
Part I
Chapter 4
The Power of Types

4 . 1 Type classes
4 . 2 Existent ia l types

4 . 3 Uniqueness types
4 . 4 Exerc ises

Clean is a strongly typed language. This means that every expression in the language has a
type and that type correctness can be verified before the program is executed. Types are
deduced and checked by the compiler. Ill-typed programs are not accepted. Many errors
can be found and reported at compile time thanks to the checks performed type system.

Type systems can also be used to increase the expressive power of a language. In this
chapter a number of language features which are related to the type system are explained.
First we will explain the overloading mechanism of Clean which makes it possible to use
the same function name for different functions performing similar kind of actions. It can
be used to write (parts of) programs in such a way that the actual data structures being
used can be chosen in a later state of the design (section 4.1). Then we explain how one
can store objects of different types into a recursive data structure like a list using existen-
tially quantified data types. In this way an object oriented style of programming can be
achieved (section 4.2). Finally we treat an important feature of Clean: the uniqueness type
system (section 4.3). It makes it possible to destructively update data structures like ar-
rays and files without violating the pure functional semantics of the language.

4.1 Type Classes
In the previous chapters we have seen the type rules for functions and applied these rules in
the functions shown. A summary of the type rules is:
• each function argument should be used with the same type at any occurrence in the

function body;
• the type of the function should be an instance of the type of each function alternative;
• the type of all function bodies within an alternative should be an instance of the type

of the function alternative, and hence an instance of the type of the function;
• the number of arguments op the function should be equal to the number of arguments

of the type.
When the programmer specifies a type for a function it should be consistent with these
rules. An instance of a type t is obtained by replacing variables in the type t by other
types. A function is called polymorph when there occur type variables in its type. This
indicates that the function can be applied to arguments of many different types. When
there are no restrictions on the type variable the function can even be applied to arguments
of any type. Some well-known examples of polymorphic typed functions are:

id :: t -> t
id x = x

72 Functional Programming in Clean

hd :: [t] -> t
hd [x:_] = x

if :: Bool t t -> t
if c t e | c = t
 = e

In the functions id, hd and if any type can be used for t.

4.1.1 Overloading
A polymorphic function is defined over a range of types, acting in the same way for each
concrete type. Another mechanism which allows functions to be applied with different
concrete types is called overloading or ad-hoc polymorphism. Overloading occurs when a
set of functions is defined. Each of these functions has a different type, but all function in
this class have the same name. So, one (overloaded) function name (e.g. +) is associated
with different operations (Int addition, Real addition, etcetera).

Usually it is considered an error when different functions have the same name. However,
when a number of functions perform similar actions to different data types, it can be
convenient to given them all the same name. The definition of an overloaded function
consists of two parts:

• the signature of the overloaded function, i.e. a name and type specification;

• a collection of (type dependent) concrete realizations; the so called instances.

For reasons of flexibility, most programming languages allow those parts to be specified
separately. In Clean, a signature is introduced by a class declaration. This class declaration
tells the Clean system that it is possible that there occur a number of functions with the
given name. In order to guarantee that these functions are sufficient similar, the type of
these functions should be an instance of the type given in the signature. Examples of such
signatures are the following (pre-defined) class declarations introducing some common
overloaded operators.

class (+) infixl 6 a :: !a !a -> a
class (-) infixl 6 a :: !a !a -> a
class zero a :: a

class (*) infixl 7 a :: !a !a -> a
class (/) infix 7 a :: !a !a -> a
class one a :: a

class (==) infix 2 a :: !a !a -> Bool
class (<) infix 2 a :: !a !a -> Bool

In each class declaration, one of the type variables appearing in the signature is denoted
explicitly. This, so called class variable is used to relate the type of an overloaded opera-
tor to all the types of its instances. The latter are introduced by instance declarations. An
instance declaration associates a function body with a concrete instance type. The type of
this function is determined by substituting the instance type for the class variable in the
corresponding signature. For example, we can define an instance of the overloaded opera-
tor + for strings, as follows.

instance + String
where (+) s1 s2 = s1 +++ s2

By substituting String for a in the signature of + one obtains the type for the newly defi-
ned operator, to wit !String !String -> String. In Clean it is permitted to specify the
type of an instance explicitly, provided that this specified type is exactly the same as the
type obtained via the above-mentioned substitution. Among other things, this means that
the following instance declaration is valid.

I.4 The Power of Types (Draft, 12 augustus 1997) 73

instance + String
where (+) :: !String !String -> String

(+) s1 s2 = s1 +++ s2

It is also possible to define instances of functions for polymorphic data types. In chapter
I.3.1 we have shown the definition of the operators == and < for lists. Some other
examples are:

instance + (x,y) | + x & + y
where (+) (a,b) (x,y) = (a+x,b+y)

instance == (x,y) | == x & == y
where (==) (a,b) (x,y) = a == x && b == y

In fact, a large number of these operators and instances for the basic types and data types
are defined in StdEnv. In order to limit the size of the standard library only those
operations that are considered the most useful are defined. It might happen that you have
to define some instances of standard functions and operators yourself.

Observe that, what we have called an overloaded function is not a real function in the
usual sense: An overloaded function actually stands for a whole family of functions. If an
overloaded function is applied in a certain context, the type system determines (if possi-
ble) which concrete instance has been used. For instance, if we define

increment n = n + 1

it is clear that the Int addition is meant leading to a substitution of this Int version for +.
However, it is often impossible to derive the concrete version of an overloaded function
from the context in which it is applied. Consider the following definition:

double n = n + n

Now, one cannot determine which instance of + is meant. In fact, the function double be-
comes overloaded itself, which is reflected in its type:

double :: a -> a | + a

The type context + a indicates the restriction that double is defined only on those objects
that can be handled by a +. In general, a type context of the form C a, restricts instantia-
tion of a to types for which an instance declaration of C exists. If a type context for a con-
tains several class applications, it assumed that a is chosen from the instances types all
these classes have in common.

One can, of course, use a more specific type for the function double. E.g.
double :: Int -> Int
double n = n + n

Obviously, double is not overloaded anymore: due to the additional type information,
the instance of + to be used can now be determined.

Type contexts can become quite complex if several different overloaded functions are
used in a function body. Consider, for example, the function determinant for solving qua-
dratic equations.

determinant a b c = b * b - (fromInt 4) * a * c

The type of determinant is
determinant :: a a a -> a | *, -, fromInt a

To enlarge readability, it is possible to associate a new (class) name with a set of exist-
ing overloaded functions. E.g.

class Determinant a | *, -, fromInt a

The class Determinant consists of the overloaded functions *, - and fromInt. Using the new
class in the type of determinant leads to:

determinant :: a a a -> a | Determinant a.

Notice the difference between the function determinant and the class Determinant. The
class Determinant is just a shorthand notation for a set of type restriction. The name of
such a type class should start with an uppercase symbol. The function determinant is just a

74 Functional Programming in Clean

function using the class Determinant as a compact way to define some restrictions on its
type. As far as the Clean system is concerned it is a matter of coincidence that you find
these names so similar.

Suppose C1 is a new class, containing the class C2. Then C2 forms a so called subclass of C1.
‘Being a subclass of’ is a transitive relation on classes: if C1 on its turn is a subclass of C3
then also C2 is also a subclass of C3.

