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Data structures are used to store and manipulate collections of data and to represent
specific data values. The example of a data type representing specific values that we have
seen is the data type Bool which contains the values True and False. In section 3.6 we teach
you how to define this kind of algebraic data types.

The lists which we have used every now and then are an example of a recursive algebraic
data type. In principle it is possible to define all data types directly in Clean. Since a
number of these data types are used very frequently in functional programming they are
predefined in Clean. In order to make the manipulation of these data types easier and
syntactically nicer special purpose notation is introduced for a number of data types.

Lists are by far the most used recursive data type used in functional programming. Lists
hold an arbitrary number of elements of the same type. They are discussed in section 3.1
and 3.2. Tuples hold a fixed number of data values that can be of different types. The use
of tuples is treated in section 3.3. Records are similar to tuples. The difference between a
record and a tuple is that fields in a record are indicated by their name, while in a tuple
they are indicated by their position. Records are discussed in section 3.4. The last
predefined data type discussed in this chapter are arrays. Arrays are similar to fixed
length lists. In contrast to lists an array element can be selected in constant time. Usually,
it is only worthwhile to use arrays instead of lists when this access time is of great
importance.

3.1 Lists
In the previous chapters we have seen some lists. A list is a sequence of elements of the
same type. The elements of the a list can have any type, provided that each element has
the same type. The elements of a list are written between the square brackets [ and ]. The
elements are separated by a comma. For example the list of the first five prime numbers
i s  [2,3,5,7,11]. You can construct a new list of an element and a list by the infix
operator :. For example [1:[2,3,5,7,11]]. This list can also be written as [1,2,3,5,7,11].
Both notations can be used in the patterns of functions manipulating lists. In this section
we will elaborate on lists and list processing functions.

3.1.1 Structure of a list
Lists are used to group a number of elements. Those elements should be of the same type.
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Figure 3.1 Pictorial representation of the list [1,2,3].

A list in Clean should be regarded as a linked list: a chain of :-boxes (called the spine of a
list) referring to each other. The most simple list is the empty list [] which indicates the
end of a list. A non-empty list is of shape [x:xs] where x refers to a list element and xs
refers to a list. A pictorial representation of a list is given in figure 3.1.

For every type there exists a type `list of that type'. Therefore there are lists of integers,
lists of reals and lists of functions from Int to Int. But also a number of lists of the same
type can be stored in a list; in this way you get lists of lists of integers, lists of lists of
lists of Booleans and so forth.

The type of a list is denoted by the type of the elements between square brackets. The
types listed above can thus be expressed shorter by [Int], [Real], [Int->Int], [[Int]] and
[[[Bool]]].

There are several ways to construct a list: enumeration, construction using : and numeric
intervals.

Enumeration

Enumeration of the elements often is the easiest method to build a list. The elements
must be of the same type. Some examples of list enumeration's with their types are:

[1,2,3] :: [Int]
[1,3,7,2,8] :: [Int]
[True,False,True] :: [Bool]
[sin,cos,tan] :: [Real->Real]
[[1,2,3],[1,2]] :: [[Int]]

For the type of the list it doesn't matter how many elements there are. A list with three
integer elements and a list with two integer elements both have the type [Int]. That is
why in the fifth example the lists [1,2,3] and [1,2] can in turn be elements of one list of
lists.

The elements of a list need not be constants; they may be determined by a computation:
[1+2,3*x,length [1,2]] :: [Int]
[3<4,a==5,p && q] :: [Bool]

The expressions used in a list must all be of the same type.

There are no restrictions on the number of elements of a list. A list therefore can contain
just one element:

[True] :: [Bool]
[[1,2,3]] :: [[Int]]

A list with one element is also called a singleton list. The list [[1,2,3]] is a singleton list
as well, for it is a list of lists containing one element (the list [1,2,3]).

Note the difference between an expression and a type. If there is a type between the square
brackets, the whole is a type (for example [Bool] or [[Int]]). If there is an expression be-
tween the square brackets, the whole is an expression as well (a singleton list, for example
[True] or [3]).

Furthermore the number of elements of a list can be zero. A list with zero elements is
called the empty list. The empty list has a polymorphic type: it is a `list of whatever'. At
positions in a polymorphic type where an arbitrary type can be substituted type variables
are used (see subsection 1.5.3); so the type of the empty list is [a]:

[] :: [a]
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The empty list can be used in an expression wherever a list is needed. The type is then
determined by the context:

sum [] [] is an empty list of numbers
and [] [] is an empty list of Booleans
[[],[1,2],[3]] [] is an empty list of numbers
[[1<2,True],[]] [] is an empty list of Booleans
[[[1]],[]] [] is an empty list of lists of numbers
length [] [] is an empty list (doesn't matter of what type)

Construction using :

Another way to build a list is by using the notation involving : . This notation most
closely follows the way lists are actually represented internally in the Clean system. For
example, the list xs = [1,2,3] is actually a shorthand for xs = [1:[2:[3:[]]]]. One can
imagine this list to be constructed internally as shown in figure 3.2.
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Figure 3.2 Pictorial representation of the list defined as xs = [1,2,3].

If xs is a list (say xs = [1,2,3]), [0:xs] is a list as well, the list [0,1,2,3]. The new list is
constructed by making a new box to store [x:xs], where x refers to a new box containing
0 and xs refers to the old list. In figure 3.3 the pictorial representation is shown.

:

0

:

2 3

[]:::

1

xs

Figure 3.3 Pictorial representation of the list [0,xs] where xs = [1,2,3].

The operator : is often called cons. In the same jargon the empty list [] is called  nil.

Enumerable intervals

The third way to construct a list is the interval notation: two numeric expression with two
dots between and square brackets surrounding them: the expression [1..5] evaluates to
[1,2,3,4,5]. The expression [1..5] is a special notation, called a dot-dot expression. An-
other form of a dot-dot expression is [1,3..9] in which the interval is 2 (the difference
between 3 and 1. The dot-dot expression is internally translated to a function calculating
the interval. For instance, the expression [first,second..upto] i s  t r a n s l a t e d  t o
from_then_to  first second upto, which in the case of [1,3..9] evaluates to [1,3,5,7,9].
from_then_to is a predefined function (see StdEnum) which is defined as follows:

from_then_to : a a a -> [a] | Enum a
from_then_to n1 n2 e

| n1 <= n2 = _from_by_to n1 (n2-n1) e
| otherwise = _from_by_down_to n1 (n2-n1) e

where
_from_by_to n s e

| n <= e = [n : _from_by_to (n+s) s e]
| otherwise = []

_from_by_down_to n s e
| n >= e = [n : _from_by_down_to (n+s) s e]
| otherwise = []
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The dot-dot expression [1..5] can be seen as a special case of the expression [1,2..5],
when the step size happens to be one the element indicating the step size may be omitted.

When the upper bound of a dot-dot expression is not known, it can be omitted. The list
generated will be extended as far as necessary. See also section 3.2. Some examples are:

[1..] generates the list [1,2,3,4,5,6,7,8,9,10,…
[1,3..] generates the list [1,3,5,7,9,11,13,15,…
[100,80..] generates the list [100,80,60,40,20,0,-20,-40,…

Besides for integer numbers a dot-dot expression can also be used for other enumerables
(class Enum, see chapter 4), such as real numbers and characters. E.g. the expression
['a'..'c'] evaluates to ['a','b','c'].

3.1.2 Functions on lists
Functions on lists are often defined using patterns: the function is defined for the empty
list [] and the list of the form [x:xs] separately. For a list is either empty or has a first
element x in front of a (possibly empty) list xs.

A number of definitions of functions on lists has already been discussed: hd and tl in sub-
section 1.4.3 , sum and length in subsection 1.4.4, and map, filter and foldr in subsection
2.3.1. Even though these are all standard functions defined in the standard environment
and you don't have to define them yourself, it is important to look at their definitions.
Firstly because they are good examples of functions on lists, secondly because the defini-
tion often is the best description of what a standard function does.

In this paragraph more definitions of functions on lists follow. A lot of these functions
are recursively defined, which means that in the case of the pattern [x:xs] they call them-
selves with the (smaller) parameter xs.

Comparing and ordering lists

Two lists are equal if they contain exactly the same elements in the same order. This is a
definition of the operator == which tests the equality of lists:

(==) infix 4 :: [a] [a] -> Bool | == a
(==) []     []     = True
(==) []     [y:ys] = False
(==) [x:xs] []     = False
(==) [x:xs] [y:ys] = x==y && xs==ys

In this definition both the first and the second parameter can be empty or non-empty;
there is a definition for all four combinations. In the fourth case the corresponding ele-
ments are compared (x==y) and the operator is called recursively on the tails of the lists
(xs==ys).

As the overloaded operator == is used on the list elements, the equality test on lists be-
comes an overloaded function as well. The general type of the overloaded operator ==  is
defined in StdOverloaded as:

(==) infix 4 a :: a a -> Bool

With the definition of == on lists an new instance of the overloaded operator == should be
defined with type:

instance == [a] | == a
where

(==) infix 4 :: [a] [a] -> Bool | == a

which expresses the == can be used on lists under the assumption that == is defined on the
elements of the list as well. Therefore lists of functions are not comparable, because func-
tions themselves are not. However, lists of lists of integers are comparable, because lists
of integers are comparable (because integers are).

If the elements of a list can be ordered using <, then lists can also be ordered. This is
done using the lexicographical ordering (`dictionary ordering'): the first elements of the
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lists determine the order, unless they are same; in that case the second element is decisive
unless they are equal as well, etcetera. For example, [2,3]<[3,1] and [2,1]<[2,2] hold. If
one of the two lists is equal to the beginning of the other then the shortest one is the
`smallest`, for example [2,3]<[2,3,4]. The fact that the word `etcetera' is used in this de-
scription, is a clue that recursion is needed in the definition of the function < (less than):

(<)  infix  4 :: [a] [a] -> Bool | < a
(<) [] [] = False
(<) [] _ = True
(<) [_:_] [] = False
(<) [x:xs] [y:ys] = x < y || (x == y && xs < ys)

When the functions < and == have been defined, others comparison functions can easily be
defined as well: <> (not equal to), > (greater than), >= (greater than or equal to) and <=
(smaller than or equal to):

(<>) x y = not (x==y)
(>)  x y = y < x
(>=) x y = not (x<y)
(<=) x y = not (y<x)
max  x y = if (x<y) y x
min  x y = if (x<y) x y

For software engineering reasons, the other comparison functions are in Clean actually
predefined using the derived class members mechanism (see chapter 4.1). The class Eq
contains == as well as the derived operator <>, the class Ord contains < as well as the de-
rived operators >, >=, <=, max and min.

Joining lists

Two lists with the same type can be joined to form one list using the operator ++. This is
also called concatenation (`chaining together'). E.g.: [1,2,3]++[4,5] results in the list
[1,2,3,4,5]. Concatenating with the empty list (at the front or at the back) leaves a list
unaltered: [1,2]++[] gives [1,2] and []++[1,2] gives also [1,2].

