
Functional Programming in Clean

Preface

Functional languages enable programmers to concentrate on the problem one would like
to solve without being forced to worry about all kinds of uninteresting implementation
details. A functional program can be regarded as an executable specification. Functional
programming languages are therefore very popular in educational and research
environments. Functional languages very suited for teaching students the first principles of
programming. In research environments they are used for rapid prototyping of complex
systems. Recent developments in the implementation techniques and new insights in the
underlying concepts such as input/output handling make that modern functional languages
can nowadays also be used successfully for the development of real world applications.

The purpose of this book is to teach practical programming skills using the state-of-the
art pure functional language Concurrent Clean. Clean has many aspects in common with
other modern functional languages like Miranda, Haskell and ML. In addition Clean
offers additional support for the development of window based applications as well as
support for process communication and for the development of (distributed)
applications.

The book is split into three parts.

In the first part of this book an introduction into functional programming is given. In five
Chapters we treat the basic aspects of functional programming, functions, data structures,
the type system and I/O handling. The target here is that you are able to write functions
and programs as soon as possible. A complete description of all allowed language
constructs can be found in the Clean language manual.

The main emphasis of this book lies in the second part in which eleven case studies are
presented. Each case treats a tiny, but complete application in an illustrative problem
domain. Each case furthermore illustrates a certain aspect of functional programming.
Some case applications are reused in others to illustrated the reusability of code.

The following cases are presented:
1. a simple database, illustrating simple file I/O and the construction of dynamically

configurable dialogue interfaces;
2. a relational database (based on the simple database) illustrating the basic aspects of a

relational database, showing the use of functional languages as executable
specification as well as the reusability of code;

3. a window based text editor, illustrating the basic way to do window based text
handling;

4. a window based graphical editor, illustrating the basic aspects of window based
handling of graphical elements as well as given an example of an object oriented
style of functional programming;

5. parser combinators, which will give a good insight in the different kind of parsing
techniques, while we also illustrate a combinatorial style of functional programming;

6. an interpreter for a functional programming language for a subset of Clean (using the
parser combinator tool of Chapter 5 and the text editor of Chapter 3), illustrating
the basic semantics of functional languages and the reusability of code;

7. a spreadsheet (reusing the interpreter of Chapter 6) in which we also show the
difference between interpreted and compiled code;

8. a computer architecture and programming language, in which we show how a
functional language can be used as executable specification of an abstract machine
architecture; also an assembler and imperative programming language is defined on
top of the machine architecture showing the compilation path from high level
language, through assembly language, into machine language.

9. compression and decompression of data, in which we show how the change an
executable specification for a data compression / decompression algorithm into an
efficient functional application.

10. process control, in which the processes and process communication is illustrated;
11. a distributed organizer, in which the use of distributed processes is shown.
In the third part of this book we discuss the different kinds of programming
development techniques for functional programming (Chapter 1) and finally we treat
efficiency aspects (Chapter 2).

So, a lot of material is presented in this book. However, one certainly does not have to
work through all case studies. Depending on the programming experience already
acquired and the time available one can use this book as a textbook for or one or two
semester course. The book can be used as an introductory textbook for people with little
programming experience. It can also be used for people who already have programming
experience in other programming paradigm (imperative, object-oriented or logical) and
now want to learn how to develop applications in a pure functional language.

We hope that you enjoy the book and that it will stimulate you to use a functional
language for the development of your applications.

Table of Contents

Preface 1

Table of Contents 1

Introduction to Functional Programming 1
1.1 Functional languages 1
1.2 The Clean compiler 2

1.2.1 The `Start' expression 2
1.2.2 Defining new functions 3

1.3 Standard functions 4
1.3.1 Names of functions and operators 4
1.3.2 Numeric functions 4
1.3.3 Boolean functions 5
1.3.4 Functions on lists 5
1.3.5 Functions on functions 6

1.4 Function definitions 6
1.4.1 Definition by combination 6
1.4.2 Definition by cases 7
1.4.3 Definition using patterns 7
1.4.4 Definition by induction or recursion 8
1.4.5 Layout 9
1.4.6 Comments 10

