Version 2

This text contains the second worked-out version of discussions with John and Rinus about type checks for dynamics. This version overrides certain ideas of the first version.

Type checks for dynamics
Two most important operations on dynamics are:

· a dynamic pattern match e.g. apply (f :: a -> b) (v :: a) = dynamic (f v) :: b

· constructing a dynamic e.g. dynamic (length [1,2]) :: Int

Dynamic pattern matches
But the Tree (and Int) offered by the first dynamic may not be the Tree (and Int) of the second dynamic. In general there is of course no reason to assume that both dynamics use the same Tree. So actually the example reads:

apply (dynamic _ :: Tree1 Int1 -> Tree1 Int1) (dynamic _ :: Tree2 Int2)

This is incorrect. Above it is claimed that types packed into a dynamic become anonymous i.e. the name doesn’t matter anymore. Consider the following example:

The application:

:: Boom a = Knoop a (Boom a) (Boom a) | Leeg | Leeg2

The dynamic:

:: Tree a = Node a (Node a) (Node a) | Empty | Empty2

These types cannot be considered equivalent. For pratical purposes the constructors Node and Knoop could be considered equivalent. But it is not clear if Empty can be considered equivalent to Leeg or Leeg2. It  could be  assumed that the descriptors are ordered.

This means that the following two types are not considered equivalent (example from Marco Pil):

Colour = Red | Green | Blue

and

Colour = Blue | Green | Red

Obviously neither of the possibilities does provide what is wanted: both the trees and the colours are expected to be equivalent. In addition the checks described in the first version of this document impose an extra run-time overhead and are difficult to implement.

It has been decided that if two types are to be equivalent, they must be syntaxically equivalent and synonym types should be expanded. This is a very strong notion of equality e.g. the two cases above are not considered equivalent. Of course a construction is needed to include the above cases.

A possible solution to the problems mentioned above could be to allow the renaming of constructors e.g. the programmer should specify that the Tree-constructor should be renamed to a Knoop-descriptor. In this way the above can be made equivalent. Restrictions on renaming are relatively straightforward to define.

However there is still another problem:

The dynamic:

:: Record1


= {



name 

:: String


,
address 
:: String


,
age

:: Int


}

The application:

:: Record2


= {



name 

:: String


,
address 
:: String


}

If the application attempts to use the dynamic, then an age-field is required which is not contained in Record2. Perhaps an application would use the dynamic anyway. A first idea is to use overloaded functions to solve these problems. This is a point of further discussion. 

Implementation

This part roughly describes the proposed implementation of dynamics using the existing compiler, dynamic linker and conversion functions. The following almost trivial example is used:

:: Tree a = Node a (Tree a) (Tree a) | Empty

Start world


#! (_,d,world)



= readDynamic “trivial” world


#! (_,world)



= writeDynamic “trivial” world


= world

Type information associated with a dynamic can be divided into internal and external type information. The expression immediately following the dynamic-keyword provides the internal type information. The external type information can follow after the double colon (::) or can be derived by the type checker.

The need for internal type information has been discussed in the first version of this document. Internal type information is not needed if the injected object satisfies the conditions below:

· the injected object is hyper strict

· the injected object is not a curried function

Hence an obvious optimization can be made in this case when only data objects are to be injected into a dynamic. Such a dynamic is called a data dynamic in contrast to a lazy dynamic. 

The intended type information consists of:

· type definitions and dependencies

· types for functions and constuctors and dependencies

Design principles:

· Each application should be capable of using each dynamic, provided that the external type of the dynamic matches the demanded type of the application.

· No additional overhead should be imposed on internal dynamics i.e. those dynamics which are not read or written using respectively readDynamic and writeDynamic.

· The additional overhead needed for external dynamics, should be done lazily in accordance with the lazy semantics of the Clean language.

From now on an application or a dynamic is called a subsystem. A subsystem is independent from any other subsystem. A subsystem communicates with other subsystems through its external type. The subsystem which uses the other subsystem is called the client subsystem. Naturally the other subsystem is called the server subsystem. 

Consider the first example below:

apply :: Dynamic Dynamic -> Dynamic

apply (f :: a -> b) (o :: a)


= dynamic (f o) :: b 

Start :: World -> World

Start world


# (ok,d1,world)



= ReadDynamic “d1” world


# (ok,d2,world)



= ReadDynamic “d2” world


# (ok,world)



= WriteDynamic (apply d1 d2) “result” world


= world

Assume further that dynamic d1 has the external type Int -> Int and that dynamic d2 has Int as its external types.

Consider the dynamic pattern match in the apply-function. The non-type pattern variables are the types from the subsystem in which the pattern match takes place. In contrast to the type pattern variables which can be instantiated by types from other subsystems.