The operator ++ is a standard operator (see StdList) defined as:
(++) infixr 5 :: [a] [a] -> [a]
(++) []     ys = ys
(++) [x:xs] ys = [x:xs++ys]

There is another function for joining lists called flatten. It acts on a list of lists. All lists
in the list of lists which are joined to form one single list. For example

flatten [[1,2,3],[4,5],[],[6]]

evaluates to [1,2,3,4,5,6]. The definition of flatten is as follows:
flatten :: [[a]] -> [a]
flatten [] = []
flatten [xs:xss] = xs ++ flatten xss

The first pattern, [], the empty list, is an empty list of lists in this case. The result is an
empty list of elements. In the second case of the definition the list of lists is not empty,
so there is a list, xs, in front of a rest list of lists, xss. First all the rest lists are joined by
the recursive call of flatten; then the first list xs is put in front of that as well.

Note the difference between ++ and flatten: the operator ++ acts on two lists, the function
flatten on a list of lists. Both are popularly called `concatenation'. (Compare with the
situation of the operator &&, that checks whether two Booleans are both True and the
function and that checks whether a whole list of Booleans only contains True elements).

Selecting parts of lists

In the standard environment a number of functions are defined that select parts of a list.
As a list is built from a head and a tail, it is easy to retrieve these parts again:

hd :: [a] -> a
hd [x:_] = x
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tl :: [a] -> [a]
tl [_:xs] = xs

These functions perform pattern matching on their parameters, but observe that both
functions are partial: there are no separate definitions for the pattern []. If these functions
are applied to an empty list, the execution will be aborted with an error message
generated at run time:

hd of []

It is a little bit more complicated to write a function that selects the last element from a
list. For that you need recursion:

last :: [a] -> a
last [x]    = x
last [x:xs] = last xs

The pattern [x] is just an abbreviation of [x:[]]. Again this function is undefined for the
empty list, because that case is not covered by the two patterns. Just as hd goes with tl,
last goes with init. The function init selects everything but the last element. Therefore
you need recursion again:

init :: [a] -> [a]
init [x]    = []
init [x:xs] = [x:init xs]

Figure 3.4 gives a pictorial overview of the effect of applying the functions hd, tl, init
and last to the list [1,2,3]. Notice that hd, tl and last simply return (a reference to) an
existing list or list element, while for init new cons boxes have to be constructed (a new
spine) referring to existing list elements. Have again a close look to the definition of
these functions. The functions hd, tl and last yield a function argument as result while in
the init function new list parts are being constructed on the right-hand side of the function
definition.
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Figure 3.4 Pictorial representation of the list list = [1,2,3], and the result of applying the functions hd,
tl, init and last to this list.

In  subsection 2.4.1 a function take was presented. Apart from a list take has an integer as
an parameter, which denotes how many elements of the list must be part of the result. The
counterpart of take is  drop that deletes a number of elements from the beginning of the
list. Finally there is an operator ! that select one specific element from the list.
Schematic this is shown in figure 3.5.
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Figure 3.5 Pictorial representation of the list list = [1,2,3], and the result of applying the functions
drop 2, take 2 and ! 2 to this list.
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These functions are defined as follows:
take :: Int [a] -> [a]
take n l=:[] = l
take n [x:xs]
 | n < 1     = []
 | otherwise = [x:take (n-1) xs]

drop :: int [a] -> [a]
drop n l=:[] = l
drop n l=:[_:xs]
 | n<1       = l
 | otherwise = drop (n-1) xs

Whenever a list is too short as much elements as possible are taken or left out respec-
tively. This follows from the first line in the definitions: if you give the function an
empty list, the result is always an empty list, whatever the number is. If these lines were
left out of the definitions, then take and drop would be undefined for lists that are too
short. Also with respect to the number of elements to take or drop these functions are
foolproof1: all negative numbers are treated as 0.

The operator ! selects one element from a list. The head of the list is numbered `zero'
and so xs!3 delivers the fourth element of the list xs. This operator cannot be applied to
a list that is too short; there is no reasonable value in that case. The definition is similar
to:

(!) infixl 9 :: [a] Int -> a
(!) list n

| n == 0 = hd list
| otherwise = tl list ! dec n

For high numbers this function costs some time: the list has to be traversed from the be-
ginning. So it should be used economically. The operator is suited to fetch one element
from a list. The function weekday from subsection 2.4.1 could have been defined this way:

weekday d = ["Sunday","Monday","Tuesday","Wednesday",
,"Thursday","Friday","Saturday"] ! d

However, if all elements of the lists are used successively, it's better to use map or foldr.

Reversing lists

The function reverse from the standard environment reverses the elements of a list. The
function can easily be defined recursively. A reversed empty list is still an empty list. In
case of a non-empty list the tail should be reversed and the head should be appended to
the end of that. The definition could be like this:

reverse [] = []
reverse [x:xs] = reverse xs ++ [x]

The effect of applying reverse to the list [1,2,3] is depicted in figure 3.6.

:
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: []

Figure 3.6 Pictorial representation of the list list = [1,2,3],
and the effect of applying the function reverse to this list.

Properties of lists

An important property of a list is its length. The length can be computed using the func-
tion length. In the standard environment this function is defined equivalent with:

1In this respect the functions shown here differ from the function provided in the StdEnv of Clean 1.2.
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length :: [a] -> Int
length [] = 0
length [_:xs] = 1 + length xs

Furthermore, the standard environment provides a function isMember that tests whether a
certain element is contained in a list. That function isMember can be defined as follows:

isMember :: a [a] -> Bool | == a
isMember e xs = or (map ((==)e) xs)

The function compares all elements of xs with e (partial parameterization of the operator
==). That results in a list of Booleans of which or checks whether there is at least one equal
to True. By the utilization of the function composition operator the function can also be
written like this:

isMember :: a -> ([a] -> Bool) | == a
isMember e = or o map ((==)e)

The function notMember checks whether an element is not contained in a list:
notMember e xs = not (isMember e xs)

3.1.3 Higher order functions on lists
Functions can be made more flexible by giving them a function as a parameter. A lot of
functions on lists have a function as a parameter. Therefore they are higher order functions.

map and filter

Previously map and filter were discussed. These function process elements of a list. The
action taken depends on the function parameter. The function map applies its function
parameter to each element of the list:

xs = [ 1 , 2 , 3 , 4 , 5 ]
↓ ↓ ↓ ↓ ↓

 map square xs → [ 1 , 4 , 9 , 16 , 25 ]

The filter function eliminates elements from a list that do not satisfy a certain Boolean
predicate:

xs = [ 1 , 2 , 3 , 4 , 5 ]
×↓ ↓ ×↓ ↓ ×↓

  filter isEven xs → [ 2 , 4 ]

These three standard functions are defined recursively in the standard environment. They
were discussed earlier in subsection 2.3.1.

map :: (a->b) [a] -> [b]
map f [] = []
map f [x:xs] = [f x : map f xs]

filter :: (a->Bool) [a] -> [a]
filter p [] = []
filter p [x:xs]

| p x = [x : filter p xs]
| otherwise = filter p xs

By using these standard functions extensively the recursion in other functions can be hid-
den. The `dirty work' is then dealt with by the standard functions and the other functions
look neater.

takewhile and dropwhile

A variant of the filter function is the function takeWhile. This function has, just like fil-
ter, a predicate (function with a Boolean result) and a list as parameters. The difference
is that filter always looks at all elements of the list. The function takeWhile starts at the
beginning of the list and stops searching as soon as an element is found that doesn't satisfy
the given predicate. For example: takeWhile isEven [2,4,6,7,8,9] gives [2,4,6]. Different
from filter the 8 doesn't appear in the result, because the 7 makes takeWhile stop search-
ing. The standard environment definition reads:
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takeWhile :: (a->Bool) [a] -> [a]
takeWhile p [] = []
takeWhile p [x:xs]

| p x = [x : takeWhile p xs]
| otherwise = []

Compare this definition to that of filter.

Like take goes with a function drop, takeWhile goes with a function dropWhile. This leaves
out the beginning of a list that satisfies a certain property. For example: dropWhile isEven
[2,4,6,7,8,9] equals [7,8,9]. Its definition reads:

dropWhile :: (a->Bool) [a] -> [a]
dropWhile p [] = []
dropWhile p [x:xs]

| p x = dropWhile p xs
| otherwise = [x:xs]

3.1.4 Sorting lists
All functions on lists discussed up to now are fairly simple: in order to determine the re-
sult the lists is traversed once using recursion.

A list manipulation that cannot be written in this manner is the sorting (putting the
elements in ascending order). The elements should be completely shuffled in order to ac-
complish sorting. In general this cannot be done by traversing the list once in a recursive
function.

However, it is not very difficult to write a sorting function. There are different
approaches to solve the sorting problem. In other words, there are different algorithms.
Two algorithms will be discussed here. In both algorithms it is required that the
elements can be ordered. So, it is possible to sort a list of integers or a list of lists of
integers, but not a list of functions. This fact is expressed by the type of the sorting func-
tion:

sort :: [a] -> [a] | Ord a

This means: sort acts on lists of type a for which an instance of class Ord is defined. This
means that if one wants to apply sort on an object of certain type, say T, somewhere an
instance of the overloaded operator < on T has to be defined as well. This is sufficient,
because the other members of Ord (<=, >, etcetera) can be derived from <.

Insertion sort

Suppose a sorted list is given. Then a new element can be inserted in the right place using
the following function2:

Insert :: a [a] -> [a] | Ord a
Insert e [] = [e]
Insert e [x:xs]

| e<=x = [e,x : xs]
| otherwise = [x : Insert e xs]

If the list is empty, the new element e becomes the only element. If the list is not empty
and has x as its first element, then it depends on whether e is smaller than x. If this is the
case, e is put in front of the list; otherwise, x is put in front and e must be inserted in the
rest of the list. An example of the use of Insert:

Insert 5 [2,4,6,8,10]

evaluates to [2,4,5,6,8,10]. Observe that when Insert is applied, the parameter list has to
be sorted; only then the result is sorted, too.

The function Insert can be used to sort a list that is not already sorted. Suppose
[a,b,c,d] has to be sorted. You can sort this list by takeing an empty list (which is

2We use Insert instead of insert to avoid name conflist with the function defined in StdList.
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sorted) and insert the elements of the list to be sorted one by one. The effect of applying
the sorting function isort to our ezample list tshould be:

isort [a,b,c,d] = d Insert (c Insert (b Insert (a Insert [])))

Therefore one possible sorting algorithm is:
isort :: [a] -> [a] | Ord a
isort []    = []
isort [a:x] = Insert a (isort x)

with the function insert as defined above. This algorithm is called insertion sort.

