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2.1 Operators

2.1.1 Operators as functions and vice versa
An operator is a function of two parameters that is written between those parameters
(‘infix’ notation) instead of in front of them (‘prefix’ notation). We are more used to
write 1 + 2 instead of writing + 1 2. The fact that something is an operator is indicated
at its type definition, between its name and concrete type.

For example, in the standard module StdBool, the definition of the conjunction operator
starts with:

(&&) infixr 3 :: Bool Bool -> Bool

This defines && to be an operator that is written in between the parameters (‘infix’), asso-
ciates to the right (hence the ‘r’ in infixr), and has priority 3.

Sometimes it is more clear to write an operator before its parameters, as if it were an
ordinary function. You can do so by writing the operator name in parentheses. It is thus
allowed to write (+) 1 2 instead of 1 + 2. This notation with parentheses is obligatory in
the operators type definition and in the left-hand-side of the operators function
definition. That is why && is written in parentheses in the definition above.

Using the function notation for operators is extremely useful in partial parametrization
and when you want to use an operator as function argument. This is discussed in section 2
and 3 of this chapter.

2.1.2 Priorities
In primary school we learn that ‘multiplication precedes addition’. Put differently: the
priority of multiplication is higher than that of addition. Clean also knows about these
priorities: the value of the expression 2*3+4*5 is 26, not 50, 46, or 70.

There are more levels of priority in Clean. The comparison operators, like < and ==, have
lower priority than the arithmetical operators. Thus the expression 3+4<8 has the meaning
that you would expect: 3+4 is compared with 8 (with result False), and not: 3 is added to
the result of 4<8 (which would be a type error).

Altogether there are twelve levels of priority (between 0 and 11). The two top most pri-
orities are reserved for selection of elements out of an array or record (see subsection 3.4
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and 3.6) and for function application and cannot be taken by any ordinary operator. The
priorities of the operators in the standard modules are as below:

level 11 reserved: array selection, record selection
level 10 reserved: function application
level 9 o    ! %

level 8 ^

level 7 *    / mod rem

level 6 +    - bitor bitand bitxor

level 5 ++ +++
level 4 ==    <> < <= >    >=

level 3 &&

level 2 ||

level 1 :=

level 0 `bind`

(As of yet, not all these operators have been discussed; some of them will be discussed in
this chapter or in later ones). To override these priorities you can place parentheses in an
expression around subexpressions that must be calculated first: in 2*(3+4)*5 the subexpres-
sion 3+4 is calculated first, despite the fact that * has higher priority than +.

Applying functions to their actual parameter or parameters (the ‘invisible’ operator be-
tween f and x in f x) has almost topmost priority. The expression square 3 + 4 therefore
calculates 3 squared, and then adds 4. Even if you write square 3+4 first the function square
is applied, and only then the addition is performed. To calculate the square of 7
parentheses are required to override the high priority of function calls: square (3+4). Only
selection from an array or record has an higher priority than function application. This
makes it possible to select a function from a record and apply it to some arguments
without using parentheses.

2.1.3 Association
The priority rule still leaves undecided what happens when operators with equal priority
occur in an expression. For addition, this is not a problem, but for e.g. subtraction this is
an issue: is the result of 8-5-1 the value 2 (first calculate 8 minus 5, and subtract 1 from the
result), or 4 (first calculate 5 minus 1, and subtract that from 8)?

For each operator in Clean it is defined in which order an expression containing multiple
occurrences of it should be evaluated. In principle, there are four possibilities for an oper-
ator, say ⊕:
• the operator ⊕ associates to the left, i.e. a ⊕ b ⊕ c is interpreted as (a ⊕ b) ⊕ c;
• the operator ⊕ associates to the right, i.e. a ⊕ b ⊕ c is evaluated as a ⊕ (b ⊕ c);
• the operator ⊕ is associative, i.e. it doesn’t matter in which order a ⊕ b ⊕ c is evalu-

ated (this cannot be indicated in the language: a choice between left or right has to be
made);

• the operator ⊕ is non-associative, i.e. it is not allowed to write a ⊕ b ⊕ c; you always
need parentheses to indicated the intended interpretation.