A class definition can also contain new overloaded functions, the so-called members o f
the class. For example, the class PlusMin can be defined as follows (assuming that +, - and
zero are defined elsewhere).

class PlusMin a
where (+) infixl 6 :: !a !a -> a

(-) infixl 6 :: !a !a -> a
zero :: a

To instantiate PlusMin one has to specify an instance for each of its members. For exam-
ple, an instance of PlusMin for Char might look as follows.

instance PlusMin Char
where (+) x y = toChar ((toInt x) + (toInt y))

(-) x y = toChar ((toInt x) - (toInt y))
zero = toChar 0

Some of the readers will have noticed that the definition of an overloaded function is es-
sentially the same as the definition of a class consisting of a single member. Indeed, clas-
ses and overloaded operators are one and the same concept. Since operators are just
functions with two arguments, you can use operators in type classes in the same way as
ordinary functions.

A class defines in fact a family of functions with the same name. The difference between
the functions is the type of the arguments. For an polymorph function one and the same
definition is used for all argument types. For an overloaded function (a class member) a
separate function is used for each type of instance defined. In order to guarantee that only
a single instance is defined for each type, it is not allowed to define instances for type
synonyms. The selection of the instance of the overloaded function to be applied is done
by the Clean system based on type information. Whenever possible this selection is done
at compile-time. In some (rare) circumstances it is not possible to do this selection at
compile-time. In those circumstances the selection is done at run-time.

In Clean, the general form of a class definition is a combination of the variants discussed
so far: A new class consists of a collection of existing classes extended with a set of new
members. Besides that, such a class will appear in a type context of any function that uses
one or more of its members, of which the actual instance could not be determined. For
instance, if the PlusMin class is used (instead of the separate classes +, - and zero), the ty-
pes of double and determinant can be specified as:

double :: a -> a | PlusMin a
determinant :: a a a -> a | *, PlusMin, fromInt a

The Clean system itself is able to derive this kind of types with class restrictions.

The class PlusMin is defined in the standard environment (StdClass) is slightly different
from the definition shown in this section. The definition is the standard environment is:

class PlusMin a | + , - , zero a

When you use the class PlusMin there is no difference between both definitions. However,
when you define a new instance of the class you hav to be aware of the actual definition of
the class. When the class contains members, you create an instance of the class as shown
here. For a class that is defined by a class context, as PlusMin from StdClass, you define
an instance by defining instances for all classes listed in the context. In the next section
we show an example of the definition of an instance of this class.

I.4 The Power of Types (Draft, 12 augustus 1997) 75

4.1.2 A class for Rational Numbers
In chapter I.3 we introduced a type Q for representing rational numbers. These numerals
are records consisting of a numerator and a denominator field, both of type Int:

:: Q = { num :: Int
, den :: Int
}

We define the usual arithmetical operations on Q as instances of the corresponding type
classes. For example,

instance + Q
where (+) :: !Q !Q -> Q

(+) x y = mkQ (x.num * y.den + x.den * y.num) (x.den * y.den)

instance - Q
where (-) x y = mkQ (x.num * y.den - x.den * y.num) (x.den * y.den)

instance fromInt Q
where fromInt i = mkQ i 1

instance zero Q
where zero = fromInt 0

Using:
mkQ :: x x -> Q | toInt x
mkQ n d = simplify {num = toInt n, den = toInt d}

simplify :: Q -> Q
simplify {num=n,den=d}

| d == 0 = abort "denominator of Q is 0!"
| d < 0 = {num = ~n / g, den = ~d / g}
| otherwise = {num = n / g, den = d / g}

where g = gcd n d

At first sight, it seems as if the definition of, for example, the instance for + is recursive,
for, an application of + also appears in the body of this instance. However, from its con-
text, it immediately follows that the actual operation that is meant is the + for values of
type Int.

When a new data type is introduced, it is often convenient if a string representation of this
data type is available. Amongst other things, this representation can be used for printing a
concrete value of that type on the screen. For this purpose, we introduce the class toString:

class toString a :: !a -> String

The corresponding instance of toString for Q might look as follows.
instance toString Q
where toString q

| sq.den==1 = toString sq.num
| otherwise = toString sq.num +++ "/" +++ toString sq.den

 where
sq = simplify q

The execution of the program
Start :: String
Start = toString sum
where sum :: Q

sum = zero + zero

results in the string "0".

It seems as if it makes no difference if we would write
Start = toString (zero + zero)

However, in this situation it is not possible to determine the used instances of zero, + and
toString uniquely, i.e. there are several concrete instances that can be applied. The prob-
lem is that the expression toString (zero + zero) is internally overloaded: the overloading

76 Functional Programming in Clean

is not reflected by its result type (which is simply String). Such an expression will cause
the compiler to generate the error message:

Type error [...]: "zero" (internal) overloading is insolvable

When it is known which instance of, for example, zero should be used, one can deduce the
concrete instances of + and toString. Internal overloading can always be solved by intro-
ducing auxiliary local definitions that are typed explicitly (like the sum function in the
above example).

Another way to solve the ambiguity is to indicate one of the instancesof the class as the
default instance. In all situations where the overloading cannot be resolved, this default
instance will be used. For instance, we can define the instance of type Q the default for the
class zero by writing:

instance zero Q default
where zero = mkQ 0 1

Now it is allowed to write
Start = toString (zero + zero)

The context still does not determine which zero is used here, but now the Clean system
picks the default one: the zero of type Q.1

By defining an instance of class Enum for the type Q it is even possible to generate list of
rational numbers using dotdot expressions. Apart form the functions +, -, zero and one,
the class Enum contains the ordering operator <. A suited instance declaration of < for Q is

instance < Q
where (<) x y = x.num * y.den < x.den * y.num

A program like
Start :: [String]
Start = [toString q \\ q <- [zero, mkQ 1 3 .. mkQ 3 2]]

is type correct. It’s execution yields:
["0","1/3","2/3","1/1","4/3"]

4.1.3 Derived class members
Sometimes, a member of a class is not really a new function, but defined in terms of
other members (either of the same class or of a subclass). The standard environment, for
example, introduces the class Eq containing the comparison operators == (already defined
as class in StdOverloaded) and <> in the following way.

class Eq a | == a
where (<>) infix 2 :: !a !a -> Bool | Eq a

(<>) x y :== not (x == y)

The <> operator is an example of , what is called, a derived class member: a member of
which the body is included in the class definition itself (Clean considers derived mem-
bers as macros2). In contrast to other functional languages, like Haskell and Gofer, the in-
stances of derived members are never specified in Clean; they are inherited from the clas-
ses corresponding to the used operators (== in the above example).

In the same style we can define a complete set of ordering operators based on the opera-
tor <.

class Ord a | < a
where (>) infix 2 :: !a !a -> Bool | Ord a

(>) x y :== y < x

(<=) infix 2 :: !a !a -> Bool | Ord a
(<=) x y :== not (y<x)

1In Clean 1.2 it is required that all overloaded functions involved have the same default type specified.
2In Clean 1.1 derived members are macros. A drawback of using macros to define derived members is that
they cannot be used as a curried function. This is fixed in Clean 1.2.

I.4 The Power of Types (Draft, 12 augustus 1997) 77

(>=) infix 2 :: !a !a -> Bool | Ord a
(>=) x y :== not (x<y)

In fact, also the equality operator == could be defined as a derived member, e.g. by spe-
cifying

class Eq a | < a
where (==) infix 2 :: !a !a -> Bool | Eq a

(==) x y :== x <= y && x >= y

(<>) infix 2 :: !a !a -> Bool | Eq a
(<>) x y :== not (x == y)

By this mechanism, one obtains all ordering operations for a certain type, solely by defi-
ning an instance of < for this type. For efficiency reasons this is not done in the standard
environment of Clean. In order to enable all possible comparision for some type T you
should define an instance of < and ==.

