
Part I
Chapter 1
Introduction to Functional Programming

1 . 1 Funct ional languages
1 . 2 The Clean compi ler
1 . 3 Standard funct ions
1 . 4 Funct ion def in i t ions

1 . 5 Types
1 . 6 Synonym def in i t ions
1 . 7 Modu les
1 . 8 Exerc ises

1.1 Functional languages
Many centuries before the advent of digital computers, functions have been used to de-
scribe the relation between input and output of processes. Computer programs, too, are
descriptions of the way how a result can be computed, given some parameters. A natural
way to write a computer program is therefore to define some functions and applying
them to concrete values.

We need not to constrain ourselves to numeric functions. Functions can also be defined
that have, e.g., sequences of numbers as parameter. Also, the result of a function can be
some compound structure. In this way, functions can be used to model processes with
large, structured, input and output.

The first programming language where this idea has been exploited was Lisp, developed
in the early 50s by John McCarthy. The name is an abbreviation of `list processor', which
reflects the fact that functions can operate on lists (sequences) of values. An important fea-
ture of the language was that functions themselves can be used as parameter to other func-
tions.

Experience with developing large programs has showed that the ability to check pro-
grams before they are ran is most useful. Apart from the syntactical correctness of a pro-
gram, it can be checked by a compiler that whether it actually makes sense to apply a gi-
ven function to a particular parameter. For example, a program where the square root of a
list is taken, can be rejected by a compiler.

In the last decade, functional languages have been developed in which a type system ensu-
res the type correctness of programs. Some examples are ML, Miranda, Haskell, and
Clean. As functions can be used as parameters of other functions, functions are `values' in
some sense. Therefore, functions have a type, too. The ability of defining functions opera-
ting on functions and having functions as a result (higher-order functions) is an important
feature of these functional languages.

In this book, the Clean language will be used. Compared to the other languages mentio-
ned above, the implementation of Clean provides easy access to functions manipulating
the user interfaces. Also, the type system is enriched, making it possible for implementa-
tions to improve the efficiency of program execution.

2 Functional Programming in Clean

1.2 The Clean compiler

1.2.1 The `Start' expression
In a functional programming language like Clean you can define functions. The functions
are meant to be used in an expression, of which the value must be computed.

The Clean compiler is a program which translates a Clean program into an executable
application. The execution of such an application consists of the evaluation of an indica-
ted expression given the functions you have defined in the program. The expression to be
evaluated has a special name, it should be named Start. For example:

Start = 5+2*3

When this Start expression is evaluated, the result '11' of the evaluation will be shown to
the user. For the evaluation of the start expression, other functions have to be applied. In
this case the operators + and *. The operators + and * are actually special functions which
have been predefined in the standard library which is part of the Clean system.

The standard library consists of several modules, called definition modules. Each module
is stored in a separate file. Each module contains the definition of a collection of functi-
ons and operators that somehow belong to each other.

In the program you write you have to specify which of the predefined functions you
would like to use in your program. For the time being you just simply add the line:

import StdEnv

and all commonly used predefined functions from the standard library, called the
standard environment, can be used. The program you write yourself is a kind of module
as well. It therefore should have a name, say

module test

and be stored in a file which in that case must have the name test.icl. So, an example of
a tiny but complete Clean program which can be translated by the compiler into an exe-
cutable application is:

module test

import StdEnv

Start = 5+2*3

In the library also some commonly used mathematical functions are available, such as the
square root function. For example, when the start expression

Start = sqrt(2.0)

is evaluated, the value 1.4142135623731 is displayed to the user.

Functions are, of course, heavily used in a functional language. To reduce notational com-
plexity in expressions, the parentheses around the parameter of a function may be omit-
ted. Thus, the expression below is also valid:

Start = sqrt 2.0

This is a digression from mathematical practice that juxtaposition of expressions indica-
tes multiplication. In Clean multiplication must be written explicitly, using the * opera-
tor. As function application occurs far more than multiplication in functional program-
ming practice, this reduces notational burden. The following would be a correct Start
expression:

Start = sin 0.3 * sin 0.3 + cos 0.3 * cos 0.3

Large amounts of numbers can be put into a list in Clean. Lists are denoted with square
brackets. There is a number of standard functions operating on lists:

Start = sum [1..10]

In this example [1..10] is the Clean notation for the list of numbers from 1 to 10. The
standard function sum can be applied to such a list to calculate the sum (55) of those num-

I.1 Introduction to Functional Programming (Draft, 12 augustus 1997) 3

bers. Just as with sqrt and sin the (round) parentheses are redundant when calling the func-
tion sum.

A list is one of the ways to compose data, making it possible to apply functions to large
amounts of data. Lists can also be the result of a function. Execution of the program

Start = reverse [1..10]

will display the list [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] to the user. The standard function re-
verse reverses the order of a list. This list is the result of the function reverse.

There are more standard functions manipulating lists. What they do can often be guessed
from the name: length determines the length of a list, sort sorts the elements of a list
from small to large.

In an expression more functions can be combined. It is for example possible to first sort
a list and then reverse it. The program

Start = reverse (sort [1,6,2,9,2,7])

will sort the numbers in the list, and then reverse the resulting list. The result [9, 7, 6, 2,
2, 1] is displayed to the user. As conventional in mathematical literature, g (f x) means
that f should be applied to x and g should be applied to the result of that. The parentheses
in this example are (even in Clean!) necessary, to indicate that (f x) is a parameter to g as
a whole.

