An algorithm to determine the entry nodes of shared subgraphs

Conventions:
· the notion ‘shared’ is intended as ‘shared among dynamics’ unless explicitly stated otherwise.

Need:
A nested dynamic is built indepently from other nested dynamics. The order of evaluation of nested dynamics determines the order in which they are built by the conversion functions.

A nested dynamic like any other Clean expression is a graph. This graph can be divided in a privately used part and in a subgraph shared among dynamics. The latter part can be part of an even larger shared subgraph. Because a nested dynamic can be decoded and built indepently of others, the shared subgraph is built indepently of its larger shared subgraph.

If the larger subgraph is built later, then the correct references i.e. the addresses of referenced nodes to and in the subgraph need to be known but these node addresses change across garbage collections. These nodes are called the entry nodes of the subgraph.

During decoding and building of a shared subgraph, the addresses of the entry nodes of that subgraph are stored in a table which is automatically updated by the garbage collector. If the even larger subgraph is built, then the correct addresses of the entry nodes are known.

High level algorithm:
The high level algorithm described here abstracts from efficiency and compatibility issues with the current code. The algorithm uses two passes to determine the entry nodes of shared subgraphs.

It is assumed that the graph to be encoded contains at least two nested dynamics which share some subgraph. The other case is the normal case which has already been covered by the original algorithm.

Pass 1: determining shared nodes among dynamics

The algorithm starts the encoding of the node passed as an argument i.e. the root. The graph associated with that node is visited in a top-down, left-to-right order which is reflected in its encoding.

The single exception to the above mentioned order is in case of dynamics: the encoding of possible dynamics encountered during the encoding of the current node is postponed until the encoding of that node has been finished. A property is that a dynamic does not contain an encoding of another dynamic.

During the graph traversal each dynamic encountered in the graph is identified by an unique colour. Each node reachable from the root has a an initially empty set of colours assigned to it.

Initially there are no dynamics and there is no current colour. If a dynamic is encountered then is assigned a colour. Each node reachable from a dynamic is then coloured with that colour by adding it to the colour set of the each node. If a node has already been coloured with that colour, then that node and the nodes reachable from it, need not to be coloured again.

Important properties:

· the number of visits for each node is bounded by a finite number of dynamics to be encoded as consequence the algorithm terminates.

· if there is a reference from a node n1 with colour set c1 to another node n2 with colour set c2, then it is guaranteed that |c2| >= |c1| holds.

The semantics of a coloured node is defined in terms of the colour set size of each a node:

· an empty set, means that a associated node is not referenced from a dynamic. This case occurs if the root node is not a dynamic.

· a singleton set, which means that the associated node is privately being used by a dynamic with the singleton colour.

· other sets, the associated node is a shared node and all the nodes it references are shared among dynamics.

In summary after the first pass the usage intensity of each node reachable from some root has been computed.

Pass 2: determining the entry nodes

The second pass collects all the entry points. A somewhat more formal definition of an entry node is:

· a node n2 is called an entry node if and only if there is a reference from a node n1 with colour set c1 to another node n2 with colour set c2.

· The colour set size of the node n2 is greater than that of node n1 i.e. |c2| > |c1|.

The entry points can simply be collected by another traversal of the graph and detecting increases in the colour set sizes from a node n1 to a node n2 if and only if a node n1 has not been visited yet. Node n1 is then marked as visited. As a consequence termination is guaranteed.

In contrast to the first pass, each node reachable from some root is visited exactly once.

In short, the second pass is a very straightforward application of graph traversal using marking for nodes to guarantee termination.

Optimized algorithm:

At the moment it cannot be determined if sharing among dynamics is typical because there is no data available about the usage of dynamics. For the time being, sharing among dynamics is assumed not to occur often. As a consequence only minimal overhead should be imposed on the original algorithm.

The proposed algorithm has the following two drawbacks:

· in worst case the number of dynamics determines how often a node is visited in order to determine the proper colouring of the node.

· the storage of colour sets associated with each node imposes a large memory overhead during the conversion. If a machine word consists of n bits, then (the number of dynamics + (n – 1)) / n machine words are needed for each colour set.

At the moment it seems that the first drawback cannot be removed without a substantially increased memory usage. However the memory usage colour set can be decreased using the following observations:

· an uncoloured or a single coloured node is expected to occur much more often than multiple coloured node as consequence of the earlier mentioned observation.

· equally colour sets occur often and could be shared among equally coloured nodes.

An uncoloured node i.e. the colour set associated with that node is empty cannot occur by the assumption made in ‘need’.

The representation of a coloured set is changed as follows:

· a single coloured node is represented by a pointer to its definition in the dynamic which first coloured it by making the very first reference to that node.

colours are represented by integers

The addresses of dynamics are reserved for the single colours

nodeP

= pointer to node being visited

Two colour table
= current color with a single color which has been encountered

Shared nodes

= indices to colour set of at least size two, pointed to by

 modified nodes.

Colour tables

= colour combinations

refP

= pointer to some node in the graph

In case of an node:

if refP has already been visited then

// then it is an indirections which are handled below

else

// refP node visited for the first time:

// - save descriptor pointer in encoded graph

// - make descriptor entry of refP point to the encoded graph

//

// This is the normal code to make an indirection.

(next_free_word_in_encoded_graph) := (refP);

(refP) := next_free_word_in_encoded_graph++;

endif

In case of an indirection:

refP := (nodeP) – 1; // undo the indirection temporarily
if refP points within the current dynamic then

// single colour each node which happens automatically

else

// at least a single colour; new colour must be added

// descP is either in a dynamic or in shared nodes table

if is deze knoop al bezocht dan

stop met de knoop

 else

// 1. maak een nieuw kleur aan

// 2. Zet die in de knoop

// 3. Doe de kinderen.

descP := (refP);

new_colour := add_new_colour old_colour refP;

Shared_nodes [real_descP] := new_colour;

//visit_reachable_nodes [refP + 1];

endif

visit_reachable_node []

= nop;

visit_reachable_node [n:ns]:

| is_indirection_node n

// input:

// - for a single coloured node, pointer into its dynamic.

// - otherwise, the old colour combination

// output:

// - a new colour combination including the current colour

//

add_new_colour old_colour old_colour:

if old_colour points within another dynamic then

// a single colour to be extended with current colour

dynamic_of_old_colour :=

 determine_the_dynamic_in_which_old_colour_points;

new_colour_combination := next_available_colour_combination++;

Two_colour_table[dynamic_of_old_colour] := new_colour_combination;

return new_colour_combination;

else

// shared nodes (at least two colour combinations stored in descP)

// old_colour < previous_colour_combinations

new_colour := Colour_table[old_colour];

if new_colour <> 0 then

return new_colour;

else

// add new colour combination and add it to Colour table

new_colour_combination := next_available_colour_combination++;

Colour_table[old_colour] := new_colour_combination;

return new_colour_combination;

endif

endif

Objections against the optimized former algorithm:

· too many nodes are labelled as entry nodes. In particular the edges to nodes with a smaller set colour size are wrongly marked as entry nodes. Cannot occur

· the individual colours cannot be identified anymore, so for a particular node it cannot be determined anymore, if that node has already been visited before by a reference from the same dynamic.

Refinements:
· if all nested dynamics using a particular entry point have been built, then the address of that entry node in the table should be removed

· determining descriptor/prefixes per (shared) component

single colours are represented by pointers in the encoded dynamics

Can the garbage collector always detect that not a yet build dynamic has become garbage?

