Data dynamics (design and implementation description/decisions)

Remarks:

[ text ] 
are used for remarks concerning lazy dynamics

Introduction:

A dynamic is a data dynamic if the injected object satisfies the following conditions:

· it has been evaluated hyper strictly

· it is not a curried function

The former condition guarantees that all closures have vanished i.e. no work is stored in a dynamic. The latter ensures that no code except for the implementation of the external type is needed. Efficiency is one of the main concerns for introducing data dynamics.

The general case on which the above conditions are not enforced, is more difficult because an implementation for internal type checks needs to be found. At the moment two solutions seem possible when writeDynamic is applied to some dynamic:

· the later required implementation i.e. a set of object modules is determined and packed with the dynamic.

· only the specification i.e. a set of types and their definitions is computed and packed with the dynamic.

The first solution is naturally the most efficient at run-time because the required implementation needs to be searched for and the rather inefficient internal type checks are avoided. The second solution avoids making copies of the implementation. An important disadvantage is that internal types need to be computed and checked at run-time.

The rest of this document focuses on data dynamics which are a special but important case of dynamics. For the time being, the first solution is chosen for lazy dynamics due to its efficiency and ease of implementation. IK ZOU OOK DE  LAZY DYNAMICS MOETEN MEENEMEN. RTS (startup?.o) IS ALWAYS SHARED BY SUBSYSTEMS, AT LEAST _system.o should also be shared.

Refined definition of external type for data dynamic:

Roughly the external type is the type as shown below: 


dynamic _ :: external type

(with _ is meant that the value is ignored). Abstract data types are not allowed as an external type for data dynamics because

· its implementation is unknown, hence it is unknown if there exists an implementation for the abstract data type in some subsystem within the whole application.

· an abstract datatype can only be manipulated by using the operations offered in its definition module but a data dynamic cannot contain these operations by its very definition.

Existential types present the same problems. The essential problem in both cases is that operations are required which cannot be stored in a data dynamic. 

The case that a dynamic is nested in another dynamic does not present any problems although the actual object i.e. its implementation is unknown when a top-level dynamic pattern match occurs. This case is elaborated on later in this document.

The above check can either be performed by the compiler or at run-time when a data dynamic is about to be written. It is undecidable at compile-time which dynamics are data dynamics. This problem can be solved by introducing a new keyword datadynamic. To implement this keyword the following actions should be taken:

· its external type may not be an abstract or an existential data type as discussed above which is statically decidable.

· an attempt to convert an graph of the correct external type to hyper strict normal form. This conversion can fail either when the graph contains curried functions or when too much garbage is created. The attempt is implemented by application of a function which does the job at run-time.

Of course the above check can also be implemented at run-time during the dynamic pattern match. Regardless of the extra run-time overhead associated with this check, an in principle malformed expression has been accepted  which could have been reported at compile-time.

A disadvantage is that yet another keyword is introduced in the Clean language which is not conceptually needed and requires some effort to understand. Nevertheless programmers can always use the more general dynamic keyword to create a dynamic.

For the time being, the option of introducing the new keyword in the language has been chosen.

/*

by the consumer i.e. the subsystem doing the dynamic pattern match because otherwise the type couldn’t occur .

An external type doesn’t always give a clue to how it is implemented.


dynamic (dynamic 1 :: Int)

*/

/*

A beautiful example to show the elegancy of the implementation: sometimes the inner dynamic i.e. the integer 1 is needed and sometimes not. This is so elegant because of lazy evaluation of the value (and graph) part of a dynamic.


dynamic (dynamic 1 :: Int) :: Dynamic

The question this example raises is whether or not the integer should be represented somehow in the top-level dynamic. 

*/

//  ….

A more exact definition which may be used by the Clean compiler, is presented below:

external_type_of :: Type -> [Type]

external_type_of pseudo_external_type


| pseudo_external_type == Dynamic



= [Dynamic : external_type_of  (type_of pseudo_external_type)]



= [pseudo_external_type]

type_of :: Dynamic -> Type

type_of d


= extracts the type-part of the dynamic d

// ….

Current situation:

At the moment a dynamic is represented by a value and a type part. The type part contains the external type without the definitions for the types. Among applications or even among multiple versions of the same application, the strongly type property does not hold any more. It can be reestablished by doing type definition checks in addition to the unifications already performed.

