
Part II

Chapter 6
Interpreter for a functional
programming language

6 . 1 The interpreted programming
language

6 . 2 Parser
6 . 3 Evaluat ion

6 . 4 User Interface
6 . 5 Example programs for

in terpre ter
6 . 6 Adding type check ing to the

in terpre ter

In this chapter we describe an interpreter for a (Clean like) functional programming
language (without type checking). The language used in the interpreter is a simple pure
functional programming language. In the exercises the language can be extended with
constructors and pattern matching (enabling abstract data types) and list comprehensions
(zf-expressions).

The interpreter will be used in the spreadsheet of the next chapter.

In the next section we will first give a description of the language we will make an
interpreter for.

The remainder sections describe the several steps needed for interpretation: parsing,
graph transformation and evaluation. For the parser we will not use the parsing techniques
from chapter II.5, but instead use a dedicated infix expression parser. Parsing results in a
parse tree for every function. Graph transformation transforms a parse tree into a tree
which can directly be evaluated. The evaluator takes care of this evaluation.

In section 4 we will describe a user interface for the interpreter.

6.1 The interpreted programming language
The interpreted language we use is a simple pure functional language. We will not give a
detailed syntax description of it, but instead introduce it by means of a number of
examples. These examples can be found in the file test.fp.

Functional programming in Clean Draft augustus 12, 1997 227

Definition of a number of functions:

fac n = if (n=0) 1 (n*fac (n-1))

take n xs = if (xs=[]) [] (if (n=0) [] (hd xs : take (n-1) (tl xs))

filter p xs = if (xs=[]) [] (if (p (hd xs)) (hd xs : filter p (tl xs))
 (filter p (tl xs)))

notmodzero x y = y % x ~= 0 || x modulo y, % is the pre-defined infix operator mod.

from x = x : from (x+1)

sieve xs = hd xs : sieve (filter (notmodzero (hd xs) (tl xs)))

primes = sieve (from 2)

Syntax: We see that there is no special syntax for conditional statements, but instead we
use a ternary function if. In this way the body of a function can be considered as a pure
infix expression, which simplifies parsing. Notice the difference in the use of the : (cons)
operator between this language and Clean. Here : is a pure infix operator. So [a:b] in
Clean is equivalent with a:b in our language. This also simplifies parsing. Patterns and
local definitions are not supported.

Data types: The only pre-defined data types are num (int), bool and lists (char and
string can be added by the reader). Tuples are not supported yet, but can also be added
by the reader. In the non-typed version of the language you can use lists to mimic tuples.

Pre-defined functions: if, hd and tl are the only (hard coded) pre-defined functions.

Infix operators: Our language supports the following infix operations: +, -, *, /, %
(mod), ^, =, ~=, : (cons), <, >, <=, >=. Currently, it is not possible to define
infix operators yourself (see exercises).

Currying is allowed. We use the infix operator @ to indicate the application of a
function to one argument.

Lay-out rule: The lay-out rules are simple, a function definition starts at the beginning
of a line, so lines that do not start at the beginning of a line are considered to be
continuations of the previous line.

Use of the interpreter

The interpreter has a command-line interface. After the (eval>) prompt expressions can
be typed in. During the start-up a system file (sys.fp) is loaded. This system file
contains standard list functions like, take, drop, filter and map. The system function
file can be edited by the user. At the prompt it is also possible to load a user defined
file with function definitions. This is done with the command: load filename. Here
filename is the name of the file (including its path, if it is not in same directory as the
interpreter). The name of the file should not be “quoted”.

After loading a user defined file, expressions using functions defined in this file can be
typed in after the prompt. For example: take 30 primes, after loading the example
file test.fp.

6.2 Parser
Before parsing a function or an expression we first turn the input string into a list of
tokens. Tokenizing before parsing frees the parser from the task of recognizing infix

228 Draft augustus 12, 1997 Chapter II.3: Interpreter for Functional Programming Language

operators like +, -, *, ^, etc, forming identifiers from groups of characters. The function
tokenize take care of this.
::Token = IdNum [Char] | Op [Char] | Lpar | Rpar | TokError [Char] Char

tokenize :: [Char] -> [Token]
tokenize [] = []
tokenize ['[]':xs] = [IdNum ['nil'] : tokenize xs]
tokenize ['<=':xs] = [Op ['<='] : tokenize xs]
tokenize ['>=':xs] = [Op ['>='] : tokenize xs]
tokenize ['<':xs] = [Op ['<'] : tokenize xs]
tokenize ['>':xs] = [Op ['>'] : tokenize xs]
tokenize ['~=':xs] = [Op ['~='] : tokenize xs]
tokenize [' ':xs] = tokenize xs
tokenize ['\t':xs] = tokenize xs
tokenize ['(':xs] = [Lpar : tokenize xs]
tokenize [')':xs] = [Rpar : tokenize xs]
tokenize ['[':xs] = [Lpar : tokenize xs]
tokenize [']':xs] = [Op [':'], IdNum ['nil'], Rpar :tokenize xs]
tokenize [',':xs] = [Op [':'] : tokenize xs]
tokenize ['\n':xs] = []
tokenize l=:[x:xs] | oper [x] = [Op [x] : tokenize xs]
 | isCharNum x = [idnum : tokenize r]
 = [TokError ['Unexpected token'] x]
 where (idnum, r) = readIdNum l

The definition of tokenize is straightforward. Identifiers and numbers are considered to
be the same token (IdNum). The empty list [] is already recognized by the tokenizer.
Also, the shorthand notation for lists, [1,2,3], is turned into 1 : 2 : 3 : nil. This
can be done because the ',' is only used in lists.

