Chapter 111.3
Efficiency of programs

3.1 Graph rewriting in Clean 3.4 Strictness
3.2 Complexity 3.5 Uniqueness
3.3 Imperative reduction machine 3.6 Transformations to increase efficiency

Until now we have not been very precise on the operational model and efficiency of pro-
grams. We chosen this order since we are convinced that the basis for successful pro-
gramming is the ability to write well designed programs. Nevertheless, program effi-
ciency does matter in many situations. In this chapter we will explain the operational be-
haviour of Clean programs and teach you how to understand the time and space efficiency
of programs. Moreover we will show you how the efficiency of programs can be im-
proved.

In section 1 we explain graph rewriting. Graph rewriting is also called graph reduction.
The basic evaluation step in a Clean program is a graph reduction according to a function
in Clean. Section 2 treats the increase of the number of reduction steps as function of the
value or size of the arguments of a Clean function. The basic aspects of the implementa-
tion of graph rewriting in Clean needed to understand the time and space behaviour of
programs are introduced in section 3. The Clean compiler uses strictness and uniqueness
information to speed up the evaluation of programs. This is explained in section 4 and 5
respectively. Finally, section 6 shows you, how programs can be transformed to increase
their efficiency.

3.1 Graph rewriting in Clean

To understand the efficiency of programs as discussed in this chapter it is important to
have a proper view of the operational behaviour of a Clean program. Clean is a lazy
higher order functional programming language based on Functional Graph Rewriting
Systems. A Functional Graph Rewriting System (FGRS) is a Graph Rewriting System
using the functional reduction strategy [Eekelen 88, Plasmeijer 94]. A reduction strategy
is a function indicating the redex to be rewritten. The functional strategy delays the re-
duction of an expression until its value is needed. However, an expression is always
reduced before its value is used. The functional strategy in Clean prescribes lazy
evaluation. A Graph Rewriting System (GRS) is an extension of Term Rewriting
Systems where the terms are replaced by directed graphs in order to avoid the duplica-
tion of work via sharing of expressions [Barendregt 87a, 87b, 88]. A Term Rewriting

111.3 Efficiency of programs Draft 12 augustus 1997 319

System (TRS) is a computational paradigm consisting of a collection of rewrite rules to
transform terms (expressions) into equivalent terms [Klop 87].

A Clean program consists of a set of (typed) graph rewrite rules. A subgraph is a redex
(reducable expression) if there is a left hand side (lhs or pattern) of rewrite rule that
matches this graph. A match is a mapping from the pattern to the graph that is the
identity on constants and preserves the node structure. A graph is in root normal form
(rnf) if the whole graph is not a redex and cannot become a redex by internal reduction.
A graph is in normal form (nf) if it does not contain any redex. The rewrite rules are
usually called functions.

Node-id's or node identifiers are unique references to individual nodes in the graph. Do
not confuse them with the formal arguments of rewrite rules (functions). A match is actu-
ally a mapping from formal arguments to actual node-id's. This mapping is such that the
symbols in the graph are equal to the symbols in the pattern when there is a symbol in the
pattern. A graph does not change when all node-id’s are changed consistently. Since the
actual value of the node-id's is irrelevant the node-id's are left implicit whenever possi-
ble.

The rewrite rules are used to reduce the initial graph containing the symbol start to
normal form. This normal form is computed by a depth first, left to right traversal of
the graph. Each node is evaluated to root normal form and its value is used as the next
output element. Clean is a lazy language: the value of a graph is only computed when its
value is needed. The basic goal of the Clean system is to compute the value of the start
rule. The functional reduction strategy is used: rewrite alternatives are tried in textual
order; patterns are matched from left to right; evaluation to root normal form is forced
before an actual argument is compared with non-variable part of the pattern.

A redex is rewritten by constructing the graph specified in the right hand side (rhs) of
the rule: the contractum. Then all references to the root redex are redirected to the root
of the contractum. There are also rewrite rule alternatives consisting of a redirection
only; no contractum is specified in these rules. Nodes that cannot be reached from the
root of the graph are garbage, they must be removed from the graph.

