
Part I
Chapter 5
Input and Output

5 . 1 Changing the wor ld
5 . 2 Combinat ion o f input /output

func t ions
5 . 3 Some simple dialogs

5 . 4 A simple window
5 . 5 Timers
5 . 6 A l ine drawing program
5 . 7 Exerc ises

In this chapter it is described how interactive functional programs can be written. This
chapter uses the (to Clean 1.1 converted) 0.8 version of the I/O library.

In the previous Chapter we introduced the two key techniques for interactive functional
programming:
• environment passing which is used to control the order in which I/O is performed;
• the environment can be passed in such a way that the uniqueness of references is guaran-

teed, such that destructive updates can be used (in that case the technique is also cal-
led state-transition).

5.1 Changing the world
Suppose we want to write a program that copies a complete file. It is easy to define an
extension of the examples in the previous section such that not just one or two characters
are written but a complete list of characters is copied to a file. Combining this with a (as
yet unspecified) function to read characters from a file gives a function to copy a file.

CharListWrite :: [Char] *File -> *File
CharListWrite [] f = f
CharListWrite [c:cs] f = CharListWrite cs (fwritec c f)

CharFileCopy :: File *File -> *File
CharFileCopy infile outfile = CharListWrite (CharListRead infile) outfile

The function CharListWrite is left-recursive and strict such that its machine code will be
very close to the code of a classical loop.

Reading characters from a file requires a few more lines than writing since for reading
not only an environment (the file, i.e. the pointer in the file to the next character to read)
has to be passed but also a result has to be yielded. The file from which characters are
read is not required to be unique since no destructive update is involved in reading.

The read function is lazy. So, character by character the file will be read when the charac-
ters are needed for the evaluation (the actual library implementation of sfreadc will pro-
bably use some kind of buffering scheme).

CharListRead :: File -> [Char]
CharListRead f

| not readok = []
| otherwise = [char:CharListRead filewithchangedreadpointer]

where
(readok,char,filewithchangedreadpointer) = sfreadc f

96 Functional Programming in Clean

This completes the file copy function but we do not have a file copy program yet. What is
missing is functions to open and close the files in question and, of course, we have to ar-
range that the file system is accessible. A copy function that also opens and closes files is
given below:

CopyFile :: String String *Files -> *Files
CopyFile inputfname outputfname filesys
| readok && writeok && closeok = finalfilesystem
| not readok = abort ("Cannot open input file: '" +++ inputfname +++ "'")
| not writeok = abort ("Cannot open output file: '" +++ outputfname +++ "'")
| not closeok = abort ("Cannot close output file: '" +++ outputfname +++ "'")
where

(readok,inputfile,touchedfilesys) = sfopen inputfname FReadText filesys
(writeok,outputfile,nwfilesys) = fopen outputfname FWriteText touchedfilesys
copiedfile = CharFileCopy inputfile outputfile
(closeok,finalfilesystem) = fclose copiedfile nwfilesys

The definition above uses the library functions fopen and sfopen to open files. The differ-
ence between them is that fopen requires the file to be unique and sfopen allows sharing of
the file. Both functions have argument attributes indicating the way the file is used
(FReadText, FWriteText). Another possible attribute would be FAppendText. Similar attri-
butes exist for dealing with files with data.

Accessing the file system itself means accessing the 'outside world' of the program. This
is made possible by allowing the Start rule to have an abstract parameter World which en-
capsulates the complete status of the machine.

Figure 5.1 The abstract type World encapsulating the file system.

Employing unique environment passing, functions have been defined in the library that
semantically produce new worlds fetching the file system from the world (openfiles)
and putting it back in again (closefiles). The final result of the Clean program is then
the world it delivers.

Start :: *World -> *World
Start world = CopyFileInWorld world

CopyFileInWorld :: *World -> *World
CopyFileInWorld world = newworld
where

(filesystem,worldwithoutfilesystem) = openfiles world
finalfilesystem = CopyFile inputfilename outputfilename filesystem
newworld = closefiles finalfilesystem worldwithoutfilesystem
inputfilename = "source.txt"
outputfilename = "copy.txt"

This completes the file copy program.

Other ways to read files are line-by-line or megabyte-by-megabyte which may be more
appropriate depending on the context. The corresponding read-functions are given below.

LineListRead :: File -> [String]
LineListRead f

| sfend f = []
| otherwise = [line:LineListRead filerest]

where
(line,filerest) = sfreadline f // line still includes newline character

I.5 Input and Output (Draft, 12 augustus 1997) 97

MegStringsRead :: File ->[String]
MegStringsRead f

| sfend f = []
| otherwise = [string:MegStringsRead filerest]

where
(string,filerest) = sfreads f MegaByte
MegaByte = 1024 * 1024

The functions given above are lazy. So, the relevant parts of a file are read only when this
is needed for the evaluation of the program1.

5.2 Combination of input/output functions
Consider the following definitions:

WriteAB :: *File -> *File
WriteAB file = fileAB
where

fileA = fwritec 'a' file
fileAB = fwritec 'b' fileA

WriteAB :: *File -> *File
WriteAB file = fwritec 'b' (fwritec 'a' file)

They are equivalent using slightly different styles of programming with environment pas-
sing functions.

A disadvantage of the first one is that new names have to be invented: fileA and fileAB. If
such a style is used throughout a larger program one tends to come up with less clear na-
mes such as file1 and file2 (or even file` and file``) which makes it harder to under-
stand what is going on.

The second style avoids this but has as disadvantage that the order of reading the function
composition is the reverse of the order in which the function applications will be execu-
ted.

Below some other styles of defining the same function are used (for this example one of
the last two styles is preferable since they avoid both disadvantages mentioned above):

WriteAB :: (*File -> *File) //brackets indicate function is defined with arity 0
WriteAB = fwritec 'b' o fwritec 'a'

WriteAB :: (*File -> *File)
WriteAB = seq [fwritec 'a',fwritec 'b']

WriteAB :: *File -> *File
WriteAB file = seq [fwritec 'a',fwritec 'b'] file

With seq a list of state-transition function is applied consecutively. The function seq is a
standard library function which is defined as follows:

seq :: [s->s] s -> s //restricted type: see section Polymorphic Uniqueness below
seq [] x = x
seq [f:fs] x = seq fs (f x)

1 Sometimes it may be wanted to read a file completely before anything else is done. Below a strict read-
function is given which reads in the entire file at once.

CharListReadEntireFile:: File -> [Char]
CharListReadEntireFile f
| not readok = []
| otherwise = let! chars = CharListReadEntireFile filewithchangedreadpointer

 in [char : chars]
where

(readok,char,filewithchangedreadpointer) = sfreadc f

98 Functional Programming in Clean

When functions are combined that perform both environment passing as well as produce
other results similar style differences occur. When the types of these results are the same
for all functions to be combined a simple variant of seq can be used:

:: St s a :== s -> (a,s) // type of the functions to be combined
// restricted type: see 5.2.3 below

seqList :: [St s a] s -> ([a],s) // results are collected in a list
seqList [] state = ([],state)
seqList [f:fs] state = ([a:as],state2)
where

(as,state2) = seqList fs state1
(a,state1) = f state

readzipcode file = seqList [readarea,readregion] file
where

readarea = readstring 4
readregion = readstring 2
readstring int file = freads file int

5.2.1 Monadic style
When a number of functions produce results of different type (e.g. freadc and freads) it is
not possible to collect all these results in a list since elements of a list must have the same
type. So, for that case another abstraction has to be used to grasp the essence of that kind
of environment passing in general. The idea is that a function that takes the state and pro-
duces a tuple of the state and a result is combined by the function `bind` with a function
that takes that result and produces another result-delivering state transition function. The
result of `bind` is again such a result-delivering state-transition function. This way of
combining function is called the monadic style of programming. (The type St s a together
with the manipulation functions `bind` and return is called the monad.)

