-Language Report -

concurrent

Clean

a general purpose, higher order, pure and lazy
functional programming language
based on graph rewriting
designed for the development of
sequential, parallel and distributed
real world applications

- Version 1.3 -

Copyright 1987 -1998

HILT - High Level Software Tools B.V.
and
University of Nijmegen

Rinus Plasmeijer

Marko van Eekelen

-Language Report -

concurrent

Clean

Preface

. Introduction . How to Obtain CLEAN

. More Information on CLEAN . Current State of the CLEAN System
About this Language Report . Copyright, Authors and Credits

. Some Remarks on the CLEAN Syntax . Final Remarks

Notational Conventions Used in this Report

Introduction

CoNCURRENT CLEAN is a practical applicable general purpose lazy pure functional programming language
suited for the development of real world applications.

CLEAN (Brus et al., 1987; NOcker et al., 1991; Plasmeijer and Van Eekelen, 1993) is well-known for its
many features and its fast compiler producing very efficient code (Smetsers et al., 1991).

CLEAN runs on a Mac, PowerMac, PC (Windows'95, WindowsNT, Linux and OS/2) and Sun.

In CLEAN we have incorporated those features we felt people really need to write real world programs
(such as records, arrays, higher order types, type classes, type constructor classes and much more) based
on our own experience with writing complicated applications.

People already familiar with other functional programming languages (such as Haskell (Hudak et al.,
1992), Gofer/Hugs (Jones, 1993), Miranda (Turner, 1985) and SML (Harper et al., 1986)) will have
no difficulty to program in CLEAN. We hope that you will enjoy CLEAN's rich collection of features,
CLEAN's compilation speed and the quality of the produced code (we generate native code for all plat-
forms we support).

CLEAN has many features among which some very special ones. Functional languages are usually im-
plemented using graph rewriting techniques. CLEAN is the only functional languages which basic se-
mantics is defined in terms of Term Graph Rewriting (Barendregt et al., 1987; Sleep et al., 1993,
Eekelen et al., 1997) thus providing a better framework for controlling the time space behaviour of
functional programs. Of particular importance for practical use is CLEAN’s Uniqueness Type System

ii CLEAN LANGUAGE REPORT VERSION 1.3

(Barendsen and Smetsers, 1993a) enabling the incorporation of destructive updates of arbitrary objects
within a pure functional framework and the creation of direct interfaces with the outside world.

CLEAN’s "unique" features have made it possible to predefine (in CLEAN) a sophisticated and efficient
I/0 library (Achten and Plasmeijer, 1992 & 1995). The CLeaN I/O library enables a CLEAN program-
mer to specify interactive window based 1/O applications on a very high level of abstraction. The library
forms a platform independent interface to window systems: one can port window based 1/O applications
written in CLEAN to different platforms without any modification of source code.

In the new 1.0 1/O library call-back functions and 1/O definitions can be defined on arbitrary local
states thus providing an object-oriented style of programming (Achten, 1996; Achten and Plasmeijer,
1997). Different kind of call-back functions and 1/O definitions can be active at the same time. This
makes it possible to combine different interactive CLEAN programs into a new application (a kind of
multi-tasking within the same application). The applications can be regarded as lightweight processes
which can communicate via files, shared state or message passing primitives ((a)synchronous message
passing, remote procedure call). All this is provided in apure, sequential functional world in which the
call-back functions act as indivisible event handlers.

CLEAN also has concurrency primitives to create functions which can be executed in parallel. It is also
possible to define distributed executing interactive applications running on several PC's/workstations
connected in a network. These options are being tested and will become available in future versions of
the system.

More Information on CLEAN

There is a separate manual in preparation describing the standard libraries (including the 1/O library)
which are available for CLEaN (Standard Libraries for CLeaN, Achten et al., 1998). The manual will be-
come available on the net (www.cs.kun.nl/~clean).

A book on functional programming in CLEAN is being written in collaboration with the Universities of
Utrecht, Leiden and the polytechnical Universities of Arnhem and Leeuwarden. The book contains lots
of case studies. A draft version of this book is available on the net (www.cs.kun.nl/~clean).

The basic concepts behind CLEAN (albeit version 0.8) as well as an explanation of the implementation
techniques used can be found in Plasmeijer and Van Eekelen (Adisson-Wesley, 1993).

There are many papers on the concepts introduced by the CLEAN group (such as term graph rewriting
(Barendregt et al., 1987), lazy copying (van Eekelen et al., 1991), abstract reduction (Nocker, 1993),
uniqueness typing (Barendsen and Smetsers, 1993, 1996), CLEANS I/O concept (Achten, 1996 & 1997),
Parallel CLEAN (Kesseler, 1991 & 1996). For the most recent information on papers and information
about CLEAN please check our web pages (www.cs.kun.nl/~clean).

About this Language Report

In this report the syntax and semantics of CLEAN version 1.3 are explained. We always give a motiva-
tion why we have included a certain feature. Although the report is not intended as introduction into
the language, we did our best to make it as readable as possible. Nevertheless, one sometimes has to
work through several sections spread all over the report.

At several places in this report context free syntax fragments of CLEAN are given. We sometimes repeat
fragments which are also given elsewhere just to make the description clearer (e.g. in the uniqueness
typing chapter we repeat parts of the syntax for the classical types). We hope that this is not confusing.
The complete collection of context free grammar rules are summarised in Appendix A.

PREFACE iii

Some Remarks on the CLEAN Syntax

The syntax of CLEAN is similar to the one used in most other modern functional languages. However,
there are a couple of small syntactic differences we want to point out here for people who don't like to
read language reports.

In CLEAN the arity of a function is reflected in its type. When a function is defined its uncurried type is
specified! To avoid any confusion we want to explicitly state here that in CLEAN there is no restriction
whatsoever on the curried use of functions. However, we don't feel a need to express this in every type.
Actually, the way we express types of functions more clearly reflects the way curried functions are in-
ternally treated.

The standard map function (arity 2) is specified in CLEAN as follows:

map::(a -> b) [a] -> [b]
map f [] =[]

map f [x:xs] = [f x:map f xs]

Each predefined structure such as a list, a tuple, a record or array has its own kind of brackets: lists are
always denotated with square brackets [...1, for tuples the usual parentheses are used (..., ...), curly
braces are used for records (indexed by field name) as well as for arrays (indexed by number).

In types funny symbols can appear like., u:, *, ' which can be ignored and left out if one is not inter-
ested in uniqueness typing or strictness.

There are only a few keywords in CLEAN leading to a heavily overloaded use of : and = symbols:

function::argstype -> restype /1 type specification of a function
function pattern | guard = rhs 1 definition of a function

sel ector = graph /1 definition of a constant/graph

sel ector =: graph /1 definition of a constant/CAF/graph
function args :==rhs /1 definition of a macro

1itype args = type /1 an algebraic data type definition
;:type args :== type /1 a type synonym definition

::type args 1 an abstract type definition

As is common in modern functional languages, there is a lay-out rule in CLEAN (see 2.3). For reasons of
portability it is assumed that a tab space is set to 4 white spaces and that a non-proportional font is
used.

Example (Function definition in CLEAN making use of the lay-out rule).

primes:: [Int]
primes = sieve [2..]
wher e
sieve:: [Int] ->[Int]
sieve [pr:r] = [pr:sieve (filter pr r)]

filter:: Int [Int] -> [Int]
filter pr [n:r]
| nmod pr ==
| otherwi se

filter prr
[n:filter pr r]

Notational Conventions Used in this Report

The following notational conventions are used in this report. Text is printed in Garamond 12pts,
the context free syntax descriptions are given in Geneva 9pts,
exanpl es of CGEAN prograns are given in Courier 9pts,
textual explanation to the examples are given in Garamond 10pts.
e Semantical restrictions are always given in a bulleted (¢) list-of-points. When these restrictions are

not obeyed they will almost always result in a compile-time error. In very few cases the restrictions

iv CLEAN LANGUAGE REPORT VERSION 1.3

can only be detected at run-time (array index out-of-range, partial function called outside the do-
main).

The following notational conventions are used in the context-free syntax descriptions:

[notion] means that the presence of notion is optional

{notion} means that notion can occur zero or more times

{notion}+ means that notion occurs at least once

{notion}-list means one or more occurrences of notion separated by comma's
terninals are printed inbol d 10 pts couri er

symbols are printed in italic

~ is used for concatenation of notions
{notion}fstr means the longest expression not containing the string st r

All CLEAN examples given in this report assume that the lay-out dependent mode has been chosen
which means that redundant semi-colons and curly braces are left out (see 1.3).

How to Obtain CLEAN

CoNCURRENT CLEAN and the CONCURRENT CLEAN INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)
can be used free of charge for educational purposes only. They can be obtained

e via World Wide Web (www.cs.kun.nl/~clean) or
e via ftp (ftp.cs.kun.nl in directory pub/Clean).

It is allowed to copy the system again for educational purposes only under the condition that the whole
distribution for a certain platform is copied, including help files, this language report and the copyright
notices.

For any use of CLEAN in a commercial environment a commercial license is required, which is not free of
charge. Information about commercial licenses can be obtained by contacting HILT (mail to ri-
nus@hilt.nl). For commercial users we supply additional utility software and give full technical support
to enable you to incorporate CLEAN and CLEAN applications successfully in your specific environment.

platform Macintosh PowerMac PC PC PC Sun Sun

oper. sys. MacOS MacOS Windows Linux 0s/2 Solaris Sun0OS

at least version | 6.0 7.1.2 '95 / NT ELF 2.0 2.0 4.1.2

processor Motorola PowerPC Intel Intel Intel Sparc Sparc

process. type any any >= 486 >= 486 >= 486 any any

window system [MacOS MacOS Windows Xview 0S/2 2.0 Xview/ Xview/
'95 / NT Open-Look Open-Look

Clean compiler | 1.3 13 1.3 1.3 11 1.3 11

Libraries

- Standard Env | yes yes yes yes yes yes yes

-0.81/0 Lib yes yes yes yes yes yes yes

-1.01/0 Lib yes yes soon - - - -

IDE C version Clean vrs. Cleanvrs. | no no no no

assembler not needed not needed not needed | gnu ass. not needed Sun ass. Sun ass.

linker included included included gnu linker OS2 linker Sun linker Sun linker

Code gen Sequential Sequential Sequential | Sequential Sequential Sequential Sequential

Profiler No Yes Time No No No No

RAM in PC

- minimal 4 Mb 8 Mb 8 Mb 8 Mb 8 Mb 8 Mb 8 Mb

- comfortable 8 Mb 16 Mb 16 Mb 16 Mb 16 Mb 16 Mb 16 Mb

Disk usage

- minimal 5 Mb 7 Mb 6 Mb 6 Mb 6 Mb 7 Mb 7 Mb

CoNCURRENT CLEAN is available on several platforms. The current situation is described in the Table
(please check our WWW-pages regularly to see the latest news). New versions of CLEAN in general ap-
pear first on WinDows and MAc systems. The other platforms are updated less frequently.

PREFACE \

The installation of the CLeaNn compiler is rather dependent on the kind of platform one is working on.
For each platform there is a ReadMe file which should help you to install properly. On the Mac's and
WiNnDow's systems ("95, NT) there is a dedicated CLEAN INTEGRATED DEVELOPMENT ENVIRONMENT
written in CLEAN including dedicated editor, library search facilities and a project manager. For the
PowerMac and Windows there is a time profiler, for the PowerMAc also a space profiler. For the
platforms without INTEGRATED DEVELOPMENT Environment one needs to use one of the standard
editors available on the platform. In that case a distribution includes the ciIm (Clean make) frontend
which will do the project management. We generate native code for all platforms.

The CLEAN compiler is set up to make parallel and distributed evaluation possible. This feature will be
made available later.

Current State of the CLEAN System

Release 1.3 (April 1998).

- Inarecord and array update one can directly update any substructure.

- There is a special selector for unique records and arrays which returns the selected element as well
as the unique record / array such that the record / array can be easily updated with a value depend-
ing on the selected element.

- The compiler and code generator optionally take user defined uniqueness type information into
account to perform compile-time garbage collection for unique data structures in simple cases.

- Atime profiler (PowerMac and Windows) and space profiler (PowerMac) has been added.

- Itis no longer required to import all constructors of an algebraic type, when the type is imported
explicitly.

- {and } are no longer treated in a special way by the lay-out rule.

- This manual has been restructured.

The new CLEAN 1.0 I/O library has been publicly released on the net (albeit for the MAac only).
The 1/0 library is improved (with respect to orthogonality, modularity, extendibility, portability).

- The I/O library is extended allowing to define interactive processes running interleaved inside one
application which can communicate via files, shared data and message passing.

- One can introduce and combine local states in any 1/O object.

- The I/O library provides an object-oriented style of programming.

- The description of the standard libraries has been moved from the language report to a separate
document available on the net.

The current release of the CLEAN system has the following limitations:

- The new CLEAN programming environment is only available for PowerMacs and Window systems
and needs improvement.

- The new CLEAN 1.0 1/O library is currently only available for the Mac. A Windows version is un-
der construction. For a description of the 0.8 1/O library we refer to the draft of the new CLEAN
book on the net and to the Addison-Wesley book (Plasmeijer and Van Eekelen, 1993).

- The Class mechanism can only have one type class variable which can only be instantiated with a
flat type. Due to this restriction we had to define the overloaded array operators in a rather com-
plicated way. This gives rise to a too complex class context for overloaded array operators. We are
working on this feature.

- Macros are at this moment substituted in an early stage of the compilation process. This may
cause cryptic error messages.

- Only simple variables can be used as array pattern.

- The arrow type constructor (->) cannot be used prefixed or used in a curried way.

- Annotations for parallelism are ignored. The distributed code generator is switched off. We are
working on it.

- Everything exported in a definition module still has to be repeated in the corresponding imple-
mentation module.

Sorry for all these inconveniences, we are working hard on it.

\ CLEAN LANGUAGE REPORT VERSION 1.3

Release 1.2.3 (June 1997). CLEAN is now also available for Windows ‘95 and Windows NT 4.0. The
compiler generates better error messages for uniqueness errors. Some bugs in the compiler have been
removed: Incorrect code was generated for some functions that return a Real; The compiler crashed on
some incorrect programs using array comprehensions; 1+0 was compiled as 1 0, instead of 1 + 0; Using
both # and a macro in the same function could crash the compiler for some macros; Two overloading
bugs have been removed; '#' is now allowed in operator definitions; (ppc) the compiler sometimes gen-
erated incorrect code for creating array of records with more than three elements; Arrays were printed
as _STRING_ or _ARRAY_, if the string or array was annotated as strict in a constructor or record; sfopen
gave inappropriate error message when opening a file for the second time; "toReal" for strings now also
allows a '+' before the exponent.; (ppc) fixed bug in sfreadline and freadline; scrolling bug in 10 library
fixed. Programming Environment bug fixes: The CLeaN IDE for Windows uses less memory during
editing and uses less processing time in the background. Directory names saved in the preference file
are now interpreted correctly and the editor no longer ignores all keys typed with both Control and Alt
shift keys pressed. The error that occurs when the linker cannot overwrite the application file no longer
cause the IDE to quit. Shift now reverses direction of searches; responds to quit events added (for ex-
ample during a shutdown); bug regarding copy/paste from other applications fixed; find error crash
(index out of range) fixed; scrolling bug fixed; some small selection bugs fixed; cursor is now obscured
when you start typing.

Release 1.2 (January 1997). For any expression local definitions can be introduced with a let expression.
We have introduced a new kind of let expression before a guard. Actions which have to be done in se-
quence can now much more intuitively be written down in such a sequential order. These new special
let expressions also have a special scope. It allows to reuse the name for a single threaded parameter.
Consequence is that for instance 1/0 actions can be written down in a more natural style (it looks im-
perative but it is not, of course). Guards can be nested. The syntax for algebraic types has been changed
for existential quantifiers. The type voi d in no longer a predefined type. Array comprehensions return
arrays with unique elements. Multidimensional arrays can now be used in selection patterns and
updates. Observation of unique objects is possible albeit for simple cases only (observation of objects of
basic type stored in unique structures and observations made by polymorphic projection functions). It
makes it more easy to inspect unique data structures before they are updated. It's no longer necessary to
place parentheses around lambda expressions when they are used as arguments. This is especially useful
when using a monadic programming style. The CLean compiler now gives warnings for functions that
are not used in a module and are not exported. No code is generated for these functions. The strictness
analyser is improved for guarded function alternatives. Some bugs in the compiler have been removed.
We generate slightly better code (e.g. for functions that return strict tuples). CLEAN’S native PowerMac
(MacOS) version is now released on the net. The old CLEAN 110 examples are rewritten to make use of
the new features in CLEAN 1.2. CLEAN’S 1.0 I/0 LIBRARY Will soon be released on the net for Mac and
PowerMAc. New CLEAN 1/0 examples for the new 1.0 library are made. The CLEAN PROGRAM
DEevVELOPMENT ENVIRONMENT has been improved. The language report has been updated for version
1.2 including a new chapter on 1/O. Still some work as to be done on the chapter about uniqueness

typing.

Release 1.1 (March 1996). The syntax and semantics of classes are improved. The overload declaration
Is incorporated in the class declaration. It is now also possible to combine uniqueness typing with type
(constructor) classes. Arrays can be used as an instantiation of classes. There are different kind of array
implementations for optimal efficiency (lazy, strict, unboxed). The class concept makes it possible to
define overloaded functions which can deal with all of them (although we are not yet completely happy
with the current solution). Uniqueness type attribute equations can now also be specified by the pro-
grammer. This allows the definition of higher order functions like "bi nd' such that they can now also be
applied to possibly unique arguments without enforcing unnecessary restrictions. A string is not a basic
type anymore but has become synonym for an (unboxed) array of character (the type stri ng is now de-
fined as type synonym in module st dst ri ng). Curly braces are used for arrays instead of the ugly '{:"
'} pair. Macro definitions can contain local definitions (which are substituted as well). Macros can be
applied curried. Constructors for which also functions are defined are kicked out (there were not used
very often and it complicated the compiler). The Standard Environment has slightly changed (sorry
about this inconvenience). Some operators and functions are moved to other modules to increase or-
thogonality. The priority of some operators have been changed. We also had to rename some functions
(e.g. # to si ze/l engt h and ## t0 maxi ndex) because these symbols are reserved for a handy syntax exten-
sion which will become available in the next release.

PREFACE Vii

CLEAN is ported to PowerMac (MacOS) (a native version which can generate native applications), Sun
(Solaris) en PC (Linux). The CLean 0.8 1/O library is ported to all these platforms as well. There is a
new CLEAN programming environment (written in CLeaN). We will improve this environment (we
know it is far from perfect yet) and will port it to all the other supported platforms. Some bugs in the
compiler have been removed. Some space leaks have been removed as well. More strictness is found (in
local definitions). We generate slightly better code.

Release 1.0.3 (October 1995). Some bugs in the compiler have been removed.

Release 1.0.2 (June 1995). CLEAN is ported to PC (OS/2) and Sun (SunQOS). The CLeaN 0.8 1/O li-
brary is ported to these platforms as well. Some bugs in the compiler have been removed.

Release 1.0.1 (April 1995). CLeaN 1.0 release on the Mac (Motorola). The most important changes in
the language are: CLEAN has been changed from an intermediate language to a functional programming
language with a syntax in the style of Miranda, Haskell and the like; so, various small syntactic sugar is
added (infix operators, a case construct, local function definitions, lambda-abstractions, list compre-
hensions, lay-out rule, etcetera); overloaded functions, type classes and type constructor classes can be
defined; records and arrays are added as predefined data structure with handy operations (such as an
update operator for arrays and records, array comprehensions etc.); a more refined control of strictness
Is possible (partially strict data structures can be defined for any type, in particular for recursive types,
there is strict let construct); the uniqueness typing is refined (now polymorphic and inferred, observa-
tion of uniquely typed objects is made easier); existentially quantified types can be defined. The com-
piler and code generator have been extended and are partly rewritten. Furthermore, the code generator
Is improved; the code generator is prepared for parallel and distributed evaluation;

Previous Releases. The first release of CLeAN was publicly available in 1987 and had version number 0.5
(at that time we thought half of the work was done, ; -)). At that time, CLEAN was only thought as an
intermediate language. Many releases followed. One of them was version 0.8 which is used in the
Plasmeijer & Van Eekelen Bible (Adisson-Wesley, 1993).

Copyright, Authors and Credits

CoNCURRENT CLEAN and the CONCURRENT CLEAN DEVELOPMENT SYSTEM are a product of

HILT - HIGH LEVEL SOFTWARE TOOLS B.V.,
The Netherlands.
HILT is a Dutch company owned by the CLEAN team founded to ensure excellent technical support for
commercial environments. HILT furthermore educates in functional programming and develops
commercial applications using CLEAN.

CLEAN, CoNCURRENT CLEAN and the CONCURRENT CLEAN DEVELOPMENT SYSTEM, copyright 1987
-1998, HILT B.V., The Netherlands.

CLEAN is a spin-off of the research performed by the research group on FUNCTIONAL PROGRAMMING
LANGUAGES, COMPUTING SCIENCE INSTITUTE, at the UNIVERSITY OF NIJMEGEN under the super-
vision of prof. dr. ir. Rinus Plasmeijer.

The CoNCURRENT CLEAN System is developed by:

Peter Achten: Sequential and distributed Event 1/O, 1/O library for the Mac.
John van Groningen: Code generators , CLEAN compiler , Profilers,

Low level interfaces, all machine wizarding.
Robert Holwerda: 1/0 library for Windows '95 & Windows NT.
Martin van Hintum: Integrated DEVELOPMENT ENVIRONMENT (CLEAN Version).
Marco Kesseler: Parallel code generator (ParSyTec (Transputer)).

Eric Nocker: Strictness analyser via abstract reduction, 1/O library for OS/2.

Viii CLEAN LANGUAGE REPORT VERSION 1.3

Leon Pillich: 1/0O library for the Sun.
Sjaak Smetsers: CLEAN compiler,

All type systems (including uniqueness typing and type classes),
Ron Wichers Schreur: Integrated DEVELOPMENT ENVIRONMENT , Testing,

Parser, Support, Porting, CLEAN distribution on the net.
Rinus Plasmeijer &
Marko van Eekelen: CLEAN language design.
Rinus Plasmeijer: Overall design and implementation supervision.

Special thanks to the following people:

Christ Aarts, Steffen van Bakel, Erik Barendsen, Henk Barendregt, Pieter Hartel, Hans Koetsier, Pieter
Koopman, Halbe Huitema, Sven Panne, Ronan Sleep and all the CLEAN users who helped us to get a
better system.

Many thanks to the following sponsors:

- the Dutch Technology Foundation (STW);

- the Dutch Foundation for Scientific Research (NWO);

- the International Academic Centre for Informatics (IACI);

- Kropman B.V., Installation Techniques, Nijmegen, The Netherlands;

- Hitachi Advanced Research Laboratories, Japan;

- the Dutch Ministry of Science and Education (the Parallel Reduction Machine project (1984-
1987)) who initiated the CONCURRENT CLEAN research;

- Esprit Basic Research Action (project 3074, SemaGraph: the Semantics and Pragmatics of Graph
Rewriting (1989-1991));

- Esprit Basic Research Action (SemaGraph Il working group 3646 (1992-1995));

- Esprit Parallel Computing Action (project 4106, (1990-1991));

- Esprit Il (TIP-M project area 11.3.2, Tropics: TRansparent Object-oriented Parallel Information
Computing System (1989-1990)).

A system like CLEAN cannot be produced without an enormous investment in time, effort and money. We
would therefore like to thank all commercial CLEAN users who are decent enough to pay the license royalties.

Final Remarks

We hope that CLEAN indeed enables you to program your applications in a convenient and efficient way. We
will continue to improve the language and the system. We greatly appreciate your comments and suggestions
for further improvements.

April 1998
Rinus Plasmeijer and Marko van Eekelen
Affiliation: CSlI HILT
COMPUTING SCIENCE HIGH LEVEL SOFTWARE
INSTITUTE TooLs B.V.
Mail address: University of Nijmegen, Universitair Bedrijven Centrum,
Toernooiveld 100, Toernooiveld 1,
6525 EC Nijmegen, 6525 ED Nijmegen,
The Netherlands. The Netherlands.
e-mail: rinus@cs.kun.nl rinus@hilt.nl
marko@cs.kun.nl marko@hilt.nl

Phone: +31 24 3652644 +31 24 3528827

PREFACE

Fax:

CLEAN on internet:
CLEAN oON ftp:

Questions about CLEAN:

Mailing lists::

+31 24 3652525 +31 24 3652525
www.cs.kun.nl/~clean www.hilt.nl
ftp.cs.kun.nl in pub/Clean

clean@cs.kun.nl info@hilt.nl

clean-request@cs.kun.nl, subject::help

concurrent

Clean

Table of Contents

Preface

Introduction

More Information on CLEAN

About this Language Report

Some Remarks on the CLEAN Syntax
Notational Conventions Used in this Report
How to Obtain CLEAN

Current State of the CLEAN System
Copyright, Authors and Credits

Final Remarks

Table of Contents

Basic Semantics

1.1 Graph Rewriting

1.1.1 A Small Example
1.2 Global Graphs
1.3 Key Features of CLEAN

Defining Modules

2.1 Identifiers, Scopes and Name Spaces
2.1.1 Naming Conventions of ldentifiers
2.1.2 Scopes and Name Spaces
2.1.3 Nesting of Scopes
2.2 Modular Structure of CLEAN Programs
2.3 Implementation Modules
2.3.1 The Main or Start Module
2.3.2 Scope of Global Definitions in Implementation Modules
2.3.3 Begin and End of a Definition: the Lay-Out Rule
2.4 Definition Modules
2.5 Importing Definitions
2.5.1 Explicit Imports of Definitions
2.5.2 Implicit Imports of Definitions
2.6 System Definition and Implementation Modules

Defining Functions

3.1 Defining Functions
3.2 Patterns 18
3.2.1 Constructor Patterns
3.2.2 Simple Constructor Patterns
3.2.3 Variables and Wildcards in Patterns

i
i
iii
iii
iv

vii
viii

Xii CLEAN LANGUAGE REPORT VERSION 1.3

3.2.4 Constant Values of Basic Type as Pattern
3.2.5 List Patterns
3.2.6 Tuple Patterns
3.2.7 Record Patterns
3.2.8 Array Patterns
3.3 Guards 21
3.4 Expressions
3.4.1 Applications
3.4.2 Constructor or Function Name
3.4.3 Graph Variables
3.4.4 Creating Constant Values of Basic Type
3.4.5 Creating Lists
3.4.6 Creating Tuples
3.4.7 Creating Records and Selection of Record Fields
3.4.8 Creating Arrays and Selection of Array Elements
3.4.9 Lambda Abstraction
3.4.10 Case Expression and Conditional Expression
3.4.11 Let Expression: Local Definitions for Expressions
3.5 Local Definitions
3.5.1 Where Block: Local Definitions for a Function Alternative
3.5.2 With Block: Local Definitions for a Guarded Alternative
3.5.3 Defining Local Functions
3.5.4 Defining Local Constants
3.6 Special Local Definitions
3.6.1 Strict Let Expression: Strict Local Constants
3.6.2 Let-Before Expression: Local Constants for a Guard

Defining Types

4.1 Predefined Types
4.1.1 Basic Types
4.1.2 Predefined Abstract Types
4.1.3 List Types
4.1.4 Tuple Types
4.1.5 Array Types
4.1.6 Arrow Types
4.2 Defining New Types
4.2.1 Defining Algebraic Data Types
4.2.2 Defining Record Types
4.2.3 Defining Synonym Types
4.2.4 Defining Abstract Data Types
4.3 Typing Functions
4.3.1 Typing Curried Functions
4.3.2 Typing Operators
4.3.3 Typing Partial Functions
4.4 Typing Overloaded Functions
4.4.1 Type Classes
4.4.2 Functions Defined in Terms of Overloaded Functions
4.4.3 Instances of Type Classes Defined in Terms of Overloaded Functions
4.4.4 Type Constructor Classes
4.5 Generic Instances
4.6 Default Instances
4.7 Defining Derived Members in a Class
4.8 A Shorthand for Defining Overloaded Functions
4.9 Classes Defined in Terms of Other Classes
4.4.10 Exporting Type Classes
4.4.11 Semantic Restrictions on Type Classes
4.4.12 The Costs of Overloading
4.5 Defining Uniqueness Types

4.
4.
4.
4.
4.

TABLE OF CONTENTS

4.5.1 Basic Ideas Behind Uniqueness Typing

4.5.2 Attribute Propagation

4.5.3 Defining New Types with Uniqueness Attributes
4.5.4 Uniqueness and Sharing

4.5.5 Combining Uniqueness Typing and Overloading
4.5.6 Higher-Order Type Definitions

4.5.7 Destructive Updates using Uniqueness Typing

Annotations and Directives

5.1 Annotations to Change Lazy Evaluation into Strict Evaluation
5.1.1 Advantages and Disadvantages of Lazy versus Strict Evaluation
5.1.2 Strict and Lazy Context
5.1.3 Space Consumption in Strict and Lazy Context
5.1.4 Time Consumption in Strict and Lazy Context
5.1.5 Changing Lazy into Strict Evaluation

5.2 Defining Graphs on the Global Level

5.3 Defining Macros

5.4 Process Annotations
5.4.1 Process Creation
5.4.2 Process Communication

5.5 Efficiency Tips

Context-Free Syntax Description

A.1 CLEAN Program
A.2 Import Definition
A.3 Function Definition
A.4 Macro Definition
A.5 Type Definition
A.6 Class Definition
A.7 Names 87

A.8 Denotations

Lexical Structure

B.1 Lexical Program Structure
B.2 Comments
B.3 Reserved Keywords and Symbols

Bibliography

Index 93

Clean
{ .

Basic Semantics

1.1 Graph Rewriting 1.3 Key Features of CLEAN
1.2 Global Graphs

The semantics of CLEAN is based on Term Graph Rewriting Systems (Barendregt, 1987; Plasmeijer and
Van Eekelen, 1993). This means that functions in a CLEAN program semantically work on graphs in-
stead of the usual terms. This enabled us to incorporate CLEAN’s typical features (definition of cyclic
data structures, lazy copying, uniqueness typing) which would otherwise be very difficult to give a pro-
per semantics for. However, in many cases the programmer does not need to be aware of the fact that
he/she is manipulating graphs Evaluation of a CLEAN program takes place in the same way as in other
lazy functional languages. One of the "differences” between CLEAN and other functional languages is
that when a variable occurs more than once in a function body, the semantics prescribe that the actual
argument is shared (the semantics of most other languages do not prescribe this although it is common
practice in any implementation of a functional language). Furthermore, one can label any expression to
make the definition of cyclic structures possible. So, people familiar with other functional languages
will have no problems writing CLEAN programs.

When larger applications are being written, or, when CLEAN is interfaced with the non-functional
world, or, when efficiency counts, or, when one simply wants to have a good understanding of the lan-
guage it is good to have some knowledge of the basic semantics of CLEAN which is based on term graph
rewriting. In this chapter a short introduction into the basic semantics of CLEAN is given. An extensive
treatment of the underlying semantics and the implementation techniques of CLEAN can be found in
Plasmeijer and Van Eekelen (1993).

1.1 Graph Rewriting

A CLEAN program basically consists of a number of graph rewrite rules (function definitions) which spec-
ify how a given graph (the initial expression) has to be rewritten

A graph is a set of nodes. Each node has a defining node-identifier (the node-id). A node consists of a
symbol and a (possibly empty) sequence of applied node-id's (the arguments of the symbol) Applied node-
ids can be seen as references (arcs) to nodes in the graph, as such they have a direction: from the node in
which the node-id is applied to the node of which the node-id is the defining identifier.

Each graph rewrite rule consists of a left-hand side graph (the pattern) and a right-hand side (rhs) consist-
ing of a graph (the contractum) or just a single node-id (a redirection). In CLEAN rewrite rules are not
comparing: the left-hand side (lhs) graph of a rule is a tree, i.e. each node identifier is applied only
once, so there exists exactly one path from the root to a node of this graph.

A rewrite rule defines a (partial) function The function symbol is the root symbol of the left-hand side
graph of the rule alternatives. All other symbols that appear in rewrite rules, are constructor symbols.

