Table of Contents

I.Introduction
2

II.Installation
3

III.Running a Clean web application.
4

1.Using the iTasks / iData application with the built in http server.
4

IV.Important Tips.
6

1.Submitting form information
6

2.Creating a new application
6

3.Recursive tasks
6

V.Using advanced features
7

1.Alternative storage options
7

4.Using the iTask / iData application with an http 1.1 server.
9

5.Server side evaluation of sub-pages using Ajax technology.
10

6.Client side evaluation of sub-pages using the SAPL interpreter
11

VI.Future work, known bugs and version information.
13

1.Work to do:
13

2.Known Bugs:
13

3.Changes made:
13

VII.Overview of iTasks and iData libraries
14

I. Introduction

(c) iTasks / iData concept & implementation by Rinus Plasmeijer, 2005 - 2008

Download the special AFP2008 distribution from:

http://clean.cs.ru.nl/dowload/clean22/windows/Clean2.2-iTasks-AFP2008.zip

The iTasks library is a Clean library which enables you to define multi-user workflow systems for the web on a very high level of abstraction. It is very easy to use (we hope you agree), but there are many options, different ways to connect with a server, and so on, so unfortunately you do need to read this read me first.

For a better understanding how the system actually works study the iTask papers (TODO: reference), in particular the chapters in which the examples are given. Also have a good look at the other examples enclosed in the distribution.

The iTask library is based on the iData library with which web form editors can be generated automatically for values of any type. It uses generic functions which one can define in Clean. There are several papers explaining the iData concept. If you want to make your own editors you should have a look at the iData papers (there are several) and the iData library and examples. Web applications can be made with both libraries, but most applications are in general easier to make with iTasks. Use iData when you are an advanced user for creating your own special editors and use iTasks for combining them.

A predecessor of the iData library, called the GEC library (Generic Editor Components) was made together with Peter Achten for common Clean desktop applications. This library is included in the standard distribution of Clean.

If you spot errors or have special wishes, please contact: rinus@cs.ru.nl

We wish you a lot of fun when developing iTasks applications.

The iTasks team

II. Installation

The iTasks & iData libraries are currently only available for the Windows platform, it should work on any Windows version.

Because iTasks requires the latest cutting edge version of the Clean compiler and IDE we have created an all-in-one Clean+ iTasks distribution. This is an upgraded version of the Clean 2.2 distribution with additional tools, libraries and examples.

1. Unpack and install the Clean system

Download this distribution from...

http://clean.cs.ru.nl/dowload/clean22/windows/Clean2.2-iTasks-AFP2008.zip

..and unpack the archive. The archive will create the folder “Clean 2.2 with iTasks” and may be placed anywhere on your system (e.g. on your desktop). Inside this folder is the Clean IDE (CleanIDE.exe). Start the IDE once. It will ask you if you want to register it in Windows. Answering yes will associate .icl and .dcl files with the Clean IDE.

2. Configure iData

In order to let iData's HTTP server serve shared resources (images, css, etc), you need to configure where these are on your system. Start the IDE and open the file “Libraries/iData/iDataSettings-dist.dcl”. In this file, search for the line which says:

 ResourceDir :== “C:\\PATH\\TO\\MY CLEAN IDE\\Libraries\iData\Resources”.

Change this line to the path where you unpacked the Clean distribution. Now save the file as “Libraries/iData/iDataSettings.dcl” (So without the “-dist” suffix).

3. Test your installation

You should now be able to build your first iTasks application. You can test this by building one of the examples in the “Examples/iTasks Examples/” folder. For example the coffemachine example. Start the IDE and open the file “Examples/iTasks Examples/coffeemachine/coffeemachine.prj”. Build the project by choosing “Project → Update and Run” from the menu. Everything should compile and after that a console window should open with the coffeemachine application running. You can now open a web browser and open the url “http://localhost/coffeemachine”.

The installation is now completed successfully.

III. Running a Clean web application.

To run a Clean web application you need a web server on your machine. There is an easy way to do it, and a hard way. For testing and developing applications, use the easy setting!

By default, iTasks / iData applications build as embedded HTTP servers which are directly accessible. This is the easy setting. iTasks / iData applications can also be built as CGI programs or sub servers to be used together with a main server. Use of these more advanced ways to deploy an iTask / iData application is explained in section V.