(`bind`) infix 0 :: (St s a) (a -> (St s b)) -> (St s b) // restricted type
(`bind`) f_sta a_fstb = stb
where

stb st = a_fstb a nst
where

(a,nst) = f_sta st

return :: a -> (St s a) // restricted type
return x = \s -> (x,s)

readzipcode :: (*File -> ((Int,Char,Char),*File))
readzipcode file
 = freadint `bind` \(b1,i)->

freadchar `bind` \(b2,c1)->
freadchar `bind` \(b3,c2) ->
if (b1 && b2 && b3) (return (i,c1,c2))

(abort "readzipcode failure")
where

freadint file = ((b,i),file1) where (b,i,file1) = freadi file
freadchar file = ((b,c),file1) where (b,c,file1) = freadc file

The example2 above shows how state-transition functions producing different types of re-
sults can be combined in this monadic style.

In languages where uniqueness types are not available enforcing the use of this monadic
style of programming (via modular abstraction) is sufficient to guarantee referential
transparency provided that the library functions have been proven to satisfy this property.

2In Clean 1.1 it is required to write the function in lambda notation between parentheses.

I.5 Input and Output (Draft, 12 augustus 1997) 99

5.2.2 Nested scope style3

Another way to deal with a number of functions producing results of different type pass-
ing around an environment, is to make use of nested scopes of let before definitions
(indicated by let or #). In that style the example above can be written as follows:

readzipcode :: *File -> ((Int,Char,Char),*File)
readzipcode file
(b1,i,file) = freadi file
(b2,c1,file) = freadc file
(b3,c2,file) = freadc file
| b1 && b2 && b3 = ((i,c1,c2), file)
| otherwise = abort "readzipcode failure"

Due to the nesting of scopes of the let expressions the definition is equivalent to
readzipcode :: *File -> ((Int,Char,Char),*File)
readzipcode file
(b1,i,file1) = freadi file
(b2,c1,file2) = freadc file1
(b3,c2,file3) = freadc file2
| b1 && b2 && b3 = ((i,c1,c2), file3)
| otherwise = abort "readzipcode failure"

The second style is not recommended since many different names have to be invented for
the environment that is passed around. You have to invent all these names when you pass
the environment in ordinary local definitions after a where.

The nested scope notation can be very nice and concise but, as is always the case with
scopes, it can also be dangerous: the same name is used on different spots while the mean-
ing of the name is not always the same (one has to take the scope into account which
changes from definition to definition). However, the notation is rather safe when it is
used to thread parameters of unique type. The type system will spot it (and reject it)
when such parameters are not used in a correct single threaded manner. We certainly do
not recommend the use of let before expressions to adopt a imperative programming
style for other cases.

The scope of the variables introduces by the #-definitions is the part of the right-hand
side of the function following the #-definition. The right-hand side #-definition and the
where-definitions are excluded from this scope. The reason to exclude the right-hand of
the #-definition is obvious from the example above. When the body of the #-definition is
part of the scope the variable file would be a circular definition. The reason to exclude
the where-definitions is somewhat trickier. The scope of the where-definitions is the entire
right-hand side of the function alternative. This includes the #-definitions. This implies
that when we use the variable file in a where-definition of readzipcode it should be the
original function argument. This is counter intuitive, you expect file to be the result of
the last freadc. When you need local definitions in the one of the body of such a function
you should use let or with. See the language manual and chapter 6 for a more elaborate
discussion of the various local definitions.

5.2.3 Polymorphic Uniqueness
In fact, the types of seq, seqList, return and (`bind`) in the library are more general. The
type definitions contain polymorphic variables for the uniqueness attributes (see subsec-
tion 4.3). The types as given below are inferred by the compilers type inferencer. So, a
programmer does not have to specify them.

seq :: ![.(.s -> .s)] .s -> .s // fn-1 (..(f1 (f0 x))..)
seqList :: ![St .s .a] .s -> ([.a],.s) // fn-1 (..(f1 (f0 x))..)
(`bind`) infix 0 :: u:(St .s .a) u:(.a -> .(St .s .b)) -> u:(St .s .b)
return :: u:a -> u:(St .s u:a)

3Nested scope style makes use of let before definitions which are introduced in Clean version 1.2. So,
this style cannot be used with earlier versions.

100 Functional Programming in Clean

Furthermore, these types contain exclamation marks indicating that the function is strict
in the corresponding argument.

5.3 Some Simple Dialogs

5.3.1 A File Copy Dialog
The previous sections showed us how to write a program that changes the filesystem. The
file names however were coded directly in the program. Of course one would want to
specify such parameters in an interactive way by using a dialog. For this purpose, it must
not only be possible to fetch the filesystem out of the world but also the events that are
generated by the user of the program (keys typed in, mouse clicks) have to be accessible
and response on the screen must be given.

In Clean itself a library is written that makes it possible to address this event queue and
deal with monitor output. Similar to addressing the filesystem, the event queue can be
fetched as an abstract unique part from the world (using OpenEvents and CloseEvents).

Figure 5.2 The world encapsulating the file system and the event queue.

To deal with events the programmer defines an algebraic data structure which specifies
what kind of events are reacted upon and which event-handling function has to be applied
when the event occurs. Each event-handling function has two unique parameters: the local
state and the abstraction (called the IOState) of the states of the components (called devi-
ces) of the interaction.

Figure 5.3 The IOState and its components.

This algebraic data structure defines the abstract devices of the program. It is given as a
parameter to the library function StartIO which also takes an initial state, initial event-
handling functions to perform and the event queue taken from the world. This function
StartIO will deal with all interactions until the function QuitIO is called. It then delivers
the final state and the list of leftover events.

I.5 Input and Output (Draft, 12 augustus 1997) 101

The events handled by StartIO are all inputs of your program. Typical examples are
pressing or releasing of keys at the keyboard, mouse clicks or mouse movements in a
window, selection of items form the menu system, and timers. The events are handled in
the order of occurence in the event stream. The function StartIO will search in the device
definitions which call-back function (handler) is specified to handle this event. The call-
back function found is applied to the current program state and IO-state. The IO-state
contains all devices of the program. Using the appropriate functions these devices can be
changed by the call-back functions. The program state is determined by the propgram.
The initial program state is an argument of the application of StartIO.

All call-back functions delivers a tuple containing the new program state and new IO-
state. The function StartIO will supply these states as arguments to the call-back function
corresponding to the next event. This continues until one of the call-back functions applies
QuitIO to the IO-state. The functions StartIO delivers a tuple containing the final pro-
gram state and the unprocessed events after the evaluation of QuitIO. Events without an ap-
propriate handler are ignored.

The function StartIO also has an argument containing

In the case of the file copy program the local state can consist of just the filesystem4.
module copyfile

import StdEnv,deltaEventIO,deltaFont,deltaDialog,deltaSystem

Start :: *World -> *World
Start world = CopyFileDialogInWorld world

CopyFileDialogInWorld :: *World -> *World
CopyFileDialogInWorld world = newworld
where

(filesystem,worldwithoutfilesystem) = openfiles world
(events,emptyworld) = OpenEvents worldwithoutfilesystem
(finalstate,leftoverevents) = StartIO devicedefs initstate initialio events
finalfilesystem = finalstate
worldwithevents = CloseEvents leftoverevents emptyworld
newworld = closefiles finalfilesystem worldwithevents

devicedefs = [MenuSystem [QuitMenu]
 , DialogSystem [CopyFileDialog CopyFile]
]

initstate = filesystem
initialio = []

The device definitions define the menu and the dialogue for this program. The Clean
system takes care of drawing these menus and dialogues. The device definitions specify
what will happen when an menu item is selected, or a dialogue button is pressed.