Merge sort

Another sorting algorithm makes use of the possibility to merge two sorted lists into
one. This is what the function merge does3:

merge :: [a] [a] -> [a] | Ord a
merge []  ys = ys
merge xs  [] = xs
merge [x:xs] [y:ys]

| x <= y = [x : merge xs [y:ys]]
| otherwise = [y : merge [x:xs] ys]

If either one of the lists is empty, the other list is the result. If both lists are non-empty,
then the smallest of the two head elements is the head of the result and the remaining ele-
ments are merged by a recursive call to merge.

In the last alternative of the function merge the arguments are taken apart by patterns.
However, the lists are also used as a whole in the right-hand side. Clean provides a way to
prevent rebuilding of these expressions in the body of the function. The pattern being
matched can also be given a name as a whole, using the special symbol =:, as in the defi-
nition below:

merge :: [a] [a] -> [a] | Ord a
merge []    ys = ys
merge xs    [] = xs
merge p=:[x:xs] q=:[y:ys]

| x <= y = [x : merge xs q]
| otherwise = [y : merge p ys]

Just like insert, merge supposes that the parameters are sorted. In that case it makes sure
that also the result is a sorted list.

On top of the merge function you can build a sorting algorithm, too. This algorithm takes
advantage of the fact that the empty list and singleton lists (lists with one element) are
always sorted. Longer lists can (approximately) be split in two pieces. The two halves
can be sorted by recursive calls to the sorting algorithm. Finally the two sorted results
can be merged by merge.

msort :: [a] -> [a] | Ord a
msort xs

| len<=1 = xs
| otherwise = merge (msort ys) (msort zs)

where
ys = take half xs
zs = drop half xs
half = len / 2
len = length xs

This algorithm is called merge sort. In the standard environment insert and merge are de-
fined and a function sort that works like isort.

3.1.5 List comprehensions
In set theory the following notation to define sets is often used:

3This function definition is included in StdList.
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V = { x2 | x ∈ N, x mod 2 = 0 }.

This expression is called a set comprehension. The set V above consists of all squares of x
(x2), where x comes from the set N (x ∈ N), such that x is even (x mod 2  =  0) .
Analogously, in Clean a similar notation is available to construct lists, called a list
comprehension. A simple example of this notation is the following expression:

Start :: [Int]
Start = [x*x \\ x <- [1..10]]

This expression can be read as `x squared for all x from 1 to 10'. A list comprehension
consists of two parts separated by a double backslash (\\). The left part consists of an
expression denoting the elements of the result list. This epxression might contain
variables, introduced in the right part of the list comprehension. The latter is done via
generators, i.e. expressions of the form x<-xs indicating that x ranges over all values in the
list xs. For each of these values the value of the expression in front of the double backslash
is computed.

Thus, the example above has the same value as
Start :: [Int]
Start = map (\x -> x*x) [1..10]

The advantage of the comprehension notation is that it is clearer.

Similar to set comprehensions we can add an additional predicate to the values that
should be used to compute elements of the resulting list. The constraint is separated form
the generator by a vertical bar symbol. The list of the squares of all integers between 1
and 10 that are even is computed by the following program.

Start :: [Int]
Start = [x*x \\ x <- [1..10] | x mod 2 == 0]

In a list comprehension after the double backslash more than one generator can appear
separated by a ,. This is called orthogonal combination of generators. With orthogonal
combination of generators,the expression in front of the double backslash is computed for
every possible combination of the corresponding bound variables. For example:

Start :: [(Int,Int)]
Start = [(x,y) \\ x<-[1..2], y<-[4..6]]

evaluates to the list
[(1,4),(1,5),(1,6),(2,4),(2,5),(2,6)]

By convention the last variable changes fastest: for each value of x,  y traverses the list
[4..6].

Another way of combining generators is parallel combination of generators, indicated by
separating the generators with a &-symbol instead of the ,-symbol. With parallel
combination of generators, the ith element is drawn from several lists at the same time.
For example:

Start :: [(Int,Int)]
Start = [(x,y) \\ x<-[1..2] & y<-[4..6]]

evaluates to the list
[(1,4),(2,5)]

When the shortest list is exhausted, all generators combined with the &-operator stop.

In analogy to mathematical set comprehensions multiple generators can be combined
with constraints. The constraint is separated from the generators by a vertical bar symbol.
This is used in:

Start :: [(Int,Int)]
Start = [(x,y) \\ x<-[1..5], y<-[1..x] | isEven x]

which evaluates to
[(2,1),(2,2),(4,1),(4,2),(4,3),(4,4)]
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In the resulting list only those values of x are stored for which isEven x evaluates to True.
The scope of the variable x i s  not only restricted to the left-hand side of the
comprehension but extends to the right-hand side of the generator introducing x. This
explains why x can also be used in isEven x and in [1..x]. It is not allowed to use y in the
generators preceding it. y can only be used in (x,y) and in the constraint. The back-arrow
(<-) is especially reserved for defining list comprehension and thus is not an operator.

Strictly speaking the list comprehension notation is superfluous. You can reach the same
effect by combinations of the standard functions map, filter and flatten. However, espe-
cially in difficult cases the comprehension notation is more concise and therefore much
easier to understand. Without it the example above should be written like

Start :: [(Int,Int)]
Start = flatten (map f (filter isEven [1..5]))

where
f x = map g [1..x]
where

g y = (x,y)

which is less intuitive.

The compiler translates the list comprehensions into an equivalent expression with map,
filter and flatten. Just like the interval notation (the dot-dot expression), the com-
prehension notation is purely for the programmer's convenience. Using list comprehen-
sions it is possible to define many list processing functions in a very clear and compact
manner.

map :: (a->b) [a] -> [b]
map f l = [f x \\ x<-l]

filter :: (a->Bool) [a] -> [a]
filter p l = [x \\ x<-l | p x]

However, functions destructing the structure of the list (like sum,  isMember,  reverse and
take) are impossible or hard to write using list comprehensions.

Quick sort

List comprehensions can be used to give a very clear definition of yet another sorting
algorithm: quick sort. Similar to merge sort the list is split into two parts which are
sorted separately. In merge sort we take the first half and second half of the list and sort
these separatly. In quick sort we select all elements less or equal to a median and all
elements greater than the median and sort these separatly. This has the advantage that the
sorted sub-lists can be "merged" by the append operator ++. We use the first element of
the list as median to split the lists into two parts.

qsort :: [a] -> [a] | Ord a
qsort []     = []
qsort [a:xs] = qsort [x \\ x<-xs | x<a] ++ [a] ++ qsort [x \\ x<-xs | x>=a]

3.2 Infinite lists

3.2.1 Enumerating all numbers
The number of elements in a list can be infinite. The function from below returns an in-
finitely long list:

from :: Int -> [Int]
from n = [n : from (n+1)]

Of course, the computer can't store or compute an infinite number of elements. Fortu-
nately you can already inspect the beginning of the list, while the rest of the list is still to
be built. Execution of the program Start = from 5 yields:

[5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,…
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If an infinite list is the result of the program, the program will not terminate unless it is
interrupted by the user.

An infinite list can also be used as an intermediate result, while the final result is finite.
For example this is the case in the following problem: `determine all powers of three
smaller than 1000'. The first ten powers can be calculated using the following call:

Start :: [Int]
Start = map ((^)3) [1..10]

The result will be the list
[3,9,27,81,243,729,2187,6561,19683,59049]

The elements smaller than 1000 can be extracted by takeWhile:
Start :: [Int]
Start = takeWhile ((>) 1000) (map ((^)3) [1..10])

the result of which is the shorter list
[3,9,27,81,243,729]

But how do you know beforehand that 10 elements suffice? The solution is to use the infi-
nite list [1..] instead of [1..10] and so compute all powers of three. That will certainly
be enough…

Start :: [Int]
Start = takeWhile ((>) 1000) (map ((^)3) [1..])

Although the intermediate result is an infinite list, in finite time the result will be com-
puted.

This method can be applied because when a program is executed functions are evaluated
in a lazy way: work is always postponed as long as possible. That is why the outcome of
map ((^)3) (from 1) is not computed fully (that would take an infinite amount of time).
Instead only the first element is computed. This is passed on to the outer world, in this
case the function takeWhile. Only when this element is processed and takewhile asks for
another element, the second element is calculated. Sooner or later takeWhile will not ask
for new elements to be computed (after the first number >= 1000 is reached). No further
elements will be computed by map. This is illustrated in the following trace of the
reduction process:

takeWhile ((>) 5) (map ((^)) 3) [1..])
→ takeWhile ((>) 5) (map ((^) 3) [1:[2..]])
→ takeWhile ((>) 5) [(^) 3 1:map ((^) 3) [2..]]
→ takeWhile ((>) 5) [3:map ((^) 3) [2..]]
→ [3:takeWhile ((>) 5) (map ((^) 3) [2..])] since (>) 5 3 → True
→ [3:takeWhile ((>) 5) (map ((^) 3) [2:[3..]])]
→ [3:takeWhile ((>) 5) [(^) 3 2: map ((^) 3) [3..]]]
→ [3:takeWhile ((>) 5) [9: map ((^) 3) [3..]]]
→ [3:[]] since (>) 5 9 → False

As you might expect list comprehensions can also be used with infinite lists. The same
program as above can be written as:

Start :: [Int]
Start = takeWhile ((>) 1000) [x^3 \\ x <- [1..]]

However, be careful not to write:
Start :: [Int]
Start = [x^3 \\ x <- [1..] | x^3 < 1000]

This is equivalent to
Start :: [Int]
Start = filter ((>) 1000) [x^3 \\ x <- [1..]]

Where the function takeWhile yields the empty list as soon as the predicate fails once, the
function filter checks each element. For an infinite list, there are infinitely many ele-
ments to test. Hence this program will not terminate.
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3.2.2 Lazy evaluation
The evaluation method (the way expressions are calculated) of Clean is called lazy
evaluation. With lazy evaluation an expression (or part of it) is only computed when it is
certain that its value is really needed for the result. The opposite of lazy evaluation is
strict evaluation, also called eager evaluation. With eager evaluation, before computing the
a function's result, first all actual parameters of the function are evaluated.

Infinite lists can be defined thanks to lazy evaluation. In languages that use strict evalu-
ation (like all imperative languages and some older functional languages) infinite lists
are not possible.

Lazy evaluation has a number of other advantages. For example, consider the function
prime from subsection 2.4.1 that tests whether a number is prime:

prime :: Int -> Bool
prime x = divisors x == [1,x]

Would this function determine all divisors of x and then compare that list to [1,x]? No,
that would be too much work! At the call prime 30 the following happens. To begin, the
first divisor of 30 is determined: 1. This value is compared with the first element of the
list [1,30]. Regarding the first element the lists are equal. Then the second divisor of 30
is determined: 2. This number is compared with the second value of [1,30]: the second
elements of the lists are not equal. The operator == `knows' that two lists can never be
equal again as soon as two different elements are encountered. Therefore False can be re-
turned immediately. The other divisors of 30 are never computed!