When defining instances of functions acting on polymorphic data structures, these instan-
ces are often overloaded themselves, as shown by the following example.

instance < [a] | < a
where (<) :: [a] [a] -> Bool | < a

(<) _ [] = False
(<} [] _ = True
(<) [a:as] [b:bs] = a < b || a == b && as < bs

The instance type [a] is supplied with a type context which reflects that, in the body of
the instance, the < operator is applied to the list elements. Observe that the specified type
is, as always, the same as the type obtained from the signature of < after substituting [a] |

< a for the class variable.

This example clearly shows the expressive power of the type classes. Suppose an instance
< for some type T is available. With one single instance definition it possible to compare
objects of type [T], of type [[T]] and so on.

4.1.4 Type constructor classes
Until now, we assumed that each type constructor has a fixed arity indicating the number
a type arguments, an application of that type constructor is supposed to have. For exam-
ple the list constructor [] has arity 1, the 3-tuple constructor (,,) has arity 3, etcetera.
Higher-order types are obtained by allowing type constructor applications in which the ac-
tual number of type arguments is less than the arity of the used constructor. In Clean it is
possible to define classes with class variables ranging over such higher-order types. This
leads to so-called type constructor classes. Type constructor classes can be used to define
collections of overloaded higher-order functions. To explain the idea, consider the map
function, defined as usual.

map :: (a -> b) [a] -> [b]
map f [] = []
map f [a:as] = [f a:map f as]

Experienced programmers will recognize that similar functions are often used for a wide
range of other, mostly polymorphic data structures. E.g.

Tree a = Node a [Tree a]

mapTree :: (a -> b) (Tree a) -> Tree b
mapTree f (Node el ls) = Node (f el) (map (MapTree f) ls)

MayBe a = Just a | Nothing

MapMayBe :: (a -> b) (MayBe a) -> MayBe b
MapMayBe f (Just a) = Just (f a)
MapMayBe f Nothing = Nothing

Since all of these variants for map have the same kind of behaviour, it seems to be attrac-
tive to define them as instances of a single overloaded map function. Unfortunately, the

78 Functional Programming in Clean

overloading mechanism presented so far is not powerful enough to handle this case. For,
an adequate class definition should be able to deal with (at least) the following type spe-
cifications:

(a -> b) [a] -> [b]
(a -> b) (Tree a) -> Tree b
(a -> b) (MayBe a) -> MayBe b.

It is easy to see, that a type signature for map such that all these type specifications can be
obtained via the substitution of a single class variable by appropriate instance types, is
impossible. However, by allowing class variables to be instantiated with higher-order in-
stead of first-order types, such a type signature can be found, as indicated by the follow-
ing class definition.

class map t :: (a -> b) (t a) -> t b

Here, the ordinary type variables a and b range over first-order types, whereas the class
variable t ranges over higher-order types. To be more specific, the concrete instance types
that can be substituted for t are (higher-order) types with one argument too few. The in-
stance declarations that correspond to the different versions of map can now be specified as
follows.

instance map []
where map f l = [f e \\ e <- l]

instance map Tree
where map f (Node el ls) = Node (f el) (map (map f) ls)

instance map MayBe
where map f (Just a) = Just (f a)

map f Nothing = Nothing

The following instance declaration for map is also valid.
instance map (,) a
where map :: (a -> b) (c,a) -> (c,b)

map f (a,b) = (a,f b)

Here (,) a denotes the 2-tuple type constructor applied to a type variable a. Observe that
an instance for type (,) (i.e. the same type constructor, but now with no type arguments)
is impossible.

4.2 Existential types3

Polymorphic algebraic data types offer a large flexibility when building new data struc-
tures. For instance, one can use one and the same type definition for lists of integers, for
list of characters, or even for lists of lists of something. However, the types of the objects
stored in such a data structures are fixed, e.g. a list cannot contain both integers and char-
acters. Of course, one can solve this problem ad hoc, e.g. by introducing the following
auxiliary type.

:: OneOf a b = A a | B b

Indeed, a list of type [OneOf Int Char] may contain integers as well as characters, but again
the choice is limited. In fact, the amount of freedom is determined by the number of
type variables appearing in the data type definition.

To enlarge applicability, Clean has been extended with the possibility to use so called
existentially quantified type variables (or, for short, existential type variables) in data type
definitions. In the following example, we illustrate the use of existential variables by de-
fining a list data structure elements of different types can be stored.

:: List E.a = Cons a (List Void) | Nil

3The syntax of existential types has been slightly changed in Clean version 1.2. This section still uses
Clean 1.1 syntax.

I.4 The Power of Types (Draft, 12 augustus 1997) 79

The E prefix of a indicates that a is an existential type variable. In contrast to ordinary
polymorphic (or, sometimes, called universally quantified) type variables, an existential
type variable can be instantiated with a concrete type only at the moment a data object
of the type in question is created. Consider, for example, the function

newlist = Cons 1 Nil

Here, the variable a of the constructor Cons is instantiated with Int. This concrete type in-
formation, however, is hidden by typing the result with type List Void. This Void type can
be used independently of the actual type substitution. In fact, Void is the only type that is
permitted on such vacant type argument positions, and moreover it is not allowed to use
Void anywhere else in a type specification. By hiding the actual element types, one is able
to build more complex structures like Cons 1 (Cons 'a' Nil).

Existential type variables are not allowed in type specifications of functions, so data con-
structors are the only symbols with type specifications in which these special type varia-
bles may appear. If such data symbols are used in a pattern of a function, the correspond-
ing existential type variables are never instantiated during type derivation of that func-
tion. Therefore, the following function Hd which yields the head element of a list

Hd (Cons hd tl) = hd

is illegal, for, the existential variable associated with hd is instantiated with the result
type of Hd. The instance restriction becomes obvious if one realizes that the concrete types
of the list elements is lost, and yielding an object with an unknown type may result in a
program that is not type safe anymore. Returning to the list example, accessing the tail of
the above list, e.g. by defining

Tl (Cons hd tl) = tl

is harmless: one can not do anything with Tl’s result that might disturb type safety.

Creating objects by existential types

Clearly, a data structure with existential quantified parts is not very useful if there exist
no way of accessing the stored objects. For this reason, one usually provides such a data
structure with an interface: a collection of functions for changing and/or retrieving infor-
mation of the hidden object. So, the general form of these data structures is

:: Object E.a = { state :: a
, method_1 :: ... a ... -> ...
, method_2 :: ... -> ...a...
,...
}

Those who are familiar with object oriented programming will recognize the similarity
between the concept of object-oriented data abstraction and existentially quantified data
structures in Clean.

We will illustrate the use of existentially quantified data structures with the aid of an ex-
ample in which ‘drawable objects’ are represented as follows

:: Drawable E.a = { state :: a
, move :: Point -> a -> a
, draw :: a Picture -> Picture
}

A Drawable contains a state field (e.g. the representation of a point, a line, a circle, etce-
tera) and two functions move and draw for moving and displaying the object on the screen,
respectively. We use a number of graphical data types that are defined in the stadard I/O
library in the module Picture. Drawing pictures is explained in more detail in the
chapters I.5 and II.4.

:: Point :== (!Int, !Int);
:: Line :== (!Point, !Point);
:: Rectangle :== (!Point, !Point); // bounding points
:: Oval :== Rectangle; // bounding rectangle
:: Curve :== (!Oval, !Int, !Int); // Oval with start and end angle

80 Functional Programming in Clean

First, we define two auxiliary function for creating the basic objects Line and Curve. The
corresponding drawing routines are taken from the standard I/O library Picture; moving
is defined straightforwardly. We use + for tuples from as defined in 4.1.1.

