Strongly typed dynamics

Issues:

· notion of subsystem: a data dynamic is merged with the subsystem using that particular data dynamic, other dynamics i.e. the lazy ones have all their own subsystem.

· redirection of references to constructors of a certain type which occurs in the external type of a dynamic.

Example 1:

Dynamic (length [1..20]) :: Int

Dynamic

Unification

Within an application, it suffices to check types using name equivalence. But a structural equivalent check is needed for an external dynamics i.e. a dynamic which has not been created by application using it.

This property is in general undecidable. Therefore an external dynamic is marked as external when it is created or used. The current implementation is changed to have the following type representation:

:: T_ypeObjectType
= T_ypeConsSymbol {#Char} [T_ypeObjectType]

| P_laceholder …

| ExternalType T_ypeObjectInfo T_ypeObjectType
:: T_ypeObjectInfo

= {

id

:: DynamicID

,
type_specifications
:: [TypeDefinition]

};

:: TypeDefinition

:: DynamicID

The type-part of each external dynamic is preceded by at least one ExternalType- alternative.

The unification algoritm is modified even further. Its first argument is the specification

_unify :: !T_ypeObjectType !T_ypeObjectType -> (Bool, [T_ypeObjectType])

In case unification of two fully expanded types i.e. types which do not contain type synonyms succeeds,

Problems

· Assume two modules which habe their private but structural equivalent Tree-definitions. If a Tree-object is wrapped in a dynamic and is dynamically matched upon in the other module, then the pattern match will fail.

· Assume two modules which habe their private but structural equivalent Tree-definitions. If a Tree-object is wrapped in a dynamic and is dynamically matched upon in the other module, then the pattern match will fail. This