1.2.2 Defining new functions
In a functional programming language it is possible to define new functions by yourself.
The function can be used afterwards, as is the case with the predefined functions in the
standard environment, in the Start expression. Definitions of functions are always stored
in a file.

For instance, a function fac, which calculates the factorial of a number, can be defined.
The factorial of a number n is the product of all numbers between 1 and n. For example,
the factorial of 4 is 1*2*3*4 = 24. The fac function and its use in the Start expression can
be defined in a Clean program:

fac n = prod [1..n]

Start = fac 6

The value of the Start expression (720) will be shown to the user.

Functions that are defined can be used in other functions as well. A function that can make
use of the fac function is over. It calculates the number of possibilities in which k objects
can be chosen from a collection of n objects. According to statistics literature this
number equals

(
n
k) =

n !
 k ! (n - k) !

These numbers are called binomial coefficients, (nk) is pronounced as n over k. The
definition can, just as with fac, be almost literally been written down in Clean:

fac n = prod [1..n]

over n k = fac n / (fac k * fac (n-k))

Start = over 10 3

When run, this program displays the number of ways a committee of three persons can be
chosen from a group of ten people (120).

4 Functional Programming in Clean

1.3 Standard functions

1.3.1 Names of functions and operators
Apart from functions, also constants may be defined. This might be useful for definitions
like

pi = 3.1415926

Another example of a constant is Start, which must be defined in every program.

In the Clean standard environment, a large number of standard functions is defined. We
will discuss some of them in the subsections below.

The rules for names of functions are rather liberal. Function names start with a letter, fol-
lowed by zero or more letters, digits, or the symbol _ or `. Both lower and upper case
letters are allowed, and treated as distinct symbols. Some examples are:

f sum x3 Ab g` to_the_power_of AverageLengthOfTheDutchPopulation

The underscore sign is mostly used to make long names easier to read. Another way to
achieve that is to start each word in the identifier with a capital. This is a common con-
vention in many programming languages.

Numbers and back-quotes in a name can be used to emphasize the dependencies of some
functions or parameters. However, this is only meant for the human reader; as far as the
clean compiler is concerned, the name x3 is as related to x2 as to qX`a_y.

Another possibility to choose function names is combining one or more `funny' symbols
from the set

~ @ # % ^ ? ! + - * < > \ / | & = :

Some examples of names that are allowed are:
+ ++ && || <= == <> . %
@@ -*- \/ /\ ... <+> ? :->

The names on the first of these two lines are defined in some of the standard modules.
The operators on the second line are examples of other names that might be defined.

There is one exception to the choice of names. The following words are reserved for spe-
cial purposes, and can not be the name of a function:

default definition case class code export from if implementation import in
infix infixl infixr instance let! module of system where with

Also, the following symbol combinations are reserved, and may not be used as function
name:

// \\ & : :: { } /* */ {* *} [] = =: :== => -> <- <-:

However, enough symbol combinations remain to attain some interesting graphic ef-
fects…

1.3.2 Numeric functions
There are two kinds of numbers available in Clean: Integer numbers, like 17, 0 and -3;
Floating-point numbers, like 2.5, -7.81, 0.0, 1.2e3 and 0.5e-2. The character e in float-
ing-point numbers means `times ten to the power of'. For example 1.2e3 denotes the
number 1.2*103 = 1200.0. The number 0.5e-2 is in fact 0.5*10-2 = 0.005.

In the standard modules StdInt and StdReal some functions and operators are defined on
numbers. The four mathematical operators addition (+), subtraction (-), multiplication
(*) and division (/) can be used on both integer and real numbers, as in the program

Start = 5-12

and
Start = 2.5 * 3.0

When dividing integer numbers, the fractional part is discarded:

I.1 Introduction to Functional Programming (Draft, 12 augustus 1997) 5

Start = 19/4

displays the result 4 to the user. If exact division is required, real numbers must be used:
Start = 19.0/4.0

will show the result 4.75. The parameters of an arithmetic operator must both be integer
or both be real. The expression 1.5 + 2 is not accepted by the compiler. However, there
are standard functions toInt and toReal that convert numbers to an integer or real, respec-
tively.

Other standard functions on integer numbers include
abs the absolute value of a number
sign -1 for negative numbers, 0 for zero, 1 for positive numbers
gcd the greatest common divisor of two numbers
^ raising a number to a power

Some standard functions on real numbers are:
sqrt the square root function
sin the sine function
ln the natural logarithm
exp the exponential function (e-to-the-power-of)

1.3.3 Boolean functions
The operator < determines whether a number is smaller than another number. The result is
the constant True (if it is true) or the constant False (if it is false). For example, the value
of 1<2 is True.

The values True and False are the only elements of the set of truth values or Boolean values
(named after the English mathematician George Boole). Functions (and operators) result-
ing such a value are called Boolean functions or predicates.

Next to < there is also an operator > (greater than), an operator <= (smaller or equal to),
and an operator >= (greater or equal to). Furthermore, there is the operator == (equal to)
and an operator <> (not equal to).

Results of Boolean functions can be combined with the operators && (`and') and || (`or').
The operator && only returns True if the results left and right are true:

Start = 1<2 && 3<4

will show the result True to the user. The `or' operator needs only one of the two state-
ments to be true (both may be true also), so 1==1 || 2==3 will yield True. There is a func-
tion not swapping True and False. Furthermore there is a function isEven which checks whe-
ther an integer number is even.

1.3.4 Functions on lists
In the standard module StdList a number of functions operating on lists is defined. Some
functions on lists have already been discussed: length determines the length of a list, sum
calculates the sum of a list of whole numbers.