A small example is used to illustrate graph reduction in Clean. The example is even so
small that no sharing of computations occurs. The start rule initiates the computation of
the length of the list [3, 4] . The function Lengt h takes one argument; the list to be scanned.
Start :: Int
Start = Length [3,4]

Length :: [x] -> Int

Length [a: X] 1 + Length x

Length [] 0
The reduction process is illustrated by the following rewriting sequence (the redex
rewritten is printed bold):

Start || & This is the only redex, apply the Start rule
ength [3, 4] [| b: This graph as a whole is the new redex
ength [4] || c: The addition operator + forces the evaluation of its second argument

ength [] || d: Again the second argument of +
0 || e: Second argument of second + is rewritten to (r)nf.
1 [| f. The graph as a whole is the new redex
[| g: The graph is in (r)nf.
This rewriting process is depicted below. The graphs correspond to each of the steps
shown above. The garbage that results from one rewrite step is drawn grey, it is removed

in the next snapshot. The root node is usually not shown, but it is included here to show

320 Functional programming in Clean

all redirections clearly. As a matter of fact, the only task of the root node is to hold the
reference to the actual expression to be reduced.

r oot
\'
|St art |
a b c d
oot |y
e f g

Figure 111.3.1: The reduction of Start = Length [3, 4].
The parts of the figure correspond to the steps in the trace above.

It is important to mention that Clean is a higher order language: symbols can be used
Curried; without (some of) their arguments. The operator @supplies one argument to a
curried symbol. It is generated internally for each variable used as function and each
function which more arguments then its arity. When all arguments of a function are gath-
ered its reduction is initiated. The operator @is pronounced as apply. The behaviour of
the apply operator is illustrated by the next example. See also the chapter about inter-
preting functional programs in part II.

twice f x =f (f x) || twice appliesthe function f two times to the argument x

|| Theinternal representation of the rhsisf @ (f @x)

Start =twice (Il inc) O
The apply operator first reduces its first argument. Next it adds its second argument as
new argument to the obtained function. When the number arguments becomes equal to the
arity of the function, reduction of the function is initiated. The reduction process is illus-
trated by the next rewrite sequence:

Start || a: The initial graph.
® twice (I inc) O || b: The graph after rewriting according to the Start rule.
® f @(f @0) where f =1 inc || c: The leftmost @reduces its first argument. .
® f @(f @0) where f =inc || d: The leftmost @ supplies an argument to i nc.
® inc (inc @O0) || e: The firsti nc needs its argument; @ adds an argument .
® inc (inc 0) || f: The argument of the leftmost inc can now be reduced.
® inc 1 || g: inc O isevaluated; the other i nc can now be evaluated.
® 2 || h: The graph is in normal form

This reduction sequence can be depicted as shown in figure 111.3.2. Apart from evalua-
tion of Curried functions, this reduction sequence shows also some real graph reduction.
The reduction of the subgraph 1 inc is shared by both @operators.

111.3 Efficiency of programs Draft 12 augustus 1997 321

a b
00t [4] r oot j+] r oot 4]
IZ)
incfy] [0]
e f g h

Figure 111.3.2 The reduction of twice (1 inc) O

This example shows that it takes additional nodes in the graph and associated rewrite
steps to work with Curried functions. There is nothing wrong with using Curried func-
tions. On the contrary, Curried functions offer you a great expressive power that should
be used whenever necessary. However, when you want the maximum speed for your pro-
grams you should be reluctant to use Curried function heavily. In the example above the
definition of start can be replaced by:

Start =inc (inc 0)

The execution of this program can be depicted as shown in figure 111.3.3.

r oot r 00t]s]

Eari] m
incf] [0]
a b C d

Figure 111.3.3 The reduction of i nc (inc 0)

This version of the function start denotes the same value, but its is obtains more effi-
ciently. By comparing figure 3.2. and 3.3 it is clear the second version of the function
start requires less nodes and less reduction steps. The presence of the identity function |
in the reduction sequence of figure 111.3.2 justifies just one additional node and one ad-
ditional step. Apart from the node and reduction for twi ce, the reduction sequence de-
picted in figure 111.3.3 contains two additional nodes for the operator @and two addi-
tional reduction steps for this operator.

