Data dynamics (design and implementation description/decisions)

Assumptions:

· polymorphic dynamic patterns matches have not been considered yet. Its implementation needs to be investigated further.

Remarks:

[ text ] 
are used for remarks concerning lazy dynamics

It is advised to read the other papers ‘type check for dynamics 1 & 2’ to understand the notions used in this text. For reasons of clarity: a subsystem is either an application or lazy dynamic. In particular a data dynamic does not form a subsystem.

Introduction:

A dynamic is a data dynamic if the injected object satisfies the following conditions:

· it has been evaluated hyper strictly

· it is not a curried function

The former condition guarantees that all closures have vanished i.e. no work is stored in a dynamic. The latter ensures that functions cannot be stored in a dynamic. Taken together, these conditions guarantee that no code other than the implementation of the external type is necessary at run-time. Efficiency is one of the main concerns for introducing data dynamics.

The general case on which the above conditions are not enforced, is more difficult because an implementation for the internal type checks needs to be found. At the moment two solutions seem possible when writeDynamic is applied to some dynamic:

· the required implementation i.e. a set of object modules is determined and packed with the dynamic.

· only the specification i.e. a set of types and their definitions is computed and packed with the dynamic.

The first solution is naturally the most efficient at run-time because the required implementation needs not to be searched for and the rather inefficient internal type checks are avoided. The second solution avoids making copies of the implementation. An important disadvantage is that internal types need to be computed and checked at run-time.

The rest of this document focuses on data dynamics which are a special but an important case of dynamics. For the time being, the first solution is chosen for lazy dynamics due to its efficiency and ease of implementation.

Refined definition of external type for data dynamic:

Roughly the external type is the type as shown below: 


dynamic _ :: external type

(with _ is meant that the value is ignored). Abstract data types are not allowed as an external type for data dynamics because

· its implementation is unknown, hence it is unknown if there exists an implementation for the abstract data type in the current subsystem.

· an abstract datatype can only be manipulated by using the operations offered in its definition module but a data dynamic cannot contain these operations by its very definition.

Existential types present the same problems. The essential problem in both cases is that operations are required which cannot be stored in a data dynamic. 

Nested dynamics i.e. dynamic contained in another present problems. Should be elaborated.
The above check can either be performed by the compiler or at run-time when a data dynamic is about to be written. It is undecidable at compile-time which dynamics are data dynamics because the state of evaluation of an arbitrary object is unpredictable. The problem can be solved by introducing a new keyword datadynamic. To implement this keyword the following actions should be taken:

· its external type is an abstract or an existential data type as discussed above which is statically decidable.

· the type definition of the external type do not use function types i.e. types in which the function type constructor (->) occurs. This is of course decidable at compile-time. 

· the run-time object must be converted to hyper strict normal form to guarantee the absence of closures. Provided that enough heap memory is available, the conversion always succeeds.

Of course the above check can also be implemented at run-time during the dynamic pattern match. Regardless of the extra run-time overhead associated with this check, an in principle malformed expression has been accepted  which could have been reported at compile-time.

A disadvantage is that yet another keyword is introduced in the Clean language which is not conceptually needed and requires some effort to understand. Nevertheless programmers can always use the more general dynamic keyword to create a dynamic.

<choice> For the time being, the option of introducing the new keyword in the language has been chosen.

Current situation:

At the moment a dynamic is represented by a value and a type part. The type part contains the external type without the definitions for the types. Hence the strongly typed property does not hold any more among applications or even among multiple versions of the same application.

In order to guarantee the strongly typed property of a Clean application, the type checks need to be extended to take type definitions into account.

Representation of type definitions:

The type definitions need to be available to use them during unification in order to determine their (pure syntaxical) equality. There are two possible implementations:

· for each type constructor occurrence in a dynamic pattern match, its type definition and the definitions it depends upon, should be stored with that dynamic pattern match.

· each dynamic pattern has a reference to a type-context table which contains the closure of the external type definitions i.e. the set of type definitions occuring as a type constructor in the external type and their dependencies. In addition each occurrence of a type constructor is associated with its defining* module name in order to uniquely identify a type definition within one subsystem i.e. an application or a lazy dynamic. Due to the absence of the static-semantical checks the above cannot be guaranteed for lazily linked applications or an arbitrary other implementation of lazy dynamics. The Clean language and IDE guarantee the single usedness of module names. 

The same scheme can also be applied for constructing dynamics using the dynamic keyword and type dependent functions.

A clear advantage of the first implementation is the ease of implementation: the closure of external type can be determined statically and it is relatively straightforward to adapt the compiler to generate the appropriate information. However type definitions may be stored more than once which leads to a lot of duplication both in space and time.

The second solution permits the sharing of type definitions at the cost of building and searching the type-context table for each subsystem. When a type definition check has succeeded, the type definition could be marked in order to avoid future definition checks.

<choice> For the time being, the second solution is preferred because for non-trivial applications e.g. applications using the object IO not sharing type information, would increase the run-time overhead significantly.