The program graph is the graph that is rewritten according to the rules. Initially, this program graph is
fixed: it consists of a single node containing the symbol st art, so there is no need to specify this graph

2 CLEAN LANGUAGE REPORT VERSION 1.3

in the program explicitly. The part of the graph that matches the pattern of a certain rewrite rule is cal-
led a redex (reducible expression). A rewrite of a redex to its reduct can take place according to the right-
hand side of the corresponding rewrite rule. If the right-hand side is a contractum then the rewrite
consists of building this contractum and doing a redirection of the root of the redex to root of the
right-hand side. Otherwise, only a redirection of the root of the redex to the single node-id specified on
the right-hand side is performed. A redirection of a node-id n; to a node-id no means that all applied
occurrences of ny are replaced by occurrences of na (which is in reality commonly implemented by
overwriting ny with ny).

A reduction strategy is a function that makes choices out of the available redexes. A reducer is a process
that reduces redexes that are indicated by the strategy. The result of a reducer is reached as soon as the
reduction strategy does not indicate redexes any more. A graph is in normal form if none of the patterns
in the rules match any part of the graph. A graph is said to be in root normal form when the root of a
graph is not the root of a redex and can never become the root of a redex. In general it is undecidable
whether a graph is in root normal form.

A pattern partially matches a graph if firstly the symbol of the root of the pattern equals the symbol of
the root of the graph and secondly in positions where symbols in the pattern are not syntactically equal
to symbols in the graph, the corresponding sub-graph is a redex or the sub-graph itself is partially
matching a rule. A graph is in strong root normal form if the graph does not partially match any rule. It
is decidable whether or not a graph is in strong root normal form. A graph in strong root normal form
does not partially match any rule, so it is also in root normal form.

The default reduction strategy used in CLEAN is the functional reduction strategy. Reducing graphs ac-
cording to this strategy resembles very much the way execution proceeds in other lazy functional lan-
guages: in the standard lambda calculus semantics the functional strategy corresponds to normal order
reduction. On graph rewrite rules the functional strategy proceeds as follows: if there are several rewrite
rules for a particular function, the rules are tried in textual order; patterns are tested from left to right;
evaluation to strong root normal form of arguments is forced when an actual argument is matched
against a corresponding non-variable part of the pattern. A formal definition of this strategy can be
found in (Toyama et al., 1991).

11.1 A Small Example

Consider the following CLEAN program:

Add Zero z
Add (Succ a) z

z (1)
Succ (Add a z) (2)

Start

Add (Succ o) o
wher e
0 = Zero (3)

In CLEAN a distinction is between function definitions (graph rewriting rules) and graphs (constant def-
initions). A semantlc equivalent definition of the program above is given below where this distinction is

made explicit ("=>" indicates a rewrite rule whereas "=: " is used for a constant (sub-) graph definition
Add Zero z = z (D
Add (Succ a) z=> Succ (Add a z) (2)
Start => Add (Succ o) o
wher e
0 = Zero (3)

These rules are internally translated to a semantically equivalent set of rules in which the graph struc-
ture on both left-hand side as right-hand side of the rewrite rules has been made explicit by adding
node-ids. Using the set of rules with explicit node-ids it will be easier to understand what the meaning
is of the rules in the graph rewriting world.

X
y

Add y z
Zero = z (1

BASIC SEMANTICS 3

X = Addy z
y = Succ a = m= Succ n

n = Add a z (2)
x = Start = m= Addno

n = Succ o

o = Zero (3)

The fixed initial program graph that is in memory when a program starts is the following:

The initial graph in linear notation: The initial graph in pictorial notation:
@at aRoot = Graph @t art Node @DataRoot=:Graph
@t ar t Node = Start \L

@StartNode=:Start

To distinguish the node-ids appearing in the rewrite rules from the node-ids appearing in the graph the
latter always begin with a ‘@.

The initial graph is rewritten until it is in normal form. Therefore a CLEAN program must at least con-
tain a " start rule™ that matches this initial graph via a pattern. The right-hand side of the start rule spe-
cifies the actual computation. In this start rule in the left-hand side the symbol start is used. However,
the symbols araph and 1 ni tial (see next Section) are internal, so they cannot actually be addressed in
any rule.

The patterns in rewrite rules contain formal node-ids. During the matching these formal node-ids are
mapped to the actual node-ids of the graph After that the following semantic actions are performed:

The start node is the only redex matching rule (3). The contractum can now be constructed:

The contractum in linear notation: The contractum in pictorial notation:
@ = Add @ @ @A:Add
@ =: Succ @ / \
= Zero

@
@B=:Succ @C=:Zero
A

]

All applied occurrences of @st art Node Will be replaced by occurrences of @. The graph after rewriting is
then:

The graph after rewriting: Pictorial notation:

@at aRoot = Gaph @\ @DataRoot=:Graph
@tartNode = Start ;

- v
% = gjdgc % @ @StartNode=:Start
@ =: Zero

v
@A=:Add

/N

@B=:Succ @C=:Zero
L

This completes one rewrite. All nodes that are not accessible from @pat aRoot are garbage and not consi-
dered any more in the next rewrite steps. In an implementation once in a while garbage collection is
performed in order to reclaim the memory space occupied by these garbage nodes. In this example the
start node is not accessible from the data root node after the rewrite step and can be left out.

4 CLEAN LANGUAGE REPORT VERSION 1.3

The graph after garbage collection: Pictorial notation :
@ataRoot =1 Qaph @ @DataRoot=:Graph
@= Ad BT \L
S e T @A=:Add

SN

@B=:Succ @C=:Zero
7

The graph accessible from @pat aRoot still contains a redex. It matches rule 2 yielding the expected nor-
mal form:

The final graph: Pictorial notation :

@at aRoot =1 Q@ aph @ @DataRoot=:Graph

@ =. Succ @

@ = zero @D=:Succ
@C=:Zero

The fact that graphs are being used in CLEAN gives the programmer the ability to explicitly share terms
or to create cyclic structures. In this way time and space efficiency can be obtained.

1.2 Global Graphs

Due to the presence of global graphs in CLeAN the initial graph in a specific CLEAN program is slightly
different from the basic semantics. In a specific CLEAN program the initial graph is defined as:

@at aRoot =1 G aph @tartNode @H obld; @ obldy ...@ obld,
@tartNode =: Start

@ obldy = Initial
@ obldy = Initial
@ obld, = Initial

The root of the initial graph will not only contain the node-id of the start node, the root of the graph
to be rewritten, but it will also contain for each global graph (see 5.2) a reference to an initial node
(initialised with the symbol 1ni tial). All references to a specific global graph will be references to its
initial node or, when it is rewritten, they will be references to its reduct.

1.3 Key Features of CLEAN

On top of the Graph Rewriting System a full featured functional programming language is defined.
The most important features we added to CLEAN are:

- CLeaNis a lazy, pure, higher order functional programming language with explicitgraph rewriting se-
mantics; one can explicitly define the sharing of structures (cyclic structures as well) in the language;

- Although CLeAN is by default a lazy language one can smoothly turn it into a strict language to ob-
tain optimal time/space behaviour: functions can be defined lazy as well as (partially) strict in their
arguments; any (recursive) data structure can be defined lazy as well as (partially) strict in any of its
arguments;

- CLEAN is a strongly typed language based on an extension of the well-known Milner / Hindley /
Mycroft type inferencing/checking scheme (Milner 1978; Hindley 1969; Mycroft 1984) including
the common polymorphic types, abstract types, algebraic types, and synonym types extended with a re-
stricted facility for existentially quantified types;

BASIC SEMANTICS 5

- Type classes and type constructor classes are provided to make overloaded use of functions and opera-
tors possible.

- CLeaN offers the following predefined types: integers, reals, Booleans, characters, lists, tuples, records,
arrays and files;

- CLEAN’s key feature is a polymorphic uniqueness type inferencing system, a special extension of the
Milner / Hindley / Mycroft type inferencing/checking system allowing a refined control over the
single threaded use of objects; with this uniqueness type system one can influence the time and space
behaviour of programs; it can be used to incorporate destructive updates of objects within a pure
functional framework, it allows destructive transformation of state information, it enables efficient in-
terfacing to the non-functional world (to C but also to 1/O systems like X-Windows) offering di-
rect access to file systems and operating systems;

- CLEAN is a modular language allowing separate compilation of modules; one defines implementation
modules and definition modules; there is a facility to implicitly and explicitly import definitions
from other modules;

- CLEAN offers a sophisticated 1/O library with which window based interactive applications (and the
handling of menus, dialogues, windows, mouse, keyboard, timers and events raised by sub-applicati-
ons) can be specified compactly and elegantly on a very high level of abstraction;

- Specifications of window based interactive applications can be combined such that one can create
several applications (sub-applications or light-weight processes) inside one CLEAN application. Auto-
matic switching between these sub-applications is handled in a similar way as under a multi-finder
(all low level event handling for updating windows and switching between menus is done automa-
tically); sub-applications can exchange information with each other (via files, via clipboard copy-
paste like actions using shared state components, via asynchronous message passing) but also with
other independently programmed (CLEAN or other) applications running on the same or even on a
different host system;

- Sub-applications can be created on other machines which means that one can define distributed
window based interactive CLEAN applications communicating e.g. via (a)synchronous message passing
and remote procedure calls across a local area network;

- Dynamic process creation is possible; processes can run interleaved or in parallel; arbitrary process to-
pologies (for instance cyclic structures) can be defined; the interprocess communication is synchro-
nous and is handled automatically simply when one function demands the evaluation of its argu-
ments being calculated by another process possibly executing on another processor;

- Due to the strong typing of CLEAN and the obligation to initialise all objects being created run-
time errors can only occur in a very limited number of cases: when partial functions are called with ar-
guments out of their domain (e.g. dividing by zero), when arrays are accessed with indices out-of-
range and when not enough memory (either heap or stack space) is assigned to a CLEAN applica-
tion;

- Programs written in CLeaN using the 0.8 1/O library can be ported without modification of source
code to anyone of the many platforms we support (see the Preface for an overview).

Clean
{ :

Defining Modules

2.1 Identifiers, Scopes and Name Spaces 2.4 Definition Modules
2.2 Modular Structure of CLEAN Programs 2.5 Importing Definitions
2.3 Implementation Modules 2.6 System Definition and Implementation Modules

A CLEAN program is composed out of modules. Each module is stored in a file which contains CLEAN
source code. There are implementation modules and definition modules, in the spirit of Modula-2
(Wirth, 1982). This module system is used for several reasons.

First of all, the module structure is used to control the scope of definitions. The basic idea is that defi-
nitions only have a meaning in the implementation module they are defined in unless they are exported
by the corresponding definition module.

Having the exported definitions collected in a separate definition module has as advantage that one also
obtains a self-contained interface document one can reach out to others. The definition module is a
document which defines what can be used by others and how it can be used without revealing uninter-
esting implementation details.

Furthermore, the module structure enables separate compilation which heavily reduces compilation
time. An implementation module can be changed without the need of recompiling other modules.
When the contents of a definition module is changed only those modules which are affected by this
change need to be recompiled.

In this Chapter we explain the module structure of CLeAN and the influence it has on the scope of def-
initions. Nlew scopes can also be introduced inside modules. This is further explained in the Chapters 2
and 3

In the pictures in the subsections below nested scopes are indicated by nested boxes.

2.1 Identifiers, Scopes and Name Spaces

2.1.1 Naming Conventions of Identifiers

In CLeAN we distinguish the following kind of identifiers.

ModuleName = LowerCaseld | UpperCaseld| Funnyld
FunctionName = LowerCaseld | UpperCaseld| Funnyld
ConstructorName = UpperCaseld| Funnyld
SelectorVariable = LowerCaseld

Variable = LowerCaseld

MacroName = LowerCaseld | UpperCaseld| Funnyld
FieldName = LowerCaseld

TypeName = UpperCaseld| Funnyld
TypeVariable = LowerCaseld

UniqueTypeVariable = LowerCaseld

ClassName = LowerCaseld | UpperCaseld| Funnyld
LowerCaseld = LowerCaseChar~{ldChar}

UpperCaseld = UpperCaseChar~{ldChar}

8 CLEAN LANGUAGE REPORT VERSION 1.3

| Funnyld = {SpecialChar}+
LowerCaseChar = a | b | ¢ | d | e | f | g | h | i |]
| kK || m | n | o | p | a | r | s | t
[u | v | w | x | vy | z
UpperCaseChar = A | B | C | D | E | F | G | H | | | 3
| K | L | M| N | O] P | Q| R | S | T
v | v | W | X | Y | Z
SpecialChar =~ | @e| # | $ | % | ~ | 2?2 | !
I + I - <> & =
IdChar = LowerCaseChar
| UpperCaseChar
| Digit
o
| Digit =0 | 212 | 2 || 3 | 4 | 51| 6 | 7 1|1 8 | 9

The convention used is that variables always start with a lowercase character while constructors and
types always start with an uppercase character. The other identifiers can either start with an uppercase
or a lowercase character. Notice that for the identifiers names can be used consisting of a combination
of lower and/or uppercase characters but one can also define identifiers constructed from special charac-
ters like +, <, etc. (see Appendix A). These two kind of characters cannot be mixed in one identifier.
This makes it possible to leave out white space in expressions like a+1 (same asa + 1).

2.1.2 Scopes and Name Spaces

The scope is the program region in which definitions (e.g. function definition, class definition, macro
definition, type definition) with the identifiers introduced (e.g function name, class name, class vari-
able, macro name, type constructor name, type variable name) have a meaning.

It must be clear from the context to which definition an identifier is referring. If all identifiers in a
scope have different names than it will always be clear which definition is meant. However, one gener-
ally wants to have a free choice in naming identifiers. If identifiers belong to different name spaces no
conflict can arise even if the same name is used. In CLEAN the following name spaces exist:

- ModuleNames form a name space;

- FunctionNames, ConstructorNames, SelectorVariables, Variables and MacroNames form a name
space;

- FieldNames form a name space;

- TypeNames, TypeVariables and UniqueTypeVariables form a name space;

- ClassNames form a name space.

So, it is allowed to use the same identifier name for different purposes as long as the identifier belong to
different name spaces.

» Identifiers belonging to the same name space must all have different names within the same scope.

Under certain conditions it is allowed to use the same name for different functions and operators
(overloading, see 4.4).

2.13 Nesting of Scopes

Reusing identifier names is possible by introducing a new scope level. Scopes can be nested: within a
scope a new nested scope can be defined. Within such a nested scope new definitions can be given, new
names can be introduced. As usual it is allowed in a nested scope to redefine definitions or reuse names
given in a surrounding scope. When a name is reused the old name and definition is no longer in scope
and cannot be used in the new scope. A definition given or a name introduced in a (nested) scope has
no meaning in surrounding scopes. It has a meaning for all scopes nested within it (unless they are
redefined within such a nested scope).

DEFINING MODULES 9

2.2 Modular Structure of CLEAN Programs

A CLEAN program consists of a collection of definition modules and implementation modules. An imple-
mentation module and a definition module correspond to each other if the names of the two modules
are the same. The basic idea is that the definitions given in an implementation module only have a
meaning in the module in which they are defined unless these definitions are exported by putting them
into the corresponding definition module. In that case the definitions also have a meaning in those
other modules in which the definitions are imported (see 2.5).

CLEANProgram
Module

{Module}+

DefinitionModule

ImplementationModule

defi ni ti on nodul e ModuleName ;
{DefDefinition}

| systemmodul e ModuleName ;
{DefDefinition}

[i npl enent at i on] modul e ModuleName ;
{ImplDefinition}

DefinitionModule

ImplementationModule

e An executable CLEAN program consists at least of one implementation module, the main or start
module, which is the top-most module (root module) of a CLEAN program.

e Each CLEAN module has to be put in a separate file.

e The name of a module (i.e. the module name) should be the same as the name of the file (minus
the suffix) in which the module is stored.

e Adefinition module should have .dcl as suffix, an implementation module should have .icl as suffix.

e Adefinition module can have at most one corresponding implementation module.

e Every implementation module (except the main module, see 2.3.1) must have a corresponding
definition module.

2.3 Implementation Modules

2.3.1 The Main or Start Module

In the main module a start rule has to be defined (see Chapter 1).

Only in the main module one can leave out the keyword i npl enent at i on in the module header. In
that case the implementation module does not need to have a corresponding definition module
(which makes sense for a top-most module).

Example (a very tiny but complete CLEAN program consisting of one implementation module):
nmodul e hel l o

Start = "Hello Wrld!'"

Evaluation of a CLEAN program consists of the evaluation of the application defined in the right-hand
side of the start rule to normal form (see Chapter 1). The right-hand side of the start rule is regarded
to be the initial expression to be computed.

It is allowed to have a start rule in other implementation modules as well. This can be handy for test-
ing functions defined in such a module: to evaluate such a start rule simply generate an application
with the module as root and execute it.

The definition of the left-hand side of the Start rule consists of the symbol st art with one optional ar-
gument (of type *wor i d), which is the environment parameter which is necessary to write interactive
applications.

A CLEAN programs can run in two modes.

10 CLEAN LANGUAGE REPORT VERSION 1.3

I/O Using the Console

The first mode is a console mode. It is chosen when the start rule is defined as a nullary function.

Start:: TypeO StartFunction
Start = ... /1l initial expression

In the console mode, that part of the initial expression (indicated by the right-hand side of the st art
rule) which is in root normal form (also called the head normal form or root stable form), is printed as
soon as possible. The console mode can be used for instance to test or debug functions.

One can choose to print the result of a start expression with or without the data constructors. For ex-
ample, the initial expression

Start:: String
Start = "Hello Wrld!"

in mode "show data constructors™ will print: "Hel 1 o verid! ", in mode "don't show data constructors™
it will print: Hel 1o verl d!

/0 on the Unique World

The second mode is the world mode. It is chosen when the optional additional parameter (which is of
type *wer | d) is added to the start rule and delivered as result.

Start:: *Wrld -> *Wrld
Start w= ... /1 initial expression returning a changed world

The world which is given to the initial expression is an abstract data structure, an abstract world of type
=wor | d which models the concrete physical world as seen from the program. The abstract world can in
principle contain anything what a functional program needs to interact during execution with the con-
crete world. The world can be seen as a state and modifications of the world can be realised via state
transition functions defined on the world or a part of the world. By requiring that these state transition
functions work on a unique world the modifications of the abstract world can directly be realised in the
real physical world, without loss of efficiency and without losing referential trangparency (see Chapter

4)

The concrete way in which one can handle the world in CLEAN is determined by the system program-
mer. One way to handle the world is by using the predefined CLeaN I/O library which can be regarded
as a platform independent mini operating system. It makes it possible to do file 1/0, window based
I/0O, dynamic process creation and process communication in a pure functional language in an efficient
way. The definition of the 1/O library is treated in a separate document (Standard Libraries for CLEAN,
Achten et al., 1998).

2.3.2 Scope of Global Definitions in Implementation Modules

In an implementation module the following global definitions can be specified in any order.

ImplDefinition = ImportDef Il see25
| FunctionDef /I see Chapter 3
| GraphDef /I see3.5.4
| MacroDef /I see Chapter 5
| TypeDef /I see Chapter 4
| ClassDef Il seedd

Definitions on the global level (= outermost level in the module,) have in principle the whole implemen-
tation module as scope (see Figure 2.1).

DEFINING MODULES 11

i mpl ement ati on nmodul e XXX

g Typel\hnelvars = definition |

functionl\ﬁne::latype -> rtypel /1

functi onNarre' args = body |

cl ass cl assNane|= expressi on

nacrol\hrre'args = expression |

Figure 2.1 (Scope of global definitions inside an implementation module).

Types can only be defined globally (see Chapter 4 and 6) and therefore always have a meaning in the
whole implementation module. Type variables introduced on the left-hand side of a (algebraic, record,
synonym, overload, class, instance, function, graph) type definition have the right-hand side of the type
definition as scope.

Functions, the type of these functions, constants (selectors) and macros can be defined on the global
level as well as on a local level in nested scopes. When defined globally they have a meaning in the
whole implementation module. Arguments introduced on the left-hand side of a definition (formal ar-
guments) only have a meaning in the corresponding right-hand side.

Functions, the type of these functions, constants (selectors) and macros can also be defined locally in a
new scope. However, new scopes can only be introduced at certain points. In functional languages local
definitions are by tradition defined by using let-expressions (definitions given before they are used in a
certain expression, nice for a bottom-up style of programming) and where-blocks (definitions given af-
terwards, nice for a top-down style of programming). These constructs are explained in detail in
Chapter 3.

2.3.3 Begin and End of a Definition: the Lay-Out Rule

CLEAN modules can be written in two modes: lay-out sensitive mode 'on' and 'off'. The lay-out sensi-
tive mode is switched off when a semi-colon is specified after the module name. In that case each defi-
nition has to be ended with a semicolon *; *. A new scope has to begin with '{" and ends with a '} . This
mode is handy if CLEAN code is generated automatically (e.g. by a compiler).

Example (example of a CLEAN program not using the lay-out rule).
nodul e pri nes;
i nport StdEnv;

prinmes:: [Int];
primes = sieve [2..];
wher e
{ sieve:: [Int] ->[Int];
sieve [pr:r] = [pr:sieve (filter pr r)];

filter:: Int [Int] ->[Int];

filter pr [n:r]

| nmod pr == 0 =filter pr r;

| otherw se =[n:filter pr r];

}

Programs look a little bit old fashioned C-like in this way. Functional programmers generally prefer a
more mathematical style. Hence, as is common in modern functional languages, there is a lay-out rule

12 CLEAN LANGUAGE REPORT VERSION 1.3

in CLEAN. When the definition of the module header of a module is not ended by a semicolon a CLEAN
program has become lay-out sensitive. The lay-out rule assumes the omission of the semi-colon (; ")
that ends a definition and of the braces (‘{" and '} ') that are used to group a list of definitions. These
symbols are automatically added according to the following rules:

In lay-out sensitive mode the indentation of the first lexeme after the keywords 1 et, #, let!, #!, of,
wher e, OF wi t h determines the indentation that the group of definitions following the keyword has to
obey. Depending on the indentation of the first lexeme on a subsequent line the following happens. A
new definition is assumed (and a semicolon is inserted) if the lexeme starts on the same indentation,
except for the following lexemes: |, #, #!, where Or wi t h. A previous definition is assumed to be
continued if the lexeme is indented more. The group of definitions ends (and a close brace is inserted)
if the lexeme is indented less. Global definitions are assumed to start in column 0.

We strongly advise to write programs in lay-out sensitive mode. For reasons of portability it is assumed
that a tab space is set to 4 white spaces and that a non-proportional font is used.

Example (same program using the lay-out sensitive mode).
nodul e pri mes
i nport StdEnv

primes:: [Int]
primes = sieve [2..]
wher e
sieve:: [Int] -> [Int]
sieve [pr:r] = [pr:sieve (filter pr r)]

filter:: Int [Int] -> [Int]

filter pr [n:r]

| nmod pr == 0 =filter prr

| otherw se =[n:filter pr r]

2.4 Definition Modules

The definitions given in an implementation module only have a meaning in the module in which they
are defined. If you want to export a definition, you have to specify the definition in the corresponding
definition module. Some definitions can only appear in implementation modules, not in definition
modules. The idea is to hide the actual implementation from the outside world. This is good for soft-
ware engineering reasons while another advantage is that an implementation module can be recompiled
separately without a need to recompile other modules. Recompilation of other modules is only neces-
sary when a definition module is changed. All modules depending on the changed module have to be
recompiled as well. Implementations of functions, graphs and class instances are therefore only allowed
in implementation modules. They are exported by only specifying their type definition in the definition
module. Also the right-hand side of any type definition can remain hidden. In this way an abstract data
type is created (see 4.2.4).

In a definition module the following global definitions can be given in any order.

DefDefinition = ImportDef Il see25
| FunctionTypeDef /I seed3
| MacroDef /I seeb5.3
| TypeDef /I see Chapter 4
| ClassDef Il see25
| TypeClassinstanceExportDef Il see25

e The definitions given in an implementation module only have a meaning in the module in which
they are defined (see 2.3) unless these definitions are exported by putting them into the correspon-
ding definition module. In that case they also have a meaning in those other modules in which the
definitions are imported (see 2.5).

DEFINING MODULES 13

e The definitions (with exception of TypeClassinstanceExportDef's) given in a definition module have
to be repeated in the corresponding implementation module (this restriction will be removed in a
future version of CLEAN).

e In the corresponding implementation module all exported definitions have to get an appropriate
implementation (this holds for functions, abstract data types, class instances).

e An abstract data type is exported by specifying the left-hand side of a type rule in the definition
module. In the corresponding implementation module the abstract type has to be defined again but
the right-hand side has to be defined as well. It can be either an algebraic type, record type or syn-
onym type definition. For such an abstract data type only the name of the type is exported but not
its definition.

e Afunction, global graph or class instance is exported by repeating the type header in the definition
module. For optimal efficiency it is recommended also to specify strictness annotations (see 5.1).
For library functions it is recommended also to specify the uniqueness type attributes (see Chapter
4). The implementation of the function, graph, class instance has to be given in the implementa-
tion module.

Example (definition module):

definition nodul e Conpl ex

:: Conpl ex /1l abstract type definition

re:: !Conpl ex -> Real /1 type of function taking the real part of a complex number
im: !Conplex -> Real /1 type of function taking the imaginary part of a complex
nkconpl ex:: !'Real !'Real -> Conpl ex /1 type of function making a complex number

Example (corresponding implementation module):
i npl ement ati on nodul e Conpl ex
::Conpl ex :== (! Real ,!Real) /1l concrete type, in this case it is a type synonym

re:: !Conplex -> Real /1 type of function followed by its implementation
re (frst,) = frst

im: !Conplex -> Real
im(_,scnd) = scnd

nkconpl ex:: !'Real !Real -> Conpl ex
nkconpl ex frst scnd = (frst, scnd)

2.5 Importing Definitions

Via an import statement a definition exported by a definition module (see 2.4) can be imported into any
other (definition or implementation) module. There are two kind of import statements, explicit imports
and implicit imports.

ImportDef = ImplicitimportDef
| ExplicitimportDef

A module depends on another module if it imports something from that other module
e Cyclic dependencies of definition modules are prohibited, i.e. if a definition module Mz depends
on another definition module M» then M3 is not allowed to depend on M.

251 Explicit Imports of Definitions

Explicit imports are import statements in which the modules to import from as well as the identifiers
indicating the definitions to import are explicitly specified.

ExplicitimportDef
Imports

= fromModuleName i npor t {Imports}-list ;
= FunctionName

| ConstructorName

| SelectorVariable

14 CLEAN LANGUAGE REPORT VERSION 1.3

| FieldName
| MacroName
| TypeName
| ClassName

All identifiers explicitly being imported in a definition or implementation module will be included in
the global scope level (= outermost scope, see 2.3.2) of the module which does the import. Importing
identifiers can cause error messages because the imported identifiers may be in conflict with other
identifiers in this scope (remember that identifiers belonging to the same name space must all have dif-
ferent names within the same scope, see 2.1). This problem can be solved by renaming the internally
defined identifiers or by renaming the imported identifiers (e.g. by adding an additional module layer
just to rename things).

Example (explicit import):
i npl ement ati on nodul e XXX

from Conpl ex inport Conplex, re, im nkconpl ex

252 Implicit Imports of Definitions

| ImplicitimportDef = inport {ModuleName}-list ;

Implicit imports are import statements in which only the module name to import from is mentioned. In
this case all definitions that are exported from that module are imported as well as all definitions that on
their turn are imported in the indicated definition module, and so on. So, all related definitions from
various modules can be imported with one single import. This opens the possibility for definition mod-
ules to serve as a kind of 'pass-through' module Hence, it is meaningful to have definition modules with
import statements but without any definitions and without a corresponding implementation module.;

Example (implicit import): all (arithmetic) rules which are predefined can be imported easily with one import statement:
i nport MySt deEnv

importing implicitly all definitions imported by the definition module *StdEnv' which is defined below (note that de-
finition module ' StdEnv' does not have a corresponding implementation module) :

definition modul e MySt dEnv

i nport
StdBool, StdChar, Stdint, StdReal, StdString

All identifiers implicitly being imported in a definition or implementation module will be included in
the global scope level (= outermost scope, see 2.3.2) of the module which does the import. Importing
identifiers can cause error messages because the imported identifiers may be in conflict with other
identifiers in this scope (remember that identifiers belonging to the same name space must all have dif-
ferent names within the same scope, see 2.1). This problem can be solved by renaming the internally
defined identifiers or by renaming the imported identifiers (e.g. by adding an additional module layer
just to rename things).

2.6 System Definition and Implementation Modules

System modules are special modules. A system definition module indicates that the corresponding im-
plementation module is a system implementation module which does not contain ordinary CLEAN rules.
In system implementation modules it is allowed to define foreign functions: the bodies of these foreign
functions are written in another language than CLEAN. System implementation modules make it possi-
ble to create interfaces to operating systems, to file systems or to increase execution speed of heavily
used functions or complex data structures. Typically, predefined function and operators for arithmetic
and File 1/0 are implemented as system modules.

System implementation modules may use machine code, C-code, abstract machine code (PABC-code)
or code written in any other language. What exact is allowed is dependent from the CLEAN compiler

DEFINING MODULES 15

used and the platform for which code is generated. The keyword code is reserved to make it possible to
call code written in a foreign language from CLeAN programs. This is not treated in this reference man-
ual.

When one writes system implementation modules one has to be very careful because the correctness of

the functions can no longer be checked by the CLeaN compiler. Therefore, the programmer is now res-

ponsible for the following:

' The function must be correctly typed.

' When a function destructively updates one of its (sub-)arguments, the corresponding type of the
arguments should have the uniqueness type attribute. Furthermore, those arguments must be
strict.

Clean
{ ;

Defining Functions

3.1 Defining Functions 3.4 Expressions
3.2 Patterns 3.5 Local Definitions
3.3 Guards 3.6 Special Local Definitions

In this Section function definitions are treated (actually: graph rewrite rules). Operator definitions are re-
garded as special kind of function definitions (see 3.1 and 4.3). The body of a function consists of a
root expression(see 3.4). With the help of patterns (see 3.2) and guards (see 3.3) a distinction can be
made between several alternative definitions for a function. Functions and graphs can be defined locally
in a function definition (see 3.5). For programming convenience (forcing evaluation, observation of
unique objects and threading of sequential operations) special let constructions are provided (see 3.6).

3.1 Defining Functions
FunctionDef = [FunctionTypeDef] DefOfFunction /1 see Chapter 4 for typing functions
DefOfFunction = {FunctionAltDef}+
FunctionAltDef = Function {Pattern} /1 see 3.2 for patterns

FunctionBody
[LocalFunctionAltDefs] /Il see3.5
Function = FunctionName /1 ordinary function
| (FunctionName) /1 operator function
FunctionBody = [LetBefores] /1 see3.6
FunctionRhs /]l see34
[LocalFunctionDefs] Il see 3.5
FunctionRhs = | [StrictLet] Guard Il see3.3
FunctionBody
[FunctionBody]
| =[>] RootExpression ; /]l see3.4

A function definition consist of one or more definitions of function alternatives (rewrite rules) which are

tried in textual order. On the left-hand side of such a function alternative a pattern can be specified

which can serve a whole sequence of guarded function bodies (called the rule alternatives) The root ex-

pression (see 3.4) of a particular rule alternative is chosen for evaluation when

+ the pattern on the left-hand side matches the corresponding actual arguments of the function ap-
plication (see 3.2) and

+ the optional guard (see 3.3) specified on the right-hand side evaluates to Tr ue.

A function can be preceded by a definition of its type (see 4.3).

* Function definitions are only allowed in implementation modules (see 2.3).

e Itis required that the function alternatives of a function are textually grouped together (separated
by semi-colons when the lay-out sensitive mode is not chosen).

» Each alternative of a function must start with the same function symbol.

* The function name must in principle be different from other names in the same name space and
same scope (see 2.1). However, it is possible to overload functions and operators (see 4.4).

18 CLEAN LANGUAGE REPORT VERSION 1.3

e A function has a fixed arity, so in each rule the same number of formal arguments must be speci-
fied. Functions can be applied to any number of arguments though, as usual in higher order func-
tional languages (see 3.4.1 and 4.3).

» Each alternative must use the same defining symbol (= or =>).

Example (function definition).

nodul e exanpl e 1 module header

inport Stdlnt 1 implicit import

map:: (a->b) [a] ->[b] /1 type of nap

map f list = [f e\\ e < list] /1 definition of the function nap
square:: Int -> Int Il type of square

square X = X * X /1 definition of the function squar e
Start:: [Int] /1 typeof Start rule

Start = map square [1..21000] /1 definition of the St art rule

An operator is a function with arity two which can be used as infix operator (brackets are left out) or as

ordinary prefix function (the operator name preceding its arguments has to be surrounded by brackets).

e When an operator is used in infix position both arguments have to be present. Operators can be
used in a curried way, but then they have to be used as ordinary prefix functions (see also 2.3).