Location and representation of type definitions:

The type definitions need to be available to use them during unification in order to determine their (pure syntaxical) equality. There are two possible implementations:

· for each non-type variable occurrence i.e. type constructor or caretted type pattern variable in a dynamic pattern match, its type definition and the definitions it depends upon are stored with that dynamic pattern match.

· each dynamic pattern has a reference to a type-context table containing all the type definitions and its dependencies (transitive closure). In addition each non-type variable is associated with its (unique) defining* module name. In this manner the proper type definition for eagerly linked applications can be found within one subsystem i.e. an application or dynamic at run-time.

The same scheme can also be applied for constructing dynamics using the dynamic keyword and type dependent functions.

A clear advantage of the first implementation is the ease of implementation; the type definitions and dependencies can be determined statically and it is relatively straightforward to adapt the compiler to generate the information. However type definitions may be stored more than once which leads to a lot of duplication both in space and time.

The second solution permits the sharing of type definitions at the cost of building and searching the type-context table for each subsystem. When a type definition check has succeeded, the type definition could be marked in order to avoid future definition checks.

The type context table for an application can be constructed by the static linker: it simply concatenates the type-files (associated with each abc/object-file and containing all type definitions of that module) and stores it with the application. [For a lazy dynamic it can determined what modules it uses and the type definitions can then be stored with that library which is created.]

A data dynamic does not have a type-context table because the implementation of the types (and their dependencies) has already been provided either by the subsystem doing the dynamic pattern match e.g. f (x :: Tree) or by another subsystem e.g. in a dynamic apply. In addition the data dynamic cannot use other dynamics which require the type-context table because that contradicts the definition of a data dynamic. 

The availability of the implementation of a data dynamic is from the point of view of both the dynamics implementation and the programmer advantageous: the implementation of the data dynamic need not be searched and often the programmer may only want to store values rather than the work e.g. a plain ascii text could be preferred over a closure which could produce the text.  

The choice made for the time being is to use the second solution because for non-trivial applications e.g. applications using the object IO not sharing type information, would increase the run-time overhead significantly.

Contents of the type-file associated with each abc/object file:

The type-file contains the types associated with each object defined in the corresponding abc/object-file. It has the following properties:

· each reference to a type definition consists of the type definition itself and the name of its defining module.

· all type definitions of that module have been stored.

[*lazily linked applications and lazy dynamics both consisting of several, possibly independent object files.  Even if the Clean language rules e.g. type and scope checking could guarantee for a set of objects taken together that they form a lazily linked application or a lazy dynamic, the defining module name of a type definition doesn’t suffice anymore to identify it. To see why, consider the example below:

module x

module a 

module b

import a,b

:: Tree





= … 

f ( x :: Tree)


= …

The Tree-reference in the dynamic pattern match, is associated with the defining module of the Tree namely a as has been discussed above. If the Tree-definition is moved from module a to module b, then it still valid Clean but the reference to Tree in module a is obviously wrong.

To identify the proper type definition in the setting of a set of object files, the following data is needed:

· the type definition name

· instead of the defining module name, the module name in which the dynamic pattern match occurs, is needed.

· An import type tree is needed. An import type tree can be constructed by stripping all definitions except for type definitions and imports of other modules.

The import type tree then needs also to be stored in the type-file. Of course each reference to a type definition should store the module name in which the dynamic pattern match occurs instead of the defining module name.]

Extension of dynamic pattern matches with type definitions:

An application and the lazy dynamics it uses i.e. directly or indirectly, each  form an independent subsystem which communicates through its external types. A data dynamic however doesn’t form a subsystem on its own, because it is merged with the subsystem providing the implementation of its external type. Each subsystem has its own type-context table for the use of the lazy dynamics it loads.

In the rest of this paper it is assumed that the data dynamic is read in some subsystem which necessarily has a type-context table. The type-context table constructed by the static linker for an application or associated with a lazy dynamic looks like this:

:: TypeContextPointer = pointer to type_context_table

:: type_context_table = *[Module ModuleName [TypeDef]]


:: TypeDef


= AlgebraicDataType AlgTypeName Arity [DataConstructor]


|  RecordType RecordName Arity [RecordField]


| …

:: Constructor = (Name,[Type])

:: RecordField = (Name,Type)

For the time being each synonym type is fully expanded to ease the implementation. A module list suffices because it is guaranteed by the Clean IDE requires module names to be unique within one application.

DataDynamic [TreeTypeDef]

TreeTypeDef == 

Assume no type variables occur in the type in types stored in a dynamic e.g. no polymorphism permitted.