Apart from the last three local definitions of the function above this function could be
used for just about any interactive program. In that case however, the state will usually
not just be the filesystem but also certain program dependent values will be present in the
state (e.g. the number of windows opened or the chosen settings of a game). So, for
software engineering reasons it is the best choice to define the state as a record type
containing the required values. This makes extension of the state easy since only the type
and the initialisation has to be adapted since functions that use already existing field
names do not have to be changed at all.

:: *ProgState = {files :: Files}

4Do nopt forget to import the required modules when you write interactive programs. On Unix and
Linux systems you should also link the appropriate libraries for window based programs. See the
documentation of your Clean distribution.

102 Functional Programming in Clean

CopyFileDialogInWorld :: *World -> *World
CopyFileDialogInWorld world = newworld
where

(filesystem,worldwithoutfilesystem) = openfiles world
(events,emptyworld) = OpenEvents worldwithoutfilesystem
(finalstate,leftoverevents) = StartIO devicedefs initstate initialio events
finalfilesystem = finalstate.files
worldwithevents = CloseEvents leftoverevents emptyworld
newworld = closefiles finalfilesystem worldwithevents

devicedefs = [MenuSystem [QuitMenu]
 , DialogSystem [CopyFileDialog CopyFile]
]

initstate = {files = filesystem}
initialio = []

Programming for window systems requires some knowledge of the corresponding termi-
nology (menu, pop-up menu, modal dialog, radio button, close box etc.). Such knowl-
edge is assumed to be present with the reader (as a user of such systems). However, when
it is felt appropriate, some of this terminology will be explained when it occurs in an ex-
ample.

The definition of the Quit menu is just an algebraic data structure which is built dynami-
cally using the constructors PullDownMenu and MenuItem. The definition of the type MenuDef
in the library specifies the different options that are supported by the library.

QuitMenu :: MenuDef *s (IOState *s)
QuitMenu = PullDownMenu menId "File" Able

[MenuItem qId "Quit" (Key 'Q') Able QuitFun]
where

QuitFun s io = (s,QuitIO io)
[menId,qId:_] = [0..]

Each part of the device definitions can be addressed by its Id (an integer identifying the
part of the device). Using these Id's dialogs can be closed and opened, windows can be
written, text typed in a dialog can be read, menu items can be disabled etcetera, etce-
tera. It is a recommended programming style to keep these Id's as much as possible lo-
cal. The program above uses a local list definition with a wild-card which is easily ex-
tended when more Id's are required.

The dialogue of the copy file program is depicted in figure 5.4.

Figure 5.4 The dialog result of the function CopyFileDialog.

The appearance of this dialogue is determined by function CopyFileDialog. The function
to be executed when the ok button is pressed, is passed as argument to CopyFileDialog.
The dialogue definition consists of an enumeration of its components.

CopyFileDialog :: (String String *Files -> *Files)
-> DialogDef *ProgState (IOState *ProgState)

CopyFileDialog copyfun
 = CommandDialog dlgId "File Copy" [] okId

[StaticText srcId Left ("file to read: ")
, EditText srcInputId (RightTo srcId) inputlength nrlines defaultinput
, StaticText dstId Left ("copied file name: ")
, EditText dstInputId (Below srcInputId) inputlength nrlines defaultinput
, DialogButton cancelId (Below dstId) "Cancel" Able (cancel dlgId)

I.5 Input and Output (Draft, 12 augustus 1997) 103

, DialogButton okId (RightTo cancelId) "OK" Able (ok copyfun)
]

where
inputlength = MM 50.0
nrlines = 1
defaultinput = ""

cancel id dlginfo s io = (s, CloseDialog id io)
ok fun dlginfo s io = ({s & files = newfilesys},CloseDialog dlgId io)
where

newfilesys = fun inputfilename outputfilename s.files
inputfilename = GetEditText srcInputId dlginfo
outputfilename = GetEditText dstInputId dlginfo

[dlgId,srcId,srcInputId,dstId,dstInputId,cancelId,okId:_] = [0..]

The dialog definition itself is again an algebraic data structure (of type DialogDef
*ProgState (IOState *ProgState)). The data structure is built dynamically and interpreted
by the library to create the proper reflections on the screen. Through the use of construc-
tors and id's to indicate parts of the dialog, the dialog layout can be specified (Below
dstId). The structure contains functions that are called when the corresponding button is
selected. These functions can address the contents of the dialog with the library function
GetEditText. The example above shows how currying can be very useful for such definiti-
ons (ok copyfun and cancel dlgId).

It is important to realise that the devices are specified by ordinary data structures and
functions in Clean. The IO-system is an library, not a part of the language. This implies
that the definition of the devices can be manipulated just like any other data structure in
Clean. In this way all kinds of devices can be created dynamically.

The look and feel of dialogues and other devices is dependent of the operating system
used. In this book we will usually show examples utilising an Apple Macintosh. The
Clean code can be used unchanged on other platforms where Clean is available. The
compiled program will have the appropriate look and feel for that platform.

A disadvantage of the dialog defined above is that it does not enable the user to browse
through the file system to search for the files to be copied. Using the functions from the
library module deltaFileSelect such dialogs are created in the way that is standard for
the actual machine the program will be running on.

import deltaFileSelect

FileReadDialog fun state io
| notcancel = fun name nwstate nwio
| otherwise = (nwstate,nwio)

where
nwstate = {state & files = nwfiles}
(notcancel,name,nwfiles,nwio) = SelectInputFile state.files io

FileWriteDialog fun state io
| notcancel = fun name nwstate nwio
| otherwise = (nwstate,nwio)

where
 nwstate = {state & files = nwfiles}
 (notcancel,name,nwfiles,nwio) = SelectOutputFile prompt default state.files io
 prompt = "Write output as:"
 default = "file.copy"

104 Functional Programming in Clean

Figure 5.5 A standard SelectInputFile dialog.

An important advantage of the use of a library as described above is that the same pro-
gram can run without any change on different machines while the library is such that on
each machine the resulting menus, dialogs and windows adhere to the look and feel which
is common on that machine.

Incorporation of these functions into a program is treated in one of the exercises.

5.3.2 A Function Test Dialog
Suppose you have written a function GreatFun and you want to test it with some input val-
ues. A way to do this is to use 'console' mode and introduce a start rule with as its right-
hand-side a tuple or a list of applications of the function with the different input values.

Start = map GreatFun [1..1000]

or e.g.
Start = (GreatFun 'a', GreatFun 1, GreatFun "GreatFun")

Reality learns us that in this static way of testing less variety in testing occurs compared
with dynamic interactive testing. For interactive testing, a dialog in which input-values
can be typed, will be much helpful.

The previous section has shown how to define a dialog. Here we will define a function
that takes a function as an argument and produces the IO-system with the dialog with
which the function can be tested. We want this definition to be very general. We use over-
loading to require that the input values (typed in the dialog as a String) can be converted
to the required argument of the test function.