For the operators in the standard modules the choice is made according to mathematical
tradition. When in doubt, the operators are made non-associative. For associative opera-
tors a more or less arbitrary choice is made for left- or right-associativity (one could e.g.
select the more efficient of the two).

Operators that associate to the left are:
• the ‘invisible’ operator function application, so f    x y means (f x)    y (the reason for this is

discussed in section 2.2).
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• the special operator ‘.’ which is used for selection of an element from an array or
from a record, e.g. a.[i].[j]    means (a.[i]).[j] (select element i from array a which
gives an array from which element j is selected, see also subsection 3.6).

• the operator -, so the value of 8-5-1    is 2 (as usual in mathematics), not 4.
Operators that associate to the right are:
• the operator ^ (raising to the power), so the value of 2^2^3 i s  28=256 (as usual in

mathematics), not 43=64;
Non associative operators are:
• the operator /    and the related operators div, rem en mod. The result of 64/8/2 is there-

fore neither 4 nor 16, but undefined. The compiler generates the error message:
Error […]: / conflicting or unknown associativity for infix operators

• the comparison operators ==, <    etcetera: most of the time it is meaningless anyway to
write a==b==c. To test if x    is between 2 and 8, don’t write 2<x<8 but 2<x && x<8.

Associative operators are:
• the operators * and + (these operators are evaluated left-associative according to

mathematical tradition);
• the operators ++, +++, && and ||    (these operators are evaluated right-associative for rea-

sons of efficiency);
• the function composition operator o    (see subsection 2.3.4)

2.1.4 Definition of operators
If you define an operator yourself, you have to indicate its priority and order of associa-
tion. We have seen some operator definitions in 1.5.5. As an example, we look at the way
in which the power-operator can be declared, specifying that it has priority 8 and
associates to the right:

(^) infixr 8 :: Int Int -> Int

For operators that should associate to the left you use the reserved word infixl, for non-
associative operators infix:

(+) infixl 6 :: Int Int -> Int
(==) infix 4 :: Int Int -> Int

By defining the priorities cleverly, it is possible to avoid parentheses as much as possible.
Consider for instance the operator ‘n over k’ from subsection 1.4.1:

over n k = fac n / (fac k * fac (n-k))

We can define it as an operator by:
(!^!) n k = fac n / (fac k * fac (n-k))

Because at some time it might be useful to calculate ( a+b
 c  ), it would be handy if !^! had

lower priority than +; then you could leave out parentheses in a+b!^!c. On the other hand,
expressions like ( ab ) < ( cd ) may be useful. By giving !^! higher priority than <, again no
parentheses are necessary.

For the priority of !^!, it is therefore best to choose e.g. 5 (lower than + (6), but higher
than < (4)). About the associativity: as it is not very customary to calculate a!^!b!^!c, it is
best to make the operator non-associative. Therefore the type declaration for our new
operator will be:

(!^!) infix 5 :: Int Int -> Int

If you insists, you can define an infix operator without specifying its type:
(!^!) infix 5

Using this operator you can write a program that decides whether there are more ways to
select 2 out of 4 people, or one person more from a group that consists of two persons
more:

Start = 4 !^! 2 > 4+2 !^! 2+1
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You can use any legal function name as name for an infix operator. So, the operator
defined above can also be called over. In order to prevent confusion with ordinary
functions, it is common to use names with funny symbols for infix operators.

2.2 Partial parameterization

2.2.1 Currying of functions
Suppose plus is a function adding two integer numbers. In an expression this function can
be called with two parameters, for instance plus 3 5.

In Clean it is also allowed to call a function with less parameters than is specified in its
type. If plus is provided with only one parameter, for example plus 1, a function remains
which still expects a parameter. This function can be used to define other functions:

successor :: (Int -> Int)
successor =  plus 1

Calling a function with less parameters than it expects is known as partial parameteriza-
tion.