3.2 Complexity

States a property of a given algorithm: the increase of the number of reduction steps as
function of the size or value of the parameter(s). Constant factors are ignored.

322 Functional programming in Clean

In case the size of you input can grow you must use an algorithm with the lowest possible
complexity to keep you program fast for large inputs. If the size of the input is fixed the
complexity of the algorithm used does not matter. For a fixed size input the only thing
that counts in the efficiency of the program for the given input.

The complexity is basically a property of an algorithm. However, sometimes we speak
of the complexity of a problem to indicate the complexity of the best known or best
possible algorithm.

Analysis

Reduction

By choosing an other algorithm.

Quick sort instead of bubble sort. (n log n instead of n2).

Linear Fibonacci function instead of naive exponential one.
efib:: llnt -> Int
efibn| n2 =1

efib (n-1) + efib (n-2)

Ifib:: !'Int -> Int
[fibn=accfibnll
wher e
accfib :: !'Int !'Int !'Int -> Int
accfib O x y = x
accfib n x y = accfib (dec n) y (x+y)

3.3 Imperative reduction machine

In contrast to the previous section treating algorithmic complexity, constant factors do
matter in real life. In this section we show you how the implementation of graph reduc-
tion in Clean rewrites graphs and how this effects efficiency. The general message to ob-
tain efficiency is to avoid actual graph manipulations as much as possible.

The implementation of Clean uses an abstract graph reduction machine called the ABC-
machine [Koopman 90, Plasmeijer 94, Koopman 95]. Clean is first compiled to code
for the ABC-machine. This ABC-code is compiled to native code for your target ma-
chine. Details of this implementation are not relevant here, but some notions of this im-
plementation are necessary to explain the efficiency of Clean programs.

The name ABC-machine is related to the three stacks used in this machine. The A-stack
is the Argument-stack. The A-stack contains references to nodes involved in the current
rewriting process. The B-stack contains Basic values. It is much more efficient to manipu-
late basic values as plain constants on a stack than to treat them boxed in nodes in the
graph. The C-stack is the Control-stack. It contains return addresses in the code. In this
chapter we will explain the use of the A-stack and the B-stack.

The A-stack contains references to the node involved in the current rewrite step. This
stack provides an efficient way to access the nodes involved. In order to reduce some
node its node-id is pushed on the A-stack. Next all function arguments are pushed on the
stack. The last argument is pushed first and the first argument becomes the top of the
stack. During the matching process also the subarguments are pushed on the stack.

Graph reduction on the ABC-machine differs slightly from plain graph reduction as dis-
cussed above. The differences are:

1) We use an argument stack to access nodes.

111.3 Efficiency of programs Draft 12 augustus 1997 323

2)

3)

4)

5)

Nodes are updated with their reduct instead of creating a new node and redirecting
all references from the redex to the newly created reduct.

Updating the redex is delayed until the root normal form is found. The node con-
taining the redex is marked to detect cycles in the rewrite process. As a consequence
the rule currently executed cannot be deduced from inspection of the graph, but is de-
termined by the instruction sequence executed. For redirections, function alternatives
consisting only of a variable, this cannot be done since the root of the reduct is an
other node. In this situation the root of the reduct is copied to the root of the redex.
See figure 111.3.4.j and 111.3.5.h for examples.

Garbage collection is delayed until the memory available for constructing graphs,
the heap, is exhausted.

The dataroot is not present in the graph. A pointer on the A-stack is used instead of a
node in the graph to hold the reference to the root of the graph.

As example we show again the reduction of Length [3, 4] using the rules given above. In
the figures below several snapshots of the ABC-machine state are shown during the reduc-
tion of a graph according to the code for the rewrite rule Lengt h.