1. Using the iTasks / iData application with the built in http server.

This mode is great for testing and playing. It assumes that you do not have any other web server running on your machine using port 80.

1. Open one of the examples in the iTasks Examples folder, just by clicking on the .prj file, take e.g. iTask Examples/coffeemachine/coffeemachine.prj. The Clean IDE will be launched. Make sure that the “iTasks” environment is selected in the IDE as described above.

2. Choose Project/Update and Run (Ctrl+r)from the Clean IDE menu bar .

All modules will be compiled if they have not been compiler before, and the generated Clean executable will be started showing a windows command line window telling you to start your browser. You can stop the application by closing the command line window.

3. Start your favorite browser (e.g. Explorer, Firefox) and browse to:

http://localhost/foo

Where foo is the name of the application. You will see the effect of the chosen example.

Some important things to know:

· Windows might warn for all kinds of security issues when you browse to this page, but you don't have to worry. It is quite safe.

· Ensure that the browser always shows you the latest page. Many browsers have a cache to store recently visited pages, and they might show you an old page instead of a freshly generated one. If you have trouble, try switching this option off in your browser.

· In certain cases, Internet Explorer has trouble connecting to the server. This is a known bug, which can be worked around by slowing the HTTP server down a bit, by enabling the trace option of the server. You can switch this trace option on by opening the file iDataSettings.dcl and set:

TraceHttp :== True

· You can only run one application at the same time with this server. You will get an error message that the port is occupied when you try to start another Clean web application. You have to close a previous running application before you start a new one. You can stop an application by closing the command window.

· The same application can serve several pages though, but you all have to link them in one application.

· It is possible for others to access the pages if they have access with a browser to your machine. So, you can use this easy approach to offer a real server, yet with as limitation that it can only serve one single Clean application.

IV. Important Tips.

1. Submitting form information

1. All forms are type checked. So if you type in wrongly, any changed input is changed back to its previous value. The yellow “hint” which appears on the input box tells you what kind of type is demanded.

2. iData and iTasks forms can have option ”Submit” which is probably the most common way forms are used on the web: with an explicit “submit” button. However, by default iData and iTasks have the option “Edit”. Each change made in a form is directly submitted to the server application.

2. Creating a new application

3. When you want to make your own application, start by copying one of the running examples.

4. Close the previous running application before you generate a new one. You can stop an application by closing the command window.

5. iTasks applications do consume some memory. If you got an “heap full” or “stack full” message, increase their space: choose IDE “Project/Project Options …”. A heap size of 4M instead of the default 4K should be enough for most iTasks applications.

6. If you want an iData or iTask for a user defined type, say type T, a lot of generic functions have to be derived. You have to ask the compiler to do that, as follows:

derive gForm
T

derive gUpd
T

derive gPrint
T

derive gParse
T

derive gerda
T //Only with Database option enabled

derive read
T //Only with DataFile option enabled

derive write
T //Only with DataFile option enabled

3. Recursive tasks

7. A recursive task must perform some interaction with the user; otherwise it will loop infinitely as well because there is nothing to wait for. If your recursive tasks only consist of database access, recursion will lead to an infinite loop or the database will be read only once (depending on the way the database is read). For checking the contents of a database repeatedly one can use the <! combinator.

V. Using advanced features

For experimenting and playing with the iTasks system, it is best to use the standalone HTTP server and only simple text based database files. However, iTasks can do more than that!

This section explains how you can enable some of the more advanced features of the iTasks system.

1. Alternative storage options

The web is stateless, so the Clean application has to store state information somewhere. iData and iTasks have several storage options, choose the right ones.

:: Lifespan

//
storage options

=
Database
//
persistent info stored in an ODCB Database

|
TxtFile
//
persistent info stored as text in a file

|
TxtFileRO
//
persistent info stored in a file, Read-Only

|
DataFile
//
persistent info stored as data in a file

|
Session
//
info stored at client during whole session

|
Page

//
page info stored at client

|
Temp

//
info used in application, but not stored at all

An option can be assigned to a task by typing:

mytask <<@ option

Information can be stored non-persistent at the Client side in the web page (option “Page”, or “Session” which is the default), or persistent at the server side in a relational ODBC database (option “Database”) or in files (option TxtFile or DataFile).

If you make a non-persistent single user application, “Page” or “Session” is fine.

