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In this chapter we discus a number of advanced topics concerning writing functional pro-
grams. You should not study this chapter before you are able to work with the concepts in-
troduced in the previous chapters. In fact you can switch to part II now and return to this
chapter later on.

In section 1 we show how you can reason about the efficiency of programs and how you
can increase the speed of programs. In the second section we demonstrate how the equiva-
lence of functions definitions can be shown. Next we show how you can trace the execu-
tion of programs. The fourth section treats higher order functions on lists. Since lists are a
heavily used data structure in functional programming languages, some general purpose
list processing functions have been defined. Many list manipulations can be expressed in
terms of these general purpose functions. The advantage of using these toolbox functions
is that they can make the structure of the list processing clear and they facilitates some
transformations. Moreover, they offer a very compact notation.

6.1 Efficiency of programs
Until now we haven't bothered much about the efficiency of the programs we have written.
We think this is the way it should be. Correctness and clearness is in general more impor-
tant than speed. However, sooner or later you will create a program that occurs to be
(too) slow. In this section we provide you with the necessary tools to understand the effi-
ciency of your programs.

There are two important aspects of efficiency that deserve some attention. The first as-
pect is the amount of time needed to execute a given program. This time complexity is
discussed in some detail in this chapter. The other aspect is the amount of memory space
needed to compute the result. Reasoning about the space efficiency of programs in a lazy
language is somewhat more complicated in a lazy functional language. Although we give
some hints on space efficiency in this chapter, we delay the thorough discussion to part
III. Especially programs manipulating strict values of basic types perform often much
better as you might expect using the notions of this chapter.

In order to understand the time efficiency of programs we first argue that counting the
number of reduction steps in generally a better measure than counting bare seconds. Next
we show how we usually work more easily with a proper approximation of the number of
reduction steps. Furthermore, we give some hints how to improve the efficiency of pro-
grams.
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6.1.1 The unit to measure efficiency
When you have to measure time complexity of your program you first have to decide
which units will be used. Perhaps your first idea is to measure the execution time of the
program in seconds. There are two problems with this approach. The first problem is
that the execution time is dependent of the actual machine used to execute the program.
The second problem is that the execution time is generally dependent on the input of the
program. Also the implementation of the programming language used has generally on
important influence. Especially in the situation that there are interpreters and compilers
involved or implementations from various manufactures.

In order to overcome the first problem we measure the execution time in reduction steps
instead of in seconds. Usually it is sufficient to have an approximation of the exact num-
ber of reduction steps. The second problem is handled by specifying the number of re-
duction steps as function of the input of the program. This is often called the complexity
of the program.

For similar reasons we will use nodes to measure the space complexity of a program or
function. The space complexity is also expressed as function of the input. In fact we dis-
tinguish the total amount of nodes used during the computation and the maximum num-
ber of nodes used at the same moment to hold an (intermediate) expression. Usually we
refer to the maximum number of nodes needed at one moment in the computation as the
space complexity.

6.1.2 Complexity
The time complexity of a program (or function) is an approximation of the number of
reduction steps needed to execute that program. The space complexity is an approxima-
tion of the amount of space needed for the execution. It is more common to consider
time complexity than space complexity. When it is clear from the context which com-
plexity is meant we often speak of the complexity.

Upper bounds

We use the O-notation to indicate the approximation used in the complexity analysis.
The O-notation gives an upper bound of the number of reductions steps for sufficient
large input values. The expression O( g ) is pronounced as big-oh of g. Formally this is de-
fined as:

Let f and g be functions. The notation f (n ) is O( g (n )) means that there are positive
numbers c and m such that for all arguments n ≥ m we have |f (n )| ≤ c  × |g (n )|. So,
c × |g (n )| is an upper bound of |f (n )| for sufficient large arguments.

We usually write f (n ) = O( g (n )), but this can cause some confusion. The equality is not
symmetric; f (n ) = O( g (n )) does not imply O( g (n )) = f (n ). This equality is also not
transitive; although 3×n2 = O(n2 ) and 7×n2 =  O(n2 ) this does not imply that 3×n2 =
7×n2. Although this is a strange equality we will use it frequently.

As example we consider the function f (n ) = n2 + 3 × n + 4. For n ≥ 1 we have n2 + 3 × n
+ 4 ≤ n2 + 3 × n × n + 4 × n2 = n2 + 3 × n2 + 4 × n2 = 8 × n2. So,  f (n ) = O(n2 ).

Keep in mind that the O-notation provides an upper bound. There are many upper bounds
for a given function. We have seen that 3×n2 =  O(n2 ), we can also state that 3×n2 =
O(n3 ), or 3×n2 = O( 2n ).

We can order functions by how fast their value grows. We define f < g as f = O( g ) and g ≠
O( f ). This means that g grows faster than f. In other words:

f < g  ⇔  
 
l im
n→∞

   
 f (n ) 
 g (n )   = 0
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The notation f ≡ g indicates that the functions f and g grow equally fast: f (n ) = O( g (n ))
and g (n ) = O( f (n )). Using this notation we can list the order of the most occurring
complexity functions:

1 = n0 < log ( log n ) < log n < nb < n = n1 < nc < nlog n < cn < nn < ccn,
where 0 < b < 1 < c.

In addition we have an ordering within functions of a similar form:

nb < nc  when 0 < b < c;

cn < dn  when 1 < c < d.

In order to give you some idea how fast the number of reduction steps grows for various
complexity functions we list some examples in the following table:

function n = 10 n = 100 n = 1000 n = 10000 name

O( 1 ) 1 1 1 1 Constant

O( 10log n ) 1 2 3 4 Logarithmic1

O( n ) 3 10 32 100

O( n ) 10 100 1000 10000 Linear

O( n 10log n ) 10 200 3000 40000

O( n2 ) 100 10000 106 108 Quadratic

O( n3 ) 1000 106 109 1012 Cubic

O( 2n ) 1024 1030 10300 103000 Exponential

Table 1: Number of reductions steps as function of the input and complexity.

Some of these numbers are really huge. Consider that the number of bits on a 1 GByte
hard disk is 1010, light travels about 1016 meters in one year, and the mass of our sun is
about 2×1030 Kg. At a speed of one million reduction steps per second a program of
1030 reductions takes about 3×1016 = 30,000,000,000,000,000 years. As a reference, the
age of the universe is estimated at 12×109 year. It is currently unlikely that your machine
executes a functional program significantly faster than 106 reduction steps per second.
Using the same reduction speed, 1012 reduction steps takes about twelve days, this is
probably still more than you want for the average program.

Under bounds

In addition to the approximation of the upper bound of the number of reductions steps
needed, we can give an approximation of the under bound of the amount of reductions
needed. This is the number of reductions that is needed at least. We use the Ω-notation,
pronounced omega notation, for under bounds. The Ω-notation is defined using the
O-notation:

f (n ) = Ω( g (n )) ⇔ g (n ) = O( f (n ))

This implies that it is a similar approximation as the upper bound. It is only valid for
large arguments and constants are irrelevant.

As an example we consider again the function f (n ) = n2 + 3 × n + 4. An under bound for
those function is the constant. f (n ) = Ω(1). In fact this is an under bound of any function,
we cannot expect anything to grow slower than no increase at all. With a little more ef-

1We used logarithms with base 10 in this table since we use powers of 10 as value for n. A logarithm with
base 2 is more common in complexity analysis. This differs only a constant factor (2.3) in the value of the
logarithm.
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fort we can show that f (n ) = Ω(n ) and even f (n ) = Ω(n2 ). This last approximation can
be justified as follows: for any n ≥ 0 we have f (n ) = n2 + 3 × n + 4 > n2 + 3 × n ≥ n2.

Tight upper bounds

As we have seen upper bounds and under bounds can be very rough approximations. We
give hardly any information by saying that a function is Ω(1) and O( 2n ). When the upper
bound and under bound are equal we have tight bounds around the function, only the con-
stants in the asymptotic behaviour are to be determined. We use the Θ-notation, pro-
nounced theta notation, to indicate tight upper bounds:

f (n ) = Θ( g (n )) ⇔ f (n ) = O( g (n )) ∧ f (n ) = Ω( g (n ))

For the function f (n ) = n2 + 3 × n + 4 we have seen f (n ) = O(n2 ) and f (n ) = Ω(n2 ).
This makes it obvious that f (n ) = Θ(n2 ).

6.1.3 Counting reduction steps
Now we have developed the tools to express the complexity of functions. Our next task
is to calculate the number of reduction steps required by some expression or function to
determine the time complexity, or the number of nodes needed to characterise the space
complexity. When there are no recursive functions (or operators) involved this is simply a
matter of counting. All these functions will be of complexity Θ(1).

Our running example, f (n ) = n2 + 3 × n + 4. has time complexity Θ(1). The value of the
function itself grows quadratic, but the amount of steps needed to compute this value is
constant: two multiplications and three additions. We assume that multiplication and
addition is done in a single instruction of your computer, and hence in a single reduction
step. The amount of time taken is independent of the value of the operands. The number
of nodes needed is also constant: the space complexity is also Θ(1).

For recursive functions we have to look more carefully at the reduction process. Usually
the number of reduction steps can be determined by an inductive reasoning. As example
we consider the factorial function fac:

fac :: Int -> Int
fac 0 = 1
fac n = n * fac (n-1)

For any non-negative argument this takes 3*n+1 reduction steps (for each recursive call one
for fac, one for * and one for -). Hence, the time complexity of this function is Θ(n). As a
matter of fact also the space complexity is Θ(n). The size of the largest intermediate ex-
pression n * (n-1) * … * 2 * 1 is proportional to n.

Our second example is the naive Fibonacci function:
fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

Computing fib n invokes the computation of fib (n-1) and fib (n-2). The computation
of fib (n-1) on its turn also calls fib (n-2). Within each call of fib (n-2) there will be
two calls of fib (n-4). In total there will be one call of fib (n-1), two calls of fib (n-2),
three calls of fib (n-3), four calls of fib (n-4)…. The time (and space) complexity of
this function is greater than any power. Hence, fib n =  Θ(2n): the number of reduction
steps grows exponentially.

memorisation

It is important to realise that the complexity is a property of the algorithm used, but not
necessarily a property of the problem. For our Fibonacci example we can reduce the
complexity to O(n) when we manage to reuse the value of fib (n-m) when it is needed
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again. Caching these values is called memorisation. A simple approach is to generate a
list of Fibonacci numbers. The first two elements will have value 1, the value of all other
numbers can be obtained by adding the previous two.

fib2 :: Int -> Int
fib2 n = fibs!n

fibs :: [Int]
fibs =: [1,1:f n \\ n <- [2..]]
where f n = fibs!(n-1) + fibs!(n-2)

Now we want to determine the time complexity of fib2. It is obvious that selecting el-
ement n from list fibs takes n reduction steps. This is O(n). To compute element n of the
list fibs we need to calculate element n-1 (and hence all previous elements) and to do
two list selections each of O(n) and one addition. This makes the time complexity of
fibs O(n2). The space required is proportional to the length of the list of Fibonacci num-
bers: O(n).

It is not useful to make the list of Fibonacci numbers a global constant when only one
Fibonacci number is needed in your program. Nevertheless it is essential to achieve the
sharing that all numbers used as intermediate values are obtained form one and the same
list. This can be achieved by making the fibs a local definition of the function fib2.