< [OcTe | OTd———F -
-) - (—..
— Lengt h
7
EilnE :
4] [
a b c d

a: The initial state. There is no need to construct a node for root . A pointer on the A-stack
is used instead of this node. This node is marked with Gycl e to be able to detect cyclic
reduction sequences. The fact that we are actually reducing the node containing Start is
represented by the code executed.

b: The code for start has constructed the arguments of the root node (Lengt h) and contin-
ues by reduction according to the code of Length. The root node is not updated.
Updating is useless since calling the code corresponding to Lengt h directly is more ef-
ficient than updating the node and inspecting its contents lateron. Moreover, after
updating the node with Lengt h , it must be updated again with ¢ycl e in order to detect
cyclic reduction properly.

c. After matching of the second alternative for Lengt h also references to the sub-arguments
are pushed on the A-stack. All nodes involved in the rewrite process can be accessed ef-
ficiently via the A-stack.

d: The second alternative of Lengt h prepares the arguments of the operator + and switches
to its code. Again without updating the root node.

324

Functional programming in Clean

J/

e f g h
e The operator + needs the value of the subgraph Lengt h [4] . In order to obtain this value
a reference to this graph is pushed on the A-stack and its reduction is initiated. Stack
frames that are currently out of scope are coloured dark grey.

Lengt h updates the root node to detect cyclic reductions and discovers that the second
alternative should by applied by inspection of its actual argument. The arguments for +
are prepared and the code corresponding to + will be executed. In contrast to the real
ABC-machine implementation, garbage is immediately removed.

g: This instance of + needs the value of Lengt h [], and initiates its reduction after pushing
a reference to this graph on the A-stack.

h: For this subgraph the first alternative of Lengt h should be applied. The root node of this
subgraph is replaced by its result: o.

—h

i j
i The second operator + is reduced to normal form. Its stack frame can be removed from
the A-stack. The code of the first operator + can now compute the value of the subgraph
and update the root node.

j: Finally, the root of the initial graph is updated with the computed normal form. Since
redirection is a very expensive operation, we copy the root of the result to the root of the
redex instead of the redirection. Usually copying is avoided by overwriting the root
node of the redex, but for rules that consists only of a redirection this is not possible.

Figure 111.3.4 Reduction of Start = Length [3, 4] on the ABC-machine

3.4 Strictness

An argument is strict when its value always is needed in the reduction of the function. A
more practical definition is: a function is strict in an argument when the reduction of the
function does not terminate when the reduction of that argument does not terminate.
When we denote an nonterminating expression by ”, a the function f is strict iff ¢ ~ =/,
As we have seen in Part I and I, it is possible to add strictness annotations, denoted by
1, to the type of the rewrite rules. Strictness of arguments is in general undecidable. The
Clean compiler believes you when you indicate arguments as being strict.

The Clean system deviates from the basic functional strategy by reducing strict argu-
ments eagerly to root normal form. This implies that strict arguments are reduced

111.3 Efficiency of programs Draft 12 augustus 1997 325

before the function itself is reduced. Inside the function no reduction nor inspection to see
whether a strict argument is in rnf is needed. Eager evaluation of strict arguments does
not change the termination properties since the value of strict arguments is needed
anyway. It is operational more efficient to reduce needed arguments eagerly since it
saves construction and inspection of the redex. When strict arguments of a function in a
strict position have to be created, these arguments are reduced immediately. Referential
transparancy is the property that the value of an expression does not depend on
theevaluation order. Whenever you obtain a (root) normal form, it is the one and only
(root) normal form of that expression. The very same feature is also called the Church-
Rosser property. In the literature you will found some other names and proofs for this
property in well behaving graph rewrite systems and | -calculus.

The Clean compiler has its own sophisticated strictness analyzer that approximates the
strictness of function arguments in a safe way [Nocker ??, Plasmeijer 94]. A simple
approximation of strictness uses the following rules:

1) Each function is strict in the first non-variable argument of the first alternative. The
functional strategy needs the value of this argument to deterime whether this
alternative should be applied. When the function has only variables as arguments the
value of the guard will be needed (if a guard is present).

