
Part II
Chapter 1
A Simple Database

1 . 1 The database program state
1 . 2 At the start  and the end of  the

appl icat ion
1 . 3 Fi le handl ing
1 . 4 Displaying the database con-

ten ts

1 . 5 Changing the database con-
ten ts

1 . 6 Handl ing database quer ies
1 . 7 Changing the format of  the da-

tabase
1 . 8 Exerc ises

In this chapter we describe how a simple database application can be programmed in
Clean. The database being maintained can be seen as a pile of cards, e.g. of a Rolex sys-
tem. All cards in the database system are assumed to contain the same kind of informa-
tion. This application is interesting since the kind of information handled can be changed
dynamically. The information can be stored in and retrieved from a file.

This Chapter not only shows how such a database program can be written in Clean, the
application is also a good demonstration of how dynamically changing dialogues and
windows can be defined in a straightforward manner. The kind of dynamic behaviour of-
fered in Clean provides much more flexibility than the static dialogues generated by
many special purpose (visual) dialogue editors.

A more complex database system (a relational database) which can have different kinds
of cards stored in different files is described in the next chapter.

1.1 The database program state
The program state of the database application contains an administration (a record of
type TableAdm) in which all relevant information of the database is remembered.

:: *IO :== IOState SimpleDataBase
:: *SimpleDataBase :== (TableAdm, Files)

:: TableAdm = { name :: TableName
, descriptor  :: Descriptor
, records   :: Table
, selection :: Int
, query :: Record
, editinfoid  :: DialogItemId
, fw   :: Int // field width
, dw   :: Int // descriptor width
}

:: TableName :== String

The field name in the table administration record refers to the name of the database which
is being manipulated by the program. Instead of one record containing the entire pro-
gram state we use a tuple containing the state of the database and the file system. The



156 Functional Programming in Clean

distinction between the file system and the database state appears to be convenient in this
program. There is no fundamental objection the use of a unified program state record.

All cards contain the same kind of information, a collection of attribute values. Each
attribute value has a certain type. An attribute name (of type String) is used to identify
an attribute value of a card. In the descriptor in the table administration the attribute
names and the type of the corresponding attribute values are stored. For the time being it
is assumed that an attribute value can only be of type String, indicated by the constructor
STRING.

::  Descriptor    :== [(AttributeName,TypeCode)]
:: AttributeName :== String
::  TypeCode        = STRING

The attribute values of one card are by tradition called a record. In this case they are not
stored in a Clean record but in a Clean list. This makes it possible to change the number
and the order of the attributes dynamically (see 1.7). Each attribute value is preceded by
a constructor indicating the type of the attribute value (e.g. AS to indicate a value of type
String). The order in which the attribute values are stored in the list must correspond
with the order in which the attribute names and types are described in the descriptor. All
records together are called the table and they are stored in the table administration as
well, again in a list.

:: Table    :== [ Record ]
:: Record   :== [ AttributeValue ]
:: AttributeValue  = AS String

The cards (records) in the database are numbered, the first card has the number zero. The
contents of the database can be displayed in the database window, the card being selected
is highlighted (see 1.4). With help of the edit dialogue one can change the card under selec-
tion (see 1.5). One can also search for a specific record. The card to search for is
specified in a query (see 1.6). A query is defined by filling in the known information of
the card to look for. A query is therefore also of type Record. When a card is found it will
be selected and high-lighted in the database window.

The number of the selected card is stored in the table administration (field selection).

In the table administration it is furthermore indicated whether an edit window or query
window is chosen (editinfoid) and also some layout information (fx and dx) is stored in
it.

1.2 At the start and the end of the application
The database application starts and stops with the usual actions.

Start :: *World -> *World
Start world = seq [ CloseEvents finalevents, closefiles finalfiles] world2
where
 (events,world1)   = OpenEvents world
 (files,world2)      = openfiles world1

((_,finalfiles),finalevents)
= StartIO devicesystems (initTableAdm,files) initIO events

The table administration is initialized as follows:
initTableAdm = { records = []

, descriptor = []
, selection = 0
, query = []
, name = ""
, editinfoid = 0
, fw = 0
, dw = 0
}

In this application we only need a menu device which is defined as described below (the
appearance of the corresponding menu on the screen is shown in figure 1.1).