The generation of the list of Fibonacci numbers can be further improved. To compute the
next Fibonacci number we need the previous two. Our current algorithm selects these
numbers from the list as if this is a random selection. This selection takes O(n) reduction
steps. The following function to generate a list of Fibonacci function uses the known or-
der in which the elements are used to compute the next element:

fibs2 :: [Int]
fibs2 =: [1,1:[a+b \\ a <- fibs2 & b <- tl fibs2]]

When you prefer explicit recursive functions instead of the list comprehension, this algo-
rithm can be written as:

fibs3 :: [Int]
fibs3 =: [1,1:map2 (+) fibs3 (tl fibs3)]

map2 :: (a b->c) [a] [b] -> [c]
map2 f [a:x] [b:y] = [f a b:map2 f x y]
map2 _ _     _     = []

The second alternative of map2 is never used in this application. It is only included to
make map2 a generally useful function.

Computing the next element of the list takes fib3 takes only two reductions (map2 and +).
This makes this algorithm to compute Fibonacci numbers O(n) in time and space.

When our program needs only a single Fibonacci number there is no need to create a list
of these numbers as a CAF. Since only the two previous numbers are used to compute the
next Fibonacci number, there is no need at all to store them in a list. This is used in the
following function to compute Fibonacci numbers.

fib4 n = f n 1 1
where f :: !Int !Int !Int -> Int

f 0 a b = a
f n a b = f (n-1) b (a+b)

Computing the next Fibonacci number  takes three reduction steps. So, this algorithm has
a time complexity of O(n). By making the local function f strict in all of its arguments
we achieved that these arguments are evaluated before f is evaluated. This makes the
space required for the intermediate expressions a constant. The space complexity of this
version of the Fibonacci function is O(1).

The complexity analysis shows that the function fib3 behaves much better than fib.
Although the function fib is clearer, it is obvious that fib3 is preferred in programs. List
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selection using fibs2 or fibs3 has the same time complexity, but is only worthwhile when
a multiple Fibonacci numbers are used.

Determining the complexity for recursive functions

In the examples above a somewhat ad hoc reasoning is used to determine the complexity
of functions. In general it is a convenient to use a function indicating the number of reduc-
tion steps (or nodes) involved. Using the definition of the recursive function to analyse it
is possible to derive a recursive expression for the complexity function C(n ). The com-
plexity can than be settled by an inductive reasoning. The next table lists some possibili-
ties (c and d are arbitrary constants ≥ 0):

C(n ) Complexity
1
2 × C(n-1) O(1)

1
2 × C(n-1) + c × n + d O(n )

C(n-1) + d O(n )
C(n-1) + c × n + d O(n2 )

C(n-1) + c × nx + d O(nx+1 )
2 × C(n-1) + d O(2n )

2 × C(n-1) + c × n + d O(2n )
C(n/2) O(1)

C(n/2) + d O(log n )
C(n/2) + c × n + d O(n )

2 × C(n/2) + d O(n )
2 × C(n/2) + c × n + d O(n log n )

4 × C(n/2) + c × n2 + d O(n2 log n )

Table 2: The complexity for a some recursive relations of the number of reduction steps C(n ).

Although this table is not exhaustive, it is a good starting point to determine the com-
plexity of very many functions.

As example we will show how the given upperbound, O(log n ), of the complexity func-
tion C can be verified for C(n ) = C(n/2)+d. We assume that C(n/2) is O(log n/2). This
implies that there exists positive numbers a and b such that C(n/2) ≤ a × log n/2 + b for
all n ≥ 2.

C(n )
= C(n/2)+d // Using the recursive equation for C(n )
≤ a × log (n/2) + b +d // Using the induction hypothesis

= a × (log n - log 2) + b +d // log (x/y) = log x - log y
= a × log n + b + d - a // arithmetic

≤ a × log n + b iff d ≤ a

We are free to chose positve values a and b. So, we can take a value a such that a ≥ d for
any d. When we add the fact that C(0) can be done in some finite time, we have proven
that C(n ) = O(log n ).

In exactly the same we we can show that C(n ) = C(n/2)+d implies that C(n ) = O(n ). For
our proof with induction we assume now that C(n/2) ≤ a × n/2 + b. The goal of our proof
is that this implies also that C(n ) ≤ a × n + b.

C(n )
= C(n/2) + d // Using the recursive equation for C(n )
≤ a × n/2 + b +d // Using the induction hypothesis

≤ a × n + b + d // Since a and n are posirive
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For the same reasons as above this implies that C(n ) = O(n ). This is consistent with our
claim that we only determine upperbounds and the ordering on functions: log n < n.

When we would postulate that C(n ) = C(n/2)+d implies that C(n ) = O(1) we have as in-
duction hypotesis C(n/2) ≤ b.

C(n )
= C(n/2) + d // Using the recursive equation for C(n )
≤ b + d // Using the induction hypothesis

But C(n ) = O(1) this implies that C(n ) ≤ b. This yields a contradiction. For arbitray d
the equation b + d ≤ b is not valid. C(n ) = C(n/2)+d only implies that C(n ) = O(1) when
d = 0. This is a special case in table 2.

As illustration  of the application of thses rules we return to the complexity of some of
our examples. The number of reduction steps of the factorial example above we have C(n)
= C(n-1) + 3, hence the complexity is O(n). For the naive Fibonacci function fib we have
C(n) = C(n-1) + C(n-2) + 4 ≤ 2 × C(n-1), this justifies our claim that this function has
complexity O(2n ). The time complexity to compute element n of the list fibs is  C(n-1)
to compute the preceding part of the list, plus two list selections of n and n-1 reductions
plus two subtractions and one addition. This implies that C(n) ≤ C(n-1) + 2×n +4, so the
complexity is indeed O(n2 ). For fib3 we have C(n) = C(n-1) + 3. This implies that this
function is O(n).

Manipulation recursive data structures

When we try to use the same techniques to determine the complexity of the naive reverse
function we immediately run into problems. This function is defined as:

reverse :: [a] -> [a]
reverse []    = []
reverse [a:x] = reverse x ++ [a]

The problem is that the value of the argument is largely irrelevant. The length of the list
determines the number of reduction steps needed, not the actual value of these elements.
For a list of n elements we have C(n) is equal to the amount of work to reverse a list of
length n-1 and the amount of work to append [a] to the reversed tail of the list. Looking
at the definition of the append operator it is obvious that this takes a number of steps
proportional to the length of the first list: O(n ).

(++) infixr 5 :: ![a] [a] -> [a]
(++) [hd:tl] list = [hd:tl ++ list]
(++) nil  list = list

For the function reverse we have C(n)  ≤ C(n-1)  +  n +1. Hence the function reverse i s
O(n2 ).

Again the complexity is a property of the algorithm used, not necessarily of property of
the problem. It is obvious that we cannot reverse a list without processing each element in
the list, this is O(n ). It is the application of the append operator that causes the complex-
ity to grow to O(n2 ). Using an other definition with an additional argument to hold the
part of the list reversed up to the current element accomplish an O(n) complexity.

reverse :: [a] -> [a]
reverse l = rev l []
where rev [a:x] l = rev x [a:l]

rev []    l = l

For this function we have C(n) = C(n-1) + 1. This implies that this function is indeed
O(n ). We have argued that it is inevitable to process each element at least once in order
to reverse a list. So, this is also an under bound.

Using such an additional argument to accumulate the result of the function appears to be
useful in many situations. This kind of argument is called an accumulator.
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The analysis of functions that behave differently based on the value of the list elements is
somewhat more complicated. In chapter 3 we introduced the following definition for in-
sertion sort.

isort :: [a] -> [a] | Ord a
isort []    = []
isort [a:x] = Insert a (isort x)

Insert :: a [a] -> [a] | Ord a
Insert e [] = [e]
Insert e [x:xs]

| e<=x = [e,x : xs]
| otherwise = [x : Insert e xs]

It is obvious that this algorithm requires one reduction step of the function isort for each
element of the list. The problem is do determine the number of reductions required by
insert. This heavily depends on the values in the list used as actual argument. When this
list happens to be sorted e<=x yields always True. Only a single reduction step is required
for each insertion in this situation. In this best case, the number of reduction steps is pro-
portional to the length of the list, the complexity is O(n).

When the argument list is sorted in the inverse order and all arguments are different the
number of reduction steps required by Insert is equal to the number of elements that are
already sorted. Hence, the number of reduction steps is n for the function isort and 1 + 2
+ … + (n-1) + n steps for inserting the next element in the sorted sub-list. From mathe-
matics it is known that

1 + 2 + … + (n -1) + n = ∑
1

n

i  =  
 n (n -1)

2

The total number of reduction steps needed is n + n*(n-1)/2. This shows that the worst
case complexity of the insertion sort algorithm is O(n2).

Note that we used a different technique to compute the complexity here. We computed
the number of reduction steps required directly. It is often hard to compute the number
reductions required directly. Using the recursive function C(n), we have C(n) = C(n-1) + n.
This implies that the complexity determined in this way is also O(n2).

The amount of reduction steps needed to sort an arbitrary list will be somewhere be-
tween the best case and the worst case. On average we expect that a new element will be
inserted in the middle of the list of sorted elements. This requires half of the reduction
steps of the worst case behaviour. This makes the expected number of reduction steps for
an average list n + n*(n-1)/4. So, in the average case the complexity of insertion sort is
also O(n2).

As a conclusion we can say that the time taken by insertion sort is essentially quadratic in
the length of the list. In the exceptional case that the list is (almost) sorted, the time re-
quired is (almost) linear. The space required is always proportional to the length of the
list, hence the space complexity is O(n).

The quadratic time complexity of the insertion sort algorithm does not imply that sort-
ing is always O(n2). We will now look at the time complexity of merge sort. In chapter
3 we implemented this sorting algorithm as:

msort :: [a] -> [a] | Ord a
msort xs

| len<=1 = xs
| otherwise = merge (msort ys) (msort zs)

where
ys  = take half xs
zs  = drop half xs
half = len / 2
len  = length xs
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merge :: [a] [a] -> [a] | Ord a
merge []    ys = ys
merge xs    [] = xs
merge p=:[x:xs] q=:[y:ys]

| x <= y = [x : merge xs q]
| otherwise = [y : merge p ys]

Computation of len takes n stapes, as usual n is the length of the list. The computation of
half is done in a single step. The functions take and drop are both O(n). Merging two lists
takes O(n) steps. So, one call of merge takes O(n) steps plus two times the amount of steps
required sorting a list of length n/2. This is C(n) = 2×C(n/2)  + c×n. This implies that
merge sort is O(n*log n). The logarithm reflects the fact that a list of length n can be
split 2log n times into lists of length greater than one. On average this algorithm has a
better complexity than isort.

Our next sorting algorithm to study is quick sort. It is defined as:
qsort :: [a] -> [a] | Ord a
qsort []     = []
qsort [a:xs] = qsort [x \\ x<-xs | x<a] ++ [a] ++ qsort [x \\ x<-xs | x>=a]

In order to compute the complexity of this function we have to consider again various
cases. Evaluating the list comprehensions takes O(n) steps, where n is the length of the list
to process. The first ++ takes a number of steps proportional to the length of the list gen-
erated by the first list comprehension. The second ++ takes only 2 steps. This is due to
the fact that ++ associates to the right.