A constant function definition is a function defined with arity zero.

Example (operator definition).
(++) infixr 0:: [a] [a] -> [4a]

(+ [1] ly
(++) [x:xs] ly

ly
[x:xs ++ |y]

(o) infixr 9:: (a->b) (c ->a) ->(c ->Dh)
(o) f g=\x->f (g x)

An operator has a precedence (o through 9, default 9) and a fixity (i nfixI, infixr orjust infix, de-
fault i nfix). This is defined in its type (see 4.3.2). See also 3.4.1.

3.2 Patterns

In this Section the different kind of formal arguments (patterns) that can be specified on the left-hand
side of a function definition (rewrite rule definition) are described. A pattern generally consists of some
data constructor with its optional arguments which on their turn can contain sub-patterns (see 3.2.1). A
node-id variable can be attached to a pattern (using the symbol '=: *) which makes it possible to identify
(label) the whole pattern as well as its contents Bracketed patterns are formal arguments that form a syn-
tactic unit (see 3.2.2 - 3.2.6).

BrackPattern = (GraphPattern) /1l see3.2.1
| Constructor /]l see3.2.2
| _ /]l see3.2.3
| BasicValuePattern Il see3.24
| ListPattern Il see3.25
| TuplePattern /]l see3.2.6
| RecordPattern Il see3.2.7
| ArrayPattern /1 see3.2.8
| PatternVariable
| Variable =: BrackPattern

e Itis possible that the specified patterns turn a function into a partial function (see 4.3.3). When a
partial function is applied outside the domain for which the function is defined it will result into a
run-time error. A compile time warning is generated that such a situation might arise.

3.2.1 Constructor Patterns

| GraphPattern = Constructor {Pattern} /1 Constructor pattern

DEFINING FUNCTIONS 19

| GraphPattern ConstructorName GraphPattern /1 Constructor operator
| Variable =: GraphPattern /1 named pattern
| Pattern /1 a pattern in brackets

A constructor pattern (see above) consists of a constant tag called a data constructor (see 3.4.1 and 4.2.1)
with its optional arguments which on its turn can contain sub-patterns A constructor pattern forces
evaluation of the corresponding actual argument to strong root normal form since the strategy has to
determine whether the actual argument indeed is equal to the specified constructor.

e the data constructor must have been defined in an algebraic data type definition (see 4.2.1).

Example (algebraic data type definition and constructor pattern in function definition).

::Tree a = Node a (Tree a) (Tree a)
| NI

Mrror:: (Tree a) -> Tree a
Mrror (Node e left right)
Mrror NI

Node e (Mrror right) (Mrror |eft)
N |

Data constructors with arity two (see 3.1, see 4.2.1) can also be defined as infix constructors (or construc-

tor operator). In a pattern match they can be written down in infix position as well.

e When a constructor operator is used in infix position in a pattern match both arguments have to
be present. Constructor operators can occur in a curried way, but then they have to be used as or-
dinary prefix constructors (see also 3.2.1 and 2.3).

Example (algebraic type definition and constructor pattern in function definition).

::Tree2 a= (/\) infixl O (Tree a) (Tree a)
| Value a

Mrror:: (Tree2 a) -> Tree2 a

Mrror (left/\right) = Mrror right/\Mrror |eft
Mrror | eaf = | eaf

3.2.2 Simple Constructor Patterns
Constructor = ConstructorName

| (ConstructorName)
Constructor symbols without arguments are just simple zero-arity constant. They form a syntactic unit

(for non-operators no brackets are needed in this case). Besides the brackets that can be omitted they
behave just like other data constructor patterns (see 3.4.2 and 3.2.1)

3.2.3 Variables and Wildcards in Patterns

A pattern variable can be a (node) variable or a wildcard

PatternVariable = \Variable

A node variable is a formal argument of a function which matches on any concrete value of the corre-
sponding actual argument and therefore it does not force evaluation of this argument. A wildcard is an
anonymous node variable (*_") one can use to indicate that the corresponding argument is not used in

the right-hand side of the function. The formal arguments of a function and the function body are
contained in a new scope. See also 3.4.3.

funct i on[&rgs = Boay]

e All variable symbols introduced at the left-hand side of a function definition must have different
names.

Example (use of pattern variables).

20 CLEAN LANGUAGE REPORT VERSION 1.3

Conpl ex : == (! Real ,! Real) /1 synonym type def
real part:: Conplex -> Real
real part (re,) =re /1 re and _ are pattern variables
3.24 Constant Values of Basic Type as Pattern
BasicValuePattern = BasicValue
BasicValue = IntDenotation
| RealDenotation
| BoolDenotation
| CharDenotation

A constant value of predefined basic type I nt, Real , Bool Or Char (See 4.1) can be specified as pattern
e The denotation of such a value must obey the syntactic description given in Section 3.4.4.

Example (use of basic values as pattern).

nfib:: Int -> Int
nfib 0 =1
nfib1=1
nfibn=1+nfib (n-1) * nfib (n-2)
3.2.5 List Patterns

An object of the predefined algebraic type list (see 3.4.5 and 4.1.3) can be specified as pattern
ListPattern [[{LGraphPattern}-list[: GraphPattern]]]

LGraphPattern = GraphPattern
| CharsDenotation

Notice that only simple list patterns can be specified on the left-hand side (one cannot use a dot-dot
expression or list comprehension to define a list pattern).

Example (use of list patterns, use of guards, use of variables to identify patterns and sub-patterns; mer ge merges two (sorted)
lists into one (sorted) list).

merge:: [Int] [Int] -> [Int]

nerge f [] =
nerge [] s =s
merge f=:[x:xs] s=[y:ys]
| x<y = [x: merge xs s]
| x==y = merge f ys
| otherwi se = [y:merge f ys]
3.2.6 Tuple Patterns

An object of the predefined algebraic type tuple (see 3.4.6 and 4.1.4) can be specified as pattern

| TuplePattern = (GraphPattern, {GraphPattern}-list)

3.2.7 Record Patterns

An object of type record (see 3.4.7 and 4.2.2) can be specified as pattern. Only those fields which con-
tents one would like to use in the right-hand side need to be mentioned in the pattern

| RecordPattern = {[TypeName|] {FieldName [= GraphPattern]}-lisg

e The type of the record must have been defined in a record type definition (see 4.2.2).
e The field names specified in the pattern must be identical to the field names specified in the corre-
sponding type.

DEFINING FUNCTIONS 21

* When matching a record, the type constructor which can be used to disambiguate the record from
other records, can only be left out if there is at least one field name specified which is not being
defined in some other record.

Example (use of record patterns).

::RecTree a = { elem :: a
, left . Tree a
, right 1 Tree a
}
::Tree a = Node (RecTree a)
| Leaf a

Mrror:: (Tree a) -> Tree a
Mrror (Node tree=:{left=l,right=r})
Mrror |eaf

Node {tree & left=r,right=l}
| eaf

Example (the first alternative of function M r r or defined in another equivalent way).
Mrror (Node tree) = Node {tree & left=tree.right,right=tree.left}

or
Mrror (Node tree=:{left,right}) = Node {tree & left=right,right=left}

3.2.8 Array Patterns

An object of type array (see 3.4.8 and 4.1.5) can be specified as pattern. Notice that only simple array
patterns can be specified on the left-hand side (one cannot use array comprehensions). Only those array
elements which contents one would like to use in the right-hand side need to be mentioned in the pat-
tern

ArrayPattern = {{Arraylndex = Variable}-list}
| StringDenotation

e All array elements of an array need to be of same type.
e Anarray index must be an integer value between o and the number of elements of the array-1. Ac-
cessing an array with an index out of this range will result in a run-time error.

It is allowed in the pattern to use an index expression in terms of the other formal arguments (of type
I nt) passed to the function to make a flexible array access possible.

Example (use of array patterns).
Swap:: !Int !Int I*(ae) ->(ae) | Aray a & AirayBEleme
Swep i j a=:{[i]=ai,[j]=aj} ={a &[i]=a],[j]=ai}

3.3 Guards

| Guard = BooleanExpr

A guard is a Boolean expression attached to a rule alternative that can be regarded as generalisation of
the pattern matching mechanism: the alternative only matches when the patterns defined on the left
hand-side match and its (optional) guard evaluates to True (see 3.1). Otherwise the next alternative is
tried. Pattern matching always takes place before the guards are evaluated.

The guards are tried in textual order. The alternative corresponding to the first guard that yields True

will be evaluated. A right-hand side without a guard can be regarded to have a guard that always evalu-

ates to True (the ‘otherwise’ or ‘default’ case). In st dBool otherwise is predefined as synonym for Tr ue for

people who like to emphasise the default option.

e Only the last rule alternative of a function alternative can have no guard.

e Itis possible that the guards turn the function into a partial function (see 4.3.3). When a partial
function is applied outside the domain for which the function is defined it will result into a run-
time error. At compile time this cannot be detected.

22 CLEAN LANGUAGE REPORT VERSION 1.3

Example (function definition with guards).

filter:: Int [Int] -> [Int]
filter pr [n:str]
| nmod pr == filter pr str

[n:filter pr str]

Example (equivalent definition).

filter:: Int [Int] ->[Int]
filter pr [n:str]
| nnod pr ==

| otherw se

filter pr str
[n:filter pr str]

Guards can be nested. When a guard on one level evaluates to Tr ue, the guards on a next level are tried.
e Toensure that at least one of the alternatives of a nested guard will be successful, a nested guarded
alternative must always have a ‘default’ case as last alternative.

Example (Nested guard).
exanpl e argl arg2
| predicatell argl /1l if predi cat ell argl
| predicate2l arg2 = cal cul atel argl arg2 /1 then (if pr edi cat e21 arg2 then ...
| predicate22 arg2 = calculate2 argl arg2 /1 elseif predi cat e22 arg2 then ...
= calcul ate3 argl arg2 /1l else ...)
| predicatel2 argl = calculate4 argl arg2 /1 elseif predi catel2 argl then ...
34 Expressions

The main body of a function is called the root expression. The root expression is a graph expression.
| RootExpression = [StrictLet] GraphExpr
Example (y is the root expression referring to a cyclic graph).

ham: [Int]
ham =y
where y = [1:nerge (map ((*) 2) y) (nmerge (map ((*) 3) y) (map ((*) 5) y))]

A graph expression generally expresses an application of a function to its arguments or the (automatic)
creation of a data structure simply by applying a data constructor to its arguments (see 3.4.1). A case
expression and conditional expression are added for notational convenience (see 3.4.10). With a let ex-
pression new functions and graphs can be locally defined in an expression (see 3.4.11). One can op-
tionally demand the interleaved or parallel evaluation of the expression by another process or on another
processor (see Chapter 5)

GraphExpr = [Process] Application Il see34.1
| [Process] CaseExpr Il see3.4.10
| [Process] LetExpr /1l see3.4.11
Application = {BrackGraph}+ /1l see3.4.1
| GraphExpr Operator GraphExpr Il see34.1
BrackGraph = SimpleGraph [Selections] /1 see 3.4.7 and 3.4.8 for selections
SimpleGraph = (GraphExpr) Il see3.4.1
| ConstructorOrFunction /]l see3.4.2
| GraphVariable /1 see3.4.3
| BasicValue Il see3.4.4
| List /]l see3.45
| Tuple /1 see3.4.6
| Record Il see3.4.7
| Array /]l see3.4.8
| LambdaAbstr /1 see3.4.9
34.1 Applications
Application = {BrackGraph}+ /1 application

| GraphExpr Operator GraphExpr /1 operator application

DEFINING FUNCTIONS 23

Operator = FunctionName
| ConstructorName

A (graph) application or graph expression in principle consists of the application of a function or data
constructor to its (actual) arguments Each function or data constructor can be used in a curried way and
can therefore be applied to any number (zero or more) of arguments (see 4.3). For convenience and ef-
ficiency special syntax is provided to denote values of data structures of predefined type (see 3.4.4 -
3.4.8). A function can only be rewritten if it is applied to a number of arguments equal to the arity of
the function (see 3.1).

e All expressions have to be of correct type (see Chapter 4).

e All symbols that appear in an expression must have been defined somewhere within the scope in

which the expression appears (see 2.1).

Operators are special functions or constructors defined with arity two (see 4.3.2) which can be applied
in infix position The precedence (o through 9) and fixity (i nfi xI eft, infixright, infix) which can be
defined in the type definition of the operators (see 4.3) determine the priority of the operator applica-
tion in an expression. A higher precedence binds more tightly. When operators have equal precedence,
the fixity determines the priority. In an expression an ordinary function application has a very high pri-
ority (10). Only selection of record elements and array elements (see 3.4.7 and 3.4.8) binds more
tightly (11). Besides that, due to the priority, brackets can sometimes be omitted, operator applications

behave just like other appllcatlons (see 3.4.1).

It is not allowed to apply operators with equal precedence in an expression in such a way that their
fixity conflict. So, when in a; op1 a» opp a3 the operators op1 and op» have the same precedence a
conflict arises when ops is defined as i nfi xr implying that the expression must be read as a; op1 (a2
op2 ag) While opy is defined as i nfi xI implying that the expression must be read as (a; op1 a) op2
as.

e When an operator is used in infix position both arguments have to be present. Operators can be
used in a curried way (applied to less than two arguments), but then they have to be used as ordi-
nary prefix functions / constructors. When an operator is used as prefix function c.qg. constructor,
it has to be surrounded by brackets.

3.4.2 Constructor or Function Name
ConstructorOrFunction = Constructor
| Function
Function = FunctionName
| (FunctionName)
Constructor = ConstructorName
I

(ConstructorName)
Function and constructors applied on zero arguments just form a syntactic unit (for non-operators no

brackets are needed in this case). Besides the brackets that can be omitted they behave just like other
applications (see 3.4.1)

3.4.3 Graph Variables

GraphVariable = Variable
| SelectorVariable

There are two kinds of variables which can appear in a graph expression: variables introduced as formal

argument of a function (see 3.1 and 3.2) and selector variables (defined in a selector to identify parts of a

graph expression, see 3.5.4)

e There has to be a definition for each node variable and selector variable within in the scope of the
graphs expression.

3.4.4 Creating Constant Values of Basic Type

In a graph expression constant values of basic type I nt, Real , Bool Or Char can be created. These prede-
fined types introduced for reasons of efficiency and convenience are treated in Section 4.1.1. There is a

24 CLEAN LANGUAGE REPORT VERSION 1.3

special notation to denote a string (an unboxed array of characters, see 3.4.8) as well as to denote a list
of characters (see 3.4.5).

BasicValue = IntDenotation
| RealDenotation
| BoolDenotation
| CharDenotation
IntDenotation = [Sign]~{Digit}+ /'] decimal number
| [Sign]~ 0~{OctDigit}+ /| octal number
| [Sign]~ Ox~{HexDigit}+ /1 hexadecimal number
Sign = +|-
RealDenotation = [Sign~[{Digit~}+. {~Digit}+[~E[~Sign}{~Digit}+]
BoolDenotation = True|Fal se
CharDenotation = CharDel~AnyChar~CharDel.CharDel
AnyChar = |dChar | ReservedChar | Special
ReservedChar = 1) K -y 01 5 1 . :
Special = \n | \r \f | \b /I newline,return,formf,backspace
| \t | \\]\CharDel /| tab,backslash,character delimiter
|\ StringDel /| string delete
|\ {OctDigit}+ /| octal number
| \ x{HexDigit}+ /'l hexadecimal number
OctDigit =0 | 1 | 2 | 3]| 4 | 5 | 6 | 7
HexDigit =0 | 1 | 2 | 3]| 4 | 5 1| 6 | 7]| 8] 9
| A | B | C | D | E | F
| a | b | ¢ | d | e | f
| CharDel =
Example (denotations).
Integer (decimal): 0/1]2].)89 10 ...|-1-2] ..
Integer (octal): 00| 01] 02| . 07| 010| ...|-01]-02| ...
Integer (hexadecimal): 0x0] 0x1| Ox2| ..} Ox8| 0x9| OxA] OxB ...| - 0x1| - Ox2|
Real: 0. 0] 1. 5] 0. 314E10|
Boolean: True | Fal se
Character: al|'b' . A|'B ...
3.45 Creating Lists

Because lists are very convenient and frequently used data structure there are several syntactical con-
structs in CLEAN for creating lists including dot-dot expression and list comprehensions. The predefined
type list is treated in Section 4.1.3.

= ListDenotation
| DotDotExpression
| ListComprehension

List

e Alist expression must be of type list (see 4.1.3).
e All elements of a list must be of the same type.

Simple Lists

ListDenotation [[LGraphExpr}-list [: GraphExpr]]]

LGraphExpr = GraphExpr
| CharsDenotation
CharsDenotation = CharDel~{AnyCharf~CharDel}+.CharDel

One way to create a list is by explicit enumeration of the list elements. List are constructed by adding
one or more elements to an existing list. A special notation is provided for the frequently used list of
characters (see also 3.2).

Example (various ways to define a list with the integer elements 1, 3, 5, 7, 9).

DEFINING FUNCTIONS 25

Dot-dot Expressions

| DotDotExpression = [GraphExpr [, GraphExpr]. . [GraphExpr]]

With a dot-dot expression the list elements can be enumerated by giving the first element (n1), an op-
tional second element (n2) and an optional last element (e). The generated list is calculated as follows:

_fromthen_to:: 'alala->.[a] | Enuma
_fromthen_to nl n2 e
| n1 <=n2 = _fromby_to nl (n2-nl) e
= fromby down_to nl (n2-nl) e
wher e

_fromby tonse

| n<=e =[n: _fromby to (n+s) s e]

=[]

_fromby down_to n s e
| n>=e =[n: _fromby down _to (n+s) s €]

=1l

The step size is one by default. If no last element is specified an infinite list is generated.

* Dot-dot expression can only be used if one imports st denumfrom the standard library.

e Dot-dot expressions are predefined on objects of type I nt, Real and char, but dot-dots can also be
applied to any user defined data structure for which the class enumeration type has been instanti-
ated (see CLEAN'S STANDARD LIBRARY).

Example (Alternative ways to define a list a dot dot expression).

[1,3..9] /1] [1,3,5,7,9]

[1..9] /1 [1,2,3,4,5,6,7,8,9]
[1..] /1 [1,2,3,4,5 and so on...
["a..'c'] /1 ["abc']

List Comprehensions

ListComprehension = [GraphExpr\\ {Qualifier}-list]
Qualifier = Generators {| Guard}
Generators = Generator {& Generator}
Generator = Selector <- ListExpr
| Selector <-: ArrayExpr
Selector = BrackPattern /1 for brack patterns see 3.2
ListExpr = GraphExpr
ArrayExpr = GraphExpr
Guard = BooleanExpr
BooleanExpr = GraphExpr

With a list comprehension one can construct a list composed from elements drawn from other lists or
arrays. With a list generator one can draw elements from a list. With an array generator one can draw
elements from an array. One can define several generators in a row separated by a comma. The last
generator in such a sequence will vary first. One can also define several generators in a row separated by
a ‘&’. All generators in such a sequence will vary at the same time but the drawing of elements will stop
as soon of one the generators is exhausted. This construct can be used instead of the zip-functions
which are commonly used. Selectors are simple patterns to identify parts of a graph expression. They are

26 CLEAN LANGUAGE REPORT VERSION 1.3

explained in Section 3.5.4. Only those lists produced by a generator which match the specified selector
are taken into account. Guards can be used as filter in the usual way

The scope of the selector variables introduced on the left-hand side of a generator is such that the vari-
ables can be used in the guards and other generators that follow. All variables introduced in this way
can be used in the expression before the \\ (see the picture below).

[|[expression]\\ selector | <- expression
| guard
, selector | <- expression
| guard |

]

Example (list comprehension: expr 1 yields[(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1),
(2,2), (3,0), (3,1), (3,2)] whileexpr2yields[(0,0), (1,1), (2,2)].expr3yields[(0,0), (1,0),
(L1, (20, (2,1, (2,2), (3,0), (3,1), (3,2, (33)])

exprl = [(x,y) \\ x < [0..3] , y < [0..2]]
expr2 = [(x,y) \\ x < [0..3] &y <- [0..2]]
expr3 = [(x,y) \\ x < [0..3] , y < [0..X]]
Example (list comprehension: a well-known sort).

sort:: [a] ->[a] | Od a

sort []
sort [p:ps]

sort [x\\x<-ps|x<=p] ++ [p] ++ sort [x\\x<-ps|x>p]
Example (list comprehension: converting an array into a list).
ArrayA = {1, 2,3,4,5}

ListA=Ja\\ a<-: ArayA

3.4.6 Creating Tuples

Tuples can be created that can be used to combine different (sub-)graphs into one data structure with-
out being forced to define a new type for this combination. The elements of a tuple need not be of the
same type. Tuples are in particular handy for functions that return multiple results. The predefined type
tuple is treated in Section 4.1.4.

| Tuple = (GraphExpr, {GraphExpr}-list)
Example (tuple).

("thisis atuple with",3,["elenments'])

3.4.7 Creating Records and Selection of Record Fields

A record is a tuple-like algebraic data structure that has the advantage that its elements can be selected
by field name rather then by position.

Record = RecordDenotation
| RecordUpdate

Simple Records

The first way is to create a record is by explicitly define a value for each of its fields.
| RecordDenotation = {[TypeName|] {FieldName= GraphExpr}-lisi}
Example (Creation of a record).

:: Poi nt = { x:: Real /1l record type definition
, Y. Real

DEFINING FUNCTIONS 27

}
::QlorPoint = { p:: Point /1l record type definition
c:: Color
}
;. Col or = Red | Green | Blue /1l algebraic type definition

OeateColorPoint:: (Real,Real) Color -> ColorPoint // type of function
OreateCol or Point (px, py) col = { /1l function creating a new record
px

py

T O
"
-~ 0

ol
X
y

}

e Avrecord can only be used if its type has been defined in a record type definition (see 4.2.2); the
field names used must be identical to the field names specified in the corresponding type.

e When creating a record explicitly, the order in which the record fields are instantiated is irrelevant,
but all fields have to get a value; the type of these values must be an instantiation of the corre-
sponding type specified in record type definition. Curried use of records is not possible (see 4.2).

* When creating a record, its type constructor can be used to disambiguate the record from other
records; the type constructor can be left out if there is at least one field name specified which is not
being defined in some other record.

Record Update

The second way is to construct a new record out of an existing one (a functional record update).

RecordUpdate = {[TypeName|] RecordExpr & {FieldName {Selection} = GraphExpr}-lisi}
Selection = . [TypeName.] FieldName

| . Arraylndex
RecordExpr = GraphExpr

» The record expression must yield a record.

The record written to the left of the & (r & f = v is pronounced as: r with for f the value v) is the re-
cord to be duplicated. On the right from the & the structures are specified in which the new record dif-
fers from the old one. A structure can be any field of the record or a selection of any field or array ele-
ment of a record or array stored in this record. All other fields are duplicated and created implicitly.
Notice that the functional update is not an update in the classical, destructive sense since a new record
is created. The functional update of records is performed very efficient such that we have not added
support for destructive updates of records of unique type. The &-operator evaluates the existing record
to root normal form before the update.

Example (Updating a record within a record using the functional update).

MoveCol or Poi nt:: Col orPoint (Real,Real) -> Col orPoi nt
MoveCol or Point cp (dx,dy) = {cp & p.x = cp.p.Xx + dx, p.y = cp.p.y + dy}

Selection of a Record Field

BrackGraph = SimpleGraph [Selections]
Selection = . [TypeName.] FieldName
| . Arraylndex /I see3.4.8
Selections = {Selection}+
| ! Arraylndex {Selection}+ /I see3.4.8
I

I [TypeName.]| FieldName {Selection}+

With a record selection (using the *. ' symbol) one can select the value stored in the indicated record
field. A "unique" selection using the "' ' symbol returns a tuple containing the demanded record field
and the original record. This type of record selection can be very handy for destructively updating of
uniquely typed records with values which depend on the current contents of the record. Record selec-
tion binds more tightly (priority 11) than application (priority 10). Record selections can be nested and
mixed with array selections (see 3.4.8).

28 CLEAN LANGUAGE REPORT VERSION 1.3

Example (Record selection).

Get Point:: ColorPoint -> Point

GetPoint cp = cp.p /1 selection of a record field
Get XPoi nt:: Col orPoint -> Real
Get XPoint cp = cp. p. X /1 selection of a record field
Get XPoi nt 2:: *Col orPoi nt -> (Real, . Col or Poi nt)
Get XPoint2 cp = cp!p. x /1 selection of a record field
3.4.8 Creating Arrays and Selection of Array Elements

An array is a tuple/record-like data structure in which all elements are of the same type. Instead of se-
lection by position or field name the elements of an array can be selected very efficiently in constant
time by indexing . The update of arrays is done destructively in CLeaN and therefore arrays have to be
unique (see Chapter 4) if one wants to use this feature. Arrays are very useful if time and space con-
sumption is becoming very critical (CLEAN arrays are implemented very efficiently). If efficiency is not a
big issue we recommend not to use arrays but to use lists instead: lists induce a much better pro-
gramming style. Lists are more flexible and less error prone: array elements can only be accessed via in-
dices and if you make a calculation error indices may point outside the array bounds. This is detected,
but only at run-time. In CLEAN, array indices always start with 0. More dimensional arrays (e.g. a ma-
trix) can be defined as an array of arrays.

For efficiency reasons, arrays are available of several types: there are lazy arrays (type {a}), strict arrays
(type {' a}) and unboxed arrays for elements of basic type and record type (e.g. type {#i nt}). All these
arrays are considered to be of different type. By using the overloading mechanism (type constructor
classes) one can still define (overloaded) functions which work on any of these arrays. The predefined
type array is treated in Section 4.1.2.

Array ArrayDenotation

| ArrayUpdate
| ArrayComprehension

e All elements of an array need to be of the same type.

Simple Array

A new array can be created in a number of ways. A direct way is to simply list the array elements.

ArrayDenotation = {{GraphExpr}-list}

| StringDenotation /Il seeA.8
StringDenotation = StringDel~{AnyChar/~StringDel}~StringDel
StringDel ="

By default a lazy array will be created. Arrays are created unique (the * or. attribute in front of the type,
see Chapter 4) to make destructive updates possible.

A lazy array is a box with pointers pointing to the array elements. One can also create a strict array
(explicitly define its type as {! 1 nt}), which will have the property that the elements to which the array
box points will always be evaluated. One can furthermore create an unboxed array (explicitly define its
type as {#1 nt}), which will have the property that the evaluated elements (which have to be of basic
value) are stored directly in the array box itself. Clearly the last one is the most efficient representation
(see also Chapter 5).

Example (Creating a lazy array, strict and unboxed unique array of integers with elements 1, 3, 5, 7, 9) .

MLazyArray:: .{Int}
MlLazyArray = {1,3,5,7,9}

M/StrictArray:: .{!Int}
M/StrictArray = {1,3,5,7,9}

DEFINING FUNCTIONS 29

M/UnboxedArray: : . {#I nt}
M/UnboxedArray = {1, 3,5,7, 9}

Example (creating a two dimensional array, in this case a unique array of unique arrays of unboxed integers) .

MatrixA : {. {# nt }}
Matri xA = {{1,2,3,4},{5,6,7,8}}

To make it possible to use operators such as array selection on any of these arrays (of actually different
type) a type constructor class has been defined (in st dArray) which expresses that *some kind of array
structure is created". The compiler will therefore deduce the following general type:

Array:: .(alnt) | Array a

Array ={1,3,5,7,9}

A string is equivalent to an unboxed array of character { #Char}. A type synonym is defined in module
stdst ri ng. Notice that this array is not unique, such that a destructive update of a string is not allowed.
There is special syntax to denote strings (see 3.2).

Example (some ways to define a string, i.e. an unboxed array of character).

"abc"
{"a','b,'c'}

There are a number of handy functions for the creation and manipulation of arrays predefined in
CLEANS STANDARD LIBRARY. These functions are overloaded to be able to deal with any type of array.
The class restrictions for these functions express that "an array structure is required” containing "an ar-
ray element"”.

Example (type of some predefined functions on Ar r ays).

createArray o lint e ->(ae) | Aray a & AirayBHleme /] sizeargl,a.[i] = arg2
si ze i (ae) ->1Int | Array a & ArcrayEleme /' number of elements in array

Array Update

It is also possible to construct a new array out of an existing one (a functional array update).

ArrayUpdate = { ArrayExpr & {Arraylndex {Selection} = GraphExpr}-list \ \ {Qualifier}-lisf]}
ArrayComprehension = { GraphExpr \\ {Qualifier}-list}
Selection = . [TypeName.] FieldName
| . Arraylndex
ArrayExpr = GraphExpr

Left fromthe & (a & [i] = v is pronounced as: array a with fora. [i] the value v) the old array has to be
specified which has to be of unique type to make destructive updating possible. On the right from the &
those array elements are listed in which the new array differs from the old one. One can change any
element of the array or any field or array element of a record or array stored in the array. The &-
operator evaluates the array to root normal form before the update.

e Anarray expression must be of type array.

e The array expression to the left of the update operator ‘&' should yield an object of type unique ar-
ray.

e Anarray index must be an integer value between o and the number of elements of the array-1. An
index out of this range will result in a run-time error.

e A unique array of any type created by an overloaded function cannot be converted to a non-unique ar-
ray.

Important: For reasons of efficiency we have defined the updates only on arrays which are of unique
type ({.}), such that the update can always be done destructively (!) which is semantically sound be-
cause the original unique array is known not to be used anymore (see 4.5)

30 CLEAN LANGUAGE REPORT VERSION 1.3

Example (Creating an array with the integer elements 1, 3, 5, 7, 9 using the update operator) .

S, [3] 4]
7, [4] 2]

1, [1]
3, [0]

{createArray 5 0 & [O] 3, [2 7
{createArray 5 0 & [1] 1, [3 9,

9}
5}

—_—
—_——

One can use an array comprehension or a list comprehension (see 3.4.5) to list these elements compactly
in the same spirit as with a list comprehension.

Array comprehensions can be used in combination with the update operator. Used in combination
with the update operator the original uniquely typed array is updated destructively. The combination
of array comprehensions and update operator makes it possible to selectively update array elements on a
high level of abstraction.

Example (Creating an array with the integer elements 1, 3, 5, 7, 9 using the update operator in combination with array and
list comprehensions) .

{createArray 5 0 & [i] =2*i+1 \\ i < [0..4]}
{createArray 50 &[i] = elem\\ elem<-: {1,3,5,7,9} &i < [0..4]}
{createArray 5 0 & elem\\ elem<-: {1,3,5,7,9}}

Array comprehensions used without update operator automatically generate a whole new array. The
size of this new array will be equal to the size of the first array or list generator from which elements are
drawn. Drawn elements which are rejected by a corresponding guard result in an undefined array ele-
ment on the corresponding position.

Example (creating an array with the integer elements 1, 3, 5, 7, 9 using array and list comprehensions) .

{elem\\ elem<-: {1,3,5,7, 9}}
{elem\\ elem<- [1,3,5,7,9]}

Example (array creation, selection, update). The most general types have been defined. One can of course always restrict to
a more specific type.

MArray:: !Int (Int ->e) ->.(ae) | Aray a & ArayBH eme
MArray i f ={f j \\ j < [0..i-1]}

SetArray:: *(ae) Int e->(ae) | Array a & ArrayEleme
SetArray ai v ={a &[i] = v}

CA: Int e->(ae) | Aray a & ArrayH eme
CAi e =createArray i e

InvPerm: {Int} ->{Int}
InvPerma = {CA (size a) 0 &[a.[i]] =1 \\ i < [0..maxindex a]}

ScaleArray:: e (ae) ->(ae) | Aray a & ArayBHleme & Arith e
ScaleArray x a = {x * e \\ e <-: a}

MapArray:: (a ->b) (ar a) -> (ar b) | Array ar & ArcrayHH ema & ArrayElemb
MapArray f a = {f e \\ e <: a}

inner:: (ae) (ae) ->(ae) | Aray a & AArayHeme & Arith e

inner v w
| size v=sizew={vi *w \\ vi <<: v&w <: w
| otherw se = abort "cannot take inner product"

ToArray:: [e] ->.(ae) | Array a & ArrayBEleme
ToArray list = {e \\ e < list}

ToList:: (ae) ->[e] | Aray a & AirayEH eme
ToList array = [e \\ e <-: array]

Example (of operations on 2 dimensional arrays generating new arrays).
maxi ndex n :==sizen - 1

Adj:: {{#Int}} ->{. {#Int}}
Adj ma= { {ma[i,j] \\ i <- row ndex}

DEFINING FUNCTIONS 31

\\ j <- colindex

}
wher e
rowi ndex = [0..naxi ndex na]
colindex = [0..maxi ndex ma.[0]]

Miul tiply:: {{#Int}} {{#Int}} ->{.{#nt}}
Miltiply ab ={ {sum[a.[i,j]*b.[j,k] \\ j < js] \\ k <- ks}
Wi < is

}
wher e
is = [0..maxi ndex a]
js = [0..naxi ndex b]
ks = [0..nmaxi ndex b.[0]]

Example (updating unique arrays using a unique array selection).

