameRange defines the minimum and maximum values for ViewFrames.

*/

viewDomainRange :== { corner1 = {x = 0-(2^30),y = 0-(2^30)}

, corner2 = {x = 2^30 ,y = 2^30 }

}

viewFrameRange :== { corner1 = {x = 1-(2^31),y = 1-(2^31)}

, corner2 = {x = (2^31)-1,y = (2^31)-1}

}

/* Modifiers indicates the meta keys that have been pressed (True) or not (False).

*/

:: Modifiers

= { shiftDown :: !Bool // True iff shift down

, optionDown :: !Bool // True iff option down

218 APPENDIX A. I/O LIBRARY

, commandDown :: !Bool // True iff command down

, controlDown :: !Bool // True iff control down

, altDown :: !Bool // True iff alt down

}

// Constants to check which of the Modifiers are down.

NoModifiers :== {shiftDown = False

,optionDown = False

,commandDown= False

,controlDown= False

,altDown = False

}

ShiftOnly :== {shiftDown = True

,optionDown = False

,commandDown= False

,controlDown= False

,altDown = False

}

OptionOnly :== {shiftDown = False

,optionDown = True

,commandDown= False

,controlDown= False

,altDown = True

}

CommandOnly :== {shiftDown = False

,optionDown = False

,commandDown= True

,controlDown= True

,altDown = False

}

ControlOnly :== {shiftDown = False

,optionDown = False

,commandDown= True

,controlDown= True

,altDown = False

}

AltOnly :== {shiftDown = False

,optionDown = True

,commandDown= False

,controlDown= False

,altDown = True

}

instance == Modifiers

instance toString Modifiers

/* The layout language used for windows and controls. */

:: ItemPos

:== (ItemLoc

, ItemOffset

)

:: ItemLoc

// Absolute:

= Fix

// Relative to corner:

| LeftTop

| RightTop

| LeftBottom

| RightBottom

// Relative in next line:

| Left

| Center

| Right

// Relative to other item:

| LeftOf Id

A.14. STDIOCOMMON 219

| RightTo Id

| Above Id

| Below Id

// Relative to previous item:

| LeftOfPrev

| RightToPrev

| AbovePrev

| BelowPrev

:: ItemOffset

= NoOffset // Shorthand for OffsetVector zero

| OffsetVector Vector2 // A constant offset vector

| OffsetFun ParentIndex OffsetFun // Offset depends on orientation

:: ParentIndex

:== Int // The number of parents (1..)

:: OffsetFun

:== (ViewDomain,Point2) -> Vector2 // Current view domain and origin

instance zero ItemOffset // zero == NoOffset

instance == ItemLoc // Constructor and value equality

instance toString ItemLoc // Constructor and value as String

/* The Direction type. */

:: Direction

= Horizontal

| Vertical

instance == Direction // Constructor equality

instance toString Direction // Constructor as String

/* The CursorShape type. */

:: CursorShape

= StandardCursor

| BusyCursor

| IBeamCursor

| CrossCursor

| FatCrossCursor

| ArrowCursor

| HiddenCursor

instance == CursorShape // Constructor equality

instance toString CursorShape // Constructor as String

/* Document interface of interactive processes. */

:: DocumentInterface

= NDI // No Document Interface

| SDI // Single Document Interface

| MDI // Multiple Document Interface

instance == DocumentInterface // Constructor equality

instance toString DocumentInterface // Constructor as String

/* Process attributes. */

:: ProcessAttribute st // Default:

= ProcessActivate (IdFun st) // No action on activate

| ProcessDeactivate (IdFun st) // No action on deactivate

| ProcessClose (IdFun st) // Process is closed

// Attributes for (M/S)DI process only:

| ProcessOpenFiles (ProcessOpenFilesFunction st)

// Request to open files

220 APPENDIX A. I/O LIBRARY

| ProcessWindowPos ItemPos // Platform dependent

| ProcessWindowSize Size // Platform dependent

| ProcessWindowResize (ProcessWindowResizeFunction st)

// Platform dependent

| ProcessToolbar [ToolbarItem st] // Process has no toolbar

// Attributes for MDI processes only:

| ProcessNoWindowMenu // Process has WindowMenu

:: ProcessWindowResizeFunction st

:== Size // Old ProcessWindow size

-> Size // New ProcessWindow size

-> st -> st

:: ProcessOpenFilesFunction st

:== [String] // The filenames to open

-> st -> st

:: ToolbarItem st

= ToolbarItem Bitmap (Maybe String) (IdFun st)

| ToolbarSeparator

/* Frequently used function types. */

:: ModifiersFunction st :== Modifiers -> st -> st

:: MouseFunction st :== MouseState -> st -> st

:: KeyboardFunction st :== KeyboardState -> st -> st

:: SliderAction st :== SliderMove -> st -> st

:: SliderMove

= SliderIncSmall

| SliderDecSmall

| SliderIncLarge

| SliderDecLarge

| SliderThumb Int

instance toString SliderMove

/* Scrolling function. */

:: ScrollFunction

:== ViewFrame -> // Current view

SliderState -> // Current state of scrollbar

SliderMove -> // Action of the user

Int // New thumb value

stdScrollFunction :: !Direction !Int -> ScrollFunction

/* stdScrollFunction direction d implements standard scrolling behaviour:

- direction indicates scrolling for Horizontal or Vertical scroll bar.

- d is the stepsize with which to scroll (taken absolute).

stdScrollFunction lets the system scroll as follows:

- Slider(Inc/Dec)Small: d

- Slider(Inc/Dec)Large: viewFrame size modulo d

- SliderThumb x: x modulo d

*/

/* Standard GUI object rendering function. */

:: Look

:== SelectState -> // Current SelectState of GUI object

UpdateState -> // The area to be rendered

*Picture -> *Picture // The rendering action

stdUnfillNewFrameLook:: SelectState !UpdateState !*Picture -> *Picture

stdUnfillUpdAreaLook :: SelectState !UpdateState !*Picture -> *Picture

/* Two convenience functions for simple Look functions:

stdUnfillNewFrameLook _ {newFrame} = unfill newFrame

A.14. STDIOCOMMON 221

stdUnfillUpdAreaLook _ {updArea} = seq (map unfill updArea)

*/

/* Common error report types. */

:: ErrorReport // Usual cause:

= NoError // Everything went allright

| ErrorViolateDI // Violation against DocumentInterface

| ErrorIdsInUse // Object contains Ids that are bound

| ErrorUnknownObject // Object can not be found

| ErrorNotifierOpen // It was tried to open a second send notifier

| OtherError !String // Other kind of error

instance == ErrorReport // Constructor equality

instance toString ErrorReport // Constructor as String

:: OkBool // True iff the operation was successful

:== Bool

222 APPENDIX A. I/O LIBRARY

A.15 StdKey

definition module StdKey

// **

// Clean Standard Object I/O library, version 1.2

//

// StdKey defines the special keys for the Object I/O library.

// **

from key import SpecialKey,

BackSpaceKey, BeginKey,

ClearKey,

DeleteKey, DownKey,

EndKey, EnterKey, EscapeKey,

F1Key, F2Key, F3Key, F4Key, F5Key,

F6Key, F7Key, F8Key, F9Key, F10Key,

F11Key, F12Key, F13Key, F14Key, F15Key,

HelpKey,

LeftKey,

PgDownKey, PgUpKey,

RightKey,

UpKey,

==, toString

A.16. STDMAYBE 223

A.16 StdMaybe

definition module StdMaybe

// **

// Clean Standard Object I/O library, version 1.2

//

// StdMaybe defines the Maybe type.

// **

from StdFunc import St

from StdOverloaded import ==

from StdIOBasic import IdFun

:: Maybe x

= Just x

| Nothing

isJust :: !(Maybe .x) -> Bool // case @1 of (Just _) -> True; _ -> False

isNothing :: !(Maybe .x) -> Bool // not o isJust

fromJust :: !(Maybe .x) -> .x // \(Just x) -> x

// for possibly unique elements:

u_isJust :: !(Maybe .x) -> (!Bool, !Maybe .x)

u_isNothing :: !(Maybe .x) -> (!Bool, !Maybe .x)

accMaybe :: .(St .x .a) !(Maybe .x) -> (!Maybe .a,!Maybe .x)

// accMaybe f (Just x) = (Just (fst (f x)),Just (snd (f x)))

// accMaybe f Nothing = (Nothing,Nothing)

mapMaybe :: .(.x -> .y) !(Maybe .x) -> Maybe .y

// mapMaybe f (Just x) = Just (f x)

// mapMaybe f Nothing = Nothing

instance == (Maybe x) | == x

// Nothing==Nothing

// Just a ==Just b <= a==b

224 APPENDIX A. I/O LIBRARY

A.17 StdMenu

definition module StdMenu

// **

// Clean Standard Object I/O library, version 1.2

//

// StdMenu defines functions on menus.

// **

import StdMenuElementClass

from iostate import PSt, IOSt

// Operations on unknown Ids are ignored.

class Menus mdef where

openMenu :: .ls !(mdef .ls (PSt .l)) !(PSt .l) -> (!ErrorReport,!PSt .l)

getMenuType :: (mdef .ls .pst) -> MenuType

/* Open the given menu definition for this interactive process.

openMenu may not be permitted to open a menu depending on its DocumentInterface

(see the comments at the shareProcesses instances in module StdProcess).

In case a menu with the same Id is already open then nothing happens. In case

the menu has the WindowMenuId Id then nothing happens. In case the menu does

not have an Id, it will obtain an Id which is fresh with respect to the

current set of menus. The Id can be reused after closing this menu. In case

menu elements are opened with duplicate Ids, the menu will not be opened.

In case the menu definition does not have a MenuIndex attribute (see StdMenuDef)

it will be opened behind the last menu. In case the menu definition has a

MenuIndex attribute it will be placed behind the menu indicated by the

integer index.

The index of a menu starts from one for the first present menu. If the index

is negative or zero, then the new menu is added before the first menu. If

the index exceeds the number of menus, then the new menu is added behind the

last menu.

*/

instance Menus (Menu m) | MenuElements m

instance Menus (PopUpMenu m) | PopUpMenuElements m

/* PopUpMenus can only be opened in a SDI or MDI process. If the parent process is

a NDI process, then no PopUpMenu is opened and ErrorViolateDI is returned.

The elements of a PopUpMenu are the same as for standard menus except for

SubMenus. For elements the same restrictions hold as for standard menus.

The PopUpMenu will be closed as soon as the user has dismissed it either by

selecting an item or clicking outside the menu.

*/

closeMenu :: !Id !(IOSt .l) -> IOSt .l

/* closeMenu closes the indicated Menu and all of its elements.

The WindowMenu can not be closed by closeMenu (in case the Id argument equals

WindowMenuId).

*/

openMenuElements :: !Id !Index .ls (m .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport,!PSt .l)

| MenuElements m

openSubMenuElements :: !Id !Index .ls (m .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport,!PSt .l)

| MenuElements m

openRadioMenuItems :: !Id !Index ![MenuRadioItem (PSt .l)] !(IOSt .l)

-> (!ErrorReport,!IOSt .l)

/* Add menu elements to the indicated Menu, SubMenu, or RadioMenu.

openRadioMenuItems checks the first item in the list if the RadioMenu was empty.

A.17. STDMENU 225

Menu elements are added after the item with the specified index. The index of a

menu element starts from one for the first menu element in the indicated

menu.

If the index is negative or zero, then the new menu elements are added

before the first menu element of the indicated menu.

If the index exceeds the number of menu elements in the indicated menu, then

the new menu elements are added behind the last menu element of the

indicated menu.

No menu elements are added if the indicated menu does not exist. In this case

ErrorUnknownObject is returned.

open(Sub)MenuElements have no effect in case menu elements with duplicate Ids

are opened. In this case ErrorIdsInUse is returned.

*/

closeMenuElements :: !Id ![Id] !(IOSt .l) -> IOSt .l

/* closeMenuElements

closes menu elements of the Menu identified by the first Id argument by

their Ids. The elements of (Sub/Radio)Menus will be removed first.

*/

closeMenuIndexElements :: !Id ![Index] !(IOSt .l) -> IOSt .l

closeSubMenuIndexElements :: !Id ![Index] !(IOSt .l) -> IOSt .l

closeRadioMenuIndexElements :: !Id ![Index] !(IOSt .l) -> IOSt .l

/* Close menu elements of the indicated Menu, SubMenu, or RadioMenu by their Index

position.

Analogous to openMenuElements and openRadioMenuItems indices range from one to

the number of menu elements in a menu. Invalid indices (less than one or

larger than the number of menu elements of the menu) are ignored.

If the currently checked element of a RadioMenu is closed, the first remaining

element of that RadioMenu will be checked.

Closing a (Sub/Radio)Menu closes the indicated (Sub/Radio)Menu and all of its

elements.

*/

enableMenuSystem :: !(IOSt .l) -> IOSt .l

disableMenuSystem :: !(IOSt .l) -> IOSt .l

/* Enable/disable the menu system of this interactive process. When the menu system

is re-enabled the previously selectable menus and elements will become

selectable again.

Enable/disable operations on the menu(element)s of a disabled menu system take

effect when the menu system is re-enabled.

enableMenuSystem has no effect in case the interactive process has a (number of)

modal dialogue(s).

*/

enableMenus :: ![Id] !(IOSt .l) -> IOSt .l

disableMenus :: ![Id] !(IOSt .l) -> IOSt .l

/* Enable/disable individual menus.

The WindowMenu can not be enabled/disabled.

Disabling a menu overrules the SelectStates of its elements, which become

unselectable.

Enabling a disabled menu re-establishes the SelectStates of its elements.

Enable/disable operations on the elements of a disabled menu take effect when

the menu is re-enabled.

*/

getMenuSelectState :: !Id !(IOSt .l) -> (!Maybe SelectState,!IOSt .l)

/* getMenuSelectState yields the current SelectState of the indicated menu. In case

the menu does not exist, Nothing is returned.

*/

226 APPENDIX A. I/O LIBRARY

getMenus :: !(IOSt .l) -> (![(Id,MenuType)],!IOSt .l)

/* getMenus yields the Ids and MenuTypes of the current set of menus of this

interactive process.

*/

getMenuPos :: !Id !(IOSt .l) -> (!Maybe Index,!IOSt .l)

/* getMenuPos yields the index position of the indicated menu in the current list

of menus.

In case the menu does not exist, Nothing is returned.

*/

setMenuTitle :: !Id !Title !(IOSt .l) -> IOSt .l

getMenuTitle :: !Id !(IOSt .l) -> (!Maybe Title,!IOSt .l)

/* setMenuTitle sets the title of the indicated menu.

In case the menu does not exist or refers to the WindowMenu, nothing

happens.

getMenuTitle retrieves the current title of the indicated menu.

In case the menu does not exist, Nothing is returned.

*/

A.18. STDMENUATTRIBUTE 227

A.18 StdMenuAttribute

definition module StdMenuAttribute

// **

// Clean Standard Object I/O library, version 1.2

//

// StdMenuAttribute specifies which MenuAttributes are valid for each of the

// standard menus and menu elements.

// Basic comparison operations and retrieval functions are also included.

// **

import StdMenuDef

/* The following functions specify the valid attributes for each standard menu

(element).

*/

isValidMenuAttribute :: !(MenuAttribute .st) -> Bool

/* Menu (y = valid, . = invalid)

MenuFunction . | MenuInit y | MenuSelectState y |

MenuId y | MenuMarkState . | MenuShortKey . |

MenuIndex y | MenuModsFunction . |

*/

isValidSubMenuAttribute :: !(MenuAttribute .st) -> Bool

/* SubMenu (y = valid, . = invalid)

MenuFunction . | MenuInit . | MenuSelectState y |

MenuId y | MenuMarkState . | MenuShortKey . |

MenuIndex . | MenuModsFunction . |

*/

isValidRadioMenuAttribute :: !(MenuAttribute .st) -> Bool

/* RadioMenu (y = valid, . = invalid)

MenuFunction . | MenuInit . | MenuSelectState y |

MenuId y | MenuMarkState . | MenuShortKey . |

MenuIndex . | MenuModsFunction . |

*/

isValidMenuItemAttribute :: !(MenuAttribute .st) -> Bool

/* MenuItem (y = valid, . = invalid)

MenuFunction y | MenuInit . | MenuSelectState y |

MenuId y | MenuMarkState y | MenuShortKey y |

MenuIndex . | MenuModsFunction y |

*/

isValidMenuSeparatorAttribute :: !(MenuAttribute .st) -> Bool

/* MenuSeparator (y = valid, . = invalid)

MenuFunction . | MenuInit . | MenuSelectState . |

MenuId y | MenuMarkState . | MenuShortKey . |

MenuIndex . | MenuModsFunction . |

*/

/* The following functions return True only iff the attribute equals the

indicated name.

*/

isMenuFunction :: !(MenuAttribute .st) -> Bool

isMenuId :: !(MenuAttribute .st) -> Bool

isMenuIndex :: !(MenuAttribute .st) -> Bool

isMenuInit :: !(MenuAttribute .st) -> Bool

isMenuMarkState :: !(MenuAttribute .st) -> Bool

isMenuModsFunction :: !(MenuAttribute .st) -> Bool

isMenuSelectState :: !(MenuAttribute .st) -> Bool

228 APPENDIX A. I/O LIBRARY

isMenuShortKey :: !(MenuAttribute .st) -> Bool

/* The following functions return the attribute value if appropriate.

THESE ARE PARTIAL FUNCTIONS! They are only defined on the corresponding

attribute.

*/

getMenuFun :: !(MenuAttribute .st) -> IdFun .st

getMenuIdAtt :: !(MenuAttribute .st) -> Id

getMenuIndexAtt :: !(MenuAttribute .st) -> Index

getMenuInitFun :: !(MenuAttribute .st) -> IdFun .st

getMenuMarkStateAtt :: !(MenuAttribute .st) -> MarkState

getMenuModsFun :: !(MenuAttribute .st) -> ModifiersFunction .st

getMenuSelectStateAtt :: !(MenuAttribute .st) -> SelectState

getMenuShortKeyAtt :: !(MenuAttribute .st) -> Char

A.19. STDMENUDEF 229

A.19 StdMenuDef

definition module StdMenuDef

// **

// Clean Standard Object I/O library, version 1.2

//

// StdMenu contains the types to define the standard set of menus and their

// elements.

// **

import StdIOCommon, StdMaybe

/* Menus: */

:: Menu m ls pst = Menu Title (m ls pst)

[MenuAttribute *(ls,pst)]

:: PopUpMenu m ls pst = PopUpMenu (m ls pst)

/* Menu elements: */

:: MenuItem ls pst = MenuItem Title

[MenuAttribute *(ls,pst)]

:: MenuSeparator ls pst = MenuSeparator [MenuAttribute *(ls,pst)]

:: RadioMenu ls pst = RadioMenu [MenuRadioItem *(ls,pst)] Index

[MenuAttribute *(ls,pst)]

:: SubMenu m ls pst = SubMenu Title (m ls pst)

[MenuAttribute *(ls,pst)]

:: MenuRadioItem st :== (Title,Maybe Id,Maybe Char,IdFun st)

:: MenuAttribute st // Default:

// Attributes for Menus and MenuElements:

= MenuId Id // no Id

| MenuSelectState SelectState // menu(item) Able

// Attributes only for Menus:

| MenuIndex Int // end of current menu list

| MenuInit (IdFun st) // no actions after opening menu

// Attributes ignored by (Sub)Menus:

| MenuFunction (IdFun st) // \x->x

| MenuMarkState MarkState // NoMark

| MenuModsFunction (ModifiersFunction st) // MenuFunction

| MenuShortKey Char // no ShortKey

:: MenuType :== String

:: MenuElementType :== String

230 APPENDIX A. I/O LIBRARY

A.20 StdMenuElement

definition module StdMenuElement

// **

// Clean Standard Object I/O library, version 1.2

//

// StdMenuElement specifies all functions on menu elements.

