Types and code

This document proposes an implementation for strongly typed dynamics. It has been based on my own ideas and those from discussions with John and Rinus.

StaticLinker

· combines type-info from modules.

· detects for equivalent type definitions, the set of their defining modules. If it is a non-singleton set i.e. there are multiple implementations of the same type definition, then it is guaranteed that the output of the linker contains a unique implementation.

One of the equivalent type implementations can be chosen arbitrarily among the possible ones as the implementation for that type definition. The other type implementations are changed to point to the chosen one.  

Type definitions are equivalent if they are syntaxically the same. Alpha-conversion and uniqueness information is left out.

· creates a static library. It contains:

· all object files which belong to the project

· for each type definition which has one or more other than itself equivalent type definitions, a list of its type name and defining module.

Clean 2.0 compiler

· generates the T_ypeName and the TypeImplementation for a T_ypeDefPtr.
· generates for each module, a *.tcl-file containing type definitions. Important properties:

· synonym types are fully expanded

· strictness annotations are preserved because the implementation of a type definition can change.

· uniqueness information is lost

· generates a  _close_unify_group-function which collects the type-equality sets of all  unifications in a dynamic pattern group. A dynamic pattern is syntaxically defined by all dynamic patterns from the left-most dynamic pattern to the right-most dynamic pattern or right hand side of a rule.

If each of these type-equality sets are empty i.e. it is an internal dynamic which does not require type definition checks, then the_close_unify_group-function immediately terminates.

The dynamic run-time system is sent:

· the module_name of the module which does the dynamic pattern match.

· the library identification which contains the module. This indentification is generated by the dynamic rts at library-load time.

· the group type-equality set which result from the union of type-equality sets.

If the type definitions are not equivalent according to the reply of the dynamic rts, then nothing is done. 

Otherwise the external dynamics are converted into internal ones by destructively replacing the TypeSpecification by a NoTypeSpecification.

StdDynamic.icl

* changes the T_ypeObjectType into:


:: T_ypeObjectType
= T_ypeConsSymbol T_ypeName T_ypeDefPtr






[T_ypeObjectType]





| ... (etc.)

  :: T_ypeName :== String

:: T_ypeDefPtr


// before or after failed type definitions check; created by writeDynamic


|  TypeSpecification !DynamicID


// after succeeded or compile-time performed type definition checks


|  TypeImplementation !DefiningModuleName 


// internal dynamics & dynamics on disk


|  NoTypeSpecification
  :: DefiningModuleName :== String

  :: DynamicID

· changes _unify (and _coerce) in:

_unify :: !T_ypeObjectType !T_ypeObjectType

· (Bool, [T_ypeObjectType],[(T_ypeName,T_ypeDefPtr,T_ypeDefPtr)])

If the T_ypeNames are not equal, then the unification fails.

If during unification the two compared T_ypeNames are equal and they have the same TypeImplementation-constructor, then unification succeeds because it is an internal dynamic.

Otherwise a three-tuple is built using the DefiningModuleName and T_ypeDefPtr’s of the two types being compared. The type definition equivalence check is carried out by the dynamic run-time system.

Dynamic run-time system

The dynamic run-time system 

· determines the equivalence of type definitions.

To determine the equivalence, the following case distinction is made on the T_ypeDefPtr’s of the tuple to determine the proper type definiton:

· TypeSpecification dynamic_id


The correct type definition is obtained by using the type-table of dynamic with 
identification dynamic_id.


· TypeImplementation defining_module_name

The library identification identifies the proper type-table. If the T_ypeName and the defining_module_name, have not been type redirected as marked, then  the correct type definition has been found.

Otherwise the type redirection is taken to locate the proper type definition.

Then the algorithm specified earlier is used to determine the equivalence of type definitions.
· provides an implementation when needed.


Wat voor een implementatie?


tijdstip waarop een implementatie wordt gelinkt.


// before or after failed type definitions check; created by writeDynamic


|  TypeSpecification !DynamicID


// after succeeded or compile-time performed type definition checks


|  TypeImplementation !DefiningModuleName 

Dynamic rts

Two tasks

· checking type definitions (take care of redirections)

· providing a correct implementation

· 
linking code

· 
doing redirections

WriteDynamics

· appends type info from dynamic rts.

Alias type in linker

Conversion functions

· Deal with libraries