The operator ++ concatenates two lists. For example,
Start = [1,2] ++ [3,4,5]

will show the list [1,2,3,4,5].

The function and operates on a list of which the elements are Booleans; and checks if all the
elements in the list are True. For example, the expression and [1<2, 2<3, 1==0] returns
False.

Some functions have two parameters. The function take operates on a number and a list. If
the number is n, the function will return the first n elements of the list. For example, take
3 [2..10] returns the list [2,3,4].

6 Functional Programming in Clean

1.3.5 Functions on functions
In the functions discussed so far, the parameters were numbers, Booleans or lists. Howe-
ver, the parameter of a function can be a function itself too! An example of that is the
function map, which takes two parameters: a function and a list. The function map applies
the parameter function to all the elements of the list. It is defined in the standard mo-
dule StdList.

Some examples of the use of the map functions are:
Start = map fac [1,2,3,4,5]

Applying the fac function to all five numbers, this shows the list [1,2,6,24,120].

Running the program
Start = map sqrt [1.0,2.0,3.0,4.0]

shows the list [1.0, 1.41421, 1.73205, 2.0], and the program
Start = map isEven [1..8]

checks all eight numbers for even-ness, yielding a list of Boolean values: [False, True,
False, True, False, True, False, True].

1.4 Function definitions

1.4.1 Definition by combination
The easiest way to define functions is by combining other functions and operators, for ex-
ample standard functions that have been imported:

fac n = prod [1..n]
square x = x * x

Functions can also have more than one parameter:
over n k = fac n / (fac k * fac (n-k))
roots a b c = [(~b+sqrt(b*b-4.0*a*c)) / (2.0*a)

, (~b-sqrt(b*b-4.0*a*c)) / (2.0*a)
]

The operator ~ negates its argument. See 1.3.2 and Chapter 2 for the difference between 2
and 2.0.

Functions which lack parameters are commonly known as `constants':
pi = 3.1415926535
e = exp 1.0

These examples illustrate the general form of a function definition:
• the name of the function being defined
• names for the parameters (if there are any)
• the symbol =
• an expression, in which the parameters may be used, together with functions (either

functions imported form another module or defined elsewhere in the module).
In definitions of functions with a Boolean result, at the right hand side of the =-symbol an
expression of Boolean value is given:

negative x = x < 0
positive x = x > 0
isZero x = x == 0

Note, in this last definition, the difference between the =-symbol and the ==-operator. A
single `equals'-symbol (=) separates the left hand side from the right hand side in function
definitions. A double `equals'-symbol (==) is an operator with a Boolean result, just as <
and >.

In the definition of the roots function in the example above, the expressions sqrt(b*b-
4.0*a*c) and (2.0*a) occur twice. Apart from being boring to type, evaluation of this
kind of expression is needlessly time-consuming: the identical subexpressions are evalua-

I.1 Introduction to Functional Programming (Draft, 12 augustus 1997) 7

ted twice. To prevent this, in Clean it is possible to name a subexpression, and denote it
only once. A more efficient definition would be:

roots a b c = [(~b+s)/d
, (~b-s)/d
]

where
s = sqrt (b*b-4.0*a*c)
d = 2.0*a

The word where is not the name of a function. It is one of the `reserved words' that where
mentioned in subsection 1.3.1. Following the word where in the definition, again some
definitions are given. In this case the constants s and d are defined. These constant may be
used in the expression preceding the where. They cannot be used elsewhere in the program;
they are local definitions. You may wonder why s and d are called `constants', although
their value can be different on different uses of the roots function. The word `constants' is
justified however, as the value of the constants is fixed during each invocation of roots.

1.4.2 Definition by cases
In some occasions it is necessary to distinguish a number of cases in a function definition.
The function that calculates the absolute value of a number is an example of this: for nega-
tive parameters the result is calculated differently than for positive parameters. In Clean,
this is written as follows:

abs x
| x<0 = ~x
| x>=0 = x

You may also distinguish more than two cases, as in the definition of the signum function
below:

signum x
| x>0 = 1
| x==0 = 0
| x<0 = -1

The expressions in the three cases are `guarded' by Boolean expressions, that are therefore
called guards. When a function that is defined using guarded expressions is called, the
guards are tried one by one, in the order they are written in the program. For the first
guard that evaluates to True, the expression at the right hand side of the =-symbol is eva-
luated. Because the guards are tried in textual order, you may write True instead of the
last guard. For clarity, you can also use the constant otherwise, that was defined to be
True in the StdBool module.

The description of allowed forms of function definition (the `syntax' of a function defi-
nition) is therefore more complicated than was suggested in the previous subsection. A
more adequate description of a function definition is:
• the name of the function;
• the names of zero or more parameters;
• an =-symbol and an expression, or: one ore more `guarded expressions';
• (optional:) the word where followed by local definitions.
A `guarded expression' consists of a |-symbol, a Boolean expression, a =-symbol, and an
expression. But still, this description of the syntax of a function definition is not com-
plete…

1.4.3 Definition using patterns
The parameters of a function in a function definition, like x and y at the left hand side of
the =-symbol in

f x y = x * y

8 Functional Programming in Clean

are called formal parameters of the function. For using it, the function is supplied with ac-
tual parameters. For example, in the call f 17 (1+g 6), the actual parameter corresponding
to x is 17, and the actual parameter corresponding to y is 1+g 6. Thus, actual parameters
are expressions. Until now, we used only variable names as formal parameters. In most
programming languages, formal parameters may only be variables. But in Clean, there
are other possibilities: a formal parameter may also be a pattern.