The overloaded test dialog can be used to test a function on a structured argument (a list,
a tree, a record, ...) straightforwardly. All that is needed is to write instances of from-
String and toString for types or subtypes if they are not already available.

definition module funtest

from StdString import String
import StdEnv,deltaIO

FunctionTest :: (a -> b) a .DialogTitle .TextWidth .Int *World
-> .World | toString b & fromString, toString a

/* Apply FunctionTest e.g as a test for the sin function on reals: 0.0 is the
initial value in the inputbox.

module functiontest
import StdEnv,IOUtilities

Start world = FunctionTest sin 0.0 "sin" (MM 100.0) 5 world

instance fromString Real where fromString s = toReal s
/* needed only if it is not defined already in some library */
*/

I.5 Input and Output (Draft, 12 augustus 1997) 105

The corresponding implementation is a standard menu and dialog system that calls a
function that defines the dialog. The program requires no local state, an empty list is
given as parameter to StartIO. The program does nothing with files so there is no need to
open the file system. The menu system is similar to the file copy program. A small dif-
ference is that the name of the open command is generated by the function FunctionTest
using the parameter fname.

implementation module funtest
import StdEnv
import deltaDialog,deltaEventIO,deltaSystem
import deltaWindow,deltaControls,deltaFileSelect

FunctionTest :: (a -> b) a .DialogTitle .TextWidth .Int *World
-> .World | toString b & fromString, toString a

FunctionTest function initval fname width nrlines world
= CloseEvents leftoverevents worldwithoutevents
where

(events, worldwithoutevents) = OpenEvents world
(_, leftoverevents) = StartIO devicedefs [] [] events

devicedefs= [DialogSystem [FunDialog]
, MenuSystem [PullDownMenu DontCareId "File" Able menuitems]
]

menuitems = [MenuItem DontCareId ("Open "+++fname) (Key 'O') Able Open
 , MenuSeparator

, MenuItem DontCareId "Quit" (Key 'Q') Able Quit
]

FunDialog = functiondialog fname width nrlines dialogfunction dialoginitval
where

dialoginitval = toString initval
dialogfunction x = toString (function (fromString x))

Open s io = (s,OpenDialog FunctionDialog io)
Quit s io = (s, QuitIO io)

DontCareId :== 0

The function that defines the dialog itself (functiondialog) is defined below and used
above with String parameters and with a String -> String function. Using toString and
fromString combined with the general polymorphic function parameter (function) a func-
tion from string to string is created (dialogfunction) that is passed to the function func-
tiondialog.

The definition of the function functiondialog itself is given below. It is quite similar to
the file copy dialog. Note that the cancel function can be used in general for many kinds
of dialogs.

functiondialog :: .DialogTitle .TextWidth .Int (String -> String) String
-> .DialogDef *a (IOState *a)

functiondialog name width nrlines fun initstring
= CommandDialog dlgId name [] okId

[StaticText intextId Left (name+++" input: ")
, EditText inputId (RightTo intextId) width nrlines initstring
, StaticText outtextId Left (name+++" output: ")
, EditText outputId (Below inputId) width nrlines ""
, DialogButton cancelId Left "Cancel" Able (cancel dlgId)
, DialogButton okId (Below outputId) "OK" Able (ok fun)]

where
ok fun dlginfo s io
= (s,ChangeDialog dlgId [ChangeEditText outputId (fun input)] io)
where

input = GetEditText inputId dlginfo

[dlgId,intextId,outtextId,inputId,outputId,cancelId,okId:_]
= [inc DontCareId..]

106 Functional Programming in Clean

cancel :: .DialogId .DialogInfo *s (IOState *s) -> (*s,IOState *s)
// type is more restrictive than deduced type

cancel id dialoginfo s io = (s, CloseDialog id io)

Figure 5.6 An example of the use of the FunctionTest dialog system generator.

This completes already the full definition of a general dialog for testing polymorhic
functions with one parameter. For another number of parameters the dialog is easily
adapted. Writing a testing dialog for a function with any number of parameters is harder.
One would have to assume that the arguments are collected in some kind of structure
since the language has no facilities to distinguish at run-time between a function type re-
sult (requiring an extension of the input fields) and a non-function type result. Writing a
test dialog for such a structure of arguments (a list, a tree, a record, ...) is straightforward
again (in fact: all that is needed is to write instances of fromString and toString).

5.3.3 An Input Dialog for a Menu Function
Similarly, an input dialog for a menu function can be defined. In this case we have over-
loaded the dialog definition itself by requiring fromString to be defined on the result of
GetEditText.

inputdialog :: .DialogTitle .TextWidth
 (a -> .(MenuFunction *s (IOState *s))) *s (IOState *s)

-> (*s,IOState *s) | fromString a
inputdialog name width fun s io = (s,OpenDialog dialogdef io)
where

dialogdef
= CommandDialog dlgId name [] okId

[StaticText nameId Left (name+++": ")
,EditText inputId (RightTo nameId) width 1 ""
,DialogButton cancelId (Below inputId) "Cancel" Able (cancel dlgId)
,DialogButton okId (RightTo cancelId) "OK" Able (ok fun)]

ok fun dlginfo s io = fun input s (CloseDialog dlgId io)
where

input = fromString (GetEditText inputId dlginfo)

[dlgId,nameId,inputId,cancelId,okId:_] = [0..]

The type MenuFunction used in the type of inputdialog is defined in the library.
:: MenuFunction *s *io :== s -> *(io -> (s, io))

It is the type of a menu function like open, test sin and quit in the previous examples.

This input dialog can be used for all kinds of 'menu' functions (i.e. all functions with the
right type operating on the outermost level: not only the functions that are present in the
menus) that require a single (structured) input. The result of applying the function input-
dialog to a name, a width and a menu function is again a menu function incorporating the
extra input!

I.5 Input and Output (Draft, 12 augustus 1997) 107

5.3.4 More Generic Dialog Definitions
In this way a collection of general definitions can be made that define most of the look
and feel of an entire program. A few more examples are given below. They are self-ex-
planatory.

/*warning on function to be applied: default Cancel */
warnCancel :: a .(MenuFunction *s (IOState *s)) *s (IOState *s)

-> (*s,IOState *s) | toString a
warnCancel info fun s io
| choiceId == cancelId = (s,nio)
| otherwise = fun s nio
where

(choiceId,nio) = OpenNotice warningdef io
warningdef = Notice [toString info] (NoticeButton cancelId "Cancel")

[NoticeButton okId "OK"]
[cancelId,okId:_] = [0..]

/*warning on function to be applied: default OK */
warnOK :: a .(MenuFunction *s (IOState *s)) *s (IOState *s)

-> (*s,IOState *s) | toString a
warnOK info fun s io
| choiceId == cancelId = (s,nio)
| otherwise = fun s nio
where

(choiceId,nio) = OpenNotice warningdef io
warningdef = Notice [toString info] (NoticeButton okId "OK")

 [NoticeButton cancelId "Cancel"]
[cancelId,okId:_] = [0..]

/*message to user: continu on OK */
inform :: [String] (IOState *s) -> IOState *s
inform strings io = nwio
where

(_,nwio) = OpenNotice (Notice strings (NoticeButton DontCareId "OK") []) io

The functions above can be used to inform and warn the user of the program but also to
supply information to the programmer about arguments and (sub)structures when a spe-
cific function is called. The latter can be very helpful when debugging the program.

5.4 A simple window
Programming windows is more elaborate than programming a dialog (a dialog has more
structure so the library can deal with most of the work). Consequently, a window must
have an update function that redraws (part of) the window when required (e.g. when the
window is put in front of another window or when it is scrolled). Furthermore, a window
usually has a keyboard function and a mouse function to deal with characters typed in and
with mouse actions.

Contents

Title Zoom area

Arrow

Thumb

Scrollbar

Grow area

Go away area

Figure 5.7 Some window terminology.