If one wants to apply operators with fewer arguments, one should use the prefix notation
with parentheses (see section 2.1). For example, the successor function could have been
defined using the operator + instead of the function plus, by defining

successor = (+) 1

A more important use of a partially parameterized function is that the result can serve as
a parameter for another function. The function parameter of the function map (applying a
function to all elements of a list) for instance, often is a partially parameterized function:

map (plus 5) [1,2,3]

The expression plus 5 can be regarded as ‘the function adding 5 to something’. In the ex-
ample, this function is applied by map to all elements of the list [1,2,3], yielding the list
[6,7,8].

The fact that plus can accept one parameter rather than two, suggests that its type should
be:

plus :: Int -> (Int->Int)

That is, it accepts something like 5 (an Int) and returns something like the successor func-
tion (of type Int->Int).

For this reason, the Clean type system treats the types Int Int -> Int and Int -> (Int ->
Int) as equivalent. To mimic a function with multiple arguments by using intermediate
(annonymous) functions having all one argument is known as Currying, after the English
mathematician Haskell Curry. The function itself is called a curried function. (This
tribute is not exactly right, because this method was used earlier by M. Schönfinkel).

As a matter of fact these types are not equivalent in a type declaration of functions. The
Clean system uses the types also to indicate the arity (number of arguments) of functions.
This is especially relevant in definition modules. The following increment functions do
not differ in behaviour, but do have different types. The only difference between these
functions is their arity. In expressions they are treated as equivalent.

inc1 :: (Int -> Int) // function with arity zero
inc1 = plus 1

inc2 :: Int -> Int // function with arity one
inc2 n = plus 1 n

Apart from a powerful feature Currying is also a source of strange type errors messages.
Since it is in general perfectly legal to use a function with fewer or more arguments as its
definition the Clean compiler cannot complain about forgotten or superfluous arguments.
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However, the Clean compiler does notice that there is an error by checking the type of the
expression. Some typical errors are:

f x = 2 * successor

Which causes the error message
Type error […f]: "argument 2 of *" cannot unify demanded type Int with Int -> Int

and
f x = 2 * successor 1 x

The Clean type systems gives the error message
Type error […f]: "argument 1 of successor" cannot unify demanded type x -> y with
Int

2.3 Functions as parameters

2.3.1 Functions on lists
In a functional programming language, functions behave in many aspects just like other
values, like numbers and lists. For example:
• functions have a type;
• functions can be the result of other functions (which is exploited in Currying);
• functions can be used as a parameter of other functions.
With this last possibility it is possible to write general functions, of which the specific
behaviour is determined by a function given as a parameter.

Functions which take a function as a parameter or which return a function as result are
sometimes called higher-order functions, to distinguish them from first-order functions
like e.g. the common numerical functions which work on values.

The function twice is a higher order function taking an other function, f, and an argument,
x, for that function as argument. The function twice applies f two times to the argument x:

twice :: (t->t) t -> t
twice f x = f (f x)

Since the argument f is used as function it has a function type: (t->t). Since the result of
the first application is used as argument of the second application, these types should be
equal. The value x is used as argument of f, hence it should have the same type t.

We show some examples of the use of twice using inc n = n+1. The arrow → indicates a
single reduction step, the symbol →

*
 indicates a sequence of reduction steps (zero or

more). We underline the part of the expression that will be rewritten:
twice inc 0
→ inc (inc 0)
→ inc (0+1)
→ inc 1
→ 1+1
→ 2

twice twice inc 0 // the formal argument f is bound to twice, and x is bound to inc.
→ twice (twice inc) 0
→ (twice inc) ((twice inc) 0)
→

*
(twice inc) 2 // as in the previous example

→ inc (inc 2)
→

*
inc 3

→* 4

The parentheses in the type declaration of higher order functions can be necessary to indi-
cate which arguments belong to the function supplied as argument and which arguments
belong to the type of the higher order function, i.e. to distinguish x (y->z) -> u, (x y->z)
-> u and x y -> (z->u). Without parentheses types associate to the right. This implies
that x y -> z -> u means x y -> (z->u). It is always allowed to insert additional paren-
theses to indicate the association more clearly.
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The function map is another example of a higher-order function. This function takes care
of the principle of ‘handling all elements in a list’. What has to be done to the elements
of the list, is specified by the function, which, next to the list, is passed to map.