Now we consider the case that the input list is sorted. The first list comprehension will
yield an empty list, which is sorted in a single reduction step. It takes one step to append
the rest of the sorted list to this empty list. It requires O(n) steps to reduce both list
comprehensions. The length of the list to sort by the second recursive call of qsort is  n-1.
For the total amount of reductions steps we have. C(n) = C(n-1)+2*n+3. This implies that
this 'best case' complexity of qsort is O(n2).

In the 'worst case' situation the list is sorted in the opposite order. The situation is very
similar to the best case. The difference with the 'best case' is that all elements of the tail
of the input end up in the first recursive call of qsort and the second list to sort is empty.
Now the first ++ takes n reduction steps. This implies that C(n) = C(n-1)+3*n+2. The time
complexity of the 'worst case' is also O(n2).

For the average case we assume that both list comprehensions yield a list containing half
of the input list. The list comprehensions take both O(n) reductions steps and the first ++
will consume n/2 steps. This indicates that C(n) = 2*C(n/2)+c*n. Hence the qsort algo-
rithm is in the average case O(n*log n). Note that the best case of the input for isort is
not the best case for qsort. In contrast, best case for isort, is worst case for qsort.

The final sorting algorithm discussed in chapter 3 is tree sort.
tsort :: ([a] -> [a]) | Eq, Ord a
tsort = labels o listToTree

:: Tree a = Node a (Tree a) (Tree a) | Leaf

listToTree :: [a] -> Tree a | Ord, Eq a
listToTree []     = Leaf
listToTree [x:xs] = insertTree x (listToTree xs)

insertTree :: a (Tree a) -> Tree a | Ord a
insertTree e Leaf = Node e Leaf Leaf
insertTree e (Node x le ri)

| e<=x = Node x (insertTree e le) ri
| e>x = Node x le (insertTree e ri)
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labels :: (Tree a) -> [a]
labels Leaf = []
labels (Node x le ri) = labels le ++ [x] ++ labels ri

One reduction step of listToTree is used for each element in the input list. For insertTree
again three different cases are considered. When the list is random, the tree will becomes
balanced. This implies that 2log n reduction steps are needed to insert an element in the
tree. When the list is sorted, or sorted in reverse order, we obtain a degenerated (list-
like) tree. It will take n reduction steps to insert the next element. The number of reduc-
tion steps for the function labels depends again on the shape of the tree. When all left sub-
trees are empty, there are 3 reduction steps needed for every Node. This happens when the
input list was inversely sorted. Since insertion is O(n2) in this situation, the complexity
of the entire sorting algorithm is O(n2). When all right sub-trees are empty, the input was
sorted, there are O(n) reduction steps needed to append the next element. Since insertion
is O(n2) in this situation, the entire algorithm is O(n2).

For balanced trees insertion of one element takes O(2log n). Construction of the entire
tree requires O(n*log n) steps. Transforming the tree to a list requires transforming two
trees of half the size to lists, 2×C(n-1), appending the second list to a list of n/2 ele-
ments. For the number of reduction steps we have C(n) = 2×C(n-1)+n/2+d. Hence the to
complexity of transforming the tree to a list is O(n*log n). This implies that tree sort
has complexity O(n*log n).

Based on this analysis it is hard to say which sorting algorithm should be used. When you
know that the list is almost sorted you can use isort and you should not use qsort. When
you know that the list is almost sorted in the inverse order you can use msort and you
should not use isort or qsort. For an list that is completely random qsort and msort a
good choices. For an arbitrary list msort is a good choice. It is a little more expensive
for a complete random list, but it behaves better for sorted lists.

Determining upper bounds and under bounds

Above we have determined the upper bounds of the complexity of various algorithms.
When we do this carefully the obtained upper bound is also a tight upper bound. It is
clear that this tight upper bound is not necessarily an under bound for the problem. Our
first algorithm to reverse list is O(n2), while the second algorithm is O(n). Also for the
sorting algorithm we have a similar situation: the isort algorithm has complexity O (n2),
while the exists clearly also sorting algorithms of O(n*log n).

The question arises whether it is possible to reverse a list in an number of reduction steps
that is lower than O(n). This is highly unlikely since we cannot imagine an algorithm that
reverses a list without at least one reduction step for each element of the list. Reversing is
Ω(n). Since we have an algorithm with complexity O(n), the complexity of the best re-
versing algorithms will be Θ(n).

For sorting algorithms we can also determine an under bound. Also for sorting it is not
feasible that there exists an sorting algorithm that processes each list element once.
Sorting is at least Ω(n). We have not yet found a sorting algorithm with this complexity
for an average list. Now have to decide whether we start designing better sorting algo-
rithms, or to make a better approximation of the under bound of sorting. For sorting a
general list it is not feasible that we can determining the desired position of an element
by processing it once. The best we can hope for is that we can determine in which half of
the list it should be placed. So, a better approximation of the under bound of sorting is
Ω(n*log n). Since we know at least one sorting algorithm with this complexity, we can
conclude that sorting arbitrary lists is Θ(n*log n).

Finding upper bounds of the complexity of an algorithm is not very difficult. When the
approximations are made carefully, even determining close upper bounds of the algo-
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rithm is merely a matter of counting. Finding tight upper bounds of the problem is more
complicated, it involves a study of every algorithm feasible.

6.1.4 Constant factors
Above we have emphasised the complexity of problems and hence ignored all constant
factors involved. This does not imply that constant factors are not important. The oppo-
site is true, when efficiency is important you have to be keen on reduction steps that can
be avoided, even if the overhead is just a constant factor. As a matter of fact, even a pre-
cise count of the reduction steps is not the final word, not every reduction steps in Clean
takes an equal amount of time. So, some experiments can be very useful when the highest
speed is wanted. See part III for additional information and hints.

The fact that msort is O(n*log n) and sorting is Θ(n*log n) does not imply that msort is
the best sorting algorithm possible. It indicates that for large lists the increase of the
time required is proportional to n*log n. For the actual execution time constant factors
are important. When we look again at the function msort.

msort :: [a] -> [a] | Ord a
msort xs

| len<=1 = xs
| otherwise = merge (msort ys) (msort zs)

where
ys  = take half xs
zs  = drop half xs
half = len / 2
len  = length xs

It is clear that it can be improved with a constant factor. The functions take and drop both
process the list xs until element half. This can be combined in a single function split:

msort2 :: ![a] -> [a] | Ord a
msort2 xs

| len<=1 = xs
| otherwise = merge (msort2 ys) (msort2 zs)

where
(ys,zs) = split (len/2) xs
len = length xs

split :: !Int [a] -> ([a],[a])
split 0 xs     = ([],xs)
split n [x:xs] = ([x:xs`],xs``)
where (xs`,xs``) = split (n-1) xs

Further analysis shows that there is no real reason to compute the length of the list xs.
This takes n steps. It is only necessary to split this list into two parts of equal length.
This can also be done by selecting odd and even elements. Since we does not want to
compute the length of the list to be sorted, the termination rules should also be changed.
This is done in the function msort3 and the accompanying function split2.

msort3 :: ![a] -> [a] | Ord a
msort3 []  = []
msort3 [x] = [x]
msort3 xs  = merge (msort3 ys) (msort3 zs)
where (ys,zs) = split2 xs

split2 :: ![a] -> ([a],[a])
split2 [x,y:r] = ([x:xs],[y:ys]) where (xs,ys) = split2 r
split2 l       = (l,[])

Using accumulators we can avoid the construction of tuples to construct the parts of the
list xs. In the function msort4 we call the split function with empty accumulators.

msort4 :: ![a] -> [a] | Ord a
msort4 []  = []
msort4 [x] = [x]
msort4 xs  = merge (msort4 ys) (msort4 zs)
where (ys,zs) = split3 xs [] []
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split3 :: [a] [a] [a] -> ([a],[a])
split3 [x,y:r] xs ys = split3 r [x:xs] [y:ys]
split3 [x:r]   xs ys = (xs,[x:ys])
split3 l       xs ys = (xs,ys)

An other approach to avoid the computation of the length of the list to be sorted in each
recursive call is to determine the length once and pass the actual length as argument to the
actual sorting function. Since the supplied length and the actual length should be identical
this approach is a little bit more error prone.

A similar technique can be used in the quick sort algorithm. Currently there are two list
comprehensions used to split the input list. Using an additional function it is possible to
do this in one pass of the input list. This is the topic of exercise 1.

Measurements: generating a pseudo random list

In order to investigate whether the reduced amount of reductions steps yields a more ef-
ficient algorithm we need to run the programs and measure the execution times. Since
some of the sorting programs are sensitive to the order of elements in the input list we
want to apply the sorting functions to a list of random numbers.

Due to the referential transparency random number generation is somewhat tricky in func-
tional programs. When one random number is needed we can use for instance the seconds
from the clock. However, when we fill a list of numbers in this way the numbers will be
strongly correlated. The solution is to use pseudo-random numbers. Given a seed the next
number can be generated by the linear congruetial method.

nextRan :: Int -> Int
nextRan s = (multiplier * s + increment) mod modulus

The constants multiplier, increment and modulus are suitable large numbers. In the exam-
ples below we will use the values:

multiplier :== 26183
increment :== 29303
modulus :== 65536 // this is 2^16

A sequence of these pseudo random numbers can be generated by:
ranList :: [Int]
ranList = iterate nextRan seed

The seed can be obtained for instance form the clock or be some constant. To compare
the sorting functions we will use the constant 42, this has the advantage that each sorting
function has the same input.

The only problem with these numbers is the possibility of cycles. When nextRan n = n,
or nextRan (nextRan n) = n, or nextRan (nextRan ( …n)…) = n for some n, there will be a
cycle in the generated list of random numbers as soon as this n occurs once. When the con-
stants are well chosen there are no troubles with cycles. In fact nextRan is an ordinary ref-
erential transparent function. It will always number the same value when the same seed is
used. This implies that nextList will start a cycle as soon as an element occurs for the
second time. It is often desirable that the same number can occur twice in the list of ran-
dom numbers used without introducing a cycle. This can be achieved by scaling the ran-
dom numbers.

When we needed random numbers in an other range we can scale the numbers in ranList.
A simple appoach is:

scaledRans :: Int Int -> [Int]
scaledRans min max = [i mod (max-min+1) + min \\ i <- ranList]

When you need random numbers with a nice equal distribution over the whole range this
function is only appopriate when modulus is a multiple of the range. Consider the situation
where modulus is about 1.5 × range. Numbers in the first part of the range will occur twice
as much as the other numbers. When modulus is much larger than the range, the ratio 2/1
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changes to n+1/n. For large n this is a good approximation of 1. The problem can be
avoided when by using a slightly more complex function to scale the random numbers.

scaledRans :: Int Int -> [Int]
scaledRans min max = [i \\ i <- [i/denominator + min \\ i <- ranList] | i<=max]
where denominator = modulus / (max-min+1)

The distrubution of these numbers is very well equal. When only the flatness of the dis-
trubution count you can also use flatten (repeat [min..max]).

Measurements: sorting lists

In order to achieve a reasonable execution time2 we sort a list of 1000 number 100 times
and a list of 4000 elements 100 times. We prefer to sort a shorter list 100 times instead
of a long list once in order to reduce the overhead of generating the input list and to re-
duce the amount of heap space necessary. By selecting one element of the list we prevent
that a lot of time is spent on outputting the list. We select the last element in order to be
sure that the entire list is sorted. This is achieved by the following program. At the posi-
tion sort we substitute the name of the function to investigate. The let! construct is used
to force evaluation.