MakeLine :: Line -> Drawable Void
MakeLine line

= { state = line
, move = \dist line -> line + (dist,dist)
, draw = DrawLine
}

MakeCurve :: Curve -> Drawable Void
MakeCurve curve

= { state = curve
, move = \dist (rect,a1,a2) -> (rect + (dist,dist),a1,a2)
, draw = DrawCurve
}

A Rectangle is defined as a compound structure consisting of 4 lines, whereas a Wedge con-
sists of 2 lines and a curve.

MakeRectangle :: Rectangle -> Drawable Void
MakeRectangle ((x1,y1),(x2,y2))

= { state = [MakeLine ((x1,y1),(x1,y2)), MakeLine ((x1,y2),(x2,y2))
 , MakeLine ((x2,y2),(x2,y1)), MakeLine ((x2,y1),(x1,y1))
]

, draw = \s p -> foldl (\pict {state,draw} -> draw state pict) p s
, move = \d -> map (MoveDrawable d)
}

MakeWedge:: Curve -> Drawable Void
MakeWedge curve=:((begp,endp), a1, a2)

= { state = [MakeLine (mid,mid+ epc1), MakeLine (mid,mid+ epc2)
 , MakeCurve curve
]

, draw = \s p -> foldl (\pict {state,draw} -> draw state pict) p s
, move = \d -> map (MoveDrawable d)
}

where mid = (begp+endp)/(2,2)
(epc1,epc2) = EndPointsOfCurve curve

Using a suitable implementation of EndPointsOfCurve and:
MoveDrawable :: Point (Drawable Void) -> Drawable Void
MoveDrawable p d=:{state,move} = {d & state = move p state}

Observe that moving and drawing of both compound objects is done in the same way.
Moreover, due to the fact that (possibly different) Drawables can be stored in one list (for,
the state of such objects is hidden) one can use standard list manipulating functions, such
as map and foldl to perform these operations. Of course, the Drawable type is much too
simple for being really useful: other functions have to added, e.g. predicates for testing
whether a given point lies on the border, in the interior of a drawable or outside of it.
Such extensions might be far from trivial, but nevertheless, the elegance of this method
based on existentially quantified data structures is maintained. A full fledged type
Drawable is developed in chapter II.4.

Using an ordinary polymorphic record for Drawable, instead of the existential type, is
possible for the functions MakeLine and makeCurve. Their types become Drawable Line and
Drawable Curve respectively. So, using a polymorphic record it is impossible to store
these objects in one list as is done in the function MakeWedge.

Without existential types drawable objects can be modelled by an algebraic data type.
:: AlgDrawable

= Line Line
| Curve Curve
| Rect [Line]
| Wedge [AlgDrawable]

I.4 The Power of Types (Draft, 12 augustus 1997) 81

The manipulation of drawable objects is done by separately defined functions. These
functions use detailed knowledge of the exact construction of the various alternatives of
the algebraic data type AlgDrawable. Fortunately, the compiler generates a warning
(Function may fail) when we accidentally omit one of the Constructors of AlgDrawable.

move :: Point AlgDrawable -> AlgDrawable
move p object
 = case object of

Line line -> Line (line + (p,p))
Curve (rect,a1,a2) -> Curve (rect + (p,p),a1,a2)
Rect lines -> Rect [line + (p,p) \\ line <- lines]
Wedge parts -> Wedge (map (move p) parts)

draw :: AlgDrawable -> (Picture -> Picture)
draw object
 = case object of

Line line -> DrawLine line
Curve curve -> DrawCurve curve
Rect lines -> seq (map DrawLine lines)
Wedge parts -> seq (map draw parts)

Although this is a way to handle objects that come in several different sorts, it has some
drawbacks. The first disadvantage is that the properties and manipulation of drawable
objects is distributed over a number of functions. For complicated types that are handled
by many functions it becomes problematic to gather all information of that object. A
second disadvantage of using an algebraic data type is that it becomes difficult to
maintain the code. When an additional object like Oval is introduced, it is difficult to be
sure that all necessary manipulation functions are updated to handle ovals.

When we change our mind and want to store a rectangle by its bounding points this is a
very local change in the object-oriented approach. Only the function MakeRectangle needs
to be changed:

MakeNewRectangle :: Rectangle -> Drawable Void
MakeNewRectangle rect

= { state = rect
, move = \p (p1,p2) -> (p1+p,p2+p)
, draw = DrawRectangle
}

When we use the algebraic data type AlgDrawable to represent drawable objects and we
want to implement the equivalent change, we have to change the data type and the
corresponding manipulation functions.

:: AlgDrawable = Line Line
| Curve Curve
| Rect Rectangle // changed
| Wedge [AlgDrawable]

move :: Point NewAlgDrawable -> NewAlgDrawable
move p object
 = case object of

Line line -> Line (line + (p,p))
Curve (rect,a1,a2) -> Curve (rect + (p,p),a1,a2)
Rect (p1,p2) -> Rect (p1+p,p2+p) // changed
Wedge parts -> Wedge (map (move p) parts)

draw :: NewAlgDrawable -> Picture -> Picture
draw object
 = case object of

Line line -> DrawLine line
Curve curve -> DrawCurve curve
Rect rect -> DrawRectangle rect // changed
Wedge parts -> seq (map draw parts)

On the other-hand, adding an entirely new manipulation function is easier for the
algebraic data type. Only the new function has to be defined. In the object-oriented
approach, each object creating function should be changed accordingly.

82 Functional Programming in Clean

As example we will add an operation that determines the bounding rectangle of
drawable objects. For the algebraic data type approach we define the function

bounds :: AlgDrawable -> Rectangle
bounds object
 = case object of

Line line -> normalize line
Curve curve -> curveBounds curve
Rect rect -> normalize rect
Wedge parts -> foldl1 combine_bounds (map bounds parts)

using
foldl1 :: (a a -> a) [a] -> a
foldl1 f [x:xs] = foldl f x xs

combine_bounds :: Rectangle Rectangle -> Rectangle
combine_bounds ((tl1x,tl1y),(br1x,br1y)) ((tl2x,tl2y),(br2x,br2y))
 = ((min tl1x tl2x,min tl1y tl2y),(max br1x br2x,max br1y br2y))

normalize :: Rectangle -> Rectangle
normalize ((x1,y1),(x2,y2)) = ((min x1 x2, min y1 y2), (max x1 x2, max y1 y2))

For the object oriented approach we have to change the definition of Drawable and all
functions generating objects of this type. We use the same supporting functions as above.

:: Drawable E.a = { state :: a
, move :: Point -> a -> a
, draw :: a Picture -> Picture
, bounds :: a -> Rectangle // new
}

MakeLine :: Line -> Drawable Void
MakeLine line
 = { state = line

, move = \dist line -> line + (dist,dist)
, draw = DrawLine
, bounds = \l -> normalize l // new
}

MakeCurve :: Curve -> Drawable Void
MakeCurve curve
 = { state = curve

, move = \dist (rect,a1,a2) -> (rect + (dist,dist),a1,a2)
, draw = DrawCurve
, bounds = \c -> curveBounds c // new
}

MakeRectangle :: Rectangle -> Drawable Void
MakeRectangle ((x1,y1),(x2,y2))
 = { state = [MakeLine ((x1,y1),(x1,y2)), MakeLine ((x1,y2),(x2,y2))

 , MakeLine ((x2,y2),(x2,y1)), MakeLine ((x2,y1),(x1,y1))
]

, draw = \s p -> foldl (\pict {state,draw} -> draw state pict) p s
, move = \d -> map (MoveDrawable d)
, bounds = \parts -> foldl1 combine_bounds // new

(map (\{state,bounds} -> bounds state) parts)
}

MakeWedge :: Curve -> Drawable Void
MakeWedge curve=:((tl,br), a1, a2)
 = { state = [MakeLine (mid,mid+ epc1)

 , MakeLine (mid,mid+ epc2)
 , MakeCurve curve
]

, draw = \s p -> foldl (\pict {state,draw} -> draw state pict) p s
, move = \d -> map (MoveDrawable d)
, bounds = \parts -> foldl1 combine_bounds // new

(map (\{state,bounds} -> bounds state) parts)
}

where mid = (tl + br)/ (2,2)
(epc1,epc2) = EndPointsOfCurve curve

I.4 The Power of Types (Draft, 12 augustus 1997) 83

It is not possible to give a general rule to use either the object-oriented approach or the
algebraic data type approach. As these examples show both approaches have their
advantages and disadvantages. The decision should be based on the expected use and
changes of the data type. Fortunately, usually neither of the choices is really wrong. It is
commonly only a matter of convenience.