1.5 Types 10
1.5.1 Sorts of errors 10
1.5.2 Typing of expressions 11
1.5.3 Polymorphism 12
1.5.4 Functions of more parameters 13
1.5.5 Overloading 13
1.5.6 Type annotations and attributes 14
1.5.7 Well formed Types 15

1.6 Synonym definitions 16
1.6.1 Global constant functions (CAF’s) 16
1.6.2 Macro’s and type synonyms 17

1.7 Modules 17
1.8 Exercises 19

Functional Programming in Clean (Draft, 12 augustus 1997) 1

Numbers and Functions 21
2.1 Operators 21

2.1.1 Operators as functions and vice versa 21
2.1.2 Priorities 21
2.1.3 Association 22
2.1.4 Definition of operators 23

2.2 Partial parameterization 24
2.2.1 Currying of functions 24

2.3 Functions as parameters 25
2.3.1 Functions on lists 25
2.3.2 Iteration 27
2.3.3 Function composition 27
2.3.4 The lambda notation 28

2.4 Numerical functions 29
2.4.1 Calculations with integers 29

Calculating a list of prime numbers 29
Compute the day of the week 30

2.4.2 Calculations with reals 32
The derivative function 32
Definition of square root 33

2.5 Exercises 34

Data Structures 35
3.1 Lists 35

3.1.1 Structure of a list 35
Enumeration 36
Construction using : 37
Enumerable intervals 37

3.1.2 Functions on lists 38
Comparing and ordering lists 38
Joining lists 39
Selecting parts of lists 39
Reversing lists 41
Properties of lists 41

3.1.3 Higher order functions on lists 42
map and filter 42
takewhile and dropwhile 42

3.1.4 Sorting lists 43
Insertion sort 43
Merge sort 44

3.1.5 List comprehensions 44
Quick sort 46

3.2 Infinite lists 46
3.2.1 Enumerating all numbers 46
3.2.2 Lazy evaluation 48
3.2.3 Functions generating infinite lists 49
3.2.4 The list of all prime numbers 49

3.3 Tuples 50
3.3.1 Tuples and lists 52

3.4 Records 53
3.4.1 Rational numbers 55

3.5 Arrays 56
3.5.1 Array comprehensions 57

2 Functional Programming in Clean

3.5.2 Lazy, strict and unboxed arrays 58
3.5.3 Array updates 58
3.5.4 Array patterns 59

3.6 Algebraic datatypes 59
3.6.1 Tree definitions 61
3.6.2 Search trees 62

Structure of a search tree 63
3.6.3 Sorting using search trees 64
3.6.4 Deleting from search trees 64

3.7 Abstract datatypes 65
3.8 Run-time errors 66

3.8.1 Non-termination 66
3.8.2 Partial functions 67
3.8.3 Cyclic dependencies 68
3.8.4 Insufficient memory 69

3.9 Exercises 70

The Power of Types 71
4.1 Type Classes 71

4.1.1 Overloading 72
4.1.2 A class for Rational Numbers 75
4.1.3 Derived class members 76
4.1.4 Type constructor classes 77

4.2 Existential types 78
Creating objects by existential types 79
A pipeline of functions 83

4.3 Uniqueness types 83
4.3.1 Graph Reduction 84
4.3.2 Destructive updating 85
4.3.3 Environment passing 86
4.3.4 Uniqueness information 86
4.3.5 Propagation of uniqueness 89
4.3.6 Uniqueness polymorphism 89
4.3.7 Attributed data types 91
4.3.8 Higher order uniqueness typing 92
4.3.9 Creating unique objects 93
4.3.10 Combining uniqueness typing and type classes 94

4.4 Exercises 94

Input and Output 95
5.1 Changing the world 95
5.2 Combination of input/output functions 97

5.2.1 Monadic style 98
5.2.2 Nested scope style 99
5.2.3 Polymorphic Uniqueness 99

5.3 Some Simple Dialogs 100
5.3.1 A File Copy Dialog 100
5.3.2 A Function Test Dialog 104
5.3.3 An Input Dialog for a Menu Function 106
5.3.4 More Generic Dialog Definitions 107