Start = ntimes 100

ntimes n = let! e = last (sort rlist) in
case n of
 0 -> e
 n -> ntimes (n-1)

rlist =: take 1000 ranList

The results are listed in the following table. As a reference we included also quick sort,
tree sort and insertion sort. The functions qsort2 and tsort2 are variants of qsort and
tsort introduced below. The result for the function I shows that the time to select the last
element and to generate the list to process can be neglected. The function msort2` is the
function msort2 where split is replaced by the function splitAt from the standard envi-
ronment.

function 1000 elements 4000 elements ratio
execution gc total execution gc total execution gc total

msort 9.23 0.56 9.80 44.8 13.85 58.66 4.85 24.73 5.98
msort2 6.23 0.31 6.55 30.63 8.00 38.63 4.92 25.81 5.90
msort2` 10.71 0.76 11.48 51.51 19.81 71.33 4.81 22.51 6.21
msort3 10.11 0.88 11.00 49.26 20.70 69.69 4.87 23.52 6.33
msort4 6.06 0.30 6.36 30.51 11.35 41.86 5.03 23.65 6.58
qsort 8.21 0.48 8.70 39.91 11.30 51.21 4.86 23.54 5.88
qsort2 6.51 0.30 6.81 31.81 6.83 38.65 4.89 22.77 5.67
tsort 9.28 0.53 9.81 38.11 9.70 47.81 4.11 18.30 4.87
tsort2 7.50 0.41 7.91 30.98 7.46 38.45 4.13 18.20 4.86
isort 105.08 3.85 108.93 1809.93 288.68 2098.61 17.22 74.98 19.27
I 0.11 0.00 0.11 0.46 0.00 0.46 4.18 - 4.18

Table 3: Execution-, garbage collection-, and total time in seconds of various sorting algorithms.

It is clear that any algorithm with complexity O(n log n) is much better on this size of
input lists than isort with complexity O(n2). Although there is some difference between
the various variants of the merge sort algorithm, it is hard to predict which one is the
best. The difference between msort2` and msort2 is caused by an optimisation for tuples
that does not work across module boundaries.

2We used a Macintosh Performa 630 for the experiments. The application gets 1 MB of heap space and
does use stack checks.
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The complexity theory predicts that the ratio between the execution speed for the pro-
grams with complexity O(n log n) is 4.80, for an algorithm of O(n2) this ratio is 16.
These numbers correspond pretty well with the measured ratios. Only the time needed
by the tree sorts grows slower than expected. This only indicates that the list used are not
large enough to neglect initialisation effects.

You can see also that the amount of garbage collection time required grows much faster
than the execution time. The amount of garbage collection needed is determined by the
number of nodes used during execution and the number of nodes that can be regained dur-
ing garbage collection. For a large list, less memory can be regained during garbage col-
lection, and hence more garbage collections are needed. This increases the total garbage
collection time faster as you might expect based on the amount of nodes needed. To re-
duce the amount of garbage collection time the programs should be equipped with more
memory.

For the user of the program only the total execution time matters. This takes both the
pure reduction time as well as the time consumed by garbage collections into account.
The total execution time is dependent of the amount of heap space used by the program.

An other thing that can be seen from this table is that it is possible to optimise programs
by exploring the efficiency of some educated guesses. However, when you use a function
with the right complexity it is only worthwhile to use a more complicated algorithm
when the execution speed is a of prime interest. The difference is speed is between the
various sorting algorithms is limited. We recommend to use one of the merge sort func-
tions to sort list of an unknown shape. Quick sort and tree sort behave very well for ran-
dom list, but for sorted list they are O(n2). This implies that the execution time will be
much langer.

Other ways to speed up programs

An other way to speed up programs is by exploiting sharing. In the Fibonacci example
above we saw that this can even change the complexity of algorithms. In the program used
to measure the execution time of sorting functions we shared the generation of the list to
be sorted. Reusing this lists of saves a constant factor for this program.

There are many more ways to speed up programs. We will very briefly mention two
other possibilities. The first way to speed up a program is by executing all reduction
steps that does not depend on the input of the program before the program is executed.
This is called partial evaluation [Jones 95]. A way to achieve this effect is by using
macro's whenever possible. More sophisticated techniques also look at applications of
functions. A simple example illustrates the intention.

power :: Int Int -> Int
power 0 x = 1
power n x = x * power (n-1) x

square :: Int -> Int
square x = power 2 x

Part of the reduction steps needed to evaluate an application of square does not depend
on the value x. Using partial evaluation it is possible to transform the function square to

square :: Int -> Int
square x = x * x * 1

Using the mathematical law x * 1 = x, it is even possible to achieve:
square :: Int -> Int
square x = x * x

The key idea of partial evaluation is to execute rewrite steps that does not depend on the
arguments of a function before the program is actually executed. The partially evaluated
program will be faster since the number of reduction steps needed to execute is lower.
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The next technique to increase the efficiency of programs to combine the effects of sev-
eral functions to one function. This is called function fusion. We will illustrate this with
the function qsort as example. This function was defined as:

qsort :: [a] -> [a] | Ord a
qsort []     = []
qsort [a:xs] = qsort [x \\ x<-xs | x<a] ++ [a] ++ qsort [x \\ x<-xs | x>=a]

At first glance there is only one function involved here. A closer look shows that also the
operator ++ is to be considered as a function. As a matter of fact also the list comprehen-
sions can be seen as functions. The compiler will transform them to ordinary functions.
We will restrict ourselves here to the function qsort and the operator ++. When qsort has
sorted some list of elements smaller than the first element, the operator ++ scans that list
in order to append the other elements of the list. During the scanning of the list all cons
nodes will be copied. This is clearly a waste of work.

This can be avoided by using a continuation argument in the sorting function. The contin-
uation determines what must be done when this function is finished. In this example what
must be appended to the list when the list to be sorted is exhausted. Initially there is
nothing to be appended to the sorted list. We use an additional function, qs, that handles
sorting with continuations.

qsort2 :: [a] -> [a] | Ord a
qsort2 l = qs l []

The continuation of sorting all elements smaller than the first element is the sorted list
containing all other elements. Its continuation is the continuation supplied as argument to
qs. When the list to be sorted is empty we continue with the continuation c.

qs :: [a] [a] ->[a] | Ord a
qs []     c = c
qs [a:xs] c = qs [x \\ x<-xs | x<a] [a:qs [x \\ x<-xs | x>=a] c]

The trace of the reduction of a small example clarifies the behaviour of these functions:
qsort2 [1,2,1]
→ qs [1,2,1] []
→ qs [] [1:qs [2,1] []]
→ [1:qs [2,1] []]
→ [1:qs [1] [2:qs [] []]]
→ [1:qs [] [1:qs [] [2:qs [] []]]]
→ [1:[1:qs [] [2:qs [] []]]]
→ [1:[1:[2:qs [] []]]]
→ [1:[1:[2:[]]]]
= [1,1,2]

qsort [1,2,1]
→ qsort []++[1]++qsort [2,1]
→ []++[1]++qsort [2,1]
→ [1]++qsort [2,1]
→ [1:[]++qsort [2,1]]
→ [1:qsort [2,1]]
→ [1:qsort [1]++[2]++qsort []]
→ [1:qsort []++[1]++qsort []++

  [2]++qsort []]
→ [1:[]++[1]++qsort []++[2]++qsort []]
→ [1:[1]++qsort []++[2]++qsort []]
→ [1:1:[]++qsort []++[2]++qsort []]
→ [1:1:qsort []++[2]++qsort []]
→ [1:1:[]++[2]++qsort []]
→ [1:1:[2]++qsort []]
→ [1:1:2:[]++qsort []]
→ [1:1:2:qsort []]
→ [1:1:2:[]]
= [1,1,2]

Traces showing the advantage of using continuations in qsort2 over the ordinary function qsort.

It is obvious that the version of quick sort using continuations requires a smaller number
of reduction steps. This explains why it is 25% faster.

In the same spirit we can replace the operator ++ in the tree sort function, tsort by a con-
tinuation.

tsort2 :: ([a] -> [a]) | Eq, Ord a
tsort2 = labels2 [] o listToTree

labels2 :: [a] (Tree a) -> [a]
labels2 c Leaf  = c
labels2 c (Node x le ri) = labels2 [x: labels2 c ri] le
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As shown in the table of execution times above, this function using continuations is indeed
(about 20%) more efficient.

6.1.5 Exploiting Strictness
As explained in previous chapters, an function argument is strict when its value is needed
always in the evaluation of a function call. Usually an expression is not evaluated until its
value is needed. This implies that expressions causing nonterminating reductions or errors
and expressions yielding infinite data structures can be used as function argument.
Problems do not arise until the value of such expressions is really needed.

The price we have to pay for lazy evaluation is a little overhead. The graph representing
an expression is constructed during a rewrite step. When the value of this expression is
needed the nodes in the graph are inspected and later on the root is updated by the result
of the rewrite process. This update is necessary since the node many be shared (occurring
at several places in the expression). By updating the node in the graph recomputation of
its value is prevented.

When the value of a node is know to be needed it is slightly more efficient to compute
its value right away and store the result directly. The subexpressions that are known to be
needed anyway are called strict. For these expressions there is no reason to store the ex-
pression and to delay its computation until it is needed. The Clean compiler uses this to
evaluate strict expressions at the moment they are constructed. This does not change the
number of reduction steps. It only makes the reduction steps faster.

The Clean compiler uses basically the following rules to decide whether an expression is
strict:
1) The root of the right-hand side is a strict expression. When a function is evaluated

this is done since its value is needed. This implies that also the value of its reduct
will be needed. This is repeated until the root of the right hand side cannot be re-
duced anymore.

2) Strict arguments of functions occurring in a strict context are strict expressions. The
function is known to be needed since it occurs in a strict context. In addition it is
known that the value of the strict arguments is needed when the result of the function
is needed.

These rules are recursively applied to determine as much strict subexpressions as possi-
ble. This implies that the Clean compiler can generate more efficient programs when
strictness of function arguments is known. Generally strictness is an undecidable property.
We does not make all arguments strict in order to be able to exploit the advantages of
lazy evaluation. Fortunately, any safe approximation of strictness helps to speed up pro-
grams. The Clean compiler itself is able to approximate the strictness of function argu-
ments. The compiler uses a sophisticated algorithm base on abstract interpretation
[Plasmeijer 94]. A simpler algorithm uses the following rules:
1) Any function is strict in the first pattern of the first alternative. The corresponding

expression should be evaluated in order to determine whether this alternative is ap-
plicable. This explains why the append operator, ++, is strict in its first argument.
(++) infixr 5 :: ![x] [x] -> [x]
(++) [hd:tl] list = [hd:tl ++ list]
(++) nil     list = list

Since it is generally not known how much of the generated list is needed, the append
operator is not strict in its second argument.

2) A function is strict in the arguments that are needed in all of its alternatives. This ex-
plains why the function add is strict in both of its arguments and mul is only strict in
its first argument. In the standard environment both + and * are defined to be strict in
both arguments.
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mul :: !Int Int -> Int;
mul 0 y = 0
mul x y = x*y

add :: !Int !Int -> Int;
add 0 y = y
add x y = x+y

You can increase the amount of strictness in your programs by adding strictness informa-
tion to function arguments in the type definition of functions. Subexpressions that are
known to be strict, but does not correspond to function arguments can be evaluated strict
by defining them as strict local definitions using #! or let!.