An example of a function definition in which a pattern is used as a formal parameter is
f [1,x,y] = x+y

This function can only be applied to lists with exactly three elements, of which the first
must be 1. Of such a list, the second and third elements are added. Thus, the function is
not defined for shorter and longer list, nor for lists of which the first element is not 1. It
is a common phenomenon that functions are not defined for all possible parameters. For
example, the sqrt function is not defined for negative numbers, and the / operator is not
defined for 0 as its second parameter. These functions are called partial functions.

You can define functions with different patterns as formal parameter:
sum [] = 0
sum [x] = x
sum [x,y] = x+y
sum [x,y,z] = x+y+z

This function can be applied to lists with zero, one, two or three elements (in the next
subsection this definition is extended to lists of arbitrary length). In each case, the ele-
ments of the list are added. On use of this function, it is checked whether the actual pa-
rameter `matches' one of the patterns. Again, the definitions are tried in textual order.
For example, the call sum [3,4] matches the pattern in the third line of the definition: The
3 corresponds to the x and the 4 to the y.

As a pattern, the following constructions are allowed:
• numbers (e.g. 3);
• the Boolean constants True and False;
• names (e.g. x);
• list enumeration's, of which the elements must be patterns (e.g. [1,x,y]);
• lists patterns in which a distinction is made between the first element and the rest of

the list (e.g. [a:b]).
Using patterns, we could for example define the logical conjunction of two Boolean func-
tions:

AND False False = False
AND False True = False
AND True False = False
AND True True = True

By naming the first element of a list, two useful functions can be defined, as is done in the
module StdList:

hd [x:y] = x
tl [x:y] = y

The function hd returns the first element of a list (its `head'), while the function tl returns
all but the first element (the `tail' of the list). These functions can be applied to almost
all lists. They are not defined, however, for the empty list (a list without elements): an
empty list has no first element, let alone a `tail'. This makes hd and tl partial functions.

1.4.4 Definition by induction or recursion
In definitions of functions, other functions may be used. But also the function being defi-
ned may be used in it's own definition! A definition in which this is the case is called a
recursive definition (because its name `re-(oc)curs' in its definition). Here is an example of
a recursive definition:

I.1 Introduction to Functional Programming (Draft, 12 augustus 1997) 9

fac n
| n==0 = 1
| n>0 = n * fac (n-1)

The name of the function being defined (fac) occurs in the defining expression on the
right hand side of the =-symbol. Recursive functions are generally used with two restric-
tions:
• for a base case there is a non-recursive definition;
• the actual parameter of the recursive call is closer to the base case (e.g., numerically

smaller, or a shorter list) than the formal parameter of the function being defined.
In the definition of fac given above, the base case is n==0; in this case the result can be de-
termined directly (without using the function recursively). In the case that n>0, there is a
recursive call, namely fac (n-1). The parameter in the recursive call (n-1) is, as required,
smaller than n.

Another example of a recursively defined function is `raising to an integer power'. It can
be defined as:

power x n
| n==0 = 1
| n>0 = x * power x (n-1)

Also, functions operating on lists can be recursive. In this case, the recursive call must have
a shorter list as parameter, and there should be a non-recursive definition for the empty
list. In the previous subsection we promised to define the function sum for lists of arbi-
trary length. A recursive function of sum is:

sum list
| list==[] = 0
| otherwise = hd list + sum (tl list)

Using patterns we can also define this function in an even more readable way:
sum [] = 0
sum [first:rest] = first + sum rest

Using patterns, you can give the relevant parts of the list a name directly (like first and
rest in this example). In the definition that uses guarded expressions to distinguish the
cases, auxiliary functions hd and tl are necessary. In these auxiliary functions, eventually
the case distinction is again made by patterns.

Using patterns, we can define a function length that operates on lists:
length [] = 0
length [first:rest] = 1 + length rest

The value of the first element is not used (only the fact that a first element exists). For
cases like this, it is allowed to use the ‘_’ symbol instead of an identifier:

length [] = 0
length [_:rest] = 1 + length rest

1.4.5 Layout
On most places in the program extra whitespace is allowed, to make the program more
readable for humans. In the examples above, for example, extra spaces have been added
in order to align the =-symbols. Of course, no extra whitespace is allowed in the middle
of an identifier or a number: len gth is different from length, and 1 7 is different from 17.

Also, newlines can be added in most places. We did so in the definition of the roots
function, because the line would be very long otherwise. However, unlike most other pro-
gramming languages, newlines are not entirely meaningless. Compare these two where-
expressions:

where where
a = f x y a = f x
b = g z y b = g z

10 Functional Programming in Clean

The place where the new line is inserted (between the y and the b, or between the x and the
y) does make a difference: in the first situation a and b are defined while in the second si-
tuation a and y are defined (y has b as formal parameter).

The Clean compiler uses the criteria below for determining which text groups together:
• a line that is indented exactly as much as the previous line, is considered to be a new

definition;
• a line that is indented more belongs to the expression on the previous line;
• a line that is indented less does not belong to the same group of definitions any more.
The third rule is necessary only when where-constructions are nested, as in:

f x y = g (x+w)
where

g u = u + v
where

v = u * u
w = 2 + y

Here, w is a local definition of f, not of g. This is because the definition of w is indented
less than the definition of v; therefore it doesn't belong to the local definitions of g. If it
would be indented even less, it would not be a local definition of f anymore. This would
result in an error message, because y is not defined outside the function f and its local de-
finitions.

All this is rather complicated to explain, but in practice everything works fine if you ad-
here to the rule:

 definitions on the same level should be indented the same amount

This is also be true for global definitions, the global level starts at the very beginning of
a line.