// **

import StdMenuDef

from iostate import IOSt

/* Functions that change the state of menu elements.

Only those Id arguments that refer to menu elements within the same interactive

process are used to change the corresponding menu elements.

*/

enableMenuElements :: ![Id] !(IOSt .l) -> IOSt .l

disableMenuElements :: ![Id] !(IOSt .l) -> IOSt .l

/* (en/dis)ableMenuElements set the SelectState of the indicated menu elements.

Disabling a (Sub/Radio)Menu overrules the SelectStates of its elements, which

become unselectable.

Enabling a disabled (Sub/Radio)Menu re-establishes the SelectStates of its

elements.

(En/Dis)able operations on the elements of a disabled (Sub/Radio)Menu take

effect when the (Sub/Radio)Menu is re-enabled.

*/

setMenuElementTitles :: ![(Id,Title)] !(IOSt .l) -> IOSt .l

/* setMenuElementTitles sets the titles of the indicated menu elements.

*/

markMenuItems :: ![Id] !(IOSt .l) -> IOSt .l

unmarkMenuItems :: ![Id] !(IOSt .l) -> IOSt .l

/* (un)markMenuItems sets the MarkState of the indicated MenuItems.

*/

selectRadioMenuItem :: !Id !Id !(IOSt .l) -> IOSt .l

selectRadioMenuIndexItem:: !Id !Index !(IOSt .l) -> IOSt .l

/* selectRadioMenu(Index)Item

selects the indicated MenuRadioItem of a RadioMenu, causing the mark of the

previously marked MenuRadioItem to disappear.

selectRadioMenuItem

indicates the MenuRadioItem by the Id of its parent RadioMenu and its Id.

selectRadioMenuIndexItem

indicates the MenuRadioItem by the Id of its parent RadioMenu and its index

position (counted from 1).

*/

/* Access functions on MState. To read the state of a menu element, a MState is

required which can be obtained by the getMenu function. The MState value

represents the state of a menu at that particular moment.

*/

:: MState

getMenu :: !Id !(IOSt .l) -> (!Maybe MState, !IOSt .l)

getParentMenu :: !Id !(IOSt .l) -> (!Maybe MState, !IOSt .l)

/* getMenu returns a read-only MState for the indicated menu.

In case the indicated menu does not exist Nothing is returned.

getParentMenu returns a read-only MState for the indicated menu element.

In case the Id does not correspond with a menu element, then Nothing

A.20. STDMENUELEMENT 231

is returned.

*/

getMenuElementTypes :: !MState -> [(MenuElementType,Maybe Id)]

getCompoundMenuElementTypes :: !Id !MState -> [(MenuElementType,Maybe Id)]

/* getMenuElementTypes

yields the list of MenuElementTypes of all menu elements of this menu.

getCompoundMenuElementTypes

yields the list of MenuElementTypes of all menu elements of this

(Sub/Radio)Menu.

Both functions return (Just id) if the element has a MenuId attribute, and

Nothing otherwise.

Ids are not collected recursively through (Sub/Radio)Menus.

*/

/* Functions that return the current state of menu elements.

For each access there is one singular and one plural version. In case of the

plural version the result list is of equal length as the argument Id list. Each

result list element corresponds in order with the argument Id list.

In both versions the first Boolean result is False in case of invalid Ids (if so

dummy values are returned - see comment).

Important: menu elements with no MenuId attribute, or illegal ids, can not be

found in the MState!

*/

getSelectedRadioMenuItems :: ![Id] !MState -> [(!Index,!Maybe Id)]

getSelectedRadioMenuItem :: ! Id !MState -> (!Index,!Maybe Id)

/* getSelectedRadioMenuItem(s)

returns the Index and Id, if any, of the currently selected MenuRadioItem of

the indicated RadioMenu.

If the RadioMenu does not exist or is empty, the Index is zero and the Id is

Nothing.

*/

getMenuElementSelectStates :: ![Id] !MState -> [(Bool,SelectState)]

getMenuElementSelectState :: ! Id !MState -> (Bool,SelectState)

/* getMenuElementSelectState(s) yields the SelectStates of the indicated elements.

If the element does not exist Able is returned.

*/

getMenuElementMarkStates :: ![Id] !MState -> [(Bool,MarkState)]

getMenuElementMarkState :: ! Id !MState -> (Bool,MarkState)

/* getMenuElementMarkState(s) yields the MarkState of the indicated elements.

If the element does not exist NoMark is returned.

*/

getMenuElementTitles :: ![Id] !MState -> [(Bool,Maybe String)]

getMenuElementTitle :: ! Id !MState -> (Bool,Maybe String)

/* getMenuElementTitle(s) yields (Just title) of the indicated (SubMenu/MenuItem),

Nothing otherwise.

*/

getMenuElementShortKeys :: ![Id] !MState -> [(Bool,Maybe Char)]

getMenuElementShortKey :: ! Id !MState -> (Bool,Maybe Char)

/* getMenuElementShortKey(s) yields (Just key) of the indicated MenuItem, Nothing

otherwise.

*/

232 APPENDIX A. I/O LIBRARY

A.21 StdMenuElementClass

definition module StdMenuElementClass

// **

// Clean Standard Object I/O library, version 1.2

//

// StdMenuElementClass defines the standard set of menu element instances.

// **

import StdMenuDef

from StdPSt import PSt, IOSt

from menuhandle import MenuElementState

/* Menu elements for Menus:

*/

class MenuElements m where

menuElementToHandles :: !(m .ls (PSt .l)) !(PSt .l)

-> (![MenuElementState .ls (PSt .l)], !PSt .l)

getMenuElementType :: (m .ls .pst)

-> MenuElementType

instance MenuElements (AddLS m) | MenuElements m

instance MenuElements (NewLS m) | MenuElements m

instance MenuElements (ListLS m) | MenuElements m

instance MenuElements NilLS

instance MenuElements ((:+:) m1 m2) | MenuElements m1

& MenuElements m2

instance MenuElements (SubMenu m) | MenuElements m

instance MenuElements RadioMenu

instance MenuElements MenuItem

instance MenuElements MenuSeparator

/* Menu elements for PopUpMenus:

*/

class PopUpMenuElements m where

popUpMenuElementToHandles :: !(m .ls (PSt .l)) !(PSt .l)

-> (![MenuElementState .ls (PSt .l)], !PSt .l)

getPopUpMenuElementType :: (m .ls .pst)

-> MenuElementType

instance PopUpMenuElements (AddLS m) | PopUpMenuElements m

instance PopUpMenuElements (NewLS m) | PopUpMenuElements m

instance PopUpMenuElements (ListLS m) | PopUpMenuElements m

instance PopUpMenuElements NilLS

instance PopUpMenuElements ((:+:) m1 m2) | PopUpMenuElements m1

& PopUpMenuElements m2

instance PopUpMenuElements RadioMenu

instance PopUpMenuElements MenuItem

instance PopUpMenuElements MenuSeparator

A.22. STDMENURECEIVER 233

A.22 StdMenuReceiver

definition module StdMenuReceiver

// **

// Clean Standard Object I/O library, version 1.2

//

// StdMenuReceiver defines Receiver(2) menu element instances.

// **

import StdReceiverDef, StdMenuElementClass

// Receiver components:

instance MenuElements (Receiver m)

instance MenuElements (Receiver2 m r)

234 APPENDIX A. I/O LIBRARY

A.23 StdPicture

definition module StdPicture

// **

// Clean Standard Object I/O library, version 1.2

//

// StdPicture contains the drawing operations and access to Pictures.

// **

from StdFunc import St

from osfont import Font

from ospicture import Picture

import StdPictureDef

// Pen attribute functions:

setPenAttributes :: ![PenAttribute] !*Picture -> *Picture

getPenAttributes :: !*Picture

-> (![PenAttribute],!*Picture)

// Pen position attributes:

setPenPos :: !Point2 !*Picture -> *Picture

getPenPos :: !*Picture -> (!Point2,!*Picture)

class movePenPos figure :: !figure !*Picture -> *Picture

// Move the pen position as much as when drawing the figure.

instance movePenPos Vector2

instance movePenPos Curve

// Pen size attributes:

setPenSize :: !Int !*Picture -> *Picture

getPenSize :: !*Picture -> (!Int,!*Picture)

setDefaultPenSize :: !*Picture -> *Picture

// setDefaultPenSize = setPenSize 1

// Pen colour attributes:

setPenColour :: !Colour !*Picture -> *Picture

getPenColour :: !*Picture -> (!Colour,!*Picture)

setPenBack :: !Colour !*Picture -> *Picture

getPenBack :: !*Picture -> (!Colour,!*Picture)

setDefaultPenColour :: !*Picture -> *Picture

setDefaultPenBack :: !*Picture -> *Picture

toRGBColour :: !Colour -> RGBColour // Convert a colour to RGBColour

// setDefaultPenColour = setPenColour Black

// setDefaultPenBack = setPenBack White

// Pen font attributes:

setPenFont :: !Font !*Picture -> *Picture

getPenFont :: !*Picture -> (!Font,!*Picture)

setDefaultPenFont :: !*Picture -> *Picture

/* Font operations:

*/

openFont :: !FontDef !*Picture -> (!(!Bool,!Font),!*Picture)

openDefaultFont :: !*Picture -> (!Font, !*Picture)

openDialogFont :: !*Picture -> (!Font, !*Picture)

/* openFont

A.23. STDPICTURE 235

creates the font as specified by the name, stylistic variations, and size.

The Boolean result is True only if the font is available and need not be

scaled.

In all other cases, an existing font is returned (depending on the system).

openDefaultFont

returns the font used by default by applications.

openDialogFont

returns the font used by default by the system.

*/

getFontNames :: !*Picture -> (![FontName], !*Picture)

getFontStyles :: !FontName !*Picture -> (![FontStyle], !*Picture)

getFontSizes :: !Int !Int !FontName !*Picture -> (![FontSize], !*Picture)

/* getFontNames

returns the FontNames of all available fonts.

getFontStyles

returns the FontStyles of all available styles of a particular FontName.

getFontSizes

returns all FontSizes in increasing order of a particular FontName that are

available without scaling. The sizes inspected are inclusive between the two

Integer arguments. (Negative values are set to zero.)

In case the requested font is unavailable, the styles or sizes of the

default font are returned.

*/

getFontDef :: !Font -> FontDef

/* getFontDef returns the name, stylistic variations and size of the argument Font.

*/

getPenFontCharWidth :: ! Char !*Picture -> (! Int, !*Picture)

getPenFontCharWidths :: ![Char] !*Picture -> (![Int], !*Picture)

getPenFontStringWidth :: ! String !*Picture -> (! Int, !*Picture)

getPenFontStringWidths :: ![String] !*Picture -> (![Int], !*Picture)

getPenFontMetrics :: !*Picture -> (!FontMetrics, !*Picture)

getFontCharWidth :: !Font ! Char !*Picture -> (!Int, !*Picture)

getFontCharWidths :: !Font ![Char] !*Picture -> (![Int], !*Picture)

getFontStringWidth :: !Font ! String !*Picture -> (!Int, !*Picture)

getFontStringWidths :: !Font ![String] !*Picture -> (![Int], !*Picture)

getFontMetrics :: !Font !*Picture -> (!FontMetrics, !*Picture)

/* get(Pen)Font(Char/String)Width(s)

return the width of the argument (Char/String)(s) given the Font argument

or current PenFont attribute.

get(Pen)FontMetrics

returns the FontMetrics of the Font argument or current PenFont attribute.

*/

/* Region functions.

A Region is defined by a collection of shapes.

*/

:: Region

// Basic access functions on Regions:

isEmptyRegion :: !Region -> Bool

getRegionBound :: !Region -> Rectangle

/* isEmptyRegion

holds if the argument region covers no pixels (it is empty).

getRegionBound

returns the smallest enclosing rectangle of the argument region.

If the region is empty, zero is returned.

*/

// Constructing a region:

class toRegion area :: !area -> Region

236 APPENDIX A. I/O LIBRARY

:: PolygonAt

= { polygon_pos :: !Point2

, polygon :: !Polygon

}

instance toRegion Rectangle

instance toRegion PolygonAt

instance toRegion [area] | toRegion area

instance toRegion (:^: area1 area2) | toRegion area1 & toRegion area2

// Drawing and restoring picture attributes:

appPicture :: !.(IdFun *Picture) !*Picture -> *Picture

accPicture :: !.(St *Picture .x) !*Picture -> (.x,!*Picture)

/* (app/acc)Picture f pict

apply f to pict. After drawing, the picture attributes of the result

picture are restored to those of pict.

*/

// Drawing within in a clipping region:

appClipPicture :: !Region !.(IdFun *Picture) !*Picture -> *Picture

accClipPicture :: !Region !.(St *Picture .x) !*Picture -> (.x,!*Picture)

// Drawing in 'exclusive or' mode:

appXorPicture :: !.(IdFun *Picture) !*Picture -> *Picture

accXorPicture :: !.(St *Picture .x) !*Picture -> (.x,!*Picture)

/* (app/acc)XorPicture f pict

apply f to pict in the appropriate platform xor mode.

*/

// Drawing in 'hilite' mode:

class Hilites figure where

hilite :: !figure !*Picture -> *Picture

hiliteAt:: !Point2 !figure !*Picture -> *Picture

/* hilite

draws figures in the appropriate 'hilite' mode at the current pen position.

hiliteAt

draws figures in the appropriate 'hilite' mode at the argument pen position.

Both functions reset the 'hilite' mode after drawing.

*/

instance Hilites Box // Hilite a box

instance Hilites Rectangle // Hilite a rectangle (note: hiliteAt pos r = hilite r)

// Drawing points:

drawPoint :: !*Picture -> *Picture

drawPointAt :: !Point2 !*Picture -> *Picture

/* drawPoint

plots a point at the current pen position p and moves to p+{vx=1,vy=0}

drawPointAt

plots a point at the argument pen position, but retains the pen position.

*/

// Drawing lines:

drawLineTo :: !Point2 !*Picture -> *Picture

drawLine :: !Point2 !Point2 !*Picture -> *Picture

A.23. STDPICTURE 237

/* drawLineTo

draws a line from the current pen position to the argument point which

becomes the new pen position.

drawLine

draws a line between the two argument points, but retains the pen position.

*/

/* Drawing and filling operations.

These functions are divided into the following classes:

Drawables:

draw 'line-oriented' figures at the current pen position.

drawAt 'line-oriented' figures at the argument pen position.

undraw f = appPicture (draw f o setPenColour background)

undrawAt x f = appPicture (drawAt x f o setPenColour background)

Fillables:

fill 'area-oriented' figures at the current pen position.

fillAt 'area-oriented' figures at the argument pen position.

unfill f = appPicture (fill f o setPenColour background)

unfillAt x f = appPicture (fillAt x f o setPenColour background)

*/

class Drawables figure where

draw :: !figure !*Picture -> *Picture

drawAt :: !Point2 !figure !*Picture -> *Picture

undraw :: !figure !*Picture -> *Picture

undrawAt:: !Point2 !figure !*Picture -> *Picture

class Fillables figure where

fill :: !figure !*Picture -> *Picture

fillAt :: !Point2 !figure !*Picture -> *Picture

unfill :: !figure !*Picture -> *Picture

unfillAt:: !Point2 !figure !*Picture -> *Picture

// Text drawing operations:

// Text is always drawn with the baseline at the y coordinate of the pen.

instance Drawables Char

instance Drawables {#Char}

/* draw text:

draws the text starting at the current pen position.

The new pen position is directly after the drawn text including spacing.

drawAt p text:

draws the text starting at p.

*/

// Line2 drawing operations:

instance Drawables Line2

/* draw l:

is equal to drawLine l.line_end1 l.line_end2.

drawAt p l:

draw l

None of these functions change the pen position.

*/

// Vector2 drawing operations:

instance Drawables Vector2

/* draw v:

draws a line from the current pen position pen to pen+v.

drawAt p v:

draws a line from p to p+v.

*/

/* Oval drawing operations:

An Oval o is a transformed unit circle

238 APPENDIX A. I/O LIBRARY

with horizontal radius rx o.oval_rx

vertical radius ry o.oval_ry

Let (x,y) be a point on the unit circle:

then (x`,y`) = (x*rx,y*ry) is a point on o.

Let (x,y) be a point on o:

then (x`,y`) = (x/rx,y/ry) is a point on the unit circle.

*/

instance Drawables Oval

instance Fillables Oval

/* draw o:

draws an oval with the current pen position being the center of the oval.

drawAt p o:

draws an oval with p being the center of the oval.

fill o:

fills an oval with the current pen position being the center of the oval.

fillAt p o:

fills an oval with p being the center of the oval.

None of these functions change the pen position.

*/

/* Curve drawing operations:

A Curve c is a slice of an oval o

with start angle a c.curve_from

end angle b c.curve_to

direction d c.curve_clockwise

The angles are taken in radians (counter-clockwise).

If d holds then the drawing direction is clockwise, otherwise drawing occurs

counter-clockwise.

*/

instance Drawables Curve

instance Fillables Curve

/* draw c:

draws a curve with the starting angle a at the current pen position.

The pen position ends at ending angle b.

drawAt p c:

draws a curve with the starting angle a at p.

fill c:

fills the figure obtained by connecting the endpoints of the drawn curve

(draw c) with the center of the curve oval.

The pen position ends at ending angle b.

fillAt p c:

fills the figure obtained by connecting the endpoints of the drawn curve

(drawAt p c) with the center of the curve oval.

*/

/* Box drawing operations:

A Box b is a horizontally oriented rectangle

with width w b.box_w

height h b.box_h

In case w==0 (h==0), the Box collapses to a vertical (horizontal) vector.

In case w==0 and h==0, the Box collapses to a point.

*/

instance Drawables Box

instance Fillables Box

/* draw b:

draws a box with left-top corner at the current pen position p and

right-bottom corner at p+(w,h).

drawAt p b:

draws a box with left-top corner at p and right-bottom corner at p+(w,h).

fill b:

fills a box with left-top corner at the current pen position p and

right-bottom corner at p+(w,h).

fillAt p b:

fills a box with left-top corner at p and right-bottom corner at p+(w,h).

None of these functions change the pen position.

A.23. STDPICTURE 239

*/

/* Rectangle drawing operations:

A Rectangle r is always horizontally oriented

with width w abs (r.corner1.x-r.corner2.x)

height h abs (r.corner1.y-r.corner2.y)

In case w==0 (h==0), the Rectangle collapses to a vertical (horizontal) vector.