MArray:: .{#Real }
MArray = {1.5,2.3,3.4}

Scal eArrayH em: *{#Real} Int Real -> .{#Real}
Scal eArrayH emar i factor

(elemar) = ar![i]

={ar &[i] el entfactor}

Scal e2DArrayEl em : {*{#Real}} (Int,Int) Real -> {.{#Real}}
Scal e2DArrayBEl emar (i,j) factor

(elemar) =ar![i].[j]

={ar &[i].[j] = elentfactor}

Scal e2DArrayH en®: : {*{#Real}} (Int,Int) Real -> {.{#Real}}
Scal e2DArrayH en2 ar (i,j) factor

(elemar) = ar![i,j]

={ar &[i,j] = elentfactor}

Selection of an Array Element

I Arraylndex {Selection}+
I [TypeName.]| FieldName {Selection}+ /I see3.4.7

BrackGraph = SimpleGraph [Selections]

Selection = . [TypeName.] FieldName Il see 3.4.7
| . Arraylndex

Selections = {Selection}+
|
I

With an array selection (using the *. ' symbol) one can select an array element. When an object a is of
type Array, the ith element can be selected (computed) via a. [i]. Array selection is left-associative:
a.[i,j,k] means ((a.[i]).[j]).[k]. A "unique" selection using the " symbol returns a tuple
containing the demanded array element and the original array. This type of array selection can be very
handy for destructively updating of uniquely typed arrays with values which depend on the current
contents of the array. Array selection binds more tightly (priority 11) than application (priority 10).
Array selections can be nested and mixed with record selections (see 3.4.7).

3.4.9 Lambda Abstraction

Sometimes it can be convenient to define a tiny function in an expression "right on the spot". For this
purpose one can use a lambda abstraction. An anonymous function is defined which can have several
formal arguments which can be patterns as common in ordinary function definitions (see Chapter 3).
However, only simple functions can be defined in this way: no guards, no rule alternatives, no local
definitions. Since the dot is already used for record and array selection a - >" is used to separate the for-
mal arguments from the function body:

| LambdaAbstr = \ {BrackPattern} - > GraphExpr

32 CLEAN LANGUAGE REPORT VERSION 1.3

A lambda expression introduces a new scope (see 2.1).
\ [args -> body
Example (lambda expression).

AddTupl eList:: [(Int,Int)] ->[Int]
AddTupl eList list = map (\(x,y) -> x+y) list

3.4.10 Case Expression and Conditional Expression

For programming convenience a case expression and conditional expression are added.

CaseExpr = case GraphExpr of
{ {CaseAltDef}+ }
| if BrackGraph BrackGraph BrackGraph

CaseAltDef = Pattern
CaseBody
[LocalFunctionAltDefs]

CaseBody = [LetBefores] CaseRhs
[LocalFunctionDefs]

CaseRhs = | [StrictLet] Guard CaseBody [CaseBody]

| ~> RootExpression ;

In a case expression first the discriminating expression is usually evaluated after which the case
alternatives are tried in textual order. Case alternatives are similar to function alternatives. This is not so
strange because a case expression is internally translated to a function definition (see the example
below). Each alternative contains a left-hand side pattern (see 3.2) which is optionally followed by a let-
before (see 3.6) and a guard (see 3.3). When a pattern matches and the optional guard evaluates to True
the corresponding alternative is chosen. A new block structure (scope) is created for each case
alternative (see 2.1).

case expression of
args -> body |
args -> body |
e All alternatives in the case expression must be of the same type.

e When none of the patterns matches a run-time error is generated.

Example (case expression).

h x = case g x of
[hd:] -> hd
[1 -> abort "result of call g xinhis enpty"

is semantically equivalent to:

h x = nycase (g x)
wher e
nycase [hd:_] = hd
nycase [] = abort "result of call g xin his enpty”

In a conditional expression the first argument is evaluated to a Boolean value, if this value is True, the
then-part (second argument) is chosen, otherwise the else-part (third argument) is chosen. The
conditional expression can be seen as a simple kind of case expression.

e The then- and else-part in the conditional expression must be of the same type.

* The discriminating expression must be of type Bool .

34.11 Let Expression: Local Definitions for Expressions

Sometimes it is convenient to introduce local function definitions (see 3.5.3) or constant (graph) defi-
nitions (see 3.5.4) which are only visible for a certain expresion. So, a let expression is an expressions
which introduces a new scope (see 2.1).

DEFINING FUNCTIONS 33

| et

funct | on [Brgs =body]

sel ector = expression
i n expression

Such local definitions can be introduced using a let expression with the following syntax.
LetExpresssion = let { {LocalDefl+} in GraphExpr
LocalDef = GraphDef
| FunctionDef
Example (let expression used in a list comprehension).

doublefibs n = [let a=fibi in(a, a \\ i < [0..n]]

3.5 Local Definitions

In a function definition one can locally define functions (see 3.5.3) and constant graphs (see 3.5.4).

LocalDef = GraphDef
| FunctionDef

Both kind of local definitions can be introduced by using a let expression (see 3.4.11), by using a where

block (see 3.5.1) or by using a with block (see 3.5.2). Constant graph definitions can also be defined by
using a strict let expression (see 3.6.1), and, in a let-before expression(see 3.6.2).

3.5.1 Where Block: Local Definitions for a Function Alternative

At the end of each function alternative one can locally define functions and constant graphs in a where
block.

| LocalFunctionAltDefs = [where]{ {LocalDef}+ }

Functions and graphs defined in a where block can be used anywhere in the corresponding function
alternative (i.e. in all guards and rule alternatives following a pattern, see 3.1) as indicated in the follow-
ing picture showing the scope of a where block.

function | args
| guardl = expressionl
| guard2 = expression2
wher e
sel ector = expression

funct i on (TGS =pouy]

Example (si eve and fi | t er are local functions defined in a where block. They have only a meaning inside primes. At the
global level the functions are unknown).

prines::[Int]
primes = sieve [2..]

wher e
sieve::[Int] ->[Int] I local function of pri mes
sieve [pr:r] = [pr:sieve (filter pr r)]
filter::Int [Int] -> [Int] /1 local function of pri mes
filter pr [n:r]
| nnmod pr = =filter prr
| otherw se =[n:filter pr r]

Notice that the scope rules are such that the arguments of the surrounding function alternative are visi-
ble to the locally defined functions and graphs. The arguments can therefore directly be addressed in
the local definitions. Such local definitions cannot always be typed explicitly (see 4.3).

34 CLEAN LANGUAGE REPORT VERSION 1.3

Example (An alternative definition of pri mes. The function fi | t er is locally defined for si eve.filter can directly
access argument pr of si eve).

prinmes::[Int]
primes = sieve [2..]

wher e

sieve::[Int] ->[Int] I local function of pri nmes

sieve [pr:r] = [pr:sieve (filter r)]

wher e
filter::[Int] ->[Int] /1 local function of si eve
filter [n:r]
| nmd pr == 0 =filter r
| otherw se =[n:filter r]

3.5.2 With Block: Local Definitions for a Guarded Alternative

One can also locally define functions and graphs at the end of each guarded rule alternative using a
with block.

LocalFunctionDefs = [with]{ {LocalDef}+}
LocalDef = GraphDef
| FunctionDef

Functions and graphs (see 3.5.4) defined in a with block can only be used in the corresponding rule al-
ternative as indicated in the following picture showing the scope of a with block.
function [@rgs
| guardl =|expressionl
with
sel ector = expression

function[@args = body |

| guard2 =|expression2
wi th
sel ector = expression

function [args = body |

Notice that the scope rules are such that the arguments of the surrounding guarded rule alternative are
visible to the locally defined functions and graphs. The arguments can therefore directly be addressed
in the local definitions. Such local definitions cannot always be typed explicitly (see 4.3).

3.5.3 Defining Local Functions

One can define functions which have a local scope, i.e. which have only a meaning in a certain program
region (see 3.4.11, 3.5.1, 3.5.3). Outside the scope the functions are unknown. This locality can be
used to get a better program structure: functions which are only used in a certain program area can re-
main hidden outside that area. Programs can also become more readable because arguments of the sur-
rounding function can directly be accessed in the local function body. Local functions therefore often
need less arguments than functions defined on a global level (see 3.5.1). However, such local defini-
tions cannot always be typed explicitly (see 4.3).

354 Defining Local Constants

One can give a name to a constant expression (actually a graph), such that the expression can be used
in (and shared by) other expressions. One can also identify certain parts of a constant via a projection
function called a selector (see below). Selectors are also used in list comprehensions and array compre-
hensions (see 3.4.5 and 3.4.8).

| GraphDef = Selector =[:] GraphExpr; [LocalFunctionAltDefs]

DEFINING FUNCTIONS 35

Example (graph locally defined in a function: the graph labelled | ast is shared in the function St ri pNew i ne and compu-
ted only once).

StripNew ine:: String -> String

StripNew ine "" ="

StripNew ine string

| string !'! last<>'\n'" = string

| otherwi se = string%o0, 1| ast-1)
wher e

| ast = maxi ndex string

When a graph is defined actually a name is given to (part) of an expression. The definition of a graph
can be compared with a definition of a constant (data) or a constant (projection) function. However, no-
tice that graphs are constructed according to the basic semantics of CLEAN (see Chapter 1) which means
that multiple references to the same graph will result in sharing of that graph. Recursive references will
result in cyclic graph structures. Graphs have the property that they are computed only once and that their
value is remembered within the scope they are defined in.

Graph definitions differ from constant function definitions. A constant function definition is just a
function defined with arity zero (see 3.1). A constant function defines an ordinary graph rewriting rule:
multiple references to a function just means that the same definition is used such that a (constant)
function will be recomputed again for each occurrence of the function symbol made. This difference can
have consequences for the time and space behaviour of function definitions (see 5.2).

Example (the Hamming numbers defined using a locally defined cyclic constant graph and defined by using a globally de-
fined recursive constant function. The first definition (ham1) is efficient because already computed numbers are
reused via sharing. The second definition (ham2) is much more inefficient because the recursive function recomputes
everything.

hanl:: [Int]
haml =y
where y = [1:nerge (map ((*) 2) y) (nerge (map ((*) 3) y) (map ((*) 5) y))]

han?:: [Int]
hang = [1:nmerge (map ((*) 2) han®) (merge (map ((*) 3) hanR) (map ((*) 5) han?))]

Syntactically the definition of a graph is distinguished from the definition of a function by the symbol
which separates left-hand side from right-hand side: "=: " is used for graphs while "=>" is used for func-
tions. However, in general the more common symbol "=" is used for both type of definitions. Generally
it is clear from the context what is meant (functions have parameters, selectors are also easy
recognisable). However, when a simple constant is defined the syntax is ambiguous (it can be a
constant function definition as well as a constant graph definition).

To allow the use of the "=" whenever possible, the following rule is followed. Locally constant defini-
tions are by default taken to be graph definitions and therefore shared, globally they are by default taken
to be function definitions (see 3.1) and therefore recomputed. If one wants to obtain a different be-
haviour one has to explicit state the nature of the constant definition (has it to be shared or has it to be
recomputed) by using "=: " (on the global level, meaning it is a constant graph which is shared) or "=>"
(on the local level, meaning it is a constant function and has to be recomputed).

Example (Local constant graph versus local constant function definition: bi gl i st 1 and bi gl i st 2 is agraph which is com-
puted only once, bi gl i st 3 is a constant function which is computed every time it is applied).

biglistl = [1..10000] /1 a graph (if defined locally)
biglist2 = [1..20000] /1 agraph
biglist3 = [1..10000] /1 aconstant function

Graphs defined locally will be collected by the garbage collector when they are no longer connected to
the root of the program graph (see Chapter 1).

36 CLEAN LANGUAGE REPORT VERSION 1.3

Selectors

The left-hand side of a graph definition can be a simple name, but is can also be a more complicated
pattern called a selector. A selector is a pattern which introduces one or more new selector variables im-
plicitly defining projection functions to identify (parts of) a constant graph being defined One can iden-
tify the sub-graph as a whole or one can identify its components. A selector can contain constants (also
user defined constants introduced by algebraic type definitions), variables and wildcards. With a wild-
card one can indicate that one is not interested in certain components.

| Selector = BrackPattern // for bracket patterns see 3.2

e When a selector on the left-hand side of a graph definition is not matching the graph on the right-
hand side it will result in a run-time error.

e The selector variables introduced in the selector must be different from each other and not already
be used in the same scope and name space (see 1.2).

e To avoid the specification of patterns which may fail at run-time, it is not allowed to test on zero
arity constructors. For instance, list used in a selector pattern need to be of form[a: _].[a] cannot
be used because it stands for [a: [1] implying a test on the zero arity constructor [] . If the pattern
is a record only those fields which contents one is interested in need to be indicated in the pattern

e Arrays cannot be used as pattern in a selector.

Remark: a selector can also appear on the left-hand side of a generator in a list comprehension (see
3.4.5) or array comprehension (see 3.4.8).

Example (use of a selectors to locally select tuple elements).

unzip::[(a b)] -> ([a],[b])
unzip [] (I1.1]
unzip [(x,y):xys] ([
wher e

(xs,ys) = unzip xys

1.11)
x:xs],[y:ys])

3.6 Special Local Definitions

In addition to ordinary let expressions there are also special let expressions with which one can locally
define graphs (see 3.5.4), but not functions (!). These special let expressions are introduced for very
specific reasons.

3.6.1 Strict Let Expression: Strict Local Constants

Although CLEAN is by default a lazy language one can force evaluation in several ways. By forcing eval-
uation one generally obtains a more time- and space-efficient program (see 5.1). Forcing evaluation can
influence the termination behaviour of the program (a terminating program may be turned into a non-
terminating program). See also Section 5.1.

The nicest way to force evaluation is by defining (partially) strict data structures (see 5.1). But it can
also be handy to force evaluation on ad-hoc basis. This can be done by annotating function arguments
as being strict (see 5.1.2). Another way to force evaluation is by using a strict let expression. The strict let
expression looks similar to an ordinary let expression albeit that only graphs can be defined in a strict let
expression which will be evaluated to strong root normal form before the root expression is being eval-
uated (see 3.5). To ensure that evaluation indeed takes place, a strict let expression can only be used
before the root expression (which will be evaluated) and it can only contain graph definitions (which
can be evaluated). The order in which the graphs in the let expression will be evaluated is undefined.

Strict let expressions can be used to force unique objects in a strict context such that they can be obser-
ved before they are destructively updated.

StrictLet = let! { {StrictLetGraphDef}} in
LetGraphDef = Selector =[:] GraphExpr ; [LocalFunctionDefs]
StrictLetGraphDef = LetGraphDef

DEFINING FUNCTIONS 37

| | GraphVariable g
Example (let! expression forcing evaluation).
SquareArrayBElem: *{Int} Int -> {Int}

SquareArrayBHema i = let! e = a.[i]
in{a &[i]=e*e}

3.6.2 Let-Before Expression: Local Constants for a Guard

Many of the functions for input and output in the CLeaN I/O library are state transition functions.
Such a state is often passed from one function to another in a single threaded way (see Chapter 4) to
force a specific order of evaluation. This is certainly the case when the state is of unique type. The
threading parameter has to be renamed to distinguish its different versions. The following example
shows a typical example:

Example (use of state transition functions. The uniquely typed state file is passed from one function to another involving a
number of renamings: file, filel, file2)

readchars:: *File -> ([Char], *File)
readchars file

| not ok = ([1,filel)
| otherw se = ([char:chars], file2)
wher e

(ok, char, fil el)
(chars,file2)

freadc file
readchars filel

This explicit renaming of threaded parameters not only looks very ugly, these kind of definitions are
sometimes also hard to read as well (in which order do things happen? which state is passed in which
situation?). We have to admit: an imperative style of programming is much more easier to read when
things have to happen in a certain order such as is the case when doing I/O. That is why we have in-
troduced let-before expressions.

Let-before expressions are special let expressions which can be defined before a guard or function body.
In this way one can specify sequential actions in the order in which they suppose to happen. Let-before
expressions have the following syntax:

LetBefores
LetBefore

{LetBefore}+
{LetGraphDef}+
#! {StrictLetGraphDef}+

The form with the exclamation mark forces the evaluation of the node-ids that appear in the left-hand
sides of the definitions (see strict let-expressions, Section 3.6.1). Instead of the keyword | et the #-sym-
bol is used because it looks nice in combination with the | -symbol used for guards.

Let-before expressions have a special scope rule to obtain an imperative programming look. The vari-
ables in the left-hand side of these definitions do not appear in the scope of the right-hand side of that
definition, but they do appear in the scope of the other definitions that follow (including the root ex-
pression, excluding local definitions in where and with blocks. This is shown in the following picture:

function |args
sel ector |= expressi on

| guard = expression
sel ect or [=_expressi on
uar d = expression

ere
definitions

Note that the scope of variables in the let before expressions does not extent to the definitions in the
where expression of the alternative. The reverse is true however: definitions in the where expression can
be used in the let before expressions.

38 CLEAN LANGUAGE REPORT VERSION 1.3

Example (use of let before expressions, reusing names taking use of the special scope of the let before)

readchars:: *File -> ([Char], *File)
readchars file

(ok,char,file) = freadc file

| not ok =([1.file)

(chars,file) = readchars file
= ([char:chars], file)

Example (equivalent definition renaming threaded parameters)

readchars:: *File -> ([Char], *File)
readchars file

(ok, char,filel) = freadc file
| not ok = ([].,filel)
(chars, file2) = readchars filel
= ([char:chars], file2)

A with block (see 3.5.2) may follow aLet-before expression. Functions and graphs defined in such a
with block can only be used in the Let-before expression (and the with block).

The notation can also be dangerous: the same name is used on different spots while the meaning of the
name is not always the same (one has to take the scope into account which changes from definition to
definition). However, the notation is rather safe when it is used to thread parameters of unique type.
The type system will spot it when such parameters are not used in a correct single threaded manner.
We do not recommend the use of let before expressions to adopt a imperative programming style for
other cases.

Example (abuse of let before expression)

exchange:: (a, b) -> (b, a)
exchange (x, y)

tenp = X
X =y
y =tenp
)

= (xy

Clean
{ :

Defining Types

4.1 Predefined Types 4.4 Typing Overloaded Functions
4.2 Defining New Types 4.5 Defining Uniqueness Types
4.3 Typing Functions

CLEAN is a strongly typed language. The basic type system of CLEAN is based on the classical polymorp-
hic Milner/Hindley/Mycroft (Milner 1978; Hindley 1969, Mycroft, 1984) type system. This type
system is adapted for graph rewriting systems and extended with basic types, (possibly existentially
quantified) algebraic types, record types, abstract types and synonym types. These types are explained in the
Sections 4.1, 4.2 and 4.3.

In CLEAN each classical type is furthermore extended with uniqueness type attributes. This very special
and important extension is explained in Section 4.5.

CLeaAN allows functions and operators to be overloaded. Type classes and type constructor classes are pro-
vided (which look similar to Haskell (Hudak et al. , 1992) and Gofer (Jones, 1993) although they have
slightly different semantics) with which a restricted context can be imposed on a type variable in a type
specification. This is explained in Section 4.4.

Although CLEAN is purely functional, operations with side-effects (1/0O operations, for instance) are
permitted. To achieve this without violating the semantics, the classical types are supplied with so cal-
led uniqueness attributes. This is explained in Section 4.5.

4.1 Predefined Types

CLEAN is a strongly typed language : every object (graph) and function (graph rewrite rule) in CLEAN has
a type. The types of functions can be explicitly specified by the programmer or they can be inferred auto-
matically (see 4.3.5) Types can be formed by taking instances of type constructors which have been de-
fined explicitly as algebraic type (see 4.2.1), record type (see 4.2.2), synonym type (see 4.2.3), abstract type
(see 4.2.4) or by taken instances of a predefined type (see 4.1.1 - 4.1.6). Atype instance from a given
type is obtained by uniformly substituting a type for a type variable. A type instance can be preceded by
a uniqueness type attribute . This is further explained in Section 4.5.1.

Type = {[Strict] BrackType}+
| ArrowType I/l seed.1.6

BrackType = [UnqTypeAttrib] SimpleType

SimpleType = TypeConstructor I/l seed?2 4.4
| TypeVariable
| BasicType I/l seed.ll
| PredefAbstrType I/l seed.1.2
| ListType I/l see4d.1.3
| TupleType I/l seed.l14
| ArrayType I/l seed.l1l5
| (Type)

40 CLEAN LANGUAGE REPORT VERSION 1.3

41.1 Basic Types

Basic types are algebraic types (see 4.2) which are predefined for reasons of efficiency and convenience:
Int (for 32 bits integer values), real (for 64 bit double precision floating point values), char (for 8
bits ASCII character values) and Bool (for 8 bits Boolean values). For programming convenience spe-
cial syntax is introduced to denote constant values (data constructors) of these predefined types (see
3.2). Functions to create and manipulate objects of basic types can be found in the CLEAN library (as
indicated below).

BasicType = Int /1 seeStdlnt.dcl
| Real /1 see StdReal . dcl
| Char /1 see StdChar. dcl
| Bool /1 see St dBool . dcl
41.2 Predefined Abstract Types

As is explained in Section 4.2.4, Abstract data types are types of which the actual definition is hidden. In
CLEAN the typeswerid , File and Procid are predefined abstract data types. They are recognised by the
compiler and treated specially, either for efficiency or because they play a special role in the language.
Since the actual definition is hidden it is not possible to denotate constant values of these predefined
abstract types. There are functions predefined in the CLEAN library for the creation and manipulation
of these predefined abstract data types. Some functions work (only) on unique objects (see Chapter 4).

An object of type *verid (* indicates that the world is unique, see 4.5.1) is automatically created when
a program is started. This object is optionally given as argument to the start function (see 2.3). With
this object efficient interfacing with the outside world (which is indeed unique) is made possible (see
Chapter 4).

An object of type File or*File can be created by means of the functions defined in st dFi I el O (see
CLeANs Standard Library). It makes direct manipulation of persistent data possible. The type File is
predefined for reasons of efficiency: CLEAN Fi | es are directly coupled to concrete files.

An object of type Proci d can be created by means of the functions defined in st dpProci d (see CLEANS
Standard Library). These objects are used in process annotations to allow process creation on an indi-
cated processor (see Chapter 5) in a network topology.

PredefAbstrType = Wrld /1 seeStdwrl d. dcl
| File /1 seeStdFilel Qdcl
| Procld /1 see StdProcld. dcl
4.1.3 List Types

A list is an algebraic data type predefined just for programming convenience. A list can contain an infi-
nite number of elements. All elements must be of the same type. Lists are very often used in functional
languages and therefore the usual syntactic sugar is provided for the creation and manipulation of lists
(dot-dot expressions, list comprehensions) while there is also special syntax for list of characters. (see
3.4.5and 3.2.5)

e Lists cannot be annotated as strict or spine strict. To create such lists a new algebraic data type has
to be defined with appropriate strictness annotations (see 5.1.3). We are working on removing this
restriction.

| ListType = [Type]

41.4 Tuple Types

A tuple is an algebraic data type predefined for reasons of programming convenience and efficiency (see
5.1). Tuples have as advantage that they allow to bundle a finite number of objects of arbitrary type into

DEFINING TYPES 41

a new object without being forced to define a new algebraic type for such a new object (see 3.4.6 and
3.2.5). This is in particular handy for functions that return several values.

The tuple arguments can optionally be annotated as being strict (see 5.1.1). This can be used to in-
crease the efficiency of a program (see 5.1). The compiler will automatically take care of the conversion
between lazy and strict tuples where needed (see 5.1.4).

| TupleType = ([Strict] Type, {[Strict] Type}-list)

4.1.5 Array Types

An array is an algebraic data type predefined for reasons of efficiency. Arrays contain a finite number of
elements that all have to be of the same type. An array has as property that its elements can be accessed
via indexing in constant time. An array index must be an integer value between oand the number of el-
ements of the array-1. Destructive updates of array elements is possible thanks to uniqueness typing.
For programming convenience special syntax is provided for the creation, selection and updating of ar-
ray elements (array comprehensions) while there is also special syntax for strings (i.e. unboxed arrays of
characters) (see 3.4.8 and 3.2.8). Arrays have as disadvantage that their use increases the possibility of a
run-time error (indices that might get out-of-range). Again, see 3.4.8 and 3.2.8.

To obtain optimal efficiency in time and space, arrays are implemented different depending on the
concrete type of the array elements. By default an array is implemented as a lazy array (type {a}), i.e. an
array consists of a contiguous block of memory containing pointers to the array elements. The same re-
presentation is chosen if strict arrays (define its type as{! a}) are being used. For elements of basic type
and record type an unboxed array (define its type as { #a}) can be used. In that latter case the pointers
are replaced by the array elements themselves. Lazy, strict and unboxed arrays are regarded by the
CLeaAN compiler as objects of different types. However, most predefined operations on arrays are
overloaded such that they can be used on lazy, on strict as well as on unboxed arrays.

ArrayType = {[Strict] Type}
| {#BasicType}

4.1.6 Arrow Types

The arrow type is used for function objects (these functions have at least arity one) One can use the
Cartesian product (uncurried version) to denote the function type (see 4.3) to obtain a compact nota-
tion. Curried functions applications and types are automatically converted to their uncurried equivalent
versions (see 4.3.1)

| ArrowType = {BrackType}+ - > Type
Example (of an arrow type).

((ab->c) [a] [b] ->[c])

being equivalent with:

((a->b->c) ->[a] ->[b] ->[c])

4.2 Defining New Types

New types can be defined in an implementation as well as in a definition module. Types can only be
defined on the global level. Abstract types can only be defined in a definition module hiding the actual
implementation in the corresponding implementation module (see 4.2.4 and Chapter 2).

TypeDef = AlgebraicTypeDef I/l seed.2.1and4.5.2
| RecordTypeDef /1l seed.2.2and 4.5.2
| SynonymTypeDef /]l see4.23and4.5.2
| AbstractTypeDef Il seed.2.4and4.5.2

FunctionDef = [FunctionTypeDef] DefOfFunction /!l see4.3and 4.5.3

ClassDef = TypeClassDef /] seed.4and4.5.4

42 CLEAN LANGUAGE REPORT VERSION 1.3

| | TypelnstanceDef /|l see4.4and4.5.4

421 Defining Algebraic Data Types

With an algebraic data type one assigns a new type constructor (a new type) to a newly introduced data
structure . The data structure consists of a new constant value (called the data constructor) which can
have zero or more arguments (of any type). Every data constructor must unambiguously have been
(pre)defined in an algebraic data type definition Several data constructors can be introduced in one al-
gebraic data type definition which makes it possible to define alternative data structures of the same al-
gebraic data type. The data constructors can, just like functions, be used in a curried way. Also type
constructors can be used in a curried way, albeit only in the type world of course.

Polymorphic algebraic data types can be defined by adding (possibly existentially quantified, see below)
type variables to the type constructors on the left-hand side of the algebraic data type definition The
arguments of the data constructor in a type definition are type instances of types (that are defined or are
being defined).

Types can be preceded by uniqueness type attributes (see 4.5.2). The arguments of a defined data con-
structor can optionally be annotated as being strict (see 5.1).

| AlgebraicTypeDef : . TypeLhs = [QuantifiedVars] ConstructorDef {| [QuantifiedVars] ConstructorDef} ;

TypelLhs = [*]TypeConstructor {[*] TypeVariable}
TypeConstructor = TypeName
ConstructorDef = ConstructorName {[Strict] BrackType}
| (ConstructorName) [FixPrec] {[Strict] BrackType}
QuantifiedVars = E {[.]TypeVariable}+:
FixPrec = Fix [Prec]
Fix = infixl
| infixr
| infix
Prec = Digit

Example (algebraic type definition and its use).
::Day = Mon | Tue | Wd | Thu | Fri | Sat | Sun

::Tree a = NIl Tree
| NodeTree a (Tree a) (Tree a)

M/Tree:: (Tree Int) /1l constant function yielding a Tr ee of | nt
M/Tree = NodeTree 1 Nl Tree N | Tree

An algebraic data type definition can be seen as the specification of a grammar in which is specified
what legal data objects are of that specific type. All data constructors being defined must therefore have
different names, to make type inferencing possible. Notice that the other CLEAN types (basic, list, tuple,
array, record, abstract types) can be regarded as special cases of an algebraic type.

i npl emrent ati on modul e XXX

10 Type|vars = definition

ot her definitions

Figure (Scope of type definitions).

Defining Infix Data Constructors

Constructors with two arguments can be defined as infix constructor , in a similar way as function op-
erators (with fixity (infixl ,infixr oOrjustinfix , defaultinfix) and precedence (o through o,

DEFINING TYPES 43

default 9). Infix constructors can also be used in prefix position when they are surrounded by brackets
(see 3.1).

Example (algebraic type defining an infix data constructor, function on this type; notice that one cannot use a ": ' because
this character is already reserved).

c:Llist a = (<> infixr 5a (List a)
| NI

Head:: (List a) -> a
Head (x<:>xs) = x

Using Higher Order Types

In an algebraic type definition ordinary types can be used (such as a basic type, €.g. I nt, or a list type,
e.g. [Int], oran instantiation of a user defined type, e.g. Treel nt), but one can also use higher order ty-
pes. Higher order types can be constructed by curried applications of the type constructors. Higher or-
der types can be applied in the type world in a similar way as higher order functions in the function
world. The use of higher order types increases the flexibility with which algebraic types can be defined.
Higher order types play an important role in combination with type classes (see 4.4).

{[Strict] BrackType}+
ArrowType

[UngTypeAttrib] SimpleType
TypeConstructor
TypeVariable

BasicType

PredefAbstrType

ListType

Type =
I
I
I
I
I
| TupleType
I
I
I
I
I
I
I

BrackType
SimpleType

ArrayType

(Type)

TypeName /1 auser defined type

[1 /1 list type constructorype

LM /1 tuple type constructor (arity >= 2)
} /1 lazy array type constructor

'} /1 strict array type constructor

#} /1 unboxed array type constructor

TypeConstructor

— -

Predefined types can also be used in curried way. To make this possible all predefined types can be
written down in prefix notation as well, as follows:

[] a is equivalent with [a]

(,) ab is equivalent with (a, b)

(,,) abec is equivalent with (a, b, ¢) and so on for n-tuples
{} a is equivalent with {a}

{!} a is equivalent with {! a}

{#} a is equivalent with {#a}

Of course, one needs to ensure that all types are applied in a correct way. To be able to specify the rules
that indicate whether a type itself is correct, we introduce the notion of kind. A kind can be seen as the
“type of a type. In our case, the kind of a type expresses the number of type arguments this type may
have. The kind x stands for any so-called first-order type: a type expecting no further arguments ((i nt,
Bool , [I nt], etcetera). The kind x- > x stands for a type that can be applied to a (first-order) type, which
then yields another first-order type, x -> X -> x expecting two type arguments of, and so on.

nt, Bool, [Int], Tree [Int] :: X
1, Tree, (,) Int, (->) a, {} s
1)5 (->)

X X X

->
->
->

X X X

|
[
(-> X
(->X->X

In CLEAN each top level type should have kind x. A top level type is a type that occurs either as an argu-
ment or result type of a function or as argument type of a data constructor (in some algebraic type de-
finition). The rule for determining the kinds of the type variables (which can be of any order) are fairly
simple: The kind of a type variable directly follows from its use. If a variable has no arguments, its kind

44 CLEAN LANGUAGE REPORT VERSION 1.3

is X. Otherwise, its kind corresponds to the number of arguments to which the variable is applied. The
kind of type variable determines its possible instantiations, i.e. it can only be instantiated with a type
which is of the same kind as the type variable itself.

Example (algebraic type using higher order types; the type variable t in the definition of Tree2 sof kind X -> X Tree2 is
instantiated with a list (also of kind X - > X) in the definition of MyTree2).