6.1.6 Unboxed values
Objects that are manipulated inside the program as plain value instead of being embed-
ded inside a node in the heap are called unboxed values. These unboxed values are han-
dled very efficiently by the Clean system. In this situation the Clean system is able to
avoid the general graph transformations prescribed in the semantics. It is the responsibil-
ity of the compiler to use unboxed values and to do the conversion with nodes in the heap
whenever appropriate. Strict arguments of a basic type are handled as unboxed value in
Clean. Although the compiler takes care of this, we can use this to speed up our programs
by using strict arguments of a basic type whenever appropriate.

We illustrate the effects using the familiar function length. A naive definition of Length
is:

Length :: ![x] -> Int
Length [a:x] = 1 + Length x
Length []    = 0

A trace shows the behaviour of this function:
Length [7,8,9]
→ 1 + Length [8,9]
→ 1 + 1 + Length [9]
→ 1 + 1 + 1 + Length []
→ 1 + 1 + 1 + 0
→ 1 + 1 + 1
→ 1 + 2
→ 3

The Clean system builds an intermediate expression of the form 1 + 1 + …+ 0 of a size
proportional to the length of the list. Since the addition is know to be strict in both argu-
ments, the expression is constructed on the stacks rather then in the heap. Nevertheless it
takes time and space.

Construction of the intermediate expression can be avoided using an accumulator: a
counter indicating the length of the list processed until now.

LengthA :: ![x] -> Int
LengthA l = L 0 l
where L :: Int [x] -> Int

L n [a:x] = L (n+1) x
L n []    = n

The expression Length [7,8,9] is reduced as:
LengthA [7,8,9]
→ L 0 [7,8,9]
→ L (0+1) [8,9]
→ L ((0+1)+1) [9]
→ L (((0+1)+1)+1) []
→ ((0+1)+1)+1
→ (1+1)+1
→ 2+1
→ 3
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The problem with this definition is that the expression used as accumulator grows during
the processing of the list. Evaluation of the accumulator is delayed until the entire list is
processed. This can be avoided by making the accumulator strict.

LengthSA :: ![x] -> Int
LengthSA l = L 0 l
where L :: !Int [x] -> Int

L n [a:x] = L (n+1) x
L n []    = n

In fact the Clean system itself is able to detect that this accumulator is strict. When you
don't switch strictness analysis off the Clean system will transform LengthA to LengthSA.
The trace becomes:

LengthSA [7,8,9]
→ L 0 [7,8,9]
→ L (0+1) [8,9]
→ L 1 [8,9]
→ L (1+1) [9]
→ L 2 [9]
→ L (2+1) []
→ L 3 []
→ 3

Since the accumulator is a strict argument of a basic type, the Clean system avoids the
construction of datastructures in the heap. An unboxed integer will be used instead of the
nodes in the heap. In table 4 we list the run time of some programs to illustrate the effect
of strictness. We used a Power Macintosh 7600 to compute 1000 times the length of a
list of 10000 elements. The application had 400 KB of heap. The difference between the
programs is the function used to determine the length of the list.

function execution gc total

Length 5.65 0.01 5.66
LengthA 20.76 86.45 107.21
LengthSA 2.70 0.0 2.70

Table 4: Runtime in seconds of a program to determine  the length of a list.

Adding a lazy accumulator has a severe runtime penalty. This is caused by that fact that
all computations are now done in a lazy context. The intermediate expresion 1+1+…+0 is
constructed in the heap. Adding the appropriate strictness information makes the function
to compute the length of a list twice as efficient as the naive definition. Adding this
strictness information improves the efficiency of the computation of the length of a list
using an accumulator by a factor of 40. The overloaded version of this function defined in
StdEnv does use the efficient algorithm with a strict accumulator.

Adding a strictness annotation can increase the efficiency of the manipulation of basic
types significantly. You might even consider adding strictness annotations to arguments
that are not strict in order to increase the efficiency. This is only allowed when you know
that the corresponding expression will terminate.

As example we consider the function to replace a list of items by a list of their indices:
indices :: [x] -> [Int]
indices l = i 0 l
where i :: Int [x] -> [Int]

i n []    = []
i n [a:x] = [n: i (n+1) x]

The local function i is not strict in its first argument. When the list of items is empty the
argument n is not used. Nevertheless, the efficiency of the function indices can be dou-
bled (for a list of length 1000) when this argument is made strict by adding an annota-
tion. The cost of this single superfluous addition is outweighed by the more efficient way
to handle this argument.
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We have seen an other example in the function fib4 to compute Fibonacci numbers in lin-
ear time:

fib4 n = f n 1 1
where f :: !Int !Int !Int -> Int

f 0 a b = a
f n a b = f (n-1) b (a+b)

Making f strict in its last argument does cause that one addition is done too much (in the
last iteration of f the last argument will not be used), but makes the computation of fib4
45 twelve times as efficient. When f evaluates all its arguments lazy, the Fibonacci func-
tions slows down by an other factor of two.

6.1.7 The cost of Currying
All functions and constructors can be used as Curried function is Clean. Although you are
encouraged to do this whenever appropriate, there are some runtime costs associated with
Currying. When speed becomes an issue it may be worthwhile to consider the elimination
of some heavily used Curried functions from you program.

The cost of Currying are caused by the fact that it is not possible to detect at compile
time which function is applied and whether it has the right number of arguments. This
implies that this should be done at runtime. Moreover certain optimisations cannot be
applied for Curried functions. For instance, it is not possible to use unboxed values for
strict arguments of basic types. The Clean system does not know which function will be
applied. Hence, it cannot be determined which arguments will be strict. This causes
some additional loss of efficiency compared with a simple application of the function.

To illustrate this effect we consider the function sum to compute the sum of a list of inte-
gers. The naive definition is:

Sum :: ![Int] -> Int
Sum [a:x] = a + Sum x
Sum []    = 0

Using the appropriate fold function this can be written as Foldr (+) 0. Where Foldr is de-
fined as:

Foldr :: (a b -> b) b ![a] -> b
Foldr op r [a:x] = op a (Foldr op r x)
Foldr op r []    = r

In the function Sum the addition is treated as an ordinary function. It is strict in both ar-
guments and the arguments are of the basic type Int. In the function Foldr the addition is
a curried function. This implies that the strictness information cannot be used and the ex-
ecution will be slower. Moreover it must be checked whether op is a function, or an ex-
pression like I (+) that yields a function. Also the number of arguments needed by the
function should be checked. Instead of the ordinary addition there can be a weird func-
tion like \n -> (+) n, this function takes one of the arguments and yield a function that
takes the second argument. Even when these things does not occur, the implementation
must cope with the possibility that it is there at runtime. For an ordinary function appli-
cation, it can be detected at compile time whether there is an ordinary function applica-
tion.

The function foldr from the standard environment eliminates these drawbacks by using a
macro:

foldr op r l :== foldr r l
where foldr r [] = r

foldr r [a:x] = op a (foldr r x)

By using this macro a tailor made foldr is created for each and every application of foldr
in the text of your Clean program. In this tailor made version the operator can usually be
treated as an ordinary function. This implies that the ordinary optimisations will be ap-
plied.
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As argued above, it is better to equip the function to sum the elements of a list with an
accumulator.

SumA :: ![Int] -> Int
SumA l = S 0 l
where S :: !Int ![Int] -> Int

S n [a:x] = S (n+a) x
S n []    = n

The accumulator argument n of the function SumA is usually not considered to be strict. Its
value will never be used when SumA is applied to an infinite list. However, the function
SumA will never yield a result in this situation.

The same recursion pattern is obtained by the expression Foldl (+) 0. This fold function
can be defined as:

Foldl :: (b a -> b) !b ![a] -> b
Foldl op r [a:x] = Foldl op (op r a) x
Foldl op r []    = r

The second argument of this function is made strict exactly for the same reason as in
SumA. In StdEnv also this function is defined using a macro to avoid the cost of Currying:

foldl op r l :== foldl r l
where foldl r [] = r

foldl r [a:x] = foldl (op r a) x

We will compare the run time of programs computing 1000 times the sum of the list
[1..1000] in order to see the effects on the efficiency.

function execution gc total

Sum 6.00 0.00 6.00
Foldr (+) 0 30.13 7.53 37.66
foldr (+) 0 6.01 0.00 6.01
SumA 2.51 0.00 2.51
Foldl (+) 0 19.66 2.55 22.21
foldl (+) 0 2.68 0.01 2.68

Table 5 Runtime in seconds of a program to determine  the costs of Currying.

The table shows the impact of omitting all strictness information, also the strictness
analyser of the Clean system is switched off. The only remaining strictness information
is the strictness of the operator + from StdEnv.

function execution gc total

Sum 6.03 0.00 6.03
Foldr (+) 0 29.13 7.75 37.41
foldr (+) 0 6.13 0.00 6.13
SumA 16.13 3.70 19.83
Foldl (+) 0 37.86 7.16 45.03
foldl (+) 0 15.61 3.50 19.11

Table 6 Runtime in seconds of a program to determine  the costs of Currying without strictness.

From these tables we can conclude that there are indeed quite substantial costs involved
by using Curried functions. However, we used a Curried function manipulating strict ar-
guments of a basic type here. The main efficiency effect is caused by the loose of the pos-
sibilities to treat the arguments as unboxed values. For functions manipulating ordinary
datatypes the cost of Currying are much smaller. When we use the predefined folds from
StdEnv there is no significant overhead in using Curried functions due to the macro's in
the definition of these functions.
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6.1.8 A word of warning
In this section we have shown that it is possible to reason about the number of reduction
steps needed to execute a program. In addition we have introduced some techniques to
reduce the amount of reduction steps and the cost of reduction steps. This does not mean
that you have to squeeze the last reduction step out of you program and to avoid laziness
or curried functions. We just want to show that there are some cost associated with these
language constructs and what can be done to reduce these cost when the (lack of) execution
speed is a problem.

Your computer is able to do a lot of reduction steps (up to several million) each second.
So, usually it is not worthwhile to eliminate all possible reduction steps. Your program
should in the first place be correct and solve the given problem. The readability and
maintainability of your program is often much more important than the execution speed.
Programs that are clear are more likely to be correct and better suited for changes. Too
much optimisation can be a real burden when you have to understand or change programs.
The complexity of the algorithms in your program can be a point of concern.

In our treatment of complexity we have ignored lazy evaluation. Lazy evaluation com-
plicates accurate determination of the number of reductions steps severely. We have al-
ways assumed that the entire expression should be evaluated. In the examples we have
taken care that this is what happens. However, when we select the first element of a sorted
list it is clear that the list will not be sorted entirely due to lazy evaluation. Nevertheless
a lot of comparisons are needed that prepares for sorting the entire list. The given deter-
mination of the complexity remains valid as an upper bound. Determining the under
bound, or accurate number of reduction steps, is complicated by lazy evaluation.

6.2 A guide to local definitions and scopes
In the previous chapters we have seen several ways to define local functions. Since local
functions without argument are handled differently the are usually called graphs. Each of
these methods is introduced with a special purpose in mined. Here we will list the possi-
bilities for making local definitions. We will indicate why this possibility exists and
show its scope.

Local functions are used to limit the scope of the function. Moreover the arguments of the
surrounding function and the local defined graphs can be used without the obligation to
pass them explicitly as argument to the local function. Graphs are used to share expres-
sions and to give an expression a name to enhance the readability of the program.