In case w==0 and h==0, the Rectangle collapses to a point.

*/

instance Drawables Rectangle

instance Fillables Rectangle

/* draw r:

draws a rectangle with diagonal corners r.corner1 and r.corner2.

drawAt p r:

draw r

fill r:

fills a rectangle with diagonal corners r.corner1 and r.corner2.

fillAt p r:

fill r

None of these functions change the pen position.

*/

/* Polygon drawing operations:

A Polygon p is a figure

with shape p.polygon_shape

A polygon p at a point base is drawn as follows:

drawPicture [setPenPos base:map draw shape]++[drawToPoint base]

*/

instance Drawables Polygon

instance Fillables Polygon

/* None of these functions change the pen position.

*/

getResolution :: !*Picture -> (!(!Int,!Int),!*Picture)

/* getResolution returns the horizontal and vertical resolution of a Picture in dpi

(dots per inch).

In case of a printer Picture:

the return values are the printer resolution (if it is not emulating the

screen resolution).

In case of a screen Picture:

the resolution is the number of pixels that fit in one "screen inch".

A "screen inch" is the physical size of a 72 point font on the screen.

Although some screens allow the user to alter the screen resolution,

getResolution always returns the same value for the same screen.

The reason is that if a user for instance increases the screen resolution,

not only the size of a pixel decreases, but also the size of a "screen

inch". So a 12 point font will not appear with 12 point size, but smaller

(A point is a physical unit, defined as 1 point is approximately 1/72 inch.)

*/

240 APPENDIX A. I/O LIBRARY

A.24 StdPictureDef

definition module StdPictureDef

// **

// Clean Standard Object I/O library, version 1.2

//

// StdPictureDef contains the predefined figures that can be drawn.

// **

import StdIOBasic

from osfont import Font

:: Line2 // A line connects two points

= { line_end1 :: !Point2 // The first point

, line_end2 :: !Point2 // The second point

}

:: Box // A box is a rectangle

= { box_w :: !Int // The width of the box

, box_h :: !Int // The height of the box

}

:: Oval // An oval is a stretched unit circle

= { oval_rx :: !Int // The horizontal radius (stretch)

, oval_ry :: !Int // The vertical radius (stretch)

}

:: Curve // A curve is a slice of an oval

= { curve_oval :: !Oval // The source oval

, curve_from :: !Real // Starting angle (in radians)

, curve_to :: !Real // Ending angle (in radians)

, curve_clockwise :: !Bool // Direction: True iff clockwise

}

:: Polygon // A polygon is an outline shape

= { polygon_shape :: ![Vector2] // The shape of the polygon

}

:: FontDef

= { fName :: !FontName // Name of the font

, fStyles :: ![FontStyle] // Stylistic variations

, fSize :: !FontSize // Size in points

}

:: FontMetrics

= { fAscent :: !Int // Distance between top and base line

, fDescent :: !Int // Distance between bottom and base line

, fLeading :: !Int // Distance between two text lines

, fMaxWidth :: !Int // Max character width including spacing

}

:: FontName :== String

:: FontStyle :== String

:: FontSize :== Int

:: Colour

= RGB RGBColour

| Black | White

| DarkGrey | Grey | LightGrey // 75%, 50%, and 25% Black

| Red | Green | Blue

| Cyan | Magenta | Yellow

:: RGBColour

= { r :: !Int // The contribution of red

, g :: !Int // The contribution of green

, b :: !Int // The contribution of blue

}

:: PenAttribute // Default:

= PenSize Int // 1

| PenPos Point2 // zero

| PenColour Colour // Black

| PenBack Colour // White

A.24. STDPICTUREDEF 241

| PenFont Font // DefaultFont

// Colour constants:

BlackRGB :== {r=MinRGB,g=MinRGB,b=MinRGB}

WhiteRGB :== {r=MaxRGB,g=MaxRGB,b=MaxRGB}

MinRGB :== 0

MaxRGB :== 255

// Font constants:

SerifFontDef :== {fName="Times New Roman",fStyles=[],fSize=10}

SansSerifFontDef :== {fName="Arial", fStyles=[],fSize=10}

SmallFontDef :== {fName="Small Fonts", fStyles=[],fSize=7 }

NonProportionalFontDef :== {fName="Courier New", fStyles=[],fSize=10}

SymbolFontDef :== {fName="Symbol", fStyles=[],fSize=10}

// Font style constants:

ItalicsStyle :== "Italic"

BoldStyle :== "Bold"

UnderlinedStyle :== "Underline"

// Standard lineheight of a font is the sum of its leading, ascent and descent:

fontLineHeight fMetrics :== fMetrics.fLeading + fMetrics.fAscent + fMetrics.fDescent

// Useful when working with Ovals and Curves:

PI :== 3.1415926535898

242 APPENDIX A. I/O LIBRARY

A.25 StdPrint

Cancelled, StartedPrinting, PrintEnvironments

definition module StdPrint

// **

// Clean Standard Object I/O library, version 1.2

//

// StdPrint specifies general printing functions.

// **

from StdIOCommon import UpdateState, ViewFrame, UpdateArea

from StdIOBasic import IdFun, Size, Rectangle, Point2

from StdOverloaded import ==

from ospicture import Picture

from osprint import PrintSetup, JobInfo, PrintInfo, Alternative,

Cancelled, StartedPrinting, PrintEnvironments

from iostate import IOSt, PSt

from StdFile import FileEnv, Files

:: PageDimensions

= { page :: !Size // Size of the drawable area of the page

, margins :: !Rectangle // This field contains information about the

// size of the margins on a sheet in pixels.

// Drawing can't occur within these margins.

// The margin Rectangle is bigger than the

// page size. Its values are:

// corner1.x<=0 && corner1.y<=0 &&

// corner2.x>=page.w && corner2.y>=page.h

, resolution :: !(!Int,!Int) // Horizontal and vertical printer

// resolution in dpi

}

defaultPrintSetup :: !*env -> (!PrintSetup,!*env)

| FileEnv env

/* defaultPrintSetup returns a default print setup.

*/

printSetupDialog :: !PrintSetup !*env -> (!PrintSetup,!*env)

| PrintEnvironments env

/* printSetupDialog lets the user choose a print setup via the print setup dialog.

*/

getPageDimensions :: !PrintSetup !Bool -> PageDimensions

instance == PageDimensions

fwritePrintSetup :: !PrintSetup !*File -> *File

/* fwritePrintSetup writes PrintSetup to file (text or data).

*/

freadPrintSetup :: !*File !*env -> (!Bool,!PrintSetup,!*File,!*env)

| FileEnv env

/* freadPrintSetup reads PrintSetup from File (text or data).

If the resulting Boolean is True: success, otherwise the default PrintSetup is

returned.

*/

print :: !Bool !Bool

.(PrintInfo !*Picture -> ([IdFun *Picture],!*Picture))

!PrintSetup !*env

-> (!PrintSetup,!*env)

| PrintEnvironments env

/* print doDialog emulateScreen pages printSetup env

sends output to the printer and returns the used print setup, which can differ

from the input print setup.

A.25. STDPRINT 243

doDialog:

if True a dialog will pop up that lets the user choose all printing options,

otherwise printing will happen in the default way.

emulateScreen:

if True, the printing routine will emulate the resolution of the screen.

That means that a pixel on paper has the same dimension as on screen.

Otherwise, the used resolution will be the printer resolution, with the

effect that coordinates get much "tighter".

pages:

this function should calculate a list of functions, each function

representing one page to be printed. Each of these drawing functions is

applied to an initial printer Picture.

env:

a PrintEnvironment is either the PSt or the Files system.

*/

printUpdateFunction

:: !Bool (UpdateState -> *Picture -> *Picture) [Rectangle]

!PrintSetup !*env

-> (!PrintSetup,!*env)

| PrintEnvironments env

/* printUpdateFunction doDialog update area printSetup env

sends the content of the update function of a given area to the printer:

doDialog:

identical to print.

update:

this function will be applied to an UpdateState of value

{oldFrame=area,newFrame=area,updArea=[area]}.

area:

the area to be sent to the printer. If a rectangle of this area does not

fit on one sheet, it will be distributed on several sheets.

printSetup,env,result value:

identical to print.

*/

printPagePerPage

:: !Bool !Bool

.x

.(.x -> .(PrintInfo -> .(*Picture -> ((.Bool,Point2),(.state,*Picture)))))

((.state,*Picture) -> ((.Bool,Point2),(.state,*Picture)))

!PrintSetup !*env

-> (Alternative .x .state,!*env)

| PrintEnvironments env

/* printPagePerPage doDialog emulateScreen x prepare pages printSetup env

sends output to the printer.

This function can be used more efficiently than print. The major difference is

that the pages function is a state transition function instead of a page list

producing function. Each page transition function generates one page for the

printer. An additional feature of printPagePerPage is that it is possible to

set the origin of the printer Pictures.

doDialog:

identical to print.

emulateScreen:

identical to print.

x:

this value is passed to the prepare function.

prepare:

this function calculates the initial page print state.

Iff there are no pages to print, the return Boolean must be True.

The returned Point is the Origin of the first printer Picture.

pages:

this state transition function produces the printed pages.

The state argument consists of the state information and an initial printer

Picture which Origin has been set by the previous return Point value.

If there are no more pages to print, the return Boolean must be True. In

that case the result of printPagePerPage is (StartedPrinting state),

with state the current state value. If printing should continue, the

244 APPENDIX A. I/O LIBRARY

return Boolean is False.

The returned Point is the Origin of the next printer Picture.

printSetup, env:

identical to print.

If printing is cancelled via the print dialog, then (Cancelled x) will be

returned, otherwise (StartedPrinting ...)

*/

instance PrintEnvironments World

/* Other instances are the Files subworld and PSt.

*/

A.26. STDPRINTTEXT 245

A.26 StdPrintText

definition module StdPrintText

// **

// Clean Standard Object I/O library, version 1.2

//

// StdPrintText specifies functions to print text.

// **

from StdPictureDef import FontDef, FontName, FontStyle, FontSize

import StdPrint

from StdString import String

:: WrapMode :== Int

NoWrap :== 0

LeftJustify :== 1

RightJustify :== 2

class CharStreams cs where

getChar :: !*cs -> (!Bool,!Char,!*cs)

// getChar returns the next character of the stream. The Boolean

// result indicates whether this operation was successful.

savePos :: !*cs -> *cs

// savePos saves actual position of charstream to enable the

// restorePos function to restore it.

restorePos :: !*cs -> *cs

eos :: !*cs -> (!Bool,!*cs)

// eos checks for end of stream.

instance CharStreams FileCharStream

:: *FileCharStream

fileToCharStream :: !*File -> *FileCharStream

charStreamToFile :: !*FileCharStream -> *File

printText1 :: !Bool !WrapMode !FontDef !Int

!*charStream !PrintSetup !*env

-> (!(!*charStream,!PrintSetup),!*env)

| CharStreams charStream & PrintEnvironments env

/* printText1 doDialog wrapMode font spacesPerTab

charStream printSetup env

prints a CharStream:

doDialog:

identical to print (StdPrint)

wrapMode:

controls word wrapping in case lines do not fit. NoWrap suppresses wrapping.

LeftJustify and RightJustify wrap text to the left and right respectively.

font:

the text will be printed in this font.

spacesPerTab:

the number of spaces a tab symbol represents.

charStream:

the charStream to be printed.

printSetup, env:

identical to print (StdPrint)

*/

printText2 :: !String !String

!Bool !WrapMode !FontDef !Int

!*charStream !PrintSetup !*env

-> (!(!*charStream,!PrintSetup),!*env)

| CharStreams charStream & PrintEnvironments env

246 APPENDIX A. I/O LIBRARY

/* printText2 titleStr pageStr

doDialog wrapMode fontParams spacesPerTab

charStream printSetup env

prints a charStream with a header on each page.

titleStr:

this String will be printed on each page at the left corner of the header

pageStr:

this String and the actual page number are printed on the right corner of

the header

The other parameters are identical to printText1.

*/

printText3 :: !Bool !WrapMode !FontDef !Int

.(PrintInfo *Picture -> (state, (Int,Int), *Picture))

(state Int *Picture -> *Picture)

!*charStream !PrintSetup !*env

-> (!(!*charStream,!PrintSetup),!*env)

| CharStreams charStream & PrintEnvironments env

/* printText3 doDialog wrapMode font spacesPerTab

textRange

eachPageDraw

charStream printSetup env

prints a charStream with a header and trailer on each page.

textRange:

this function takes a PrintInfo record and the printer Picture on which the

text will be printed. It returns a triple (state,range,picture):

state:

a value of arbitrary type that can be used to pass data to the page

printing function pages.

range:

a pair (top,bottom), where top<bottom. The printed text will appear

within these y-coordinates only, so a header and a trailer can be

printed for each page.

eachPageDraw:

this function draws the header and/or trailer for the current page. Its

arguments are the data produced by textRange, the actual page number, and

an initial printer Picture. This function is applied by printText3 before

each new page receives its text.

The other parameters are identical to printText1.

*/

/* If a file is openend with FReadData, then all possible newline conventions

(unix,mac,dos) will be recognized. All these printing functions will replace

nonprintable characters of the font with ASCII spaces. Exceptions are: newline,

formfeed and tab. So the ASCII space has to be a printable character in the used

font. A form feed character will cause a form feed, and it will also end a line.

*/

A.27. STDPROCESS 247

A.27 StdProcess

definition module StdProcess

// **

// Clean Standard Object I/O library, version 1.2

//

// StdProcess contains the process creation and manipulation functions.

// **

import StdProcessDef

from iostate import PSt, IOSt

/* General process topology creation functions:

*/

class Processes pdef where

startProcesses :: !pdef !*World -> *World

openProcesses :: !pdef !(PSt .l) -> PSt .l

/* (start/open)Processes creates an interactive process topology specified by

the pdef argument.

All interactive processes can communicate with each other by means of the

file system or by message passing.

startProcesses terminates as soon as all interactive processes that are

created by startProcesses and their child processes have terminated.

openProcesses schedules the interactive processes specified by the pdef argument

to be created.

*/

instance Processes [pdef] | Processes pdef

instance Processes Process

startIO :: !DocumentInterface !.l !(ProcessInit (PSt .l))

![ProcessAttribute (PSt .l)]

!*World -> *World

/* startIO creates one process group of one interactive process.

*/

// Process access operations:

closeProcess :: !(PSt .l) -> PSt .l

/* closeProcess removes all abstract devices that are held in the interactive

process.

If the interactive process has processes that share its GUI then these will also

be closed recursively. As a result evaluation of this interactive process

including GUI sharing processes will terminate.

*/

hideProcess :: !(PSt .l) -> PSt .l

showProcess :: !(PSt .l) -> PSt .l

/* If the interactive process is active, hideProcess hides the interactive process,

and showProcess makes it visible. Note that hiding an interactive process does

NOT disable the process but simply makes it invisible.

*/

getProcessWindowPos :: !(IOSt .l) -> (!Point2,!IOSt .l)

/* getProcessWindowPos returns the current position of the ProcessWindow.

*/

getProcessWindowSize:: !(IOSt .l) -> (!Size,!IOSt .l)

/* getProcessWindowSize returns the current size of the ProcessWindow.

*/

248 APPENDIX A. I/O LIBRARY

A.28 StdProcessAttribute

definition module StdProcessAttribute

// **

// Clean Standard Object I/O library, version 1.2

//

// StdProcessAttribute specifies which ProcessAttributes are valid for each of the

// standard interactive processes.

// Basic comparison operations and retrieval functions are also included.

// **

import StdProcessDef

/* The following function specifies the valid attributes for each standard

interactive process, specialised by its DocumentInterface.

*/

isProcessKindAttribute :: !DocumentInterface !(ProcessAttribute .st) -> Bool

/* (The document interface is given for which the attribute is valid)

ProcessActivate NDI SDI MDI | ProcessToolbar SDI MDI

ProcessClose NDI SDI MDI | ProcessWindowPos SDI MDI

ProcessDeactivate NDI SDI MDI | ProcessWindowResize SDI MDI

ProcessNoWindowMenu MDI | ProcessWindowSize SDI MDI

ProcessOpenFiles SDI MDI

*/

/* The following functions return True only iff the attribute equals the

indicated name.

*/

isProcessActivate :: !(ProcessAttribute .st) -> Bool

isProcessClose :: !(ProcessAttribute .st) -> Bool

isProcessDeactivate :: !(ProcessAttribute .st) -> Bool

isProcessNoWindowMenu :: !(ProcessAttribute .st) -> Bool

isProcessOpenFiles :: !(ProcessAttribute .st) -> Bool

isProcessToolbar :: !(ProcessAttribute .st) -> Bool

isProcessWindowPos :: !(ProcessAttribute .st) -> Bool

isProcessWindowResize :: !(ProcessAttribute .st) -> Bool

isProcessWindowSize :: !(ProcessAttribute .st) -> Bool

/* The following functions return the attribute value if appropriate.

THESE ARE PARTIAL FUNCTIONS! They are only defined on the corresponding

attribute.

*/

getProcessActivateFun :: !(ProcessAttribute .st) -> IdFun .st

getProcessCloseFun :: !(ProcessAttribute .st) -> IdFun .st

getProcessDeactivateFun :: !(ProcessAttribute .st) -> IdFun .st

getProcessOpenFilesFun :: !(ProcessAttribute .st)

-> ProcessOpenFilesFunction .st

getProcessToolbarAtt :: !(ProcessAttribute .st) -> [ToolbarItem .st]

getProcessWindowPosAtt :: !(ProcessAttribute .st) -> ItemPos

getProcessWindowResizeFun :: !(ProcessAttribute .st)

-> ProcessWindowResizeFunction .st

getProcessWindowSizeAtt :: !(ProcessAttribute .st) -> Size

A.29. STDPROCESSDEF 249

A.29 StdProcessDef

definition module StdProcessDef

// **

// Clean Standard Object I/O library, version 1.2

//

// StdProcessDef contains the types to define interactive processes.

// **

import StdIOCommon

from iostate import PSt, IOSt

:: Process

= E. .l: Process

DocumentInterface // The process DocumentInterface

l // The process private state

(ProcessInit (PSt l)) // The process initialisation

[ProcessAttribute (PSt l)] // The process attributes

/* NDI processes can't open windows and menus.

SDI processes can have at most one window open.

MDI processes can open an arbitrary number of device instances.

*/

:: ProcessInit pst

:== IdFun pst

250 APPENDIX A. I/O LIBRARY

A.30 StdPSt

definition module StdPSt

// **

// Clean Standard Object I/O library, version 1.2

//

// StdPSt defines operations on PSt and IOSt that are not abstract device related.

// **

from StdFunc import St

from StdIOCommon import IdFun, DocumentInterface, MDI, SDI, NDI

from StdPicture import Picture

from iostate import PSt, IOSt

/* accScreenPicture provides access to an initial Picture as it would be created in

a window or control.

*/

class accScreenPicture env :: !.(St *Picture .x) !*env -> (!.x,!*env)

instance accScreenPicture World

instance accScreenPicture (IOSt .l)

beep :: !(IOSt .l) -> IOSt .l

/* beep emits the alert sound.