1.4.6 Comments
On all places in the program where extra whitespace is allowed (that is, almost everyw-
here) comments may be added. Comments are neglected by the compiler, but serve to
elucidate the text for human readers. There are two ways to mark text as comment:
• with symbols // a comment is marked that extends to the end of the line
• with symbols /* a comment is marked that extends to the matching symbols */.

Comments that are built in the second way may be nested, that is contain a comment
themselves. The comment is finished only when every /* is closed with a matching */.
For example in

/* /* hello */ f x = 3 */

There is no function f defined: everything is comment.

1.5 Types

1.5.1 Sorts of errors
To err is human, especially when writing programs. Fortunately, the compiler can warn
for some errors. If a function definition does not conform to the syntax, this is reported
by the compiler. For example, when you try to compile the following definition:

isZero x = x=0

the compiler will complain: the second = should have been a ==. Other examples of syn-
tax errors that are detected by the compiler are expressions in which not every opening
parenthesis has a matching closing one, or the use of reserved words (such as where) in pla-
ces where this is not allowed.

I.1 Introduction to Functional Programming (Draft, 12 augustus 1997) 11

A second sort of errors for which the compiler can warn is the use of functions that are nei-
ther defined nor included from another module. For example, if you define, say on line
20 of a Clean module called test.icl

Start = Sqrt 5

the compiler notices that the function Sqrt was never defined (if the functions in the mod-
ule StdReal was intended, it should have been spelled sqrt). The compiler reports:

Error [test.icl,20,Start]: Sqrt not defined

The next check the compiler does is type checking. Here it is checked whether functions
are only used on values that they were intended to operate on. For example, functions that
operate on numbers may not be applied to Boolean values, neither to lists. Functions that
operate on lists, like length, may in turn not be applied to numbers, and so on.

If in an expression the term 1+True occurs, the compiler will complain:
Type error […]: "argument 2 of +" cannot unify demanded type Int with Bool

The […] replaces the indication of the file, the line and the function of the location where
the error was detected. Another example of an error message occurs when the function
length is applied to anything but a list, as in length 3:

Type error […]: "argument 1 of length" cannot unify demanded type [x] with Int

The compiler uses a technique called unification to verify that, in any application, the ac-
tual types match the corresponding types of the formal arguments. This explains the term
'unify' in the type error messages if such a matching fails. Only when a program is free of
type errors, the compiler can generate code for the program. When there are type errors,
there is no program to be executed.

All errors in the type of expressions are detected by the compiler. Thus, a program that
survives checking by the compiler is guaranteed to be type-error free. Other languages
only check the types at during the execution of the generated application when function is
are actually applied, not during compilation. In those languages you can never be sure that
at run time a type error will pop up.

On the other hand, surviving the type check of the compiler does not imply that the pro-
gram is correct. If you used multiplication instead of addition in the definition of sum,
the compiler will not complain about it: it has no knowledge of the intentions of the pro-
grammer. These kind of errors, called `logical errors', are among the hardest to find, be-
cause the compiler does not warn you for them.

1.5.2 Typing of expressions
Every expression has a type. The type of a constant or function that is defined can be spec-
ified in the program. For example:

Start :: Int
Start = 3+4

The symbol :: can be pronounced as `is of type'.
There are four basic types:
• Int: the type of the integer numbers (also negative ones);
• Real: the type of floating-point numbers (an approximation of the Real numbers);
• Bool: the type of the Boolean values True and False;
• Char: the type of letters, digits and symbols as they appear on the keyboard of the

computer.
Lists can have various types. There exist lists of integers, lists of Boolean values, and even
lists of lists of integers. All these types are different:

x :: [Int]
x = [1,2,3]

12 Functional Programming in Clean

y :: [Bool]
y = [True,False]

z :: [[Int]]
z = [[1,2],[3,4,5]]

The type of a list is denoted by the type of its elements, enclosed in square brackets:
[Int] is the type of lists of integers. All elements of a list must have the same type. If
not, the compiler will complain.

Not only constants, but also functions have a type. The type of a function is determined
by the types of its parameters and its result. For example, the type of the function sum is:

sum :: [Int] -> Int

That is, the function sum operates on lists of integers and yields an integer. The symbol
-> in the type might remind you of the arrow symbol (→) that is used in mathematics.
More examples of types of functions are:

sqrt :: Real -> Real
isEven :: Int -> Bool

A way to pronounce lines like this is `isEven is of type Int to Bool' or 'isEven is a function
from Int to Bool'.

Functions can, just as numbers, Booleans and lists, be used as elements of a list as well.
Functions occurring in one list should be of the same type, because elements of a list must
be of the same type. An example is:

trigs :: [Real->Real]
trigs = [sin,cos,tan]

The compiler is able to determine the type of a function. It does so when type checking a
program. However, it is also allowed to annotate a function definition with the type of
the function. A typed function definition:

sum :: [Int] -> Int
sum [] = 0
sum [x:xs] = x + sum xs

Although such a type declaration is strictly speaking superfluous, it has two advantages:
• the compiler checks whether the function indeed has the intended type;
• the program is easier to understand for a human reader.
It is considered a very good habit to supply types for all important functions that you
define. The declaration of the type has to be adjacent to the function definition.

1.5.3 Polymorphism
For some functions on lists the type of the elements of the list is immaterial. The func-
tion length, for example, can count the elements of a list of integers, but also of a list of
Booleans, and –why not– a list of functions or a list of lists. The type of length is deno-
ted as:

length :: [a] -> Int

This type indicates that the function has a list as parameter, but that the concrete type of
the elements of the list is not fixed. To indicate this, a type variable is written, a in the
example. Unlike concrete types, like Int and Bool, type variables are written in lower
case.