::Tree2 t = Nl Tree
| NodeTree (t Int) (Tree2 t) (Tree2 t)

M/Tree2:: Tree2 []
M/Tree2 = NodeTree [1,2,3] NITree Nl Tree

Defining Algebraic Data Types with Existentially Quantified Variables

An algebraic type definition can contain existentially quantified type variable s (or, for short, existential
type variables) (Laufer 1992) These special variables are indicated by preceding them with "e. ". Exis-
tential types are useful if one wants to create (recursive) data structures in which objects of different ty-
pes are being stored (e.g. a list with elements of different types).

Example (existential type definitions and their use). In this example a list-like structure is defined in which functions can be
stored. The functions in this structure can be applied one after another in a pipe-line fashion. Each function in the pi-
peline can yield a result of arbitrary type which is exactly of the type required by the next function in the pipe-line.
The first function in the pipeline expects type &, the last will yield type b. Hence, the function composed in this way
is a function of type a -> b. The recursive function Appl yPi pe happens to be an example of a recursive function
which type cannot be inferred (with the Milner type system), however its specified type can be checked (with the My-
croft type system).

:Pipe ab = Drect (a->b)
| E via: Indirect (a ->via) (Pipe via b)

ApplyPipe:: (Pipeab) a->b
Appl yPi pe (D rect func) val = func val
Appl yPi pe (Indirect func pipes) val = Appl yPi pe pi pes (func val)

Start = ApplyPipe (Indirect toReal (Indirect exp (Drect tolnt))) 3

To ensure correctness of typing, there is a limitation imposed on the use of existentially quantified data

structures

* Once a data structure containing existentially quantified parts is created the type of these compo-
nents are forgotten. This means that, in general, if such a data structured is passed to another
function it is statically impossible to determine the actual types of those components: it can be of
any type. Therefore, a function having an existentially quantified data structure as input is not al-
lowed to make specific type assumptions on the parts that correspond to the existential type vari-
ables. This implies that one can only instantiate an existential type variable with a concrete type
when the object is created.

Counter Example (lllegal use of an object with existentially quantified components; the concrete type of the components of
the Pi pe are unknown).

Appl Func:: (Pipe Int b) -> ??
Appl Func (Indirect func pipes) = func 3

Semantic Restrictions on Algebraic Data Types

Other semantic restrictions on algebraic data types:

e The name of a type must be different from other names in the same scope and name space (see
2.1).

e All type variables on the left-hand side must be different.

e All type variables used on the right-hand side are bound, i.e. must be introduced on the left-hand
side of the algebraic type being defined.

e A data constructor can only be defined once within the same scope and name space. So, each data
constructor unambiguously identifies its type to make type inferrencing possible.

DEFINING TYPES 45

e When a data constructor is used in infix position both arguments have to be present. Data con-
structors can be used in a curried way in the function world, but then they have to be used as ordi-
nary prefix constructors.

e Type constructors can be used in a curried way in the type world; to use predefined bracket-like
type constructors (for lists, tuples, arrays) in a curried way they must be used in prefix notation.

e The right-hand side of an algebraic data type definition should yield a type of kind x, all argu-
ments of the data constructor being defined should be of kind x as well.

* Atype can only be instantiated with a type that is of the same kind.

* Anexistentially quantified type variable specified in an algebraic type can only be instantiated with
a concrete type (= not a type variable) when a data structure of this type is created.

4.2.2 Defining Record Types

A record type is basically an algebraic data type in which exactly one constructor is defined. Special
about records is

- thatafield name is attached to each of the arguments of the data constructor;

e that records cannot be used in a curried way.

Compared with ordinary algebraic data structures the use of records gives a lot of notational conve-
nience because the field names enable selection by field name instead of selection by position When a re-
cord is created all arguments of the constructor have to be defined but one can specify the arguments in
any order (see 3.4.7). Furthermore, when pattern matching is performed on a record, one only has to
mention those fields one is interested in (see 3.2.6). A record can be created via a functional update (see
3.4.7). In that case one only has to specify the values for those fields which differ from the old record.
Matching and creation of records can hence be specified in CLEAN in such a way that after a change in
the structure of a record only those functions have to be changed which are explicitly referring to the
changed fields.

Existential type variables (see 3.2.1) are allowed in record types (as in any other type). The arguments
of the constructor can optionally be annotated as being strict (see 5.1). The optional uniqueness attri-
butes are treated in 4.5.2.

| RecordTypeDef = :: TypelLhs = [QuantifiedVars] { {FieldName : : [Strict] Type}-list};

As data constructor for a record the name of the record type is used internally.

e The semantic restrictions which apply for algebraic data types also hold for record types.

e The field names inside one record all have to be different. It is allowed to use the same field name
in different records.

Example (record definition).
1 Conpl ex = { re:: Real

, im:: Real

}

The combination of existential type variables in record types are of use for an object oriented style of
programming

Example (using existentially quantified records to create object of same type but which can have different representations).

:(hject = Ex: { state :: X
, Qet X ->nt
, set X Int ->x
}

O eate(hjectl:: (hject
OeateChjectl = {state =[], get = nyget, set = nyset}
wher e

nyget:: [Int] -> Int

nyget [i:is] i

nyget [] 0

46 CLEAN LANGUAGE REPORT VERSION 1.3

nyset:: [Int] Int -> [Int]
nyset isi =[i:is]

OeateChject2 = {state = 0.0, get = nyget, set = nyset}
wher e

nyget:: Real -> Int

nyget r =tolnt r

nyset:: Real Int -> Real
nyset r i =r + toReal i

Get:: hject -> Int
Get {state,get} = get state

Set:: (pbject Int -> (hject
Set o= {state,set} i = {o & state = set state i}

Start:: [(pject]
Start = nap (Set 3) [Ceatelh ectl, Oeatelhject?]

4.2.3 Defining Synonym Types

Synonym types permit the programmer to introduce new type names for an existing type.

| SynonymTypeDef = :: TypelLhs: == [QuantifiedVars]Type §

For the left-hand side the same restrictions hold as for algebraic types (see 4.2.1).
e Cyclic definitions of synonym types (e.g.::Ta b :== Ga b; ::Ga b :== T a b) are not allowed.

Example (type synonym definition).
::Qperator a:==aa->a
map2:: (Cperator a) [a] [a] -> [a]
map2 op [] []
map2 op [fl:rl] [f2:r2] =[op f1f2 :map2 op rl r2]
Start:: Int
Start = map2 (*) [2,3,4,5] [7,8,9,10]

4.2.4 Defining Abstract Data Types

A type can be exported by defining the type in a CLEAN definition module (see Chapter 2). For soft-
ware engineering reasons it sometimes better only to export the name of a type but not its concrete de-
finition (the right-hand side of the type definition). The type then becomes an abstract data type. In
CLEAN this is done by specifying only the left-hand-side of a type in the definition module while the
concrete definition (the right-hand side of the type definition) is hidden in the implementation mod-
ule. So, CLEAN's module structure is used to hide the actual implementation. When one wants to do
something useful with objects of abstract types one needs to export functions that can create and mani-
pulate objects of this type as well.
Abstract data type definitions are only allowed in definition module s, the concrete definition has
to be given in the corresponding implementation module .
e The left-hand side of the concrete type should be identical to (modulo alpha conversion for varia-
ble names) the left-hand side of the abstract type definition (inclusive strictness and uniqueness
type attributes).

| AbstractTypeDef = ::TypelLhs;
Example (abstract data type).
definition nodul e stack

;1 Stack a

DEFINING TYPES 47

Enpty o (Stack a)

i sEmpty (Stack a) -> Bool
Top i (Stack a) -> a
Push :: a (Stack a) -> Stack a

Pop s (Stack a) -> Stack a

i npl ement ati on nodul e stack

::Stack a == [4a]
Enpty:: (Stack a)
Enpty = []

i sEmpty:: (Stack a) -> Bool
i sEmpty [] = True
isEnpty s = Fal se

Top:: (Stack a) -> a
Top [e:s] = e

Push:: a (Stack a) -> Stack a
Push e s = [e:s]

Pop:: (Stack a) -> Stack a
Pop [e:s] =s

4.3 Typing Functions

Although one is in general not obligated to explicitly specify the type of a function (the CLEAN compiler
can infer the type) the explicit specification of the type is highly recommended to increase the readability
of the program.

FunctionDef = [FunctionTypeDef] DefOfFunction
FunctionTypeDef = FunctionName : : FunctionType

| (FunctionName) [FixPrec] [: : FunctionType] ;
FixPrec = Fix [Prec]
Fix = infixl

| infixr

| infix
Prec = Digit
FunctionType = Type [ClassContext] [UnqTypeUnEqualities]

An explicit specification is required when a function is exported, or when the programmer wants to im-
pose additional restrictions on the application of the function (e.g. a more restricted type can be speci-
fied, strictness information can be added as explained in Section 5.1, a class context for the type varia-
bles can be defined as explained in Section 4.4, uniqueness information can be added as explained in
Section 4.5.3). The CLEAN type system uses a combination of Milner/Mycroft type assignment. This
has as consequence that the type system in some rare cases is not capable to infer the type of a function
(using the Milner/Hindley system) although it will approve a given type (using the Mycroft system; see
Plasmeijer and Van Eekelen, 1993; see also the example in 4.2.1).

The Cartesian product is used for the specification of the function type. Cartesian product is denoted

by juxtaposition of the bracketed argument types. For the case of a single argument the brackets can be

left out. In type specifications the binding priority of the application of type constructors is higher than

the binding of the arrow - >. To indicate that one defines an operator the function name is on the left-

hand side surrounded by brackets.

e The function symbol before the double colon should be the same as the function symbol of the
corresponding rewrite rule.

e The arity of the functions has to correspond with the number of arguments of which the Cartesian
product is taken. So, in CLEAN one can tell the arity of the function by its type.

Example (arity of a function reflected in type).

48 CLEAN LANGUAGE REPORT VERSION 1.3

map:: (a->b) [a] -> [
mep f [] =
mp f [x:xs] = [f

b] /1l map has arity 2
x @ map f xs]

donmap:: ((a->b) [a] -> [Db]) /1 domap has arity zero
donmap = map

e The arguments and the result types of a function should be of kind x.

e In the specification of a type of a locally defined function one cannot refer to a type variable intro-
duced in the type specification of a surrounding function (there is not yet a scope rule on types de-
fined). The type of such a local function can therefore not yet be specified by the programmer.
However, the type will be inferred and checked (after it is lifted by the compiler to the global le-
vel) by the type system.

Counter example (illegal type specification). The function g returns a tuple. The type of the first tuple element is the same
as the type of the polymorphic argument of f . Such a dependency (here indicated by """ cannot be specified yet.

f:: a->(aa)

f x =9 x

wher e
/1 g:: b ->("a,b)
gy =(xy)

4.3.1 Typing Curried Functions

In CLeaN all symbols (functions and constructors) are defined with fixed arity. However, in a applica-
tion it is of course allowed to apply them to an arbitrary number of arguments. A curried application of
a function is an application of a function with a number of arguments which is less than its arity (note
that in CLEAN the arity of a function can be derived from its type) With the aid of the predefined in-
ternal function _Ap a curried function applied on the required number of arguments is transformed
into an equivalent uncurried function application.

The type axiom's of the CLEAN type system include for all s defined with arity n the equivalence of
sii(t1->(to->(.(tp->ty).)) Withs:it1to . .tq->t.

4.3.2 Typing Operators

An operator is a function with arity two that can be used in infix position. An operator can be defined
by enclosing the operator name between parentheses in the left-hand-side of the function definition.
An operator has a precedence (o through 9, default 9) and a fixity (infixl ,infixr Orjustinfix
defaulti nfix). A higher precedence binds more tightly. When operators have equal precedence, the
fixity determines the priority. In an expression an ordinary function application always has the highest
prlorlty (10). See also Section 2.3 and 3.1.
The type of an operator must obey the requirements as defined for typing functions with arity
two.
e If the operator is explicitly typed the operator name should also be put between parentheses in the
type rule.
e When an infix operator is enclosed between parentheses it can be applied as a prefix function. Pos-
sible recursive definitions of the newly defined operator on the right-hand-side also follow this
convention.

Example (an operator definition and its type).

iXx 8: (x->y) (z->X%X) ->(z ->Yy) /| function composition
=\x ->f (g x)

4.3.3 Typing Partial Functions

Patterns and guards imply a condition that has to be fulfilled before a rewrite rule can be applied (see
3.2 and 3.3). This makes it possible to define partial function s, functions which are not defined for all
possible values of the specified type.

DEFINING TYPES 49

e When a partial function is applied to a value outside the domain for which the function is defined
it will result into a run-time error.
The compiler gives a warning when functions are defined which might be partial.

With the abort expression (see StdMisc.dcl) one can change any partial function into a total function
(the abort expression can have any type). The abort expression can be used to give a user-defined run-
time error message

Example (use of abor t to make a function total).

fac:: Int -> Int

fac 0 =1
fac n
| n>=1 =n* fac (n - 1)
| otherw se = abort "fac called with a negative nunber"
4.4 Typing Overloaded Functions

The names of the functions one defines generally all have to be different within the same scope and
name space (see 2.1). However, it is sometimes very convenient tooverload certain functions and opera-
tors (e.g. +, -, ==), i.e. use identical names for different functions or operators that perform similar tasks
albeit on objects of different types.

In principle it is possible to simulate a kind of overloading by using records. One simply defines a re-
cord (see 4.2.2) in which a collection of functions are stored that somehow belong to each other. Now
the field name of the record can be used as (overloaded) synonym for any concrete function stored on
the corresponding position. The record can be regarded as a kind of dictionary in which the concrete
function can be looked up.

Example (the use of a dictionary record to simulate overloading/type classes). sun i st can use the field name add as syno-
nym for any concrete function obeying the type as specified in the record definition. The operators +. , +*,-. and -*
are assumed to be predefined primitives operators for addition and subtraction on the basic types Real and I nt .

tAith a = { add > aa->a
, subtract :: aa->a
}
ArithReal = { add = (+.), subtract = (-.) }
Arithint ={ add = (+"), subtract = (-*) }
[al -
[arith.add x y:sumist arith xs ys]
(]

Start = sumist Arithint [1..10] [11..20]

sumist:: (Arith a) [a] [a] -
sumist arith [x:xs] [y:ys]
sumist arith x vy

11 v

A disadvantage of such a dictionary record is that it is syntactically not so nice (e.g. one explicitly has to
pass the record to the appropriate function) and that one has to pay a huge price for efficiency (due to
the use of higher order functions) as well. CLEAN's overloading system as introduced below enables the
CLEAN system to automatically create and add dictionaries as argument to the appropriate function de-
finitions and function applications. To avoid efficiency loss the CLeaN compiler will substitute the in-
tended concrete function for the overloaded function application where possible. In worst case however
CLEAN's overloading system will indeed have to generate a dictionary record which is then automati-
cally passed as additional parameter to the appropriate function.

44.1 Type Classes

In a type class definition one gives a name to aset of overloaded functions (this is similar to the definition
of a type of the dictionary record as explained above). For each overloaded function or operator which is
a member of the class the overloaded name and its overloaded type is specified. A special overloaded type
class variable indicates how the different instantiations of the class can vary from each other.

50 CLEAN LANGUAGE REPORT VERSION 1.3

TypeClassDef cl ass ClassName [.] TypeVariable [ClassContext]
[wher e { {ClassMemberDef}+ }]
| class FunctionName [.] TypeVariable: : FunctionType;

| class (FunctionName) [FixPrec] [.] TypeVariable: : FunctionType;

FunctionTypeDef;
[MacroDef;]

ClassMemberDef

Example (definition of a type class; in this case the class named Ar i t h contains two overloaded operators).

class Arith a

wher e
(+) infixl 6:: aa->a
(-) infixl 6:: aa->a

With an instance declaration an instance of a given class can be defined (this is similar to the creation
of a dictionary record). When the instance is made it has to be specified for which concrete type an in-
stance is created. For each overloaded function in the class a concrete function or operator has to be defi-
ned. The type of a concrete function must exactly match the corresponding overloaded type after uni-
form substitution of the concrete type for the overloaded function type in the type class definition.

TypeClassinstanceDef = i nstance ClassName [Type [def aul t | ClassContext]]
[wher e { {DefOfFunction}+ }]

Example (definition of an instance of a type class Ari t h for type I nt). Notice that the type of the concrete functions can be
deduced by substituting the concrete type for the overloaded type variable in the corresponding class definition. One
is not obliged to repeat the type of the concrete functions instantiated (nor the fixity or associativity in the case of op-

erators).
instance Arith Int
wher e
(B:: Int Int -> Int

(9) xy=x+y
(-):: Int Int -> Int
() xy=x-"y

Example (definition of an instance of a type class Ari t h for type Real).

instance Arith Real
wher e

(+) xy
(-) xy

X+ y
X-.y

One can define as many instances of a class as one likes. Instances can be added later on in any module.
e When an instance of a class is defined a concrete definition has to be given for all the class mem-
bers.

4.4.2 Functions Defined in Terms of Overloaded Functions

When an overloaded name is encountered in an expression, the compiler will determine which of the
corresponding concrete functions/operators is meant by looking at the concrete type of the expression.
This type is used to determine which concrete function to apply. All instances of the overloaded type
variable of a certain class (with exception of the default instance, see below) must therefore not overlap
(being not unifyable) with each other and they all have to be of flat type (see the restrictions mentioned
in 4.4.11). If it is clear from the type of the expression which one of the concrete instantiations is me-
ant the compiler will in principle substitute the concrete function for the overloaded one, such that no
efficiency is lost.

Example (substitution of a concrete function for an overloaded one). given the definitions above the function
incn=n+1
will be internally transformed into

incn=n+"1

DEFINING TYPES 51

However, it is very well possible that the compiler, given the type of the expression, cannot decide
which one of the corresponding concrete functions to apply. The new function then becomes overloa-
ded as well.

For instance, the function
add x y = x +vy

becomes overloaded as well because anyone of the concrete instances can be applied. Consequently, add can be ap-
plied to arguments of any type as well, as long as addition (+) is defined on them.

This has as consequence that an additional restriction must be imposed on the type of such an expres-
sion. A class context has to be added to the function type to express that the function can only be ap-
plied provided that the appropriate type classes have been instantiated (in fact one specifies the type of
the dictionary record which has to be passed to the function in worst case). Such a context can also be
regarded as an additional restriction imposed on a type variable, introducing a kind of bounded poly-
morphism.

FunctionType
ClassContext

Type [ClassContext] [UnqTypeUnEqualities]
| ClassName-list[. 1 TypeVariable {& ClassName-list [.] TypeVariable }

Example (use of a class context to impose a restriction on the instantiation of type variable). The function add can be ap-
plied on arguments of any type under the condition that an instance of the class Ar i t h is defined on them.

add:: aa->a| Aitha
add x y = x +y

CLEAN’s type system can infer contexts automatically. If a type class is specified as restricted context the

type system will check the correctness of the specification (as always a type specification can be more
restrictive than is deduced by the compiler).

4.4.3 Instances of Type Classes Defined in Terms of Overloaded Functions

The concrete functions defined in a class instance definition can also be defined in terms of (other)
overloaded functions. This is reflected in the type of the instantiated functions. Both the concrete type
and the context the class instantiation (and its members) is depending on need to be specified.

Example (instance declaration of which type is depending on the same type class). The function + on lists can be defined in
terms of the overloaded operator + on the list elements. With this definition + is defined not only on lists, but also on
a list of lists etcetera.

instance Arith [a] | Arith a /1 on lists
wher e
(+) infixl 6:: [a] [a] ->[a] | Arith a
g+§ [x:xs] [Yy:ys] {]x + y:Xxs + ys]
+

(-) infixl 6:: [a] [a] ->[a] | Arith a
Eg [x:xs] [y:ys] hx - yixs - ys]

Example (Equality class).

class Eq a
wher e
(==) infix 2:: a a -> Bool
instance Eq [a] | Eq a /1 onlists
wher e

(==) infix 2:: [a] [a] -> Bool | Eq a
(=) [xixs] [y:ys] =x ==y & XS == ys
(=5 [1 [1 _ =True

(=) _ _ = False

52 CLEAN LANGUAGE REPORT VERSION 1.3

4.4.4 Type Constructor Classes

The CLEAN type system offers the possibility to use higher order types (see 4.2.1). This makes it possi-
ble to define type constructor classes (similar to constructor classes as introduced in Gofer, Jones (1993)).
In that case the overloaded type variable of the type class is not of kind x, but of higher order, e.g. x->
X, X->X->X, etcetera. This offers the possibility to define overloaded functions which can be instantia-
ted with type constructors of higher order (as usual, the overloaded type variable and a concrete instan-
tiation of this type variable need to be of the same kind). This makes it possible to overload more
complex functions like map and the like.

Example (definition of a type constructor class). The class Funct or including the overloaded function nmap which varies in
type variable f of kind X -> X).

class Functor f
wher e
map:: (a ->b) (f a) -> (f b)

Example (instantiation of a type constructor class). An instantiation of the well-known function nap applied on lists ([] is
of kind X -> X), and a map function defined on Tree' s (Tree isof kind X -> X).

i nstance Functor []

wher e
map:: (a->b) [a] ->[Db]
map f [xixs] =[f x: map f xs]
mep f [] =11

::Tree a = (/\) infixl O (Tree a) (Tree a)
| Leaf a

i nstance Functor Tree

wher e
map:: (a ->b) (Tree a) -> (Tree b)
map f (1/\r) =mp f | /\ mp fr
map f (Leaf a) = Leaf (f a)

445 Generic Instances

It is possible to specify a generic instance (in that case a type variable is specified as instance for the over-
loaded type variable in the instance declaration) which will be taken when none of the other defined
instances happens to be applicable. Since such a function must work for any instance the type of the
generic instance must be equivalent to the type of the overloaded function. Therefore it can only per-

form very general tasks.

Example (defining a generic instance). In this example any two objects of arbitrary type can be compared with each other
but they are by default unequal unless specified otherwise.

instance Eq a /1 generic instance for Eq

wher e
(==) infix 2:: a a -> Bool
(::) Xy = Fal se

4.4.6 Default Instances

It is possible that a CLEAN expression using overloaded functions is internally ambiguously overloaded.

e The problem can occur when an overloaded function is used which has on overloaded type in
which the overloaded type variable only appears on the right-hand side of the - >. If such a func-
tion is applied in such a way that the overloaded type does not appear in the resulting type of the
application, any of the available instances of the overloaded function can be used. In that case the
system cannot determine which instance to take, such that a type error is given.

Counter example (ambiguous overloaded expression). The function body of f is ambiguously overloaded which results in a
type error. It is not possible to determine whether its argument should be converted to an I nt or to a Bool .

DEFINING TYPES 53

class Read a:: a -> String

class Wite a:: String -> a

instance Read Int, Bool /1 export of class instance, see 4.4.10
instance Wite Int, Bool

f:: String -> String
f x = Wite (Read x) /1 1 This results in a type error !

One can solve such an ambiguity by splitting up the expression in parts that are typed explicitly such
that it becomes clear which of the instances should be used.

f:: String -> String
f x = Wite (MRead x)
wher e
M/Read:: Int -> String
M/Read x = Read x

Another way to solve the ambiguity is to mark one of the instances as the default instance (indicated by
the keyword def aul t in the instance declaration) which will be taken in the case an ambiguously over-
loaded expression is encountered.

Example (default instance declaration to be used to solve ambiguities). The function body of f is ambiguously overloaded.
Due to the default instance specified the argument is converted to an I nt .

class Read a:: a -> String
class Wite a:: String -> a
instance Read |Int default, Bool
instance Wite Int default, Bool

f:: String -> String
f x = Wite (Read x)

4.4.7 Defining Derived Members in a Class

The members of a class consists of a set of functions or operators which logically belong to each other.
It is often the case that the effect of some members (derived members) can be expressed in others. For
instance, <> can be regarded as synonym for not (==). For software engineering (the fixed relation is
made explicit) and efficiency (one does not need to include such derived members in the dictionary re-
cord) it is good to make this relation explicit. In CLEAN the existing macro facilities (see Chapter 5) are
used for this purpose.

Example (Classes with macro definitions to specify derived members).

class Eq a
wher e
(==) infix 2:: a a -> Bool

(<>) infix 2:: aa-> Bool | Eqa
(<>) xy :==not (x ==y)

class Od a
wher e
(<) infix 22: aa -> Bool

(> infix 2:: aa -> Bool | Oda
(> xy:i==y<x

(<=) infix 22: aa-> Bool | Oda
(<=) x y :==not (y<x)

(>=) infix 22: aa-> Bool | Od a
(>=) xy == not (x<y)

mn: aa->a| Oda
mnxy:=if (x<y) xvy

nmx:: aa->a| Oda

54 CLEAN LANGUAGE REPORT VERSION 1.3

mx Xy :==if (x<y) y X

4.4.8 A Shorthand for Defining Overloaded Functions

A class definition seems sometimes a bit overdone when a class actually only consists of one member.
Special syntax is provided for this case.

TypeClassDef = cl ass ClassName [.] TypeVariable [ClassContext]
[wher e { {ClassMemberDef}+ }]
| class FunctionName [.] TypeVariable: : FunctionType;
| class (FunctionName) [FixPrec] [.] TypeVariable: : FunctionType;
Example (defining an overloaded function/operator).

class (+) infixl 6 aa: aa->a
which is shorthand for:
class + a

wher e
(+) infixl 6:: aa->a

The instantiation of such a simple one member class is done in a similar way as with ordinary classes,
using the name of the overloaded function as class name (see the syntax definition for instantiation).

Example (instantiations of an overloaded function/operator).
i nstance + Int

wher e
(¥) Xy =x+\y

4.4.9 Classes Defined in Terms of Other Classes

In the definition of a class one can optionally specify that other classes which already have been defined
elsewhere are included. The classes to include are specified as context after the overloaded type variable.
It is not needed (but it is allowed) to define new members in the class body of the new class. In this
way one can give a new name to a collection of existing classes creating a hierarchy of classes (cyclic de-
pendencies are forbidden). Since one and the same class can be included in several other classes, one
can combine classes in different kinds of meaningful ways. For an example have a closer look at the
CLeAN standard library (see e.g. St dover | oaded and St dd ass)

Example (defining classes in terms of existing classes). The class Ar i t h consists of the class + and - .
class (+) infixl 6 aa: aa->a
class (-) infixl 6 aa: aa->a

class Arith a | +- a

4.4.10 Exporting Type Classes

To export a class one simply repeats the class definition in the definition module (see Chapter 2). To
export an instantiation of a class one simply repeats the instance definition in the definition module,
however without revealing the concrete implementation (which can only be specified in the implemen-
tation module).

Example (Exporting classes and instances).
definition nmodul e exanpl e
class Eq a /1l the class Eq is exported

wher e
(==) infix 2:: a a -> Bool

DEFINING TYPES 55

instance Eq [a] | Eq a /1 aninstance of Eq on lists is exported
instance Eq a /1 a generic instance of Eq is exported

For reasons of efficiency the compiler will always try to make specialised efficient versions of functions
which have become overloaded (see above). In principle one version is made for each possible concrete
application. However, when an overloaded function is exported it is unknown with which concrete in-
stances the function will be applied. So, a record is constructed in which the concrete function is stored
as is explained in the introduction of this Section. This approach can be very inefficient, especially in
comparison to a specialised version for instantiations of basic type. The compiler can generate much
better code for other modules if it is informed about the instances known in the implementation mod-
ule. The compiler is unaware of such information (it only inspects definition modules in case of sepa-
rate compilation). The information should therefore be provided in the corresponding definition mo-
dule. To make this possible a special export definition is provided. It is recommended to add such an
export definition if speed matters, leaf it out when it does not matter or when a small code size matters
more. The export definition will only have an effect for instances of basic type (for these types it can
really help to have a special version).

TypeClassinstanceExportDef
= export ClassName {BasicType | TypeVariable}-list;

Example (Exporting class instances).

export Eq Int, Real

4.4.11 Semantic Restrictions on Type Classes

Semantic restrictions:

e When a class is instantiated a concrete definition must be given for each of the members in the
class (not for derived members).

e The type of a concrete function or operator must exactly match the overloaded type after uniform
substitution of the overloaded type variable by the concrete type as specified in the corresponding
type instance declaration.

e The overloaded type variable and the concrete type must be of the same kind.

e A type instance of an overloaded type must be a flat type , i.e. a type of the form T a; ...an Where
aj are type variables which are all different.

e All instances other than the default instance of a given overloaded type must differ from each
other (be ununifyable with each other).

e Itis not allowed to use a type synonym as instance.

e The start rule cannot have an overloaded type.

e If a default instance is specified the type of the corresponding concrete default function must be
identical to the type of the overloaded function or operator.

e For the specification of derived members in a class the same restrictions hold as for defining ma-
Cros.

e Arrestricted context can only be imposed on one of the type variables appearing in the type of the
expression.

e The specification of the concrete functions can only be given in implementation modules.

4.4.12 The Costs of Overloading

In Section 4.4 the overloading mechanism of CLEAN is treated. The use of overloading and type classes
certainly gives a lot of notational convenience. However, one should be aware of the time and space
costs that might be caused by using overloading and type classes.

When an overloaded function is used in such a way that the system can replace the overloaded function
by the concrete one, no overhead is introduced (see Section 4.4).

Overloading can cause code explosion. When in a certain function another overloaded function is ap-
plied in such a way that the type system cannot deduce which concrete instance of the overloaded
function has to be used the system will in principle generate several versions of the function: one version

56 CLEAN LANGUAGE REPORT VERSION 1.3

is made for each of the concrete (combination of) instances possible. In principle special versions will
only be generated for instantiations of basic types. Although the system avoids to generate versions that
are not being used, code explosion might occur when all versions are being used or when the system
simply cannot tell which versions are used. The latter can be the case when such functions are being
exported to other modules.

Overloading can cause inefficiency. Instances which are recursively defined in terms of the class itself
can lead to an infinite amount of concrete instances. New instances can also be declared in modules
that import the overloaded function. To handle all these cases the system will generate one special ver-
sion of the overloaded function which is parametrised with a type class record (see the introduction of
4.4). In such cases overloading is implemented by using records as a dictionary in which the concrete
function is looked up. This means that the record is used to store higher order functions. Calling such a
higher function in this way is much more inefficient than a direct call of the corresponding concrete
function. One can avoid unnecessary efficiency loss as follows. When an overloaded function is expor-
ted it is advised also to export the concrete instances of the overloaded functions. The concrete names
of the functions need not to be exported. The system needs only to know which concrete instances al-
ready exist.

4.5 Defining Uniqueness Types

Although CLEAN is purely functional, operations with side-effects (I/O operations, for instance) are
permitted. To achieve this without violating the semantics, the classical types are supplied with so cal-
led uniqueness attributes. If an argument of a function is indicated as unique, it is guaranteed that at
run-time the corresponding actual object is local, i.e. there are no other references to it. Clearly, a de-
structive update of such a “unique object” can be performed safely.

The uniqueness type system makes it possible to define direct interfaces with an operating system, a file
system (updating persistent data), with GUI's libraries, it allows to create arrays, records or user defined
data structures that can be updated destructively. The time and space behaviour of a functional pro-
gram therefore greatly benefits from the uniqueness typing.

Uniqueness types are deduced automatically. Type attributes are polymorphic: attribute variables and
inequalities on these variables can be used to indicate relations between and restrictions on the corres-
ponding concrete attribute values.

Sometimes the inferred type attributes give some extra information on the run-time behaviour of a
function. The uniqueness type system is a transparent extension of classical typing which means that if
one is not interested in the uniqueness information one can simply ignore it.

Since the uniqueness typing is a rather complex matter we explain this type system and the motivation
behind it in more detail. The first Section (4.5.1) explains the basic motivation for and ideas behind
uniqueness typing. Section 4.5.2 focuses on the so-called uniqueness propagation property of
(algebraic) type constructors. Then we show how new data structures can be defined containing unique
objects (Section 4.5.3). Sharing may destroy locality properties of objects. In Section 4.5.4 we describe
the effect of sharing on uniqueness types. In order to maintain referential transparency, it appears that
function types have to treated specially. The last Section (4.5.5) describes the combination of unique-
ness typing and overloading. Especially, the subsections on constructor classes and higher-order type
definitions are very complex: we suggest that the reader skips these sections at first instance.

