Type checks for dynamics (Design)

Disk representation:

The representation of a dynamic on disk consists of:

:: DynamicOnDisk = {

size_of_encoded_graph
:: !Int

,
encoded_graph

:: !String

,
size_of_encoded_type
:: !Int

,
encoded_type

:: !String

}

Memory representation:

When a dynamic is read from disk using the readDynamic-function, a PackedDynamic-record is used to hold the data:

:: PackedDynamic = {

dynamic_value
:: {#Char}

,
dynamic_type
::!{#Char}

}

The string representing the type information of the dynamic is read strict because it will be needed for sure so it make no sense to postpone reading. Only after a successful unification, the dynamic value will be read.

The function packed_dynamic_to_dynamic converts a packed dynamic to the built-in basic-type dynamic. The strings have the following structure:

:: EncodedGraph =

{
header

:: !Header

,
encoded_graph

:: !String

,
string_table

:: !String

,
descriptor_prefix_table
:: !DescriptorPrefixTable

}

:: Header =

{
encoded_graph_p

:: !Int

,
encoded_graph_s

:: !Int

,
string_table_p

:: !Int

,
string_table_s

:: !Int

,
descriptor_prefix_table_s
:: !Int

,
descriptor_prefix_table_p
:: !Int

}

:: DescriptorPrefixTable :== !{#DescriptorPrefixTableElement}

:: DescriptorPrefixTableElement =

{
prefix_list

:: 31..24

// MSB in Int

string_table_offset
:: 0..23

// rest of Int

}

From a packed dynamic to a built-in dynamic:

1) Obtain the descriptor addresses
The dynamic linker is sent both the string table and the descriptor prefix table. It expands the descriptor prefix table by expanding each entry. An entry contains the descriptor name and what prefixes are required for that particular name. An entry is expanded by storing the address of each combination of prefix and descriptor name. The expanded table is then sent back to the application.

2) Convert the string to its internal graph representation
Using the expanded table containing the addresses of the required descriptor, the internal representation of the graph is constructed. Exact details are not relevant for this design.

Representation of the built-in dynamic type:

A dynamic is internally represented as follows:

(a,TypeInformation)

:: TypeInformation = {

external_type

:: T_ypeObjectType

,
internal_types

:: [T_ypeObjectType]

,
type_definitions

:: TypeDefinitions

// filled just after readDynamic

,
type_context_pointer
:: NoContextYet | TypeContext TypeContext

}

The values for the fields external_type, internal_types and type_definitions have been stored on disk during creation of the dynamic. In contrast to the type_context_pointer which is initialized by the readDynamic-function at NoContextYet.

:: TypeContext

= ?

(A type context are type_definitions ordered by modules of the subsystem)

:: T_ypeObjectType
= T_ypeConsSymbol {#Char} [T_ypeObjectType]

| P_laceholder (T_ypeObjectType -> T_ypeObjectType)

 (T_ypeObjectType -> T_ypeObjectType) T_ypeObjectType

:: TypeInfo = {

// {data,lazy} dynamics

external_type
:: T_ypeObjectType

type_definitions
:: TypeDefinitions

// lazy dynamics (if external_type then empty list)

,
internal_type
:: [T_ype_ObjectType]

}

:: T_ypeObjectType
= T_ypeConsSymbol {#Char} [T_ypeObjectType]

| P_laceholder (T_ypeObjectType -> T_ypeObjectType)

 (T_ypeObjectType -> T_ypeObjectType) T_ypeObjectType

:: TypeDefinitions

= …

The first component is the value graph. The type of the value graph is specified by the second component which is a graph of type TypeInfo.

Data dynamics:
First the implementation of a data dynamic is discussed. A data dynamic is represented by an empty internal_type-field because the external type is equal to the internal type.