The function map can be defined as follows:
map :: (a->b) [a] -> [b]
map f [] = []
map f [x:xs] = [f x : map f xs]

The definition uses patterns: the function is defined separately for the case the second pa-
rameter is a list without elements, and for the case the list consists of a first element x
and a remainder xs. The function is recursive: in the case of a non-empty list the function
map is called again. In the recursive call, the parameter is shorter (the list xs is shorter than
the list [x:xs]); therefore finally the non-recursive part of the function will be used.

Another frequently used higher order function on lists is filter. This function returns
those elements of a list, which satisfies some condition. The condition to be used is
passed as a parameter to filter. Examples of the use of filter are:

filter isEven [1..10]

which yields [2, 4, 6, 8, 10], and
filter ((>)10) [2,17,8,12,5]

which yields [2,8,5] (because e.g. (>) 10 2 is equivalent with 10 > 2). Note that in the last
example the operator > is Curried. If the list elements are of type a, then the function pa-
rameter of filter has to be of type a->Bool. Just as map, the definition of filter is recur-
sive:

filter :: (a->Bool) [a] -> [a]
filter p [] = []
filter p [x:xs]

| p x = [x : filter p xs]
| otherwise = filter p xs

In case the list is not empty (so it is of the form [x:xs]), there are two cases: either the
first element x satisfies p, or it does not. If so, it will be put in the result; the other ele-
ments are (by a recursive call) ‘filtered’.

You can design higher order functions by tracking down the similarities in function defi-
nitions. For instance, take a look at the definitions of the functions sum (calculating the
sum of a list of numbers), product (calculating the product of a list of numbers), and and
(checking whether all elements of a list of Boolean values are all True):

sum [] = 0
sum [x:xs] = x + sum xs

product [] = 1
product [x:xs] = x * product xs

and [] = True
and [x:xs] = x && and xs

The structure of these three definitions is the same. The only difference is the value which
is returned for an empty list (0, 1 or True), and the operator being used to attach the first
element to the result of the recursive call (+, * or &&).

By passing these two variables as parameters, a generally useful higher order function is
born:

foldr op e [] = e
foldr op e [x:xs] = op x (foldr op e xs)

which only differs from the three special cases that the operator op is written function-
like, in front of its two parameters. Given this function, the other three functions can be
defined by partially parameterizing the general function:

sum = foldr (+) 0
product = foldr (*) 1
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and = foldr (&&) True

The function foldr can be used in many other cases; that is why it is predefined (for effi-
ciency reasons even as a macro!) in the standard environment.

The name of foldr can be explained as follows. The value of
foldr (+) e [w,x,y,z]

equals the value of the expression
(w + (x + (y + (z + e))))

The function foldr ‘folds’ the list into one value, by inserting between all elements the
given operator, starting on the right side with the given initial value. We will treat the use
of higher order functions on lists in more detail in chapter I.6.

2.3.2 Iteration
In mathematics iteration is often used. This means: take an initial value, apply some func-
tion to that, until the result satisfies some condition.

Iteration can be described very well by a higher order function. In the standard module
StdFunc this function is called until. Its type is:

until :: (a->Bool) (a->a) a -> a

The function has three parameters: the property the final result should satisfy (a function
a->Bool), the function which is to be applied repeatedly (a function a->a), and an initial
value (of the type a). The final result is also of type a. The call until p f x can be read as:
‘until p is satisfied, apply f to x’ .

The definition of until is recursive. The recursive and non-recursive cases are this time
not distinguished by patterns, but by Boolean expression:

until p f x
| p x = x
| otherwise = until p f (f x)

If the initial value x satisfies the property p immediately, then the initial value is also the
final value. If not the function f is applied to x. The result, (f x), will be used as a new
initial value in the recursive call of until.