The type-context table:
The type context table for an application can be constructed by the static linker: it simply concatenates the type-files (associated with each abc/object-file and containing all type definitions of that module) and stores it with the application. [For a lazy dynamic at run-time it can determined what modules i.e. abc or object modules it uses,  and the type definitions associated with these modules can then be stored along with the library which is created for the lazy dynamic.]

A data dynamic does not have a type-context table because

· the implementation of the external type i.e. the implementation of each type definition in the external type definition closure, is either provided by  type-context table of the current subsystem i.e. the subsystem doing the match or by the  type-context table of an already existing subsystem e.g. the subsystem of the lazy dynamic belonging to the function valued dynamic in the dynamic apply function.  

· the  type-context table is not needed because in order to read a dynamic, an application of a function reading a dynamic is needed but these applications a.k.a. closures are eliminated by the hyper strict evaluation enforced by the first condition of a datadynamic.

The availability of the implementation of a data dynamic is from the point of view of both the dynamics implementation and the programmer advantageous: the implementation of the data dynamic need not be located in the filesystem and often the programmer may only want to store values rather than the work e.g. a plain ascii text could be preferred over a closure which could produce the text.  

Contents of the type-file associated with each abc/object file:

The type-file contains the types associated with each object defined in the corresponding abc/object-file. It has the following properties:

· each reference to a type definition consists of the type definition itself and the name of its defining module.

· all type definitions of that module have been stored.

It is stressed again that the combination of a type constructor name, its defining module name and the context-type table, uniquely determines the appropriate type definition within a subsystem.

The chosen implementation of lazy dynamics namely by a fixed library i.e. a set of object/abc-files and their associated type-files, guarantees that the above identification, uniquely identifies type definitions.

It suffices to prove that a module name is unique within a subsystem because the static-semantic rules of the Clean language guarantee that only one type definition is visible in a source module. This property is preserved during the transformation to abc/object files.

The informal prove below based on the assumption that modules of a lazy dynamic don’t change, does a straightforward induction on how subsystems are constructed from other subsystems:

· base case: an application. The static-semantics rules of the language and the Integrated Development Environment already ensure that module within the application and hence the subsystem are unique.

· induction step:  a lazy dynamic. By the induction hypothesis, the lazy dynamic from which the  new lazy dynamic is constructed, has unique module names. The new lazy dynamic is constructed by using some of the old lazy dynamic objects. If there exists a module not containing an used object in the new dynamic, then that module can be removed from the new lazy dynamic because a removal of module name from a set of unique module names, preserves the uniquess of the module names.

[For lazily linked applications and lazy dynamics implementations which consist of a set of unfixed object modules i.e. one or more object modules which have been changed after creation of a lazy dynamic, modules are not unique anymore. Even more stronger, the property that each type definition has one visible definition in a module, does not hold any longer due to the absence of static-semantical checks which rely on a set of source modules to be checked together.

[To see why the previous presented identification of a type definition, does not apply any more. Consider the example below:

module x

module a 

module b

import a,b

:: Tree





= … 

f ( x :: Tree)


= …

The Tree-reference in the dynamic pattern match, is associated with the defining module of the Tree namely a as has been discussed above. If the Tree-definition is moved from module a to module b, then it still valid Clean but the reference to Tree in module a is obviously wrong.

To identify the proper type definition in the setting of a set of object files, the following data is needed:

· the type definition name

· instead of the defining module name, the module name in which the dynamic pattern match occurs, is needed.

· An import type tree is needed. An import type tree can be constructed by stripping all definitions except for type definitions and imports of other modules.

The import type tree then needs also to be stored in the type-file. Of course each reference to a type definition should store the module name in which the dynamic pattern match occurs instead of the defining module name.

Further note that the rather expensive static semantical checks should (also) be checked at run-time. Regardless of other static semantical checks e.g. a check that number of actual and formal parameters agree normally done by the compiler, it is of course necessary to check that only one type constructor is visible within a module.]

Extension of dynamic pattern matches with type definitions:

An application and the lazy dynamics it uses i.e. directly or indirectly, each  form an independent subsystem which communicates through its external types. A data dynamic however doesn’t form a subsystem on its own, because it is merged with the subsystem providing the implementation of its external type. Each subsystem has its own type-context table for the use of the lazy dynamics it loads.

In the rest of this paper it is assumed that the data dynamic is read in by some subsystem which necessarily has a type-context table. The type-context table constructed by the static linker for an application or associated with a lazy dynamic looks like this:

:: TypeContextPointer :== a pointer to the TypeContextTable

:: TypeContextTable :== *[(String,[TypeDef])]

:: TypeDefsPointer :== a pointer to the [TypeDef]

:: TypeDef


= AlgebraicDataType Name Arity [Constructor]


| …

· Each subsystem has a single type context table. A type context table is nothing more than a list of pairs. Each pair consists of a module name and a list of type definitions. Type synonyms are assumed to be fully expanded. A type is represented as follows:

:: Type


= TypeVar Char


|  TypeCons Name Context [Type]

:: Context


= Internal ModuleName TypeContextPointer


|  External TypeDefsPtr


| Predefined

· With respect to the more or less standard representation of types, only the type constructor i.e. TypeCons has been extended to include a context. A context determines where to look up a type definition, if necessary. There are three different contexts:

· An internal context.  The three tuple type of a type constructor name, its defining module name and the type context table uniquely determines the type definition to be used. 