A pipeline of functions

Existentially quantified data structures can also be used as a solution to the following
problem. Consider the function seq which applies a sequence of functions to a given ar-
gument (see also Chapter 5).

seq :: [t->t] t -> t
seq [] s = s
seq [f:fs] s = seq fs (f s)

Since all elements of a list must have the same type, only (very) limited sequences of
functions can be composed with seq. In general it is not possible to replace f o g o h by seq
[h, g, f]. The types of the argument and the final result as well as the types of all inter-
mediate results might all be different. Applying the seq function forces all those types to
become the same.

Existential types make it possible to hide the actual types of all intermediate results, as
shown by the following type definition.

:: Pipe E.via a b = Direct (a->b)
| Indirect (a->via) (Pipe Void via b)

Using this Pipe data type, it is possible to compose arbitrary functions in a real pipe-line
fashion. The only restriction is that types of two consecutive functions should match. The
function ApplyPipe for applying a sequence of functions to some initial value is defined as
follows.

ApplyPipe:: (Pipe Void a b) a -> b
ApplyPipe (Direct f) x = f x
ApplyPipe (Indirect f pipe) x = ApplyPipe pipe (f x)

The expression ApplyPipe (Indirect toReal (Indirect exp (Direct toInt))) 7 is valid, and is
typed with Int. The result is 1097.

4.3 Uniqueness types
A very important property for reasoning about and analysing functional programs is refe-
rential transparency: functions always return the same result when called with the same ar-
guments. Referential transparency makes it possible to reason about the evaluation of a
program by substituting an application of a function with arguments by the functions def-
inition in which for each argument in the definition uniformly the corresponding argu-
ment of the application is substituted. This principle of uniform substitution, which is
familiar from high school mathematics, is vital in reasoning about functional programs.

Imperative languages like C, C++ and Pascal allow data to be updated destructively.
This feature is not only important for reasons of efficiency (the memory reserved for the
data is re-used again). The possibility to destructively overwrite data is a key concept on
any computer. E.g. one very much would like to change a record stored in a database or
the contents of a file. Without this possibility no serious program can be written. Incor-
porating destructive updating without violating referential transparency property of a
functional program takes some effort.

The price we have to pay in imperative languages is that there is no referential trans-
parency; the value of a function application can be dependent on the effects of the pro-
gram parts evaluated previously. Uniqueness types are a possibility to combine referen-
tial transparency and destructive updates.

84 Functional Programming in Clean

4.3.1 Graph Reduction
Until now we have not been very precise about the model of computation used in the
functional language Clean. Since the number of references to an expression is important to
determine whether it is unique or not, we must become a little bit more specific.

The basic ingredients of execution, also called reduction, have been discussed. The first
principle we have seen is uniform substitution: an application of a function with arguments
is replaced by the functions definition in which for each argument in the definition
uniformly the corresponding argument of the application is substituted. The second
principle is lazy evaluation: an expression is only evaluated when its value is needed.

Now we add the principle of graph reduction: all occurrences of a variable are replaced
by one and the same expression during uniform substitution. The variables are either
formal function arguments or expressions introduced as local definition. Clearly locally
defined functions cannot be shared in the same way. This implies that expressions are
never copied and hence an expression is evaluated at most once. The reason that it is safe
to share expressions is the property called referential transparency: the value of an
expression is independed of the context in which it is evaluated.

Graph reduction is illustrated by the following examples. A reductions step is indicated
by the symbol →, a sequence of reduction steps is indicated by →∗. Whenever we find it
useful we underline the redex (reducable expression): the expression to be rewritten. Local
definitions are used to indicate sharing.

Start = 3*7 + 3*7

Start
→ 3*7 + 3*7
→ 3*7 + 21
→ 21 + 21
→ 42

Start = x + x where x = 3*7

Start
→ x + x where x = 3*7
→ x + x where x = 21
→ 42

Note that the sharing introduced in the rightmost program saves some work. These
reduction sequences can be depicted as:

St art St art

+

*

3 7

*

3 7

+

*

3 7

*

3

+

*

3 7

21

+

21

+

2121

42

42

Figure 4.1: Pictorial representation of the reduction sequences shown above.

I.4 The Power of Types (Draft, 12 augustus 1997) 85

An other example where some work is shared is the familiar power function.
power :: Int Int -> Int
power x 0 = 1
power x n = x * power x (n-1)

Start :: Int
Start = power (3+4) 2

This program is executed by the following sequence of reduction steps.
Start
→ power (3+4) 2
→ x * power x (2-1) where x = 3+4
→ x * power x 1 where x = 3+4
→ x * x * power x (1-1) where x = 3+4
→ x * x * power x 0 where x = 3+4
→ x * x * 1 where x = 3+4
→ x * x * 1 where x = 7
→ x * 7 where x = 7
→ 49

The number of references to an expression is usually called the reference count.

4.3.2 Destructive updating
Consider the special data structure which represents a file. This data structure is special
since it represents a structure on a disk which (usually) has to be destructively updated.
So, a program manipulating such a data structure is not only manipulating a structure in-
side the program but it is also manipulating a structure in the outside world. The Clean
run-time system takes care of keeping the real world object and the structure inside your
program up to date. In your program you just manipulate the data structure.

Assume that one would have a function fwritec that appends a character to an existing file
independent of the context from which it is called and returns the modified file. So, the
intended result of such a function would be a file with the extra character in it:

fwritec :: Char File -> File

Such a function could be used in a context by other functions:
AppendA :: File -> File
AppendA file = fwritec 'a' file

Let us now suppose that the following function AppendAB could be defined in a functional
language.

AppendAB :: File -> (File, File)
AppendAB file = (fileA, fileB)
where fileA = fwritec 'a' file

fileB = fwritec 'b' file

What should then be the contents of the files in the resulting tuple (fileA, fileB)? There
seem to be only two solutions, which both have unwanted properties.

The first is to assume that fwritec destructively changes the original file by appending a
character to it (like in imperative languages). Then, the resulting tuple of AppendAB wil l
depend on the evaluation order. If fileB is evaluated before fileA then 'b' is appended to
the file before 'a'. If fileA is evaluated before fileB then the 'a' will be written before
'b'. This violates the rule of referential transparency in functional programming langua-
ges. So, just overwriting the file is rejected since loosing referential transparency would
tremendously complicate analysing and reasoning about a program.

The second solution would be that in conformity with referential transparency the result
is a tuple with two files: one extended with a character 'a' and the other with the charac-
ter 'b'. This does not violate referential transparency because the result of the function
calls AppendA file and AppendB file are not influenced by the context. This means that each
function call fwritec would have to be applied on a 'clean' file, which in turn would mean
that for the function call AppendAB two copies of the file have to be made. To the first

86 Functional Programming in Clean

copy the character 'a' is appended, and to the second copy the character 'b' is appended.
If the original of the file is not used in any other context, it can be thrown away as gar-
bage. This second solution however, does not correspond to the way operating systems
behave in practice. It is rather impractical. This becomes even more obvious when one
wants to write to a window on a screen: one would like to be able to perform output in an
existing window. Following this second solution one would be obliged to construct a
new window with each outputting command.