6.2.1 Local definitions
With a where block one can define functions and graphs which have meaning within every
expression appearing in a function alternative. This is the default way to introduce local
functions and graphs. It is not possible to define functions or graphs local to a whole func-
tion definition (i.e. in scope of all function alternatives of a function definition).

function args
| guard1=expression1
| guard2 = expression2
where
    selector = expression
    function args = body

Figure 1: Defining functions and graphs locally for a function alternative.

The scope induced by a where block can sometimes be too big. In Clean one can also re-
strict the scope of definitions to the body of a rule alternative by using a with statement.
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function args
| guard1=expression1
           with
           selector = expression
           function args = body

| guard2 = expression2
           with
           selector = expression
           function args = body

Figure 2: Defining functions and graphs locally for a rule alternative.

With a let statement one can define new functions and graphs which only have a meaning
within a certain expression. This is allowed in any expression on the right-hand side of a
function or graph definition. Let blocks are allowed also in sub expressions.

let
    function args = body
    selector = expression
in expression

Figure 3: Defining functions and graphs locally for a certain expression.

A closely related form is the let ! statement. The same scope rule applies for a strict let
expression. The difference with the ordinary let expressions is that only a single identi-
fier may be defined and that the evaluation of this identifier is forced. The identifier be-
haves as the strict arguments of a function. This expression is only allowed at the root of
the right-hand side. It is for instance useful to select an element from an unique data
structure before it is updated.

DoubleArrayElem :: *{Int} Int -> .{Int}
DoubleArrayElem a i = let! e = a.[i]

  in {a & [i] = e + e}

For expressions which have to be evaluated in a certain sequential order it is very conve-
nient to define these expressions before a guard in which they can be tested. This makes it
possible to define selectors (graphs) and tests on the contents of these selectors in a tex-
tual order which closely corresponds to the order in which they are supposed to be evalu-
ated. A special let statement is provided (keyword let or #) called let-before which in-
troduces a very special scope. Each selector defined induces a new scope (excluding the
body of the selector, see the picture below) ending at the function body.

function args
          # selector = expression
          | guard    = expression
          # selector = expression
 | guard    = expression
         where
             definitions

Figure 4: Defining local graphs before a guard.

It is possible to use the same name in several let-before definitions. This is very conve-
nient for environment passing or objects that should be passed around ion a single treated
way. The object keeps its name. More actually, each version of the object has its own
name. All these names happen to be equal. This is illustrated in the function readchars
that reads all characters from an unique file.

readchars :: *File -> ([Char], *File)
readchars file
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 # (ok,char,file) = freadc file
 | not ok = ([],file)
 # (chars,file) = readchars file
 = ([char:chars], file)

Functions and graphs defined in the where block can be used in let-before expressions.
One cannot use the identifiers defined in a let-before in a where block. Allowing the use
of identifiers defined in the let-before block in the where block can introduce cyclic de-
pendencies. This is problematic since it is possible, and often useful, to define several
identifiers with the same name in the let-before block. Using definitions in the where
block makes it either possible to spoil the nested semantics of the let-before block or
cause very strange semantic rules. To avoid these problems identifiers from the let-be-
fore block cannot be used in the where block. When you need a local definition containing
identifiers of the let-before block you should use a with block.

There exists also a strict version of the let-before, #!. This isn't heavily used since the sin-
gle treatedness is often more important than the exact moment of execution. Also the use
of the value of the identifiers defined in a let before forces the evaluation. In the example
above, the guard not ok forces the evaluation of freadc file.

6.2.2 Scope within expressions
Within an expression new formal parameters can also be introduced. This can happen in a
lambda expression, which is a nameless function. The formal parameters have a meaning in
the corresponding function body.

\ args -> body

Figure 5: Scope of lambda expression.

Local definitions in a lambda expression can be introduced through a let expression. A
ridiculuous example is e very complex identity function:

difficultIdentity :: !a -> a
difficultIdentity x = (\y -> let z = y in z) x

New formal parameters can also be introduced in a case expression. They have a meaning
in the corresponding case alternative identical to the scope rules of an ordinary function
definition.

case expression of
    args -> body
    args -> body

Figure 6: Scopes in a case expression.

This implies that the args from a case cannot be used in a where block. When you want to
introduce functions or graphs in one of the bodies of a case expression you should intro-
duce them using let or with.

As example we show the function sumElementsToCome that transforms a list of elements to
a list of tuples containing the sum of the elements to come and the element. The value of
the expression sumElementsToCome [1..3] is [(5,1),(3,2),(0,3)].

sumElementsToCome :: [x] -> [(x,x)] | +,zero x
sumElementsToCome l
 = case l of [a:x] | isEmpty x -> [(zero,a)]

    | otherwise -> [(b+c,a):y]
   with y = sumElementsToCome x; [(b,c):_] = y

 []  -> []

In a list and in an array comprehension new variables can be introduced when generators are
specified. Each generator can generate a selector which can be tested in a guard and used
to generate the next selector and finally in the resulting expression (see figure 7).
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[expression \\    selector     <- expression
                 | guard
                 , selector     <- expression
                 | guard
]

Figure 7: Scopes in a list comprehension.

This enables us to write the function to flatten a list (append all its elements) as:
Flatten :: ![[a]] -> [a]
Flatten lists = [elem \\ list <- lists, elem <- list]

All Pythagorean triangle with sides less or equal than 100 are generated by:
triangles :: [(Int,Int,Int)]
triangles = [ (a,b,c) \\ a <- [1..max]

,  b <- [a..max]
,  c <- [b..max]
|  a^2 + b^2 == c^2
]

where max = 100

By using the list generators [a..max] and [b..max] we prevented that permutations of
triangles are found.

6.3 Equational reasoning
Using proofs you can argue about the behaviour of a program over all its inputs. Testing
can only observe the behaviour of a finite set of inputs. Although you can choose the test
set to be representative for the total behaviour, testing is generally more limited. Here
we will reason about the correctness of functions.

Direct proofs
The simplest form of proofs are direct proofs. A direct proof is a obtained by a sequence
of rewrite steps. For a simple example we consider the following definitions:

I :: t -> t
I x = x // This function is defined in StdEnv.

twice :: (t->t) t -> t
twice f x = f (f x) // This function is defined in StdEnv.

f :: t -> t
f x = twice I x

When we want to show that f x = x for all x, we can run a lot of tests. However, there are
infinitely many possible arguments for f . So, testing can build confidence, but can't show
that truth of f x = x. A simple proof shows that f x = x for all x. We start with the func-
tion definition of f and apply reduction steps to its body.

f x = twice I x // The function definition
= I (I x) // Using the definition of twice
= I x // Using the definition of I for the outermost function I
= x // Using the definition of I ■

This example shows the style we will use for proofs. The proof consists of a sequence of
equalities. We will give a justification of the equality as a comment and end the proof
with the symbol n.

Even direct proofs are not always as simple as the example above. The actual proof con-
sists usually of a sequence of equalities. The crux of constructing proofs is to decide
which equalities should be used.

For the same functions it is possible to show that the functions f and I behave equal. It is
tempting to try to prove f = I. However, we won't succeed when we try to proof the func-
tion f equal to I using the same technique as above. It is not necessary that the function
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bodies can be shown equivalent. It is sufficient that we show that functions f and I pro-
duce the same result for each argument: f x = I x. In general: two functions are considered
to be equivalent when they produce the same answer for all possible arguments. It is very
simple to show this equality for our example:

f x = twice I x // The function definition
= I (I x) // Using the definition of twice
= I x // Using the definition of I for the outermost function I ■

As you can see from this example it is not always necessary to reduce expressions as far as
you can (to normal form). In other proofs it is needed to apply functions in the opposite
direction: e.g. to replace x by I x.

A similar problem arises when we define the function g as:
g :: (t -> t)
g = twice I

And try to prove that g x = x for all x. We can't start with the function definition and ap-
ply rewrite rules. In order to show this property we have to supply an arbitrary argument
x to the function g. After invention of this idea the proof is simple and equivalent to the
proof of f x = x.

Proof by cases
When functions to be used in proof are defined consists of various alternatives or contain
guards its is not always possible to use a single direct proof. Instead of one direct proof
we use a direct proof for all relevant cases.

As an example we will show that abs x ≥ 0 for all x, using
abs :: Int -> Int
abs n | n < 0     = ~n
      | otherwise = n

Without assumptions on the argument the proof can't be made. The cases to distinguish
are indicated by the function under consideration. Here the guard determines the cases to
distinguish.

Proof

Case x < 0
abs x = ~x // Using the definition of abs

Since x < 0, ~x will be greater than 0, using the definitions in the class Eq, x > 0 implies
x ≥ 0. Hence, abs x ≥ 0 when x < 0.

Case x ≥ 0
abs x = x // Using the definition of abs

Since x ≥ 0 and abs x = x we have abs x ≥ 0.

Each x is either < 0 or ≥ 0. For both cases we have abs x ≥ 0. So, abs x ≥ 0 for all x. ■

The last line is an essential step in the proof. When we do not argue that we have covered
all cases there is in fact no proof. Nevertheless, this last step is often omitted. It is fairly
standard and it is supposed to be evident for the reader that all cases are covered.

The trouble of proving by cases is that you have to be very careful to cover all possible
cases. A common mistake for numbers is to cover only the cases x<0 and x>0. The case x=0
is erroneously omitted.

Proof by case can be done for any data type. Sometimes we can handle many values at
once (as is done in the proof above), in other situation we must treat some or all possible
values separately. Although a proof by case can have many cases, the number of cases
should at least be finite.

As additional example we show that Not (Not b) = b for all Booleans b using:
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Not :: Bool -> Bool
Not True  = False
Not False = True

Proof of Not (Not b) = b.

Case b == True
Not (Not b) // The value to be computed.

= Not (Not True) // Using the assumption of this case.
= Not False // Using the definition of Not for the innermost application.
= True // Using the definition of Not.

Case b == False
Not (Not b) // The value to be computed.

= Not (Not False) // Using the assumption of this case.
= Not True // Using the definition of Not for the innermost application.
= False // Using the definition of Not.

Each Boolean (Bool) is either True or False. So, this proof covers all cases and proves that
Not (Not b) = b for all Booleans b. ■

Proof by induction
As stated in the previous section proof by cases works only when there are a finite amount
of cases to be considered. When there are in principle infinitely many cases to consider
we can often use a proof by induction. The principle of proving properties by induction is
very well known in mathematics. In mathematics we prove that some property P(n) holds
for all natural numbers n by showing two cases:

Base case Prove P(0)

Induction step Prove P(n+1) assuming that P(n) holds.

The principle of this proof is very similar to recursion. Using the base case and the induc-
tion step we can prove P(1). Using P(1) and the induction step we show that P(2) holds. In
the same way we can prove P(3), P(4), P(5), …. Using this machinery we can prove P(n)
for any n. Since this is a common proof method it suffices to show the base case and the
induction step. The fact that the property can be proven for any value from these parts is
taken for granted when you refer to induction.

As example we will show that the following efficient definition of the Fibonacci func-
tion and the naive definition are equivalent for all non-negative integers.

tupleFib :: Int -> Int
tupleFib n = fibn

where (fibn,_) = tf n
tf 0 = (1,1)
tf n = (y,x+y) where (x,y) = tf (n-1)

fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

Proof of tupleFib n = fib n

The key step here is to understand that tf n = (fib n, fib (n+1)) for all n. Once we have
seen that this is the goal of our proof, it can be proven by induction.