The parser consists of only one function parse. The function parse can parse arbitrary
infix expressions given a list of infix operators together with their priorities and the way
they associate (left or right). These are supplied by the (constant) function operators.
Operators consists of a list of triples, in which the first field contains the operator itself,
the second field the priority of it (only for comparison) and the third field the
association (left or right) of the operator:
operators = [(['+'],10,'l'),(['*'],20,'l'),(['%'],5,'l'),(['/'],20,'l'),
 (['^'],30,'r'),(['='],3,'r'),([':'],0,'r'),(['@'],100,'l'),
 (['-'],10,'l'),(['<'],4,'r'), (['>'],4,'r'),(['~='],3,'r'),
 (['<='],4,'r'),(['>='],4,'r'),(['<='],4,'r'),(['>='],4,'r')]

The result of parse is an expression tree. The data type for expressions is:
:: Expr
 = Func [Char] Int Expr // An occurance of a function: its name, arity and body.
 | Var [Char] Int // A variable: its name and argument number (first variable is 0)
 | BOOL Bool // Boolean value
 | Num Int // Integer value
 | Null // The empty list
 | Inf Expr [Char] Expr // An infix expression: left argument, operator, right argument
 | PreError [Char] // An erroneous expression. The argument is a message.
 | Empty // Undefined expression. e.g. the function body before its is filled
 | SysFunc [Char] // A build-in function (if, hd or tl)

One problem we have is that the expressions we use are not pure infix expressions. They
also contain function applications. To deal with this we assume the presence of the
invisible application operator @. @ is present between every function name and argument.
If there are more arguments, @ must also put between the arguments (this facilitates
currying).

Example: if (n=0) 1 (n * fac (n-1)) should be read as:

Functional programming in Clean Draft augustus 12, 1997 229

if @ (n=0) @ 1 @ (n * fac @ (n-1))

For this expression the parser generates the following parse tree:
Inf (Inf (Inf SysFunc ['if']
 ['@']
 (Inf (Var ['n'] 0)
 ['=']
 (Num 0)))
 ['@']
 (Num 1))
 ['@']
 (Inf (Var ['n'] 0)
 ['*']
 (Inf (Func ['Fac'] 1 Empty)
 ['@']
 (Inf (Var ['n'] 0)
 ['-']
 (Num 1)))))

This parse tree can be depicted as:
 @
 / \
 -------------- --------------
 @ *
 / \ / \
 ------ ------ ------ ------
 @ 1 n @
 / \ / \
 -- -- -- --
 if = fac -
 / \ / \
 n 0 n 1

Actually the parser generates the subexpression Func … for each function, variable and
constant in the expression. The system functions and constants are transformed to the
correct subexpressions by graphTrans. The expressions for variables are fixed by
placevars in parsefunc. Finally, the function fillin is used to replace the Empty
function body of fac by a copy of the expression shown.

6.2.1 The function parse

The function parse is a recursive descent parser. In contrast with the parsers form chapter
II.4 this parser is deterministic. Parsing starts at the top level of the syntax tree. The
parser tries to recognize the grammar rule at the top level (start symol for parsing) using
the the grammar rules of lower levels. This is descending the grammar rules. For
recursive rules the same parser is used to recognize the recursive occurence. Moreover we
do not use parser combinators, but tailor made functions to construct the parser.

Parsing expressions containing operators of various priority is done by a kind of shift
reduce parsing. We postpone the decission what has to be done with the current oparator
and srguments until the next operator is found. By comparing the priority of the operators
we can decide how the syntax tree should be constructed.

The data type Context is used to keep track of the context the parser is in. Currently,
this is only necessary to keep track of bracketed expressions (to balance the brackets). If
one wants to parse more complicated expressions Context can be extended.
 ::Context = Bexp | Exp

Type of parse:
parse :: [Context] [Token] [Expr] [Token] -> (Bool,Expr,[Token],String)

230 Draft augustus 12, 1997 Chapter II.3: Interpreter for Functional Programming Language

Arguments:

1. a stack of contexts, currently only used for balancing parenthesis.

2. the input token list

3. the expressions that are build up to now (if you start there is no expression yet,
therefore we use a list with at most one element)

4. last infix operator we have met. This must be maintained to compare priorities. If
we have not met an operator yet the list is empty, otherwise it contains one element.

Result, a four tuple with the following fields:

1. a boolean telling if the parse was succesful.

2. the result of the parse.

3. the remainder of the input string. A recursive call of parse only parses a sub-
expressions and then returns to the calling function.

4. if the parse was not succesful, result 4 contains an appropriate error message.

The functions parseExp and parse:
parseExp :: [Token] -> Expr
parseExp xs | ok = r
= PreError (fromString error)
where (ok,r,rem,error) = parse [Exp] xs [] []

parse cs [] [e] op = (True,e,[],"")

1. No input left, e is the result.
parse [Bexp:cs] [Rpar:xs] [e] op = (True,e,[Rpar:xs],"")
parse [Bexp:cs] [] e op = (False,PreError [],[],"Missing)")
parse cs [Rpar:xs] e op = (False,PreError [],
 [Rpar:xs], "unexpected)")

2. Right parenthesis on input and context is bracketed expression, so return to the
calling function (leave the parenthesis on the input).