We cannot be satisfied with both solutions. We require that the result of any expression is
well defined and we want to update files and windows without making unnecessary
copies. So, what we need is a way to destructively update a data structure without
violating referential transparency.

4.3.3 Environment passing
The way to deal with this problem may be typical for the way language designers think:
"If you don't like it, don't allow it". In this situation we will not allow the update of a
data structure representing real world objects when we must make copies in order to
make the result properly defined.

The definition of AppendAB above should not be allowed in the language and therefore
rejected by the compiler. This makes it possible for fwritec to destructively update the
file. Semantically, one could say that it produces a new file while there is no reference
anymore to the old file. So, as a kind of optimisation the old file can be reused to
produce the result.

The problem is now moved to finding an alternative way to describe the wanted beha-
viour. Consider:

WriteAB :: File -> File
WriteAB file = fileAB
where fileA = fwritec 'a' file

fileAB = fwritec 'b' fileA

Here, the data dependency is used which determine the order in which the characters are
appended to the file (first 'a', then 'b')4. This programming style is very similar to the
classical imperative style, in which the characters are appended by sequential program
statements. Note however that the file to which the characters are appended is explicitly
passed as an argument from one local function definition to another. This is very similar
to adding two elements to a list.

The technique introduced is called environment passing: the argument is updated by the
function and the result is passed as argument to another function. This is a very simple ex-
ample of this technique. We will use more complicated examples in the rest of this chap-
ter. Function that use this technique are also called state transition functions since the en-
vironment which is passed can be seen as a state which may be changed while it is passed.

4.3.4 Uniqueness information
Of course, somehow it must be determined (and specified) that the environment is pas-
sed properly i.e. in such a way that the required updates are possible. For this purpose a
type system is designed which derives so-called uniqueness properties. A function is said
to have an argument of unique type if there will be just a single reference to the argument

4The function WriteAB could have been defined alternatively as:

WriteAB:: File -> File
WriteAB file = fwritec 'b' (fwritec 'a' file)

Also here the file is actually passed as an environment (which is maybe a bit more complicated to see).

I.4 The Power of Types (Draft, 12 augustus 1997) 87

when the function will be evaluated. This property makes it safe for the function to re-use
the memory consumed by the argument when appropriate.

In figure 4.1 all parts of the example of the left-hand side are unique. On the right-hand
side the expression 3*7 is not unique since it is shared by both arguments of the addition.
By drawing some pictures, it is immediatly clear that the function WriteAB introduced
above uses the file unique, while in AppendAB the reference count of the file is 2.

fw rit ec

fw rit ec

'a'

'b'

fi le

fi leA B

fi leA

Figure 4.2: The result of WriteAB file

T2

fw rit ec

'a'

fi le

fw rit ec

'b'

fi leA fi leB

Figure 4.3: The result of AppendAB file

The function fwritec demands its second argument, the file, to be of unique type (in
order to be able to overwrite it) and consequently it is derived that WriteAB must have a
unique argument too. In the type this uniqueness is expressed with an asterisk which is
attached as an attribute to the conventional type:

fwritec :: Char *File -> *File
WriteAB :: *File -> *File

The uniqueness type system is an extension on top of the conventional type system. When
in the type specification of a function an argument is attributed with the type attribute
unique (*) it is guaranteed by the type system that, upon evaluation of the function, the
function has private ("unique") access to this particular argument.

The correctness of the uniqueness type is checked by the compiler, like all other type in-
formation except strictness information. Assume now that the programmer has defined
the function AppendAB as follows:

AppendAB :: File -> (File, File)
AppendAB file = (fileA, fileB)
where fileA = fwritec 'a' file

fileB = fwritec 'b' file

The compiler will reject this definition with the error message:
<conflicting uniqueness information due to argument 2 of fwritec>

This rejection of the definition is caused by the non-unique use of the argument file in the
two local definitions (assuming the type fwritec :: Char *File -> *File).

It is important to know that there can be many references to the object before this speci-
fic access takes place. For instance, the following function definition will be approved by
the type system, although there are two references to the argument file in the definition.
When fwritec is called, however, the reference is unique.

AppendAorB :: Bool *File -> *File

88 Functional Programming in Clean

AppendAorB cond file
| cond = fwritec 'a' file
| otherwise = fwritec 'b' file

So, the concept of uniqueness typing can be used as a way to specify locality requirements
of functions on their arguments: If an argument type of a function, say F, is unique then in
any concrete application of F the actual argument will have reference count 1, so F has in-
deed ‘private access’ to it. This can be used for defining (inherent) destructive operations
like the function fwritec for writing a character to a file.

Observe that uniqueness of result types can also be specified, allowing the result of an
fwrite application to be passed to, for instance, another call of fwrite. Such a combina-
tion of uniqueness typing and explicit environment passing will guarantee that at any
moment during evaluation the actual file has reference count 1, so all updates of the file
can safely be done in-place. If no uniqueness attributes are specified for an argument type
(e.g. the Char argument of fwritec), the reference count of the corresponding actual argu-
ment is generally unknown at run-time. Hence, no assumption can be made on the locality
of that argument: it is considered as non-unique.

Offering a unique argument if a function requires a non-unique one is safe. More techni-
cally, we say that a unique object can be coerced to a non-unique one. Assume, for instance,
that the functions freadc and fwrites have type

freadc:: File -> (Bool, Char, File) // The Boolean indicates success or failure
fwrites :: String *File -> *File.

in the application
readwrite :: String *File -> (Bool, Char, File)
readwrite s f = freadc (fwrites s f)

the (unique) result File of fwrites is coerced to a non-unique one before it is passed to
freadc.

Of course, offering a non-unique object if a function requires a unique one always fails.
For, the non-unique object is possible shared, making a destructive update not well-
defined. Note that an object may lose its uniqueness not only because uniqueness is not
required by the context, but also because of sharing. This, for example, means that
although an application of fwritec itself is always unique (due to its unique result type), it
is considered as non-unique if there exist more references to it. To sum up, the offered
type (by an argument) is determined by the result type of its outermost application and
the reference count of that argument.

Until now, we distinguished objects with reference count 1 from objects with a larger re-
ference count: only the former might be unique (depending on the object type itself). As
we have seen in the example above the reference count is computed for each right-hand
side separatly. When there is an expression in the gaurds requiring an unique object this
must be taken into account. This is the reason we have to write:

AppendAorB:: *File -> *File
AppendAorB file

| fc == 'a' = fwritec 'a' nf
| otherwise = fwritec 'b' nf

where
(_,fc,nf) = freadc file

When the right-hand side of AppendAorB is evaluated, the guard is determined first (so the
resulting access from freadc to file is not unique), and subsequently one of the alternati-
ves is chosen and evaluated. Depending on the condition fc == ‘a’, either the reference
from the first fwritec application to file or that of the second application is left and the-
refore unique. As you might expect it is not allowed to use file instead of nf in the right-
hand sides of the function AppendAorB. File manipulation is explained in more detail in
chapter 5.

I.4 The Power of Types (Draft, 12 augustus 1997) 89

4.3.5 Propagation of uniqueness
Pattern matching is an essential aspect of functional programming languages, causing a
function to have access to ‘deeper’ arguments via ‘data paths’ instead of via a single refer-
ence. For example, the head function for lists, which is defined as

head :: [a] -> a
head [hd:tl] = hd

has (indirect) access to both hd and tl. This deeper access gives rise to, what can be cal-
led, indirect sharing: several functions access the same object (via intermediate data con-
structors) in spite of the fact that the object itself has reference count 1. Consider, for
example the function heads which is defined as follows.

heads list = (head list, head list)

In the right-hand side of heads, both applications of head retrieve their result via the same
list constructor.