Case n == 0

We have to prove that tf 0 == (fib 0, fib (0+1)). This is done by rewriting the expres-
sion tf 0.

tf 0 //  Expression to be proven equal to (fib 0, fib (0+1))
= (1,1) //  Definition of tf.
= (fib 0,1) //  Using first alternative of the definition of fib.
= (fib 0,fib 1) //  Using second alternative of the definition of fib.
= (fib 0,fib (0+1)) //  Arithmetic.
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This proves that tf n = (fib n, fib (n+1)) for n = 0.

Case n + 1

We have to show that tf (n+1) = (fib (n+1), fib (n+1+1)) assuming that tf n = (fib n,
fib (n+1)). We will prove this by rewriting the expression tf (n+1).

tf (n+1) //  Initial expression.
= (y,x+y) where (x,y) = tf (n+1-1) //  Definition of tf, assuming that n>0.
= (y,x+y) where (x,y) = tf n //  Arithmetic
= (y,x+y) where (x,y) = (fib n, fib (n+1)) //  Induction hypothesis
= (fib (n+1),fib n + fib (n+1)) //  Rewriting the expression.
= (fib (n+1),fib (n+1+1)) //  Last alternative of function fib.

This proves that tf (n+1) = (fib (n+1), fib (n+1+1)) assuming that tf n = (fib n, fib
(n+1)). These case together prove by induction that tf n = (fib n, fib (n+1)) for al l
positive n. Using this result, proving tupleFib n = fib n is done by a direct proof.

tupleFib n
= fibn where (fibn,_) = tf n //  Definition of tupleFib.
= fibn where (fibn,_) = (fib n, fib (n+1)) //  Using the result proven above.
= fib n //  Rewriting the expression. ■

The key step in designing proofs is to find the appropriate sub-goals. Proofs can become
very complex, by having many sub-goals. These sub-goals can require additional induc-
tion proofs and sub-goals, and so on.

As additional example we will prove the following Fibonacci function that avoids tuples
equivalent to the function fib.

fastFib :: Int -> Int
fastFib n = f n 1 1

where f 0 a b = a
  f n a b = f (n-1) b (a+b)

Proof of fastFib n = fib n for all n ≥ 0.

We will first prove that f n 1 1 = f (n-m) (fib m) (fib (m+1)) for all m such that m≥0 &
m≤n. This is proven again by induction:

Proof of f n 1 1 = f (n-m) (fib m) (fib (m+1))

Case m == 0 of f n 1 1 = f (n-m) (fib m) (fib (m+1))
f (n-m) (fib m) (fib (m+1)) //  Start with right-hand side.

= f n (fib 0) (fib 1) //  Use m == 0.
= f n 1 1 //  Use function fib.

Case m + 1 of f n 1 1 = f (n-m) (fib m) (fib (m+1))
f n 1 1 //  Left-hand side of goal.

= f (n-m) (fib m) (fib (m+1)) //  Use induction hypothesis.
= f (n-(m+1)) (fib (m+1)) (fib m + fib (m+1)) //  Rewrite according to f.
= f (n-(m+1)) (fib (m+1)) (fib ((m+1)+1)) //  Using fib in reverse.

This proves that f n 1 1 = f (n-m) (fib m) (fib (m+1)). Now we can use this result to
prove that fastFib n = fib n.

fastFib n //  Left-hand side of equality to prove.
= f n 1 1 //  Definition of fastFib.
= f (n-m) (fib m) (fib (m+1)) //  Using the sub-goal proven above.
= f 0 (fib n) (fib (n+1)) //  Use m = n and arithmetic.
= fib n //  According to definition of f. ■

There is no reason to limit induction proofs to natural numbers. In fact induction proofs
can be given for any ordered (data)type. A well-known example in functional languages
is the data type list. The base case is P([]), the induction step is P([x:xs]) assuming
P(xs).

As example we will show the equivalence of the following functions to reverse lists. The
function rev is simple and a clear definition. In chapter III.3 we will show that reverse is
more efficient.
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rev :: [t] -> [t] //  Quadratic in the length of the argument list.
rev []    = []
rev [a:x] = rev x ++ [a]

reverse :: [t] -> [t] //  Linear in the length of the argument list.
reverse l = r l []

where r []    y = y
r [a:x] y = r x [a:y]

Proof of rev l = reverse l for every list l.

In order to prove this we first prove an auxiliary equality: r xs ys = reverse xs ++ ys.
This is proven by induction to xs.

Proof of r xs ys = rev xs ++ ys.

Case xs == [] of r xs ys = rev xs ++ ys.
r xs ys

= r [] ys //  Using xs == [].
= ys //  Definition of the function r.
= [] ++ ys //  Definition of the operator ++ in reverse.
= rev [] ++ ys //  The alternative of rev in reverse.

Case xs == [a:x] of r xs ys = rev xs ++ ys. Assuming r x ys = rev x ++ ys.
r xs ys

= r [a:x] ys //  Using xs == [a:x].
= r x [a:ys] //  According to function r.
= rev x ++ [a:ys] //  Using the induction hypothesis
= rev x ++ [a] ++ ys //  Using operator ++ in reverse.
= rev [a:x] ++ ys //  Using associativity of ++ and last alternative of rev.

This proves r xs ys = reverse xs ++ ys by induction. We will use this auxiliary result to
show our main equality: rev l = reverse l.

reverse l
= r l [] //  According to the definition of reverse.
= rev l ++ [] //  Using the auxiliary result.
= rev l //  Using l ++ [] = l for any list l. ■

Actually the proofs presented above are not complete. Also the "obvious" properties of
the operators should be proven to make the proofs complete. This is the topic of the ex-
ercises to come.

After you have found the way to prove a property, it is not difficult to do. Nevertheless,
proving function correct is much work. This is the reason that it is seldom done in prac-
tise, despite the advantages of the increased confidence in the correctness of the program.

Program synthesis
In the previous section we treated the development of function definitions and proving
their equivalence as two separate activities. In program synthesis these actions are inte-
grated. We start with a specification, usually a naive and obviously correct implementa-
tion, and syntheses a new function definition. The reasoning required in both methods is
essentially equal. In program synthesis we try to construct the function in a systematic
way. Without synthesis these programs should be created out of thin air. In practise we
often need to create the key step for program synthesis out of thin air. This key step is
usually exactly equivalent to the step needed to construct the proof afterwards.

In program synthesis we use only a very limited number of transformations: rewrite ac-
cording to a function definition (also called unfold [Burstall 87?]), introduction of pat-
terns and guards (similar to the cases in proofs), inverse rewrite steps (this replacing of an
expression by a function definition is called fold), and finally the introduction of eureka
definitions.
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In order to demonstrate program synthesis we will construct a recursive definition for re-
verse from the definition using the toolbox function foldl. The definition for foldl is re-
peated here to since it will be used in the transformation.

reverse :: [t] -> [t]
reverse l = foldl (\xs x -> [x:xs]) [] l //  The specification

foldl :: (a -> (b -> a)) a [b] -> a //  Toolbox function from StdEnv
foldl f r []    = r
foldl f r [a:x] = foldl f (f r a) x

The first step is to introduce patterns for the argument list. This is necessary since no
rewrite step can be done without assumption on the form of the argument.

Case l == []
reverse l //  The function to transform

= foldl (\xs x -> [x:xs]) [] l //  Using the specification.
= foldl (\xs x -> [x:xs]) [] [] //  The assumption of this case.
= [] //  Using alternative 2 of foldl.

Case l == [a:x]
reverse l //  Again the function to transform.

= foldl (\xs x -> [x:xs]) [] l //  Using the specification.
= foldl (\xs x -> [x:xs]) [] [a:x] //  Assumption l == [a:x].
= foldl f (f [] a) x where f = \xs x -> [x:xs] //  Alternative 1 of foldl.
= foldl (\xs x -> [x:xs]) [a] x //  Lambda reduction.
= foldl (\xs x -> [x:xs]) ([]++[a]) x //  Properties of ++.
= foldl (\xs x -> [x:xs]) [] x ++ [a] //  Function foldl and λ-term.
= reverse x ++ [a] //  Fold to call of reverse.

Collecting the cases we have obtained:
reverse :: [t] -> [t]
reverse []    = []
reverse [a:x] = reverse x ++ [a]

In order to turn this in an algorithm that is linear in the length of the list we need the eu-
reka definition revAcc xs ys = reverse xs ++ ys. Note that this is exactly equivalent to
the key step of the proof in the previous section.

reverse l //  Function to transform.
= reverse l ++ [] //  Property of ++.
= revAcc l [] //  Eureka definition.

To obtain a definition for r we use again pattern introduction:

Case l == []
revAcc [] ys = reverse [] ++ ys //  Eureka definition and l == [].

= [] ++ ys //  Definition of reverse.
= ys //  Definition of operator ++.

Case l == [a:x]
revAcc [a:x] ys = reverse [a:x] ++ ys //  Eureka definition, l==[a:x].

= reverse x ++ [a] ++ ys //  Recursive definition reverse.
= reverse x ++ [a:ys] //  Associativity of ++.
= revAcc x [a:ys] //  Fold using eureka definition.

Collecting the cases we obtain:
reverse :: [t] -> [t]
reverse l = revAcc l []

revAcc :: [t] [t] -> [t]
revAcc [] ys    = ys
revAcc [a:x] ys = revAcc x [a:ys]

Since we used exactly the same eureka definition as was used in the proof, it is not sur-
prising to see that we have obtain an completely equivalent definition of reverse. The
key step in this kind of program synthesis is to discover the proper eureka definitions.
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When you use uniqueness information in your functions you have to pay additional atten-
tion to the transformations. It is not sufficient that the uniqueness properties are pre-
served, but the compiler must also be able to verify them. Transformations using the first
three steps are can in principle be automated to a certain extend [Wadler 88, Koopman
??] and will perhaps be incorporated into function language implementations in the future.

6.4 Tracing program execution
Despite of the careful design and incremental construction it might occur that you are
completely puzzled by the behaviour of a function or program you have just written. The
best strategy is to study all functions of your program individually. It might be useful to
test individual functions with the tool described in chapter 5.

When this fail you might want to make a trace of the things happening in your program.
Generally this can require a substantial redesign of your program since you have to pass a
file or list around in your program in order to accommodate the trace. Fortunately, there
is one exception to the environment passing of files. The file stderr can always be opened
for writing errors. The trace can be modelled as a list of strings written to stderr.

As example we show how to construct a trace of the simple Fibonacci function:
fib n = let! y = fwrites ("fib "+toString n+" ") stderr in

K (if (n<2) 1 (fib (n-1) + fib (n-2))) y

Start = fib 4

This yields the following trace:
fib 4 fib 2 fib 0 fib 1 fib 3 fib 1 fib 2 fib 0 fib 1

We usually write this trace as:
Start
→ fib 4
→∗ fib 3 + fib 2
→ fib 3 + fib 1 + fib 0
→ fib 3 + fib 1 + 1
→ fib 3 + 1 + 1
→ fib 3 + 2
→∗ fib 2 + fib 1 + 2
→ fib 2 + 1 + 2
→∗ fib 1 + fib 0 + 1 + 2
→ fib 1 + 1 + 1 + 2
→ 1 + 1 + 1 + 2
→∗ 5

From this trace it is clear that the operator + evaluates its second argument first.