3. Input empty, but still in bracket exp. context, so error message.

4. Right parenthesis, but not in bracket context, so error message.
parse cs [Lpar:xs] [] op
| ok && okRpar = parse cs (tl r) [f] op
 = (False,PreError [],[],
 if ok "missing)" er)
 where (ok,f,r,er) = parse [Bexp] xs [] []
 okRpar = r <> [] && hd r == Rpar

5. Lpar on input, do first recursive call for bracketed exp, if this turns out to be ok,
continue with a resursive call with this Bexp as a possible left hand side.

parse cs [Lpar:xs] [e] op
 | ok && okRpar = parse cs (tl r) [Inf e ['@'] f] op
 = (False,PreError [],[],
 if ok "missing)" er)
 where (ok,f,r,er) = parse [Bexp] xs [] []
 okRpar = r <> [] && hd r == Rpar

6. Lpar on input with a left hand side already present. Recursively parse a bracket
expression, this becomes the right hand side of a function application. Now
recursively call parse with the function application as the left hand side.

Functional programming in Clean Draft augustus 12, 1997 231

parse cs [IdNum i:xs][] op = parse cs xs [Func i 0 Empty] op

7. Identifier on input, recursive call of parse with this identifier as candidate left side
of infix expression.

parse cs [IdNum i:xs][e] op = parse cs xs
 [Inf e ['@’] (Func i 0 Empty)] op

8. Identifier on input with already a left hand side parsed, thus function application,
continue with this function application as candidate left hand side.

parse cs [Op o:xs] [] [] = (False,PreError [],[],
 "term expected at:" +++ toString o)

9. Infix operator on input and no left hand side present, so error.
parse cs [Op o:xs] [e] []
 | ok = parse cs r [Inf e o f] []
 = (False,f,r,er)
 where (ok,f,r,er) = parse cs xs [] [Op o]

10. Infix operator on input, left hand side present, no previous operator with which
priorities should be compared present, so do a recursive call for the right hand side.
Here the operator is given as a parameter to compare its priority with the next
operator. Form the corresponding infix expression tree, and do a recursive call with
this tree as left hand side.

parse cs [Op o1:xs] [e] [Op o2]
 | prio o1 < prio o2 ||
 prio o1 == prio o2 &&
 assocl o2 = (True,e,[Op o1:xs],"")
 | ok = parse cs r [Inf e o1 f] [Op o2]
 = (False,f,r,er)
 where (ok,f,r,er) = parse cs xs [] [Op o1]

11. Compare priority of the two infix operators involved. See examples below.
parse cs [TokError er x:xs] es os = (False, PreError [], [], toString er)

12. If a token error is encountered this is turned into a parse error.
parse cs [x:xs] es os = (False,PreError "",[],
 "Syntax error near: " +++
 toString (printToken x))

13. All correct cases are already handled so this should be an error.

Example of cases 10 and 11:

Consider the input string: 1 * 2 + 3

When * is parsed a recursive call is done for the remainder of the input string with * as
operator argument. When the parser now meets + it compares its priority with *, * has
greater priority so parse returns 2, which becomes the right hand side for *. Parse is now
recursively called with 1 * 2 as a right hand side.

Consider the input string: 1 + 2 * 3

When + is parsed a recursive call is done for the remainder of the input string with + as an
argument. When the parser meets * it compares its priority with +, * has greater priority
so parse continues with parsing the remainder of the input string until the input is empty
or it meets an operator with lower priority than + returns 2. In this case the remainder of
the input string is parsed and 2 * 3 becomes the right hand side of +.

232 Draft augustus 12, 1997 Chapter II.3: Interpreter for Functional Programming Language

Remarks on this parsing scheme

Without modification of parse this parser can easily extended to more complex
expression as long as they can be modelled as infix expression. Even zf-expressions can be
parsed in this way (see exercise 6.1).

Exercise 6.1

Extend the parser in such a way that it is able to parse zf-expressions. For examples consider the
(Clean) zf-expression:
[x\\ x <- [1..10] | x mod 2 = 0]

This can be considered as the following infix expression
Inf x “\\” (Inf (Inf x “<-” [1..10]) “|” (x % 2 = 0))

Here [1..10] and x % 2 = 0 are left unparsed for readability.

Add the infix operators for \\, |, <- to the parser together with appropriate priorities and
association.

Think of a way to cope with the brackets ([and]) surrounding a zf-expression expression.

Parsing of function definitions

Parsing a script file with parsefile consists of parsing the function definitions in the
file. This is done by reading the lines in the file, skipping the empty lines and merging
the lines that make up one function definition (indented lines following a non indented
line).
parsefile :: [([Char],[Expr],Int,Expr)] String *Files
 -> *(Bool,*Files,[([Char],[Expr],Int,Expr)])
parsefile sysfuncs fn files = (okparse && okfillin,files2,resfuncs)
where
 (input,files2) = ReadFileStrings fn files
 funcs = (map parsefunc o mergeLines o remEmpty o map fromString) input
 parseErrors = [b \\ (_,_,_,b) <- funcs | isParseError b]
 okparse = parseErrors == []
 okfillin = fillinErrors == []
 fillinErrors = [b \\ (_,_,_,b) <- recfuncs | isParseError b]
 recfuncs = map (fillin (sysfuncs ++ recfuncs)) funcs // recursive definition!!!
 resfuncs | okparse &&
 okfillin = recfuncs
 | not okparse = [([],[],0,PreError (flatten [print b ++ ['\n']
 \\ b <- parseErrors]))]
 | not okfillin = [([],[],0,PreError (flatten [print b ++ ['\n']
 \\ b <- fillinErrors]))]

remEmpty xss = [xs \\ xs <- xss| xs <> []]

mergeLines = foldr f []
 where f a [[' ':b]:bs] = [(a ++ [' ':b]) : bs]
 f a [['\t':b]:bs] = [(a ++ [' ':b]) : bs]
 f a bs = [a : bs]