II.1 A Simple Database (Draft, 12 augustus 1997) 157

devicesystems = [ MenuSystem [menu] ]
menu =

PullDownMenu DontCareId "Commands" Able
[ MenuItem DontCareId "Show Table" (Key 't') Able ShowTable,
, MenuItem DontCareId "Edit..." (Key 'e') Able ShowEditDialog,
, MenuItem DontCareId "Change Set Up..." (Key 'u') Able ShowAttributeDialog,
, MenuSeparator,

  , MenuItem DontCareId "Open new..." (Key 'o') Able (warn warning restart),
  , MenuItem DontCareId "Save As..."  (Key 's') Able SaveTable,

, MenuItem DontCareId "Quit" (Key 'q') Able (warn warning Quit)
]

DontCareId :== 0

Figure 1.1 How the menu looks on the screen (Macintosh platform).

The interesting aspects in this definition are of course the call-back functions. The call-
back function ShowTable shows the attribute names and values in a scrollable window (see
section 1.4), the function ShowEditDialog displays a dialogue for changing the selected
card (see section 1.5) or for specifying a query (see section 1.6), while the function Sho-
wAttributeDialog is displaying a dialogue for changing the attribute names (see section
1.7). The call-back function SaveTable saves the table in the file (see section 1.3). The
call-back function warn is a handy function which is used to display a warning on the screen
(see also figure 1.2).

warn message func s io
| choiceId == cancelId = (s,nio) // do nothing
| otherwise        = func s nio // OK: apply call-back function
where

(choiceId,nio) = OpenNotice warningdef io
warningdef = Notice message

(NoticeButton cancelId "Cancel") // default button
[NoticeButton okId "OK"]  // other buttons

[cancelId,okId:_] = [0..]

warning   = [ "If you have not saved, you may loose information."
  , "Are you sure you want to continue?"
  ]

Figure 1.2 A warning before quitting or restarting with a new database.

When the Cancel button is chosen, nothing will happen. When the OK button is pressed
the call-back function given to warn is applied. In the case of a Quit chosen from the
menu the program execution is ended (Quit is applied). When Open new... is selected
from the menu (restart is applied) all windows are closed and the program starts all
over from scratch.

Quit :: SimpleDataBase IO -> (SimpleDataBase, IO)
Quit db io = (db, QuitIO io)



158 Functional Programming in Clean

restart :: SimpleDataBase IO -> (SimpleDataBase, IO)
restart (s,files) io = seqIO initIO ((initTableAdm,files),seq closeIO io)

seqIO fs = seq (map uncurry fs)

closeIO = [ CloseWindows [TableWindowId], closeDbDialogs ]

closeDbDialogs io = seq (map CloseDialog [AttributeDialogId,EdDialogId]) io

TableWindowId :== 0
EdDialogId :== 0
AttributeDialogId :== 1

The program will (re)start with performing the actions as described by initIO.  It  wil l
first read the database information from a file (ReadSimpleDataBase, see section 1.3) after
which it shows the content of the table in a window (ShowTable, see section  1.4). Hereafter
it displays the edit dialogue (ShowEditDialog, see section 1.5).

initIO = [ ReadSimpleDataBase, ShowTable, ShowEditDialog ]

1.3 File handling
When the application starts it assumes that the database to be manipulated is already sto-
red somewhere in a file. The function ReadSimpleDataBase will open a standard dialogue
(using SelectInputFile) with which the user can select the file to be opened for reading.

Figure 1.3 Standard selection dialogue for opening a file.

If no file is selected (Cancel is pressed) nothing will happen and the program will start
with a fresh but empty database. If a file is opened (Open is pressed) the information
will be read from the selected file and the information is stored in the table administra-
tion.

The information stored in a database file should of course obey a certain format (see fi-
gure 1.4). In this case it is chosen that on each line exactly one kind of information is sto-
red. The file starts with the information used for filling the descriptor in the table admi-
nistration: the number of attributes on one card followed by the attribute names. This is
followed by the attribute values. The attribute values of one card are preceded by an
empty line. In this way the information in the file also stays readable if it is inspected
with a simple editor. Remember that in this simple system all attribute values are assu-
med to be of type String. To make it easier to pretty print the attribute names and va-
lues their maximum width (dx and fx) is stored in the table administration.



II.1 A Simple Database (Draft, 12 augustus 1997) 159

3
Name
E-mail
WWW

van eekelen, marko
marko@cs.kun.nl
http://www.cs.kun.nl/~marko

plasmeijer, rinus
rinus@cs.kun.nl
http://www.cs.kun.nl/~rinus

Figure 1.4 The contents of a very small file: 3 attributes names and the attribute values of two cards.

Reading the database contents from a file is straight forward. First the line containing the
number of attributes is read. Then this number of lines is interpreted as attibut names.
All records start with one additional line that separates the records in the file. This
additional line is removed by the pattern match [_:record]. The file containing the
database is opened as a unique file and closed again in order to be able to use it again to
store a new state of the database. The descriptor and list of records are stored in the
state. The initial query is empty (see below). The first record is the initial selection.
The layout information files fw and dw are set to the maximum width of fields and
descriptos respectively. Storing these values in the state avoids recomputation.