*/

// Operations on the DocumentInterface of an interactive process:

getDocumentInterface :: !(IOSt .l) -> (!DocumentInterface, !IOSt .l)

/* getDocumentInterface returns the DocumentInterface of the interactive process.

*/

// Operations on the attributes of an interactive process:

setProcessActivate :: !(IdFun (PSt .l)) !(IOSt .l) -> IOSt .l

setProcessDeactivate:: !(IdFun (PSt .l)) !(IOSt .l) -> IOSt .l

/* These functions set the ProcessActivate and ProcessDeactivate attribute of the

interactive process respectively.

*/

// Coercing PSt component operations to PSt operations.

appListPIO :: ![.IdFun (IOSt .l)] !(PSt .l) -> PSt .l

appListPLoc :: ![.IdFun .l] !(PSt .l) -> PSt .l

appPIO :: !.(IdFun (IOSt .l)) !(PSt .l) -> PSt .l

appPLoc :: !.(IdFun .l) !(PSt .l) -> PSt .l

// Accessing PSt component operations.

accListPIO :: ![.St (IOSt .l) .x] !(PSt .l) -> (![.x],!PSt .l)

accListPLoc :: ![.St .l .x] !(PSt .l) -> (![.x],!PSt .l)

accPIO :: !.(St (IOSt .l) .x) !(PSt .l) -> (! .x, !PSt .l)

accPLoc :: !.(St .l .x) !(PSt .l) -> (! .x, !PSt .l)

A.31. STDPSTCLASS 251

A.31 StdPStClass

definition module StdPStClass

// **

// Clean Standard Object I/O library, version 1.2

//

// StdPStClass collects (PSt .l) and (IOSt .l) class instances.

// **

import StdFile, StdFileSelect, StdSound, StdTime

from iostate import PSt, IOSt

/* PSt is an environment instance of the following classes:

- FileSystem (see StdFile)

- FileEnv (see StdFile)

- FileSelectEnv (see StdFileSelect)

- TimeEnv (see StdTime)

- playSoundFile (see StdSound)

IOSt is also an environment instance of the classes FileEnv, TimeEnv

*/

instance FileSystem (PSt .l)

instance FileEnv (PSt .l), (IOSt .l)

instance FileSelectEnv (PSt .l)

instance TimeEnv (PSt .l), (IOSt .l)

instance playSoundFile (PSt .l)

252 APPENDIX A. I/O LIBRARY

A.32 StdReceiver

definition module StdReceiver

// **

// Clean Standard Object I/O library, version 1.2

//

// StdReceiver specifies all receiver operations.

// **

import StdReceiverDef, StdMaybe

from iostate import PSt, IOSt

from id import RId, R2Id, RIdtoId, R2IdtoId, ==

// Open uni- and bi-directional receivers:

class Receivers rdef where

openReceiver :: .ls !*(*rdef .ls (PSt .l)) !(PSt .l) -> (!ErrorReport,!PSt .l)

getReceiverType:: *(*rdef .ls .pst) -> ReceiverType

/* openReceiver

opens the given receiver if no receiver currently exists with the given

R(2)Id. The R(2)Id has to be used to send messages to this receiver.

getReceiverType

returns the type of the receiver (see also getReceivers).

*/

instance Receivers (Receiver msg)

instance Receivers (Receiver2 msg resp)

closeReceiver :: !Id !(IOSt .l) -> IOSt .l

/* closeReceiver closes the indicated uni- or bi-directional receiver.

Invalid Ids have no effect.

*/

getReceivers :: !(IOSt .l) -> (![(Id,ReceiverType)], !IOSt .l)

/* getReceivers returns the Ids and ReceiverTypes of all currently open uni- or

bi-directional receivers of this interactive process.

*/

enableReceivers :: ![Id] !(IOSt .l) -> IOSt .l

disableReceivers :: ![Id] !(IOSt .l) -> IOSt .l

getReceiverSelectState :: ! Id !(IOSt .l) -> (!Maybe SelectState,!IOSt .l)

/* (en/dis)ableReceivers

(en/dis)able the indicated uni- or bi-directional receivers.

Note that this implies that in case of synchronous message passing messages

can fail (see the comments of syncSend and syncSend2 below). Invalid Ids

have no effect.

getReceiverSelectState

yields the current SelectState of the indicated receiver. In case the

receiver does not exist, Nothing is returned.

*/

// Inter-process communication:

// Message passing status report:

:: SendReport

= SendOk

| SendUnknownReceiver

| SendUnableReceiver

| SendDeadlock

| OtherSendReport !String

instance == SendReport

instance toString SendReport

A.32. STDRECEIVER 253

asyncSend :: !(RId msg) msg !(PSt .l) -> (!SendReport, !PSt .l)

/* asyncSend posts a message to the receiver indicated by the argument RId. In case

the indicated receiver belongs to this process, the message is simply buffered.

asyncSend is asynchronous: the message will at some point be received by the

indicated receiver.

The SendReport can be one of the following alternatives:

- SendOk: No exceptional situation has occurred. The message has been sent.

Note that even though the message has been sent, it cannot be

guaranteed that the message will actually be handled by the

indicated receiver because it might become closed, forever disabled,

or flooded with synchronous messages.

- SendUnknownReceiver:

The indicated receiver does not exist.

- SendUnableReceiver:

Does not occur: the message is always buffered, regardless whether

the indicated receiver is Able or Unable. Note that in case the

receiver never becomes Able, the message will not be handled.

- SendDeadlock:

Does not occur.

*/

syncSend :: !(RId msg) msg !(PSt .l) -> (!SendReport, !PSt .l)

/* syncSend posts a message to the receiver indicated by the argument RId. In case

the indicated receiver belongs to the current process, the corresponding

ReceiverFunction is applied directly to the message argument and current process

state.

syncSend is synchronous: this interactive process blocks evaluation until the

indicated receiver has received the message.

The SendReport can be one of the following alternatives:

- SendOk: No exceptional situation has occurred. The message has been sent and

handled by the indicated receiver.

- SendUnknownReceiver:

The indicated receiver does not exist.

- SendUnableReceiver:

The receiver exists, but its ReceiverSelectState is Unable.

Message passing is halted. The message is not sent.

- SendDeadlock:

The receiver is involved in a synchronous, cyclic communication

with the current process. Blocking the current process would result

in a deadlock situation. Message passing is halted to circumvent the

deadlock. The message is not sent.

*/

syncSend2 :: !(R2Id msg resp) msg !(PSt .l)

-> (!(!SendReport,!Maybe resp), !PSt .l)

/* syncSend2 posts a message to the receiver indicated by the argument R2Id. In

case the indicated receiver belongs to the current process, the corresponding

Receiver2Function is applied directly to the message argument and current

process state.

syncSend2 is synchronous: this interactive process blocks until the indicated

receiver has received the message.

The SendReport can be one of the following alternatives:

- SendOk: No exceptional situation has occurred. The message has been sent and

handled by the indicated receiver. The response of the receiver is

returned as well as (Just response).

- SendUnknownReceiver:

The indicated receiver does not exist.

- SendUnableReceiver:

The receiver exists, but its ReceiverSelect is Unable.

Message passing is halted. The message is not sent.

- SendDeadlock:

The receiver is involved in a synchronous, cyclic communication

with the current process. Blocking the current process would result

in a deadlock situation. Message passing is halted to circumvent the

deadlock. The message is not sent.

In all other cases than SendOk, the optional response is Nothing.

*/

254 APPENDIX A. I/O LIBRARY

A.33 StdReceiverAttribute

definition module StdReceiverAttribute

// **

// Clean Standard Object I/O library, version 1.2

//

// StdReceiverAttribute specifies which ReceiverAttributes are valid for each of

// the standard receivers.

// Basic comparison operations and retrieval functions are also included.

// **

import StdReceiverDef

/* The following functions specify the valid attributes for each standard receiver.

*/

isValidReceiverAttribute :: !(ReceiverAttribute .st) -> Bool

/* Receiver (y = valid, . = invalid)

ReceiverInit y | ReceiverSelectState y |

*/

isValidReceiver2Attribute :: !(ReceiverAttribute .st) -> Bool

/* Receiver2 (y = valid, . = invalid)

ReceiverInit y | ReceiverSelectState y |

*/

/* The following functions return True only iff the attribute equals the

indicated name.

*/

isReceiverInit :: !(ReceiverAttribute .st) -> Bool

isReceiverSelectState :: !(ReceiverAttribute .st) -> Bool

isReceiverConnectedReceivers:: !(ReceiverAttribute .st) -> Bool // MW11++

/* The following functions return the attribute value if appropriate.

THESE ARE PARTIAL FUNCTIONS! They are only defined on the corresponding

attribute.

*/

getReceiverInitFun :: !(ReceiverAttribute .st) -> IdFun .st

getReceiverSelectStateAtt :: !(ReceiverAttribute .st) -> SelectState

getReceiverConnectedReceivers :: !(ReceiverAttribute .st) -> [Id] // MW11++

A.34. STDRECEIVERDEF 255

A.34 StdReceiverDef

definition module StdReceiverDef

// **

// Clean Standard Object I/O library, version 1.2

//

// StdReceiverDef contains the types to define the standard set of receivers.

// **

import StdIOCommon

:: Receiver m ls pst = Receiver (RId m) (ReceiverFunction m *(ls,pst))

[ReceiverAttribute *(ls,pst)]

:: Receiver2 m r ls pst = Receiver2 (R2Id m r) (Receiver2Function m r *(ls,pst))

[ReceiverAttribute *(ls,pst)]

:: ReceiverFunction m st :== m -> st -> st

:: Receiver2Function m r st :== m -> st -> (r,st)

:: ReceiverAttribute st // Default:

= ReceiverInit (IdFun st) // no actions after opening receiver

| ReceiverSelectState SelectState // receiver Able

| ReceiverConnectedReceivers [Id] // []

:: ReceiverType

:== String

256 APPENDIX A. I/O LIBRARY

A.35 StdSound

definition module StdSound

// **

// Clean Standard Object I/O library, version 1.2

//

// StdSound specifies sound playing functions.

// **

from StdString import String

class playSoundFile env :: !String !*env -> (!Bool,!*env)

/* playSoundFile filename

opens the sound file at filename and plays it synchronously.

The Boolean result indicates whether the sound file could be succesfully

played.

*/

instance playSoundFile World

A.36. STDSTRINGCHANNELS 257

A.36 StdStringChannels

definition module StdStringChannels

// **

// Clean Standard Object I/O library, version 1.2

//

// StdStringChannels provides channel instances to send and receive Strings.

// These channels use their own protocol above TCP.

// **

from StdString import String

import StdTCPDef, StdChannels, StdEventTCP

from StdReceiver import Receivers, ReceiverType, RId

from StdTCPChannels import SelectSend, SelectReceive, getNrOfChannels

/* If a string via a StringChannel is sent, then first the length of the string is

sent, and then the string itself, e.g. sending the string "abc" will result in

"3 abc\xD"

*/

// **

// StringChannels to receive

// **

:: *StringRChannel_ a

:: *StringRChannel :== StringRChannel_ String

:: *StringRChannels = StringRChannels [StringRChannel]

:: *StringChannelReceiver ls pst

= StringChannelReceiver

(RId (ReceiveMsg String)) StringRChannel

(ReceiverFunction (ReceiveMsg String) *(ls,pst))

[ReceiverAttribute *(ls,pst)]

toStringRChannel :: TCP_RChannel -> StringRChannel

instance Receivers StringChannelReceiver

instance Receive StringRChannel_

instance closeRChannel StringRChannel_

instance MaxSize StringRChannel_

// **

// StringChannels to send

// **

:: *StringSChannel_ a

:: *StringSChannel :== StringSChannel_ String

:: *StringSChannels = StringSChannels [StringSChannel]

toStringSChannel :: TCP_SChannel -> StringSChannel

instance Send StringSChannel_

// For openSendNotifier, closeSendNotifier

instance accSChannel StringSChannel_

// For selectChannel

instance SelectSend StringSChannels

instance SelectReceive StringRChannels

instance getNrOfChannels StringRChannels

258 APPENDIX A. I/O LIBRARY

A.37 StdSystem

definition module StdSystem

// **

// Clean Standard Object I/O library, version 1.2

//

// StdSystem defines platform dependent constants and functions.

// **

import StdIOBasic

// System dependencies concerning the file system.

dirseparator :: Char // Separator between folder- and filenames in a pathname

homepath :: !String -> String

applicationpath :: !String -> String

/* dirseparator

is the separator symbol used between folder- and filenames in a file path.

homepath

prefixes the 'home' directory file path to the given file name.

applicationpath

prefixes the 'application' directory file path to the given file name.

Use these directories to store preference/options/help files of an application.

*/

newlineChars :: !String

/* the newline characters in a textfile

*/

printSetupTypical :: Bool

// System dependencies concerning the time resolution

ticksPerSecond :: Int

/* ticksPerSecond returns the maximum timer resolution per second.

*/

// System dependencies concerning the screen resolution.

mmperinch :== 25.4

hmm :: !Real -> Int

vmm :: !Real -> Int

hinch :: !Real -> Int

vinch :: !Real -> Int

/* h(mm/inch) convert millimeters/inches into pixels, horizontally.

v(mm/inch) convert millimeters/inches into pixels, vertically.

*/

maxScrollWindowSize :: Size

maxFixedWindowSize :: Size

/* maxScrollWindowSize

yields the range at which scrollbars are inactive.

maxFixedWindowSize

yields the range at which a window still fits on the screen.

*/

A.38. STDTCP 259

A.38 StdTCP

definition module StdTCP

import StdChannels,

StdTCPChannels,

StdEventTCP,

StdStringChannels,

StdTCPDef

260 APPENDIX A. I/O LIBRARY

A.39 StdTCPChannels

definition module StdTCPChannels

// **

// Clean Standard Object I/O library, version 1.2

//

// StdTCPChannels provides instances to use TCP.

// **

import StdTCPDef, StdChannels

from StdString import String

from StdIOCommon import OkBool

from StdIOBasic import Void, :^:

from tcp_bytestreams import TCP_SCharStream_, TCP_RCharStream_

// **

// Listeners

// **

instance Receive TCP_Listener_

instance closeRChannel TCP_Listener_

/* Receiving on a listener will accept a TCP_DuplexChannel. eom never becomes True

for listeners.

*/

// **

// TCP send channels

// **

instance Send TCP_SChannel_

// **

// TCP receive channels

// **

instance Receive TCP_RChannel_

instance closeRChannel TCP_RChannel_

instance MaxSize TCP_RChannel_

// **

// TCP char streams to receive

// **

:: *TCP_RCharStream :== TCP_RCharStream_ Char

:: *TCP_RCharStreams = TCP_RCharStreams [TCP_RCharStream]

toRCharStream :: !TCP_RChannel -> TCP_RCharStream

instance Receive TCP_RCharStream_

instance closeRChannel TCP_RCharStream_

// **

// TCP char streams to send

// **

:: *TCP_SCharStream :== TCP_SCharStream_ Char

:: *TCP_SCharStreams = TCP_SCharStreams [TCP_SCharStream]

toSCharStream :: !TCP_SChannel -> TCP_SCharStream

instance Send TCP_SCharStream_

// **

// establishing connections

// **

A.39. STDTCPCHANNELS 261

lookupIPAddress :: !String !*env

-> (!Maybe IPAddress, !*env)

| ChannelEnv env

connectTCP_MT :: !(Maybe !Timeout) !(!IPAddress,!Port) !*env

-> (!TimeoutReport, !Maybe TCP_DuplexChannel, !*env)

| ChannelEnv env

openTCP_Listener:: !Port !*env

-> (!OkBool, !Maybe TCP_Listener, !*env)

| ChannelEnv env

tcpPossible :: !*env

-> (!Bool, !*env)

| ChannelEnv env

/* lookupIPAddress

input String can be in dotted decimal form or alphanumerical. In the latter

case the DNS is called.

connectTCP

tries to establish a TCP connection.

openTCP_Listener

to listen on a certain port.

tcpPossible

whether tcp can be started on this computer.

*/

// **

// multiplexing

// **

selectChannel_MT:: !(Maybe !Timeout) !*r_channels !*s_channels !*World

-> (![(!Int, !SelectResult)],!*r_channels,!*s_channels,!*World)

| SelectReceive r_channels & SelectSend s_channels

/* selectChannel_MT mbTimeout r_channels s_channels world

determines the first channel on which "something happens".

If the result is an empty list, then the timeout expired, otherwise each

(who,what) element of the result identifies one channel in r_channels or

s_channels. The what value determines whether available/eom/disconnected

on the identified channel would have returned True.

what==SR_Sendable indicates that it is possible to send non blocking on the

identified channel. If r_channels contains r channels and if s_channels

contains s channels, then the following holds:

isMember what [SR_Available,SR_EOM] => 0<=who<r

isMember what [SR_Sendable ,SR_Disconnected] => 0<=who<s

*/

instance == SelectResult

instance toString SelectResult

/* The following classes support the selectChannel_MT function:

*/

class SelectReceive channels where

accRChannels :: (PrimitiveRChannel -> (x, PrimitiveRChannel)) !*channels

-> (![x], !*channels)

getRState :: !Int !*channels !*World

-> (!Maybe !SelectResult, !*channels, !*World)

/* accRChannels f channels

applies a function on each channel in channels and returns a list which

contains the result for each application.

getRState

applies available and eom on the channel which is identified by the Int

parameter and returns SR_Available or SR_EOM or Nothing.

*/

class SelectSend channels where

accSChannels :: (TCP_SChannel -> (x, TCP_SChannel)) !*channels

-> (![x], !*channels)

appDisconnected :: !Int !*channels !*World

-> (!Bool, !*channels, !*World)

262 APPENDIX A. I/O LIBRARY

/* accSChannels

applies a function on each channel in channels and returns a list which

contains the result for each application.

appDisconnected

returns whether disconnected is True for the channel which is identified by

the Int parameter.

*/

class getNrOfChannels channels :: !*channels -> (!Int, !*channels)

/* getNrOfChannels channels

returns the number of channels in channels.

*/

instance SelectReceive TCP_RChannels,TCP_Listeners,TCP_RCharStreams,Void

instance SelectReceive (:^: *x *y) | SelectReceive, getNrOfChannels x

& SelectReceive y

instance SelectSend TCP_SChannels,TCP_SCharStreams,Void

instance SelectSend (:^: *x *y) | SelectSend, getNrOfChannels x

& SelectSend y

instance getNrOfChannels TCP_RChannels,TCP_Listeners,TCP_RCharStreams,

TCP_SChannels,TCP_SCharStreams,Void

instance getNrOfChannels (:^: *x *y) | getNrOfChannels x & getNrOfChannels y

A.40. STDTCPDEF 263

A.40 StdTCPDef

definition module StdTCPDef

// **

// Clean Standard Object I/O library, version 1.2

//

// StdTCPDef provides basic definitions for using TCP.