A function definition can also be considered as an infix expression with '=' as the top
operator (with lowest priority) and on the left side an application of the function name to
the variables and on the right hand side the defining body expressions of the function.

parsefunc takes care of filtering out the variable names and substituting them in the
body of the function (placevars does the substitution).
parsefunc :: [Char] -> ([Char],[Expr],Int,Expr)
parsefunc inv = pfunc (Inf func ['='] body)
where func = (parseExp o tokenize) (takeWhile (noteq '=') inv)
 body = (parseExp o tokenize) (tl (dropWhile (noteq '=') inv))

Functional programming in Clean Draft augustus 12, 1997 233

pfunc (Inf l ['='] body) = (name,vars,#vars,substbody)
where [Var name _ :vars] = findVars l
 substbody | isParseError body = PreError (['Error in function '] ++ name
 ++ [': '] ++ error)
 = placevars vars (graphTrans body)
 (PreError error) = body

findVars (Func n a b) = [Var n 0]
findVars (Inf l ['@'] r) = findVars l ++ findVars r

placevars vs (Func f nv bf) | vn == (-1) = Func f nv bf
 = Var f vn
where vn = hd ([i \\ (i,Var v n) <- zip([0..],vs) | v == f] ++[-1])
placevars vs (Inf a o b) = (Inf (placevars vs a) o (placevars vs b))
placevars vs x = x

The parsed functions are maintained in a l i st of tuples : (name, variables,
nr_of_vars, body_expression).

In expressions calls to other functions occur. These function calls are initially parsed as
(Func name 0 Empty), where name is the name of the function (see the definition of
Expr). To speed up evaluation the expressions corresponding to the functions are already
substituted before evaluation (avoiding run-time look-up). This is done with the function
fillin. Note that in fillin the result of the function is used as an argument of it (so
the substituted bodies are substituted themselves already)!
recfuncs = map (fillin (sysfuncs ++ recfuncs)) funcs
 ^ ^
 |__|

 In a non-lazy (functional) language this would lead to an infinite recursion for recursive
function definitions. But in lazy functional programming language this is an (equal
efficient) alternative for pointers.

In fillin it is also checked whether functions occuring in expressions indeed exist.
fillin :: [([Char],[Expr],Int,Expr)] ([Char],[Expr],Int,Expr) ->
 ([Char],[Expr],Int,Expr)
fillin pfs (n,vs,nvs,bf) = (n,vs,nvs,fbody)
where fbody | okfill = fillinbody
 = PreError (['Error in '] ++ n ++ [': '] ++ error)
 (okfill,fillinbody,error) = fillbody pfs bf

fillbody pfs (Func name n b) | isEmpty fs = (False,PreError [],
 ['function not found: '] ++ name)
 = (True,Func name nvs bf, [])
where [(_,_,nvs,bf):_] = fs
 fs = findfuncs name pfs

fillbody pfs (Inf e1 o e2) = (okleft && okright,
 Inf fillinleft o fillinright,
 errorleft ++ errorright)
where (okleft,fillinleft,errorleft) = fillbody pfs e1
 (okright,fillinright,errorright) = fillbody pfs e2

fillbody pfs x = (True,x,[])

findfuncs name fss = [(n,vs,nvs,b) \\ (n,vs,nvs,b) <- fss| name == n]

Exercise 6.2

Extend parsefile in such a way that it is possible to parse and use user defined infix operators.
The name, priority and association of such an infix operators should be added in a similar way
as in Clean.

234 Draft augustus 12, 1997 Chapter II.3: Interpreter for Functional Programming Language

Example: infixl 3 ++ = concat for adding the left associatie operator ++ with
priority 3 which is defined by the function concat.

At first glance we have a problem. You have to find all infix operators before you can start
parsing functions, making it necessary to go two times through the file. But this is not true.
Exploiting lazy evaluation in a manner similar as used in the use of fillin makes it only
necessary to go only ones through the file.