ReadSimpleDataBase :: SimpleDataBase IO -> (SimpleDataBase, IO)
ReadSimpleDataBase (state, files) io
| not done  = ((state,nfiles),nio)
| not open  = ((state,nfiles1),Beep nio)
| not close = ((state,nfiles2),Beep nio)
| otherwise =

( ({state & records  = recs
, descriptor = descr
, query  = repeatn (size descr) (AS "")
, selection  = 0
, name  = dbname
, fw = MaxWidth DbFont.font (map toString (flatten recs))
, dw = MaxWidth DbFont.font (map fst descr)}

,nfiles2)
,nio)

where
(done, dbname, nfiles, nio) = SelectInputFile files io
(open, dbfile, nfiles1) = fopen dbname FReadText nfiles
(descr,dbfile1, nrofatts) = FReadDescr dbfile
(recs, dbfile2) = FReadTable (inc nrofatts) dbfile1
(close,nfiles2) = fclose dbfile2 nfiles1

FReadDescr file = (map (\d->(d,STRING)) descr,file1,nrofattributes)
where
 (line1,nfile)  = FReadStrippedLine file
 (descr,file1)  = seqList (repeatn nrofattributes FReadStrippedLine) nfile
 nrofattributes = toInt line1

FReadTable nroflines file
| endOfFile = ([], file1)
| otherwise = ([map (\s->AS s) record : records], file3)
where

(endOfFile, file1) = fend file
([_:record],file2) = seqList (repeatn nroflines FReadStrippedLine) file1
(records, file3) = FReadTable nroflines file2

FReadStrippedLine file = (line%(0,maxindex line - 1), file1)
where

(line, file1) = freadline file

MaxWidth font []   = 0
MaxWidth font list = maxList (FontStringWidths list font)



160 Functional Programming in Clean

The current contents of the table administration can be stored again in a(nother) file by
choosing Save as... from the menu which will lead to a call of the function SaveTable.
This function uses SelectOutputFile which will open a standard dialogue with which the
user can type in a new file name and select a directory in which the file is stored.

Figure 1.4 Standard selection dialogue for saving a file.

SaveTable :: SimpleDataBase IO -> (SimpleDataBase, IO)
SaveTable (state=:{records,descriptor,name}, files) io
| not done = ((state, nfiles),nio)
| not open = ((state, nfiles1),Beep nio)
| not close = ((state, nfiles2),Beep nio)
| otherwise = ((state, nfiles2),

ChangeWindowTitle TableWindowId (stripDirs dbname) nio)
where

(done, dbname, nfiles, nio) = SelectOutputFile "Save As: " name files io
(open, dbfile, nfiles1) = fopen dbname FWriteText nfiles
(close,nfiles2) = fclose (seq ( writedescriptor ++

writerecords) dbfile) nfiles1
writedescriptor = [ fwritei (size descriptor),

FWriteRecord (map ((\s->AS s) o fst)
descriptor)]

writerecords = [ FWriteRecord rec \\ rec <- records ]
FWriteRecord rec = fwrites (foldl (+++) "\n"

(map (\(AS attribute) -> attribute +++ "\n") rec))

1.4 Displaying the database contents
The function ShowTable which will be applied when Show Table is chosen from the
menu opens a scrollable window (the database window, see Figure 1.6). The contents of
the cards (the attribute values) preceded by the corresponding attribute names are shown
in it. Although one would expect that this is rather simple it involves a lot of tedious
work caused by the fact that one has to calculate what to draw where (this depends on the
font being used). One also needs to calculate which part of the picture corresponds to
which card in the database (for redrawing) and the other way around (to handle mouse
clicks in the window).



II.1 A Simple Database (Draft, 12 augustus 1997) 161

Figure 1.6. A window on the database, the selected card is high-lighted

ShowTable :: SimpleDataBase IO -> (SimpleDataBase, IO)
ShowTable db=:(state=:{records,name},_) io = (db,OpenWindows [window] io)
where

window = ScrollWindow TableWindowId (5,5) (stripDirs name)
(ScrollBar (Thumb left) (Scroll DbFont.width))

  (ScrollBar (Thumb top) (Scroll DbFont.height))
domain MinDomainSize (domSize domain)

  UpdateRecordWindow [Mouse Able MouseSelectItem]
((left,top),_) = domain
domain = DbPictureDomain state 0 (size records)

stripDirs namewithdirectories // remove directory path
= toString (last (splitby DirSeparator (fromString namewithdirectories)))

splitby :: a .[a] -> [.[a]] | Eq a
splitby x ys = case rest of [] -> [firstpart]; [r:rs] -> [firstpart:splitby x
rs]
where