2) The root of the right-hand side occurs in a strict context, i.e. its value is needed when
the value of the function application is needed.

3) The actual arguments corresponding to strict arguments of a function application in a
strict context are also needed.

The strictness of arguments of a set of functions can be approximated by applying these
rules until a fixed point has been reached (the strictness does not change by applying these
rules). Initially all functions without strictness information are made non-strict in all
their arguments. The strictness information given for existing (library) function should be
used to deterimine as much strictness as possible.

The first rule determines that the function Lengt h used in the examples above is strict.
The second rule determines that the function twi ce is strict in its first argument and that |
is strict in its argument. The third rule determines that | fi b is strict in its argument since
accfib is strict in its first argument, due to rule 1).

Strictness can be used to optimise the reduction sequence depicted in figure 111.3.3. Due
to rule 1) the function length is strict in its argument. Rule 2) states that the result of the
addition in the right-hand side is always needed when the result of | engt h is needed.
Using the strictness of the operator + also the result of the subgraph | engt h x will be
needed. So, it is safe to compute the value of this expression at once instead of first fill-
ing the nodes and reducing them later.

Left recursion

Figure 111.3.3 shows a drawback of delaying the update of the root node until the root
normal form is reached: the amount of stack space needed for the A-stack is proportional
to the length of the stack. Actually, even when we would update nodes in the graph we
should keep references to nodes that must be updated on the A-stack. When this is not
done, we should restart looking for a redex at the root of the graph over and over again.
Using an amount of stack space proportional to the length of the list can be prevented by
using a left recursive version of the function length (as given in StdEnv).

326 Functional programming in Clean

length :: I'[x] -> Int
length | = acclen 0 |

acclen !'Int !'[x] ->Int

acclen n []
acclen n [a:Xx]

n
acclen (inc n) x

Reduction of the program start = length [3, 4] using this definition of length and eager
evaluation of strict arguments is depicted in figure 111.3.5.

- | - Cycl g e
(41]
a b c d

The initial state. A node is constructed to hold the (root of the) result of the reduction
according to the function Start .

The function start has created the argument of | engt h and does a context switch to the
code of | engt h.

The function I engt h creates the additional argument o for accl en and starts evaluation
of the code of accl en. Since accl en is strict in both arguments, these arguments should
be reduced to rnf before the function is called. Both actual arguments are in normal for.
So, no reductions are needed.

The first alternative of accl en cannot be applied since the second argument does not
match the pattern []. Due to the calling conventions no reduction of the corresponding
argument is needed. The function accl en creates the arguments for the recursive call in
the second alternative. The list argument does not need any reductions. The accumulator
needs to be reduced. A place holder is created for its result. A reference to it is pushed
at the bottom of a new stack frame. Its argument 0 is pushed on the A-stack and reduc-
tion according to i nc is initiated.

Oyl e 5 - - |
O—F B—F
4]] 7]
e f g h

The function i nc updates it root with the result of the reduction i nc 0.
The A-stack is updates and the function accl en is called recursively.

After the reduction of i nc 1 the function accl en is called again. The graph to be rewrit-
ten is currently acclen 2 [].

This is reduced according to the first alternative of the function accl en. The root of the
result is again copied to the root of the redex instead of the redirection.

Figure 111.3.5 Reduction of the left recursive | engt h [3, 4] on the ABC-machine using strictness

Note that the reduction sequence depicted in figure 111.3.5 uses an fixed amount of stack
space. The stack space needed is independent of the length of the list supplied as argu-
ment. Note also that it is required to reduce the accumulator eagerly to keep the needed

111.3 Efficiency of programs Draft 12 augustus 1997 327

stack space bounded. Otherwise a subgraph of the form 1+(1+0) is constructed and again
an amount of stack space proportional to the length of the list is needed to compute the
value of this graph.

unboxed basic values

The code generated by the compilation scheme presented above, can be improved at
many points. The most important improvement is to use the B-stack instead of nodes to
pass basic values between functions. The use of the B-stack is described informally and il-
lustrated with an example. Afterwards some other optimizations are mentioned.