If a substition occurs then (type context

Application

Apply (f :: a -> b) (v :: a)

First dynamic binds a and b to some concrete type contained in its subsystem. Matching on the second pattern will deliver the following unify:


Unify a Tree 

A substitution conceptually is 


:== (type variable,type,type_context_pointer_d1)

// 

:: Type = 


| TypeVar Context


| TypeCons String Context [Type]

:: TypeVar

:: Context


= Internal TypeContextPointer


| External [TypeDef] TypeContextPointer

Representation of dynamic:

dynamic (value,type)  :: 

:: type :== (Type,Context)

:: TypeContext :== (Type,TypeContextPointer)

unify :: TypeContext TypeContext Substitution ->  Maybe substitution

unify :: (Type,TypeContextPointer) 
(

unify :: specified_pattern dynamic

unify (tcp,a -> b) (Tree -> Int,ExternalType [type definition for Tree] tcp_f)

unify (tcp,a) (Tree,ExternalType [type definition for Tree))


change a to  (a,Tree,type_context_pointer_f)

unify (tcp,b) (Int, ExternalType [type definition for Tree])


change b to Int (StandardType)

volgende patroon:

unify (a,Tree,type_context_pointer_f) (Tree,ExternalType [type definition for Tree])


type variable




type



Tree == Tree, typedef_check(Tree,type_context_pointer_f,Tree,ExtrernalType [ … ] )


// zoek def van Tree using type_context_pointer_f


// zoek def van Tree in external type


// en doe de check

module example


# d = readDynamic “dynamic” 


f (t :: Tree)



= 

each unify has an explicit reference to the subsystem’s type-context table

t = type part of dynamic is a tuple: (Dynamic [ external type definitions of the dynamic ], external type of dynamic)

Unify (TypeContext type_context_pointer_of_subsystem,Tree)  t (from dynamic

:: Type :== T_ypeObjectType;

Unify :: (TypeContextPointer, Type)

Unify  (type_context_pointer1,type1) (type_context_pointer2,type2)

:: type_context_pointer :== [Module String [TypeDef]]

:: TypeDef


| AlgebraicDaaa

normally a type remains within one subsystem, it can only leave a subsystem using writeDynamic and it can enter a new subsystem when a readDynamic occurs.

A dynamic which remains within one subsystem, is called an internal dynamic

:: type :== (external type,InternalDynamic)

:: DynamicTypeKind 


= InternalType


| ExternalType [TypeDef]

The TypeDef lists the type definitions associated with the external type of a dynamic.

Type en Type variables neem aan dat type vars geshared zijn

// 
| Dynamic [TypeDef]




:: T_ypeObjectType
= 




T_ypeConsSymbol {#Char} [T_ypeObjectType]





// Type




| P_laceholder














// Type variable

 (T_ypeObjectType -> T_ypeObjectType) (T_ypeObjectType -> T_ypeObjectType) T_ypeObjectType

_unify :: !T_ypeObjectType !T_ypeObjectType -> (Bool, [T_ypeObjectType])

_coerce :: !T_ypeObjectType !T_ypeObjectType -> (Bool, [T_ypeObjectType])

_undo_indirections :: a ![T_ypeObjectType] -> a

Pointer to the type-context table (type context table)

des

[For lazy dynamics, each subsystem

* A data dynamic does not have a type context table because it is not associated with any object/abc-files and hence neither with a type-file.

That of a dynamic is also the concatenation of the type-files associated with its implementation 

 Samenvatting van het resultaat

Note that a subsystem for a data dynamic does not need a type-context table because according to its definition, it does not contain curried functions or closures which 

[For a dynamic subsystem, it can be done by the dynamic linker.]

link-time. For dynamics the context table

A clear disadvantage of the first implementation is that type information is duplicated many times but it is also a lot easier to implement. 

. Each abc/object-file is associated with a type-file which contains all the type information defined in that module.

Unify type1 type2

Module x

:: Tree

f (x :: Tree)


= …

transformed into

f (x :: (Tree,:: Tree a = Node a (Tree a) (Tree a) | Leaf )

can be done statically by a simple lookup of Tree 

unify (

nadeel: is geen sharing, voordeel makkelijk opzoekbaar

The former condition guarantees that all closures have been completely evaluated i.e. no ‘work’ is being stored in a dynamic. The latter condition ensures that n