Like all higher order functions until can be conveniently called with partially parameter-
ized functions. For instance, the expression below calculates the first power of two which
is greater than 1000 (start with 1 and keep on doubling until the result is greater than 1000):

until ((<)1000) ((*)2) 1

The result is the first power of two that is bigger than 1000, that is 1024.

In contrast to previously discussed recursive functions, the parameter of the recursive call
of until is not ‘smaller’ than the formal parameter. That is why until does not always
terminate with a result. When calling until ((>)0) ((+)1) 1 the condition is never satis-
fied (note that 0 is the left parameter of >); the function until will keep on counting in-
definitely, and it will never return a result.

If the computer does not answer because it is in such an infinite recursion, the running pro-
gram has to be interrupted by the user.

2.3.3 Function composition
Sometimes it is very convenient to define a tiny function ‘right on the spot’ without being
forced to invent a name for such a function. For instance assume that we would like to
calculate x2+3x+1 for all x in the list [1..100]. Of course, it is always possible to define
the function separately in a where clause:

ys = map f [1..100]
where

f x = x*x + 3*x + 1



28 Functional Programming in Clean

However, if this happens too much it gets a little annoying to keep on thinking of names
for the functions, and then defining them afterwards. For these situations there is a special
notation available, with which functions can be created without giving them a name:

\ pattern -> expression

This notation is known as the lambda notation (after the greek letter λ; the symbol \ is the
closest approximation for that letter available on most keyboards…).

An example of the lambda notation is the function \x -> x*x+3*x+1. This can be read as:
‘the function which calculates when given the parameter x the value of x2+3x+1’. The
lambda notation is often used when passing functions as a parameter to other functions, as
in:

map (\x->x*x+3*x+1) [1..100]

Lambda notaion can be used to define function with several arguments. Each of these
arguments can be an arbitrary pattern. However, multiple alternatives and guards are not
allowed in lambda notation. This language construct is only intended as a short notation
for fairly simple functions that does not deserve a name.

2.3.4 The lambda notation
If f and g are functions, than g.f is the mathematical notation for ‘g after f’: the function
which applies f first, and then g to the result. In Clean the operator which composes two
functions is also very useful. It is simply called o, which may be written as an infix oper-
ator. This makes it possible to define:

odd = not o isEven
closeToZero = ((>)10) o abs

The operator o can be defined as a higher order operator:
(o) infixr 9 :: (b -> c) (a -> b) -> (a -> c)
(o) g f = \x -> g (f x)

The lambda notation is used to make o an operator with the desired two arguments. For
this reason it is not allowed to write (o) g f x = g (f x). Without function composition
a local function must be used.

(o) g f = h
where h x = g (f x)

Not all functions can be composed. The range of f (the type of the result of f) has to be
equal to the domain of g (the type of the argument of g). So if f is a function a -> b, g has
to be a function b -> c. The composition of two functions is a function which goes
directly from a to c. This is also shown in the type of o.

Since an infix operator should have exactly two arguments, we have to define the function
composition operator o using a local function definition. The more intuative definition

comp g f x = g (f x)

has three arguments and type (b -> c) (a -> b) a -> c. Although this is a perfectly legal
function definition in Clean, it cannot be used as an infix operator.

The use of the operator o may perhaps seem limited, because functions like odd can be de-
fined also by

odd x = not (isEven x)

However, a composition of two functions can serve as a parameter for another higher or-
der function, and then it is convenient that it need not be named. The expression below
evaluates to a list with all odd numbers between 1 and 100:

filter (not o isEven) [1..100]

Using function composition a function similar to twice defined in section can be defined:
Twice :: (t->t) -> (t->t)
Twice f = f o f
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In the standard module StdFunc the function composition operator is defined. The opera-
tor is especially useful when many functions have to be composed. The programming can
be done at a function level; low level things like numbers and list have disappeared from
sight. Isn’t it much nicer to write f = g o h o i o j o k rather than f x = g(h(i(j(k x))))

2.4 Numerical functions

2.4.1 Calculations with integers
When dividing integers (Int) the part following the decimal point is lost: 10/3 equals 3.
Still it is not necessary to use Real numbers if you do not want to loose that part. On the
contrary: often the remainder of a division is more interesting than the decimal fraction.
The remainder of a division is the number which is on the last line of a long division. For
instance in the division 345/12

1 2 / 3 4 5 \ 2 8
      2 4
      1 0 5
        9 6
          9

is the quotient 28 and the remainder 9.