45.1 Basic Ideas Behind Uniqueness Typing

The uniqueness typing is an extension of classical Milner/Mycroft typing. In the uniqueness type system
uniqueness type attributes are attached to the classical types. Uniqueness type attributes appear in the
type specifications of functions (see 4.5.4) but are also permitted in the definitions of new data types (see
4.5.3). A classical type can be prefixed by one of the following uniqueness type attributes:

Type = {[Strict] BrackType}+
| ArrowType

DEFINING TYPES 57

ArrowType {BrackType}+ - > Type
BrackType [TypeAttrib] SimpleType
UngTypeAttrib * /1 type attribute "unique”

UniqueTypeVariable: /1 atype attribute variable
. /1 an anonymous type attribute variable

The basic idea behind uniqueness typing is the following. Suppose a function, say F, has a unique ar-
gument (an argument with type *o, for some o). This attribute imposes an additional restriction on
applications of F.

- Itis guaranteed that F will have private ("unique™) access to this particular argument (see
Barendsen and Smetsers, 1993; Plasmeijer and Van Eekelen, 1993): the object will have a refer-
ence count of 11 at the moment it is inspected by the function. It is important to know that there
can be more than 1 reference to the object before this specific access takes place. If a uniquely
typed argument is not used to construct the function result it will become garbage (the reference
has dropped to zero). Due to the fact that this analysis is performed statically the object can be
garbage collected (see Chapter 1) at compile-time. It is harmless to reuse the space occupied by the
argument to create the function result. In other words: it is allowed to update the unique object de-
structively without any consequences for referential transparency.

Example: the 1/O library function f wr i t ec is used to write a character to a file yielding a new file as result. In general it is
semantically not allowed to overwrite the argument file with the given character to construct the resulting file. Howe-
ver, by demanding the argument file to be unique by specifying

fwitec:: Char *File -> *File

it is guaranteed by the type system that f wri t ec has private access to the file such that overwriting the file can be
done without violating the functional semantics of the program. The resulting file is unique as well and can therefore
be passed as continuation to another call of e.g. f wri t ec to make further writing possible.

WiteABC.: *File -> *File
WiteABC file = fwitec 'c' (fwitec 'b" (fwitec "a file))

Observe that a unique file is passed in a single threaded way (as a kind of unique token) from one
function to another where each function can safely modify the file knowing that is has private ac-
cess to that file. One can make these intermediate files more visible by writing the wi t eABC as

follows.

WiteABC file = file3

wher e
filel =fwitec "a' file
file2 =fwitec 'b" filel
file3 =fwitec 'c' file2

or, alternatively (to avoid the explicit numbering of the files),

WiteABC file
file =fwitec "a' file
file =fwitec 'b'" file

= fwitec 'c' file

The type system makes it possible to make no distinction between a CLEAN file and a physical file
of the real world: file 1/O can be treated as efficiently as in imperative languages.

The uniqueness typing prevents writing while other readers/writers are active. E.g. one cannot ap-
ply fwi t ec to a file being used elsewhere

For instance, the following expression is not approved by the type system:

(file, fwitec "a file)

- Function arguments with no uniqueness attributes added to the classical type are considered as
“non-unique”: there are no reference requirements for these arguments. The function is only al-

1 Note that it is very natural in Clean to speak about references due to the underlying graph rewriting semantics of the
language: it is always clear when objects are being shared or when cyclic structures are being created.

58 CLEAN LANGUAGE REPORT VERSION 1.3

lowed to have read access (as usual in a functional language) even if in some of the function appli-
cations to actual argument appears to have reference count 1.

freadc:: File -> (Char, File)

The function freadc can be applied to both a unique as well as non-unique file. This is fine since
the function only wants read access on the file. The type indicates that the result is always a non-
unique file. Such as file can be passed for further reading, but not for further writing.

- To indicate that functions don’t change uniqueness properties of arguments, one can use attribute
variables. The most simple example is the identity functions that can be typed as follows:

id:: ua ->ua
idx =x

Here a is an ordinary type variable, whereas u is an attribute variable. If i d is applied to an unique
object the result is also unique (in that case u is instantiated with the concrete attribute *). Of
course, if i d is applied to a non-unique object, the result remains non-unique. As with ordinary
type variables, attribute variables should be instantiated uniformly.

A more interesting example is the function f r eadc which is typed as

freadc:: u:File -> u:(Char, u:File)

Again freadc can be applied to both unique and non-unique files. In the first case the resulting file
is also unique and can, for example, be used for further reading or writing. Moreover, observe that
not only the resulting file is attributed, but also the tuple containing that file and the character
that has been read. This is due to the so called uniqueness propagation rule; see below.

To summarise, uniqueness typing makes it possible to update objects destructively within a purely

functional language. For the development of real world applications (which manipulate files, windows,
arrays, databases, states etc.) this is an indispensable property.

4.5.2 Attribute Propagation

Having explained the general ideas of uniqueness typing, we can now focus on some details of this ty-
ping system.

If a unique object is stored in a data structure, the data structure itself becomes unique as well. This
uniqueness propagation rule prevents that unique objects are shared indirectly via the data structure in
which these objects are stored. To explain this form of hidden sharing, consider the following defini-
tion of the function head

head:: [*a] -> *a
head [hd:tl] = hd

The pattern causes head to have access to the “deeper” arguments hd and t1 . Note that head does not
have any uniqueness requirements on its direct list argument. This means that in an application of head
the list might be shared, as can be seen in the following function heads

heads |ist = (head list, head list)

If one wants to formulate uniqueness requirements on, for instance, the hd argument of head, it is not
sufficient to attribute the corresponding type variable a with *; the surrounding list itself should also
become unique. One can easily see that, without this additional requirement the heads example with

type

heads:: [*a] -> (*a, *a)
heads list = (head list, head list)

DEFINING TYPES 59

would still be valid although it delivers the same object twice. By demanding that the surrounding list
becomes unique as well, (so the type of head becomes head:: *[*a] - >*a) the function heads Is rejected.
In general one could say that uniqueness propagates outwards.

Some of the readers will have noticed that, by using attribute variables, one can assign a more general
uniqueness type to head:

head:: u:[ura] -> ua

The above propagation rule imposes additional (implicit) restrictions on the attributes appearing in
type specifications of functions.

Another explicit way of indicating restrictions on attributes is by using coercion statements. These state-
ments consist of attribute variable inequalities of the form u<=v. The idea is that attribute substitutions
are only allowed if the resulting attribute inequalities are valid, i.e. not resulting in an equality of the
form

‘non-unique < unique’.

The use of coercion statements is illustrated by the next example in which the uniqueness type of the
well-known append function is shown.

append: : v:[u:a] w[u:a] -> x:[u:a], [v<=u, w<=u, x<=u, w<=x]

The first three coercion statements express the uniqueness propagation for lists: if the elements a are
unique (by choosing * for u) these statements force v, wand x to be instantiated with = also. (Note that
u<=* iff u=*.) The statement w<=x expresses that the spine uniqueness of append’s result depends only
on the spine attribute w of the second argument.

In CLEAN it is permitted to omit attribute variables and attribute inequalities that arise from propaga-
tion properties; these will be added automatically by the type system. As a consequence, the following
type for append is also valid.

append:: [u:a] w[u:a]l -> x:[ua], [we=x]

Of course, it is always allowed to specify a more specific type (by instantiating type or attribute varia-
bles). All types given below are valid types for append.

append: : [u:a] x:[u:a] -> x:[u:a],
append: : *[*Int] *[*Int] -> *[*Int],
append: : [a] *[a] -> *[a].

To make types more readable, CLEAN offers the possibility to use anonymous attribute variables. These
can be used as a shorthand for indicating attribute variables of which the actual names are not essential.
This allows us to specify the type for append as follows.

append:: [.a] w[.a] -> x:[.4a], [we=x]

The type system of CLEAN will substitute real attribute variables for the anonymous ones. Each dot
gives rise to a new attribute variable except for the dots attached to type variables: type variables are at-
tributed uniformly in the sense that all occurrences of the same type variable will obtain the same at-
tribute. In the above example this means that all dots are replaced by one and the same new attribute
variable.

4.5.3 Defining New Types with Uniqueness Attributes

Although one mostly uses uniqueness attributes in type specifications of functions, they are also allo-
wed in the definition of new data types.

| AlgebraicTypeDef = :: TypelLhs = [QuantifiedVars] ConstructorDef {| [QuantifiedVars] ConstructorDef} ;

60 CLEAN LANGUAGE REPORT VERSION 1.3

TypelLhs = [*]TypeConstructor {[*] TypeVariable}
TypeConstructor = TypeName
ConstructorDef = ConstructorName {[Strict] BrackType}

| (ConstructorName) [FixPrec] {[Strict] BrackType}
QuantifiedVars = E {[.]TypeVariable}+:
BrackType = [UnqTypeAttrib] SimpleType
UnqgTypeAttrib = ¥

| UniqueTypeVariable

| .

As can be inferred from the syntax, the attributes that are actually allowed in data type definitions are
“’and ‘.’; attribute variables are not permitted. The (unique) * attribute can be used at any subtype
whereas the (anonymous). attribute is restricted to non-variable positions.

If no uniqueness attributes are specified, this does not mean that one can only build non-unique in-
stances of such a data type. Attributes not explicitly specified by the programmer are added automati-
cally by the type system. To explain this standard uniqueness attribution mechanism, first remember
that the types of data constructors are not specified by the programmer but derived from their corres-
ponding data type definition. For example, the (classical) definition of the Li st type

:: List a=0Cons a (List a) | NI

leads to the following types for its data constructors.

Cons:: a (List a) -> List a
Nl:: List a

To be able to create unique instances of data types, the standard attribution of CLeaN will automati-

cally derive appropriate uniqueness variants for the types of the corresponding data constructors. Such a

uniqueness variant is obtained via a consistent attribution of all types and subtypes appearing in a data

type definition. Here, consistency means that such an attribution obeys the following rules (assume

that we have a type definition for some type 7).

e Attributes that are explicitly specified are adopted.

e Each (unattributed) type variable and each occurrence of T will receive an attribute variable. This
is done in a uniform way: equal type variables will receive equal attributes, and all occurrence of T
are also equally attributed.

e Attribute variables are added at non-variable positions if they are required by the propagation pro-
perties of the corresponding type constructor. The attribute variable that is chosen depends on the
argument types of this constructor: the attribution scheme takes the attribute variable of first ar-
gument appearing on a propagating position (see example below).

e All occurrences of the. attribute are replaced by the attribute variable assigned to the occurrences
of T.

Example (standard attribuation for data constructors).
For Cons the standard attribution leads to the type
Gons:: u:a v:(List uia) -> v:List uia, [v<=u]
The type of Ni | becomes
Nl:: viList ua, [v<=u]
Consider the following Tree definition
;. Tree a= Node a [Tree a]
The type of the data constructor Node is
Node:: u:a v:[v:Tree u:a] -> v:Tree u:a, [v<=u]
Another Tr ee variant.

:: Tree *a = Node a [Tree a]

DEFINING TYPES 61

leading to
Node:: *a *[*Tree *a] -> *Tree *a
Note that, due to propagation, all subtypes have become unique.

Next, we will formalise the notion of uniqueness propagation. We say that an argument of a type con-
structor, say T, is propagating if the corresponding type variable appears on a propagating position in
one of the types used in the right-hand side of T’s definition. A propagating position are characterised
by the fact that it is not surrounded by an arrow type or by a type constructor with non-propagating
arguments. Observe that the definition of propagation is cyclic: a general way to solve this problem is
via a fixedpoint construction.

Example (propagation rule). Consider the (record) type definition for Coj ect .
(hject a b:: {state:: a, fun:: b -> a}

The argument a is propagating. Since b does not appear on a propagating position inside this definition, Obj ect is not
propagating in its second argument.

454 Unigueness and Sharing

The type inference system of CLEAN will derive uniqueness information after the classical Mil-
ner/Mycroft types of functions have been inferred (see 4.3). As explained in Section 4.5.1, a function
may require a non-unique object, a unique object or a possibly unique object. Uniqueness of the result of
a function will depend on the attributes of its arguments and how the result is constructed. Until now,
we distinguished objects with reference count 1 from objects with a larger reference count: only the
former might be unique (depending on the uniqueness type of the object itself). In practice, however,
one can be more liberal if one takes the evaluation order into account. The idea is that multiple refer-
ence to an (unique) object are harmless if one knows that only one of the references will be present at
the moment it is accessed destructively. This has been used in the following function.

AppendAorB:: *File -> *File
AppendAorB file
| fc =="'a =fwitec 'a' file
=fwitec 'b file
wher e
(fc,nf) = freadc file

When the right-hand side of Appendaor B is evaluated, the guard is determined first (so access from
freadc 1O fil e iS not unique), and subsequently one of the alternatives is chosen and evaluated. De-
pending on cond, either the reference from the first f wri t ec application to function fi1 e or that of the
second application is left and therefore unique.

For this reason, the uniqueness type system uses a kind of sharing analysis . This sharing analysis is in-
put for the uniqueness type system itself to check uniqueness type consistency (see 4.5.3). The analysis
will label each reference in the right-hand side of a function definition as read-only (if destructive access
might be dangerous) or write-permitted (otherwise). Objects accessed via a read-only reference are al-
ways non-unique. On the other hand, uniqueness of objects accessed via a reference labelled with write-
permitted solely depend on the types of the objects themselves.

Before describing the labelling mechanism of CLEAN we mention that the “lifetime™ of references is de-

termined on a syntactical basis. For this reason we classify references to the same expression in a func-

tion definition (say for f) according to their estimated run-time use, as alternative, observing and paral-

lel.

- Two references are alternative if they belong to different alternatives of f . Note that alternatives are
distinguished by patterns (including case expressions) or by guards.

- Avrreference r is observing w.r.t. a reference r’ if the expression containing r’ is either (1) guarded by
an expression or (2) preceded by a strict let expression containing r.

- Otherwise, references are in parallel.

62 CLEAN LANGUAGE REPORT VERSION 1.3

The rules used by the sharing analysis to label each reference are the following.

- Avreference, say r, to a certain object is labelled with read-only if there exist another reference, say
r', to the same object such that either r is observing w.r.tr* orr andr’ are in parallel.

- Multiple references to cyclic structures are always labelled as read-only.

- All other references are labelled with write-permitted.

Unfortunately, there is still a subtlety that has to be dealt with. Observing references belonging in a
strict context do not always vanish totally after the expression containing the reference has been evalu-
ated: further analysis appears to be necessary to ensure their disappearance. More concretely, Suppose
e[r] denotes the expression containing r. If the type of e[r] is a basic type then, after evaluation, e[r]
will be reference-free. In particular, it does not contain the reference r anymore. However, If the type
of e[r] is not a basic type it is assumed that, after evaluation, e[r] might still refer to r. But even in the
latter case a further refinement is possible. The idea is, depending on e[r], to correct the type of the
object to which r refers partially in such way that only the parts of this object that are still shared lose
their uniqueness.

Consider, for example, the following rule
fl =
let!
x = hd (hd I)

(x, 1)

in

Clearly, x and 1 share a common substructure; x is even part of | . But the whole “spine” of I (of type
[[...11) does not contain any new external references. Thus, if I was spine-unique originally, it re-
mains spine unique in the result of . Apparently, the access to | only affected part of 1 ’s structure.
More technically, the type of I itself is corrected to take the partial access on | into account. In the pre-
vious example, x, regarded as a function on | has type [[a]] ->a. In f’s definition the part of 1 ’s type
corresponding to the variable a is mode non-unique. This is clearly reflected in the derived type for f,
being

fro wwi(lal]l -> (av:[x:[a]l]), [w<=X, u<=V]

In CLEAN this principle has been generalised: If the strict let expression e[r] regarded as a function on r
has type

T(... a..) ->a
Then the a-part of the type of the object to which r refers becomes non-unique; the rest of the type re-

mains unaffected. If the type of e[r] is not of the indicated form, r is not considered as an observing
reference (w.r.t. some reference r*), but, instead, as in parallel with r- .

Higher Order Uniqueness Typing

Higher-order functions give rise to partial (often called Curried) applications, i.e. applications in which
the actual number of arguments is less than the arity of the corresponding symbol. If these partial ap-
plications contain unique sub-expressions one has to be careful. Consider, for example the following
the function f wri t ec with type

fwitec:: *File Char -> *File
in the application

fwitec unifile

(assuming that uni fi I ereturns a unique file). Clearly, the type of this application is of the form o: (Char
->*Fi | e). The question is: what kind of attribute is o? Is it a variable, is it *, or, is it not unique? Before
making a decision, one should notice that it is dangerous to allow the above application to be shared.
For example, if the expression fwri tec uni fil eis passed to a function

DEFINING TYPES 63

WiteAB wite fun = (wite fun ‘a, wite fun ‘b")

Then the argument of fwri t ec is not longer unique at the moment one of the two write operations take
place. Apparently, the fwritec unifileexpression is essentially unique: its reference count should never
become greater than 1. To prevent such an essentially unique expression from being copied, CLEAN
considers the - > type constructor in combination with the = attribute as special: it is not permitted to
discard its uniqueness. Now, the question about the attribute o can be answered: it is set to . If witeAB
is typed as follows

WiteAB: : (Char -> u:File) -> (u:File, u:File)
WiteAB wite fun = (wite_ fun ‘a, wite fun ‘b")

the expression witeAB(fwritecunifile) is rejected by the type system because it does not allow the ar-
gument of type *(char ->*Fi | e) to be coerced to (char ->u: Fil e). One can easily see that it is impossi-
ble to type wi t eAB in such a way that the expression becomes typable.

To define data structures containing Curried applications it is often convenient to use the
(anonymous). attribute. Example

i (hject ab ={ state:: a, fun::.(b ->a) }

new : * Cbject *File Char
new = { state = unifile, fun = fwitec unifile }

By adding an attribute variable to the function type in the definition of oj ect, it is possible to store
unique functions in this data structure. This is shown by the function new. Since new contains an essen-
tially unique expression it becomes essentially unique itself. So, new can never loose its uniqueness, and
hence, it can only be used in a context in which a unique object is demanded.

Determining the type of a Curried application of a function (or data constructor) is somewhat more
involved if the type of that function contains attribute variables instead of concrete attributes. Mostly,
these variables will result in additional coercion statements. as can be seen in the example below.

Prepend:: u:[.a] [.a] ->v:[.a], [u<=v]
Prepend a b = Append b a

PrependList:: u:[.a] ->w([.a] ->v:[.a]), [u<=v, wx=u]
PrependLi st a = Prepend a

Some explanation is in place. The expression (PrependLi st sonme_l i st) Yields a function that, when
applied to another list, say ot her _I'i st, delivers a new list extended consisting of the concatenation of
other_list andsome_list.Let’s call this final result new Iist. If new I'i st should be unique (i.e. v be-
comes *) then, because of the coercion statement u<=v the attribute u also becomes . But, if u=* then
also w=~*, for, w<=u. This implies that (arrow) type of the original expression (PrependLi st sone_l i st)
becomes unique, and hence this expression cannot be shared. The general rule for determining the
uniqueness type of Curried variants of (function or data) symbols can be found in ???

Uniqueness Type Coercions

As said before, offering a unique object to a function which requires a non-unique argument is safe
(unless we are dealing with unique arrow types; see above). The technical tool to express this is via a co-
ercion (subtype) relation based on the ordering

‘unique’ < ‘non-unique’

on attributes. Roughly, the validity of o < ¢’ depends subtype-wise on the validity of u < v with u,u’ at-
tributes in o,0’. One has, for example

wlvifwint]] Su:[v:[w:int]] iffusu,vSv,wsw.

64 CLEAN LANGUAGE REPORT VERSION 1.3

However, a few refinements are necessary. Firstly, the uniqueness constraints expressed in terms of co-
ercion statements (on attribute variables) have to be taken into account. Secondly, the coercion restric-
tion on arrow types should be handled correctly. And thirdly, due to the so-called contravariance of - >
in its first argument we have that

u(o->0)su:(t->71)iffr<o, 0’ <7

Since - > may appear in the definitions of algebraic type constructors, these constructors may inherit the
co- and contravariant subtyping behaviour with respect to their arguments. We can classify the ‘sign’ of
the arguments of each type constructor as + (positive, covariant), - (negative, contravariant) or top
(both positive and negative). In general this is done by analysing the (possible mutually recursive) alge-
braic type definitions by a fixedpoint construction, with basis sign(- >) = (-,+).

Example: a has sign T, b has sign + in

::FunList a b = FunCons (a, a -> b) (FunList a b)
| FunN |

This leads to the following coercion rules

« Attributes of two corresponding type variables as well as of two corresponding arrow types must be
equal.

e The sign classification of each type constructor is obeyed. If, for instance, the sign of T’s argument
IS negative, then

To<To iffe’'<o

e Inall other cases, the validity of a coercion relation depends on the validity of u < u’, where u,u’ are

attributes of the two corresponding subtypes.

The presence of sharing inherently causes a (possibly unique) object to become non-unique, if it is ac-
cessed via a read-only reference. In CLEAN this is achieved by a type correction operation which con-
verts each unique type S to its smallest non-unique supertype, simply by making the outermost at-
tribute of S non-unique. Note that this operation fails if S is a function type.

45.5 Combining Uniqueness Typing and Overloading

An overloaded function actually stands for a collection of real functions. The types of these real functi-
ons are obtained from the type of the overloaded function by substituting the corresponding instance
type for the class variable. These instance types may contain uniqueness information, and, due to the
propagation requirement, the above-mentioned substitution might give rise to uniqueness attributes
overloaded type specification.

Consider, for instance, the identity class

class id a:: a->a

If we want to define an instance of i d for lists, say i d L, which leaves uniqueness of the list elements in-
tact, the (fully expanded) type of i dL becomes

instance id L v:[u:a] -> v:[u:a]

However, as said before, the type specification of such an instance is not specified completely: it is deri-
ved from the overloaded type in combination with the instance type (i.e. [...] in this particular exam-

ple).

In CLEAN we require that the type specification of an overloaded operator anticipates on attributes ari-
sing from uniqueness propagation, that is, the uniqueness attribute of the class variable should be cho-
sen in such a way that for any instance type this “class attribute’ does not conflict with the correspond-
ing uniqueness attribute(s) in the fully expanded type of this instance. In the above example this means
that the type of i d becomes

DEFINING TYPES 65

class id a:: a->a
Another possibility is
class id a:: *a -> *a

However, the latter version of i d will be more restrictive in its use, since it will always require that its
argument is unique.

Constructor Classes

The combination of uniqueness typing and constructor classes (with their higher-order class variables)
introduces another difficulty. Consider, for example, the overloaded map function.

class mp m: (a->b) (ma) ->mb

Suppose we would add (distinct) attribute variables to the type variables a and b (to allow “unique in-
stances’ of map)

class mp m: (.a->b) (ma) ->mb

The question that arises is: Which attributes should be added to the two applications of the class vari-
able n? Clearly, this depends on the actual instance type filled in for m E.g., if mis instantiated with a
propagating type constructor (like []), the attributes of the applications of mare either attribute varia-
bles or the concrete attribute ‘unique’. Otherwise, one can chose anything.

Example
i nstance map []
wher e
mpf | =[f x\\ x< [|]
Ta=C(Int -> a)
instance map T

wher e
mp f (Cg) =C(f o9)

In this example, the respective expanded type of the both instances are
map:: (u:a ->v:b) wlual ->x:[vib], w<=u, x <=V

map:: (u:a ->v:b) (Tua ->Tv:b

The type system of CLEAN requires that a possible propagation attribute is explicitly indicated in the
type specification of the overloaded function. In order to obtain versions of map producing spine unique
data structures, its overloaded type should be specified as follows:

class map m: (.a ->.b).(ma) -> (mb)

This type will provide that for an application like
map inc [1,2,3]

indeed yields a spine unique list.

Observe that if you would omit the (anonymous) attribute variable of the second argument, the input
data structure cannot contain unique data on propagating positions, e.g. one could not use such a ver-
sion of map for mapping a destructive write operator on a list of unique files.

66 CLEAN LANGUAGE REPORT VERSION 1.3

In fact, the propagation rule is used to translate uniqueness properties of objects into uniqueness prop-
erties of the data structures in which these objects are stored. As said before, in some cases the actual
data structures are unknown.

Consider the following function

DoubleMap f | = (map f I, map f 1)

The type of this function is something like

Doubl eMap:: (.a ->.b) (ma) -> (.(mb),.(mb))

Clearly, 1 is duplicated. However, this does not necessarily mean that a cannot be unique anymore. If,
for instance, mis instantiated with a non-propagating type constructor (like T as defined on the previous
page) then uniqueness of a is still permitted. On the other hand, if mis instantiated with a propagating
type constructor, a unique instantiation of a should be disapproved. In CLEAN, the type system
“remembers’ sharing of objects (like I in the above example) by making the corresponding type attri-
bute non-unique. Thus, the given type for boubl emap is exactly the type inferred by CLEAN’S type sys-
tem. If one tries to instantiate mwith a propagating type constructor, and, at the same type, a with some
unique type, this will fail.

The presence of higher-order class variables, not only influences propagation properties of types, but
also the coercion relation between types. These type coercions depend on the sign classification of type
constructors. The problem with higher-order polymorphism is that in some cases the actual type con-
structors substituted for the higher order type variables are unknown, and therefore one cannot decide
whether coercions in which higher-order type variable are involved, are valid.

Consider the functions

doubl e x = (X, Xx)
dmf | = double (map f 1)

Here, map’s result (of type.(m a)) is coerced to the non-unique supertype (m a). However, this is only
allowed if mis instantiated with type constructors that have no coercion restrictions. E.g., if one tries to
substitute *w i t eFun for m where

WiteFun a = C(a -> *File)

this should fail, for, *wi t eFun is essentially unique. The to solve this problem is to restrict coercion
properties of type variable applications (mo) to

u(mo) <u(mi)iffco<t1&&1<0

A slightly modified version of this solution has been adopted in CLEAN. For convenience, we have
added the following refinement. The instances of type constructors classes are restricted to type con-
structors with no coercion restrictions. Moreover, it is assumed that these type constructors are
uniqueness propagating. This means that the witeFun cannot be used as an instance for map.
Consequently, our coercion relation we can be more liberal if it involves such class variable applica-
tions.

Overruling this requirement can be done adding the anonymous attribute. the class variable. E.g.

class mp.m: (.a ->.b).(ma) -> (mb)

Now
i nstance map WiteFun
wher e
nap. .

is valid, but the coercions in which (parts of) map’s type are involved are now restricted as explained
above.

DEFINING TYPES 67

To see the difference between the two indicated variants of constructor variables, we slightly modify
map’'s type.

class mp m: (.a->b) *(ma) ->(mb)

Without overruling the instance requirement for mthe type of dm(dmas given on the previous page) be-
comes.

dm: (.a->b) *(ma) -> (mb, mb)

Observe that the attribute of disappeared due to the fact that each type constructor substituted for mis
assumed to be propagating.

If one explicitly indicates that there are no instance restriction for the class variable m (by attributing m
with.), the function dmbecomes untypable.

4.5.6 Higher-Order Type Definitions

We will describe the effect of uniqueness typing on type definitions containing higher-order type vari-
ables. At it turns out, this combination introduces a number of difficulties which would make a full
description very complex. But even after skipping a lot of details we have to warn the reader that some
of the remaining parts are still hard to understand.

As mentioned earlier, two properties of newly defined type constructor concerning uniqueness typing
are important, namely, propagation and sign classification. One can probably image that, when dealing
with higher-order types the determination on these properties becomes more involved. Consider, for
example, the following type definition.

Tma=C(ma)

The question whether T is propagating in its second argument cannot be decided by examining this
definition only; it depends on the actual instantiation of the (higher-order) type variable m If mis in-
stantiated with a propagating type constructor, like], then T becomes propagating in its second argu-
ment as well. Actually, propagation is not only a property of type constructors, but also of types them-
selves, particularly of “partial types’ For example, the partial type [] is propagating in its (only) argu-
ment (Note that the number of arguments a partial type expects, directly follows from the kinds of the
type constructors that have been used). The type T[] is also propagating in its argument, so is the type

T((,) Int)).

The analysis in CLEAN that determines propagation properties of (partial) types has been split into two
phases. During the first phase, new type definitions are examined in order to determine the propaga-
tion dependencies between the arguments of each new type constructor. To explain the idea, we return
to our previous example.

Tma=C(ma)

First observe that the propagation of the type variable mis not interesting because mdoes not stand for
“real data’ (which is always of kind *). We associate the propagation of min T with the position(s) of the
occurrence(s) of ms applications. So in general, T is propagating in a higher-order variable mif one of mis
applications appears on a propagating position in the definition of T. Moreover, for each higher order
type variable, we determine the propagation properties of all first order type variables in the following
way: mis propagating in a, where mand a are higher-order respectively first-order type variables of 7, if a
appears on a propagating position in one of ms applications. In the above example, mis propagating in
a, since a is on a propagating position in the application (ma) . During the second phase, the propaga-
tion properties of (partial) types are determined using the results of the first phase. This (roughly) pro-
ceeds as follows. Consider the type T o for some (partial) type o, and T as defined earlier. First, deter-
mine (recursively) the propagation of o. Then the type T o is propagating if (1) o is propagating, (2) T is
propagating in m and moreover (3) mis propagating in a (the second argument of the type constructor).
With T as defined above, (2) and (3) are fulfilled. Thus, for example T[] is propagating and therefore
also T(T[]). Now define

68 CLEAN LANGUAGE REPORT VERSION 1.3

T2 a=Q (a->Int)
The TT2 is not propagating.
The adjusted uniqueness propagation rule (see also...) becomes:

- Let o,t be two uniqueness types. Suppose o has attribute u. Then, if t is propagating the applica-
tion (t o) should have an attribute v such that v < u.

Some of the readers might have inferred that this propagation rule is a ‘higher-order’ generalisation of
the old ‘first-order’ propagation rule.

As to the sign classification, we restrict ourselves to the remark that that sign analysis used in CLEAN is
adjusted in a similar way as described above for the propagation case.

Example

Tma=C((ma) -> Int)

The sign classification of T if (-,0). Here O denotes the fact the a is neither directly used on a positive
nor on a negative position. The sign classification of mw.r.t. a is +. The partial type T[] has sign -,
which e.g. implies that

T[] Int <T][] *Int

The type TT12 (with T2 as defined on the previous page) has sign +, so
TT2Int >T T2 *Int
It will be clear that combining uniqueness typing with higher-order types is far from trivial: the de-

scription given above is complex and moreover incomplete. However explaining all the details of this
combination is far beyond the scope of the reference manual.

4.5.7 Destructive Updates using Uniqueness Typing

So, it is allowed to update a uniquely typed function argument (*) destructively when the argument
does not reappear in the function result. The question is: when does the compiler indeed make use of
this possibility.

Destructive updates takes place in some predefined functions and operators which work on predefined
data structures such arrays (&-operator) and files (writing to a file). Arrays and files are intended to be
updated destructively and their use can have a big influence on the space and time behaviour of your
application (a new node does not have to be claimed and filled, the garbage collector is invoked less
often and the locality of memory references is increased).

Performing destructive updates is only sensible when information is stored in nodes. Arguments of
basic type (1 nt, Real, Char Or Bool) are stored on the B-stack or in registers and it therefore does not
make sense to make them unique.

The Ciean compiler also has an option to re-use user-defined unique data structures: the space being
occupied by a function argument of unique type will under certain conditions be reused destructively
to construct the function result. So, a more space and time efficient program can be obtained by
turning heavily used data structures into unique data structures. This is not just a matter of changing
the uniqueness type attributes (like turning a lazy data structure into a strict one). A unique data
structure also has to be used in a “single threaded” way (see Chapter 4). This means that one might
have to restructure parts of the program to maintain the unicity of objects.

The compiler will do compile-time garbage collection for user defined unique data-structures only in
certain cases. In that case run-time garbage collection time is reduced. It might even drop to zero. It

DEFINING TYPES 69

also possible that you gain even more then just garbage collection time, because updating part of a data
structure can often be done with fewer instructions than creating a new one, or because cache
behaviour improves.

The compiler will reuse uniquely typed data structures under the following conditions:

1. The pattern of the function contains a unique constructor of an algebraic data type, or a boxed
record, with at least one argument. A strict record is usually passed unboxed.

2. The function does not contain other references to this constructor.

3. A node is required to construct the result of the function, that has a size less than or equal to the
size of the matched unique node in the pattern.

4. This node is not the root node of the result or allocated inside a case expression, lambda
expression, comprehension or local function of this function.