Basic values are manipulated always on the B-stack in the ABC-machine. Every com-
putation involving basic values requires the transportation of the values to the B-stack and
the shipment of the result back to a node in the graph store. When the result is used again
as argument in another computation there is much data transportation. To reduce the un-
necessary movement of data, the compilation scheme must be changed such that basic
values stay on the B-stack as much as possible.

To achieve this, the calling conventions for the rewrite alternatives are changed: strict
arguments of a basic type are passed on the B-stack and the result of a reduction is left on
the B-stack when it is of a basic type. The calling conventions for the node entry and the
apply entry remain unchanged. The code corresponding to the apply entry takes care of
the transport of basic values between the graph and the B-stack for this function. After the
reduction of a strict argument of a basic type it is transported to the B-stack. When the
result of the function is of a basic type the first rule alternative entry is called as a
subroutine. The rnf produced on the B-stack is transported to the node containing the
redex. The complexity of the code generation is increased significantly by this new
calling convention. Arguments and results must be moved to the desired place at every
occurrence. This is not difficult, but involves an elaborated case analysis.

Both arguments are strict. The first argument is also a basic value. So, it will be passed
on the B-stack. The result will also be passed on the B-stack. The operator + also expects
its arguments and leaves its result on the B-stack. Only when the reduction is completely
finished the result will be written in the graph since it is potentially shared.

-

a b c d
a: The initial state. A node is constructed to hold the (root of the) result of the reduction
according to the function start . The only difference with figure 111.3.5.a is the presence
of the empty B-stack.

b: The function start has created the argument of | engt h and does a context switch to the
code of | engt h.

¢ The function I engt h creates the additional argument 0 for accl en and starts evaluation
of the code of accl en. Since accl en is strict in both arguments, these arguments should
be reduced to rnf before the function is called. Since the accumulator is strict and of a
basic type it is passed on the B-stack instead of storing it in a node in the graph.

328 Functional programming in Clean

d: The first alternative of accl en cannot be applied since the second argument does not
match the pattern []. Due to the calling conventions no reduction of the corresponding
argument is needed. The function accl en creates the arguments for the recursive call in
the second alternative. The list argument does not need any reductions. The accumulator
needs to be reduced. The value of the accumulator is computed on the B-stack instead
of in the graph.

Ff or—FF
(41 0] Ir_fli’
e f g h

The function i nc produces its result on the B-stack..

f: The A-stack and B-stack are updated and the function accl en is called recursively.

g: After the reduction of i nc 1 the function accl en is called again. The graph to be rewrit-
ten is currently acclen 2 [].

h: This is reduced according to the first alternative of the function accl en. The root is up-
dated with the value found on the B-stack.

Figure 111.3.6 Reduction of the left recursive | engt h [3, 4] on the ABC-machine using the B-stack.

Note that the reduction sequence in figure 111.3.6 is as optimal as you can imagine. The
list to process is accessed by a single pointer on the A-stack. The running length is stored
in a single entry on the B-stack. The amount of stack space needed is very small, and no
intermediate results are constructed in the graph.

Also the graphs indicated after the optional 1et! part of the contractum are reduced
eagerly to root normal form before contractum is constructed.

3.5 unigqueness

A subgraph is unique when it is not shared by other functions. You can indicate uniqueness
of function arguments by the annotation *. In contrast with strictness the Clean system
does not trust you on your word when you indicate and argument as unique. The Clean
compiler rejects programs unless it is able to verify the consistency of the uniqueness
annotations.