The lazy behaviour of the operator == is caused by its definition. The recursive line from
the definition in subsection 3.2.1 reads:

(==) [x:xs] [y:ys] = x==y && xs==ys

If x==y delivers the value False, there is no need to compute xs==ys: the final result will
always be False. This lazy behaviour of the operator && is clear from its definition:

(&&) False x = False
(&&) True  x = x

If the left parameter is False, the value of the right parameter is not needed in the com-
putation of the result.

Functions that need all elements of a list, cannot be used on infinite lists. Examples of
such functions are sum and length.

At the call sum (from 1) or length (from 1) even lazy evaluation doesn't help to compute
the answer in finite time. In that case the computer will go into trance and will never de-
liver a final answer (unless the result of the computation isn't used anywhere, for then the
computation is of course never performed…

A function argument is called strict when its value is needed to determine the result of the
function in every possible application of that function. For instance the operator + is strict
in both arguments, both numbers are needed to compute their sum. The operator && i s
only strict in its first argument, when this argument in False the result of the function is
False whatever the value of the second argument is. In Clean it is possible to indicate
strictness of arguments by adding the annotation ! to the argument in the type definition.
The Clean system evaluates arguments that are indicated to be strict eagerly. This im-
plies that their value is computed before the function is evaluated. In general it is not
needed to put strictness annotations in the type definition. The compiler will be able to
derive most strictness information automatically.
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3.2.3 Functions generating infinite lists
In the standard module StdEnum some functions are defined that result in infinite lists. An
infinite list which only contains repetitions of one element can be generated using the
function repeat:

repeat :: a -> [a]
repeat x = [x : repeat x]

The call repeat 't' returns the infinite list ['t','t','t','t',….

An infinite list generated by repeat can be used as an intermediate result by a function
that does have a finite result. For example, the function repeatn makes a finite number of
copies of an element:

repeatn :: Int a -> [a]
repeatn n x = take n (repeat x)

Thanks to lazy evaluation repeatn can use the infinite result of repeat. The functions re-
peat and repeatn are defined in the standard library.

The most flexible function is again a higher order function, which is a function with a
function as a parameter. The function iterate has a function and a starting element as pa-
rameters. The result is an infinite list in which every element is obtained by applying the
function to the previous element. For example:

iterate (+1) 3 is [3,4,5,6,7,8,…
iterate (*2) 1 is [1,2,4,8,16,32,…
iterate (/10) 5678 is [5678,567,56,5,0,0,…

The definition of iterate, which is in the standard environment, reads as follows:
iterate :: (a->a) a -> [a]
iterate f x = [x : iterate f (f x)]

This function resembles the function until defined in subsection 2.3.2. The function until
also has a function and a starting element as parameters. The difference is that until stops
as soon as the value satisfies a certain condition (which is also an parameter). Further-
more, until only delivers the last value (which satisfies the given condition), while iter-
ate stores all intermediate results in a list. It has to, because there is no last element of an
infinite list…

In the next subsection an examples is discussed in which iterate is  used to solve a
practical problem: generating the list of all prime numbers.

3.2.4 The list of all prime numbers
In subsection 2.4.1 prime was defined that determines whether a number is prime. With
that the (infinite) list of all prime numbers can be generated by

filter prime [2..]

The prime function searches for the divisors of a number. If such a divisor is large, it takes
long before the function decides a number is not a prime.

By making clever use of iterate a much faster algorithm is possible. This method also
starts off with the infinite list [2..]:

[2,3,4,5,6,7,8,9,10,11,…

The first number, 2, can be stored in the list of primes. Then 2 and all its multiples are
crossed out. What remains is:

[3,5,7,9,11,13,15,17,19,21,…

The first number, 3, is a prime number. This number and its multiples are deleted from
the list:

[5,7,11,13,17,19,23,25,29,31,…

The same process is repeated, but now with 5:
[7,11,13,17,19,23,29,31,37,41,…
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And you go on and on. The function `cross out multiples of first element' is always ap-
plied to the previous result. This is an application of iterate using [2..] as the starting
value:

iterate crossout [2..]
where

crossout [x:xs] = filter (not o multiple x) xs
multiple x y = divisible y x

The number y is a multiple of x i f  y is divisible by x. The function divisible was de-
fined in section 2.4.1 as: divisible t n = t rem n == 0. As the starting value is a infinite
list. the result of this is an infinite list of infinite lists. That super list looks like this:

 [[2,3,4,5,6,7,8,9,10,11,12,13,14,…
 ,[3,5,7,9,11,13,15,17,19,21,23,25,27,…
 ,[5,7,11,13,17,19,23,25,29,31,35,37,41,…
 ,[7,11,13,17,19,23,29,31,37,41,43,47,49,…
 ,[11,13,17,19,23,29,31,37,41,43,47,51,53,…
 ,…

You can never see this thing as a whole; if you try to evaluate it, you will only see the be-
ginning of the first list. But you need the complete list to be visible: the desired prime
numbers are the first elements of the lists. So the prime numbers can be determined by
taking the head of each list:

primenums :: [Int]
primenums = map head (iterate crossout [2..])
where

crossout [x:xs] = filter (not o (multiple x)) xs

Thanks to lazy evaluation only that part of each list is calculated that is needed for the
desired part of the answer. If you want to know the next prime, more elements of every
list are calculated as far as necessary.

Often it is hard (as in this example) to imagine what is computed at what moment. But
there is no need: while programming you can just pretend infinite lists really exist; the
evaluation order is automatically optimized by lazy evaluation.

This algorithm to compute prime numbers is called the sieve of Eratosthenes.
Eratosthenes was a greek mathematician born in Cyrene who lived 276-196 BC. His
algorithm can be expressed slightly more elegant using list comprehensions:

primes :: [Int]
primes = sieve [2..]

sieve :: [Int] -> [Int]
sieve [prime:rest] = [prime: sieve [i \\ i <- rest | i mod prime <> 0]]

3.3 Tuples
All elements in a list have to be of the same type, e.g. it is not possible to store both an
integer and a string in one and the same list. Sometimes one needs to group information
of different types together. A tuple can be used for this.

A  tuple consists of a fixed number of values that are grouped together (see figure 3.7).
The values may be of different types (although that is not obligatory).

T
3

'a' 1 False

Figure 3.7 Pictorial representation of the tuple ('a',1,False) of type (Char,Int,Bool).

Tuples are denoted by round parentheses around the elements. Examples of tuples are:
(1,'a') a tuple with as elements the integer 1 and the character 'a';
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("foo",True,2) a tuple with three elements: the string foo, the Boolean True and
the number 2;

([1,2],sqrt) a tuple with two elements: the list of integers [1,2] and the
function from real to real sqrt;

(1,(2,3)) a tuple with two elements: the number 1 and a tuple containing
the numbers 2 and 3.

The tuple of each combination types is a distinct type. The order in which the compo-
nents appear is important, too. The type of tuples is written by enumerating the types of
the elements between parentheses. The four expressions above can be types as follows:

(1,'a') :: (Int,Char)
("foo",True,2) :: (String,Bool,Int)
([1,2],sqrt) :: ([Int],Real->Real)
(1,(2,3)) :: (Int,(Int,Int))

A tuple with two elements is called a 2-tuple or a pair. Tuples with three elements are
called 3-tuples etc. There are no 1-tuples: the expression (7) is just an integer; for it is al-
lowed to put parentheses around every expression.

The standard library provides some functions that operate on tuples. These are good ex-
amples of how to define functions on tuples: by pattern matching.

fst :: (a,b) -> a
fst (x,y) = x

snd :: (a,b) -> b
snd (x,y) = y

These functions are all polymorphic, but of course it is possible to write your own func-
tions that only work for a specific type of tuple:

f :: (Int,Char) -> [Char]
f (n,c) = intChars n ++ [c]

Tuples come in handy for functions with multiple results. Functions can have several
arguments. However, functions have only a single result. Functions with more than one
result are only possible by `wrapping' these results up in some structure, e.g. a tuple. Then
the tuple as a whole is the only result.

An example of a function with two results is splitAt which is defined in the standard en-
vironment. This function delivers the results of take and drop at the same time. Therefore
the function could be defined as follows:

splitAt :: Int [a] -> ([a],[a])
splitAt n xs = (take n xs,drop n xs)

However, the work of both functions can be done simultaneously. That is why in the stan-
dard library splitAt is defined as:

splitAt :: Int [a] -> ([a],[a])
splitAt 0 xs = ([] ,xs)
splitAt n [] = ([] ,[])
splitAt n [x:xs] = ([x:ys],zs)
where

(ys,zs) = splitAt (n-1) xs

The result of the recursive call of splitAt can be inspected by writing down a `right-hand
side pattern match', which is called a selector:

splitAt n [x:xs] = ([x:ys],zs)
where

(ys,zs) = splitAt (n-1) xs

The tuple elements thus obtained can be used in other expressions, in this case to define
the result of the function splitAt.

The call splitAt 2 ['clean'] gives the 2-tuple (['cl'],['ean']). In the definition (at the
recursive call) you can see how you can use such a result tuple: by exposing it to a pattern
match (here (ys,zs)).
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Another example is a function which calculates the average of a list, say a list of reals. In
this case one can use the predefined functions sum and  length:  average = sum / toReal
length. Again this has the disadvantage that one walks through the list twice. It is much
more efficient to use one function sumlength which just walks through the list once to cal-
culate both the sum of the elements (of type Real) as well as the total number of elements
in the list (of type Int) at the same time. The function sumlength therefore returns one tu-
ple with both results stored in it:

average :: [Real] -> Real
average list = mysum / toReal mylength
where

(mysum,mylength) = sumlength list 0.0 0

sumlength :: [Real] Real Int -> (Real,Int)
sumlength [x:xs] sum length = sumlength xs (sum+x) (length+1)
sumlength []     sum length = (sum,length)

Using type classes this function can be made slightly more general:
average :: [t] -> t | +, zero, one t
average list = mysum / mylength
where

(mysum,mylength) = sumlength list zero zero

sumlength :: [t] t t -> (t,t)  | +, one t
sumlength [x:xs] sum length = sumlength xs (sum+x) (length+one)
sumlength []     sum length = (sum,length)

3.3.1 Tuples and lists
Tuples can of course appear as elements of a list. A list of two-tuples can be used e.g. for
searching (dictionaries, telephone directories etc.). The search function can be easily writ-
ten using patterns; for the list a `non-empty list with as a first element a 2-tuple' is used.

search :: [(a,b)] a -> b | == a
search [(x,y):ts] s

| x == s = y
| otherwise = search ts s

The function is polymorphic, so that it works on lists of 2-tuples of arbitrary type. How-
ever, the elements should be comparable, which is why the functions search is overloaded
since == is overloaded as well. The element to be searched is intentionally defined as the
second parameter, so that the function search can easily be partially parameterized with a
specific search list, for example:

telephoneNr = search telephoneDirectory
translation = search dictionary

where telephoneDirectory and dictionary can be separately defined as constants.