The remainder of a division can be determined with the standard operator rem. For ex-
ample, 345 rem 12 yields 9. The remainder of a division is for example useful in the next
cases:
• Calculating with times. For example, if it is now 9 o’clock, then 33 hours later the

time will be (9+33)    rem 24 = 20 o’clock.
• Calculating with weekdays. Encode the days as 0=Sunday, 1=Monday, …,

6=Saturday. If it is day 3 (Wednesday), then in 40 days it will be (3+40) rem 7 = 1
(Monday).

• Determining divisibility. A number is divisible by n i f  the remainder of the
division by n equals zero.

• Determining decimal representation of a number. The last digit of a number x equals
x    rem 10. The last but one digit equals (x/10) rem 10. The second next equals (x/100)
rem    10, etcetera.

As a more extensive example of calculating with whole numbers two applications are
discussed: the calculation of a list of prime numbers and the calculation of the day of the
week on a given date.

Calculating a list of prime numbers

A number can be divided by another number if the remainder of the division by that
number equals zero. The function divisible tests two numbers on divisibility:

divisible :: Int Int -> Bool
divisible t n = t rem n == 0

The denominators of a number are those numbers it can be divided by. The function de-
nominators computes the list of denominators of a number:

denominators :: Int -> [Int]
denominators x = filter (divisible x) [1..x]

Note that the function divisible is partially parameterized with x; by calling filter
those elements are filtered out [1..x] by which x can be divided.

A number is a prime number iff it has exactly two divisors: 1 and itself. The function
prime checks if the list of denominators indeed consists of those two elements:

prime :: Int -> Bool
prime x = denominators x == [1,x]

The function primes finally determines all prime numbers up to a given upper bound:
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primes :: Int -> [Int]
primes x = filter prime [1..x]

Although this may not be the most efficient way to calculate primes, it is the easiest way:
the functions are a direct translation of the mathematical definitions.

Compute the day of the week

On what day will be the last New Year’s Eve this century? Evaluation of
day 31 12 1999

wil l  yie ld "Friday". If the number of the day is known (according to the mentioned
coding 0=Sunday etc.) the function day is very easy to write:

:: Day   :== Int
:: Month :== Int
:: Year  :== Int

day :: Day Month Year -> String
day d m y = weekday (daynumber d m y)

weekday :: Day -> String
weekday 0 = "Sunday"
weekday 1 = "Monday"
weekday 2 = "Tuesday"
weekday 3 = "Wednesday"
weekday 4 = "Thursday"
weekday 5 = "Friday"
weekday 6 = "Saturday"

The function weekday uses seven patterns to select the right text (a quoted word is a string;
for details see subsection 3.6).

When you do not like to introduce a separate function weekday with seven alternatives you
can also use a case expression:

day :: Day Month Year -> String
day d m y
 = case daynumber d m y of

0 -> "Sunday"
1 -> "Monday"
2 -> "Tuesday"
3 -> "Wednesday"
4 -> "Thursday"
5 -> "Friday"
6 -> "Saturday"

In general a case expression consists of the key word case, an expression, the key word of
and one or more alternatives. Each alternative consists of a pattern the symbol -> and an
expression. Like usual you can use a variable to write a pattern that matches each
expression. As in functions you can replace the variable pattern by _ when you are not
interested in its value.