Transformation of parsed expressions

Parse returns a parsetree in which no distinction is made between function names,
numbers pre-defined (system) function like if, hd and tl. GraphTrans takes care of
this.
graphTrans :: Expr -> Expr
graphTrans (Inf e1 oper e2) = Inf (graphTrans e1) oper
 (graphTrans e2)
graphTrans (Func ['True'] n bf) = BOOL True
graphTrans (Func ['False'] n bf) = BOOL False
graphTrans (Func ['hd'] n bf) = (SysFunc ['hd'])
graphTrans (Func ['tl'] n bf) = (SysFunc ['tl'])
graphTrans (Func ['if'] n bf) = (SysFunc ['if'])
graphTrans (Func ['nil'] n bf) = Null
graphTrans (Func f n bf) | isNum (hd f) = Num (toInt (toString f))
 = Func f n bf
graphTrans x = x

6.3 Evaluation
parseEval takes care of parsing and evaluating an input string. Before an expression is
evaluated first the bodies of the functions occuring in this expression are substituted. This
is done by the function fillbody (see also parsefile).
parseEval :: [([Char],[Expr],Int,Expr)] [Char] -> [Char]
parseEval fs xs | okparse && okfillin = printeval (eval fillexp [])
 | not okparse = perror
 | not okfillin = fillinerror
where okparse = not (isParseError exp)
 (PreError perror) = exp
 (okfillin,fillexp,fillinerror) = (fillbody fs o graphTrans) exp
 exp = (parseExp o tokenize) xs

eval :: Expr [Expr] -> Expr

eval evaluates an expression taking the expression and an operand stack as input.

Below we discuss the several cases of eval:
eval (Num n) es = (Num n)
eval (BOOL b) es = (BOOL b)
eval (PreError s) es = (PreError s)

These are the easy cases because nothing happens.
eval (SysFunc ['if']) [BOOL t,e2,e3:es] | t = e2
 = e3

Evaluation of if needs 3 operands on the stack. If the evaluation of the first operand leads
to True the second operand is returned, otherwise the third.
eval (SysFunc ['hd']) [Inf h [':'] t:es] = h
eval (SysFunc ['tl']) [Inf h [':'] t:es] = t

Evaluation of hd or tl needs 1 operands on the stack. This should be an infix expression
representing the cons of a head and a tail. In case of hd the head is returned, otherwise, the
tail.
eval (Func f n bf) es | #es < n = partapp (Func f n bf) es

Functional programming in Clean Draft augustus 12, 1997 235

 = eval (substvar es bf) (drop n es)
where partapp e [] = e
 partapp e [ex:es] = partapp (Inf e '@' ex) es

 substvar es (Var x n) = es ! n
 substvar es (Inf a o b) = Inf (substvar es a) o (substvar es b)
 substvar es x = x

Evaluation of a function call: First it is checked if there are enough arguments on the
stack. If not, (curried use of a function) the original expression consisting of application
of the function to its arguments is returned (partapp). Otherwise, the arguments are
substituted in the function body by substvar, and the result is evaluated after popping
the arguments off the stack. Notice that the place of an argument on the stack exactly
corresponds to its variable number.
eval (Inf e1 ['@'] e2) es = eval e1 [eval e2 [] : es]

Evaluation of an infix expression representing a function application leads to putting the
right side (argument) on the stack and calling eval for the left side. Note that the
argument is put evaluated on the stack, but due to the laziness of Clean the actual
evaluation is postponed to the moment it is really needed, resulting in a lazy interpreter.
eval (Inf h [':'] t) es = Inf (eval h es) [':'] (eval t es)

Evaluation of an infix expression representing a cons of a head and a tail returns the same
expression with the and the tail (lazy) evaluated.
eval (Inf e1 ['+'] e2) es = Num (getNum (eval e1 []) + getNum (eval e2 []))
eval (Inf e1 ['-'] e2) es = Num (getNum (eval e1 []) - getNum (eval e2 []))
eval (Inf e1 ['*'] e2) es = Num (getNum (eval e1 []) * getNum (eval e2 []))
eval (Inf e1 ['/'] e2) es = Num (getNum (eval e1 []) / getNum (eval e2 []))
eval (Inf e1 ['%'] e2) es = Num (getNum (eval e1 []) mod getNum (eval e2 []))
eval (Inf e1 ['^'] e2) es = Num (getNum (eval e1 []) ^ getNum (eval e2 []))
eval (Inf e1 ['<'] e2) es = BOOL (getNum (eval e1 []) < getNum (eval e2 []))
eval (Inf e1 ['>'] e2) es = BOOL (getNum (eval e1 []) > getNum (eval e2 []))
eval (Inf e1 ['<='] e2) es = BOOL (getNum (eval e1 []) <= getNum (eval e2 []))
eval (Inf e1 ['>='] e2) es = BOOL (getNum (eval e1 []) >= getNum (eval e2 []))
eval (Inf e1 ['~='] e2) es = BOOL (getNum (eval e1 []) <> getNum (eval e2 []))
eval (Inf e1 ['='] e2) es = BOOL (eval e1 [] == eval e2 [])

Evaluation of the remaining infix expressions is straightforward. getNum retracts the num
out of (Num num) expression. Note that sections are not supported.
eval x es = (PreError ([‘Cannot be evaluated near: ‘] ++ print x))

If eval is not applicable an appropriate error message is generated.

Exercise 6.4

Currently, the interpreter can only deal with integers, booleans and lists of them. Extend the
interpreter with character and string handling. In order to do this, the following additions have
to be made:

• the tokenizer has to be extended to handle chars ‘a’ and strings “this is a
string” (take care about the special notations for newline, ‘\n’ etc.).

• Expr has to be extended to handle these new datatypes (a string can be represented by a
list of characters).

• print should be adapted for printing lists of characters as a string.

• eval should be adapted to handle the evaluation of a character (trivial, like num and
bool)

236 Draft augustus 12, 1997 Chapter II.3: Interpreter for Functional Programming Language

Exercise 6.5 (hard)

In exercise 6.1 we added parsing of zf-expressions to the parse, now add evaluation of zf-
expressions to the evaluator. In order to do this the parse tree of a zf-expression should first be
rewritten in a form that allows evalution. This can be done in GraphTrans.