Another function in which 2-tuples play a role is the zip function. This function is defined
in the standard environment. It has two lists as parameters that are chained together ele-
ment-wise in the result .  For example:  zip [1,2,3] ['abc'] r e su l t s  in  the  l i s t
[(1,'a'),(2,'b'),(3,'c')]. If the two lists are not of equal length, the shortest determines
the size of the result. The definition is rather straightforward:

zip :: [a] [b] -> [(a,b)]
zip []    ys   = []
zip xs    []   = []
zip [x:xs] [y:ys] = [(x,y) : zip xs ys]

The function is polymorphic and can thus be used on lists with elements of arbitrary type.
The name zip reflects the fact that the lists are so to speak `zipped'. The functions zip can
more compactly be defined using a list comprehension:

zip :: [a] [b] -> [(a,b)]
zip as bs = [(a,b) \\ a <- as & b <- bs]

If two values of the same type are to be grouped, you can use a list. Sometimes a tuple is
more appropriate. A point in the plane, for example, is described by two Real numbers.
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Such a point can be represented by a list or a 2-tuple. In both cases it possible to define
functions working on points, e.g. `distance to the origin'. The function distanceL is the list
version, distanceT the tuple version:

distanceL :: [Real] -> Real
distanceL [x,y] = sqrt (x*x+y*y)

distanceT :: (Real,Real) -> Real
distanceT (x,y) = sqrt (x*x+y*y)

As long as the function is called correctly, there is no difference. But it could happen that
due to a typing error or a logical error the function is called with three coordinates. In
the case of distanceT this mistake is detected during the analysis of the program: a tuple
with three numbers is of another type than a tuple with two numbers. However, using dis-
tanceL the program is well-typed. Only when the function is really used, it becomes evi-
dent that distanceL is undefined for a list of three elements. Here the use of tuples instead
of lists helps to detect errors.

3.4 Records
Often one would like to group information of possibly different type on a more struc-
tural way simply because the information belongs together. Information in a person
database may consist for example of a string (name), a Boolean (male), three integers
(date of birth) and a Boolean again (Clean user). If one wants to use such a kind of record,
one first has to declare its type in a type definition, e.g.:

:: Person = { name :: String
, birthdate :: (Int,Int,Int)
, cleanuser :: Bool
}

Type definitions in Clean always start with a :: at the beginning of a line. With this par-
ticular type definition a new type is declared, called a record type. A record is a kind of
tuple. The record elements can be of different type, just like in tuples. However, in a
record type, a name (the field name) is used to refer to a record element (see also figure
3.8). This fieldname must be used to identify the corresponding record element.

Figure 3.8 Pictorial representation of a record Person.

Once the type is defined, a record of that type can be created, e.g. in the following way:
SomePerson :: Person
SomePerson = { name = "Rinus"

, birthdate = (10,26,1952)
, cleanuser = True
}

Each of the record elements (identified                                                         by fieldname
=) must get a value of the type as indicated in the record type declaration. The order in
which the fields are specified is irrelevant, but all fields of the record have to get a value.

An important difference between a tuple and a record is that a tuple field always has to
be selected by its position, as in:

fst :: (a,b) -> a
fst (x,y) = x

while a record field is selected by field name. For instance, one can define:
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:: Two a b = { first :: a
, second :: b
}

This is a polymorphic record named Two with two record elements. One element is
named first and is of type a, the other is named second and is of type b. A function which
selects the first element can be defined as:

fstR :: (Two a b) -> a
fstR {first} = first

The example illustrates how the pattern matching mechanism can be used to select one or
more record elements. The nice thing about this feature is that one only needs to name the
fields one is interested in.

IsCleanUser :: Person -> String
IsCleanUser {cleanuser = True} = "Yes"
IsCleanUser _ = "No"

There is a special selection operator, '.',  to select an element from a record. It expects a
expression yielding a record and a field name to select an expression of  that record. For
instance:

GetPersonName :: Person -> String
GetPersonName person = person.name

Finally, there is a special language construct which enables you to create a new record
given another existing record of the same type. Consider:

ChangePersonName :: Person String -> Person
ChangePersonName person newname = {person & name = newname}

The new record is created by making a copy of the old record person. The constents of
the fields of the new record will be exactly the same as the constents of the fields of the
old record, with exception of the field name which will contain the new name newname.
The operator & is called the functional update operator. Do not confuse it with a destruc-
tive update (assignment) as is present in imperative languages (like in C, C++, Pascal).
Nothing is changed, a complete new record is made which will be identical to the old
one with exception of the specified new field values. The old record itself remains un-
changed.

The Clean system determines the type of a record from the filed names used. When there
are several records with the used field names determining the type fails. The user should
explicitly specify the type of the record inside the record. It is not sufficient to that the
type of the record can be deduced from the type of the function. It is always allowed to
indicate the type of a record explicitly.

AnotherPerson :: Person
AnotherPerson = { Person

| name = "Pieter"
, birthdate = (7,3,1957)
, cleanuser = True
}

The records in Clean make it possible to define functions which are less sensible for
changes. For instance, assume that one has defined:

:: Point = { x :: Real
, y :: Real
}

MovePoint :: Point (Real,Real) -> Point
MovePoint p (dx,dy) = {p & x = p.x + dx, y = p.y + dy}

Now, lets assume that in a later state of the development of the program one would like
to add more information to the record Point, say

:: Point = { x :: Real
, y :: Real
, c :: Color
}
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where Color is some other type. This change in the definition of the record Point has no
consequences for the definition of MovePoint. If Point would be a tuple, one would have to
change the definition of MovePoint as well, because Point would change from a 2-tuple to
a 3-tuple which has consequences for the pattern match as well as for the construction of a
new point.

So, for clarity and ease of programming we strongly recommend the use of records in-
stead of tuples. Only use tuples for  functions which return multiple results.

3.4.1 Rational numbers
An application in which records can be used is an implementation of the Rational num-
bers. The rational numbers form the mathematical set Q, numbers that can be written as a
ratio. It is not possible to use Real numbers for calculations with ratios: the calculations
must be exact, such that the outcome of 1

2 + 
1
3 is the fraction 5

6 and not the Real 0.833333.

Fractions can be represented by a numerator and a denominator, which are both integer
numbers. So the following type definition is obvious:

:: Q = { num :: Int
, den :: Int
}

Next a number of frequently used fractions get a special name:
QZero = {num = 0,den = 1}
QOne = {num = 1,den = 1}
QTwo = {num = 2,den = 1}
QHalf = {num = 1,den = 2}
QThird = {num = 1,den = 3}
QQuarter = {num = 1,den = 4}

We want to write some functions that perform the most important arithmetical opera-
tions on fractions: multiplication, division, addition and subtraction. Instead of
introducing new names for these functions we use the overloading meganism (introduced
in section 1.5.5 and explained in more detail in section 4.1) in order to use the obvious
operator symbols: *, /, +, -.

The problem is that one value can be represented by different fractions. For example, a
half can be represented by {num=1,den=2}, but also by {num=2,den=4} and {num=17,den=34}.
Therefore the outcome of two times a quarter might `differ' from `half'. To solve this
problem a function simplify is needed that can simplify a fraction. By applying this
function after every operation on fractions, fractions will always be represented in the
same way. The result of two times a quarter can then be safely compared to a half: the
result is True.

The function simplify divides the numerator and the denominator by their greatest com-
mon divisor. The greatest common divisor (gcd) of two numbers is the greatest number by
which both numbers are divisible. For negative numbers we want a negative nominator.
When the denominator is zero the fraction is not defined. The definition of simplify
reads as follows:

simplify :: Q -> Q
simplify {num=n,den=d}

| d == 0    = abort "denominator of Q is 0!"
| d < 0     = {num = ~n / g, den = ~d / g}
| otherwise = {num =  n / g, den =  d / g}

where
g = gcd n d

A simple definition of gcd x y determines the greatest divisor of x that also divides y us-
ing divisors and divisible from subsection 2.4.1.

gcd :: Int Int -> Int
gcd x y = last (filter (divisible (abs y)) (divisors (abs x)))

(In the standard library a more efficient version of gcd is defined:
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gcd :: Int Int -> Int
gcd x y = gcd' (abs x) (abs y)
where

gcd' x 0 = x
gcd' x y = gcd' y (x mod y)

This algorithm is based on the fact that if x and y are divisible by d then so is x mod y (=x-
(x/y)*y) ).

Using simplify we are now in the position to define the mathematical operations. Due to
the number of places where a record of type Q must be created and simplified it is
convenient to introduce an additional function mkQ.

mkQ :: x x -> Q | toInt x
mkQ n d = simplify {num = toInt n, den = toInt d}

To multiply two fractions, the numerators and denominators must be multiplied ( 23 * 
5
4 =

10
12 ). Then the result can be simplified (to  5

6 ):
instance * Q
where (*) q1 q2 = mkQ (q1.num*q2.num) (q1.den*q2.den)

Dividing by a number is the same as multiplying by the inverse:
instance / Q
where (/) q1 q2 = mkQ (q1.num*q2.den) (q1.den*q2.num)

Before you can add two fractions, their denominators must be made the same first. ( 14 + 
3
10

= 10
40 + 

12
40 = 

22
40 ). The product of the denominator can serve as the common denominator.

Then the numerators must be multiplied by the denominator of the other fraction, after
which they can be added. Finally the result must be simplified (to 11

20 ).
instance + Q
where (+) q1 q2 = mkQ (q1.num * q2.den + q1.den * q2.num) (q1.den * q2.den)
instance - Q
where (-) q1 q2 = mkQ (q1.num * q2.den - q1.den * q2.num) (q1.den * q2.den)

The result of computations with fractions is displayed as a record. If this is not nice
enough, you can define a function toString:

instance toString Q
where toString q

| sq.den==1 = toString sq.num
| otherwise = toString sq.num +++ "/" +++ toString sq.den

  where
sq = simplify q

3.5 Arrays
An array is a predefined data structure which is used mainly for reasons of efficiency.
With a list an array has in common that all its elements have to be of the same type.  With
a tuple/record-like data structure an array has in common that it contains a fixed number
of elements. The elements of an array are numbered. This number, called the index,  is
used to identify an array element, like field names are used to identify record elements.
An array index is an integer number between 0 and the number of array elements - 1.

Arrays are notated using curly braces. For instance,
MyArray :: {Int}
MyArray = {1,3,5,7,9}

is an array of integers (see figure 3.9). It's type is indicated by {Int}, to be read as 'array
of Int'.
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Array5

31

0 2 4

1 5 9

3 7

Figure 3.9 Pictorial representation of an array with 5 elements {1,3,5,7,9}.

Compare this with a list of integers:
MyList :: [Int]
MyList = [1,3,5,7,9]

One can use the operator ! to select the i th element from a list (see subsection 3.1.2): For
instance

MyList!2

will yield the value 5. To select the i th element from array a one writes a.[i]. So,
MyArray.[2]

will also yield the value 5. Besides the small difference in notation there is big difference
in the efficiency between an array selection and a list selection. To select the i th element
from a list, one has to recursively walk through the spine of the list until the i th list ele-
ment is found (see the definition of ! in subsection 3.1.2).  This takes i steps. The i th el-
ement of an array can be found directly in one  step because all the references to the ele-
ments are stored in the array box itself (see figure 3.9). Selection can therefore be done
very efficiently regardless which element is selected in constant time.