// **

from StdMaybe import Maybe

from StdReceiverDef import Id, ReceiverFunction, ReceiverAttribute

from StdOverloaded import toString, ==

from StdChannels import DuplexChannel, ReceiveMsg, SendEvent

from tcp import TCP_SChannel_,TCP_RChannel_,TCP_Listener_,IPAddress

:: *TCP_SChannel :== TCP_SChannel_ ByteSeq

:: *TCP_RChannel :== TCP_RChannel_ ByteSeq

:: *TCP_Listener :== TCP_Listener_ (IPAddress, TCP_DuplexChannel)

:: Port :== Int

:: *TCP_DuplexChannel :== DuplexChannel *TCP_SChannel_ *TCP_RChannel_ ByteSeq

:: ByteSeq

// A sequence of bytes

instance toString ByteSeq

instance == ByteSeq

toByteSeq :: !x -> ByteSeq | toString x

byteSeqSize :: !ByteSeq -> Int

// byteSeqSize returns the size in bytes

instance toString IPAddress

// returns ip address in dotted decimal form

// **

// for event driven processing

// **

// To receive byte sequences

:: *TCP_Receiver ls pst

= TCP_Receiver

Id TCP_RChannel

(ReceiverFunction (ReceiveMsg ByteSeq) *(ls,pst))

[ReceiverAttribute *(ls,pst)]

:: SendNotifier sChannel ls pst

= SendNotifier

sChannel

(ReceiverFunction SendEvent *(ls,pst))

[ReceiverAttribute *(ls,pst)]

// To accept new connections

:: *TCP_ListenerReceiver ls pst

= TCP_ListenerReceiver

Id TCP_Listener

((ReceiveMsg (IPAddress,TCP_DuplexChannel)) -> *(*(ls,pst) -> *(ls,pst)))

[ReceiverAttribute *(ls,pst)]

// To receive characters

:: *TCP_CharReceiver ls pst

= TCP_CharReceiver

Id TCP_RChannel (Maybe NrOfIterations)

(ReceiverFunction (ReceiveMsg Char) *(ls,pst))

264 APPENDIX A. I/O LIBRARY

[ReceiverAttribute *(ls,pst)]

/* For efficency the receiver function of a TCP_CharReceiver will be called from

a loop. Within this loop no other events can be handled. The NrOfIterations

parameter limits the maximum number of iterations.

*/

:: NrOfIterations :== Int

:: InetLookupFunction st :== (Maybe IPAddress) -> *(st -> st)

:: InetConnectFunction st :== (Maybe TCP_DuplexChannel) -> *(st -> st)

// **

// for multiplexing

// **

:: *TCP_RChannels = TCP_RChannels [TCP_RChannel]

:: *TCP_SChannels = TCP_SChannels [TCP_SChannel]

:: *TCP_Listeners = TCP_Listeners [TCP_Listener]

:: *PrimitiveRChannel

= TCP_RCHANNEL TCP_RChannel

| TCP_LISTENER TCP_Listener

:: SelectResult

= SR_Available

| SR_EOM

| SR_Sendable

| SR_Disconnected

A.41. STDTIME 265

A.41 StdTime

definition module StdTime

// **

// Clean Standard Object I/O library, version 1.2

//

// StdTime contains time related operations.

// **

from StdOverloaded import <

from ostick import Tick

:: Time

= { hours :: !Int // hours (0-23)

, minutes :: !Int // minutes (0-59)

, seconds :: !Int // seconds (0-59)

}

:: Date

= { year :: !Int // year

, month :: !Int // month (1-12)

, day :: !Int // day (1-31)

, dayNr :: !Int // day of week (1-7, Sunday=1, Saturday=7)

}

wait :: !Int .x -> .x

/* wait n x suspends the evaluation of x modally for n ticks.

If n<=0, then x is evaluated immediately.

*/

instance < Tick

intPlusTick :: !Int !Tick -> Tick

tickDifference :: !Tick !Tick -> Int

class TimeEnv env where

getBlinkInterval:: !*env -> (!Int, !*env)

getCurrentTime :: !*env -> (!Time, !*env)

getCurrentDate :: !*env -> (!Date, !*env)

getCurrentTick :: !*env -> (!Tick, !*env)

/* getBlinkInterval

returns the time interval in ticks that should elapse between blinks of

e.g. a cursor. This interval may be changed by the user while the

interactive process is running!

getCurrentTime

returns the current Time.

getCurrentDate

returns the current Date.

getCurrentTick

returns the current Tick.

*/

instance TimeEnv World

266 APPENDIX A. I/O LIBRARY

A.42 StdTimer

definition module StdTimer

// **

// Clean Standard Object I/O library, version 1.2

//

// StdTimer specifies all timer operations.

// **

import StdTimerElementClass, StdMaybe

from StdSystem import ticksPerSecond

from iostate import PSt, IOSt

class Timers tdef where

openTimer :: .ls !(tdef .ls (PSt .l)) !(PSt .l) -> (!ErrorReport,!PSt .l)

getTimerType:: (tdef .ls .pst) -> TimerType

/* Open a new timer.

This function has no effect in case the interactive process already contains a

timer with the same Id. In case TimerElements are opened with duplicate Ids, the

timer will not be opened. Negative TimerIntervals are set to zero.

In case the timer does not have an Id, it will obtain an Id which is fresh with

respect to the current set of timers. The Id can be reused after closing this

timer.

*/

instance Timers (Timer t) | TimerElements t

closeTimer :: !Id !(IOSt .l) -> IOSt .l

/* closeTimer closes the timer with the indicated Id.

*/

getTimers :: !(IOSt .l) -> (![(Id,TimerType)],!IOSt .l)

/* getTimers returns the Ids and TimerTypes of all currently open timers.

*/

enableTimer :: !Id !(IOSt .l) -> IOSt .l

disableTimer :: !Id !(IOSt .l) -> IOSt .l

getTimerSelectState :: !Id !(IOSt .l) -> (!Maybe SelectState,!IOSt .l)

/* (en/dis)ableTimer (en/dis)ables the indicated timer.

getTimerSelectState yields the SelectState of the indicated timer. If the timer

does not exist, then Nothing is yielded.

*/

setTimerInterval :: !Id !TimerInterval !(IOSt .l) -> IOSt .l

getTimerInterval :: !Id !(IOSt .l)

-> (!Maybe TimerInterval,!IOSt .l)

/* setTimerInterval

sets the TimerInterval of the indicated timer.

Negative TimerIntervals are set to zero.

getTimerInterval

yields the TimerInterval of the indicated timer.

If the timer does not exist, then Nothing is yielded.

*/

A.43. STDTIMERATTRIBUTE 267

A.43 StdTimerAttribute

definition module StdTimerAttribute

// **

// Clean Standard Object I/O library, version 1.2

//

// StdTimerAttribute specifies which TimerAttributes are valid for each of the

// standard timers.

// Basic comparison operations and retrieval functions are also included.

// **

import StdTimerDef

/* The following functions specify the valid attributes for each standard timer.

*/

isValidTimerAttribute :: !(TimerAttribute .st) -> Bool

/* Timer (y = valid, . = invalid)

TimerFunction y | TimerInit y |

TimerId y | TimerSelectState y |

*/

/* The following functions return True only iff the attribute equals the

indicated name.

*/

isTimerFunction :: !(TimerAttribute .st) -> Bool

isTimerId :: !(TimerAttribute .st) -> Bool

isTimerInit :: !(TimerAttribute .st) -> Bool

isTimerSelectState :: !(TimerAttribute .st) -> Bool

/* The following functions return the attribute value if appropriate.

THESE ARE PARTIAL FUNCTIONS! They are only defined on the corresponding

attribute.

*/

getTimerFun :: !(TimerAttribute .st) -> TimerFunction .st

getTimerIdAtt :: !(TimerAttribute .st) -> Id

getTimerInitFun :: !(TimerAttribute .st) -> IdFun .st

getTimerSelectStateAtt :: !(TimerAttribute .st) -> SelectState

268 APPENDIX A. I/O LIBRARY

A.44 StdTimerDef

definition module StdTimerDef

// **

// Clean Standard Object I/O library, version 1.2

//

// StdTimerDef contains the types to define the standard set of timers.

// **

import StdIOCommon

:: Timer t ls pst = Timer TimerInterval (t ls pst) [TimerAttribute *(ls,pst)]

:: TimerInterval

:== Int

:: TimerAttribute st // Default:

= TimerFunction (TimerFunction st) // _ x->x

| TimerId Id // no Id

| TimerInit (IdFun st) // no actions after opening timer

| TimerSelectState SelectState // timer Able

:: TimerFunction st :== NrOfIntervals -> st -> st

:: NrOfIntervals :== Int

:: TimerType :== String

:: TimerElementType :== String

A.45. STDTIMERELEMENTCLASS 269

A.45 StdTimerElementClass

definition module StdTimerElementClass

// **

// Clean Standard Object I/O library, version 1.2

//

// StdTimerElementClass define the standard set of timer element instances.

// **

import StdIOCommon, StdTimerDef

from iostate import PSt, IOSt

from timerhandle import TimerElementState

class TimerElements t where

timerElementToHandles :: !(t .ls (PSt .l)) !(PSt .l)

-> (![TimerElementState .ls (PSt .l)], !PSt .l)

getTimerElementType :: (t .ls .pst)

-> TimerElementType

instance TimerElements (NewLS t) | TimerElements t

instance TimerElements (AddLS t) | TimerElements t

instance TimerElements (ListLS t) | TimerElements t

instance TimerElements NilLS

instance TimerElements ((:+:) t1 t2) | TimerElements t1

& TimerElements t2

270 APPENDIX A. I/O LIBRARY

A.46 StdTimerReceiver

definition module StdTimerReceiver

// **

// Clean Standard Object I/O library, version 1.2

//

// StdTimerReceiver defines Receiver(2) timer element instances.

// **

import StdReceiverDef, StdTimerElementClass

// Receiver components for timers:

instance TimerElements (Receiver m)

instance TimerElements (Receiver2 m r)

A.47. STDWINDOW 271

A.47 StdWindow

definition module StdWindow

// **

// Clean Standard Object I/O library, version 1.2

//

// StdWindow defines functions on windows and dialogues.

// **

from StdFunc import St

import StdControlClass, StdWindowDef

from StdPSt import PSt, IOSt

// Functions applied to non-existent windows or unknown ids have no effect.

class Windows wdef where

openWindow :: .ls !(wdef .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport,!PSt .l)

getWindowType :: (wdef .ls .pst) -> WindowType

class Dialogs wdef where

openDialog :: .ls !(wdef .ls (PSt .l)) !(PSt .l)

-> (!ErrorReport, !PSt .l)

openModalDialog :: .ls !(wdef .ls (PSt .l)) !(PSt .l)

-> (!(!ErrorReport,!Maybe .ls),!PSt .l)

getDialogType :: (wdef .ls .pst) -> WindowType

/* open(Window/Dialog) opens the given window(dialog).

If the Window(Dialog) has no WindowIndex attribute (see StdWindowDef), then the

new window is opened frontmost.

If the Window(Dialog) has a WindowIndex attribute, then the new window is

opened behind the window indicated by the integer index:

Index value 1 indicates the top-most window.

Index value M indicates the bottom-most modal window, if there are M modal

windows.

Index value N indicates the bottom-most window, if there are N windows.

If index<M, then the new window is added behind the bottom-most modal window

(at index M).

If index>N, then the new window is added behind the bottom-most window

(at index N).

openModalDialog always opens a window at the front-most position.

openWindow may not be permitted to open a window depending on its

DocumentInterface (see the comments at the ShareProcesses instances in

module StdProcess).

In case the window does not have an Id, it will obtain a fresh Id. The Id can

be reused after closing this window.

In case a window with the same Id is already open the window will not be opened.

In case controls are opened with duplicate Ids, the window will not be opened.

openModalDialog terminates when:

the modal dialog has been closed (by means of closeWindow), or the process

has been terminated (by means of closeProcess). If the ErrorReport==NoError,

then also the final local state of the modal dialog is returned, otherwise

Nothing.

*/

instance Windows (Window c) | Controls c

instance Dialogs (Dialog c) | Controls c

closeWindow :: !Id !(PSt .l) -> PSt .l

closeActiveWindow :: !(PSt .l) -> PSt .l

/* If the indicated window is not an inactive modal dialog, then closeWindow closes

the window/dialogue.

In case the Id of the window was generated by open(Window/Dialog), it will

272 APPENDIX A. I/O LIBRARY

become reusable for new windows/dialogues.

No window is closed in case of an unknown Id.

closeActiveWindow closes the currently active window/dialogue (see also

getActiveWindow) if such a window could be found.

*/

setActiveWindow :: !Id !(PSt .l) -> PSt .l

getActiveWindow :: !(IOSt .l) -> (!Maybe Id,!IOSt .l)

/* setActiveWindow makes the indicated window the active window.

If there are modal dialogues, then the window will be placed behind the last

modal dialog.

setActiveWindow has no effect in case the window is unknown or is a modal

dialog.

getActiveWindow returns the Id of the window that currently has the input focus

of the interactive process.

Nothing is returned if there is no such window.

*/

setActiveControl:: !Id !(PSt .l) -> PSt .l

getActiveControl:: !(IOSt .l) -> (!(!Bool,!Maybe Id),!IOSt .l)

/* setActiveControl makes the indicated (PopUp/Edit/Custom/Compound)Control the

active control. This succeeds only if its parent window is already active.

getActiveControl returns the Id of the (PopUp/Edit/Custom/Compound)Control that

currently has the input focus.

The Boolean result is True only iff such a control could be found.

Nothing is returned if the control has no Id attribute or if the Boolean

result is False.

*/

stackWindow :: !Id !Id !(PSt .l) -> PSt .l

/* stackWindow id1 id2 places the window with id1 behind the window with id2.

If id1 or id2 is unknown, or id1 indicates a modal window, stackWindow does

nothing.

If id2 indicates a modal window, then the window with id1 is placed behind the

last modal window.

*/

getWindowStack :: !(IOSt .l) -> (![(Id,WindowType)], !IOSt .l)

getWindowsStack :: !(IOSt .l) -> (![Id], !IOSt .l)

getDialogsStack :: !(IOSt .l) -> (![Id], !IOSt .l)

/* getWindowStack returns the Ids and WindowTypes of all currently open windows,

in the current stacking order starting with the active window.

get(Windows/Dialogs)Stack is equal to getWindowStack, restricted to Windows

instances and Dialogs instances respectively.

*/

getDefaultHMargin :: !Bool !(IOSt .l) -> ((Int,Int), !IOSt .l)

getDefaultVMargin :: !Bool !(IOSt .l) -> ((Int,Int), !IOSt .l)

getDefaultItemSpace :: !Bool !(IOSt .l) -> ((Int,Int), !IOSt .l)

getWindowHMargin :: !Id !(IOSt .l) -> (!Maybe (Int,Int),!IOSt .l)

getWindowVMargin :: !Id !(IOSt .l) -> (!Maybe (Int,Int),!IOSt .l)

getWindowItemSpace :: !Id !(IOSt .l) -> (!Maybe (Int,Int),!IOSt .l)

/* getDefault((H/V)Margin)/ItemSpace) isWindow return the default values for the

horizontal and vertical window (if isWindow)/dialogue (if (not isWindow))

margins and item spaces.

getWindow((H/V)Margin/ItemSpace) return the current horizontal and vertical

margins and item spaces of the indicated window. These will have the default

values in case they were not specified as an attribute.

In case the window does not exist, Nothing is yielded.

*/

enableWindow :: !Id !(IOSt .l) -> IOSt .l

disableWindow :: !Id !(IOSt .l) -> IOSt .l

A.47. STDWINDOW 273

enableWindowMouse :: !Id !(IOSt .l) -> IOSt .l

disableWindowMouse :: !Id !(IOSt .l) -> IOSt .l

enableWindowKeyboard :: !Id !(IOSt .l) -> IOSt .l

disableWindowKeyboard :: !Id !(IOSt .l) -> IOSt .l

/* (en/dis)ableWindow

(en/dis)ables the indicated window.

(en/dis)ableWindowMouse

(en/dis)ables mouse handling of the indicated window.

(en/dis)ableWindowKeyboard

(en/dis)ables keyboard handling of the indicated window.

Disabling a window overrules the SelectStates of its elements, which all become

Unable.

Reenabling the window reestablishes the SelectStates of its elements.

The functions have no effect in case of invalid Ids or Dialogs instances.

The latter four functions also have no effect in case the Window does not have

the indicated attribute.

*/

getWindowSelectState :: !Id !(IOSt .l) ->(!Maybe SelectState,!IOSt .l)

getWindowMouseSelectState :: !Id !(IOSt .l) ->(!Maybe SelectState,!IOSt .l)

getWindowKeyboardSelectState:: !Id !(IOSt .l) ->(!Maybe SelectState,!IOSt .l)

/* getWindowSelectState

yields the current SelectState of the indicated window.

getWindow(Mouse/Keyboard)SelectState

yields the current SelectState of the mouse/keyboard of the indicated

window.

The functions return Nothing in case of invalid Ids or Dialogs instances or if

the Window does not have the indicated attribute.

*/

getWindowMouseStateFilter :: !Id !(IOSt .l)

-> (!Maybe MouseStateFilter, ! IOSt .l)

getWindowKeyboardStateFilter:: !Id !(IOSt .l)

-> (!Maybe KeyboardStateFilter, ! IOSt .l)

setWindowMouseStateFilter :: !Id !MouseStateFilter !(IOSt .l)

-> IOSt .l

setWindowKeyboardStateFilter:: !Id !KeyboardStateFilter !(IOSt .l)

-> IOSt .l

/* getWindow(Mouse/Keyboard)StateFilter yields the current

(Mouse/Keyboard)StateFilter of the indicated window. Nothing is yielded in

case the window does not exist or has no Window(Mouse/Keyboard) attribute.

setWindow(Mouse/Keyboard)StateFilter replaces the current

(Mouse/Keyboard)StateFilter of the indicated window. If the indicated window

does not exist the function has no effect.

*/

appWindowPicture:: !Id !.(IdFun *Picture) !(IOSt .l) -> IOSt .l

accWindowPicture:: !Id !.(St *Picture .x) !(IOSt .l) -> (!Maybe .x,!IOSt .l)

/* (app/acc)WindowPicture applies the given drawing function to the Picture of

the indicated window (behind all controls).

Both functions have no effect in case the window is unknown or is a Dialog.

In that case, accWindowPicture also returns Nothing.

*/

updateWindow :: !Id !(Maybe ViewFrame) !(IOSt .l) -> IOSt .l

/* updateWindow applies the WindowLook attribute function of the indicated window.

The Look attribute function is applied to the following arguments:

The current SelectState of the window, and

the UpdateState argument

{oldFrame=viewframe,newFrame=viewframe,updArea=[frame]}

where viewframe is the current ViewFrame of the window;

and frame depends on the optional ViewFrame argument:

in case of (Just rectangle):

274 APPENDIX A. I/O LIBRARY

the intersection of viewframe and rectangle.

in case of Nothing:

viewframe.

updateWindow has no effect in case of unknown windows, or if the indicated

window is a Dialog, or the optional viewframe argument is an empty rectangle.

*/

setWindowLook :: !Id !Bool !(!Bool,!Look) !(IOSt .l) -> IOSt .l

getWindowLook :: !Id !(IOSt .l)

-> (!Maybe (Bool,Look),!IOSt .l)

/* setWindowLook sets the (render/look) of the indicated window.