The function hd, yielding the first element of a list, has as type:
hd :: [a] -> a

This function, too, operates on lists of any type. The result of hd, however, is of the same
type as the elements of the list (because it is the first element of the list). Therefore, to
hold the place of the result, the same type variable is used.

I.1 Introduction to Functional Programming (Draft, 12 augustus 1997) 13

A type which contains type variables is called a polymorphic type (literally: a type of
many shapes). Functions with a polymorphic type are called polymorphic functions, and
a language allowing polymorphic functions (such as Clean) is called a polymorphic lan-
guage. Polymorphic functions, like length and hd, have in common that they only need to
know the structure of the arguments. A non-polymorphic function, such as sum, also uses
properties of the elements, like `addibility'. Polymorphic functions can be used in many
different situations. Therefore, a lot of the functions in the standard modules are poly-
morphic.

Not only functions on lists can be polymorphic. The simplest polymorphic function is
the identity function (the function that yields its parameter unchanged):

id :: a -> a
id x = x

The function id can operate on values of any type (yielding a result of the same type). So
it can be applied to a number, as in id 3, but also to a Boolean value, as in id True. It can
also be applied to lists of Booleans, as in id [True,False] or lists of lists of integers: id
[[1,2,3],[4,5]]. The function can even be applied to functions: id sqrt of id sum. The pa-
rameter may be of any type, even the type a->a. Therefore the function may also be ap-
plied to itself: id id.

1.5.4 Functions of more parameters
Functions with more parameters have a type, too. All the types of the parameters are
listed before the arrow. The function over from subsection 1.4.1 has type:

over :: Int Int -> Int

The function roots from the same subsection has three floating-point numbers a parame-
ters an a list of floats as result:

roots :: Real Real Real -> [Real]

Operators, too, have a type. After all, operators are just functions written between the pa-
rameters instead of in front of them. Apart from the actual type of the operator, the type
declaration contains some additional information to tell what kind of infix operator this
is (see section 2.1). You could declare for example:

(&&) infixr 1 :: Bool Bool -> Bool

1.5.5 Overloading
The operator + can be used on two integer numbers (Int) giving an integer number as re-
sult but it can also be used on two real numbers (Real) yielding a real number as result.
So, the type of + can be both Int Int->Int and Real Real->Real. One could assume that +
is a polymorphic function, say of type a a->a. If that would be the case, the operator
could be applied on arguments of any type, for instance Bool parameters too, which is not
the case. So, the operator + seems to be sort of polymorphic in a restricted way.

However, + is not polymorphic at all. Actually, there exists not just one operator +, but
there are several of them. There are different operators defined which are all carrying the
same name: +. One of them is defined on integer numbers, one on real numbers, and there
may be many more. A function or operator for which several definitions may exist, is
called overloaded.

In Clean it is generally not allowed to use the same name for different functions. If one
wants to use the same name for different functions, one has to explicitly define this via a
class declaration. For instance, the overloaded use of the operator + can be declared as (see
StdOverloaded):

class (+) infixl 6 a :: a a -> a

With this declaration + is defined as the name of an overloaded operator (which can be
used in infix notation and has priority 6, see chapter 2.1). Each of the concrete functions

14 Functional Programming in Clean

(called instances) with the name + must have a type of the form a a -> a, where a is the
class variable which has to be substituted by the concrete type the operator is defined on.
So, an instance for + can e.g. have type Int Int -> Int (substitute for the class variable a
the type Int) or Real Real -> Real (substitute for a the type Real). The concrete definition
of an instance is defined separately (see StdInt, StdReal). For instance, one can define an
instance for + working on Booleans as follows:

instance + Bool
where

(+) :: Bool Bool -> Bool
(+) True b = True
(+) a b = b

Now one can use + to add Booleans as well, even though this seems not to be a very useful
definition. Notice that the class definition ensures that all instances have the same kind of
type, it does not ensure that all the operators also behave uniformly or behave in a sensible
way.

When one uses an overloaded function, it is often clear from the context, which of the
available instances is intended. For instance, if one defines:

increment n = n + 1

it is clear that the instance of + working on integer numbers is meant. Therefore, incre-
ment has type:

increment :: Int -> Int

However, it is not always clear from the context which instance has to be taken. If one de-
fines:

double n = n + n

it is not clear which instance to choose. Any of them can be applied. As a consequence, the
function double becomes overloaded as well: it can be used on many types. More preci-
sely, it can be applied on an argument of any type under the condition that there is an in-
stance for + for this type defined. This is reflected in the type of double:

double :: a a -> a | + a

As said before, the compiler is capable of deducing the type of a function, even if it is an
overloaded one. More information on overloading can be found in Chapter 4.

1.5.6 Type annotations and attributes
The type declarations in Clean are also used to supply additional information about (the
arguments of) the function. There are two kinds of annotations:
• Strictness annotations indicate which arguments will always be needed during the

computation of the function result. Strictness is indicated by the !-symbol.
• Uniqueness attributes indicate whether parameters will be shared by other functions,

or that the function at hand is the only one using them. Uniqueness is indicated by a .-
symbol, or a variable and a :-symbol in front of the type of the parameter.