The big disadvantage of selection is that it is possible to use an index out of the index
range (i.e. index < 0 or index ≥ n, where n is the number of list/array elements). Such an
index error generally cannot be detected at compile-time, such that this will give rise to
a run-time error. So, selection both on arrays as on lists is a very dangerous operation be-
cause it is a partial function and one easily makes mistakes in the calculation of an index.
Selection is the main operation on arrays. The construction of lists is such that selection
can generally be avoided. Instead one can without danger recursively traverse the spine of
a list until the desired element is found. Hitting on the empty list a special action can be
taken. Lists can furthermore easily be extended while an array is fixed sized. Lists are
therefore more flexible and less error prone. Unless ultimate efficiency is demanded, the
use of lists above arrays is recommended.

But, arrays can be very useful if time and space consumption is becoming very critical,
e.g. when one uses a huge and fixed number of elements which are frequently selected and
updated in a more or less random order.

3.5.1 Array comprehensions
 To increase readability, Clean offers array comprehensions in the same spirit as list
comprehension's. For instance, if ArrayA is an array and ListA a list, then

NewArray = {elem \\ elem <- ListA}

will create an new array with the same (amount of) elements as in ListA. Conversion the
other way around is easy as well:

NewList = [elem \\ elem <-: ArrayA]

Notice that the <- symbol is used to draw elements from a list while the <-: symbol is
used to draw elements from an array.

Also a map-like function on an array can be defined in a straightforward manner:
MapArray f a = {f e \\ e <-: a}
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3.5.2 Lazy, strict and unboxed arrays
To obtain optimal efficiency in time and space, several kinds of arrays can be defined in
Clean. By default an array is a lazy array (say, of type {Int}), i.e. an array consists of a
contiguous block of memory containing references to the array elements (see figure 3.9).
The same representation is chosen if a strict array is used (prefix the element type with a
!, e.g.  {!Int}). Strict arrays have to property that its elements will always be evaluated
whenever the array is used. For elements of basic type only (Int, Real, Char, Bool} an un-
boxed array can be defined (prefix the element type with a #, e.g. {#Int}). So, by explic-
itly specifying the type of the array upon creation one can indicate which representation
one wants: the default one (lazy), or the strict or the unboxed version of the array.

Unboxed arrays are more efficient than lazy or strict arrays because the array elements
themselves are stored in the array box. No references to other boxes have to be regarded.
For instance, the following array

MyUnboxedArray :: {#Int}
MyUnboxedArray = {1,3,5,7,9}

is an unboxed array (due to its type specification) of integers. Compare its representation
in figure 3.10 with the default representation given in figure 3.9.

UnbArray5 731 5 9

Figure 3.10 Pictorial representation of an unboxed array with 5 elements {1,3,5,7,9}.

Lazy, strict and unboxed arrays are regarded by the Clean compiler as objects of differ-
ent types. This means for instance that a function which is expecting an unboxed array of
Char cannot be applied to a lazy array of Char or the other way around. However, most
predefined operations on arrays (like array selection) are overloaded such that they can be
used on lazy, strict as well as on  unboxed arrays.

A  string is equivalent with an unboxed array of character {#Char}. A type synonym is de-
fined in module StdString. For programming convenience, there is special syntax to de-
note strings.  For instance, the string denotation

"abc"

is equivalent with the unboxed array {'a','b','c'}. Compare this with ['abc'] which is
equivalent with the list of characters ['a','b','c'].

3.5.3 Array updates
It is also possible to update an array, using the same notation as for records (see sub-
section 3.4). In principle a new array is constructed out of existing one. One has to indi-
cate for which index the new array differs from the old one. Assume that Array5 is an in-
teger array with 5 elements. Then an array with elements {1,3,5,7,9} can be created as
follows:

{Array5 & [0]=1,[1]=3,[2]=5,[3]=7,[4]=9}

As with record updating, the order in which the array elements are specified is irrelevant.
So, the following definition

{Array5 & [1]=3,[0]=1,[3]=7,[4]=9,[2]=5}

is also fine.

One can even combine array updates with array comprehension's. So the next two expres-
sions will also yield the array {1,3,5,7,9} as result.

{Array5 & [i]=2*i+1 \\ i <- [0..4]}
{Array5 & [i]=elem \\ elem <- [1,3..9] & i <- [0..4]}

As said before, arrays are mainly important to achieve optimal efficiency. That is why
updates of arrays are in Clean only defined on unique arrays, such that the update can
always be done destructively ! This is semantically sound because the original unique array
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is known not to be used anymore. Uniqueness is explained in more detail in chapter 4 and
5.

3.5.4 Array patterns
Array elements can be selected in the patterns of a function. This is similar to the
selection of the fields of a record. This is illustrated by the following functions.

CopyFirst :: Int *{#a} -> {#a} | ArrayElem a
CopyFirst j   a=:{[0]=a0} = {a & [j] = a0}

CopyElem :: Int Int *{#a} -> {#a} | ArrayElem a
CopyElem  i j a=:{[i]=ai} = {a & [j] = ai}

CopyCond :: Int Int *{#a} -> {#a} | ArrayElem, ==, zero a
CopyCond  i j a=:{[i]=ai, [j]=aj} | a.[0]==zero = {a & [j] = ai}

= {a & [i] = aj}

I t  i s  not (yet) allowed to use constants in these patterns. The selection of elements
specified in the pattern is done before the right hand side of the rule is constructed. This
explains why the given examples are allowed. When the CopyElem function is written as

CopyElem2 :: Int Int *{#a} -> {#a} | ArrayElem a
CopyElem2  i j a = {a & [j] = a.[i]}

it will be rejected by the Clean system. An array can only be updated when it is unique.
The reference to the old array, a.[i], in the array update spoils the uniqness properties of
the array. Without selection in the pattern this function should be written with a let!
construct:

CopyElem3 :: Int Int *{#a} -> {#a} | ArrayElem a
CopyElem3  i j a = let! ai = a.[i] in {a & [j] = ai}

The graphs specified in the strict let part are evaluated before the expression after the
keyword in is evaluated. This implied that the element ai is selected from the array
before the array is updated.

3.6 Algebraic datatypes
We have seen several `built-in' ways to structure information: lists, tuples, records and ar-
rays. In some cases these data structures are not appropriate to represent the information.
Therefore it has been made possible to define a new, so-called algebraic datatype your-
self.

An algebraic datatype is a type that defines the way elements can be constructed. In fact,
all built-in types are predefined algebraic datatypes. A `list', for instance, is an algebraic
type. Lists can be constructed in two ways:
• as the empty list;
• by prepending an element to an existing list using the [x:xs] notation.
In the case distinction in definitions of functions that operate on lists these two way con-
struction methods reappear, for example:

length :: [t] -> Int
length [] = 0
length [x:xs] = 1 + length xs

By defining the function for both cases, the function is totally defined.

If you want to use a new data structure in Clean, you have to define its type in an alge-
braic data type definition. For instance:

:: Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

is an algebraic data type definition introducing a new type, named Day. It moreover
introduces seven new constants that have this type Day (Mon,Tue,Wed,Thu,Fri,Sat,Sun). These
constants are called data constructors. Once defined in an algebraic type, the data
constructors can be used in function definitions. They can appear in expressions to
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construct new objects of the specified algebraic type. They can appear in patterns, for
instance to discriminate between objects of the same algebraic type.

IsWeekend Sat = True
IsWeekend Sun = True
IsWeekend _   = False

A data constructor can only belong to one  algebraic data type definition. As a conse-
quence, the Clean system can directly tell the type of each data constructor. So, Mon ::
Day, Tue :: Day, and so on. And therefore, the type of IsWeekend is:

IsWeekend :: Day -> Bool

The algebraic type Day is called an enumeration type: the type definition just enumerates
all possible values. In chapter 2 we used integers to represent the days of the week. This
has both advantages and disadvantages:
• An advantage of the algebraic data type is that well chosen names avoids confusion.

When you use integers you have to decide and remember whether the week starts on
Sunday or on Monday. Moreover, there is the question whether the first day of the
week has number 0 or number 1.

• An other advantage of the algebraic type is that the type checker is able to verify type
correctness. A function that expects or delivers an element of type Day will always use
one of the listed values. When you use integers, the compiler is only able to verify
that an integer is used at each spot a Day is expected. It is still possible to use the
value 42 where a Day is expected. In addition using algebraic can prevent confusion be-
tween enumerated types. When we use this definition of Day and a similar definition
of  Month it is not possible to interchange the arguments of daynumber by accident
without making a type error.

• An advantage of using integers to represent days is that the definition of operations
like addition, comparison and equality can be reused. In chapter 2 we saw how pleas-
ant this is. For an algebraic type all the needed operations should be defined.

The balance between advantages and disadvantages for the application at hand deter-
mines whether it is better to use an algebraic enumeration type or to use integers as en-
coding (Booleans can be used for types with two values). Unless there are strong reasons to
use something else we recommend generally to use an algebraic data type. In the next
section we show that it is possible to equip the constructors with arguments and to define
recursive types. This is far beyond the possibilities of an encoding of types in integers.

As usual, it is possible to combine algebraic types with orther types in various ways. For
example:

:: Employee = { name :: String
  , gender :: Gender
  , birthdate :: Date
  , cleanuser :: Bool
  }

:: Date = { day :: Int
  , month :: Int
  , year :: Int
  }

:: Gender = Male | Female

These types can be used in functions like:
WeekDayOfBirth :: Employee -> Day
WeekDayOfBirth {birthdate=:{day,month,year}}
 = [Sun, Mon, Tue, Wed, Thu, Fri, Sat] ! daynumber day month year

Where we use the function daynumber as defined in chapter 2. An example of a function
generating a value of the type Employee is:

AnEmployee :: Employee
AnEmployee = { name      = "Pieter"

 , gender    = Male
 , birthdate = {year = 1957, month = 7, day = 3}
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 , cleanuser = True
 }

3.6.1 Tree definitions
All data structures can be defined using an algebraic data type definition. In this way one
can define data structures with certain properties. For instance, a list is a very flexible
data structure. But, it also has a disadvantage. It is a linear structure; as more elements are
prepended, the chain (spine) becomes longer (see figure 3.3). Sometimes such a linear
structure is not appropriate and a tree structure would be better. A (binary) tree can be
defined as:

:: Tree a = Node a (Tree a) (Tree a)
| Leaf

You can pronounce this definition as follows. `A tree with elements of type a (shortly, a
tree of a) can be built in two ways: (1) by applying the constant Node to three parameters
(one of type a and two of type tree of a), or (2) by using the constant Leaf.' Node and Leaf
are two new constants.  Node is a data constructor of arity three (Node :: a (Tree a) (Tree a)
-> (Tree a)), Leaf is a data constructor of arity zero (Leaf :: Tree a). The algebraic type
definition also states that the new type Tree is polymorphic.