5.4 A simple window 107
5.5 Timers 111
5.6 A line drawing program 112

Functional Programming in Clean (Draft, 12 augustus 1997) 3

5.7 Exercises 118

Advanced Programming 119
6.1 Efficiency of programs 119

6.1.1 The unit to measure efficiency 120
6.1.2 Complexity 120

Upper bounds 120
Under bounds 121
Tight upper bounds 122

6.1.3 Counting reduction steps 122
memorisation 122
Determining the complexity for recursive functions 124
Manipulation recursive data structures 125
Determining upper bounds and under bounds 128

6.1.4 Constant factors 129
Measurements: generating a pseudo random list 130
Measurements: sorting lists 131
Other ways to speed up programs 132

6.1.5 Exploiting Strictness 134
6.1.6 Unboxed values 135
6.1.7 The cost of Currying 137
6.1.8 A word of warning 139

6.2 A guide to local definitions and scopes 139
6.2.1 Local definitions 139
6.2.2 Scope within expressions 141

6.3 Equational reasoning 142
Direct proofs 142
Proof by cases 143
Proof by induction 144
Program synthesis 146

6.4 Tracing program execution 148
6.5 Higher order functions on lists 149

6.5.1 Displaying a number as a list of characters 149
6.5.2 Folding 150

foldr 150
foldl 151

Folding to the right or to the left 151
6.4 Exercises 152

A Simple Database 155
1.1 The database program state 155
1.2 At the start and the end of the application 156
1.3 File handling 158
1.4 Displaying the database contents 160
1.5 Changing the database contents 163
1.6 Handling database queries 165
1.7 Changing the format of the database 167

1.7.1 Deleting an attribute field 168
1.7.2 Moving an attribute field 169
1.7.3 Renaming an attribute field 169
1.7.4 Adding an attribute field 170

1.8 Exercises 171

4 Functional Programming in Clean

A Relational Database 173
2.1 To be written 173
2.2 Exercises 173

An Editor 175
3.1 The editor program state 175
3.2 File access 176
3.3 Displaying the text 178
3.4 Cursor handling 181
3.5 Text and window coordinates 184
3.6 Editing with keyboard actions 184
3.7 Highlighting 186
3.8 'Sane' mouse handling 187
3.9 Changing Font 189
3.10 Exercises 190

An Editor for Graphical Objects 191
4.1 User view of the graphical editor 191
4.2 Structure of the program 191
4.3 Mouse Handling 193
4.4 Grouping 197
4.5 Editing 198
4.6 Exercises 198

Parser Combinators 199
5.1 The type of parsers 200
5.2 Elementary parsers 201
5.3 Grammars 202
5.4 Parser combinators 203
5.5 Parser transformers 204
5.6 Matching parentheses 205
5.7 More parser combinators 207
5.8 Analyzing options 210
5.9 Arithmetical expressions 211
5.10 Generalized expressions 212
5.11 Monadic parsers 213
5.12 Context sensitivity 214
5.13 Common traps 215

Left recursion 215
Parsing the same structure again 216

5.14 Error handling 217
Detecting errors 217
Interrupting the parser 218
Error recovery 219
Listing errors 220

5.15 Self application 221
Environments 221
Grammars 222
Parse trees 223
Parsers instead of grammars 223
A parser generator 223
Lexical scanners 224

Functional Programming in Clean (Draft, 12 augustus 1997) 5

References 224
Exercises 224

Interpreter for a functional programming language 227
6.1 The interpreted programming language 227

Use of the interpreter 228
6.2 Parser 228

6.2.1 The function parse 230
Remarks on this parsing scheme 233
Parsing of function definitions 233
Transformation of parsed expressions 235

6.3 Evaluation 235
6.4 User Interface 237
6.5 Examples programs for the interpreter 238

Sys.fp (system file) 238
Test.fp (example file) 239

6.6 Adding type checking to the interpreter 239
6.6.1 Restriction on the interpreted language due to the type checker 239
Definition of type 240
Supporting functions 240
The functions derivetype and buildType 241

Spreadsheet 245
7.1 The calculation model of a spreadsheet 245
7.2 A spreadsheet compiler 247