If you are developing a multi-user application, make the tasks persistent such that the states are stored consistently, so choose “Database”, “DataFile”, or “TxtFile”.

Important: Persistent applications are very persistent which can be annoying if you are developing and testing your application. If you want to start and test from scratch, throw away the “foo-iStore” directory generated by the application and the foo-ODBC and foo-CLDB database. Strange errors may occur if you don’t do this, because the persistent administration may not match the current version of the application anymore.

:: StorageFormat

// Serialization method:

=
StaticDynamic

// + higher order types,

|
PlainString

// - first order types only

You can store information either in string format (option PlainString) or as StaticDynamic. If you are using the “StaticDynamic” as serialization method, you can even store functions (closures). It has disadvantage that each time you change the application, functions stored of previous versions cannot be used anymore. If you do so, that application probably will crash. The problem can be solved by using ordinary Dynamics, but this not included in the current version of the system.

Not only iTask states can be stored, but any data you like. Support for reading and writing of data can be found in iTaskDB.dcl. The options determine where the information is stored.

Storing information as text in files (Option TxtFile).

If you are developing a multi-user application, choose “TxtFile”. It is relatively fast and handy for debugging, since the contents of a TxtFile can be inspected with any text editor.

All iTasks TxtFiles are stored in a directory “foo-iStore”, where foo is the name of the application.

There are files for version management stored in this directory as well, and the iTask application stores many i-Task files in it as well to find its way to the current state of execution. These files are automatically generated and deleted by a garbage collector. Removing these “i-Task” files will remove work done in the past.

Storing information in a relational database (Option Database).

The relational Database used by the i-Task is by default named “foo-ODBC”, where foo is the name of the application, and it is stored in the same directory of the application.

Any Clean type can be stored in the relation database. Since these databases are designed for storing tables, but not for data structures like trees and lists, it is not very efficient.

The default settings of the system assume that you have installed an ODBC interface on your machine. This is the case for instance when you have installed Microsoft Access or any other database system. If you don't have this installed, you will get a run-time error in the command line window complaining about missing ODBC stuff. Without such standard database installed, the iData system cannot be used with the database option on. Either install the ODBC interface or switch the database option off:

If you don’t plan to use the database option, you can leave it off. If you do want to use the database option, you can switch it on by following the steps below.

In the file iDataSettings.dcl you find the following definitions:

class iSpecialStore a

| TC

//, gerda {|*|}

//, read {|*|}, write {|*|}

a

Changes these lines as follows such that the generic gerda database access functions are required when working with iTasks or iData:

class iSpecialStore a

| TC

, gerda {|*|}

//, read {|*|}, write {|*|}

a

The lines in blue are comments. Furthermore, change the following macro definition:

//IF_Database db no_db :== db

IF_Database db no_db :== no_db

into

IF_Database db no_db :== db

//IF_Database db no_db :== no_db

Now the database option is switched on, and you can recompile by pressing Run (ctrl+r). Make sure that you first close the command window. It should all work now.

Storing information as data in files (Option DataFile).

An alternative for the relational database is the DataFile option, by default named “foo-CLDB”, where foo is the name of the application, and it is stored in the same directory of the application. It has as advantage that it is much faster than a standard relational database.

If you want to use the DataFile option, you need to explicitly switch it on. You can switch on the DataFile option by opening the iDataSettingd.dcl file and change:

//IF_DataFile df no_df
:== df
// If DataFile option is used

IF_DataFile df no_df
:== no_df
// otherwise above

Into:

IF_DataFile df no_df
:== df
// If DataFile option is used

//IF_DataFile df no_df
:== no_df
// otherwise

You also manually have to add the "read {|*|}, write {|*|}" requirements in the iSpecialStore class definition:

Again, in iDataSettings.dcl, remove the comments from the iSpecialStore definition to make it look like this:

class iSpecialStore a

| TC

//, gerda {|*|}

, read {|*|}, write {|*|}

a

2. Using the iTask / iData application with an http 1.1 server.

You can either:

a. Use your favorite server (Apache, IIS, or whatever) and run the Clean application as a CGI application. Follow the directions applicable to the server you are using. In particular ensure that all files needed for a particular application can be found by the server. To compile an iTasks application for CGI use, open iDataSettings.dcl and use the option:

ServerKind
:== CGI

This will build your application as an executable which performs all input and output via the console and the special CGI environment variables.

b. Use the Clean http 1.1 server which is included in the distribution. Like any other server several Clean applications can be added as sub servers. This method has as advantage that you don't need to install “big” commercial servers.