You can construct trees by using the data constructors in an expression (this tree is also
drawn in the figure 3.11).

Node 4 (Node 2 (Node 1 Leaf Leaf)
(Node 3 Leaf Leaf)

)
(Node 6 (Node 5 Leaf Leaf)

(Node 7 Leaf Leaf)
)

You don't have to distribute it nicely over the lines; the following is also allowed:
Node 4(Node 2(Node 1 Leaf Leaf)(Node 3 Leaf Leaf))

(Node 6(Node 5 Leaf Leaf)(Node 7 Leaf Leaf))

However, the layout of the first expression is clearer.

4

6

Node

7

Node

5

Node

2

Node

3

Node

1

Node

Node

Leaf Leaf Leaf Leaf Leaf LeafLeaf Leaf

Figure 3.11 Pictorial representation of a tree.

Not every instance of the type tree needs to be as symetrical as the tree show above. This
is illustrated by the following example.

Node 7 (Node 3 (Node 5 Leaf Leaf)
Leaf

)
Leaf

An algebraic data type definition can be seen as the specification of a grammar in which
is specified what legal data objects are of a specific type. If you don't construct a data
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structure as specified in the algebraic data type definition, a type error is generated at
compile time.

Functions on a tree can be defined by making a pattern destinction for every data con-
structor. The next function, for example, computes the number of Node constructions in a
tree:

sizeT :: Tree a -> Int
sizeT Leaf = 0
sizeT (Node x p q) = 1 + sizeT p + sizeT q

Compare this function to the function length on lists.

There are many more types of trees possible. A few examples:
• Trees in which the information is stored in the leaves (instead of in the nodes as in

Tree):
:: Tree2 a = Node2 (Tree2 a) (Tree2 a)

| Leaf2 a

• Trees in which information of type a is stored in the nodes and information of type b
in the leaves:
:: Tree3 a b = Node3 a (Tree3 a b) (Tree3 a b)

| Leaf3 b

• Trees that split in three branches at every node instead of two:
:: Tree4 a = Node4 a (Tree4 a) (Tree4 a) (Tree4 a)

| Leaf4

• Trees in which the number of branches in a node is variable:
:: Tree5 a = Node5 a [Tree5 a]

In this tree you don't need a separate constructor for a `leaf', because you can use a
node with no outward branches.

• Trees in which every node only has one outward branch:
:: Tree6 a = Node6 a (Tree6 a) | Leaf6

A `tree' of this type is essentially a list: it has a linear structure.
• Trees with different kinds of nodes:

:: Tree7 a b = Node7a Int a (Tree7 a b) (Tree7 a b)
| Node7b Char (Tree7 a b)
| Leaf7a b
| Leaf7b Int

3.6.2 Search trees
A good example of a situation in which trees perform better than lists is searching (the
presence of) an element in a large collection. You can use a search tree for this purpose.

In subsection 3.1.2 a function isMember was defined that delivered True if an element was
present in a list. Whether this function is defined using the standard functions map and or

isMember :: a -> [a] -> Bool | Eq a
isMember e xs = or (map ((==)e) xs)

or directly with recursion
isMember e [] = False
isMember e [x:xs] = x==e || isMember e xs

doesn't affect the efficiency that much. In both cases all elements of the list are inspected
one by one. As soon as the element is found, the function immediately results in True
(thanks to lazy evaluation), but if the element is not there the function has to examine all
elements to reach that conclusion.

It is somewhat more convenient if the function can assume the list is sorted, i.e. the ele-
ments are in increasing order. The search can then be stopped when it has `passed' the
wanted element. As a consequence the elements must not only be comparable (class Eq),
but also orderable (class Ord):

elem' :: a -> [a] -> Bool | Eq, Ord a
elem' e [] = False
elem' e [x:xs] = e == x || (e > x && elem' e xs)
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A much larger improvement can be achieved if the elements are not stored in a list, but in
search tree. A search tree is a kind of `sorted tree'. It is a tree built following the defini-
tion of Tree from the previous paragraph:

:: Tree a = Node a (Tree a) (Tree a)
| Leaf

At every node an element is stored and two (smaller) trees: a `left' subtree and a `right'
subtree (see figure 3.11). Furthermore, in a search tree it is required that all values in the
left subtree are smaller or equal tho the value in the node and all values in the right subtree
greater. The values in the example tree in the figure are chosen so that it is in fact a search
tree.

In a search tree the search for an element is very simple. If the value you are looking for is
equal to the stored value in an node, you are done. If it is smaller you have to continue
searching in the left subtree (the right subtree contains larger values). The other way
around, if the value is larger you should look in the right subtree. Thus the function el-
emTree reads as follows:

elemTree :: a (Tree a) -> Bool | Eq, Ord a
elemTree e Leaf = False
elemTree e (Node x le ri)

| e==x = True
| e<x = elemTree e le
| e>x = elemTree e ri

If the tree is well-balanced, i.e. it doesn't show big holes, the number of elements that has
to be searched roughly halves at each step. And the demanded element is found quickly: a
collection of thousand elements only has to be halved ten times and a collection of a mil-
lion elements twenty times. Compare that to the half million steps isMember costs on av-
erage on a collection of a million elements.

In general you can say the complete search of a collection of n elements costs n steps with
isMember, but only 2log n steps with elemTree.

Search trees are handy when a large collection has to be searched many times. Also e.g.
search from subsection 3.3.1 can achieve enormous speed gains by using search trees.

Structure of a search tree

The form of a search tree for a certain collection can be determined `by hand'. Then the
search tree can be typed in as one big expression with a lot of data constructors. However,
that is an annoying task that can easily be automated.

Like the function insert adds an element to a sorted list (see subsection 3.1.4), the func-
tion insertTree adds an element to a search tree. The result will again be a search tree,
i.e. the element will be inserted in the right place:

insertTree :: a (Tree a) -> Tree a | Ord a
insertTree e Leaf = Node e Leaf Leaf
insertTree e (Node x le ri)

| e<=x = Node x (insertTree e le) ri
| e>x = Node x le (insertTree e ri)

If the element is added to a Leaf (an `empty' tree), a small tree is built from e and two
empty trees. Otherwise, the tree is not empty and contains a stored value x. This value is
used to decide whether e should be inserted in the left or the right subtree. When the tree
will only be used to decide whether an element occurs in the tree there is no need to store
duplicates. It is straight forward to change the function insertTree accordingly:

insertTree :: a (Tree a) -> Tree a | Ord, Eq a
insertTree e Leaf = Node e Leaf Leaf
insertTree e node=:(Node x le ri)

| e<x = Node x (insertTree e le) ri
| e==x = node
| e>x = Node x le (insertTree e ri)
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By using the function insertTree repeatedly, all elements of a list can be put in a search
tree:

listToTree :: [a] -> Tree a | Ord, Eq a
listToTree []     = Leaf
listToTree [x:xs] = insertTree x (listToTree xs)

The experienced functional programmer will recognise the pattern of recursion and
replace it by an application of the function foldr:

listToTree :: ([a] -> Tree a) | Ord, Eq a
listToTree = foldr insertTree Leaf

Compare this function to isort in subsection 3.1.4.

A disadvantage of using listToTree is that the resulting search tree is not always well-bal-
anced. This problem is not so obvious when information is added in random order. If,
however, the list which is made into a tree is already sorted, the search tree `grows
cooked'. For example, when running the program

Start = listToTree [1..7]

the output will be
Node 7 (Node 6 (Node 5 (Node 4 (Node 3 (Node 2 (Node 1 Leaf Leaf) Leaf) Leaf)
Leaf) Leaf) Leaf) Leaf

Although this is a search tree (every value is between values in the left and right subtree)
the structure is almost linear. Therefore logarithmic search times are not possible in this
tree. A better (not `linear') tree with the same values would be:

Node 4 (Node 2 (Node 1 Leaf Leaf)
(Node 3 Leaf Leaf)

)
(Node 6 (Node 5 Leaf Leaf)

(Node 7 Leaf Leaf)
)

3.6.3 Sorting using search trees
The functions that are developed above can be used in a new sorting algorithm. For that
one extra function is necessary: a function that puts the elements of a search tree in a list
preserving the ordering. This function is defined as follows:

labels :: (Tree a) -> [a]
labels Leaf = []
labels (Node x le ri) = labels le ++ [x] ++ labels ri

The name of the function is inspired by the habit to call the value stored in a node the
label of that node.

In contrast with insertTree this function performs a recursive call to the left and the right
subtree. In this manner every element of the tree is inspected. As the value x is inserted in
the right place, the result is a sorted list (provided that the parameter is a search tree).

An arbitrary list can be sorted by transforming it into a search tree with listToTree and
than summing up the elements in the right order with labels:

tsort :: ([a] -> [a]) | Eq, Ord a
tsort = labels o listToTree

3.6.4 Deleting from search trees
A search tree can be used as a database. Apart from the operations enumerate, insert and
build, which are already written, a function for deleting elements comes in handy. This
function somewhat resembles the function insertTree; depending on the stored value the
function is called recursively on its left or right subtree.

deleteTree :: a (Tree a) -> (Tree a) | Eq, Ord a
deleteTree e Leaf = Leaf
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deleteTree e (Node x le ri)
| e<x = Node x (deleteTree e le) ri
| e==x = join le ri
| e>x = Node x le (deleteTree e ri)

If, however, the value is found in the tree (the case e==x) it can't be left out just like that
without leaving a `hole'. That is why a function join that joins two search trees is neces-
sary . This function takes the largest element from the left subtree as a new node. If the
left subtree is empty, joining is of course no problem:

join :: (Tree a) (Tree a) -> (Tree a)
join Leaf b2 = b2
join b1   b2 = Node x b1' b2
where

(x,b1') = largest b1

The function largest, apart from giving the largest element of a tree, also gives the tree
that results after deleting that largest element. These two results are combined in a tuple.
The largest element can be found by choosing the right subtree over and over again:

largest :: (Tree a) -> (a,(Tree a))
largest (Node x b1 Leaf) = (x,b1)
largest (Node x b1 b2)   = (y,Node x b1 b2')
where

(y,b2') = largest b2

As the function largest is only called from join it doesn't have to be defined for a Leaf-
tree. It is only applied on non-empty trees, because the empty tree is already treated sep-
arately in join.

3.7 Abstract datatypes
In subsection 1.6 we have explained the module structure of Clean. By default a function
only has a meaning inside the implementation module it is defined in. If you want to use
a function in another module as well, the type of that function has to be repeated in the
corresponding definition module. Now, if you want to export a type, you simply repeat
the type declaration in the definition module. For instance, the type Day of subsection
3.4.1 is exported by repeating its complete definition

definition module day

:: Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

in the definition module.