The window is redrawn only if the Boolean argument is True.

setWindowLook has no effect in case the window does not exist, or is a

Dialog.

getWindowLook returns the (Just (render/look)) of the indicated window.

In case the window does not exist, or is a Dialog, or has no WindowLook

attribute, the result is Nothing.

*/

setWindowPos :: !Id !ItemPos !(IOSt .l) -> IOSt .l

getWindowPos :: !Id !(IOSt .l) -> (!Maybe Vector2,!IOSt .l)

/* setWindowPos places the window at the indicated position.

If the ItemPos argument refers to the Id of an unknown window (in case of

LeftOf/RightTo/Above/Below), setWindowPos has no effect.

If the ItemPos argument is one of (LeftOf/RightTo/Above/Below)Prev, then the

previous window is the window that is before the window in the current

stacking order.

If the window is frontmost, setWindowPos has no effect. setWindowPos also

has no effect if the window would be moved outside the screen, or if the Id

is unknown or refers to a modal Dialog.

getWindowPos returns the current item offset position of the indicated window.

The corresponding ItemPos is (LeftTop,OffsetVector offset). Nothing is

returned in case the window does not exist.

*/

moveWindowViewFrame :: !Id Vector2 !(IOSt .l) -> IOSt .l

/* moveWindowViewFrame moves the orientation of the view frame of the indicated

window over the given vector, and updates the window if necessary. The view

frame is not moved outside the ViewDomain of the window.

In case of unknown Id, or of Dialogs, moveWindowViewFrame has no effect.

*/

getWindowViewFrame :: !Id !(IOSt .l) -> (!ViewFrame,!IOSt .l)

/* getWindowViewFrame returns the current view frame of the window in terms of the

ViewDomain. Note that in case of a Dialog, getWindowViewFrame returns

{zero,size}.

In case of unknown windows, the ViewFrame result is zero.

*/

setWindowViewSize :: !Id !Size !(IOSt .l) -> IOSt .l

getWindowViewSize :: !Id !(IOSt .l) -> (!Size,!IOSt .l)

/* setWindowViewSize

sets the size of the view frame of the indicated window as given, and

updates the window if necessary. The size is fit between the minimum size

and the screen dimensions.

In case of unknown Ids, or of Dialogs, setWindowViewSize has no effect.

getWindowViewSize yields the current size of the view frame of the indicated

window. If the window does not exist, zero is returned.

*/

setWindowOuterSize :: !Id !Size !(IOSt .l) -> IOSt .l

getWindowOuterSize :: !Id !(IOSt .l) -> (!Size,!IOSt .l)

/* setWindowOuterSize

sets the size of the outer frame of the indicated window as given, and

updates the window if necessary. The size is fit between the minimum size

A.47. STDWINDOW 275

and the screen dimensions.

In case of unknown Ids, or of Dialogs, setWindowOuterSize has no effect.

getWindowOuterSize yields the current size of the outer frame of the indicated

window. If the window does not exist, zero is returned.

*/

setWindowViewDomain :: !Id ViewDomain !(IOSt .l) -> IOSt .l

getWindowViewDomain :: !Id !(IOSt .l)

-> (!Maybe ViewDomain,!IOSt .l)

/* setWindowViewDomain

sets the view domain of the indicated window as given. The window view frame

is moved such that a maximum portion of the view domain is visible. The

window is not resized.

In case of unknown Ids, or of Dialogs, setWindowViewDomain has no effect.

getWindowViewDomain

returns the current ViewDomain of the indicated window.

Nothing is returned in case the window does not exist or is a Dialog.

*/

setWindowScrollFunction :: !Id Direction ScrollFunction !(IOSt .l) -> IOSt .l

getWindowScrollFunction :: !Id Direction !(IOSt .l)

-> (!Maybe ScrollFunction,!IOSt .l)

/* setWindowScrollFunction

changes the current scroll function of the indicated Window and direction

only if the indicated window already had a scroll bar in that direction.

In all other cases setWindowScrollFunction has no effect.

getWindowScrollFunction

returns the current scroll function in the argument direction if the

indicated Window had one.

In all other cases Nothing is returned.

*/

setWindowTitle :: !Id Title !(IOSt .l) -> IOSt .l

setWindowOk :: !Id Id !(IOSt .l) -> IOSt .l

setWindowCancel :: !Id Id !(IOSt .l) -> IOSt .l

setWindowCursor :: !Id CursorShape !(IOSt .l) -> IOSt .l

getWindowTitle :: !Id !(IOSt .l) -> (!Maybe Title, !IOSt .l)

getWindowOk :: !Id !(IOSt .l) -> (!Maybe Id, !IOSt .l)

getWindowCancel :: !Id !(IOSt .l) -> (!Maybe Id, !IOSt .l)

getWindowCursor :: !Id !(IOSt .l) -> (!Maybe CursorShape,!IOSt .l)

/* setWindow(Title/Ok/Cancel/Cursor) set the indicated window attributes.

In case of unknown Ids, these functions have no effect.

getWindow(Title/Ok/Cancel/Cursor) get the indicated window attributes.

In case of unknown Ids, the result is Nothing.

*/

276 APPENDIX A. I/O LIBRARY

A.48 StdWindowAttribute

definition module StdWindowAttribute

// **

// Clean Standard Object I/O library, version 1.2

//

// StdWindowAttribute specifies which WindowAttributes are valid for Windows

// and Dialogs.

// Basic comparison operations and retrieval functions are also included.

// **

import StdWindowDef

/* The following functions specify the valid attributes for each standard window.

*/

isValidWindowAttribute :: !(WindowAttribute .st) -> Bool

/* Window (y = valid, . = invalid)

WindowActivate y | WindowInit y | WindowPen y |

WindowCancel . | WindowInitActive y | WindowPos y |

WindowClose y | WindowItemSpace y | WindowSelectState y |

WindowCursor y | WindowKeyboard y | WindowViewDomain y |

WindowDeactivate y | WindowLook y | WindowViewSize y |

WindowHMargin y | WindowMouse y | WindowVMargin y |

WindowHScroll y | WindowOk . | WindowVScroll y |

WindowId y | WindowOrigin y |

WindowIndex y | WindowOuterSize y |

*/

isValidDialogAttribute :: !(WindowAttribute .st) -> Bool

/* Dialog (y = valid, . = invalid)

WindowActivate y | WindowInit y | WindowPen . |

WindowCancel y | WindowInitActive y | WindowPos y |

WindowClose y | WindowItemSpace y | WindowSelectState . |

WindowCursor . | WindowKeyboard . | WindowViewDomain . |

WindowDeactivate y | WindowLook . | WindowViewSize y |

WindowHMargin y | WindowMouse . | WindowVMargin y |

WindowHScroll . | WindowOk y | WindowVScroll . |

WindowId y | WindowOrigin . |

WindowIndex y | WindowOuterSize y |

*/

/* The following functions return True only iff the attribute equals the

indicated name.

*/

isWindowActivate :: !(WindowAttribute .st) -> Bool

isWindowCancel :: !(WindowAttribute .st) -> Bool

isWindowClose :: !(WindowAttribute .st) -> Bool

isWindowCursor :: !(WindowAttribute .st) -> Bool

isWindowDeactivate :: !(WindowAttribute .st) -> Bool

isWindowHMargin :: !(WindowAttribute .st) -> Bool

isWindowHScroll :: !(WindowAttribute .st) -> Bool

isWindowId :: !(WindowAttribute .st) -> Bool

isWindowIndex :: !(WindowAttribute .st) -> Bool

isWindowInit :: !(WindowAttribute .st) -> Bool

isWindowInitActive :: !(WindowAttribute .st) -> Bool

isWindowItemSpace :: !(WindowAttribute .st) -> Bool

isWindowKeyboard :: !(WindowAttribute .st) -> Bool

isWindowLook :: !(WindowAttribute .st) -> Bool

isWindowMouse :: !(WindowAttribute .st) -> Bool

isWindowOk :: !(WindowAttribute .st) -> Bool

isWindowOrigin :: !(WindowAttribute .st) -> Bool

A.48. STDWINDOWATTRIBUTE 277

isWindowOuterSize :: !(WindowAttribute .st) -> Bool

isWindowPen :: !(WindowAttribute .st) -> Bool

isWindowPos :: !(WindowAttribute .st) -> Bool

isWindowSelectState :: !(WindowAttribute .st) -> Bool

isWindowViewDomain :: !(WindowAttribute .st) -> Bool

isWindowViewSize :: !(WindowAttribute .st) -> Bool

isWindowVMargin :: !(WindowAttribute .st) -> Bool

isWindowVScroll :: !(WindowAttribute .st) -> Bool

/* The following functions return the attribute value if appropriate.

THESE ARE PARTIAL FUNCTIONS! They are only defined on the corresponding

attribute.

*/

getWindowActivateFun :: !(WindowAttribute .st) -> IdFun .st

getWindowCancelAtt :: !(WindowAttribute .st) -> Id

getWindowCloseFun :: !(WindowAttribute .st) -> IdFun .st

getWindowCursorAtt :: !(WindowAttribute .st) -> CursorShape

getWindowDeactivateFun :: !(WindowAttribute .st) -> IdFun .st

getWindowHMarginAtt :: !(WindowAttribute .st) -> (Int,Int)

getWindowHScrollFun :: !(WindowAttribute .st) -> ScrollFunction

getWindowIdAtt :: !(WindowAttribute .st) -> Id

getWindowIndexAtt :: !(WindowAttribute .st) -> Int

getWindowInitFun :: !(WindowAttribute .st) -> IdFun .st

getWindowInitActiveAtt :: !(WindowAttribute .st) -> Id

getWindowItemSpaceAtt :: !(WindowAttribute .st) -> (Int,Int)

getWindowKeyboardAtt :: !(WindowAttribute .st) -> (KeyboardStateFilter

, SelectState

, KeyboardFunction .st

)

getWindowLookAtt :: !(WindowAttribute .st) -> (Bool,Look)

getWindowMouseAtt :: !(WindowAttribute .st) -> (MouseStateFilter

, SelectState

, MouseFunction .st

)

getWindowOkAtt :: !(WindowAttribute .st) -> Id

getWindowOriginAtt :: !(WindowAttribute .st) -> Point2

getWindowOuterSizeAtt :: !(WindowAttribute .st) -> Size

getWindowPenAtt :: !(WindowAttribute .st) -> [PenAttribute]

getWindowPosAtt :: !(WindowAttribute .st) -> ItemPos

getWindowSelectStateAtt :: !(WindowAttribute .st) -> SelectState

getWindowViewDomainAtt :: !(WindowAttribute .st) -> ViewDomain

getWindowViewSizeAtt :: !(WindowAttribute .st) -> Size

getWindowVMarginAtt :: !(WindowAttribute .st) -> (Int,Int)

getWindowVScrollFun :: !(WindowAttribute .st) -> ScrollFunction

278 APPENDIX A. I/O LIBRARY

A.49 StdWindowDef

definition module StdWindowDef

// **

// Clean Standard Object I/O library, version 1.2

//

// StdWindowDef contains the types to define the standard set of windows and

// dialogues.

// **

import StdIOCommon, StdPictureDef

:: Dialog c ls pst = Dialog Title (c ls pst) [WindowAttribute *(ls,pst)]

:: Window c ls pst = Window Title (c ls pst) [WindowAttribute *(ls,pst)]

:: WindowAttribute st // Default:

// Attributes for Windows and Dialogs:

= WindowActivate (IdFun st) // id

| WindowClose (IdFun st) // user can't close window

| WindowDeactivate (IdFun st) // id

| WindowHMargin Int Int // system dependent

| WindowId Id // system defined id

| WindowIndex Int // open front-most

| WindowInit (IdFun st) // no actions after opening window

| WindowInitActive Id // system dependent

| WindowItemSpace Int Int // system dependent

| WindowOuterSize Size // screen size

| WindowPos ItemPos // system dependent

| WindowViewSize Size // screen size

| WindowVMargin Int Int // system dependent

// Attributes for Dialog only:

| WindowCancel Id // no cancel (Custom)ButtonControl

| WindowOk Id // no default (Custom)ButtonControl

// Attributes for Windows only:

| WindowCursor CursorShape // no change of cursor

| WindowHScroll ScrollFunction // no horizontal scrolling

| WindowKeyboard KeyboardStateFilter SelectState (KeyboardFunction st)

// no keyboard input

| WindowLook Bool Look // show system dependent background

| WindowMouse MouseStateFilter SelectState (MouseFunction st)

// no mouse input

| WindowOrigin Point2 // left top of picture domain

| WindowPen [PenAttribute] // default pen attributes

| WindowSelectState SelectState // Able

| WindowViewDomain ViewDomain // {zero,max range}

| WindowVScroll ScrollFunction // no vertical scrolling

:: WindowType

:== String

Index

:+:, 87, 107, 118
:+:, 12, 206, 214
:^:, 181, 214
:~:, 214

Able, see SelectState
abortConnection, 192
Above, see ItemPos
AbovePrev, see ItemPos
abstract device, 13
accClipPicture, 47, 234
accControlPicture, 196
accept, see TCP
accListPIO, 250
accListPLoc, 250
accMaybe, 223
accPicture, 234
accPIO, 250
accPLoc, 250
accSChannel, 210
accScreenPicture, 250
accWindowPicture, 57, 271
accXorPicture, 45, 234
AddLS, 88, 108, 118, 206, 214
Alternative, 164, 165, 242

Cancelled, 164, 165
StartedPrinting, 164, 165

AltOnly, 216
appClipPicture, 47, 234
appControlPicture, 196
applicationpath, 258
appListPIO, 250
appListPLoc, 250
appPicture, 234
appPIO, 250
appPLoc, 250
appWindowPicture, 57, 271
appXorPicture, 45, 234
ArrowCursor, see CursorShape
ascent, see font
asyncSend, 127, 252
attribute, 12
available, 192

baseline, see font

beep, 151, 250
BeginKey, see SpecialKey
Below, see ItemPos
BelowPrev, see ItemPos
Bitmap, 44, 191
bitmap, 44, 58
Black, see Colour
BlackRGB, 240
Blue, see Colour
BoldStyle, 35, 240
Box, 42, 240
bufferSize, 192
BusyCursor, see CursorShape
ButtonControl, see control
ButtonDoubleDown, see ButtonState
ButtonDown, see ButtonState
ButtonState, 216

ButtonDoubleDown, 216
ButtonDown, 216
ButtonStillDown, 216
ButtonStillUp, 216
ButtonTripleDown, 216
ButtonUp, 216

ButtonStillDown, see ButtonState
ButtonStillUp, see ButtonState
ButtonTripleDown, see ButtonState
ButtonUp, see ButtonState
ByteSeq, see TCP
ByteSeq, 263
byteSeqSize, 263

callback function, 12
Cancelled, see Alternative
Center, see ItemPos
channels, see TCP

api, 23
available state, 176, 181
disconnected state, 177, 182
EOM state, 176, 181
full state, 177
idle state, 176
sendable state, 177, 182

CharKey, see KeyboardState
CharStreams, 165, 166, 245

eos, 165, 166, 245

279

280 INDEX

getChar, 165, 166, 245
restorePos, 165, 166, 245
savePos, 165, 166, 245

charStreamToFile, 167, 245
chat, see TCP
CheckControl, see control
CheckControlItem, 207
circle, see oval
class

accScreenPicture, see accScreen-
Picture

CharStreams, see CharStreams
Clipboard, see Clipboard
Controls, see Controls
controlSize, see controlSize
Dialogs, see Dialogs
Drawables, see Drawables
FileSelectEnv, see FileSelectEnv
Fillables, see Fillables
Hilites, see Hilites
Ids, see Ids
MenuElements, see MenuElements
Menus, see Menus
movePenPos, see movePenPos
Processes, see Processes
Receivers, see Receivers
shareProcesses, see shareProcesses
TimeEnv, see TimeEnv
TimerElements, see TimerElements
Timers, see Timers
toRegion, see Region
Windows, see Windows

ClearKey, see SpecialKey
clearMaxSize, 192
client, see TCP
Clipboard, 153, 195

fromClipboard, 153, 195
toClipboard, 153, 195

clipboard, 110, 153
clipboardHasChanged, 154, 195
ClipboardItem, 153, 195
clipping, 46

|region, 47
close command, 111
closeActiveWindow, 54, 69, 112, 271
closeAllControls, 196
closeChannel, 192
closeChannel MT, 192
closeControls, 196
closeMenu, 224
closeMenuElements, 224
closeMenuIndexElements, 224
closePopUpControlItems, 196
closeProcess, 17, 139, 147, 247

closeRadioMenuIndexElements, 224
closeRChannel, 192
closeReceiver, 252
closeSendNotifier, 210
closeSubMenuIndexElements, 224
closeTimer, 266
closeWindow, 54, 271
Colour, 31, 240

Black, 31, 240
Blue, 31, 240
Cyan, 31, 240
DarkGrey, 31, 240
Green, 31, 240
Grey, 31, 240
LightGrey, 31, 240
Magenta, 31, 240
Red, 31, 240
RGB, 240
RGBColour, 31
White, 31, 240
Yellow, 31, 240

Columns, see RowsOrColumns
command, see menu
CommandOnly, 216
CompoundControl, see control
connection

establishement, 173
tearing down, 179

connectTCP, see TCP
connectTCP async, 210
connectTCP MT, 260
context switch, 127
control, 49, 73

| attribute, 74
|attribute, 207
ControlActivate, 74, 207
ControlDeactivate, 74, 207
ControlFunction, 74, 133, 207
ControlHide, 75, 207
ControlHMargin, 85, 86, 207
ControlHScroll, 86, 207
ControlId, 75, 207
ControlItemSpace, 85, 86, 207
ControlKeyboard, 75, 86, 207
ControlLook, 207
ControlMinimumSize, 75, 85,
86, 207

ControlModsFunction, 74, 207
ControlMouse, 75, 86, 207
ControlOrigin, 86, 207
ControlOuterSize, 85, 86, 207
ControlPen, 75, 207
ControlPos, 75, 90, 207

INDEX 281

ControlResize, 75, 85, 86, 94,
207

ControlSelectState, 75, 207
ControlTip, 75, 207
ControlViewDomain, 207
ControlViewSize, 85, 86, 207
ControlVMargin, 85, 86, 207
ControlVScroll, 86, 207
ControlWidth, 75, 207

button|, 68, 69, 76, 133, 154,
155, 206, 207

check|, 77, 206, 207
compound|, 13, 85, 95, 96, 122,

206, 207
compound frame, 86

custom|, 78, 95, 96, 206, 207
custom button|, 77
custom button|, 206, 207
customised|, 73
edit|, 79, 154, 155, 206, 207
hierarchical|, 74
|layout, see layout
layout|, 69, 84, 132, 206, 207
platform standard|, 73
pop up|, 80
popup|, 206, 207
previous|, 94
radio|, 81, 206, 207
receiver, 126
resize, 94
slider
region, 83

slider|, 82, 206, 207
text|, 68, 84, 121, 206, 207

ControlActivateFun, 202
ControlDeactivateFun, 202
ControlFun, 202
ControlFunction, see control
ControlHide, see control
ControlHMargin, see control
ControlHMarginAtt, 202
ControlHScroll, see control
ControlHScrollFun, 202
ControlId, see control
ControlIdAtt, 202
ControlItemSpace, see control
ControlItemSpaceAtt, 202
ControlKeyboard, see control
ControlKeyboardAtt, 202
ControlLook, see control
ControlLookAtt, 202
ControlMinimumSize, see control
ControlMinimumSizeAtt, 202
ControlModsFun, 202