108 Functional Programming in Clean

The contents of the window is composed of pixels. A pixel is a single point of the draw-
ing area. Each pixel has an unique position: a Point. A Point is a pair integers. The origin,
usually the point (0,0), is the left upper corner of the drawing. As a matter of fact it is
possible to use coordinates different from (0,0) for the left upper corner. The coordi-
nates increase to the right and down.

The window scrolls over this picture area. The Clean system takes care of scrolling
zooming and growing of the window. The actions associated mouse events, keyboard
events and with clicking in the go away area are determined by the program. You pro-
gram always works in the coordinate system of the picture. When your program draws
something in the part of the picture area that is not in the current window nothing happens.
In order to speed up drawing you can define the drawing functions such that only items
inside the current window are shown. This is only worthwhile when drawing happens to be
(too) time consuming.

The parts of the window that are currently outside the window, or are hidden beyond
some other window, are not remembered by the system. In order to restore these parts of
the picture on the screen the window is equipped with an update function. This update
function has as argument the list of rectangles to be updated, the program state and the io
state. For simple drawings it can be appropriate to redraw the entire picture as window
update. More complex drawings require a more sophisticated update function in order to
avoid time in drawing objects outside the window. This is illustrated by the function up-
datefunction in the following example.

Let us take the functions to read in a file and make a program that shows the contents of
the file in a window extended with the possibility of selecting (highlighting) a line with
the mouse and with the possibility of scrolling using keyboard arrows. This will give us a
simple program with a window definition with an update function, a keyboard function
and a mouse function.

The overall menu structure is straightforward. The state type is extended with two fields
to indicate whether a line is selected and which line is selected.

module displayfileinwindow
import StdEnv, LibExt

:: *ProgState = { select :: Bool
, selectedline :: Int
, files :: Files
}

Start world = closefiles finalfs (CloseEvents finales world``)
where

({files=finalfs},finales) = StartIO [MenuSystem Menus] initstate [] es
(es,world`) = OpenEvents world
(fs,world``) = openfiles world`

initstate = {select=False,selectedline=abort "No line selected",files=fs}

Menus = [PullDownMenu DontCareId "File" Able
[MenuItem DontCareId "Read File..." (Key 'O') Able

(FileReadDialog (Show LineListRead))
, MenuSeparator
, MenuItem DontCareId "Quit" (Key 'Q') Able Quit
]

]

Quit s io = (s, QuitIO io)

The function Show takes a file access function, opens the file, puts the new files in the state
and calls DisplayInwindow to display the result in a window.

I.5 Input and Output (Draft, 12 augustus 1997) 109

Show readfun name s io
| not readok = abort ("Could not open input file '" +++ name +++ "'")
| otherwise = ({s & files = nwfiles}, DisplayInWindow (readfun file) io)

where
(readok,file,nwfiles) = sfopen name FReadText s.files

The window definition specifies the usual attributes and passes the text (a list of strings)
to the update function as a list of lines (each represented as a list of characters).

DisplayInWindow text io = OpenWindows [windowdef] io
where

windowdef
= ScrollWindow DontCareId (0,0) "Read Result" // id,position,title
 (ScrollBar (Thumb (~whiteMargin)) (Scroll Font.width)) // horizontal
 (ScrollBar (Thumb 0) (Scroll Font.height)) // vertical
 ((~whiteMargin,0),(maxLineWidth,length lines*Font.height)) // domain
 (10,10) (640,480) // minimum size,init size
 (updatefunction lines) // window drawfunction
 [Keyboard Able getkeys // keyboard handling
 , Mouse Able getmouse // mouse handling
]

where
lines = splitby '\n' (flatten (map fromString text))

whiteMargin = 5
maxLineWidth = 1024

The units of scrolling and the size of the domain are defined using the font sizes which
are taken from the default font of the application. This font information is defined as a
global graph (i.e. evaluated at most once) for the program.

:: InfoFont = { font :: Font
, width :: Int
, height :: Int
, up :: Int
}

Font =: { font = fnt
, width = maxwidth
, height = ascent+descent+leading
, up = ascent+leading
}

where
(ascent,descent,maxwidth,leading) = FontMetrics fnt
(_,fnt) = SelectFont name styles size
(name,styles,size) = DefaultFont

The update function of a window is called automatically when (part of) the window must
be redrawn. It has the list of domains that must be redrawn as a parameter. Furthermore
it has the state as a parameter. Its result is a tuple of the state and a list of draw functions
that are to be applied on the window.

In this case the update function is defined locally within the definition of the window to
be able to use the defined constants whiteMargin and maxLineWidth directly and not as pa-
rameters. In order to keep things relatively simple the complete lines are drawn even
when part of them is outside the redraw area (this has no visible effect apart from a very
small inefficiency).

updatefunction textlines domains s=:{select,selectedline}
= (s,flatten (map update domains))

where
update domain=:((_,top),(_,bot)) // draw (again) in between top and bot
 = [EraseRectangle ((~whiteMargin,top),(maxLineWidth,bot))

: drawlines (tolinenumber top) (tolinenumber (dec bot)) textlines
]

drawlines first last textlines
 = hilite ++

[MovePenTo (0,(towindowcoordinate first) + Font.up)
: flatten (map drawline (textlines%(first,last)))
]

110 Functional Programming in Clean

where
hilite

| select
&& (selectedline >= first || selectedline <= last)

= hiliteline selectedline
| otherwise = []

drawline xs
 = [DrawString line

, MovePen (~(FontStringWidth line Font.font),Font.height)
]

where
line = toString xs

The drawing functions from the library use, of course, window co-ordinates in the win-
dow domain while each program usually has its own co-ordinates in (a part of) its state.
So, a program will usually contain transformation functions between the different sets of
co-ordinates.

In this case the program will have to transform window co-ordinates to line numbers and
vice versa.

tolinenumber windowcoordinate = windowcoordinate / Font.height

towindowcoordinate linenumber = linenumber * Font.height // top of the line

Using these transformations it is simple to write a function that highlights a line.
hiliteline linenr = [SetPenMode HiliteMode

 , FillRectangle (towindowrectangle linenr)
 , SetPenNormal

]

towindowrectangle linenumber
= ((~whiteMargin,winco), (maxLineWidth,winco + Font.height))

where
winco = towindowcoordinate linenumber

The keyboard function is called automatically when a key is hit. It has the keyboard in-
formation (is it a keydown?, which key?, with maybe an extra so-called meta-key or mo-
difier such as shift, alt/option, command or control down?) as a parameter and of course
the state and the iostate. Its result is a tuple of state and iostate.

In this case the action performed is calling ChangeActiveScrollBar which in its turn will
cause a call of the window update function again.

getkeys (kcode,kstate,modifs=:(shift,opt,comm,contr)) s io
| IsKeyUp kstate = (s,io)
| key == LeftKey = horscroll (horthumb - Font.width) s io1
| key == RightKey = horscroll (horthumb + Font.width) s io1
| key == UpKey = verscroll (verthumb - Font.height) s io1
| key == DownKey = verscroll (verthumb + Font.height) s io1
| key == PgUpKey = verscroll (verthumb - pagesize) s io1
| key == PgDownKey = verscroll (verthumb + pagesize) s io1
| otherwise = (s,io)

where
key = toChar kcode
pagesize = verdown - verthumb
(((horthumb,verthumb),(_,verdown)),io1)

= ActiveWindowGetFrame io
horscroll newvalue = ChangeActiveScrollBar (ChangeHThumb newvalue)
verscroll newvalue = ChangeActiveScrollBar (ChangeVThumb newvalue)

IsKeyUp KeyUp = True
IsKeyUp keystate = False

The mouse function is called when a mouse action is performed. It has as its parameter
the mouse information (position, no/single/double/triple/long click, modifier keys
down) and of course the state and the iostate. Its result is a tuple of state and iostate.