Exercise 6.6 (project)

One of the major drawbacks of the interpreter from the previous sections is its inability to deal
with algebraic data types. For example, it is hard to define a tree like data with operations on
it. In Clean such a date type would be defined like:
:: Tree = Empty | Node int Tree Tree

One can define functions on trees with the use of pattern matching:
insert :: int Tree -> Tree
insert n Empty = Node n Empty Empty
insert n (Node k l r) | n <= k = Node (insert n l) r
 = Node l (insert n r)

Especially, this use of pattern matching makes algebraic data types so powerful.

It is possible to add abstract data types to the interpreter without adding types. Only
constructors and pattern matching are added. A constructor can be viewed as a tag to a type,
only added to make pattern matching possible. To distinguish constructors from function
names, constructors should start with an uppercase character. Function names should not be
allowed to start with a capital. The function insert in the formalism of the interpreter now
becomes:
insert n Empty = Node n Empty Empty
insert n (Node k l r) = if (n <= k) (Node (insert n l) r)
 (Node l (insert n r))

In order to add constructors and pattern matching to the interpreter, the following additions
should be made to the interpreter.

• Parsefunc should be adapted to make it possible to parse patterns on the left hand side of
a function definition and to extract the variables that occur in the patterns.

• GraphTransform should be adapted to recognise constructors.

• Pattern matching should be added to eval in order to select the right body in case of a
function call.

• The definition of Func should be extended to include functions with several bodies,
corresponding to different patterns.

To realise this the type Expr is extended with the following cases:

Cstr [Char] | Funcp [Char] Int [([Expr],Expr)]

Cstr [Char]: A constructor has a name.

Funcp [Char] Int [([Expr],Expr)]: A function with patterns has a name, a
number of patterns, a list of two tuples consisting of: a list of patterns (patterns are also
expressions) with which the argument have to be matched and the body expression that has to be
executed in case the match succeeds.

Inplement the above mentioned addition to the interpreter.

6.4 User Interface
The interpreter has a command line interface, so the user can type in an expression after a
prompt, hit return and examine the result.

Start does the preparing work for starting such an interface. It opens files and sio and
reads in the system functions from sys.fp and then calls ProcessLines, which handles
the remainder of the io.

Functional programming in Clean Draft augustus 12, 1997 237

To avoid buffering of output results are not written as entire strings to the output but
character by character. This is done by the utility function fwriteclist.
Start :: *World -> *File
Start world = finalsio
where
 (files,worldwithoutfiles) = openfiles world
 (sio,files2) = stdio files
 hallosio = fwrites hallo sio
 syssio | ok = fwriteclist ['Reading system files\n'] hallosio
 = fwriteclist (firstError sysfuncs) hallosio
 (finalsio,_) = ProcessLines sysfuncs [] syssio files3
 (ok,files3,sysfuncs) = parsefile [] libfile files2

hallo = "Interpreter for simple functional programming language (in Clean) V1.0\n"
endstring = "quit\n"
prompt = "\neval> "
libfile = "sys.fp"

ProcessLines recursively takes an input string from the input device (terminal),
examines whether it is quit, load filename or an expression to be evaluated.

In case quit is encountered ProcessLines returns.

In case of load filename, the filename is extracted, the file is parsed and ProcessLines
is recursively called with the new functions (found in the file) as an argument.

If the input string is empty (the user hits return) ProcessLines is called recursively.

In all other cases the input string is assumed to be an expression, so parseEval is called for
this string, the result is written to the output and ProcessLines is called recursively.
ProcessLines :: [([Char],[Expr],Int,Expr)]
 [([Char],[Expr],Int,Expr)] *File *Files
 -> *(.File,*Files);

ProcessLines sysfuncs funcs sio files
| string == endstring = (readsio,files)
| isload = ProcessLines sysfuncs newfuncs loadsio files2
 // loading a file
| string == "\n" = ProcessLines sysfuncs funcs readsio files
 // skip empty lines
 = ProcessLines sysfuncs funcs resultsio files
 // evaluate expression
where
 promptsio = fwrites prompt sio
 input = fromString string
 (string, readsio) = freadline promptsio
 resultsio = fwriteclist (parseEval (sysfuncs ++ funcs) input) readsio
 (isload,fn) = isloadstring input
 loadsio | ok = fwriteclist ['No errors in file'] readsio
 = fwriteclist (firstError newfuncs) readsio
 (ok,files2,newfuncs) = parsefile sysfuncs filename files
 filename = toString (takeWhile (noteq '\n') fn)

isloadstring ['load ': fn] = (True,fn)
isloadstring x = (False,[])

6.5 Examples programs for the interpreter
Sys.fp (system file)
from x = x : from (x+1)
fromto x y = if (x=y) [x] (x : fromto (x+1) y)
downto x y = if (x=y) [x] (x : downto (x-1) y)