ControlModsFunction, see control
ControlMouse, see control
ControlMouseAtt, 202
ControlOnly, 216
ControlOrigin, see control
ControlOriginAtt, 202
ControlOuterSizeAtt, 202
ControlPenAtt, 202
ControlPos, see control
ControlPosAtt, 202
ControlResize, see control
ControlResizeFun, 202
ControlResizeFunction, 207
Controls, 12, 119, 206

controlToHandles, 206
getControlType, 206

ControlSelectState, see control
ControlSelectStateAtt, 202
ControlSize, see control
controlSize, 130, 196
ControlTipAtt, 202
controlToHandles, see Controls
ControlType, 207
ControlViewDomain, see control
ControlViewDomainAtt, 202
ControlViewSizeAtt, 202
ControlVMargin, see control
ControlVMarginAtt, 202
ControlVScroll, see control
ControlVScrollFun, 202
ControlWidth, 207

ContentWidth, 207
PixelWidth, 207
TextWidth, 207

ControlWidthAtt, 202
copy command, 110
CrossCursor, see CursorShape
CursorShape, 216

ArrowCursor, 216
BusyCursor, 216
CrossCursor, 216
FatCrossCursor, 216
HiddenCursor, 216
IBeamCursor, 216
StandardCursor, 216

Curve, 39, 240
CustomButtonControl, see control
CustomControl, see control
cut command, 110
Cyan, see Colour

DarkGrey, see Colour
Date, 265
defaultPrintSetup, see printing

282 INDEX

defaultPrintSetup, 242
DeleteKey, see SpecialKey
descent, see font
Dialog, 49, 278
Dialogs, 14, 54, 66, 69, 271

getDialogType, 271
openDialog, 54, 67, 271
openModalDialog, 66, 271

dialogue, 13, 49, 121, 132, 154
active|, 51, 61
|frame, 50, 60
modal|, 49, 61, 62, 66
modeless|, 51

Direction, 82, 216
Horizontal, 82, 216
Vertical, 82, 216

dirseparator, 258
disableControl, 196
disableControls, 196
disableMenuElements, 109, 230
disableMenus, 109, 224
disableMenuSystem, 109, 224
disableReceivers, 252
disableTimer, 148, 266
disableWindow, 271
disableWindowKeyboard, 271
disableWindowMouse, 271
Disconnected, 192
disconnected, 192
DNS, see TCP
document interface, 139

multiple|, 108, 111, 140
no|, 139
single|, 140

DocumentInterface, 216
MDI, 216
NDI, 216
SDI, 216

DownKey, see SpecialKey
dpi, 160
draw, see Drawables
Drawables, 31, 36, 191, 234

draw, 31, 234
drawAt, 31, 162, 163, 234
undraw, 31, 234
undrawAt, 31, 234

drawAt, see Drawables
drawing, 22, 29

api, 22
bitmap, 44
Drawables(Bitmap), 45

box
Drawables(Box), 42
Fillables(Box), 42

circle, see oval, 278
clipping, see clipping
coordinate system, 29
curve
Drawables(Curve), 39
Fillables(Curve), 40

|environment, 29
hiliting, see Hilites
line, 36
drawLine, 36
drawLineTo, 36
Drawables(Vector2), 36

oval
Drawables(Oval), 38
Fillables(Oval), 38

Picture, 29
pixel, 30
point, 36
drawPointAt, 36

polygon
Drawables(Polygon), 43
Fillables(Polygon), 43

rectangle
Drawables(Rectangle), 41
Fillables(Rectangle), 41

text
Drawables(Char), 37
Drawables(String), 37

xor mode, 45, 46, 161
drawLine, 234
drawLineTo, 234
drawPoint, 234
drawPointAt, 234
DuplexChannel, 192, 263

EditControl, see control
enableControl, 196
enableControls, 196
enabled, 216
enableMenuElements, 109, 230
enableMenus, 109, 224
enableMenuSystem, 109, 224
enableReceivers, 252
enableTimer, 148, 266
enableWindow, 271
enableWindowKeyboard, 271
enableWindowMouse, 271
EndKey, see SpecialKey
EnterKey, see SpecialKey
EOM, 192
eom, 192
eos, see CharStreams
ErrorIdsInUse, see ErrorReport
ErrorReport, 26, 216

INDEX 283

ErrorIdsInUse, 26, 216
ErrorNotifierOpen, 216
ErrorUnknownObject, 216
ErrorViolateDI, 216
NoError, 26, 216
OtherError, 216

ErrorUnknownObject, see ErrorReport
ErrorViolateDI, see ErrorReport
EscapeKey, see SpecialKey
event

abstract|, 125
keyboard|, 62
message|, see message
mouse|, 65
timer|, 117

exit command, 111

F10Key, see SpecialKey
F11Key, see SpecialKey
F12Key, see SpecialKey
F13Key, see SpecialKey
F14Key, see SpecialKey
F15Key, see SpecialKey
F1Key, see SpecialKey
F2Key, see SpecialKey
F3Key, see SpecialKey
F4Key, see SpecialKey
F5Key, see SpecialKey
F6Key, see SpecialKey
F7Key, see SpecialKey
F8Key, see SpecialKey
F9Key, see SpecialKey
FatCrossCursor, see CursorShape
FileCharStream, 167, 245
Files, 159
FileSelectEnv, 58, 111, 211

selectDirectory, 58, 211
selectInputFile, 58, 211
selectOutputFile, 58, 66, 211

fileToCharStream, 167, 245
fill, see Fillables
Fillables, 31, 234

fill, 31, 234
fillAt, 31, 234
unfill, 31, 234
unfillAt, 31, 234

fillAt, see Fillables
Fix, see ItemPos
flushBuffer MT, 192
flushBuffer NB, 192
Font, 32
font, 32, 162

|metrics, 33
ascent, 33

baseline, 33
descent, 33
FontMetrics, 33
leading, 33
max. width, 33

non-proportional|, 33
proportional|, 33
TrueType|, 162

FontDef, 32, 166, 240
fontLineHeight, 163, 240
FontMetrics, 240
FontName, 240
FontSize, 240
FontStyle, 240
footer, see printing
freadPrintSetup, 242
fromClipboard, see Clipboard
fromJust, 223
fwritePrintSetup, 242

getActiveControl, 271
getActiveWindow, 61, 271
getBitmapSize, 44, 59, 191
getBlinkInterval, see TimeEnv
getChar, see CharStreams
getCheckControlItem, 196
getCheckControlItems, 196
getCheckControlSelection, 196
getCheckControlSelections, 196
getClipboard, 153, 195
getCompoundMenuElementTypes, 230
getCompoundTypes, 196
getControlItemSpace, 196
getControlItemSpaces, 196
getControlLayout, 196
getControlLayouts, 196
getControlLook, 196
getControlLooks, 196
getControlMargin, 196
getControlMargins, 196
getControlMinimumSize, 196
getControlMinimumSizes, 196
getControlNrLine, 196
getControlNrLines, 196
getControlOuterSize, 196
getControlOuterSizes, 196
getControlResize, 196
getControlResizes, 196
getControlScrollFunction, 196
getControlScrollFunctions, 196
getControlSelectState, 196
getControlSelectStates, 196
getControlShowState, 196
getControlShowStates, 196

284 INDEX

getControlText, 129, 196
getControlTexts, 196
getControlType, see Controls
getControlTypes, 196
getControlViewDomain, 196
getControlViewDomains, 196
getControlViewFrame, 196
getControlViewFrames, 196
getControlViewSize, 196
getControlViewSizes, 196
getCurrentDate, see TimeEnv
getCurrentTime, see TimeEnv
getDefaultHMargin, 271
getDefaultItemSpace, 271
getDefaultVMargin, 271
getDialogsStack, 271
getDialogType, see Dialogs
getDocumentInterface, 250
getFontCharWidth, 34, 234
getFontCharWidths, 34, 234
getFontDef, 234
getFontMetrics, 33, 234
getFontNames, 32, 234
getFontSizes, 32, 234
getFontStringWidth, 34, 234
getFontStringWidths, 34, 234
getFontStyles, 32, 234
getKeyboardStateKey, 216
getKeyboardStateKeyState, 216
getMaxSize, 192
getMenu, 230
getMenuElementMarkState, 230
getMenuElementMarkStates, 230
getMenuElementSelectState, 230
getMenuElementSelectStates, 230
getMenuElementShortKey, 230
getMenuElementShortKeys, 230
getMenuElementTitle, 230
getMenuElementTitles, 230
getMenuElementType, see MenuEle-

ments
getMenuElementTypes, 230
getMenuFun, 227
getMenuIdAtt, 227
getMenuIndexAtt, 227
getMenuInitFun, 227
getMenuMarkStateAtt, 227
getMenuModsFun, 227
getMenuPos, 224
getMenus, 224
getMenuSelectState, 224
getMenuSelectStateAtt, 227
getMenuShortKeyAtt, 227
getMenuTitle, 224

getMenuType, see Menus
getMouseStateButtonState, 216
getMouseStateModifiers, 216
getMouseStatePos, 216
getNrOfChannels, 260
getPageDimensions, see printing
getPageDimensions, 242
getParentId, 212
getParentMenu, 230
getParentWindow, 129, 196
getPenAttributes, 234
getPenBack, 234
getPenColour, 234
getPenFont, 234
getPenFontCharWidth, 34, 234
getPenFontCharWidths, 34, 234
getPenFontMetrics, 33, 163, 234
getPenFontStringWidth, 34, 63, 163,

234
getPenFontStringWidths, 34, 234
getPenPos, 234
getPenSize, 234
getPopUpControlItem, 196
getPopUpControlItems, 196
getPopUpControlSelection, 196
getPopUpControlSelections, 196
getProcessActivateFun, 248
getProcessCloseFun, 248
getProcessDeactivateFun, 248
getProcessOpenFilesFun, 248
getProcessToolbarAtt, 248
getProcessWindowPos, 247
getProcessWindowPosAtt, 248
getProcessWindowResizeFun, 248
getProcessWindowSize, 247
getProcessWindowSizeAtt, 248
getRadioControlItem, 196
getRadioControlItems, 196
getRadioControlSelection, 196
getRadioControlSelections, 196
getReceiverConnectedReceivers, 254
getReceiverInitFun, 254
getReceivers, 252
getReceiverSelectState, 252
getReceiverSelectStateAtt, 254
getReceiverType, see Receivers
getRegionBound, 234
getResolution, 234
getSelectedRadioMenuItem, 230
getSelectedRadioMenuItems, 230
getSliderDirection, 196
getSliderDirections, 196
getSliderState, 196
getSliderStates, 196

INDEX 285

getTimerElementType, see TimerEle-
ments

getTimerFun, 267
getTimerIdAtt, 267
getTimerInitFun, 267
getTimerInterval, 266
getTimers, 266
getTimerSelectState, 266
getTimerSelectStateAtt, 267
getTimerType, see Timers
getWindow, 196
getWindowActivateFun, 276
getWindowCancel, 271
getWindowCancelAtt, 276
getWindowCloseFun, 276
getWindowCursor, 271
getWindowCursorAtt, 276
getWindowDeactivateFun, 276
getWindowHMargin, 271
getWindowHMarginAtt, 276
getWindowHScrollFun, 276
getWindowIdAtt, 276
getWindowIndexAtt, 276
getWindowInitActiveAtt, 276
getWindowInitFun, 276
getWindowItemSpace, 271
getWindowItemSpaceAtt, 276
getWindowKeyboardAtt, 276
getWindowKeyboardSelectState, 271
getWindowKeyboardStateFilter, 271
getWindowLook, 57, 271
getWindowLookAtt, 276
getWindowMouseAtt, 276
getWindowMouseSelectState, 271
getWindowMouseStateFilter, 271
getWindowOk, 271
getWindowOkAtt, 276
getWindowOriginAtt, 276
getWindowOuterSize, 271
getWindowOuterSizeAtt, 276
getWindowPenAtt, 276
getWindowPos, 271
getWindowPosAtt, 276
getWindowScrollFunction, 271
getWindowSelectState, 271
getWindowSelectStateAtt, 276
getWindowsStack, 112, 271
getWindowStack, 61, 271
getWindowTitle, 271
getWindowType, see Windows
getWindowViewDomain, 271
getWindowViewDomainAtt, 276
getWindowViewFrame, 271
getWindowViewSize, 271

getWindowViewSizeAtt, 276
getWindowVMargin, 271
getWindowVMarginAtt, 276
getWindowVScrollFun, 276
Green, see Colour
Grey, see Colour

header, see printing
HelpKey, see SpecialKey
HiddenCursor, see CursorShape
hideControl, 196
hideControls, 196
hideProcess, 247
hilite, see Hilites
hiliteAt, see Hilites
Hilites

Hilites, 161
Hilites, 32, 46, 234

Box, 46
hilite, 32, 234
hiliteAt, 32, 234
Rectangle, 46

hinch, 258
hmm, 258
homepath, 258
Horizontal, see Direction

I/O state, 15
IBeamCursor, see CursorShape
Id, see identi�cation
identi�cation, 25

|assignment rule, 25
|attribute, 25
Id, 25, 212
R2Id, 25, 126, 135, 212
RId, 25, 125, 143, 212

IdFun, 214
Ids, 25, 212

openId, 25, 212
openIds, 25, 212
openR2Id, 25, 212
openR2Ids, 25, 212
openRId, 25, 212
openRIds, 25, 212

Index, 80, 81, 105, 214
InetConnectFunction, 263
InetLookupFunction, 263
initialisation, 17
input

|focus, 51, 62, 79, 141
keyboard|, 49, 62, 79, 95
mouse|, 49, 62, 79, 99

interactive
|object, 11

286 INDEX

process, see process
internet, 172
intPlusTick, 265
IOSt, 15, 250

empty|, 17
IP address, see TCP
IsCharKey, see Key
isControlActivate, 202
isControlDeactivate, 202
isControlFunction, 202
isControlHide, 202
isControlHMargin, 202
isControlHScroll, 202
isControlId, 202
isControlItemSpace, 202
isControlKeyboard, 202
isControlLook, 202
isControlMinimumSize, 202
isControlModsFunction, 202
isControlMouse, 202
isControlOrigin, 202
isControlOuterSize, 202
isControlPen, 202
isControlPos, 202
isControlResize, 202
isControlSelectState, 202
isControlTip, 202
isControlViewDomain, 202
isControlViewSize, 202
isControlVMargin, 202
isControlVScroll, 202
isControlWidth, 202
isEmptyRegion, 234
isJust, 223
isMenuFunction, 227
isMenuId, 227
isMenuIndex, 227
isMenuInit, 227
isMenuMarkState, 227
isMenuModsFunction, 227
isMenuSelectState, 227
isMenuShortKey, 227
isNothing, 223
isProcessActivate, 248
isProcessClose, 248
isProcessDeactivate, 248
isProcessKindAttribute, 248
isProcessNoWindowMenu, 248
isProcessOpenFiles, 248
isProcessToolbar, 248
isProcessWindowPos, 248
isProcessWindowResize, 248
isProcessWindowSize, 248
isReceiverConnectedReceivers, 254

isReceiverInit, 254
isReceiverSelectState, 254
IsRepeatKey, 216
IsSpecialKey, see Key
isTimerFunction, 267
isTimerId, 267
isTimerInit, 267
isTimerSelectState, 267
isValidButtonControlAttribute, 202
isValidCheckControlAttribute, 202
isValidCompoundControlAttribute,

202
isValidCustomButtonControlAttribute,

202
isValidCustomControlAttribute, 202
isValidDialogAttribute, 276
isValidEditControlAttribute, 202
isValidLayoutControlAttribute, 202
isValidMenuAttribute, 227
isValidMenuItemAttribute, 227
isValidMenuSeparatorAttribute, 227
isValidPopUpControlAttribute, 202
isValidRadioControlAttribute, 202
isValidRadioMenuAttribute, 227
isValidReceiver2Attribute, 254
isValidReceiverAttribute, 254
isValidSliderControlAttribute, 202
isValidSubMenuAttribute, 227
isValidTextControlAttribute, 202
isValidTimerAttribute, 267
isValidWindowAttribute, 276
isWindowActivate, 276
isWindowCancel, 276
isWindowClose, 276
isWindowCursor, 276
isWindowDeactivate, 276
isWindowHMargin, 276
isWindowHScroll, 276
isWindowId, 276
isWindowIndex, 276
isWindowInit, 276
isWindowInitActive, 276
isWindowItemSpace, 276
isWindowKeyboard, 276
isWindowLook, 276
isWindowMouse, 276
isWindowOk, 276
isWindowOrigin, 276
isWindowOuterSize, 276
isWindowPen, 276
isWindowPos, 276
isWindowSelectState, 276
isWindowViewDomain, 276
isWindowViewSize, 276

INDEX 287

isWindowVMargin, 276
isWindowVScroll, 276
ItalicsStyle, 35, 240
item space, 68
ItemLoc, 90, 216
ItemOffset, 90, 216

NoOffset, 216
OffsetFun, 216
OffsetVector, 216

ItemPos, 90, 216
Above, 91, 216
AbovePrev, 91, 94, 216
Below, 91, 216
BelowPrev, 91, 94, 216
Center, 90, 93, 216
Fix, 90, 92, 216
Left, 90, 93, 216
LeftBottom, 90, 93, 216
LeftOf, 91, 216
LeftOfPrev, 91, 94, 216
LeftTop, 90, 93, 216
Right, 90, 93, 216
RightBottom, 90, 93, 216
RightTo, 91, 216
RightTop, 90, 93, 216
RightToPrev, 91, 94, 216

JobInfo, see printing
JobInfo, 242
Just, see Maybe

kerning, 34
Key, 216

IsCharKey, 216
IsSpecialKey, 216

KeyboardFunction, 62, 96, 216
KeyboardState, 62, 216

CharKey, 62, 216
KeyLost, 216
SpecialKey, 62, 216

KeyboardStateFilter, 62, 216
KeyDown, see KeyState
KeyState, 62, 216

KeyDown, 216
KeyUp, 216

KeyUp, see KeyState

layout
boundary aligned, 90, 92
control|, 89
default|, 91
�xed position, 90, 92
line aligned, 90, 93
o�set, 93

relative|, 91, 94
|root, 91
|scope, 84
|tree, 91
window|
cascade, 109
tile, 109

leading, see font
Left, see ItemPos
LeftBottom, see ItemPos
LeftJustify, see WrapMode
LeftKey, see SpecialKey
LeftOf, see ItemPos
LeftOfPrev, see ItemPos
LeftTop, see ItemPos
life-cycle, 14

Picture, 29
LightGrey, see Colour
Line2, 240
ListCS, 214
listening, see TCP
ListLS, 68, 69, 87, 107, 118, 122, 206,