I.5 Input and Output (Draft, 12 augustus 1997) 111

In this case the mouse function changes the selected line, highlights the new selection and
de-highlights the old one (by highlighting it again).

getmouse ((_,y),ButtonDoubleDown,_) s=:{select,selectedline=oldselection} io
= ({s & select = True,selectedline = selection}

, DrawInActiveWindow (changeselection oldselection selection) io
)

where
selection = tolinenumber y

changeselection old new
| select = hiliteline old ++ hiliteline new
| otherwise = hiliteline new

getmouse _ s io = (s,io)

Figure 5.8 A view of the display file program when it has read in its own source.

5.5 Timers
Apart from reacting on user events by defining dialog systems or window systems as de-
vices it is also possible to define timer devices with call-back functions (on state and io-
state) that are called for timer events that are created by the system when a specified
time has passed.

This can be used to show information on a regular basis or to change it e.g. in a shoot-
them-up game. Another way of using a timer is to create some kind of background beha-
viour such as an autosave facility in an editor wich saves the edited file on a regular basis.

Adding a timer system is very similar to adding a dialog system: a timer device is ad-
ded in the list of devices that is given to StartIO.

… StartIO [MenuSystem Menus,TimerSystem Timers] initstate [] events …

Such a timer device can contain a number of timers each with their own Id, interval and
call-back function to be executed when the timer event occurs. In order to enable or dis-
able a timer its Id must be known. Below a definition is given of a single timer which
saves the displayed file in a copy every five minutes.

Timers = [Timer TimerId Unable TimerInterval Timerfunction]
where

TimerInterval = 300 * TicksPerSecond // 300 seconds = 5 minutes

TimerId = 1

Timerfunction nrofintervalspassed state=:{name,lines} io
= ({state & files = finalfiles},io)

where // nochecks on failure
(_,finalfiles) = fclose newfile nwfiles

112 Functional Programming in Clean

newfile = LineListWrite lines file
(_,file,nwfiles) = fopen (name+++".copy") FWriteText state.files

Such a timer could be used for an autosave function that toggles the menu item title and
function changing it from enabling to disabling and vice-versa.

…
MenuItem AutoSaveId "Enable AutoSave" (Key 'S') Able AutoSave,
…

AutoSaveId = 1

AutoSave s io
= (s,seq [EnableTimer TimerId

 , ChangeMenuItemFunctions [(AutoSaveId,NoAutoSave)]
 , ChangeMenuItemTitles [(AutoSaveId,"Disable AutoSave")]
] io)

NoAutoSave s io
= (s,seq [ChangeMenuItemTitles [(AutoSaveId,"Enable AutoSave")]

 , ChangeMenuItemFunctions [(AutoSaveId,AutoSave)]
 , DisableTimer TimerId
] io)

Note that many of the program changes required for exercise 5.5 are also required for
this auto-save function.

5.6 A line drawing program
In order to show how all pieces introduced above fit together we will show a complete
window based program. The program is a simple line drawing tool. It is not intended as
a complete drawing program, but to illustrate the structure of such programs. To limit
the size of the program we have restricted ourselves to the basic possibilities. As a conse-
quence there are a lot of desirable possibilities of a drawing program that are missing.
Adding these features does not requires new techniques.

On the side of devices handled, the program is rather complete. It contains, of course, a
window to make drawings. It uses the mouse to create and change lines. The drawing can
be stored and retrieved from a file. There is a timer to remind the user to save the pic-
ture. Dialogues are used for a help function and the standard about dialogue. Finally there
is a handler for input from the keyboard.

The program is called Linedraw. It starts by importing a long list of needed modules.
The name of the modules indicates their function. These modules contain the type defi-
nitions and functions used to manipulate the io-system and all devices. You are encour-
aged to read the .dcl files whenever appropriate. These files determines the allowed con-
structs and contain useful comments about the used and semantics of these constructs.

module Linedraw

import StdEnv, deltaFileSelect, deltaDialog, deltaSystem, deltaTimer
import deltaEventIO, deltaIOSystem, deltaPicture, deltaWindow, deltaMenu

Since this programs handles drawing inside a window we will use window co-ordinates.
The origin is the left upper corner and a point is indicated by a pair of integers. We use
the following type synonyms from the module Picture. The type Picture itself is an
unique abstract data type.

:: Point :== (!Int, !Int);
:: Line :== (!Point, !Point);

:: DrawFunction :== Picture -> Picture;

As a first step the important data types of the program are defined. The type synonym IO
is used as a handy name to indicate the unique state of the IO system. The state of the
program is a record to enable extensions. The state contains the lines of the drawing.
Since this is a pure line drawing tool, a list of lines is all there is for the drawing. The

I.5 Input and Output (Draft, 12 augustus 1997) 113

file system is needed to store and retrieve drawings from file. Finally, the program state
contains the name of the last file used, this is the default when we save the drawing again.

:: * IO :== IOState ProgState
:: * ProgState = { lines :: [Line] // The drawing

, fsys :: *Files // The file system
, fname :: String // Name of file to store drawing

 }

We will describe the program top down. This implies that we begin with the Start rule.
The first part of this rule is fairly standard. The only difference with the earlier exam-
ples is that we use #-notation instead of local definitions after the where for environment
passing. The initial program state, InitState, is define using a with, since it contains the
file system, fsys, which is out of scope in the where definitions. The definition of the
menus system and the window is completely standard. We discuss the dialogue and the
timer below.

Start :: * World -> * World
Start world
 # (events, world) = OpenEvents world
 # (fsys,world) = openfiles world
 # (s, events) = StartIO [menus, window, dialog, timer] InitState [] events

with InitState = {lines = [], fsys = fsys, fname = ""}
 = CloseEvents events (closefiles s.fsys world)
where

menus = MenuSystem [file,edit]
file = PullDownMenu DoNotCareId "File" Able

[MenuItem DoNotCareId "Open" (Key 'O') Able Open
, MenuItem DoNotCareId "Save" (Key 'S') Able Save
, MenuSeparator
, MenuItem DoNotCareId "Quit" (Key 'Q') Able Quit
]

edit = PullDownMenu DoNotCareId "Edit" Able
[MenuItem DoNotCareId "Remove Line" (Key 'R') Able Remove
, MenuSeparator
, MenuItem DoNotCareId "Help" (Key 'H') Able Help
]

window = WindowSystem
[ScrollWindow

WId (0,0) "Picture" // Window Id, Pos, Title
(ScrollBar (Thumb 0) (Scroll 10)) // Horizontal scroll bar
(ScrollBar (Thumb 0) (Scroll 10)) // Vertical scroll bar
PictDomain // Picture domain
MinWindowSize // Minimum window size
InitWindowSize // Initial window size
(_ ps=:{lines} -> (ps,draw lines)) // Window update
[Mouse Able MouseWait // Window attribute list
, GoAway Quit
, Keyboard Able HandleKey
]

]
dialog = DialogSystem

[AboutDialog "Linedraw" ((0, 0), (160, 25))
[MovePenTo (10, 10), DrawString "A line drawing tool"]
(AboutHelp "Help" Help)

]
timer = TimerSystem [Timer TId Unable time remaindSave]

During the development of such a program you can begin with a less elaborated user in-
terface. In fact during the development of this example we started without dialogue sys-
tem and timers.