· An external context. This context contains the closure of the external type definitions associated with the external type of a dynamic. 

· A predefined context. This context is used for the basic predefined types e.g. integers, characters, etc. It is shared among all subsystems i.e. _system.o is shared.

The only extension to the standard unification algorithm, is a type definition check e.g. equiv_types in the prototype. The overloaded type definition check algorithm of the prototype is straightforward: type definitions are considered equal if they are syntactically the same.

The only interesting part is the type definition check on a type which has been shown above. The check on a type variable is trivial. In the case of type constructors, the following three cases are distinguished:

· two predefined type constructors are checked. The check succeeds if their names are equal.

· two internal type constructors are checked. Again only the names need to be equal because within one subsystem the type definitions cannot change because its implementation is fixed.

· one internal and one external type constructor definition is checked. The type definition of the internal type constructor is lookup up using the specified module name in the type context table of the subsystem in which the dynamic pattern match takes place. The definition of the external type constructor is simply searched in its list.

In summary, the most essential in the above description of the standard unification algorithm is the identification of the proper type definition at run-time. The rest is relatively straightforward.

The output of the prototype, a list of substitutions is used to illustrate the text above. Consider the following Clean fragment:


dyn_apply (f :: a -> b) (v :: a)



= dynamic (f v) :: b

The two dynamics i.e. f and v which are used in the fragment, have been created as follows:

· dynamic _ :: Tree_f -> Int

· dynamic _ :: Tree_v

Assume further that both dynamics have the same the same notions of Tree i.e. both type definitions are syntaxically equal. The suffixes _f and _v serve to stress the fact that before unification, it is not known whether or not the dynamics have the same Tree-notion.

The transformation of the above types to the internal Type-representation is straightforward and not shown here. The contexts of both Tree are external because they come from a dynamic.

During the first dynamic pattern match, the unification algoritm binds the initially unbound type variables a and b to respectively Tree_f and Int. In this case no type definition check occurs.

In contrast to the first pattern match: a type definition check is needed to ensure that Tree_f and Tree_v are equal. The check succeeds because both Trees were assumed to be equal. The dynamic apply example shows that the implementation is quite sophisticated because a notion of Tree from the subsystem doing the dynamic pattern match is completely irrelevant and not taken into account, as it should. 

If the type variable in the dynamic pattern matches above were replaced by a Tree, then the following type definition checks take place:

· one type definition check to ensure that an external Tree_f is also an internal Tree of the current subsystem.

· one type definition check to ensure that an external Tree_v is also an internal Tree of the current subsystem.

It can then be concluded that Tree_f is the same as Tree_v due to communativity and transitivity of a type definition check.

The type-part of a dynamic now has the following type (notation mixed Clean and type definitions above):

· (Type,Context) e.g. (Tree -> Int, External [ type definitions for Tree and Int] )

Implementation issues:
The list below enumerates some unsolved implementation details:

· to speed up the type definition check, a normal form would be required. For algebraic datatypes an alphabetical ordering could be used.

· the syntactical equivalence of type definitions is probably a bit too restricted. Algebraic datatypes could be considered equivalent modulo alpha conversion.

· it is (still) unknown how to share the type definitions and the type context table

· to avoid duplication of the same type definition checks, a type definition should be marked if a type definition checks succeeds.

· once all type definitions have been checked, a dynamic with an external type could become an internal dynamic.

<choice>For the time being, no normal form or alpha-conversion is performed on type definitions. As to the two latter problems: external dynamics are not promoted to internal dynamics and the marking is neither performed. The third point however will be implemented.
· Summary:

· Below the most important contributions of this documents are presented in the order in which they were discussed:
· a clear distinction between data and lazy dynamics motivated by efficiency concerns and future use by the programmer.

· a description of the new datadynamic keyword and its semantics

· identification of the proper type definition using a type context table during unification at run-time.

· each type constructor contains its defining module name and a pointer to the type context table.

/*

by the consumer i.e. the subsystem doing the dynamic pattern match because otherwise the type couldn’t occur .

An external type doesn’t always give a clue to how it is implemented.


dynamic (dynamic 1 :: Int)

*/

/*

A beautiful example to show the elegancy of the implementation: sometimes the inner dynamic i.e. the integer 1 is needed and sometimes not. This is so elegant because of lazy evaluation of the value (and graph) part of a dynamic.


dynamic (dynamic 1 :: Int) :: Dynamic

The question this example raises is whether or not the integer should be represented somehow in the top-level dynamic. 

· */