If one wants to formulate uniqueness requirements on, for instance, the hd argument of
head, it is not sufficient to attribute the corresponding type variable a with *; the surroun-
ding list itself should also become unique. One could say that uniqueness of list elements
propagates outwards: if a list contains unique elements, the list itself should be unique as
well. One can easily see that, without this propagation requirement, locality of object
cannot be guaranteed anymore. E.g., suppose we would admit the following type for
head.

head :: [*a] -> *a

Then, the definition of heads is typable, for, there are no uniqueness requirements on the
direct argument of the two head applications. The type of heads is:

heads :: [*a] -> (*a,*a)

which is obviously not correct because the same object is delivered twice. However, ap-
plying the uniqueness propagation rule leads to the type

head :: *[*a] -> *a

Indeed, this excludes sharing of the list argument in any application of head, and there-
fore the definition of heads is no longer valid.

In general, the propagation rule reflects the idea that if an unique object is stored in a lar-
ger data structure, the latter should be unique as well. This can also be formulated like:
an object stored in a data structure can only be unique when the data structure is unique.
When we have the constraint that an element of a data structure is unique, this implies that
also the data structure is unique.

In practice, however, one can be more liberal when the evaluation order is taken into
account. The idea is that multiple references to an (unique) object are harmless if one
knows that only one of the references will be present at the moment the object is accessed
destructively. For instance, the compiler 'knows' that only one branch of the predefined
conditional function if will be used. This implies that the following function is correct.

transform :: (Int -> Int) *{#Int} -> *{#Int}
transform f s
 | size s == 0 = s
 | otherwise = if (s.[0] == 0)
 {f i \\ i <-: s}
 {f i \\ _ <-: s & i <- [s.[0]..]}

This example shows also that strictness of objects is not restricted to files and windows.

4.3.6 Uniqueness polymorphism
To indicate that functions leave uniqueness properties of arguments unchanged, one can use
(uniqueness) attribute variables. The most simple example is the identity function which
can be typed as follows:

id :: u:a -> u:a

90 Functional Programming in Clean

Here a is an ordinary type variable, whereas u is an attribute variable. If id is applied to
an unique object the result is also unique (in that case u is instantiated with the concrete at-
tribute *). Of course, if id is applied to a non-unique object, the result remains non-uni-
que. Note that we tacitly assume an attribute for ‘non-unique’ although there exists no de-
notation for it in Clean.

A more interesting example is the function freadc5 which is typed as
freadc :: u:File -> (Bool, Char, u:File)

Again freadc can be applied to both unique and non-unique files. In the first case the re-
sulting file is also unique and can, for example, be used for further reading as well as for
writing. In the second case the resulting file is also not unique, hence write access is not
permitted.

One can also indicate relations between attribute variables appearing in the type specifi-
cation of a function, by adding so called coercion statements. These statements consist of
attribute inequalities of the form u <= v. The idea is that attribute substitutions are only
allowed if the resulting attribute inequalities are valid, i.e. not resulting in an equality of
the form ‘non-unique ≤ unique’. The use of coercion statements is illustrated by the next
example in which the uniqueness type of the well-known append operator ++ is shown.

(++) infixr 5 :: v:[u:a] w:[u:a] -> x:[u:a], [v w x<=u, w<=x]

The first coercion statement express uniqueness propagation for lists: if the elements a are
unique (by choosing * for u) these statements force v, w and x to be instantiated with *
also. (Note that u <= * i f f u = *.) The latter statement w<=x expresses that the spine
uniqueness6 o f append’s result depends only on the spine attribute w of the second
argument. This reflects the operational behaviour of append, namely, to obtain the result
list, the first list argument is fully copied, after which the final tail pointer is redirected
to the second list argument.

(++) [hd:tl] list = [hd: tl ++ list]
(++) _ list = list

In Clean it is permitted to omit attribute variables and attribute inequalities that arise
from propagation properties; those will be added automatically by the type system. As
a consequence, the following type specification for ++ is also valid.

(++) infixr 5 :: [u:a] w:[u:a] -> x:[u:a], [w<=x]

Of course, it is always allowed to use a more specific type (by instantiating type and/or
attribute variables). All types given below are valid types for ++.

(++) infixr 5 :: [u:a] x:[u:a] -> x:[u:a]
(++) infixr 5 :: *[*Int] *[*Int] -> *[*Int]
(++) infixr 5 :: [a] *[a] -> *[a]

To make types more readable, Clean offers the possibility to use anonymous attribute va-
riables as a shorthand for attribute variables of which the actual names are not essential.
Using anonymous attributes ++ can be typed as follows.

(++) infixr 5 :: [.a] v:[.a] -> w:[.a], [v<=w]

This is the type derived by the compiler. The type system of Clean will substitute real
attribute variables for the anonymous ones. Each dot gives rise to a new attribute variable
except for the dots attached to type variables: type variables are attributed uniformly in
the sense that all occurrences of the same type variable will obtain the same attribute. In
the above example this means that all dots are replaced by one and the same (new)
attribute variable.

5The function freadc defined in the 0.8 library is not as general as the function shown here. In the 0.8
library there are separate functions to read from a unique file and from an shared file.
6The spine of a list is the structure of Cons nodes connecting the elements.

I.4 The Power of Types (Draft, 12 augustus 1997) 91

Finally, we can always use an unique list where an ordinary list is expected. So, it is
sufficient to specify the following type for append:

(++) infixr 5::[.a] u:[.a] -> u:[.a]

Apart from strictness annotations this is the type specified for the append operator in the
module StdList of the standard environment.

4.3.7 Attributed data types
First, remember that types of data constructors are not specified by the programmer but
derived from their corresponding data type definition. For example, the (classical) defi-
nition of the List type

:: List a = Cons a (List a) | Nil

leads to the following types for its data constructors.
Cons :: a (List a) -> List a
Nil :: List a

To be able to create unique instances of data types, a programmer does not have change
the corresponding data type definition itself; the type system of Clean will generate ap-
propriate uniqueness variants for the (classical) types of all data constructors. Such a uni-
queness variant is obtained via a consistent attribution of all types and subtypes appearing
in a data type definition. E.g., for Cons this attribution yields the type

Cons :: u:a v:(List u:a) -> v:List u:a, [v<=u]

Describing the attribution mechanism in all its details is beyond the scope of this book;
the procedure can be found in the reference manual and [Barendsen 93]. The main
property is that all type variables and all occurrences of the defined type constructor, say
T, will receive an attribute variable. Again this is done in a uniform way: equal variables
will receive equal attributes, and the occurrences of T are equally attributed as well.
Besides that, attribute variables are added at non-variable positions if they are required
by the propagation properties of the corresponding type constructors (see example
below). The coercion statements are, as usual, determined by the propagation rule. As an
example, consider the following Tree definition.

:: Tree a = Node a [Tree a]

The type of the data constructor Node is
Node :: u:a w:[v:Tree u:a] -> v:Tree u:a, [v<=u, w<=v]

Observe that the uniqueness variable w and the coercion statement [w<=v] are added since
the list type ‘propagates’ the v attribute of its element.