Some examples of types with annotations and attributes from the standard environment:
isEven :: !Int -> Bool // True if parameter is even
spaces :: !Int -> .[Char] // Make list of n spaces
(++) infixr 0 :: ![.a] u:[.a] -> u:[.a] // Concatenate two lists

Strictness information is important for efficiency; uniqueness is important when dealing
with I/O (see Chapter 5). For the time being you can simply ignore both strictness anno-
tations and uniqueness attributes. The compiler has an option that switches off the strict-
ness analysis, and an option that inhibits displaying uniqueness information in types.

More information on uniqueness attributes can be found in Chapter 4, the effect of strict-
ness is explained in more detail in Part III, Chapter 2.

I.1 Introduction to Functional Programming (Draft, 12 augustus 1997) 15

1.5.7 Well formed Types
When you specify a type for a function the compiler checks whether this type is correct or
not. Although type errors might look boring while you are trying to compile your pro-
gram, they are a great benefit. By checking the types in your program the compiler guar-
antees that errors caused by applying functions to illegal arguments cannot occur. In this
way the compiler spots a lot of the errors you made while your were writing the program
before you can execute the program. The compiler uses the following rules to judge type
correctness of your program:
1) all alternatives of a function should have the same type;
2) all occurrences of an argument in the body of a function should have the same type;
3) each function used in an expression should have arguments that fits the corresponding

formal arguments in the function definition;
4) a type definition supplied should comply with the rules given here.
An argument fits the definition when its type is equal to, or more specific than the corre-
sponding type in the definition. The expression used as argument to an application of a
function is called the actual argument. The argument of the function definition is called
the formal argument. It should be possible to make the type of the actual argument and
the type of the corresponding formal argument equal replacing variables in the type of the
formal argument by other types. We usually say: the type of the actual argument should
be an instance of the type of the formal argument.

Similarly, it is allowed that the type of one function alternative is more general that the
type of an other alternative. The type of each alternative should be an instance of the type
of the entire function. The same holds within an alternative containing a number of
guarded bodies. The type of each function body ought to be an instance of the result type
of the function.

We illustrate these rules with some examples. Consider the following function defini-
tion:

f 1 y = 2
f x y = y

From the first alternative it is clear the type should be Int t -> Int. The first argument
is compared in the pattern match with the integer 1 and hence it should be an integer. We
do not know anything about the second argument. Any type of argument will do. So, we
use a type variable for the type. The body is an Int, hence the type of the result of this
function is Int. The type of the second alternative is u v -> v. We do not know any thing
about the type of the arguments. When we look to the body of the function alternative we
can only decide that its type is equal to the type of the second argument. For the type of
the entire function types Int t -> Int and u v -> v should be equal. From the type of the
result we conclude that v should be Int. Hence the type derived by the compiler for this
function is Int Int -> Int.

Type correctness rule 4) implies that it is allowed to specify a more restricted than the
most general type that would have been derived by the compiler. As example we con-
sider the function Int_Id:

Int_Id :: Int -> Int
Int_Id i = i

Here a type is given. The compiler just checks that this type does not cause any conflicts.
When we assume that the argument is of type Int also the result is of type Int. Since this
is consistent with the definition this type is correct. Note that the same function can have
also the more general type v -> v. Like usual the more specific type is obtained by re-
placing type variables by other types. Here the type variable v is replaced by Int.

Our next example illustrates the type rules for guarded function bodies. We consider the
somewhat artificial function g:

16 Functional Programming in Clean

g 0 y z = y
g x y z

| x == y = y
| otherwise = z

The first argument, x, should be and Int, since it is compared to the integer 0 in the pat-
tern of the first function alternative. The argument y is compared to x in the guard. The
==-operator has type x x -> Bool, hence the type of y should also be Int. This tells us that
the result of the function has type int. The last body enforces that argument z should have
also type Int. We conclude that the type of the function g is Int Int Int -> Int.

Remember what we have told in section 1.5.5 about overloading. It is not always neces-
sary to determine types exactly. It can be sufficient to enforce that some type variables
are part of the appropriate classes. This is illustrated in the function h.

h x y z
| x == y = y
| otherwise = x+z

Similar to the function g, the type of argument x and y should be equal since these argu-
ments are tested for equality. However, no of these types is know. It is sufficient that the
type of these arguments is member of the type class a. Likewise, the last function body
forces the type of the arguments x and z to be equal and part of the type class +. Hence,
the type of the entire function is a a a -> a | + , == a. Since the type Int Int Int -> Int
is an instance of this type, it is allowed to specify that type for the function h.

You might be confused by the power of Clean's type system. Fortunately, the Clean sys-
tem itself is able to determine the type of functions. So, you can write programs without
specifying the type of your functions. The rules given above enables you to understand the
type error that the compiler might spot. We encourage you to start specifying the type of
the functions you write as soon as possible. These types helps you to understand the func-
tion to write and the functions you have written. Moreover, the compiler usually gives
more appropriate error messages when the intended type of the functions is known.

1.6 Synonym definitions

1.6.1 Global constant functions (CAF’s)
We have seen in the definition of the roots function given in subsection 1.4.1 that one can
define local constants (e.g. s = sqrt(b*b-4.0*a*c)). By using such a local constant effi-
ciency is gained because the corresponding expression will be evaluated only once, even if
it is used on several places.