For example:
reverse_and_append :: *[.a] u:[.a] -> u:[.a];
reverse_and_append [h : t] list = reverse_and append t [h : list];
reverse_and_append [] list = list;

will reuse the [h : t] node to construct [h : 1ist], by replacing argument t by 1i st.

 cican
| ;

Annotations and Directives

5.1 Defining Partially Strict Data Structures and 5.3 Defining Macros
Functions 5.4 Process Annotations
5.2 Defining Graphs on the Global Level 5.5 Efficiency Tips

Programming in a functional language means that one should focus on algorithms and without worry-
ing about all kinds of efficiency details. However, when large applications are being written it may hap-
pen that this attitude results in a program which is unacceptably inefficient in time and/or space.

In this Chapter we explain several kinds of annotations and directives which can be defined in CLEAN.
These annotations and directives are designed to give the programmer some means to influence the
time and space behaviour of CLEAN applications.

CLEAN is by default a lazy language: applications will only be evaluated when their results are needed
for the final outcome of the program. However, lazy evaluation is in general not very efficient. It is
much more efficient to compute function arguments in advance (trict evaluation) when it is known
that the arguments will be used in the function body. By using strictness annotations in type defini-
tions the evaluation order of data structures and functions can be changed from lazy to strict. This is
explained in Section 5.1.

One can define constant graphs on the global level also known as Constant Applicative Forms (see
Section 5.2). Unlike constant functions, these constant graphs are shared such that they are computed
only one. This generally reduces execution time possibly at the cost of some heap space needed to re-
member the shared graph constants.

Macros (Section 5.3) are special functions which will already be substituted (evaluated) at compile-time.
This generally reduces execution time (the work has already be done by the compiler) but it will lead to
an increase of object code.

By using process annotations (See 5.4) one can express that a CLEAN expression may be evaluated in
parallel. This can be used to speed-up CLEAN applications or be used to develop distributed applica-
tions.

5.1 Annotations to Change Lazy Evaluation into Strict Evaluation

CLEAN uses by default a lazy evaluation strategy: a redex is only evaluated when it is needed to compute
the final result. Some functional languages (e.g. ML, Harper et al.) use a eager (strict) evaluation strategy
and always evaluate all function arguments in advance.

5.1.1 Advantages and Disadvantages of Lazy versus Strict Evaluation

Lazy evaluation has the following advantages (+) / disadvantages (-) over eager (strict) evaluation:

+ only those computations which contribute to the final result are computed (for some algorithms
this is a clear advantage while it generally gives a greater expressive freedom);

+ one can work with infinite data structures (e.g.[1..1);

- itis unknown when a lazy expression will be computed (disadvantage for debugging, for control-
ling evaluation order);

72 CLEAN LANGUAGE REPORT VERSION 1.3

- strict evaluation is in general much more efficient, in particular for objects of basic types, non-re-
cursive types and tuples and records which are composed of such types;

-/+ in general a strict expression (e.g. 2 + 3 + 4) takes less space than a lazy one, however, sometimes
the other way around (e.g. [1. . 1000]);

5.1.2 Strict and Lazy Context

Each expression in a function definition is considered to be either strict (appearing in a strict context : it
has to be evaluated to strong root normal form) or lazy (appearing in a lazy context : not yet to be evalu-
ated to strong root normal form) The following rules specify whether or not a particular expression is
lazy or strict:

+ anon-variable pattern is strict;

an expression in a guard is strict;

the expressions specified in a strict let expression or strict let-before expression are strict;

the root expression is strict;

the arguments of a function or data constructor in a strict context are strict when these arguments
are being annotated as strict in the type definition of that function (manually or automatically) or
in the type definition of the data constructor;

+ all the other expressions are lazy.

+ + + +

Evaluation of a function will happen in the following order: patterns, guard, expressions in a strict let
(before) expression, root expression (see also 3.1 and 4.5.4).

5.1.3 Space Consumption in Strict and Lazy Context

The space occupied by CLEAN structures depends on the kind of structures one is using, but also de-
pends on whether these data structures appear in a strict or in a lazy context. To understand this one
has to have some knowledge about the basic implementation of CLeaN (see Plasmeijer and Van
Eekelen, 1993).

Graphs (see Chapter 1) are stored in a piece of memory called the heap. The amount of heap space
needed highly depends on the kind of data structures which are in use. Graph structures which are
created in a lazy context can occupy more space than graphs created in a strict context. Graphs which
are not being used are automatically collected by the garbage collector in the run-time system of
CLEAN. The arguments of functions being evaluated are stored on a stack. There are two stacks: the A-
stack which contains references to graph nodes stored in the heap and the BC-stack which contains ar-
guments of basic type and return addresses. Data structures in a lazy context are passed via references on
the A-stack. Data structures of the basic types (I nt, Real, Char Or Bool) in a strict context are stored on
the B-stack or in registers. This is also the case for these strict basic types when they are part of a record
or tuple in a strict context.

Data structures living on the B-stack are passed unboxed. They consume less space (because they are not
part of a node) and can be treated much more efficiently. When a function is called in a lazy context its
data structures are passed in a graph node (boxed) The amount of space occupied is also depending on
the arity of the function.

In the table below the amount of space consumed in the different situations is summarised (for the lazy
as well as for the strict context). For the size of the elements one can take the size consumed in a strict
context.

Type Arity | Lazy context (bytes) Strict context (bytes) Comment

I nt, Bool - 8 4

Int (0=n<32), Char - - 4 node is shared
Real - 12 8

Small Record n 4 + Zsize elenents 2 size elenments total length<12
Large Record n 8 + Xsize elenents > size el ements

TIME AND SPACE EFFICIENCY 73

Tupl e 2 12 > size elenments
>2 8 + 4*n > size el ements
Hhf 0 - 4 +si ze node node is shared
8 4 +si ze node
12 4 +si ze node also for [a]
>2 8 + 4*n 4 +si ze node
Functi on 0,1,2 |12 -
>3 4 + 4*n -
Poi nter to node - 4
{a}, {!a} n 20 + 4*n 12 + 4*n
{#I nt} n 20 + 4*n 12 + 4*n
{#Char} n 16 + 4*ceil (n/4) 8 + 4* ceil (n/4)
{#Bool } n 20 + 4* ceil (n/4) 12 + 4* ceil (n/4)
{#Real } n 20 + 8*n 12 + 8*n
{#Recor d} n 20 + 2size rec el ens*n 12 + 3size rec el ens*n
514 Time Consumption in Strict and Lazy Context

Strict arguments of functions can sometimes be handled much more efficiently than lazy arguments, in
particular when the arguments are of basic type.

Example (functions with strict arguments of basic type are more efficient).

Ackermann:: !lnt !Int -> Int

Ackermann O j j+1

Ackermann i 0 = Ackermann (i-1) 1

Ackermann i j Ackermann (i-1) (Ackermann i (j-1))

The computation of a lazy version of Acker mann 3 7 takes 14.8 seconds + 0.1 seconds for garbage collection on an
old fashioned Macll (5Mb heap). When both arguments are annotated as strict (which in this case will be done
automatically by the compiler) the computation will only take 1.5 seconds + 0.0 seconds garbage collection. The gain
is one order of magnitude. Instead of rewriting graphs the calculation is performed using stacks and registers where
possible. The speed is comparable with a recursive call in highly optimised C or with the speed obtainable when the
function was programmed directly in assembly.

5.15 Changing Lazy into Strict Evaluation

So, lazy evaluation gives a notational freedom (no worrying about what is computed when) but it
might cost space as well as time. In CLEAN the default lazy evaluation can therefore be turned into eager
evaluation by adding strictness annotations to types.

| Strict = I

This can be done in several ways:

+ The CLEAN compiler has a built-in strictness analyser based on abstract reduction (N6cker, 1993)
(it can be optionally turned off). The analyser searches for strict arguments of a function and an-
notate them internally as strict (see 5.1.1). In this way lazy arguments are automatically turned into
strict ones. This optimisation does not influence the termination behaviour of the program. It ap-
pears that the analyser can find much information. The analysis itself is quite fast.

+ The strictness analyser cannot find all strict arguments. Therefore one can also manually annotate
a function as being strict in a certain argument or in its result (see 5.1.1).

+ By using strictness annotations, a programmer can define (partially) strict data structures (Nocker
and Smetsers, 1993; see 5.1.3). Whenever such a data structure occurs in a strict context (see
5.1.1), its strict components will be evaluated.

+ The order of evaluation of expressions in a function body can also be changed from lazy to strict
by using a strict let expression or a strict let-before expression (see 3.4).

74 CLEAN LANGUAGE REPORT VERSION 1.3

One has to be careful though. When a programmer manually changes lazy evaluation into strict evaluation,
the termination behaviour of the program might change. It is only safe to put strictness annotations in the
case that the function or data constructor is known to be strict in the corresponding argument which means
that the evaluation of that argument in advance does not change the termination behaviour of the program.
The compiler is not able to check this.

Functions with Strict Arguments

In the type definition of a function the arguments can optionally be annotated as being strict.
FunctionType Type [ClassContext] [UnqTypeUnEqualities]

Type = {[Strict] BrackType}+
| ArrowType

In reasoning about functions it will always be true that the corresponding arguments will be in strong
root normal form (see 2.1) before the rewriting of the function takes place.

Example (a function with strict annotated arguments).

Acker:: !Int !Int -> Int

Acker 0j = inc j

Acker i 0 = Acker (dec i) 1

Acker i j = Acker (dec i) (Acker i (dec j))

The CLeaN compiler includes a fast and clever strictness analyser which is based on abstract reduction
(NOcker, 1993). The compiler can derive the strictness of the function arguments in many cases, such
as for the example above. Therefore there is generally no need to add strictness annotations to the type
of a function by hand. When a function is exported from a module (see Chapter 2), its type has to be
specified in the definition module. To obtain optimal efficiency, the programmer should also include
the strictness information to the type definition in the definition module. One can ask the compiler to
print out the types with the derived strictness information and paste this into the definition module.

Notice that strictness annotations are only allowed at the outermost level of the argument type.
Strictness annotations inside type instances of arguments are not possible (except for some predefined
types). Any (part of) a data structure can be changed from lazy to strict, but this has to be specified in
the type definition (see 5.1.3).

Strictness Annotations in Type Definitions

Functional programs will generally run much more efficient when strict data structures are being used
instead of lazy ones. If the inefficiency of your program becomes problematic one can think of chang-
ing lazy data structures into strict ones. This has to be done by hand in the definition of the type.

AlgebraicTypeDef = :: TypelLhs = [QuantifiedVars] ConstructorDef {| [QuantifiedVars] ConstructorDef} ;
RecordTypeDef = ::TypeLhs = [QuantifiedVars] { {FieldName : : [Strict] Type}-list};
ConstructorDef = ConstructorName {[Strict] BrackType}

| (ConstructorName) [FixPrec] {[Strict] BrackType}

In the type definition of a constructor (in an algebraic data type definition or in a the definition of a re-
cord type) the arguments of the data constructor can optionally be annotated as being strict. So, some
arguments can be defined strict while others can be defined as being lazy. In reasoning about objects of
such a type it will always be true that the annotated argument will be in strong root normal form when
the object is examined. Whenever a new object is created in a strict context, the compiler will take care
of the evaluation of the strict annotated arguments. When the new object is created in a lazy context,
the compiler will insert code that will take care of the evaluation whenever the object is put into a strict
context. If one makes a data structure strict in a certain argument, it is better not to define infinite in-
stances of such a data structure to avoid non-termination.

So, in a type definition one can define a data constructor to be strict in zero or more of its arguments.
Strictness is a property of data structure which is specified in its type. In general (with the exceptions of

TIME AND SPACE EFFICIENCY 75

tuples) one cannot arbitrary mix strict and non-strict data structures because they are considered to be
of different type.

Example (a complex number as record type with strict components).

:: Conpl ex = { re:: !'Real,
im: !'Real }

(+) infixl 6:: !Conplex !Conpl ex -> Conpl ex
(+) {re=rl,imFil} {re=r2,in¥i 2} = {re=rl+r2,inwi 1+ 2}

When a strict annotated argument is put in a strict context while the argument is defined in terms of
another strict annotated data structure the latter is put in a strict context as well and therefore also eval-
uated. So, one can change the default lazy semantics of CLEAN into a (hyper) strict semantics as de-
manded. The type system will check the consistency of types and ensure that the specified strictness is
maintained

Strictness Annotations on Instances of Predefined Type

Functions arguments can be annotated as being strict (by hand or automatically, see 5.1.2), new types
can be defined as (partially) being strict (see 5.1.3). How about function arguments of predefined type
(see 4.1)?

It is important to understand that in CLEAN a data structure with strict components is considered to be
of different type than the same data structure with lazy components. For user defined data structures
this does not cause any conflicts because the strictness of any instance obeys the strictness properties as
specified in the corresponding type definition.

Function arguments of basic type or predefined abstract type do not contain any (known) substructure
and can easily and can without problems be made strict just by annotating the corresponding function
argument as being strict. Things are much more complicated for lists, tuples and arrays which do con-
tain substructure. How can we change the strictness properties of these substructure since we do not
have access to the definition of the predefined type? Well, strictness has to be specified in the type in-
stances instead of the type definition. But, strict versions are of different type than lazy ones. To be able
to handle these similar data structures of different type in a uniform way, some conversion has to take
place. In the current version of CLEAN strict/lazy version of lists, tuples and arrays are all treated differ-
ently (we are working on it).

Strictness Annotations on Tuple Instances

Strictness annotation can be put on any tuple element of any tuple instance (see also 4.14).

| TupleType = ([Strict] Type, {[Strict] Type}-list)

One can turn a lazy tuple element into a strict one by putting strictness annotations in the correspond-
ing type instance on the tuple elements that one would like to make strict. When the corresponding
tuple is put into a strict context the tuple and the strict annotated tuple elements will be evaluated. As
usual one has to take care that these elements do not represent an infinite computation.

Strict and lazy tuples are regarded to be of different type. However, unlike is the case with any other data
structure, the compiler will automatically convert strict tuples into lazy ones, and the other way around. This
is done for programming convenience. Due to the complexity of this automatic transformation, the
conversion is done for tuples only! For the programmer it means that he can freely tuples with strict
and lazy tuple elements. The type system will not complain when a strict tuple is offered while a lazy
tuple is required. The compiler will automatically insert code to convert non-strict tuple elements into
a strict version and backwards whenever this is needed.

Example (a complex number as tuple type with strict components).

::Conplex :== (!Real,!Real)

76 CLEAN LANGUAGE REPORT VERSION 1.3

(+) infixl 6:: !Conplex !Conplex -> Conpl ex
(#) (rl,i1) (r2,i2) = (r1+4r2,i1+i 2)

which is equivalent to

(+) infixl 6:: '('Real,!Real) !('Real,!Real) -> (!Real,!Real)
(#) (rl,i1) (r2,i2) = (rl1+r2,il+i2)

when for instance G is defined as
G: Int -> (Real, Real)
than the following application is approved by the type system:

Start = G1+ G2

Strictness Annotations on Array Instances

For reasons of efficiency there are different types of arrays predefined.

ArrayType = {[Strict] Type}
| {#BasicType}

One can define a lazy array (default, of type {a}), a strict array (explicitly type the array as{! a}), and an
unboxed one (explicitly type the array as {#a}, works only on elements of basic value, records and
arrays). When put in a strict context, all the elements of a strict array will be evaluated automatically.
As usual one has to take care that the elements do not represent an infinite computation.

Lazy, strict and unboxed arrays are regarded to be of different type even if the array elements are of the
same type. So, in principle one cannot offer e.g. a strict array to a function demanding a lazy one, and
the other way around. Both will give rise to a type error. However, by using the overloading mecha-
nism one can define functions which work on any kind of array (see 2.9).

Example (strict and non-strict arrays). Ar r ay A is a strict one and Ar r ayB is a lazy one. The function Scal e expects a lazy
one and can therefore only be applied on a lazy array. Ar r ayA is accepted but Ar r ayB is not accepted as argument of
Scal e. If one wants to define a function which works on any kind of array of Reals, one has to define an overloaded
function (see 2.9) like Scal e2.

ArrayA : {Real}
ArrayA = {1.0,2.0, 3.0}

ArrayB:: {!Real}
ArrayB = {1.0,2.0, 3.0}

Scale:: {Real} Real -> {Real}
Scal e lazy_array factor = {factor * e \\ e <-: lazy_array}

Scale?2:: (a Real) Real ->.(a Real) | Array a
Scal e2 any_array factor = {factor * e \\ e <-: any_array}

Strictness Annotations on List Instances

The current version of the CLEAN compiler does not allow to turn the standard lazy lists into strict ones
by adding annotations in a type instance. In a future version this will change.

| ListType = [Type]

So, if one wants to use a list with strict elements or a spine strict list one has to define a new list using
an algebraic data type. This has as disadvantage that one cannot simply use the nice predefined nota-
tion for standard lists (list comprehensions and the like).

Example (user defined list with a strict elements). The list element will be evaluated when the Cons node is put in a strict
context.

TIME AND SPACE EFFICIENCY 77

ciList a = Cons 'a (List a)
| NI

Example (user defined spine strict list).

c:List2 a= Cons2 a ! (List2 a)
| N 12

5.2 Defining Graphs on the Global Level

Constant graphs can also be defined on a global level (for local constant graphs see 3.5.4).

| GraphDef = Selector =[:] GraphExpr; [LocalFunctionAltDefs]

A global graph definition defines a global constant (closed) graph, i.e. a graph which has the same scope
as a global function definition (see 2.1). The selector variables that occur in the selectors of a global
graph definition have a global scope just as globally defined functions.

Special about global graphs (in contrast with local graphs) is that they are not garbage collected during
the evaluation of the program A global graph can be compared with a CAF (Constant Applicative
Form): its value is computed at most once and remembered at run-time. A global graph can save execu-
tion-time at the cost of permanent space consumption.

Syntactically the definition of a graph is distinguished from the definition of a function by the symbol
which separates left-hand side from right-hand side: "=: " is used for graphs while "=>" is used for func-
tions. However, in general the more common symbol "=" is used for both type of definitions. Generally
it is clear from the context what is meant (functions have parameters, selectors are also easy
recognisable). However, when a simple constant is defined the syntax is ambiguous (it can be a
constant function definition as well as a constant graph definition).

To allow the use of the "=" whenever possible, the following rule is followed. Locally constant defini-
tions are by default taken to be graph definitions and therefore shared, globally they are by default taken
to be function definitions (see 3.1) and therefore recomputed. If one wants to obtain a different be-
haviour one has to explicit state the nature of the constant definition (has it to be shared or has it to be
recomputed) by using "=:" (on the global level, meaning it is a constant graph which is shared) or "=>"
(on the local level, meaning it is a constant function and has to be recomputed).

Example (Global constant graph versus global constant function definition: bi gl i st 1 is a graph which is computed only
once, bi gl i st 3 and bi gl i st 2 isa constant function which is computed every time it is applied).

biglistl = [1..20000] /1 aconstant function (if defined globally)
biglist2 = [1..10000] /1 a graph
biglist3 => [1..10000] /1 a constant function

A graph saves execution-time at the cost of space consumption. A constant function saves space at the
cost of execution time. So, use graphs when the computation is time-consuming while the space con-
sumption is small and constant functions in the other case.

5.3 Defining Macros

Macros are functions (rewrite rules) which are applied at compile-time instead of at run-time. Macros
can be used to define constants, create in-line substitutions, rename functions, do conditional compila-
tion etc. With a macro definition one can, for instance, assign a name to a constant such that it can be
used as pattern on the left-hand side of a function definition.

At compile-time the right-hand side of the macro definition will be substituted for every application of
the macro in the scope of the macro definition. This saves a function call and makes basic blocks larger
(see Plasmeijer and Van Eekelen, 1993) such that better code can be generated. A disadvantage is that
also more code will be generated. Inline substitution is also one of the regular optimisations performed
by the CLEAN compiler. To avoid code explosion a compiler will generally not substitute big functions.

78 CLEAN LANGUAGE REPORT VERSION 1.3

Macros give the programmer a possibility to control the substitution process manually to get an opti-
mal trade-off between the efficiency of code and the size of the code.

MacroDef = [MacroFixityDef] DefOfMacro
MacroFixityDef = (FunctionName) Fix [Prec] ;
DefOfMacro = Function {Variable} : == GraphExpr;

[LocalFunctionAltDefs]

The compile-time substitution process is guaranteed to terminate. To ensure this some restrictions are
imposed on Macros (compared to common functions). Only variables are allowed as formal argument.
A macro rule always consists of a single alternative. Furthermore,

e Macro definitions are not allowed to be cyclic to ensure that the substitution process terminates.

Example (macros):

Bl ack =1 /] Macro definition

Wite =0 /1 Macro definition

i Color :==1Int /1 Type synonym definition
Invert:: Color -> Col or /] Function definition
Invert Black = Wite

Invert Wite = Bl ack

Example (example: macro to write (a?b) for lists instead of [a: b] and its use in the function map).

(?) infixr 5 /1 Fixity of Macro

(?) ht :==1[h:t] /1 Macro definition of operator
mep:: (a ->b) [a] -> [b]

mp f (x?xs) =f x ? map f xs

map f [] =[]

Notice that macros can contain local function definitions. These local definitions (which can be recur-
sive) will also be substituted inline. In this way complicated substitutions can be achieved resulting in
efficient code.

Example (example: macros can be used to speed up frequently used functions. See for instance the definition of the function
fol dl inStdList).

foldl opr I :==foldl r | /1 Macro definition
wher e
fold r []
foldl r [a:X]

;ol dl (opr a) x

sumlist = foldl (+) O list

After substitution of the macro f ol dI a very efficient function sumwill be generated by the compiler:
sumlist = foldl 0O list

wher e

foldl r []
foldl r [a:X]

r
fold ((+) r a) x

The expansion of the macros takes place before type checking. Type specifications of macro rules is not
possible. When operators are defined as macros, fixity and associativity can be defined.

54 Process Annotations

There are two ways of creating processes in CLEAN.

One way is by creating interactive applications. These interactive "processes” actually consist of a col-
lection of call-back functions which are applied automatically when certain events occur. The call-back
functions are applied by the 1/0O system sequentially one after another. Hence, scheduling takes place

TIME AND SPACE EFFICIENCY 79

by the 1/O system on the level of call-back functions which perform a state transition in an indivisible
action. Interactive processes are explained in Standard Libraries for CLeaN (Achten et al., 1997).

In ConcURRENT CLEAN one can also create "real™ processes which are executed interleaved in an un-
defined order or which are executed in parallel on a multi-processor architecture or on a network of
processors. These CLEAN processes are generally used to speed-up the program or to obtain a specific
distribution of parts of the program across a network of processors (e.g. of the interactive processes !).
Interleaved or parallel executing processes can be created by adding process annotations (Plasmeijer and
van Eekelen, 1993) to function applications. The annotations only influence the order of evaluation,
the program remains a pure functional program, no non-deterministic effects are introduced. The orig-
inal semantics of the process annotations as explained in the CLEaN book are modified to be able to
deal with uniqueness typing (Kesseler, 1995).

The process annotations of CLEAN are designed to make parallel evaluation on loosely coupled parallel
machine architectures possible. A loosely coupled parallel architecture is defined as a multi-processor sys-
tem which consists of a number of self-contained computers, i.e. sparsely connected processors each
with private memory. An important property of such systems is that for each processor it is more effi-
cient to access objects located in its own local memory than to use the communication medium to ac-
cess remote objects. In order to achieve an efficient implementation it is necessary to map the computa-
tion graph to the physical processing elements in such a way that the communication overhead due to
the exchanging of information is relatively small. Therefore, the graph to be rewritten has to be divided
into a number of sub-graphs (grains) indicating the parts of the program graph that can be reduced in
parallel. A real speed-up on parallel architectures can only be achieved if redexes that yield a sufficient
large amount of computation, are evaluated in parallel while the intermediate links are sparsely used
(coarse grain parallelism).

CLEAN processes are lightweight processes which run very efficient. Time-slicing, scheduling and com-
munication is controlled by the CLEAN run-time system. Arbitrary process topologies can be created
(e.g. cyclic process topologies) beyond the divide (fork) and conquer parallelism generally offered.

The concurrency features of CLEAN (mail us for information) are currently only supported for a network of

Macintosh (Motorola 680x0). We are working on this. There is also a parallel version running on
Transputers. See our internet pages.

5.4.1 Process Creation

If an application being evaluated contains an argument which is attributed with an process annotation
({1113 or {| P }) the corresponding argument will be evaluated by a new reduction process. This new re-
ducer can run interleaved or in parallel with the original reduction process. The original process contin-
ues with the evaluation in the ordinary reduction order independently. The new reducer will evaluate
the expression following the functional strategy until a normal form is reached.

The creation of a new process will in theory not influence the termination behaviour of the program. It
will influence the time and space consumption of the program which might cause run-time problems
when resources are exhausted.

Process = {l I [}
| {| P[at ProcldExpr]|}
ProcldExpr = GraphExpr

With the {] 1]} annotation a new interleaved reducer is created on the same processor that reduces the
annotated graph expression to normal form (following the functional strategy). Such an interleaved re-
ducer dies when this normal form is reached. However, during the evaluation of this result other reduc-
ers may have been created.

With the {| p| } annotation a new parallel reducer is created. This reducer is preferably located on a diffe-
rent processor working on a lazy copy of the corresponding sub-graph. Reducers that are located on
different processors run in parallel with each other. The {| P} annotations can be extended with a loca-
tion directive at | ocati on, Where | ocat i on is an expression of predefined type proci d indicating the pro-

80

CLEAN LANGUAGE REPORT VERSION 1.3

cessor on which the parallel process has to be created. In the library st dproci d functions are given that
yield an object of this type.

When there are several local annotations specified in a contractum, the order in which they have to be
effectuated is in principle depth-first with respect to the sub-graph structure.

5.4.2

Process Communication

A reducer can demand the evaluation of a sub-graph located on another processor. Such a demand al-
ways takes place via a communication channel (a lazy copy node, see Plasmeijer and Van Eekelen, 1993).

if the sub-graph the channel is referring to is not in strong root normal form, there will be a redu-
cer process on the other processor (it will be already there or it will be created lazily) that will take
care of the evaluation to root normal form. The demanding process is locked (suspended) until the
root-normal form is reached.

if the sub-graph the channel is referring to is in strong root normal form, a lazy copy of this sub-
graph is made on the processor such that it can be inspected by the demanding reducer. Only that
part of the graph expression which is in strong root normal form is copied (in one or more
chunks) to the demanding processor. Such a copy is an ordinary graph which can contain shared
parts, it can be cyclic and it can refer to other parts of the graph stored on another processor.
Those parts of the graph which are not in root normal form will not be copied. They are lazy co-
pied in the same way (this might induce the creation of new lazy reduction processes) whenever
there is a new demand for them.

a reducer will be locked (suspended) if it wants to reduce a redex that is already being reduced by
some other reducer. A locked reducer can continue when the redex has been reduced to strong
root normal form.

So, process communication takes place automatically and there will always be a serving process that will
reduce the demanding information to root normal form before it is shipped.

Example (hierarchical process topology creation).

| n>threshold = fib
| n>2 =fib
wher e

threshold = 10

Example (pipeline of processes; the sieve of Eratosthenes is a classical example in which parallel sieving processes are created

5.5

dynamically in a pipeline).

Start:: [Int]
Start = prinmes
wher e

primes:: [Int]
primes = sieve {|PF} [2..]

sieve:: [Int] ->[Int]

sieve [] =]

sieve [pr:str] = [pr:{|P} sieve (filter pr str)]
filter:: Int [Int] ->[Int]

filter pr str = [n\\ n< str | nnmod pr <> 0]

Efficiency Tips

Here are some additional suggestions how to make your program more efficient:

+

+

Use the CLeaN profiler to find out which frequently called functions are consuming a lot of space
and/or time. If you modify your program, these functions are the one to have a good look at.
Transform a recursive function to a tail-recursive function.

TIME AND SPACE EFFICIENCY 81

+ 4+ +++++ o+

+

Accumulate results in parameters instead of in right-hand side results.

When functions return multiple ad-hoc results in a tuple put these results in a strict tuple instead
(can be indicated in the type).

It is usually better to use strict records instead of strict tuples in data structures.

Arrays can be more efficient than lists since they allow constant access time on their elements and
can be destructive updated.

Use strict or unboxed data structures whenever possible (see 5.1.5).

Export the strictness information to other modules (the compiler will warn you if you don't).
Make functions strict in its arguments whenever possible (see. 5.1.5)

Use macros for simple constant expressions or frequently used functions.

Use CAFs and local graphs to avoid recalculation of expressions.

Selections in a lazy context can better be transformed to functions which do a pattern match.
Higher order functions are nice but inefficient (the compiler will try to convert higher order func-
tions into first order functions).

Constructors of high arity are inefficient.

Increase the heap space in the case that garbage collection uses a lot of time.

[

concurrent

Clean

A

Context-Free Syntax Description

Al
A2
A3
A4

CLEAN Program
Import Definition
Function Definition
Macro Definition

A5
A.6
A7
A.8

Type Definition
Class Definition
Names
Denotations

In this appendix the context-free syntax of CLEAN is given. Notice that the lay-out rule (see 2.3.3)
permits the omission of the semi-colon (*:") which ends a definition and of the braces (‘{' and '} ')
which are used to group a list of definitions.