For software engineering reasons it often much better only to export the name of a type
but not its concrete definition (the right-hand side of the type definition). In Clean this is
done by specifying only the left-hand side of a type in the definition module while the
concrete definition (the right-hand side of the type definition) is hidden in the imple-
mentation module, e.g.

definition module day

:: Day

So, Clean's module structure can be used to hide the actual definition of a type. The ac-
tual definition of the type can be an algebraic data type, a record type or a synonym type
(giving a new name to an existing type).

A type of which the actually definition is hidden is called an abstract data type. The ad-
vantage of an abstract data type is that, since its concrete structure remains invisible for
the outside world, an object of abstract type can only be created and manipulated with
help of functions that are exported by the module as well. The outside world can only
pass objects of abstract type around or store them in some data structure. They cannot
create such an abstract object nor change its contents. The exported functions are the only
means with which the abstract data can be created and manipulated.
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Modules exporting an abstract data type provide a kind of data encapsulation known
from the object oriented style of programming. The exported functions can be seen as the
methods to manipulate the abstract objects.

The most well-known example of an abstract data type is a stack. It can be defined as:
definition module stack

:: Stack a

Empty ::   (Stack a)
isEmpty ::   (Stack a) -> Bool
Top ::   (Stack a) -> a
Push :: a (Stack a) -> Stack a
Pop ::   (Stack a) -> Stack a

It defines an abstract data type (object) of type 'Stack of anything'. Empty is a function
(method) which creates an empty stack. The other functions can be used to push an item
of type a on top of a given stack yielding a stack (Push), to remove the top element from
a given stack (Pop),  to retrieve the top element from a given stack (Top), and to check
whether a given stack is empty or not (isEmpty).

In the corresponding implementation module one has to think of a convenient way to rep-
resent a stack, given the functions (methods) on stacks one has to provide. A stack can very
well be implemented by using a list. No new type is needed. Therefore, a stack can be
defined by using a synonym type.

implementation module stack

::Stack a :== [a]

Empty :: (Stack a)
Empty = []

isEmpty :: (Stack a) -> Bool
isEmpty [] = True
isEmpty s = False

Top :: (Stack a) -> a
Top [e:s] = e

Push :: a (Stack a) -> Stack a
Push e s = [e:s]

Pop :: (Stack a) -> Stack a
Pop [e:s] = s

3.8 Run-time errors
The static type system of Clean prevents run-time type errors. The compiler ensures that
it is impossible to apply a function to arguments of the wrong type. This prevents a lot of
errors during program execution. Nevertheless, the compiler is not able to detect all
possible errors. In this section we discuss some of the errors that can still occur.

3.8.1 Non-termination
It is perfectly possible to write programs in Clean that can run forever. Sometimes this is
the intention of the programmer, in other situations this is considered an error. A very
simple example of a program that will not terminate is:

Start :: String
Start = f 42

f :: t -> u
f x = f x
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There is nothing wrong with the type of this program, but it will never produce a result.
Programs that yields an infinite data structure are other examples of programs that does
not terminate:

Start :: [Int]
Start = ones where ones = [1:ones]

As we have seen, there are programs manipulating infinite data structures that do
terminate. In general it is undecidable whether a given program will terminate or not.
So, the compiler is not able to warn you that your program does not terminate.

In large programs it may be pretty complicated to detect the reason why a program does
not terminate. When a critical observation of your program does not indicate the error
you should isolate the error by breaking your program into pieces that are tested
individually. You can prevent  a lot these problems by making it a habit to inspect the
termination properties of each function you have written immediately after you have
written it down. As we have seen there are many valid programs that use infinite data
structures. For instance the first 20 prime numbers are computed by (see section 3.2.5):

Start :: [Int]
Start = take 20 primes

3.8.2 Partial functions
Many of the functions that you write are partial functions: the result of the function is only
defined for some of the arguments allowed by the type system. Some examples are:

fac :: Int -> Int
fac 0 = 1
fac n = n * fac (n-1)

depth :: (Tree a) -> Int
depth (Node _ l r) = max (depth l) (depth r)

The result of the function fac is only defined for integers greater or equal to 0.  For
negative arguments the function does not terminate. The function depth is only defined
for trees that are not a single leaf. There is no rule alternative applicable to the expression
depth Leaf. Whenever Clean tries to evaluate this expression an appropriate error message
is generated:

Run time error, rule 'depth' in module 'test' does not match

The Clean compiler analyses functions during compilation. Whenever the compiler
cannot decide that there is always a rule alternative applicable it generates an appropriate
warning:

Warning [test.icl,35,depth]: function may fail

Termination problems can be prevented by generating an error message or making sure
that none of the alternatives is applicable:

fac1 :: Int -> Int
fac1 0 = 1
fac1 n | n>0 = n * fac1 (n-1)
             = abort "fac1 has an negative argument"

fac2 :: Int -> Int
fac2 0 = 1
fac2 n | n>0 = n * fac2 (n-1)

When called with a negative argument these function will produce the following error
messages:

fac1 has an negative argument
Run time error, rule 'fac2' in module 'test' does not match

Although the error is easy to detect in this way it might be a problem to detect the
reason why this expression was generated. You should make it a habit to consider what
will happen when the function is called with 'wrong' arguments. With respect to detecting
problems the functions fac1 and  fac2 are considered better than fac. When you are
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worried about the additional runtime taken by the additional test you might consider
doing the test for appropriate arguments once and for all:

fac3 :: Int -> Int
fac3 n | n >= 0 = f n

where f 0 = 1
f n = n * f(n-1)

In general it is worse to receive a wrong answer than receiving no answer at all. When you
obtain no result you are at least aware of the fact that there is a problem. So, do not write:

fac4 n | n < 1 = 0
               = n * fac4 (n-1)

3.8.3 Cyclic dependencies
When your program uses its own results before they can be computed you have by a nasty
error known as cycle in spine or black hole. The origin of the name of this error is found a
possible implementation of functional languages, see part III. This kind errors can be
very hard to detect.

We will illustrate this kind of error by a program that generates a sorted list of all num-
bers of the form 2n3m. Computing these numbers is known as the Hamming problem. We
will generate Hamming numbers by observing that a new Hamming number can be com-
puted by multiplying and existing number by 2 or 3. Since we generate an infinite list of
these numbers we cannot use on ordinary sorting function to sort hamming numbers. We
sort these numbers by an adapted version of the function merge.

ham :: [Int]
ham =: merge [n*2 \\ n <- ham] [n*3 \\ n <- ham]

where merge  l=:[a:x] m=:[b:y]
| a<b =  [a:merge x m]
| a==b =  merge l y
| otherwise =  [b: merge l y]

Start::[Int]
Start = take 100 Ham

Here it is no problem that the function merge is only defined for non-empty lists, it will
only be used to merge infinite lists. Execution of this program yields:

Run Time Warning: cycle in spine detected

The source of the error is that the program is not able to generate a first Hamming num-
ber. When we know this and observe that 1 is the first hamming number (1 = 2030), it is
easy to give a correct version of this function:

ham :: [Int]
ham =: [1:merge [n*2 \\ n <- ham] [n*3 \\ n <- ham]]

where merge  l=:[a:x] m=:[b:y]
| a<b =  [a:merge x m]
| a==b =  merge l y
| otherwise =  [b: merge l y]

When we do not use the computed Hamming numbers to generate new Hamming num-
bers, but compute these numbers again as in:

ham :: [Int]
ham = merge [n*2 \\ n <- ham] [n*3 \\ n <- ham]

where merge  l=:[a:x] m=:[b:y]
| a<b =  [a:merge x m]
| a==b =  merge l y
| otherwise =  [b: merge l y]

we obtain a 'heap full' message instead of the 'cycle in spine'. For each occurrence of ham
the expression is evaluated again. Since none of these functions is able to generate a first
element, an infinite expression will be generated. The heap will always be too small to
hold this expression.
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3.8.4 Insufficient memory
The heap is a piece of memory used by the Clean program to evaluate expressions. When
this memory is exhausted the program tries to regain memory by removing parts of the
expression that are not needed anymore. This process is called garbage collection. When it
is not possible to find sufficient unused memory during garbage collection the program
is aborted and the error message 'heap full' is displayed. The size of the heap used by
programs written in Clean can be determined in the Clean system. When you program
displays the 'heap full' message you can try it again after you have increased the heap
size. As shown in the previous paragraph it is also possible that a programming error
causes this error message. No matter how large the heap is, the program will never behave
as intended. In large programs it can be pretty tuff to locate the source of this kind of
error.

Apart from the heap, a program written in Clean uses some stacks. These stacks are used
to maintain information on function arguments and parts of the expression currently under
evaluation. Also these stacks can be too small. What happens when such a stack overflow
occurs depends on the platform you are using and the options set in the Clean system.
When you choose 'Check Stacks' the program should notice that the stack space is
exhausted and abort the program with an appropriate message. Stack checks cause a slight
run-time overhead. Hence, people often switch stack checks off. Without these checks the
stack can 'grow' within memory used for other purposes. The information that was kept
there is spoiled. This can give error like 'illegal instruction'.

Whether an erroneous program causes a heap full message or a stack overflow can depend
on very small details. The following program will cause a 'heap full' error:

Start :: String
Start = f 42

f :: t -> u
f x = f (f x)

We can understand this by writing the first lines of a trace:
Start
→ f 42
→ f (f 42)
→ f (f (f 42))
→ …

It is clear that this expression will grow without bound. Hence execution will always
cause a heap full error.

When we add a strictness annotation is added to the function f, the argument of f will be
evaluated before the application of f itself is evaluated (see part III).

Start :: String
Start = f 42

f :: !t -> u
f x = f (f x)

The trace looks very similar:
Start
→ f 42
→ f (f 42)
→ f (f (f 42))
→ …

In order to keep track of the function and its argument under evaluation some stack space
is used. Now it depends on the relative size of the stack and the memory which is the
first to be exhausted. Clean has a built in strictness analyzer that approximates the strict-
ness properties of functions. A very small and semantically irrelevant change may change
the derived strictness properties and hence cause the difference between a 'heap full' or
'stack overflow' error.
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3.9 Exercises
Exercise 3.1

Equality on tuples can be defined as:
(==) (a,b) (c,d) = a == c && b == d

Although the equality operator is also applied in the right-hand side expression this function is
actually not recursive.

What is the difference between this operator definition and the recursive definition of equality for lists
in Section 3.1.2?

Exercise 3.2

Define the function flatten (see Section 3.1.2) in terms of foldr and ++.

Exercise 3.3

Write a list comprehension for generating all permutations of some input list.

Exercise 3.4

Describe the effect on the evaluation order of swapping x==y and xs==ys in the definition of == i n
Section 3.2.2.

Exercise 3.5

Extend the set of operators on rational numbers with == and <.

Exercise 3.6

Discuss how you can guarantee that rational numbers used in ordinary programs are always
'simplified'.

Exercise 3.7

Define an appropriate data type for AVL-trees and define functions for balancing, searching, inserting
and deleting elements in such trees.