One can also specify that a part of data type definition, should receive the same attribute
as the defined type constructor, say T, itself. For this purpose the anonymous (.) attribute
variable is reserved, which can be attached to any (sub) type on the right-hand of T’ s
definition. The idea is that the dot attribute denotes the same attribute as the one
assigned to the occurrences of T. This is particularly useful if one wants to store functions
into data structures; see also the next section on higher order uniqueness typing. For
example, the following definition of Tree

:: Tree2 = Node2 .Int [Tree2]

causes the type for the data constructor Node to be expanded to
Node2 :: u:Int v:[u:Tree2] -> u:Tree2, [v<=u]

Unfortunately, the type attribute w is not used in the result of the constructor Node. Hence,
there is no way to store the uniqueness of the arguments of Node in its type. So, in contrast

92 Functional Programming in Clean

with the type List, it is not possible to construct unique instances of the type Tree. This
implies that the function to reverse7 trees

swap (Node a leafs) = Node a [swap leaf \\ leaf <- rev leafs]

rev :: ![.a] -> [.a]
rev l = rev_ l []
where rev_ [a:x] l = rev_ x [a:l]

rev_ [] l = l

obtains type
swap :: !(Tree a) -> Tree a;

instead of
swap :: !u:(Tree .a) -> u:(Tree .a)

This implies that an unique tree will loose its uniqueness attribute when it is swapped by
this function swap. Due to the abbreviations introduced above the last type can also be
written as:

swap :: !(Tree .a) -> (Tree .a)

When we do need unique instances of type Tree, we have to indicate that the list of trees
inside a node has the same uniqueness type attribute as the entire node:

:: Tree a = Node a .[Tree a]

Now the compiler will derive and accept the type that indicates that swapping an unique
tree yields an unique tree: swap :: !(Tree .a) -> (Tree .a).

When all Trees ought to be unique we should define
:: *Tree a = Node a [Tree a]

The corresponding type of the function swap is
swap :: !*(Tree .a) -> *Tree .a;

In practice the pre-defined attribution scheme appears to be too restrictive. First of all,
it is convenient if it is allowed to indicate that certain parts of a data structure are always
unique. Take, for instance, the type Progstate, defined in chapter 5 containing the (unique)
file system of type Files.

:: *ProgState = {files :: Files}

According to the above attribution mechanism, the Files would have been non-unique. To
circumvent this problem, one can make Progstate polymorphic, that is to say, the
definition Progstate becomes

:: Progstate file_system = {files :: file_system}

Then, one replaces all uses of Progstate by Progstate *Files. This is, of course, a bit labo-
rious, therefore, it is permitted to include * attributes in data type definitions themsel-
ves. So, the definition of Progstate, is indeed valid. Note that, due to the outwards
propagation of the * attribute, Progstate itself becomes unique. This explains the * on the
left-hand side of the definition of Progstate.

4.3.8 Higher order uniqueness typing
Higher-order functions give rise to partial (often called Curried) applications (of functi-
ons as well as of data constructors), i.e. applications in which the actual number of argu-
ments is less than the arity of the corresponding symbol. If these partial applications con-

7The function reverse provided in StdList of Clean 1.1 and 1.2 has a type that is to restrictive. It is not
able to reverse an unique list of unique elements to an unique list of unique objects:

reverse::!.[a] -> [a]
reverse list = reverse_ list []
where reverse_::![a] [a] -> [a]

reverse_ [hd:tl] list = reverse_ tl [hd:list]
reverse_ [] list = list

I.4 The Power of Types (Draft, 12 augustus 1997) 93

tain unique sub-expressions one has to be careful. Consider, for example the following the
function fwritec with type fwritec :: *File Char -> *File in the application (fwritec uni-

file) (assuming that unifile returns a unique file). Clearly, the type of this application is
of the form o:(Char -> *File). The question is: what kind of attribute is o? Is it a variable,
is it *, or is it ‘not unique’. Before making a decision, we will illustrate that it is dange-
rous to allow the above application to be shared. For example, if (fwritec unifile) is pas-
sed to a function

WriteAB write_fun = (write_fun ‘a’, write_fun ‘b’)

Then the argument of fwritec is not longer unique at the moment one of the two write op-
erations takes place. Apparently, the (fwritec unifile) expression is essentially unique: its
reference count should never become greater than 1. To prevent such an essentially unique
expression from being copied, the uniqueness type system considers the -> type construc-
tor in combination with the * attribute as special: it is not permitted to discard its uni-
queness. Now, the question about the attribute o can be answered: it is set to *. If WriteAB
is typed as follows

WriteAB :: (Char -> u:File) -> (u:File, u:File)
WriteAB write_fun = (write_fun ‘a’, write_fun ‘b’)

the expression WriteAB (fwritec unifile) is rejected by the type system because it does not
allow the actual argument of type *(Char -> *File) to be coerced to (Char -> u:File). One
can easily see that it is impossible to type WriteAB in such a way that the expression be-
comes typable. This is exactly what we want for files.

To define data structures containing Curried applications it is often convenient to use the
(anonymous) dot attribute. Example

:: Object a b = { state :: a
, fun :: .(b -> a)
}

new :: * Object *File Char
new = {state = unifile, fun = fwritec unifile}

Since new contains an essentially unique expression it becomes essentially unique itself.
So, the result of new can only be coerced to a unique object implying that in any contain-
ing new, the attribute type requested by the context has to be unique.

Determining the type of a Curried application of a function (or data constructor) is so-
mewhat more involved if the type of that function contains attribute variables instead of
concrete attributes. Mostly, these variables will result in additional coercion statements.
as can be seen in the example below.

Prepend :: u:[.a] [.a] -> v:[.a], [u<=v]
Prepend a b = Append b a

PrependList :: u:[.a] -> w:([.] -> v:[.a]), [u<=v, w<=u]
PrependList a = Prepend a

Some explanation is in place. The expression PrependList some_list yields a function
that, when applied to another list, say other_list, delivers a new list consisting of the
concatenation of other_list and some_list. Let us call this final result new_list. I f
new_list should be unique (i.e. v becomes *) then, because of the coercion statement u<=v
the attribute u becomes * as well. But, if u = * then also w = *, for, w<=u. This implies that
(arrow) type of the original expression PrependList some_list becomes unique, and hence
this expression cannot be shared. The general rule for determining the uniqueness type of
Curried variants of (function or data) symbols can be found in the reference manual and
[Barendsen 93].

4.3.9 Creating unique objects
In the preceding subsections we showed how unique objects can be manipulated. The
questions that remains is how to become the initial unique object. All unique objects

94 Functional Programming in Clean

corresponding with real world entities, like files and windows, are retrieved from the
world. This is explained in detail in chapter I.5.

It is also possible to have unique objects of other types. Especially for arrays it is useful
to have unique instances, since only unique arrays can be updated. There is a function
createArray in StdEnv that can be used to create unique arrays. Array comprehensions can
also be used to create unique arrays. Furthermore, all objects with reference count one
created by unique function applications are unique. The Start expression itself is unique.
By careful design of functions, this uniqueness can be passed to the places where it is
needed.

4.3.10 Combining uniqueness typing and type classes
This is complicated stuff. Either to be omitted or to be written.

4.4 Exercises
4.1 Define an instance for type Q of the standard class Arith.

class Arith a | PlusMin, MultDiv, abs, sign, ~ a

4.2 Define complex numbers similar to Q and specify an instance of the class Arith for this new type.

4.3 Define an instance of PlusMin for lists [a] such that, for instance, the addition of two lists takes
place element wise (if necessary, the shortest list is extended with zeros to obtain two lists of
equal length). So, [1,2,3] + [4,5] = [5,7,3].

4.4 Why should a Pipe object contain at least one function (each Pipe object ends with a Direct
constructor containing the final function to be applied)? One can image a definition of Pipe with a
kind of Nil constructor with no argument as a terminator.