When you find even this definition of day to longwinded you can use the daynumber as
list selector:

day :: Day Month Year -> String
day d m y
 = ["Sun","Mon","Tues","Wednes","Thurs","Fri","Satur"]!daynumber d m y +++ "day"

The function daynumber chooses a Sunday in a distant past and adds:
• the number of years passed since then times 365;
• a correction for the elapsed leap years;
• the lengths of this years already elapsed months;
• the number of passed days in the current month.
Of the resulting (huge) number the remainder of a division by 7 is determined: this will
be the required day number.
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As origin of the day numbers we could choose the day of the calendar adjustment, but it
will be easier to extrapolate back to the fictional year 0. The function daynumber will be
easier by this extrapolation: the 1st of January of the year 0 would be on a Sunday.

daynumber :: Day Month Year -> Int
daynumber d m y = ( (y-1)*365

+ (y-1)/4
- (y-1)/100
+ (y-1)/400
+ sum (take (m-1) (months y))
+ d
) rem 7

The call take n xs returns the first n elements of the list xs. The function take is defined
in the StdEnv. It can be defined by:

take :: Int [a] -> [a]
take 0 xs = []
take n [x:xs] = [x : take (n-1) xs]

The function months should return the lengths of the months in a given year:
months :: Year -> [Int]
months y = [31, feb, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
where

feb | leap y = 29
| otherwise = 28

You might find it convenient to use the predefinedconditional function if to eliminate
the local definition feb in months. The definition beomes:

months :: Year -> [Int]
months y = [31, if (leap y) 29 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

The function if has a special definition for efficiency reasons. Semantically it could have
been defined as

if :: !Bool t t -> t
if c t e | c = t
             = e

Since the calendar adjustment of pope Gregorius in 1752 the following rule holds for leap
years (years with 366 days):
• a year divisible by 4 is a leap year (e.g. 1972);
• but: if it is divisible by 100 it is no leap year (e.g. 1900);
• but: if it is divisible by 400 it is    a leap year (e.g. 2000).

leap :: Year -> Bool
leap y = divisible y 4 && (not(divisible y 100) || divisible y 400)

Another way to define this is:
leap :: Year -> Bool
leap y

| divisible y 100 = divisible y 400
| otherwise = divisible y 4

With this the function day and all needed auxiliary functions are finished. It might be sen-
sible to add to the function day that it can only be used for years after the calendar adjust-
ment:

day :: Day Month Year -> String
day d m y

| y>1752 = weekday (daynumber d m y)

calling day with a smaller year yields automatically an error. This definition of day is an
example of a partial function: a function which is not defined on some values of its
domain. An error will be generated automatically when a partial function is used with a
parameter for which it is not defined.

Run time error, rule 'day' in module 'testI2' does not match

The programmer can determine the error message by making the function a total function
and generating an error with the library function abort.
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day :: Day Month Year -> String
day d m y

| y>1752 = weekday (daynumber d m y)
| otherwise = abort ("day: undefined for year "+++toString y)

When designing the prime number program and the program to compute the day of the
week two different strategies were used. In the second program the required function day
was immediately defined. For this the auxiliary function weekday and daynumber were
needed. To implement daynumber a function months was required, and this months needed
a function leap. This approach is called top-down: start with the most important, and
gradually fill out all the details.

The prime number example used the bottom-up approach: first the function divisible was
written, and with the help of that one the function denominators, with that a function prime
and concluding with the required prime.

It does not matter for the final result (the compiler does not care in which order the func-
tions are defined). However, when designing a program it can be useful to determine
which approach you use, (bottom-up or top-down), or that you even use a mixed approach
(until the ‘top’ hits the ‘bottom’).

2.4.2 Calculations with reals
When calculating Real numbers an exact answer is normally not possible. The result of a
division for instance is rounded to a certain number of decimals (depending on the calcu-
lational preciseness of the computer): evaluation of 10.0/6.0 y ie lds  1.6666667, not 1 2

3
.

For the computation of a number of mathematical operations, like sqrt, a l so  an
approximation is used. Therefore, when designing your own functions which operate on
Real numbers it is acceptable the result is also an approximation of the ‘real’ value. The
approximation results in rounding errors and a maximum value. The exact approxima-
tion used is machine dependent. In chapter 1 we have seen some approximated real
numbers. You can get an idea of the accuracy of real numbers on your computer by
executing one of the follwing programs.