Installing the Clean http 1.1 server:

1. Start a window command line interpreter (Start/Run… and type cmd in de window).

2. Open the Http/SubServer/bin directory in the library folder.

3. Install the mainserver_eventlog.exe by dragging it in the command window and give it the proper arguments

> mainserver 80 install

This will install the server. Commonly the port number 80 is chosen. You can choose any port number, but also see below for installing sub-servers.

4. Uninstall the mainserver by dragging it in the command window and give it the proper arguments

> mainserver uninstall

This will uninstall the server.

Adding sub-servers to an http 1.1 server:

1. Compile the Clean iTask/iData application and ensure that in iDataSettings.dcl the following options are chosen:

ServerKind
:== External

2. When executed, the Clean application will give a message that it successfully administrated to the server. You can now choose the application by serving to host/foo, where foo is the name of the application. If not an error message is given.

3. When the application terminates, or the server crashes, it will automatically restart the application.

Removing subservers:

Subservers are administrated by the server. To remove a subserver foo from this administration execute from the Cleanserver directory in a windows command window:

> removesubserver.exe foo.exe

Subservers are administrated in the registry. To see which servers are administrated execute:

> Subservers_in_registry.exe

To remove a sub-server foo from the registry execute:

> remove_subservers_in_registry.exe foo.exe

3. Server side evaluation of sub-pages using Ajax technology.

A disadvantage of the standard behavior of an iData application is that the whole web page is updated whenever a form is submitted. Furthermore the application will reconstruct its previous state by inspecting the state of iTasks performed in the past. For large workflow systems this may become very inefficient.

Both problems can be solved by assigning a sub-page to a task. Whenever a form belonging to such a task is changed, reconstruction will start beginning with this task and only the corresponding part of the web page will be updated. So, you end up with a smoother update of the page. The efficiency of the program will increase. On the other hand, it is not a good idea to assign a sub-page to every task: when there are too many the efficiency will decrease. So, one has to find a good balance.

To use Ajax sub-page handling you first need to enable the Ajax option in your iDataSettings.dcl You can do this by changing the lines:

//IF_Ajax aj no_aj :== aj // If you want to enable sub-page...

IF_Ajax aj no_aj
 :== no_aj // Otherwise

into:

IF_Ajax aj no_aj :== aj // If you want to enable sub-page...

//IF_Ajax aj no_aj :== no_aj // Otherwise

Ajax communication is now enabled. All tasks explicitly assigned to a user will be handled with Ajax calls. If you want other tasks to be handled with Ajax calls as well, you can simply indicate this by adding the UseAjax @>> annotation to a task. For example:

myAjaxTask :: Task Int

myAjaxTask = UseAjax @>> editTask “Ok” createDefault

4. Client side evaluation of sub-pages using the SAPL interpreter

Tasks which don't require information that is stored on the server or interaction with other users do not have to be executed on the server. Such tasks can also be executed completely in the user's browser without any communication with the server. This will decrease the load on the server and make the overall workflow more efficient.

The iTasks system supports full client side execution of tasks in a workflow by compiling iTasks applications to the SAPL programming language which is a simple functional language that can be interpreted by an interpreter that runs in a Java applet in the user's browser. With this setup the same Clean program can be executed on both the client and the server. This allows us to write a single iTasks application in which some events are handled on the client by the SAPL applet, while others are handled by the web server.

Creating client-server iTasks applications is little more complex than iTasks applications that run solely on the server. This is because we do not only need to build the server executable, but also the SAPL translation of our Clean program which will be executed on the client.

The first thing you need to do is install a Java JDK. You can download the latest version from:

 http://java.sun.com

Follow the instructions on the Java website to complete the installation. It is important that you install a Java JDK and not just the runtime environment (JRE) because the JRE does not include the jar.exe tool which is used during the SAPL translation of the iTasks applications.

To let the iTasks system know which JDK you have installed and want to use, you should edit the file “Tools/Clean System/sapl/java.txt” to contain the path to your JDK.

