Clean 2.0 compiler

* the compiler generates the T_ypeName and the TypeImplementation for a T_ypeObjectType.

* compiler generates *.tcl files which contain type definitions including strictness annotation but without any uniqueness information. Synonym types are fully expanded.

* a _close_unify-function for each dynamic pattern group i.e. all the dynamic pattern matches until the right hand side of an alternative or the first non-dynamic_pattern match, the 3rd components of the unification results are appended. This function does:

a) if all 3rd components of the unify are empty lists i.e. it is a internal dynamic which does not require type definitions checks, then the function exists.

b) sends the list to the dynamic rts together with the library identification to the dynamic rts. If the answer is 'no', then the function restores the original types and exits. The library identification is a unique number assigned to a library when it is loaded into memory by the dynamic rts.

c) other case: the result is a [((T_ypeName,DynamicID),!DefiningModule)]-list which is used to destructively replace all TypeSpecifications by TypeImplementations. In essence external dynamics are converted into internal dynamics. The unification of the latter is more efficient.

StdDynamic.icl
* changed T_ypeObjectType:

:: T_ypeObjectType
= T_ypeConsSymbol T_ypeName T_ypeDefPtr

[T_ypeObjectType]

| ... (etc.)

 :: T_ypeName :== String

 :: T_ypeDefPtr

// after succeeded or compile-time performed type definition checks

= TypeImplementation !DefiningModule

// before or after failed type definitions check; created by writeDynamic

| TypeSpecification !DynamicID

// dummy value on disk

| NoT_ypeDefPtr

 :: DefiningModule :== String

 :: DynamicID
:== Int

* change unify (and also coerce):

_unify :: !T_ypeObjectType !T_ypeObjectType

-> (Bool, [T_ypeObjectType],[(T_ypeName,T_ypeDefPtr,T_ypeDefPtr)])

 ABC-code changes to unify:

 If two T_ypeNames are compared and one of them is a TypeSpecification, then a 3-tuple

is made (in the obvious way) and appended to the 3rd component in the result.

WriteDynamic
* extended format for dynamics describing type definitions. The exact format depends on the rts.

* during graph-to-string conversion, the T_ypeName and the TypeImplementation and/or TypeSpecification-pointers are collected and together with a library identification sent to the dynamic rts. The TypeImplementation and/or TypeSpecification-pointers are replaced by NoT_ypeDefPtr.

In case of a T_ypeName and a TypeImplementation, the library identification is used by the dynamic rts to locate the type table. The type definition can then be located within the type table by the T_ypeName and the DefiningModule.

In the other case, a T_ypeName and a TypeSpecification, the type definition is located by identification of the dynamic which contains it.

The last case, a NoT_ypeDefPtr cannot occur because the readDynamic replaces these pointers with TypeSpecification-pointers and the compiler does not generate a NoT_ypeDefPtr.

* WhaT ABOUT INTERNAL TYPES?

Dynamic Run-Time system (DynamicLinker)
* input:

- [(T_ypeName,T_ypeDefPtr,T_ypeDefPtr)]); type definitions to be tested on their equality. If this succeeds, then they are used to guide the redirections.

- library identification

* dynamic rts has to perform two tasks:

- type definitions checks

 Process of locating the right type table is described under WriteDynamic. The (recursive) type definition check is relatively straightforward. Two type definitions must be syntaxically exactly the same for now. Later this can be done modulo alpha-conversion.

- redirections (postponed?)

which redirections have to be taken? depends on the order of evaluation i.e. on the order how dynamics are evaluated. If a dynamic pattern match succeeds, then the corresponding object is in principal constructable.
ReadDynamic
* replaces all the NoT_ypeDefPtr by TypeImplementation-pointers
* the two arguments of DynamicTemp are created as closures.

It is important that the type is constructed before the object itself. The type can always be constructed. Normally this is the case because the object only becomes accessible after a succesful dynamic pattern match. The only exception is the static rts which could try to print an unconstructable dynamic.

StaticLinker

combining type table

Assumptions/Problems
* each datatype is unique within one external dynamic. In the case of physically inserting a copied dynamic i.e. a dynamic which has never been constructed and might not even be constructable in a certain environment, may contain an equally named datatype. By using references this assumption may be lifted.
* once a dynamic has been constructed, it will never be reconstructed. An example: if there are two references to a certain dynamic in two environments with the same notions of what is in the shared dynamic but with different definitions, then only one pattern match of both environments will succeed.