Just like strictness, the verification algorithm for uniquness is an approximation. So, the
compiler will reject some programs despite the fact that you supply the correct uniquness
annotations. The reason for this difference in approach between strictness and uniquness is
clear when you look at the consqquences of an erroneous annotation. An errorneous
strictness annotation will force the evaluation of an expression that is not known to be
used. In the worst case the value of this expression is not needed and its evaluation does
not terminate. Although your program doesn't terminate while it will terminate without
strictness annotations the program does not produce wrong results. For erroneous
uniqueness annotations the situation is different. The Clean compiler can and will use the
nodes of unique arguments in the construction of the contractum. Especially for large
datastruictures like arrays this is very effective. Instead of creating a new array the array
supplied as argument is updated and reused as result. It will be clear that incorrect

111.3 Efficiency of programs Draft 12 augustus 1997 329

unigqueness annotations are a disaster: you program starts producing wrong results since
nodes can be updated incorrectly.

in situ update

Update an existing datastructure instead of creating a new one. Especially for large data
structures like arrays.

manipulation of unique objects

3.6 Transformations to increase efficiency
General rules:

1)

2)

3)

4)

5)

6)

7)

Think and measure before you start transforming your program. Find out where the
largest part of the execution time of your program is spent. It does not make much
sense to optimize the initialisation of your program a factor 10 when 98% of the
runtime of your program is used elsewhere.

Manipulate basic values on the B-stack as much as possible (make them strict). It is
even worthwhile to make functions strict in arguments of a basic type that are not
always needed. Consider as example the function accfi b above: the value of the last
argument is not needed in the last recursive call. However evaluation of this argument
on the B-stack is that much more efficient than treating it lazy, that it is worthwhile
to do one addition, x+y in the last but one recursive call of accfib, that will not be
used.

Avoid overloading that must be resolved at runtime. The Clean compiler will
generate an appropriate warning.

Limit the amount of intermediate datastructures. Using the toolbox functions (like
map, filter, folr etc.) lot of intermediate lists are created. By rearranging of the
toobox functions or introduction of tailor made functions the generation of these
intermediate data structures can usually be avoided. Avoiding the intermediate
datastructure is more effcient since a datastructure in rnf is always constructed in the
graph. Consider the introduction of continuations to remove the necessity to
introduce intermediate data structures or partial solutions that must be combined.

Consider whether your main datastructures are the most appropriate ones. Although
it is convenient to use lists to hold collections of values for program construction,
accessing the elements is not very fast for long lists. Consider the use of an array or
search tree instead of the list. This is one of the occasions where it pays to use
abstract datastructures for the main datastructures in your program. Changing the
implementation of an abstract datatype is very well localized.

Limit the amount of curried functions. As we have seen above using a Curried version
of a function is a little more expensive than using the plain version.

Limit the amount of rewrite steps necessary. Each rewrite step takes some time. Even
for a function that does virtually nothing stack frames have to be allocated and
removed and a context switch is performed. Although these things are highly
optimized and done very efficient they do take a litlle bit of time. When these
things are done very often the total of these actions takes a serious amount of time. A

330

Functional programming in Clean

8)

9

program can be optimized by turning functions into a macro, or by combining the
the tasks of various functions into one large function. However, do not be afraid to do
some additional rewrite steps to enable other optimisations. It usually is more
efficient to do some testing in an additional function than repreating the test
unnecessary in each call of a recursive function.

Develop special versions of functios that occur with fixed and predetermined
arguments. Examples are some in the section fold/unfold below.

Think about the memory behaviour of your program. Do the subexpressions that are
not needed anymore actually become garbage? We have seen some examples of this
in part 11. We forced the evaluation of the list representing the memory in the
computer architecture and used an environment of type [(nare, val ue)] instead of name
-> val ue as State in the interpreter. The space consumption if of the normal form is
often, but clearly not always, smaller than the space consumption of an expression
equivalent to the normal form. Especially in situations where many canges of a
program state are involved, it is often a good idea to force the evalaution of the
state. Clear exceptions on this rule are very long, or even infinite, lists that are only
partially needed.

fold/unfold
Fill in the definition of functions to obtain a more efficient tailor made function.

deforestation

Remove intermediate datastructures, especially lists.

Space behaviour is often hard to predict.

111.3 Efficiency of programs Draft 12 augustus 1997 331