Because SAPL programs can require a quite a bit of memory, you need to enlarge the amount of memory that Java applets are allowed to use. You can do this by starting the program “javacpl.exe” in the “jre/bin” folder in your SDK installation. Click on the “Java” tab and then on the “View...” button in the “Java applet runtime settings” box. Doubleclick in the most right column in the row which contains your JRE version which is labeled “Java Runtime Parameters”. In this field, type in the value “-Xmx256m” and click on the “OK” button.

You now need to activate the creation of SAPL versions of your iTasks application in your project. You do this by setting the saplbuilder.exe application as postlink executable in the project's settings. Select “Project” -> “Project Options..” from the main menu in the CleanIDE, choose “Linker” in the top menu and click the “Set postlink” button. Now choose the file “Tools/Clean System/sapl/saplbuilder.exe” and click “Open”.

The last thing you need to enable iTasks on the client, is edit the iDataSettings.dcl file. You need to enable Ajax (See above) and enable the Client/Server infrastructure.

Replace the lines:

//IF_ClientServer cs no_cs :== cs // If you want to...

IF_ClientServer cs no_cs :== no_cs // Otherwise

with

IF_ClientServer cs no_cs :== cs // If you want to...

//IF_ClientServer cs no_cs :== no_cs // Otherwise

You can now run tasks on the client by adding the OnClient @>> annotation in the same way as the UseAjax @>> annotation.

VI. Future work, known bugs and version information.

1. Work to do:

1. Stabilize the iTasks and iData libraries and port them to Linux and MacOS X

2. Known Bugs:

1. The http 1.1 standalone server contains bugs.

a. The database option does not work, probably a protection problem?

b. It cannot deal with the situation that more subservers are demanded then maximal offered.

2. Some advanced experimental tasks combinators may cause strange behavior when garbage collection is switched on. We still have to adjust the garbage collector to solve this problem.

3. Changes made:

version 0.95

1. Added the “OnClient” task option for Client side SAPL execution in Jan Martin Jansen's SAPL interpreter.

2. Major refactoring of the Http (formerly CleanServer) library and iData's client/server communication layer.

3. Added first version of process handling for parallel execution of multiple instances of workflows.

version 0.94

1. A first version of the task option “UseAjax” has been added allowing updating part of a page using Ajax technology.

version 0.93

1. The DataFile option has been added, using the generic Drup library made by Arjen van Weelden. It enables fast storage, retrieval, and destructive update of a value of any Clean type in a file.

2. Added an <| variant, <!, which can deal with empty recursive tasks such as database access.

3. Fixed a bug in repeatTask; fixed a nasty bug in specialized iData used in combination with persistent storage.

Version 0.92

1. Some known bugs in the Clean 1.1 Server have been fixed.

2. The Clean applications running under http 1.1 are serialized to avoid concurrency problems with database access.

3. The generated html code follows the xhtml standard a bit more.

version 0.91

1. The Clean 1.1 Server has been incorporated in the system. It allows you to create a server for all Clean web applications without the hassle of installing a commercial server. There are some minor window problems to fix.

2. A first distribution is made with web pages linking to the distribution and demos.

version 0.90

1. Garbage collection added to prevent generation of too many files and to prevent task numbers getting too high.

2. All examples restructured, put into their own directories, adjusted, and tested.

3. The system is adjusted to support logins. Logins are special because users do not yet have an id at login time. The iTask system assumes that all users have a different unique id. A utility library is added for dealing with login tasks. Two examples are added to show its use.

4. Many small changes made, including the renaming of library modules.

5. A number of annoying bugs have been removed.

VII. Overview of iTasks and iData libraries

iTask
Enables the creation of multi-user workflow systems for the web.

iData
Automatic web form generation and handling, and automatic html code generation.

Gerda
Automatic storage and retrieval of values of any Clean type in a relational database (ODCB).

Drup
Automatic storage and retrieval of values of any Clean type in a file (CLDB). It allows DestRuctive UPdates in a database and is much faster than a relational database, in particular when the latest compiler is used (not yet distributed).

Http
Offers an http 1.0 server to be linked with the application for easy testing. Also includes a CGI wrapper and standalone http 1.1 server which you can easily install

graph_copy
To handle storage and retrieval of dynamics within one application without the need of Cleans dynamic linker.

The zip file also contains a folder Examples containing the folders iTasks Examples and iData Examples.

iTasks Examples
A collection of iTask examples together with a folder iTask Utility containing support for login handling and database creation.

iData Examples
A collection of iData examples