7.1.2 Compiler program 248
7.3 A spreadsheet interpreter 251

Computer Architecture and Languages 254
8.1 Computer Architecture 255

8.1.1 Memory Components 256
8.2 Instructions 257

8.2.1 Storing instructions in the memory 259
8.3 Running the Machine 260

8.3.1 Booting the Machine 260
8.4 Input-Output 260
8.5 Assembly Languages 262

8.5.1 An Example Assembly Program 263
8.6 Tracing the Execution of Programs 264
8.7 High Level Languages 265

8.7.1 An Example Program in Tiny 266
8.8 Compilation 266

8.8.1 Example of generated assembly code 269
8.8.2 How to prove the correctness of the compiler 269

8.9 Interpretation 270
8.10 Correctness 271
8.11 Summary 273
8.12 Exercises 273

Compression / Decompression 276
Introduction 276
LZW compression 276

6 Functional Programming in Clean

LZW compression in Clean 277
Decompression 278

Performance results 279
Decompression 281
Compression results 282

Improvements 283
Further improvements 285

Conclusion 285

Process Control 287
10.1 To be written 287
10.2 Exercises 287

A Distributed Organizer 289
11.1 To be written 289
11.2 Exercises 289

Program development 290
1.1 Software engineering 290
1.2 Waterfall model 291
1.3 Program development strategies 294

Top-down 296
Bottom-up 296
Incremental 297
Evolutionary 297

1.4 Spiral model 298
The double helix model 300

1.5 Functional programming languages 301
1.6 Software quality 302

Software maturity 303
1.7 Guidelines for software construction 305

Programming styles and paradigms 307
2.1 Programming styles 307

List comprehensions 308
Explicit recursion 309
Toolbox functions 309
Continuation passing 310
Characteristics of the programming styles 311

Execution times 311
List comprehensions 312
Explicit recursion 312
Toolbox functions 312
Continuations 313
Conclusion 313

2.2 Programming paradigms 313
Imperative 313
Logic programming 317
Object Oriented 317

Exercises 317

Functional Programming in Clean (Draft, 12 augustus 1997) 7

Efficiency of programs 319
3.1 Graph rewriting in Clean 319
3.2 Complexity 322

Analysis 323
Reduction 323

3.3 Imperative reduction machine 323
3.4 Strictness 325

Left recursion 326
unboxed basic values 328

3.5 uniqueness 329
in situ update 330
manipulation of unique objects 330

3.6 Transformations to increase efficiency 330
fold/unfold 331
deforestation 331

Clean 1.1 syntax 333
A.1 Clean program 333
A.2 Function definition 334
A.3 Graph definition and expression 335
A.5 Macro definition 336
A.6 Type definition 336
A.6 Class definition 337
A.7 Symbols 337
A.8 Identifiers 337
A.9 Denotations 338

Standard Environment version 1.1 339
B.1 Cleans' Standard Environment 339

B.1.1 StdOverloaded: predefined overloaded operations 340
B.1.2 StdClass: predefined classes 340
B.1.3 StdBool: operations on Booleans 341
B.1.4 StdInt: operations on Integers 341
B.1.5 StdReal: operations on Reals 342
B.1.6 StdChar: operations on Characters 342
B.1.7 StdList: operations on Lists 343
B.1.8 StdCharList: operations on lists of characters 344
B.1.9 StdTuple: operations on Tuples 344
B.1.10 StdArray: operations on Arrays 345
B.1.11 StdString: operations on Strings 345
B.1.12 StdFunc: operations on polymorphic functions 346
B.1.13 StdMisc: miscellaneous functions 346
B.1.14 StdFile: File based I/O 346
B.1.15 StdEnum: handling dot-dot expressions 348

Clean 0.8 I/O Library 351
C I/O library 351

C.1 General operations on the IOState (deltaEventIO) 351
C.2 Definition of the I/O system (deltaIOSystem) 352
C.3 Operations on the timer device (deltaTimer) 355
C.4 Operations on menus (deltaMenu) 356
C.5 Operations on windows (deltaWindow) 357

8 Functional Programming in Clean

C.6 Operations on dialogs (deltaDialog) 358
C.7 The file selector dialogs (deltaFileSelect) 360
C.8 Predefined Controls (deltaControls) 360
C.9 Miscellaneous operations (deltaIOState) 361
C.10 Operations on pictures (deltaPicture) 361
C.11 Operations on fonts (deltaFont) 364
C.12 System-dependent constants and functions (deltaSystem) 365

Functional Programming in Clean (Draft, 12 augustus 1997) 9