The following notational conventions are used in the context-free syntax descriptions:

Al

[notion] means that the presence of notion is optional

{notion} means that notion can occur zero or more times

{notion}+ means that notion occurs at least once

{notion}-list means one or more occurrences of notion separated by comma's
ternnals are printed in bol d 10 pts couri er

t@rmi nel s that can be left out in lay-out mode are printed in QUi | i n@El courier
symbols are printed in jtalic and represent identifiers and literals

{notion}fstr

is used for concatenation of notions
means the longest expression not containing the string st r

CLEAN Program

CLEANProgram
Module

DefinitionModule

ImplementationModule

ImplDefinition

DefDefinition

{Module}+
DefinitionModule
ImplementationModule

defini ti on nodul e ModuleName ;

{DefDefinition}

syst emnodul e ModuleName §

{DefDefinition}

[i npl ement at i on] modul e ModuleName ;

{ImplDefinition}

ImportDef
FunctionDef
GraphDef
MacroDef
TypeDef
ClassDef

ImportDef

FunctionTypeDef

MacroDef

TypeDef

ClassDef
TypeClassinstanceExportDef

/1 seeA.z2
/1 seeA3
/] seeA.3
/1 seeA.4d
/1 seeAb5
/] seeA.6

/1 seeAz2
/] seeA.3
/1 seeA.4d
/1 seeAb5
/] seeA.6
/1 seeA.6

84

CLEAN LANGUAGE REPORT VERSION 1.3

A.2 Import Definition
ImportDef = ImplicitimportDef
| ExplicitimportDef
ImplicitimportDef = inport {ModuleName}-list ;
ExplicitimportDef = fromModuleName i nport {Imports}-list § Il see A7
Imports = FunctionName Il seeA7
| ConstructorName Il seeA7
| SelectorVariable Il seeA7
| FieldName Il seeA7
| MacroName Il seeA7
| TypeName Il see A7
| ClassName Il seeA7
A.3 Function Definition

FunctionDef
FunctionTypeDef
FunctionType
ClassContext

UngTypeUnEqualities

DefOfFunction
FunctionAltDef

Function

BrackPattern

GraphPattern

Constructor

PatternVariable

BasicValuePattern

BasicValue

ListPattern

LGraphPattern

TuplePattern
RecordPattern

ArrayPattern

LetBefores

[FunctionTypeDef] DefOfFunction

FunctionName : : FunctionType ;
(FunctionName) [FixPrec][: : FunctionType] §
Type [ClassContext] [UnqTypeUnEqualities]

| ClassName-list [. | TypeVariable {& ClassName-list .] TypeVariable }

, [{{UniqueTypeVariable}+ <= UniqueTypeVariable}-list]

{FunctionAltDef}+
Function {Pattern}
FunctionBody
[LocalFunctionAltDefs]

FunctionName

(FunctionName)

(GraphPattern)
Constructor
BasicValuePattern
ListPattern
TuplePattern
RecordPattern
ArrayPattern
PatternVariable
Variable =: BrackPattern

ConstructorName {Pattern}

GraphPattern ConstructorName GraphPattern
Variable =: GraphPattern

Pattern

ConstructorName

(ConstructorName)

Variable

BasicValue
IntDenotation
RealDenotation
BoolDenotation
CharDenotation

[[LGraphPattern}-list [: GraphPattern]]]
GraphPattern
CharsDenotation

(GraphPattern, {GraphPattern}-list)

{[TypeName|] {FieldName [= GraphPattern]}-/isf}

{{ArrayIindex = GraphPattern }-lis}
StringDenotation

{LetBefore}+

I

11

I

see A7

see A.8
see A.8
see A.8
see A.8

see A.8

see A.8

CONTEXT-FREE SYNTAX DESCRIPTION

85

LetBefore

GraphDef
LetGraphDef
Selector

StrictLetGraphDef

Guard
BooleanExpr

StrictLet
FunctionBody

FunctionRhs

RootExpression

GraphExpr

Process
ProcldExpr
Application
Operator

BrackGraph
SimpleGraph

ConstructorOrFunction

GraphVariable
List
ListDenotation

LGraphExpr

DotDotExpression

ListComprehension

Qualifier
Generators
Generator

ListExpr
ArrayExpr

Tuple
Record

RecordDenotation

{LetGraphDef}+
#! {StrictLetGraphDef}+

Selector =[:] GraphExpr; [LocalFunctionAltDefs]
Selector =[:] GraphExpr ; [LocalFunctionDefs]
BrackPattern

LetGraphDef

GraphVariable §

BooleanExpr
GraphExpr

let! { {StrictLetGraphDef}} in

[LetBefores] FunctionRhs

[LocalFunctionDefs]

| [StrictLet] Guard FunctionBody [FunctionBody]
=[>] RootExpression ;

[StrictLet] GraphExpr

[Process] Application
[Process] CaseExpr
[Process] LetExpr

{11}
{| P[at ProcldExpr]|}
GraphExpr

{BrackGraph}+

GraphExpr Operator GraphExpr

FunctionName I
ConstructorName /1
SimpleGraph [Selections]

(GraphExpr)

ConstructorOrFunction

GraphVariable

BasicValue

List

Tuple

Record

Array

LambdaAbstr

Constructor
Function

Variable /1
SelectorVariable /1

ListDenotation

DotDotExpression

ListComprehension

[[LGraphExpr}-list[: GraphExpr]]]
GraphExpr

CharsDenotation /1
[GraphExpr [, GraphExpr]. . [GraphExpr]]
[GraphExpr \ \ {Qualifier}-list]
Generators {| Guard}

Generator {& Generator}

Selector <- ListExpr

Selector <-: ArrayExpr

GraphExpr

GraphExpr

(GraphExpr, {GraphExpr}-list)
RecordDenotation

RecordUpdate
{[TypeName|] {FieldName= GraphExpr}-lis{}

see A.7
see A7

see A7
see A7

see A.8

86

CLEAN LANGUAGE REPORT VERSION 1.3

RecordUpdate
Selection

Selections
RecordExpr
ArrayExpr

Array

ArrayDenotation

ArrayUpdate

ArrayComprehension

Arraylndex
IntegerExpr

LambdaAbstr

CaseExpr

CaseAltDef

CaseBody

CaseRhs

LetExpresssion

LocalFunctionDefs
LocalDef

LocalFunctionAltDefs

{[TypeName|] RecordExpr & {FieldName {Selection} = GraphExpr}-lisf}
. [TypeName. | FieldName
Arraylndex
{Selection}+
I Arraylndex {Selection}+
I [TypeName.]| FieldName {Selection}+
GraphExpr
GraphExpr

ArrayDenotation

ArrayUpdate

ArrayComprehension

{{GraphExpr}-list}

StringDenotation /1l see A8

{ ArrayExpr & {Arraylndex {Selection} = GraphExpr}-list \ \ {Qualifier}-lisf]}
{ GraphExpr\\ {Qualifier}-list}

[{IntegerExpr}-/ist]

GraphExpr

\ {BrackPattern} - > GraphExpr

case GraphExpr of

{ {CaseAltDef}+ }

i f BrackGraph BrackGraph BrackGraph
Pattern

CaseBody

[LocalFunctionAltDefs]

[LetBefores] CaseRhs
[LocalFunctionDefs]

| [StrictLet] Guard CaseBody [CaseBody]
-> RootExpression ;

let { {LocalDef}+} in GraphExpr

[wi t h] { {LocalDef}+ }
GraphDef

FunctionDef

[wher e] { {LocalDef}+ }

A4 Macro Definition
MacroDef = [MacroFixityDef] DefOfMacro
MacroFixityDef = (FunctionName) Fix [Prec] ;
DefOfMacro = Function {Variable} : == GraphExpr;
[LocalFunctionAltDefs]
A.5 Type Definition
TypeDef = AlgebraicTypeDef
| RecordTypeDef
| SynonymTypeDef
| AbstractTypeDef
AlgebraicTypeDef = :: TypeLhs = [QuantifiedVars] ConstructorDef {| [QuantifiedVars] ConstructorDef} ;
RecordTypeDef = ::TypeLhs = [QuantifiedVars] { {FieldName : : [Strict] Type}-list};
SynonymTypeDef = :: TypelLhs: == [QuantifiedVars]Type §
AbstractTypeDef = ::TypelLhs;
TypelLhs = [*]TypeConstructor {[*] TypeVariable}
TypeConstructor = TypeName Il seeA7
| QuantifiedVars = E. {[.]TypeVariable}+:
ConstructorDef = ConstructorName {[Strict] BrackType}
| (ConstructorName) [FixPrec] {[Strict] BrackType}
FixPrec = Fix [Prec]
Fix = infixl
| infixr
I

infix

CONTEXT-FREE SYNTAX DESCRIPTION

87

Prec = Digit
Strict = |
Type = {[Strict] BrackType}+
| ArrowType
BrackType = [UnqTypeAttrib] SimpleType
ArrowType = {BrackType}+ - > Type
UngTypeAttrib = *
| UniqueTypeVariable:
| .
SimpleType = TypeConstructor
| TypeVariable
| BasicType
| PredefAbstrType
| ListType
| TupleType
| ArrayType
| (Type)
TypeConstructor = TypeName
| [l
| ({1}
| {}
| {'}
| | {1
BasicType = Int
| Real
| Char
| Bool
PredefAbstrType = Wrld
| File
| Procld
ListType = [Type]
TupleType = ([Strict] Type, {[Strict] Type}-list)
ArrayType = {[Strict] Type}
| {#Type}
A.6 Class Definition
ClassDef = TypeClassDef
| TypeClassinstanceDef
TypeClassDef = cl ass ClassName [.] TypeVariable [ClassContext]
[wher e { {ClassMemberDef}+ }]
| class FunctionName [.] TypeVariable: : FunctionType;
| class (FunctionName) [FixPrec] [.] TypeVariable: : FunctionType;
ClassMemberDef = FunctionTypeDef;
[MacroDef;]
TypeClassinstanceDef = instance ClassName [Type [def aul t | ClassContext]]
[wher e { {DefOfFunction}+ }]
TypeClassinstanceExportDef
= export ClassName {BasicType | TypeVariable}-list;
A7 Names

ModuleName
FunctionName
ConstructorName
SelectorVariable
Variable
MacroName
FieldName
TypeName
TypeVariable

LowerCaseld |
LowerCaseld |

LowerCaseld
LowerCaseld
LowerCaseld |
LowerCaseld

LowerCaseld

UpperCaseld|
UpperCaseld|
UpperCaseld|
UpperCaseld|

UpperCaseld|

Funnyld
Funnyld
Funnyld
Funnyld

Funnyld

88

CLEAN LANGUAGE REPORT VERSION 1.3

UniqueTypeVariable = LowerCaseld
ClassName = LowerCaseld | UpperCaseld| Funnyld
LowerCaseld = LowerCaseChar~{ldChar}
UpperCaseld = UpperCaseChar~{IldChar}
Funnyld = {SpecialChar}+
LowerCaseChar =a | b | ¢ | d | e | f | g9 | h | i i
| «k || m | n | o | p | a | r | s t
[u | v | w | x | vy | z
UpperCaseChar = A | B | C | D | E | F o G | H | | J
| K | L | M| N | O] P | Q| R | S T
| U | Vv | W | X | Y | Z
SpecialChar =~ | @| # | $ | %9 | ~ | 2 | !
I + I - <> & =
IdChar = LowerCaseChar
| UpperCaseChar
| Digit /] see A8
l—
A.8 Denotations
IntDenotation = [Sign]~{Digit}+ /| decimal
| [Sign]~ 0~{OctDigit}+ /1 octal
| [Sign]~ Ox~{HexDigit}+ /'l hexadecimal
Sign = +|-
RealDenotation = [Sign~[{Digit~}+. {~Digit}+[~E[~Sign}{~Digit}+]
BoolDenotation = True|Fal se
CharDenotation = CharDel~AnyChar~CharDel.CharDel
CharsDenotation = CharDel~{AnyChar/~CharDel}+.CharDel
StringDenotation = StringDel~{AnyChar/~StringDel}~StringDel
AnyChar = |dChar | ReservedChar | Special
ReservedChar =C I) K (S S N A R :
Special = \n | \r | M | \b /I newline,return,formf,backspace
| \t | \\ | \CharDel /| tab, backslash, character delimiter
|\ StringDel /| string delimiter
| \{OctDigit}+ /| octal number
|\ x{HexDigit}+ /' | hexadecimal number
OctDigit =0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
HexDigit =0 | 1 | 2 | 3]| 4 | 5 | 6 | 7 | 8 9
| A | B | C | D | E | F
| a | b | ¢ | d | e | f
Digit =0 | 1 | 2 | 3]| 4 | 5 | 6 | 7 | 8 9
CharDel

StringDel

Clean
{ :

Lexical Structure

B.1 Lexical Program Structure B.3 Reserved Keywords and Symbols
B.2 Comments

In this appendix the lexical structure of CLEAN is given. It describes the kind of tokens recognised by
the scanner/parser. In particular it summarizes the keywords, symbols and characters which have a spe-
cial meaning in the language.

B.1 Lexical Program Structure

In this Section the lexical structure of CLEAN is given. It describes the kind of tokens recognised by the
scanner/parser. In particular it summarizes the keywords, symbols and characters which have a special
meaning in the language.

LexProgram = {Lexeme | {Whitespace}+ }

Lexeme = ReservedKeywordOrSymbol /1 see Section B.3
| ReservedChar /] see Section A.8
| Literal
| Identifier

Identifier = LowerCaseld Il seeAT
| UpperCaseld Il seeA7
| Funnyld Il seeA7

Literal = IntDenotation /1 seeAB8
| RealDenotation Il see A8
| BoolDenotation /] seeAB8
| CharDenotation /] see A8
| CharsDenotation Il see A8
| StringDenotation /] seeAB8

Whitespace = space /1 aspace character
| tab /1 ahorizontal tab
| newine /1 anewline char
| fornfeed /1 aformfeed
| verttab /1 avertical tab
| Comment /] see Section B.2

B.2 Comments

Comment /' AnythingTilINL new i ne

[* AnythingTill/* Comment AnythingTill*/*/
/* AnythingTill*/ */

AnythingTilINL {AnyCharfnew i ne} /1 no newline
AnythingTill/* {AnyCharH/ *} /I no"/*"
AnythingTill*/ {AnyCharf~*/} /I no™/"
AnyChar IdChar | ReservedChar | Special Il see A7

90 CLEAN LANGUAGE REPORT VERSION 1.3

B.3 Reserved Keywords and Symbols

Below the keywords and symbols are listed which have a special meaning in the language. Some sym-
bols only have a special meaning in a certain context. Outside this context they can be freely used if
they are not a reserved character (see A.8). In the comment it is indicated for which context (name
space) the symbol is predefined.

| ReservedKeywordOrSymbol =

| /1 in all contexts:
/* /1 begin of comment block
*/ /1 end of comment block
/1l 11 rest of line is comment
s /1 begin of a type definition
P== /1 in a type synonym or macro definition
= /1 in a function, graph, alg. type, rec. field
= I labeling a graph definition
= /1 in a function definition
; /1 end of a definition (if no lay-out rule)
from /1 begin of symbol list for imports
definition /1 begin of definition module
i npl enent ati on /1 begin of implementation module
i mport I begin of import list
nodul e /1 in module header
system /1 begin of system module
-> /1 in a case expression, lambda abstraction
[/1 begin of a list
: 11 cons node
] /1l end of a list
\\ /1 begin of list or array comprehension
< /1 list gen. in list or array comprehension
<-: I array gen. in list or array comprehension
{ /1 begin of a record or array, begin of a scope
} /1 end of a record or array, end of a scope

. /1 a record or array selector
! /1 a record or array selector (for unique objects)

& /1 an update of a record or array, zipping gener.
{l I/ begin of process annotations

|} /1 end of process annotations

case /1 begin of case expression

code /1 begin code block in a syst impl. module
if /1 begin of a conditional expression

in /1 end of (strict) let expression

| et /1 begin of let expression

/1 begin of let expression (for a guard)

let! /1 begin of strict let expression

/1 begin of strict let expression (for a guard)
of /1 in case expression

wher e /1 begin of local def of a function alternative
wth /1 begin of local def in a rule alternative
infix /1 infix indication in operator definition

i nfixl /1 infix left indication in operator definition

i nfixr I infix right indication in operator definition

| /'l in process annotations:

| /1 a parallel process to normal form
| /1 an interleaved process to normal form

| /'l in type specifications:

| at /1 followed by processor id
P
I

| ! /1 strict type

| . /1 uniqueness type variable
| # /1 unboxed type

| * /1 unique type

BIBLIGRAPHY 91
|{ concurrent

Bibliography

Achten, P.M. (1996). Interactive Functional Programs - models, methods, and implementations.
Ph.D., University of Nijmegen.

Peter Achten, John van Groningen and Rinus Plasmeijer (1992). ‘High-level specification of 1/O in
functional languages’. In: Proc. of the Glasgow workshop on Functional programming, ed. J. Lau-
nchbury and P. Sansom, Ayr, Scotland, Springer-Verlag, Workshops in Computing, pp. 1-17.

Peter Achten and Rinus Plasmeijer (1995). “The Ins and Outs of CONCURRENT CLEAN I/O’. Journal of
Functional Programming, 5, 1, pp. 81-110.

Peter Achten and Rinus Plasmeijer (1997). "Interactive Functional Objects in Clean". In: Proc. of the
1997 Workshop on the Implementation of Functional Languages (IFL'97), ed. K. Hammond Davie,
T., and Clack, C., St.Andrews, Scotland, pp. 387-406.

Tom Brus, Marko van Eekelen, Maarten van Leer, Rinus Plasmeijer (1987). ‘CLEAN - A Language for
Functional Graph Rewriting’. Proc. of the Third International Conference on Functional Pro-
gramming Languages and Computer Architecture (FPCA '87), Portland, Oregon, USA, LNCS 274,
Springer Verlag, 364-384.

Barendregt, H.P. (1984). The Lambda-Calculus, its Syntax and Semantics. North—Holland.

Henk Barendregt, Marko van Eekelen, John Glauert, Richard Kennaway, Rinus Plasmeijer, Ronan
Sleep (1987). ‘“Term Graph Rewriting’. Proceedings of Parallel Architectures and Languages Europe
(PARLE), part Il, Eindhoven, The Netherlands. LNCS 259, Springer Verlag, 141-158.

Erik Barendsen and Sjaak Smetsers (1993a). ‘Extending Graph Rewriting with Copying’. In: Proc. of
the Seminar on Graph Transformations in Computer Science, ed. B. Courcelle, H. Ehrig, G. Ro-
zenberg and H.J. Schneider, Dagstuhl, Wadern, Springer-Verlag, Berlin, LNCS 776, Springer
Verlag, pp 51-70.

Erik Barendsen and Sjaak Smetsers (1993b). ‘Conventional and Uniqueness Typing in Graph Rewrite
Systems (extended abstract)’. In: Proc. of the 13th Conference on the Foundations of Software
Technology & Theoretical Computer Science, ed. R.K. Shyamasundar, Bombay, India, LNCS 761,
Springer Verlag, pp. 41-51.

Bird, R.S. and P. Wadler (1988). Introduction to Functional Programming. Prentice Hall.

Marko van Eekelen, Rinus Plasmeijer, Sjaak Smetsers (1991). ‘Parallel Graph Rewriting on Loosely
Coupled Machine Architectures’. In Kaplan, S. and M. Okada (Eds.) Proc. of the 2nd Int.
Worksh. on Conditional and Typed Rewriting Systems (CTRS'90), 1990. Montreal, Canada, LNCS
516, Springer Verlag, 354-370.

Eekelen, M.C.J.D. van, J.W.M. Smetsers, M.J. Plasmeijer (1997). "Graph Rewriting Semantics for
Functional Programming Languages”. In: Proc. of the CSL '96, Fifth Annual conference of the
European Association for Computer Science Logic (EACSL), ed. Marc Bezem Dirk van Dalen,
Utrecht, Springer-Verlag, LNCS, 1258, pp. 106-128.

Harper, R., D. MacQueen and R. Milner (1986). ‘Standard ML’. Edinburgh University, Internal re-
port ECS-LFCS-86-2.

Hindley R. (1969). The principle type scheme of an object in combinatory logic. Trans. of the American
Math. Soc., 146, 29-60.

Hudak, P. , S. Peyton Jones, Ph. Wadler, B. Boutel, J. Fairbairn, J. Fasel, K. Hammond, J. Hughes,
Th. Johnsson, D. Kieburtz, R. Nikhil, W. Partain and J. Peterson (1992). ‘Report on the pro-
gramming language Haskell’. ACM SigPlan notices, 27, 5, pp. 1-164.

92 CLEAN LANGUAGE REPORT VERSION 1.3

Jones, M.P. (1993). Gofer - Gofer 2.21 release notes. Yale University.

Marko Kesseler (1991). ‘Implementing the ABC machine on transputers’. In: Proc. of the 3rd Inter-
national Workshop on Implementation of Functional Languages on Parallel Architectures, ed. H.
Glaser and P. Hartel, Southampton, University of Southampton, Technical Report 91-07, pp.
147-192.

Kesseler, M.H.G. (1996). The Implementation of Functional Languages on Parallel Machines with
Distributed Memory. Ph.D., University of Nijmegen.

Milner, R.A. (1978). ‘Theory of type polymorphism in programming’. Journal of Computer and System
Sciences, 17, 3, 348-375.

Mycroft A. (1984). Polymorphic type schemes and recursive definitions. In Proc. International Confer-
ence on Programming, Toulouse (Paul M. and Robinet B., eds.), LNCS 167, Springer Verag,
217-2309.

Eric Nocker, Sjaak Smetsers, Marko van Eekelen, Rinus Plasmeijer (1991). ‘CONCURRENT CLEAN'. In
Aarts, E.H.L., J. van Leeuwen, M. Rem (Eds.), Proceedings of the Conference on Parallel Archi-
tectures and Languages Europe (PARLE’91), Vol 11, Eindhoven, The Netherlands, LNCS 505,
Springer Verlag, June 1991, 202-219.

Eric Nocker (1993). ‘Strictness analysis using abstract reduction’. In: Proc. of the 6th Conference on
Functional Programming Languages and Computer Architectures, ed. Arvind, Copenhagen, ACM
Press, pp. 255-265.

Eric NOcker and Sjaak Smetsers (1993). ‘Partially strict non-recursive data types’. Journal of Functional
Programming, 3, 2, pp. 191-215.

Rinus Plasmeijer and Marko van Eekelen (1993). Functional Programming and Parallel Graph
Rewriting. Addison Wesley, ISBN 0-201-41663-8.

Sjaak Smetsers, Eric Nocker, John van Groningen, Rinus Plasmeijer (1991). ‘Generating Efficient
Code for Lazy Functional Languages’. In Hughes, J. (Ed.), Proc. of the Fifth International Confer-
ence on Functional Programming Languages and Computer Architecture (FPCA '91), USA, LNCS
523, Springer Verlag, 592-618.

Ronan Sleep, Rinus Plasmeijer and Marko van Eekelen (1993). Term Graph Rewriting - Theory and
Practice. John Wiley & Sons.

Yoshihito Toyama, Sjaak Smetsers, Marko van Eekelen and Rinus Plasmeijer (1993). ‘The functional
strategy and transitive term rewriting systems’. In: Term Graph Rewriting, ed. Sleep, Plasmeijer
and van Eekelen, John Wiley.

Turner, D.A. (1985). ‘Miranda: a non-strict functional language with polymorphic types’. In: Proc. of
the Conference on Functional Programming Languages and Computer Architecture, ed. J.P. Jouan-
naud, Nancy, France. LNCS 201, Springer Verlag, 1-16.

|{ concurrent

D

Index

Emboldened terms indicate where a term has been defined in the text. A term starting with an upper-
case character generally refers to an identifier in the syntactic description or to a predefined function or

operator in the library.

A

abort, 49
abstract data type, 13, 46

predefined, 40
AbstractTypeDef, 46, 86
actual node-id, 3
algebraic data type, 42
algebraic data type definition, 19
AlgebraicTypeDef, 42, 59, 74, 86
anonymous node variable, 19
AnyChar, 24, 88, 89
Application, 22, 23, 85
argument

formal, 18
arity of a function, 47, 48
array, 21, 24, 28, 41, 86

comprehension, 30

generator, 25

index, 29

index, 41

pattern, 21

selection, 31
ArrayDenotation, 28, 86
ArrayExpr, 25, 29, 85, 86
ArrayIndex, 86
ArrayPattern, 21, 84
ArrayType, 41, 76, 87
ArrayUpdate, 29, 86
arrow type, 41
ArrowType, 41, 57, 87
ASCII, 40
at, 90

basic type, 20, 40
BasicType, 40, 87
BasicValue, 20, 24, 84
BasicValuePattern, 20, 84
block structure, 32

Bool, 20, 23, 40, 87
BoolDenotation, 24, 88
BooleanExpr, 25, 85
boxing, 72

BrackGraph, 22, 27, 31, 85
BrackPattern, 18, 84
BrackType, 39, 43, 57, 60, 87

CAF, 77

cartesian product, 41, 47

case, 90

case, 32, 86

case expression, 32

CaseAltDef, 32, 86

CaseExpr, 32, 86

Char, 23, 40, 87

Char, 20

CharDel, 24, 88

CharDenotation, 24, 88

CharsDenotation, 24, 88

class, 50, 54, 87
enumeration type, 25

ClassContext, 51, 84

ClassDef, 41, 87

ClassMemberDef, 50, 87

ClassName, 7, 88

Clean License
commercial, iv
educational, iv

CleanProgram, 9, 83

code, 15, 90

Comment, 89

concurrency, ii

conditional expression, 32

console mode, 10

constant
global, 11
local, 11

Constant Applicative Form, 77
constant function, 18
constant value, 20, 42
Constructor, 19, 23, 84

of zero arity, 19
constructor operator, 19
constructor pattern, 19
constructor symbol, 1
ConstructorDef, 42, 60, 74, 86

94

CLEAN LANGUAGE REPORT VERSION 1.3

ConstructorName, 7, 87
ConstructorOrFunction, 23, 85
context

lazy, 72

strict, 72
contractum, 1
corresponding module, 9, 12
curried application, 48
curried constructor application, 19
curried type, 41
currying, 23
cyclic graph, 35

data constructor, 18, 19, 42
data structure, 42
DataRoot, 4
decimal number, 24
default, 50, 87
DefDefinition, 12, 83
definition, 9, 83, 90
global, 11
local, 11
definition module, 9, 12, 46
DefinitionModule, 9, 83
DefOfFunction, 17, 84
DefOfMacro, 78, 86
depending module, 13
dictionary, 49
Digit, 8, 88
directed arc, 1
DotDotexpression, 25, 85

E., 44
enumeration type, 25
evaluation
interleaved, 22
parallel, 22
existentially quantified variable, 44
explicit import, 13
ExplicitimportDef, 13, 84
export, 55, 87
expression, 23
initial, 1

False, 24, 88

field name, 20, 26, 27, 45

FieldName, 7, 87

File, 40, 87

Fix, 42, 47, 86

Fix, 47

fixity, 18, 23, 48

flat type, 55

foreign function, 14

formal argument, 18, 19, 23

formal node-id, 3

from, 13, 84, 90

function, 1, 23, 84
alternative, 17
arity of a, 48
constant, 18, 35

curried application of a, 48

definition, 17

global, 11

local, 11

partial, 1, 18, 48

total, 49
Function, 17
function definition, 1
function object, 41
function symbol, 1
function type, 47
functional array update, 29
functional record update, 27
functional reduction strategy, 2
FunctionAltDef, 17, 84
FunctionBody, 17, 32, 85, 86
FunctionDef, 17, 41, 84
FunctionDef, 47
FunctionName, 7, 87
FunctionType, 47, 51, 74, 84
FunctionTypeDef, 47, 84
Funnyld, 8, 88

garbage collection, 77
garbage collector, 35
generator, 25, 85
array, 24
list, 26
Generators, 25, 85
global definition, 11, 12
global graph, 4
global graph definition, 77
global scope, 14
Gofer, i
graph, 1
Graph, 4
graph definition, 35
graph rewrite rule, 1, 17
GraphDef, 35, 36, 77, 85
GraphExpr, 22, 85
GraphPattern, 18, 84
GraphVariable, 23, 85
Guard, 21, 25, 26, 85
nested, 22
guard, 17
guarded function body, 17

head normal form, 10
hexadecimal number, 24
HexDigit, 24, 88

Hilt B.V., vii

Hindley, 39

Hugs, i

1,90

1/0 library, ii, 10

IdChar, 8, 88

identifier, 8, 89

identifiers
renaming, 14

INDEX 95
if, 90 LowerCaseChar, 8, 838
if, 32, 86 LowerCaseld, 7, 88
ImplDefinition, 10, 83 M
implementation, 9, 83
implementation, 90 ;
ImplementationModule, 9, 83 m;ggs‘ W
implicit import.;ib.import global, 11
implicit, 14 local ’11
i'mp"ft'“ﬂpgif%%f’ 14, 84 macro definition, 77
N eplicit, 13 MacroDef, 78, 86
import staterﬁent 13 Il:/l/lacrolzlxnyD?efé;S, 86
’ acroName, 7,
:mpgg?ifélgfll main module, 9
;mports, 13, message passing, ii
in, 36, 85, 90 Mil 39
in, 33, 86 | NeT, S5
O Miranda, i
infix, 42, 47, 86, 90
o mode
infix constructor, 19 console. 10
infix position, 18, 19 la -out,ll
infixl, 42, 47, 86, 90 ST
infixr, 42, 47, 86, 90 module, 9, 83, 90
Initial, 3,4 corresponding, 9, 12
initial expression, 9, 10 ‘i o
instance. 50 87 definition, 9, 12
Int, 20, 23, 40, 87 qep?”d'”g’ 13
IntDenotation, 24, 88 mp %r?entaﬁlolnéi 9
IntegerExpr, 86 pass-through,
Intel. iv : ModuleName, 7, 87
e Motorola, iv
N
keyword, 90 name space, 90
name spaces, 8
nested guards, 22
LambdaAbstr, 32, 86 nested scope, 8
Léufer, 44 node, 1
lay-out rule, 11, 12 node variable, 19
lazy context, 72 anonymous, 19
lazy evaluation, 71 node-id, 1
lazy semantics, 75 actual, 3
left hand-side of a graph, 1 applied, 1
let, 33, 86 formal, 3
let // begin of let expression, 90 node-id variable, 18
let!, 36, 85, 90 node-identifier, 1
LetBeforeExpression, 37, 84, 85 normal form, 2
LetExpresssion, 33, 86 @)
Lexeme, 89
tgg;%géig’ gi 85 obje;:t oriegtedzarogramming, 45
e octal number,
ti(?]Lafr:\F/’attern, 20, 84 OctDigit, 24, 88
list, 20, 24, 40, 85 of, 32, 86, 90
list list tor. 25 operator, 18, 23, 48, 85
I'Izt ';ttgfr?e;%m' constructor, 19
ISt pattern, . 0S/2, iv
ListDenotation, 24, 85 .
X otherwise, 21
ListExpr, 25, 85
X overloaded, 49
ListPattern, 20, 84 overloading. 8
ListType, 40, 76, 87 g P

Literal, 89

local definition, 11

LocalDef, 33, 34, 86
LocalFunctionAltDefs, 33, 86
LocalFunctionDefs, 34, 86

loosely coupled parallel architecture, 79

P, 90

partial function, 1, 18, 21, 48
partial match, 2

pass-through module, 14

96

CLEAN LANGUAGE REPORT VERSION 1.3

pattern, 1, 18, 19, 84
array, 21
bracket, 18
constructor, 19
list, 20
of basic type, 20
record, 20, 36
tuple, 20
pattern match, 21
pattern variable, 19
PatternVariable, 19, 84
polymorphic algebraic data type, 42
PowerPC, iv
Prec, 42, 87
Prec, 47
precedence, 18, 48
precedence, 23
PredefAbstrType, 40, 87
process, ii, 79, 85
process annotation, 90
Procld, 40, 87
ProcldExpr, 79, 85
program, 1
program graph, 1
projection function, 36

Qualifier, 25, 85
QuantifiedVariables, 42, 60, 86

Real, 20, 23, 40, 87
RealDenotation, 24, 88
recompilation, 12
record, 20, 26, 85
record pattern, 20, 36
record selection, 27
record type, 45
RecordDenotation, 27, 85
RecordExpr, 27, 86
RecordPattern, 20, 84
RecordTypeDef, 45, 74, 86
RecordUpdate, 27, 86
redex, 2
redirection, 1
redirection of a node, 2
reducer, 2
reducible expression, 2
reduct, 2
reduction strategy, 2
reference, 1
ReservedChar, 24, 88
ReservedKeywordOrSymbol =, 90
rewrite of a redex, 2
rewrite rules

comparing, 1
right hand-side of a graph, 1
root normal form, 2, 10
root stable form, 10
RootExpression, 22, 85
rule

alternative, 17
rule alternative, 21

S

scope, 8, 11, 32, 77
nested, 8
surrounding, 8

Selection, 27, 29, 31, 86
by field name, 45
by index, 28
by position, 45

Selection of a Record Field, 27

Selection of an Array Element, 31

Selector, 25, 36, 85

selector variable, 23, 36

SelectorVariable, 7, 87

semantics
lazy, 75
strict, 75

sharing, 35

sharing analysis, 61

Sign, 24, 88

SimpleType, 39, 43, 87

SML, i

Solaris, iv

Special, 24, 88

SpecialChar, 8, 88

Start, 3, 4,9

start rule, 3

StartNode, 4

Strict, 73, 87

strict context, 72

strict let expression, 36

strict semantics, 75

StrictLet, 36, 85

StringDel, 24, 88

StringDenotation, 24, 88

strong root normal form, 2

strong type system, 39

strongly typed language, 39

sub-graph, 2

sub-pattern, 19

SunQOs, iv

surrounding scope, 8

symbol, 1, 90
arguments of a, 1

synonym type, 46

SynonymTypeDef, 46, 86

system, 9, 83, 90

system definition module, 14

system implementation module, 14

Term Graph Rewriting, 1

total function, 49

tree, 1

True, 24, 88

tuple, 20, 26, 40, 85

tuple pattern, 20

TuplePattern, 20, 84

TupleType, 75, 87

TupleType, 41

type, 39, 43, 56, 74, 87
abstract data, 46
algebraic data, 42

INDEX

array, 41 Whitespace, 89
arrow, 41 wildcard, 19, 36
basic, 40 Windows, iv
constructor with, 34, 86, 90
lazy array, 43 with block, 34
list, 43 World, 9, 40, 87
strict array, 43 abstract, 10
unboxed array, 43 concrete physical, 10
context, 50 world mode, 10
curried, 41

existential, 44
explicitly specified, 39
flat, 55

global, 11

Xview, iv

inferred, 39, 47

list, 25, 40 zero arity symbol, 23
of a function, 47 ZF-expression, 25, 85
of partial function, 48

record, 45

synonym, 46 \ 32 86
tuple, 40 T

variable, 42
type class, 49

definition of, 49

member of, 49
type instance, 39
type specification, 90
type variable, 42
TypeClassDef, 50, 54, 87
TypeClassinstanceDef, 50, 87
TypeClassInstanceExportDef, 55, 87
TypeConstructor, 43, 86, 87
TypeConstructor, 42, 60
TypeDef, 86
TypeDef, 41
TypeLhs, 42, 60, 86
TypeName, 7, 87
TypeVariable, 7, 87

unboxing, 72

uniqueness type attribute, 39, 56

UniqueTypeVariable, 7

UnqTypeAttrib, 57, 60, 87

UnqgTypeUnEqualities, 84

update of a record
destructive, 27

update of an array
destructive, 30

UpperCaseChar, 8, 88

UpperCaseld, 7, 88

Variable, 7, 23, 87
existentially quantified, 44
node-id, 18
pattern, 19
selector, 23, 36
type, 42

where, 33, 50, 86, 87, 90
where block, 33