Start = "e  = " +++ toString (exp 1.0) +++ "\npi = " +++ toString (2.0*asin 1.0)

Start = takeWhile ((<>) 0.0) (iterate (\x -> x/10.0) 1.0)

The derivative function

An example of a calculation with reals is the calculation of the derivative function. The
mathematical definition of the derivative f ' of the function f is:

f ' (x) = l im
h → 0

   
f (x+h) - f (x)

h

The precise value of the limit cannot be calculated by the computer. However, an approx-
imated value can be obtained by using a very small value for h (not too small, because
that would result in unacceptable rounding errors).

The operation ‘derivative’ is a higher-order function: a function goes in and a function
comes out. The definition in Clean could be:

diff :: (Real->Real) -> (Real->Real)
diff f = derivative_of_f
where

derivative_of_f x = (f (x+h) - f x) / h
h = 0.0001

The function diff is very amenable to partial parameterization, like in the definition:
derivative_of_sine_squared :: (Real->Real)
derivative_of_sine_squared = diff (square o sin)

The value of h is in both definition of diff put in a where clause. Therefore it is easily ad-
justed, if the program would have to be changed in the future (naturally, this can also be
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done in the expression itself, but then it has to be done twice, with the danger of forget-
ting one).

Even more flexible it would be, to define the value of h as a parameter of diff:
flexDiff :: Real (Real->Real) Real -> Real
flexDiff h f x = (f (x+h) - f x) / h

By defining h as the first parameter of flexDiff, this function can be partially parameter-
ized too, to make different versions of diff:

roughDiff :: (Real->Real) Real -> Real
roughDiff = flexDiff 0.01

fineDiff = flexDiff 0.0001
superDiff = flexDiff 0.000001

Definition of square root

The function sqrt which calculates the square root of a number, is defined in standard
module StdReal. In this section a method will be discussed how you can make your own
root function, if it would not have been built in. It demonstrates a technique often used
when calculating with Real numbers.

For the square root of a number x the following property holds:

if y is an approximation of x
then 12 (y + xy ) is a better approximation.

This property can be used to calculate the root of a number x: take 1 as a first approxima-
tion, and keep on improving the approximation until the result is satisfactory. The value
y is good enough for x if y2 is not too different from x.

For the value of 3 the approximations y0, y1 etc. are as follows:
y0 = =  1
y1 =  0.5*(y0+3/y0) =  2
y2 =  0.5*(y1+3/y1) =  1.75

y3 =  0.5*(y2+3/y2) =  1.732142857

y4 =  0.5*(y3+3/y3) =  1.732050810

y5 =  0.5*(y4+3/y4) =  1.732050807

The square of the last approximation only differs 10-18 from 3.

For the process ‘improving an initial value until good enough’ the function until from
subsection 2.3.2 can be used:

root :: Real -> Real
root x = until goodEnough improve 1.0
where

improve y = 0.5*(y+x/y)
goodEnough y = y*y ~=~ x

The operator ~=~ is the ‘about equal to’ operator, which can be defined as follows:
(~=~) infix 5 :: a a -> Bool | - a
(~=~) a b = a-b <h && b-a<h
where

h = 0.000001

The higher-order function until operates on the functions improve and goodEnough and on
the initial value 1.0.

Although improve is next to 1.0, the function improve is not applied immediately to 1.0;
instead of that both will be passed to until. This is caused by the Currying mechanism:
it is like if there were parentheses as in (((until goodEnough) improve) 1.0). Only when
looking closely at the definition of until it shows that improve is still applied to 1.0.
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There are some other quite interesting observations possible with improve and goodEnough.
These functions can, except for their parameter y, make use of x. So to this functions it
looks like x is a constant.

2.5 Exercises

Exercise 2.1 Combining operators

Define the function odd using the operators even, + and o.