It is also possible to define such constants on the global level, e.g. a very large list of
integers is defined by:

biglist :: [Int]
biglist =: [1..100000]

Notice that one has to use the =: symbol to separate left-hand side from the right-hand
side of the global constant definition (the =:-symbol can also be used as alternative for =
in local constant definitions). Constant functions on the global level are also known as
constant applicative forms (CAF’s). Global constants are evaluated in the same way as lo-
cal constants: they are evaluated only once. The difference with local constants is that a
global constant can be used anywhere in the program. The (evaluated) constant will be
remembered during the whole life time of the application. The advantage is that if the
same constant is used on several places, it does not has to be calculated over and over
again. The disadvantage can be that an evaluated constant might consume much more
space than an unevaluated one. For instance the unevaluated expression [1..100000] con-
sumes much less space than an evaluated list with 100000 elements in it. If you rather
would like to evaluate the global constant each time it is used to save space, you can de-
fine it as:

I.1 Introduction to Functional Programming (Draft, 12 augustus 1997) 17

biglist :: [Int]
biglist = [1..100000]

The use of =: instead of = makes all the difference.

1.6.2 Macro’s and type synonyms
It is sometimes very convenient to introduce a new name for a given expression or for an
existing type. Consider the following definitions:

:: Color :== Int

Black :== 1
White :== 0

invert :: Color -> Color
Invert Black = White
Invert White = Black

In this example a new name is given to the type Int, namely Color. By defining
:: Color :== Int

Color has become a type synonym for the type Int. Color -> Color and Int -> Int are now
both a correct type for the function invert.

One can also define a synonym name for an expression. The definitions
Black :== 1
White :== 0

are examples of a macro definition. So, with a type synonym one can define a new name
for an existing type, with a macro one can define a new name for an expression. This can
be used to increase the readability of a program.

Macro's and type synonyms have in common that whenever a macro name or type syno-
nym name is used, the compiler will replace the name by the corresponding definition
before the program is type checked or run. Type synonyms lead to much more readable
code. The compiler will try to use the type synonym name for its error messages. Using
macro's instead of functions or (global) constants leads to more efficient programs,
because the evaluation of the macro will be done at compile time while functions and
(global) constants are evaluated at run-time.

Just like functions macro's can have arguments. Since macro's are 'evaluated' at compile
time the value of the arguments is usually not known, nor can be computed in all
circumstances. Hence it is not allowed to use pattern matching in macro's. When the
optimum execution speed is not important you can always use an ordinary function
instead of a macro with arguments. We will return to macro's in chapter 6.

1.7 Modules
Clean is a modular language. This means that a Clean program is composed out of mo-
dules. Each module has a different name. A module (say you named it MyModule) is in
principle split into two parts: a Clean implementation module (stored in a file with ex-
tension .icl, e.g. MyModule.icl) and a Clean definition module (stored in a file with exten-
sion .dcl, e.g. MyModule.dcl).

Function definitions can only be given in implementation modules. A function defined in
a specific implementation module by default only has a meaning inside that module. It
cannot be used in another module, unless the function is exported. To export a function
(say with the name MyFunction) one has to declare its type in the corresponding definition
module. Other implementation modules now can use the function, but to do so they have
to import the specific function. One can explicitly import a specific function from a spe-
cific definition module (e.g. by declaring: from MyModule import MyFunction). It is also

18 Functional Programming in Clean

possible to import all functions exported by a certain definition module with one im-
port declaration (e.g. by declaring: import MyModule).

For instance, assume that one has defined the following implementation module (to be
stored in file Example.icl):

implementation module Example

increment :: Int -> Int
increment n = n + 1

In this example the operator + needs to be imported from module StdInt. This can be
done in the following way:

implementation module Example

from StdInt import +

increment :: Int -> Int
increment n = n + 1

And indeed, the operator + is exported from StdInt because its type definition appears in
the definition module of StdInt. It is a lot of work to import all functions explicitly.
One can import all standard operators and functions with one declaration in the following
way:

implementation module Example

import StdEnv

increment :: Int -> Int
increment n = n + 1

The definition module of StdEnv looks like:
definition module StdEnv

import
StdOverloaded, StdClass,
StdBool, StdInt, StdReal, StdChar,
StdList, StdCharList, StdTuple, StdArray, StdString, StdFunc, StdMisc,
StdFile, StdEnum

When one imports a module as a whole (e.g. via import StdEnv) not only the definitions
exported in that particular definition module will be imported, but also all definitions
which are on their turn imported in that definition module, and so on. In this way one can
import many functions with just one statement. This can be handy, e.g. one can use it to
create your own ‘standard environment’. However, the approach can also be dangerous be-
cause a lot of functions are automatically imported this way, perhaps also functions are
imported one did not expect at first glance. Since functions must have different names,
name conflicts might arise unexpectedly (the compiler will spot this, but it can be an-
noying).

When you have defined a new implementation module, you can export a function by re-
peating its type (not its implementation) in the corresponding definition module. For in-
stance:

definition module Example

increment :: Int -> Int

In this way a whole hierarchy of modules can be created (a cyclic dependency between
definition modules is not allowed). Of course, the top-most implementation module
does not need to export anything. That’s why it does not need to have a corresponding
definition module. When an implementation module begins with

module …

instead of
implementation module …

I.1 Introduction to Functional Programming (Draft, 12 augustus 1997) 19

it is assumed to be a top-most implementation module. No definition module is expec-
ted in that case. Any top-most module must contain a Start rule such that it is clear
which expression has to be evaluated given the (imported) function definitions.

The advantage of the module system is that implementation modules can be compiled
separately. If one changes an implementation module, none of the other modules have to
be recompiled. So, one can change implementations without effecting other modules.
This reduces compilation time significantly. If, however, a definition module is chan-
ged, all implementation modules importing from that definition module have to be re-
compiled as well to ensure that everything remains consistent. Fortunately, the Clean
compiler decides which modules should be compiled when you compile the main
module and does this reasonably fast…

1.8 Exercises