It is convenient to construct programs in an incremental way. We begin with a very sim-
ple version of the program and add extensions one by one. The program is compiled and
tested before each subsequent addition. For window based programs we can omit a part
of the menu structure or use a no-operation for the menu functions: \ s io -> (s,io). Also
the window update function can be a no-operation in the first approximations of your

114 Functional Programming in Clean

program. The mouse handler and keyboard handler of the window can be omitted in the
beginning, or we can again use a no-operation.

The definition of the Start rule above contains a special purpose about dialogue. This di-
alogue is intended to give some information about the program. On the Macintosh it
will become the first item in the -menu. Its definition differs slightly from the dia-
logues we have seen above. In fact the about dialogue is treated almost as an ordinary
simple window. The difference with a window is that the Clean system will generate an
OK-button and, if you indicate so, an Help-button. The structure of the dialogue
definition and the allowed constructs are determined by the type definition in
deltaDialog. The specified about dialogue looks like:

Figure 5.9 The about dialogue of the line drawing tool.

Further more the current Start rule determines that there is a timer. This timer will be
used to remind the user of the drawing tool to save his work. Initially the timer is dis-
abled. It will be enabled as soon as the something is changed to the drawing.

The first menu function that we implement is the function Quit. This enables us to leave
the test versions of our program in a descent way. Fortunately the implementation is very
simple, we simply quit the io system. This causes that the function StartIO yield the tu-
ple (s,events). The Start rule will close the events and the file system. The program is
finished when this is done.

Quit :: ProgState IO -> (ProgState,IO)
Quit state io = (state, QuitIO io)

Next we went immediately to the difficult part of the program: mouse handling. This is
generally a good strategy: do the difficult and interesting parts of the program first. The
simple details that makes your program complete can be added later. The difficult part
determines most likely the success of the program under construction. There is no excuse
to spent time on simple work on a program that still risks to be changed fundamentally.

The first thing that needs to be done with the mouse is drawing lines. A line starts at the
point where the mouse button is pushed and ends where the mouse button is released.
While the mouse button is pushed the line under construction is drawn like a rubber band.

The mouse state which is argument of the mouse handler contains the current position of
the mouse. We need to remember the start point of the line. The previous end point of the
line is needed in order to erase the version of the line drawn. These points can be stored
in the program state. We have chosen to pass them as arguments to a new mouse handler
function. A more sophisticated version of the function MouseWait will be introduced very
soon. We will need similar changes of the IO-state later, so we use the function startDraw
to perform the desired changes of the IO-state. startDraw first disables the timer since
we does not want the question whether the user wants that the save remainders interferes
with drawing of a line. Next the pen is switched to XorMode. This is convenient for rubber
band drawing. Drawing some object twice in XorMode restores the original picture. The
initial version of the line is drawn, and the appropriate mouse handler is installed.

MouseWait :: MouseState ProgState IO -> (ProgState, IO)
MouseWait (pos,ButtonDown,_) state io = (state,startDraw [] pos pos io)
MouseWait _ state io = (state,io)

startDraw :: [DrawFunction] Point Point IO -> IO
startDraw fs s e io

I.5 Input and Output (Draft, 12 augustus 1997) 115

 = ChangeMouseFunction WId (MouseDraw s e)
((DrawInWindow WId (fs++[SetPenMode XorMode,DrawLine (s,e)])) (timerOff io))

The function MouseDraw takes care of drawing a line. If the mouse event is a ButtonUp the
line is completed. The line is added to the state, the temporarily line is removed by
drawing it again, the final line is drawn with the normal pen and the timer is enabled.
For other mouse events we check whether the mouse is moved (y == z). If the mouse is not
moved we are done. If it is moved we erase the old line by drawing it again, and draw
the newline. The pen remains is XorMode.

MouseDraw :: Point Point MouseState ProgState IO -> (ProgState, IO)
MouseDraw x y (z,ButtonUp,_) state=:{lines} io
 = ({state & lines = [(x,z):lines]}
 ,timerOn (ChangeActiveMouseFunction MouseWait

(DrawInActiveWindow [DrawLine (x,y),SetPenNormal,DrawLine (x,z)] io))
)
MouseDraw x y (z,_,_) state io
 | y == z = (state,io)

 = (state
,ChangeActiveMouseFunction (MouseDraw x z)

(DrawInActiveWindow [DrawLine (x,y),DrawLine (x,z)] io)
)

With these functions you can compile your program again and draw some lines. You will
soon discover that it is desirable to change the drawing. A very simple way to change the
picture is by removing the last line drawn. This is accomplished by the menu function
Remove. If there are lines overlapping with the line to be removed, it is not sufficient to
erase that line. This would create holes in the overlapping lines. We simply erase the en-
tire picture and draw all remaining lines again. With a some more programming effort
the amount of drawing can be reduced, but there is currently no reason to spent this effort.
Removing a line changes the picture so we make sure the timer is switched on. If the list
of lines is empty, there is no line to be removed. We make the computer beep in order to
indicate this error.

Remove :: ProgState IO -> (ProgState,IO)
Remove state=:{lines} io
 | isEmpty lines = (state,Beep io)

 = ({state & lines = lines`}
 , timerOn (DrawInWindow WId (draw lines`) io))

where lines` = tl lines

draw :: [Line] -> [DrawFunction]
draw ls = [EraseRectangle PictDomain,SetPenNormal:[DrawLine l \\ l <- ls]]

An other way to change the picture is by editing an existing line. If the user presses the
mouse button with the shift key down very close to one of the ends of the line, that line
can be changed. We use very close to the end of a line instead of at the end of a line since
it appears to be difficult to position the mouse exactly at the end of the line.

We change the function MouseWait. First we check whether the shift key is pressed. If it is,
we try to find a line end touched by the mouse. If such a line is found, we remove it from
the state, and start drawing the line with the previous version as initial version. If no line
is touched the program ignores this mouse event. If the shift key is not pressed, we pro-
ceed as in the previous version of the function MouseWait.

The function touch determines whether or not a point is very close to the end of a one of
the given lines. Instead of yielding a Boolean, this function uses the type Option. In case of
success the type Option also holds the value of the success. Here the success is the line
touched and the list of all other lines. The type Option can be used often.

MouseWait :: MouseState ProgState IO -> (ProgState, IO)
MouseWait (pos,ButtonDown,(shift,_,_,_)) state=:{lines} io
 | shift = case touch pos lines of
 Yes ((s,e),ls) -> ({state & lines = ls}, startDraw (draw ls) s e io)
 No -> (state, io)

116 Functional Programming in Clean

 = (state,startDraw [] pos pos io)
MouseWait _ state io = (state,io)

:: Option x = Yes x | No

touch :: Point [Line] -> Option (Line,[Line])
touch p [] = No
touch p [l=:(s,e):r]

| closeTo p s = Yes ((e,s),r)
| closeTo p e = Yes (l,r)

 = case touch p r of
 Yes (t,x) -> Yes (t,[l:x])
 no -> no

where closeTo (a,b) (x,y) = (a-x)^2 + (b-y)^2 <= 10

Next we want to be able to store the drawing in a file and read it back. Each line is rep-
resented by its end points. Each of these points consists of two integers. A line is stored
as four integers in a data file. We use the dialogue from deltaFileSelect to determine the
name of the output file.