238 Draft augustus 12, 1997 Chapter II.3: Interpreter for Functional Programming Language

take n xs = if (n=0) nil (if (xs = nil) nil ((hd xs):take (n-1) (tl xs)))

drop n xs = if (xs=[]) [] (if (n=0) xs (drop (n-1) (tl xs)))

map f xs = if (xs = []) [] (f ((hd xs)): (map f (tl xs)))

insert x xs = if (xs=[]) [x] (if (x < (hd xs))
 (x:xs)
 (hd xs: insert x (tl xs)))

sort xs = if (xs=[]) [] (insert (hd xs) (sort (tl xs)))

add x xs = if (xs=[]) [x] (hd xs : add x (tl xs))

append xs ys = if (xs=[]) ys (hd xs : append (tl xs) ys)

concat xss = if (xss=[]) [] (if (hd xss = [])
 (concat (tl xss))
 (hd (hd xss) : concat (tl (hd xss): tl xss)))

filter p xs = if (xs=nil) nil (if (p (hd xs))
 (hd xs:filter p (tl xs))
 (filter p (tl xs)))

takewhile f xs = if (xs = []) [] (if (f (hd xs))
 ((hd xs) : takewhile f (tl xs))
 [])

foldr f a xs = if (xs = []) a (f (hd xs) (foldr f a (tl xs)))
foldl f a xs = if (xs = []) a (foldl f (f a (hd xs)) (tl xs))

Test.fp (example file)
fac n = if (n=0) 1 (n*fac (n-1))

notmodzero x y = y % x ~= 0

mod x y = x % y

sieve xs = (hd xs) : sieve (filter (notmodzero (hd xs)) (tl xs))

primes = sieve (from 2)

6.6 Adding type checking to the interpreter
The next step is to extend the interpreter with a type checker. Type checking eliminates
may run-time errors because they are already detected at compile time. For examples
adding an integer to a string, or having lists with elements of different type. The type
checker we use for our interpreter is capable of deriving the types of functions without
having the user to supply the type of it.

6.6.1 Restriction on the interpreted language due to the type checker

The type checker imposes certain restrictions on the interpreted language. These
restrictions are included to simplify the type checking. In the exercises suggestions are
done to remove these restrcitions.

The first restriction is that functions in a definition file should be ordered by
dependency. This means that if a function f depends on a function g (g appears in the
definition of f) g should be defined before g in the definition file.

As a consequence mutual depended functions are not allowed. For example:

Functional programming in Clean Draft augustus 12, 1997 239

f = 1 : g
g = 2 : f,

is a (currently) not allowed definition.

Recursive function defintions are allowed.

Definition of type
::Type = VarT Int | Arrow Type Type | NumT | BoolT |
 ListT Type | TypeError String | CharT

Example: After typing info after the eval> prompt the types of the currently loaded
functions are displayed.
from :: num -> [num]
fromto :: num -> num -> [num]
downto :: num -> num -> [num]
take :: num -> [t0] -> [t0]
drop :: num -> [t0] -> [t0]
map :: (t0 -> t1) -> [t0] -> [t1]
insert :: num -> [num] -> [num]
sort :: [num] -> [num]
add :: t0 -> [t0] -> [t0]
append :: [t0] -> [t0] -> [t0]
concat :: [[t0]] -> [t0]
filter :: (t0 -> bool) -> [t0] -> [t0]
takewhile :: (t0 -> bool) -> [t0] -> [t0]
foldr :: (t0 -> t1 -> t1) -> t1 -> [t0] -> t1
foldl :: (t1 -> t0 -> t1) -> t1 -> [t0] -> t1
fac :: num -> num
notmodzero :: num -> num -> bool
sieve :: [num] -> [num]
primes :: [num]
compose :: (t0 -> t2) -> (t1 -> t0) -> t1 -> t2
som :: num -> num
plus :: num -> num -> num

Supporting functions
fillintypes types (VarT n) = deref types (types ! n)
fillintypes types (Arrow l r) = Arrow (fillintypes types l) (fillintypes types r)
fillintypes types (ListT l) = ListT (fillintypes types l)
fillintypes types x = x

substtypes [] t = t
substtypes [s:ss] t = substtypes ss (substtype s t)

substtype (VarT m,r) (VarT n) | n == m = r
 = VarT n
substtype t (Arrow l r) = Arrow (substtype t l) (substtype t r)
substtype t (ListT l) = ListT (substtype t l)
substtype t tt = tt

deref types (VarT n)
 = dref (types!n)
 where dref (VarT m) | n == m = VarT n
 = deref types (VarT m)
 dref (Arrow l r) = Arrow (deref types l) (deref types r)
 dref (ListT l) = ListT (deref types l)
 dref x = x

deref types (Arrow l r) = Arrow (deref types l) (deref types r)
deref types (ListT a) = ListT (deref types a)
deref types x = x

occur (VarT n) (VarT m) = n == m

240 Draft augustus 12, 1997 Chapter II.3: Interpreter for Functional Programming Language

occur t (Arrow l r) = occur t l || occur t r
occur t (ListT l) = occur t l
occur t tt = False

// unify types l r

unify types l r
 | l == r = (True,types,[])
 = (ok,restypes,error)
 where (ok,restypes) = unif types (deref types l) (deref types r)
 error = unerror ok (deref types l) (deref types r)

unif types (VarT n) (VarT m) | n == m = (True,types)
 = (True,update n (VarT m) types)
unif types (VarT n) b = (not (occur (VarT n) b), update n b types)
unif types a (VarT n) = (not (occur (VarT n) a),update n a types)
unif types (ListT a) (ListT b) = unif types a b
unif types (Arrow a b) (Arrow c d)
 = (rl && rr,if rl typesr typesl)
 where
 (rl,typesl) = unif types a c
 (rr,typesr) = unif typesl (deref typesl b) (deref typesl d)
unif types a b | a == b = (True,types)
 = (False,types)

update n a xs = [y\\ (x,i) <- zip(xs,[0..]), y <- [if (i==n) a x]]