The context in which the unification takes place is represented by the following two pair:

· one pointer to all the type information i.e. internal and external  type information of the client subsystem which could be generated by the compiler as an extra argument of unify

· one pointer to the external type information of the server subsystem which can be contained in the dynamic itself.

Each substituted type pattern variable is annotated with the external type information pointer of the server subsystem.

The unification in the example proceeds as follows. The first unification gets as its context pointers: one to the types of the application and one to the external types of the first dynamic i.e. the dynamic named d1.  The unification succeeds and delivers the following substitution [a := (Int, <second component of the context-pair)]. 

For the second unification only the second component of the context-pair changes to the pointer to the external types of the d2-dynamic. During the second unification, the type pattern variable a has to unified with the Int coming from the second dynamic. Because the type pattern variable has been substituted the Int from the second dynamic is unified with the Int of the first dynamic. A type definition check is needed to ensure that both Int-types are the same.

Notice that the type information provided by our example application was irrelevant for the dynamic apply function which is in accordance with the first design principle. As consequence the implementation is more difficult because one flat type space per application does not suffice to support the above example. This will be described in more detail.

Consider the second, slightly modified example (only the changed part is shown):

apply :: Dynamic Dynamic -> Dynamic

apply (f :: Int -> b) (o :: Int)


= dynamic (f o) :: b 

In contrast to the last example, the type information of the application now plays a role during the dynamic pattern match. The first unification now delivers the following uninteresting substitution: [b := (Int, <second component of the context-pair)]. More interesting is the fact that two type definition checks occur: one to check that the Int-type of the application is equivalent to the Int-type of the first dynamic and one to check that Int-type of the application is equivalent to the Int-type of the second dynamic.

The Int-type definitions of both dynamics are guaranteed to be equivalent because the type definition equivalence relation is both symmetrical and transitive.

Data dynamics

For simplicity, the implementation of data dynamics is described first which is also part of the implementation of lazy dynamics. The data dynamics provide an easier context to understand the issues involved. 

After unification succeeds, a connection or link from the server subsystem to the client subsystem is established. They interpret the communicated data in the same way because it is type correct in both subsystems.

However there is still a small implementation problem concerning ordinary pattern matches: there exist multiple references to different copies of the same descriptors used to implement the injected object but the implementation assumes that there is only a single descriptor for the same descriptors. Refer to the first version of this document for a more detailled description of the problem.

The solution is to redirect all references in the graph to be constructed. These references are redirected to the proper i.e. equivalent descriptors of the client subsystem. The equivalence of the descriptors has been established during unification.

It should be noticed that the data dynamic can be used without resorting to  object modules because if the connection between the server subsystem and the client subsystem has been established which can be done using the available type information in the application and the dynamic, then the client subsystem contains the needed descriptors. Hence the data represented as a graph can be safely built.

Lazy dynamics
The object which has been injected into the lazy dynamic, is type correct in both subsystems but contains at least one or more redexes to be reduced. The internal but also the external type information consists of:

· type definitions

· function names with their corresponding types

Consider the following example:

The producer application:

Start :: World -> World

Start world


# (ok,world)



= WriteDynamic lazy_dynamic “example” world


= world

where


lazy_dynamic



= dynamic length (map toInt [1,2,3]) :: Int

The consumer application:

Start :: World -> (Int,World)

Start world


# (ok,d,world)



= ReadDynamic “example” world


= (unpack d,world)

where


unpack :: Dynamic -> Int


unpack (i :: Int)



= i

During the dynamic pattern match, it is established that the external types of both subsystems are equivalent. The run-time system of the consumer application tries to print the result of the yet unevaluated object which has been injected into the dynamic. But the internal type information has not yet been checked which implies that the object to be reduced cannot even be constructed.

The internal type information (assume the functions not to be overloaded):

functions:

· length :: [a] -> Int

· map :: (a -> b) [a] -> [b]

· toInt :: Real -> Int

data:

· [] (standard lists)

· Int

· Real

· The problem here is to find a correct implementation of the lazy_dynamic-expression. The list below enumerates some of the possible solutions to the problem:

· a dynamic can be stored with a list of all required object modules, their paths and  their dates. Before an expression is to be reduced, the object modules are linked in. If an object module has been changed after the dynamic has been written, then an error should be reported.

· the functions used to implement length, map and toInt should also be type correct and this recursively. The recursive traversal on the function level is not efficient because in high coherent modules, the same function might be checked more than once. A solution is to this check on the module-level.

· the two previous approaches could be combined. In case an object-module has changed, the linker could resort to comparing function types at the module level to find the appropriate object module.

In general several object modules may be equally well candidates for linking as far as their type information is concerned. A version management system is needed to select the appropriate object module.