Save :: ProgState IO -> (ProgState,IO)
Save ps=:{fsys,fname} io
 # (ok,fn,fsys,io) = SelectOutputFile "Save as" fname fsys (timerOff io)
 | not ok = ({ps & fsys = fsys},timerOn io)
 # (ok,file,fsys) = fopen fn FWriteData fsys
 | not ok = ({ps&fsys=fsys},inform ["Cannot open file"] (timerOn io))
 # file = seq (flatten [map fwritei [a,b,x,y]

\\ ((a,b),(x,y)) <- ps.lines]) file
 # (ok,fsys) = fclose file fsys
 | not ok = ({ps&fsys=fsys},inform ["Cannot close file"] (timerOn io))
 = ({ps & fsys = fsys, fname = fn},resetTimer io)

We used the following function to generate a simple dialogue, called notice, when there
is something wrong with opening or closing the file.

inform :: [String] (IOState *s) -> IOState *s
inform m io = snd (OpenNotice (Notice m (NoticeButton DoNotCareId "OK") []) io)

Opening and reading lines from a file is very similar. We open the file as a unique file in
order to allow reuse. In this way the user can read a drawing from a file, change it and
save it again in the same file. Each sequence of four integers found in the file is inter-
preted as a line. We do not do any checks on the format of the file. This implies that al-
most any data file can be interpreted as a drawing. For such a simple program this is suf-
ficient.

Open :: ProgState IO -> (ProgState,IO)
Open ps=:{fsys} io
 # (ok,fn,fsys,io) = SelectInputFile fsys (timerOff io)
 | not ok = ({ps & fsys = fsys},timerOn io)
 # (ok,file,fsys) = fopen fn FReadData fsys // *File to allow reuse
 | not ok = ({ps&fsys=fsys},inform ["Cannot open file"] (timerOn io))
 # (ints,file) = readInts file
 # (ok,fsys) = fclose file fsys
 | not ok = ({ps&fsys=fsys},inform ["Cannot close file"] (timerOn io))
 = ({ps & fsys = fsys, fname = fn, lines = lines}

,DrawInWindow WId (draw lines) (resetTimer io)
)
with lines = toLines ints

toLines :: [Int] -> [Line]
toLines [a,b,x,y:r] = [((a,b),(x,y)):toLines r]
toLines _ = []

readInts :: *File -> ([Int],*File)
readInts file

(end,file) = fend file
| end = ([],file)
(ok,i,file) = freadi file
| not ok = ([],file)

I.5 Input and Output (Draft, 12 augustus 1997) 117

(is,file) = readInts file
= ([i:is],file)

As a next step we add the keyboard handler to the window of our drawing program. The
arrow keys scroll the window and the back space key is equivalent to the menu item re-
move. KeyUp events are ignored by the first alternative, this implies that the handler reacts
on KeyDown and KeyStillDown events. In order to do this we first collect some information
of the window using ActiveWindowGetFrame. Then we do a case analysis of the key.
Scrolling is done using the functions from deltaWindow. If the key is not recognised the
computer will Beep as a slight error indicator.

HandleKey (_,KeyUp,_) s io = (s,io)
HandleKey (kcode,_,_) s=:{lines} io
 # (((htumb,vtumb),_),io) = ActiveWindowGetFrame io
 = case toChar kcode of

LeftKey -> ChangeActiveScrollBar (ChangeHThumb (htumb-10)) s io
RightKey -> ChangeActiveScrollBar (ChangeHThumb (htumb+10)) s io
UpKey -> ChangeActiveScrollBar (ChangeVThumb (vtumb-10)) s io
DownKey -> ChangeActiveScrollBar (ChangeVThumb (vtumb+10)) s io
BackSpKey -> Remove s io
_ -> (s, Beep io)

The function Help just shows a notice containing a few lines of text containing some in-
formation about using this program.

Help :: ProgState IO -> (ProgState,IO)
Help s io = (s,inform helptext io)

helptext :== ["Hold down shift to move end points of line"
 ,"Arrow keys scroll window"
 ,"Backspace deletes last line"
]

The last devices added is the times. After a predefined of time after the first change of
the drawing a notice is shown to the user. This notice reminds the user to save his work.
There are two buttons in the notice. The button Save now calls the function Save. The
other button resets and enables the timer. Since the functions to manipulate the timer are
not recursive and does not do any pattern matching, we use macro's.

resetTimer io :== timerOff (SetTimerInterval TId time io)
timerOn io :== EnableTimer TId io
timerOff io :== DisableTimer TId io

remaindSave :: TimerState ProgState IO -> (ProgState,IO)
remaindSave _ s io
 # (button,io) = OpenNotice (Notice ["Save now?"] (NoticeButton lid "Later")
 [NoticeButton sid "Save now"])
 (DisableTimer TId io)
 | button==sid = Save s (resetTimer io)

 = (s,timerOn (resetTimer io))
where [lid,sid:_] = [0..]

Finally, there is an instance of + for strings used above and some constants. The first three
constants determines properties of the drawing window. The value time determines the
time interval between save remainders. Finally there are some id's for windows, timers
and menu(item)s.

instance + {#Char} // + for String
where (+) s t = s +++ t

PictDomain :== ((0,0), (1000,1000))
MinWindowSize :== (50,50)
InitWindowSize :== (500,300)
time :== 5*60*TicksPerSecond // Time between save remainders
DoNotCareId :== 0
WId :== 1
TId :== 2

This completes our line drawing example. It demonstrates how all parts introduced
above can be put together in order to create a complete program. It is tempting to add

118 Functional Programming in Clean

features to the program in order to make it a better drawing tool. For instance to switch
on and off the save remainder and set its time interval. An option to set the thickness
would be nice, as well as circles rectangles etcetera etcetera. Adding these things requires
no new techniques. In order to limit the size of the example we leave it to the user to
make these enhancements. Chapter II.4 discusses a more sophisticated drawing tool.

5.7 Exercises
5.1 Write a program that applies a given transformation function from character lists to character lists

on a given file. Structure the program such that the transformation function can be provided as an
argument. Test the program with a function that transforms normal characters into capitals and
with a function that collects lines, sorts them and concatenates them again to a character list.

5.2 Combine the FileReadDialog and FileWriteDialog functions into a complete copyfile program
which copies files repeatedly as indicated in a dialog by the user.

5.3 Adapt the program you made for exercise 5.1 such that it transforms files as indicated in a dialog
by the user.

5.4 Adapt the display file program such that the user can save the viewed file with a SelectOutput-
File dialog. Use (possibly a variant of) the function FileWriteDialog. In order to assure that
saving is done instantly instead of lazily the Files component of the ProgState can be made
strict by prefixing Files in the type definition of ProgState with an exclamation mark. Add the
text as a field in the state record. It may also prove to be useful to add the name of the file and the
file itself to this state. In order to allow the user to overwrite the displayed file the program will
have to be changed to used fopen for displaying instead of sfopen since a file opened with sf-
open can be neither updated nor closed.

5.5 Adapt the program you made for exercise 5.3 such that it shows the result of a transformation of a
file in a window such that the user can browse through it before saving it.

5.6 Include in the program of exercise 5.5 a menu function opening a dialog with RadioItems such
that the user can select the transformation to be applied.

5.7 Adapt the display file program such that the user can choose with a ScrollingList the font
which is used to display the file.

5.8 Include in the program of exercise 5.6 a timer that scrolls to the next page automatically after a pe-
riod of time which can be set by the user via an input dialog.

5.9 Extend an existing program using the function GetCurrentTime and a timer to display the time
in hours and minutes every minute. Choose your own way to display the time: in words or as a
nice picture using the draw functions from the I/O module deltaPicture.

5.10 (Large exercise) Extend the display file program with editing capabilities by extending the key-
board and mouse functions. Incorporate the results of exercises 5.5, 5.7 and 5.8 and extend it into
your own window-based editor.

5.11 Change the line drawing program such that only horizontal and vertical lines can be drawn if the
shift key is pressed during drawing. The line draw should be the 'best fit' of the line connecting
the stating point and the current mouse position.

5.12 Extend the line drawing program such that the thickness of lines can be chosen from a sub-menu.