214
Look, 55, 78, 79, 96, 164, 216
lookupIPAddress, see TCP
lookupIPAddress, 260
lookupIPAddress async, 210

Magenta, see Colour
mapMaybe, 223
margin, 68
Mark, see MarkState
markCheckControlItems, 196
marked, 216
markMenuItems, 230
MarkState, 216

Mark, 216
NoMark, 216

maxFixedWindowSize, 258
MaxRGB, 240
maxScrollWindowSize, 258
MaxSize, 192
Maybe, 223

Just, 223
Nothing, 223

MDI, see DocumentInterface
MDIProcess, 142
Menu, see menu
menu, 13, 101, 103, 143, 151

api, 20
|attribute, 102, 229
MenuFunction, 102, 229
MenuId, 102, 229
MenuIndex, 102, 229

288 INDEX

MenuInit, 102, 229
MenuMarkState, 102, 229
MenuModsFunction, 102, 229
MenuSelectState, 102, 229
MenuShortKey, 103, 229

|item, 104, 229
Menu, 229
PopUpMenu, 229
radio|, 105, 229
receiver, 126
|separator, 104, 229
sub|, 13, 106, 229
subsetting, 109, 111
Windows|, 108, 142

MenuAttribute, see menu
MenuElements, 102, 232

getMenuElementType, 232
menuElementToHandles, 232

menuElementToHandles, see MenuEle-
ments

MenuElementType, 229
MenuFunction, see menu
MenuId, see menu
MenuIndex, see menu
MenuItem, see menu
MenuMarkState, see menu
MenuModsFunction, see menu
MenuRadioItem, 229
Menus, 101, 224

getMenuType, 224
openMenu, 101, 224

MenuSelectState, see menu
MenuSeparator, see menu
MenuShortKey, see menu
MenuType, 229
message, 125

|passing, 133
asynchronous, 127
synchronous, 127, 128

MinRGB, 240
mmperinch, 258
Modifiers, 62, 216
ModifiersFunction, 216
MouseDown, see MouseState
MouseDrag, see MouseState
MouseFunction, 64, 216
MouseMove, see MouseState
MouseState, 64, 216

MouseDown, 216
MouseDrag, 216
MouseLost, 216
MouseMove, 216
MouseUp, 216

MouseStateFilter, 62, 216

MouseUp, see MouseState
moveControlViewFrame, 196
movePenPos, 234
movePoint, 214
moveWindowViewFrame, 271
MState, 230

NDI, see DocumentInterface
new command, 110
newlineChars, 258
NewLS, 88, 108, 118, 206, 214
NilCS, 214
NilLS, 87, 107, 118, 119, 206, 214
NoError, see ErrorReport
noLS, 18, 214
noLS1, 214
NoMark, see MarkState
NoModifiers, 216
NonProportionalFontDef, 34, 240
Nothing, see Maybe
Notice, 68
notice, 67, 112, 113
NoticeButton, 68
NoWrap, see WrapMode
nreceive, 192
nreceive MT, 192
NrLines, 207
NrOfIntervals, 268
NrOfIterations, 263
nsend, 192
nsend MT, 192

OffsetFun, 216
OkBool, 216
open command, 111
openBitmap, 44, 59, 191
openCompoundControls, 196
openControls, 196
openDefaultFont, 33, 234
openDialog, see Dialogs
openDialogFont, 33, 234
openFont, 32, 234
openId, see Ids
openIds, see Ids
openMenu, see Menus
openMenuElements, 224
openModalDialog, see Dialogs
openNotice, 68
openPopUpControlItems, 196
openProcesses, see Processes
openR2Id, see Ids
openR2Ids, see Ids
openRadioMenuItems, 224
openReceiver, see Receivers

INDEX 289

openRId, see Ids
openRIds, see Ids
openSendNotifier, 210
openSubMenuElements, 224
openTCP Listener, 260
openTimer, see Timers
openWindow, see Windows
OptionOnly, 216
Oval, 37, 240

PageDimensions, see printing
PageDimensions, 242
ParentIndex, 216
paste command, 110
Pen

|Attribute, 240
PenBack, 240
PenColour, 240
PenFont, 240
PenPos, 240
PenSize, 240

PgDownKey, see SpecialKey
PgUpKey, see SpecialKey
PI, 39, 240
Picture, 29, 49, 78, 79

|Attribute, 30
PicturePenBack, 31
PicturePenColour, 31
PicturePenFont, 31
PicturePenPos, 30
PicturePenSize, 30

PicturePenColour, see Picture
PicturePenFont, see Picture
PicturePenPos, see Picture
PicturePenSize, see Picture
pixel, 30, 162
playSoundFile, 256
point, 162
Point2, 214
Polygon, 42, 240
PolygonAt, 234
pop up menu, 103
PopUpControl, see control
PopUpControlItem, 207
PopUpMenuElements, 102, 232

getPopUpMenuElementType, 232
popUpMenuElementToHandles, 232

Port, 263
port number, see TCP
PrimitiveRChannel, 263
print, 242, see printing
PrintEnvironments, 164, 165
PrintInfo, 242, see PrintInfo
printing, 157

cancel dialogue, 159, 165
|anything, 157
defaultPrintSetup, 157
|dialogue, 161
|environment, 159
getPageDimensions, 160
|header, 167{169
JobInfo, 157, 158
margins, 160
origin, 160, 165
PageDimensions, 160
|parameters, 157
print, 158, 161
print job dialogue, 157
print setup dialogue, 157
PrintInfo, 158, 159
printPagePerPage, 164
PrintSetup, 157, 158
printText1, 165, 245
printText2, 167, 245
printText3, 168, 245
printUpdateFunction, 164
range, 159
scaling, see scaling
|text, 157, 165, 167
|trailer, 168, 169

printPagePerPage, 242, see printing
PrintSetup, see printing
PrintSetup, 242
printSetupDialog, 242
printSetupTypical, 258
printText1, see printing
printText2, see printing
printText3, see printing
printUpdateFunction, 242, see print-

ing
Process, 249
process, 15, 139

active|, 141
api, 22
|attribute, 140, 216
ProcessActivate, 141, 216
ProcessClose, 141, 216
ProcessDeactivate, 141, 216
ProcessNoWindowMenu, 142, 216
ProcessOpenFiles, 216
ProcessOpenFiles, 141
ProcessToolbar, 141
ProcessToolbar, 216
ProcessWindowPos, 141, 216
ProcessWindowResize, 141, 216
ProcessWindowSize, 141, 216

|group, 148
|initialisation, 140

290 INDEX

|window, 141
ProcessActivate, see process
ProcessClose, see process
ProcessDeactivate, see process
Processes, 142, 247

openProcesses, 142, 247
startProcesses, 142, 247

ProcessInit, 17, 140, 249
ProcessNoWindowMenu, see process
ProcessOpenFilesFunction, 216
ProcessWindowPos, see process
ProcessWindowResize, see process
ProcessWindowResizeFunction, 216
ProcessWindowSize, see process
PSt, 15, 143, 250

quit command, 111

R2Id, see identi�cation
R2IdtoId, 212
RadioControl, see control
RadioControlItem, 207
RadioMenu, see menu
Receive, 192
receive, 192
receive MT, 192
Received, 192
ReceiveMsg, 192
Receiver, 125, 255
receiver, 13, 125, 132, 143, 147

api, 21
|attribute, 126, 255
ReceiverConnectedReceivers,
255

ReceiverInit, 126, 255
ReceiverSelectState, 126, 255

bi-directional, 125, 128, 135
|identi�cation, 25, 125
uni-directional, 125, 127

Receiver2, 126, 135, 255
Receiver2Function, 255
ReceiverFunction, 255
Receivers, 126, 252

getReceiverType, 252
openReceiver, 126, 252

ReceiverSelectState, see receiver
ReceiverType, 255
receiveUpTo, 192
receiving, see TCP
Rectangle, 40, 214
rectangleSize, 63, 214
RectangleToUpdateState, 216
Red, see Colour
redo command, 110

Region, 47, 234
toRegion, 47
[], 47
PolygonAt, 47
Rectangle, 47
:^:, 47

reopenReceiver, see Receivers
resizeBitmap, 44, 191
resolution, 32

printer|, 160, 163
screen|, 159, 162, 163
|emulation, 159, 162

restorePos, see CharStreams
RGB, see Colour
RGBColour, 240
RId, see identi�cation
RIdtoId, 212
Right, see ItemPos
RightBottom, see ItemPos
RightJustify, see WrapMode
RightKey, see SpecialKey
RightTo, see ItemPos
RightTop, see ItemPos
RightToPrev, see ItemPos
Rows, see RowsOrColumns
RowsOrColumns, 77, 81, 207

Columns, 77, 81, 207
Rows, 77, 81, 207

SansSerifFontDef, 34, 240
save as command, 111
save command, 111
savePos, see CharStreams
scaling

explicit|, 162, 163
implicit|, 162, 164

screen emulation, see printing
ScrollFunction, 216
SDI, see DocumentInterface
SDIProcess, 143
selectChannel, see TCP
selectChannel MT, 260
selectInputFile, see FileSelectEnv
selectOutputFile, see FileSelectEnv
selectPopUpControlItem, 196
selectRadioControlItem, 196
selectRadioMenuIndexItem, 230
selectRadioMenuItem, 230
SelectReceive, 260

accRChannels, 260
getRState, 260

SelectResult, 263
SelectSend, 260

accSChannels, 260

INDEX 291

appDisconnected, 260
SelectState, 216

Able, 216
Unable, 216

Send, 192
send, 192
send MT, 192
send NB, 192
Sendable, 192
SendDeadlock, see SendReport
SendEvent, 192
sending, see TCP
SendNotifier, 263
SendOk, see SendReport
SendReport, 127, 252

SendDeadlock, 127
SendOk, 127
OtherSendReport, 252
SendDeadlock, 252
SendOk, 252
SendUnableReceiver, 252
SendUnknownReceiver, 252
SendUnableReceiver, 127
SendUnknownReceiver, 127

SendUnableReceiver, see SendReport
SendUnknownReceiver, see SendReport
SerifFontDef, 34, 240
server, see TCP
setActiveControl, 271
setActiveWindow, 62, 271
setClipboard, 153, 195
setControlLook, 196
setControlLooks, 96, 196
setControlPos, 196
setControlScrollFunction, 196
setControlText, 130, 196
setControlTexts, 196
setControlViewDomain, 196
setDefaultPenBack, 234
setDefaultPenColour, 234
setDefaultPenFont, 234
setDefaultPenSize, 234
setEditControlCursor, 130, 196
setMaxSize, 192
setMenuElementTitles, 230
setMenuTitle, 224
setPenAttributes, 234
setPenBack, 234
setPenColour, 234
setPenFont, 234
setPenPos, 234
setPenSize, 234
setProcessActivate, 250
setProcessDeactivate, 250

setSliderState, 196
setSliderStates, 196
setSliderThumb, 196
setSliderThumbs, 196
setTimerInterval, 266
setWindowCancel, 271
setWindowCursor, 271
setWindowKeyboardStateFilter, 271
setWindowLook, 57, 63, 271
setWindowMouseStateFilter, 271
setWindowOk, 271
setWindowOuterSize, 271
setWindowPos, 271
setWindowScrollFunction, 271
setWindowTitle, 271
setWindowViewDomain, 271
setWindowViewSize, 271
ShiftOnly, 216
showControl, 196
showControls, 196
showProcess, 247
Size, 214
SliderAction, 216
SliderControl, see control
SliderDecLarge, see SliderMove
SliderDecSmall, see SliderMove
SliderIncLarge, see SliderMove
SliderIncSmall, see SliderMove
SliderMove, 83, 216

SliderDecLarge, 83, 216
SliderDecSmall, 83, 216
SliderIncLarge, 83, 216
SliderIncSmall, 83, 216
SliderThumb, 83, 216

SliderState, 82, 216
SliderThumb, see SliderMove
SmallFontDef, 34, 240
SpecialKey, 222, see KeyboardState

BackSpaceKey, 222
BeginKey, 222
ClearKey, 222
DeleteKey, 222
DownKey, 222
EndKey, 222
EnterKey, 222
EscapeKey, 222
F10Key, 222
F11Key, 222
F12Key, 222
F13Key, 222
F14Key, 222
F15Key, 222
F1Key, 222
F2Key, 222

292 INDEX

F3Key, 222
F4Key, 222
F5Key, 222
F6Key, 222
F7Key, 222
F8Key, 222
F9Key, 222
HelpKey, 222
LeftKey, 222
PgDownKey, 222
PgUpKey, 222
RightKey, 222
UpKey, 222

SR Available, 263
SR Disconnected, 263
SR EOM, 263
SR Sendable, 263
stackWindow, 271
StandardCursor, see CursorShape
Start, 16
StartedPrinting, see Alternative
startIO, 16, 139, 142, 247
startProcesses, see Processes
state

I/O|, 15
local|, 12, 111, 122
process|, 12
|transition, 12, 164

stdScrollFunction, 216
stdUnfillNewFrameLook, 216
stdUnfillUpdAreaLook, 216
StringChannelReceiver, 257
StringRChannel, 257
StringRChannel , 257
StringRChannels, 257
StringSChannel, 257
StringSChannel , 257
StringSChannels, 257
SubMenu, see menu
SymbolFontDef, 34, 240
syncSend, 127, 147, 151, 252
syncSend2, 128, 135, 252

TCP, 171
accept, 175
available, 175
bufferSize, 178
ByteSeq, 174
chat server, 182
client, 172, 173, 179
connection, see connection
connectTCP MT, 173
disconnected, 178
DNS, 172, 173

dotted decimal form, 172
dotted decimal notation, 173
duplex channel, 173
eom, 175
events, 186
flushBuffer MT, 178
IP address, 172, 173
listening, 172, 174
lookupIPAddress, 173
nsend MT, 178
port number, 172{174
receive MT, 175
receiving, 174{176, 186
selectChannelMT, 185
selectChannel MT, 180
send noti�er, 188
send MT, 178
sending, 177, 178, 186
server, 172, 174, 180
StdChannels, 173, 175
StdTCPChannels, 173
StdTCPDef, 173
StringRChannel, 185
StringSChannel, 185
TCP Listener, 174
TCP RChannel, 173
TCP RCharStream, 184
TCP SChannel, 173
TCP SCharStream, 184
timeout, 173, 175, 178, 181

TCP CharReceiver, 263
TCP DuplexChannel, 263
TCP LISTENER, 263
TCP Listener, 263
TCP Listener , 263
TCP ListenerReceiver, 263
TCP Listeners, 263
TCP RCHANNEL, 263
TCP RChannel, 263
TCP RChannel , 263
TCP RChannels, 263
TCP RCharStream, 260
TCP RCharStreams, 260
TCP Receiver, 263
TCP SChannel, 263
TCP SChannel , 263
TCP SChannels, 263
TCP SCharStream, 260
TCP SCharStreams, 260
tcpPossible, 260
text

drawing, see drawing
|metrics, 33

TextControl, see control

INDEX 293

Tick, 265
tickDifference, 265
ticksPerSecond, 117, 119, 258
Time, 265
TimeEnv, 265

getBlinkInterval, 265
getCurrentDate, 265
getCurrentTick, 265
getCurrentTime, 265

Timeout, 192
timeout, see TCP
TimeoutReport, 192
Timer, see timer
timer, 13, 117, 147

api, 21
|attribute, 117, 268
TimerFunction, 117, 268
TimerId, 117, 268
TimerInit, 117, 268
TimerSelectState, 118, 268

receiver, 126
Timer, 118, 268

TimerAttribute, see timer
TimerElements, 118, 269

getTimerElementType, 269
timerElementToHandles, 269

timerElementToHandles, see TimerEle-
ments

TimerElementType, 268
TimerFunction, 268, see timer
TimerId, see timer
TimerInterval, 117, 268
Timers, 118, 266

getTimerType, 266
openTimer, 118, 266

TimerSelectState, see timer
TimerType, 268
Title, 214
toByteSeq, 263
toClipboard, see Clipboard
ToolbarItem, 216

ToolbarItem, 216
ToolbarSeparator, 216

toRCharStream, 260
toRegion, 234
toRGBColour, 234
toSCharStream, 260
toStringRChannel, 257
toStringSChannel, 257
toVector, 214
TR Expired, 192
TR NoSuccess, 192
TR Success, 192
trailer, see printing

u isJust, 223
u isNothing, 223
Unable, see SelectState
undef, 133
UnderlinedStyle, 35, 240
undo command, 110
undraw, see Drawables
undrawAt, see Drawables
unfill, see Fillables
unfillAt, see Fillables
unmarkCheckControlItems, 196
unmarkMenuItems, 230
UpdateArea, 216
updateControl, 196
UpdateState, 56, 78, 79, 216
updateWindow, 271
UpKey, see SpecialKey

Vector2, 214
Vertical, see Direction
ViewDomain, 216
viewDomainRange, 216
ViewFrame, 216
viewFrameRange, 216
vinch, 258
vmm, 258
Void, 214

wait, 265
White, see Colour
WhiteRGB, 240
Window, 49, 95, 278
window, 13, 49, 129

active|, 51, 61, 112
api, 20
|attribute, 51, 278
WindowActivate, 51, 61, 278
WindowCancel, 54, 278
WindowClose, 52, 278
WindowCursor, 53, 278
WindowDeactivate, 51, 61, 278
WindowHMargin, 52, 278
WindowHScroll, 53, 278
WindowId, 52, 278
WindowIndex, 52, 278
WindowInit, 52, 278
WindowInitActive, 52, 278
WindowItemSpace, 52, 278
WindowKeyboard, 53, 62, 278
WindowLook, 53, 55, 164, 278
WindowMouse, 53, 62, 278
WindowOk, 54, 69, 278
WindowOrigin, 53, 278
WindowOuterSize, 52, 278

294 INDEX

WindowPen, 53, 278
WindowPos, 52, 278
WindowSelectState, 53, 278
WindowViewDomain, 53, 55, 119,
278

WindowViewSize, 52, 278
WindowVMargin, 52, 278
WindowVScroll, 53, 278

control layer, 50, 60
document layer, 50, 55
|frame, 50, 60, 86
rendering
direct|, 55
indirect|, 55, 164

stacking order, 51
WindowActivate, see window
WindowAttribute, see window
WindowCancel, see window
WindowClose, see window
WindowCursor, see window
WindowDeactivate, see window
WindowHide, see window
WindowHMargin, see window
WindowHScroll, see window
WindowId, see window
WindowIndex, see window
WindowInit, see window
WindowItemSpace, see window
WindowKeyboard, see window
WindowLook, see window
WindowMinimumSize, see window
WindowMouse, see window
WindowOk, see window
WindowOrigin, see window
WindowPos, see window
WindowResize, see window
Windows, 54, 271

getWindowType, 271
openWindow, 54, 271

WindowSelectState, see window
WindowSize, see window
WindowType, 278
WindowViewDomain, see window
WindowVMargin, see window
WindowVScroll, see window
WrapMode, 165, 166, 245

LeftJustify, 165, 166, 245
NoWrap, 165, 166, 245
RightJustify, 165, 166, 245

WState, 196

Yellow, see Colour