It is tempting to write a function trace :: !String x -> x that writes the string as trace
to stderr. The definition of this function is somewhat more complicated as you might
expect:

trace :: !String x -> x
trace s x
 #! y   = fwrites s stderr
 | 1<2 = K x y
 = abort "?"

The problem with a simple minded approach like:
trace s x = let! y = fwrites s stderr in K x y

is that the strictness analyser of Clean discovers that x is always needed. So, x is evalu-
ated before the function trace is invoked. This will spoil the order of the trace informa-
tion. Switching strictness analysis off prevents this, but can change the order of evaluation
in the program you are investigating.

Using the function trace we can write a version of the Fibonaccy function that produces a
trace as:
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fib n = trace ("fib "+toString n+" ")
(if (n<2) 1 (fib (n-1) + fib (n-2)))

When we want to include also the result of reduction is the trace we have to be vary care-
ful that the order of computations is not changed. For some programs changing the order
of computations is not a real problem. For other programs, changing the order of reduc-
tions can cause non-termination.

When we write:
fib n = trace ("fib "+toString n+" = "+toString m+" ") m

where m = if (n<2) 1 (fib (n-1) + fib (n-2))

the trace will be reversed!

6.5 Higher order functions on lists
In the previous chapters we have seen some example of the use of higher order functions
manipulating lists. Now you will be used to functional programming and probably able
to appreciate these functions. In this section we will show some examples. Moreover, we
will use the techniques introduced above to decide which foldl is most suitable in a given
situation.

6.5.1 Displaying a number as a list of characters
The function intChars converts a positive number into a list of characters that contains the
digits of that number. For example: intChars 5678 gives the list ['5678']. Thanks to this
function you can combine the result of a computation with a list of characters, for exam-
ple as in intChars (3*17)++[' lines'].

The function intChars can be constructed by the execution of a number of functions after
each other. Firstly, the number should be repeatedly divided by 10 using iterate (like in
the third example of iterate above). The infinite tail of zeroes is not interesting and can
be chopped off by takeWhile. Now the desired digits can be found as the last digits of
the numbers in the list; the last digit of a number is equal to the remainder after division
by 10. The digits are still in the wrong order, but that can be resolved by reverse. Finally
the digits (of type Int) must be converted to the corresponding digit characters (of type
Char). For this purpose we have to define the function digitChar:

digitChar :: Int -> Char
digitChar n

| 0 <= n && n <= 9 = toChar (n + toInt '0')

An example clarifies this all:
5678

↓ iterate (\x -> x / 10)
[5678,567,56,5,0,0,…

↓ takeWhile (\y -> y <> 0)
[5678,567,56,5]

↓ map (\z -> z rem 10)
[8,7,6,5]

↓ reverse
[5,6,7,8]

↓ map digitChar
['5','6','7','8']

The function intChars can now be simply written as the composition of these five steps.
Note that the functions are written down in reversed order, because the function composi-
tion operator (o) means `after':

intChars :: (Int -> [Char])
intChars = map digitChar

o reverse
o map (\z -> z rem 10)
o takeWhile (\y -> y <> 0)
o iterate (\x -> x / 10)
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Functional programming is programming with functions!

Of course it is also possible to write a recursive function that does the same job.
Actually, the function shown here works also for negative numbers and zero.

intToChars :: Int -> [Char]
intToChars 0 = ['0']
intToChars n | n<0  = ['-':intToChars (~n)]
             | n<10 = [digitChar n]
                    = intToChars (n/10) ++ [digitChar (n rem 10)]

6.5.2 Folding
There are several variants of the fold function. In this section we will compare them and
give some hints on their use.

foldr

The foldr function inserts an operator between all elements of a list starting at the right
hand with a given value. Cons is replaced by the given operator and nil by the supplied
value:

xs = [ 1 : [ 2 : [ 3 : [ 4 : [ 5 : [] ]]]]]
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓  ↓

foldr (+) 0 xs → ( 1 + ( 2 + ( 3 + ( 4 + ( 5 +  0 )))))

The definition in the standard environment is semantically equivalent to:
foldr :: (a->b->b) b [a] -> b
foldr op e [] = e
foldr op e [x:xs] = op x (foldr op e xs)

By using standard functions extensively the recursion in other functions can be hidden. The
`dirty work' is then dealt with by the standard functions and the other functions look
neater. The function or, which checks whether a list of Booleans contains at least one value
True, is, for example, defined in this way:

or :: ([Bool] -> Bool)
or = foldr (||) False

A lot of functions can be written as a combination of a call to foldr and to map. A good
example is the function isMember:

isMember e = foldr (||) False o map ((==)e)

In the same spirit we can define:
and :: ([Bool] -> Bool)
and = foldr (&&) True

sum :: ([t] -> t) | +, zero t
sum = foldr (+) zero

product :: ([t] -> t) | *, one t
product = foldr (*) one

The fold functions can also yield recursive datatypes. Some applications yielding a list
are insertion sort and reverse:

isort :: ([t] -> [t]) | Ord t
isort = foldr insert []

reverser :: ([t] -> [t])
reverser = foldr (\x r -> r++[x]) []

The transformation of list to trees used in tree sort can also be written using a fold. This
is an example of the use of fold yielding a recursive data type different from list.

listToTree :: ([t] -> Tree t) | Ord , Eq t
listToTree = foldr insertTree leaf

The fold functions are in fact very general. It is possible to write map and filter as appli-
cations of fold:



I.6 Advcanced Programming (Draft, 12 augustus 1997) 151

mymap :: (a -> b) [a] -> [b]
mymap f list = foldr ((\h t -> [h:t]) o f) [] list

mymap2 :: (a -> b) [a] -> [b]
mymap2 f list = foldr (\h t -> [f h:t]) [] list

myfilter :: (a -> Bool) [a] -> [a]
myfilter f list = foldr (\h t -> if (f h) [h:t] t) [] list

As a matter of fact, it is rather hard to find list manipulating functions that cannot be
written as an application of fold.

foldl

The function foldr puts an operator between all elements of a list and starts with this at
the end of the list. The function foldl does the same thing, but starts at the beginning of
the list. Just as foldr, foldl has an extra parameter that represents the result for the empty
list.

Here is an example of foldl on a list with five elements:
xs = [ 1 : [ 2 : [ 3 : [ 4 : [ 5 : []]]]]

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
foldl (+) 0 xs =  (((((0 + 1) + 2) + 3) + 4) + 5)

The definition can be written like this:
foldl::(a -> (b -> a)) !a ![b] -> a
foldl op e [] = e
foldl op e [x:xs] = foldl op (op e x) xs

The element e has been made strict in order to serve as a proper accumulator.

In the case of associative operators like + it doesn't matter that much whether you use
foldr or foldl. Of course, for non-associative operators like - the result depends on which
function you use. In fact, the functions or, and, sum and product can also be defined using
foldl.

From the types of the functions foldl and foldr you can see that they are more general
then the examples shown above suggest. In fact nearly every list processing function can be
expressed as a fold over the list. As examples we show the identity function on lists, two
versions of map, reverse and the function filter:

reversel :: [a] -> [a]
reversel l = foldl (\r x -> [x:r]) [] l

These examples are not intended to enforce you to write each and every list manipulation
as a fold, they are just intended to show you the possibilities.

Folding to the right or to the left
Many functions can be written as a fold to the left, foldl, or a fold to the right, foldr. As
we have seen in section 1, there are differences in the efficiency. For functions like sum i t
is more efficient to use foldl. The argument e behaves as an accumulator.

A function like reverse can be written using foldl and using foldr:
reversel l = foldl (\r x -> [x:r]) [] l

reverser l = foldr (\x r -> r++[x]) [] l

Difference in efficiency depends on the length of the list. The function reverser requires
a number of reduction steps proportional to the square of the length of the list. For re-
versel the number of reduction steps is proportional to the length of the list. For a list of
some hundreds of elements the difference in speed is about two orders of magnitude!

Can we conclude from these example that it is always better to use foldl? No, life is not
that easy. As a counter example we consider the following definitions:

el = foldl (&&) True (repeat 100 False)
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er = foldr (&&) True (repeat 100 False)

When we evaluate el the accumulator will become False after inspection of the first
Boolean in the list. When you consider the behaviour of && it is clear that the result of the
entire expression will be False. Nevertheless, you program will apply the operator && to
all other Booleans in the list.

However, we can avoid this by using foldr. This is illustrated by the following trace:
foldr (&&) True (repeat 100 False)
→ foldr (&&) True [False: repeat (100-1) False]
→ (&&) False (foldr (&&) True (repeat (100-1) False))
→ False

That does make a difference! As a rule of thumb you should use foldl for operators that
are strict in both arguments. For operators that are only strict in their first argument foldr
is a better choice. For functions like reverse there is not a single operator that can be used
with foldl and foldr. In this situation the choice should be determined by the complex-
ity of the function given as argument to the fold. The function \r x -> [x:r] requires a
single reduction step. While the function \x r -> r++[x] takes a number of reduction pro-
portional to the length of x.

It requires some practise to be able to write functions using higher order list manipula-
tions like fold, map and filter. It takes some additional training to appreciate this kind
of definitions. The advantage of using these functions is that it can make the recursive
structure of the list processing clear. The drawbacks are the experienced needed as a hu-
man to read and write these definitions and some computational overhead.

6.4 Exercises
1 In the function qsort there are two list comprehensions used to split the input list. It is possible to

split the input list in one pass of the input list similar to msort4. Using an additional function it is
possible to do this in one pass of the input list. Determine whether this increases the efficiency of the
quick sort function.

2 To achieve the best of both worlds in the quick sort function  you can combine splitting the input in
one pass and continuation passing. Determine whether the combination of these optimisations does
increase the efficiency.

3 When there are list elements with the same value it may be worthwhile to split the input list of the
quick sort function in three parts: one part less than the first element, the second part equal to the first
element and finally all elements greater than the first element. Implement this function and deter-
mine whether it increase the speed of sorting the random list. We can increase the amount of dupli-
cates by appending the same list a number of times.

4 Determine and compare the runtime of the sorting functions msort4, qsort4 (from the previous ex-
ercise), tsort2 and isort for non-random lists. Use a sorted list and its reversed version as input of
the sorting functions to determine execution times. Determine which sorting algorithm is the best.

5 Investigate whether it is usefull to pass the length of the list to sort as additional argument to merge
sort. This length needs to be computed only once by counting the elements. In recursive calls it can be
computed in a single reduction step. we can give the function split a single argument as accumulator.
Does this increase the increase the efficiency?

6 Determine the time complexity of the functions qsort2 and tsort2.

7 Study the behaviour of sorting functions for sorted lists and inversely sorted lists.

8 Proof that abs (sign x) < 2 for all x. using:
sign x | x < 0  = -1
       | x == 0 = 0
       | x > 0  = 1

9 Prove that fib n ≥ n for all n≥2.

10 Prove that l ++ [] = l.
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11 Prove that x ++ (y ++ z) = (x ++ y) ++ z. This is the associativity of ++.

12 Prove that rev (x ++ y) = rev y ++ rev x.

13 Prove that rev (rev xs) = xs for every finite list.

14 Prove that foldl (\xs x -> [x:xs]) ys x = foldl (\xs x -> [x:xs]) [] x ++ ys.

15 Syntheses a recursive function to add elements of an list which is equivalent to:
sum :: [t] -> t | + , zero t
sum l = foldr (+) zero l

Design a Eureka rule to introduce an accumulator and transform the recursive function to a call of the
addition function using the accumulator.