The functions derivetype and buildType
derivetype functypes (func,vars,nvar,body)
 | not okBuild = (okBuild,TypeError (toString(['Error in '] ++ func ++ [', ']
++error)),0)
 = (okBuild,renamedtype ,# diftypes)
 where

 types = [VarT n\\ n <- [0..]]

 bodytype = buildArrows nvar
 restype = (fillintypes dertypes bodytype)
 diftypes = (removeDup o typeVars) restype
 renamedtype = substtypes [(t,VarT n)\\ (t,n) <- zip(diftypes,[0..])] restype

 (okBuild,dertypes,nvartypes,error) = buildType body types (VarT nvar) nvar

 buildType (PreError m) types restype ntype
 = (False,[],0,fromString m)

 buildType (Var x n) types restype ntype
 = (okun,newtypes,ntype,error)
 where (okun,newtypes,error) = unify types (types ! n) restype

 buildType Null types restype ntype
 = (ok,newtypes,ntype+1,error)
 where (ok,newtypes,error) = unify types restype (ListT (VarT (ntype + 1)))

 buildType (SysFunc ['if']) types restype ntype
 = (ok,newtypes,ntype+1,error)
 where (ok,newtypes,error) = unify types restype (renType (ntype+ 1) typeIf)

 buildType (SysFunc ['hd']) types restype ntype
 = (ok,newtypes,ntype+1,error)
 where (ok,newtypes,error) = unify types restype (renType (ntype+1) (Arrow
(ListT (VarT 0)) (VarT 0)))

 buildType (SysFunc ['tl']) types restype ntype

Functional programming in Clean Draft augustus 12, 1997 241

 = (ok,newtypes,ntype+1,error)
 where (ok,newtypes,error) = unify types restype (renType (ntype+1) (Arrow
(ListT (VarT 0)) (ListT (VarT 0))))

 buildType (Func name n b) types restype ntype
 | name == func = (okself,newselftypes,ntype,erself)
 = (okfound && ok,newtypes,ntype+nvartype,error)
 where (ok,newtypes,ermatch) = unify types restype (renType (ntype+1) typefunc)
 (okfound,typefunc,nvartype) = findtype name functypes
 (okself,newselftypes,erself) = unify types restype (fillintypes types
bodytype)
 error = if (not okfound) (['function not found: '] ++ name ++ ['\n'])
 ermatch

 buildType (Num n) types restype ntype
 = (ok,newtypes,ntype,error)
 where (ok,newtypes,error) = unify types restype NumT

 buildType (CHAR n) types restype ntype
 = (ok,newtypes,ntype,error)
 where (ok,newtypes,error) = unify types restype CharT

 buildType (Inf l ['@'] r) types restype ntype
 = (okr && okl,newtypesl,ntypel,errorl++errorr)
 where
 (okr,newtypesr, ntyper,errorr) = buildType r types (VarT (ntype + 1)) (ntype +
1)
 (okl,newtypesl, ntypel,errorl) = buildType l newtypesr
 (Arrow (VarT (ntype + 1)) restype)
 ntyper

 buildType (Inf l [':'] r) types restype ntype
 = (ok && okl && okr,newtypesr,ntyper,errorr++errorl++error)
 where
 (ok,newtypes,error) = unify types restype (ListT elemtype)
 (okl,newtypesl, ntypel,errorl) = buildType l newtypes elemtype (ntype + 1)
 (okr,newtypesr, ntyper,errorr) = buildType r newtypesl (ListT elemtype) ntypel
 elemtype = VarT (ntype+1)

 buildType (Inf l o r) types restype ntype
 | isMember o [['='],['~=']]= (ok && okl &&
okr,newtypesr,ntyper,errorr++errorl++errorr)
 where
 (ok,newtypes,error) = unify types restype BoolT
 (okl,newtypesl, ntypel,errorl) = buildType l newtypes elemtype (ntype + 1)
 (okr,newtypesr, ntyper,errorr) = buildType r newtypesl elemtype ntypel
 elemtype = VarT (ntype+1)

 buildType (Inf l o r) types restype ntype
 | isMember o [['+'],['-'],['*'],['/'],['%'],['^']] = (ok && okl &&
okr,newtypesl,ntypel,error++errorr++errorl)
 where
 (ok,newtypes,error) = unify types restype NumT
 (okr,newtypesr, ntyper,errorr) = buildType r newtypes NumT ntype
 (okl,newtypesl, ntypel,errorl) = buildType l newtypesr NumT ntyper

 buildType (Inf l o r) types restype ntype
 | isMember o [['<'],['>'],['<='],['>=']] = (ok && okl &&
 okr,newtypesl,ntypel,error++errorr++errorl)
 where
 (ok,newtypes,error) = unify types restype BoolT
 (okr,newtypesr, ntyper,errorr) = buildType r newtypes NumT ntype
 (okl,newtypesl, ntypel,errorl) = buildType l newtypesr NumT ntyper

242 Draft augustus 12, 1997 Chapter II.3: Interpreter for Functional Programming Language

Functional programming in Clean Draft augustus 12, 1997 243