(firstpart,rest) = span (\y -> x <> y) ys

The window constructor (ScrollWindow) requires an outrageous number of arguments: an
identification (TableWindowId), the initial position of the window ((0,0) is the top left
corner of the screen), the name of the window (stripDirs removes the path name from the
stored file name), the initial position of the horizontal (left) and vertical (top) scroll
bars, the size of the picture behind the window (domain), minimum size of the window
(MinDomainSize), initial size of the window (domSize domain), the call-back function to be
called when the picture has to be redrawn (UpdateRecordWindow), and finally a call-back
function is defined (MouseSelectItem) to handle mouse clicks in the window.

The fixed font which is used to display the database information (in this case courier),
the maximum font width together with the font height is defined in a global constant re-
cord (DbFont). It is used to define suitable scroll steps and the information is also used
e.g. to determine the size of the picture and the initial size of the window.

DbFont =: {font = f, width = maxwidth, height = ascent+descent+leading}
where

(ascent, descent, maxwidth, leading) = FontMetrics f
(_, f)  = SelectFont "courier" [] 10

domSize ((left,top),(right,bottom)) = (abs (right-left),abs (bottom-top))

The function DbPictureDomain calculates the size of the picture in pixels. This size de-
pends on the number of cards to display (indicated by the arguments from and to), the
chosen font, the maximum length of the attribute names and values using this font.



162 Functional Programming in Clean

DbPictureDomain :: TableAdm Int Int -> PictureDomain
DbPictureDomain {descriptor=d,dw,fw} fr to
| top > MaxDomainInt || bottom > MaxDomainInt

= abort "Error: Database too large to handle"
| dbwidth < minwidth || dbheight < minheight

= ((~whiteMargin,0),(~whiteMargin+minwidth,minheight))
| otherwise = dbdomain
where

whiteMargin  = DbFont.width
(minwidth,minheight) = MinDomainSize
(dbwidth,dbheight)  = domSize dbdomain
top      = toPicCo d fr
bottom   = toPicCo d to
dbdomain = ((~whiteMargin,top),

(dw + MaxWidth DbFont.font [Separator] +
fw + whiteMargin,bottom))

Separator :== ": "

When the contents of the window has to be redrawn (e.g. because the window becomes the
active front window, because the window size is changed, the window is scrolled, or be-
cause the picture is changed) the function UpdateRecordWindow is called automatically by
the Clean I/O system. For reasons of efficiency it is better to redraw only those parts of
the picture that are visible. Parts of the picture which are drawn outside the window will
be clipped automatically.

UpdateRecordWindow::UpdateArea SimpleDataBase -> (SimpleDataBase,
[DrawFunction])
UpdateRecordWindow domains

db=:(state=:{records=recs,descriptor=descr,selection},_)
 = (db, [ SetFont DbFont.font

: flatten (map Update domains) ] ++
(if (isEmpty recs) [] (HighLight state selection)))

where
Update domain=:((_,top),(_,bottom))
| isEmpty recs = [ EraseRectangle domain ]
| otherwise    = [ EraseRectangle domain

 , MovePenTo (0,topofvisiblerecs)
 : map (DrawCard (map fst descr)) (recs%(toprec,botrec))
 ]

where
topofvisiblerecs = toPicCo descr toprec
toprec      = toCardCo descr top
botrec  = toCardCo descr (bottom - 1)

DrawCard descr rec
 = seq ( drawLine "" ++

 flatten [ drawLine (d +++ Separator +++ f)
\\ d<-normwidth descr & AS f<-rec ] )

where
normwidth descr = [ f +++

toString (spaces ((maxList (map size descr)) -
size f)) \\ f <- descr ]

drawLine s      = [ DrawString s,
  , MovePen (~(FontStringWidth s Db

Font.font),DbFont.height)
  ]

The system will tell you which part of the picture is visible or where on the picture a
mouse is clicked. This is done in pixel co-ordinates (the point (0,0) is the top-left corner
of a picture). One needs to calculate which corresponding card is meant. This can be cal-
culated by converting the y-co-ordinate of a pixel to the index of the corresponding card
in the table (toPicCo). When one wants to redraw a certain card one also needs to know to
which part of the picture it corresponds (toCardCo).

toPicCo:: Descriptor Int -> Int
toPicCo descr n = n * (size descr * DbFont.height + 1)



II.1 A Simple Database (Draft, 12 augustus 1997) 163

toCardCo:: Descriptor Int -> Int
toCardCo descr n = n / (size descr * DbFont.height + 1)

The card which is selected (by a mouse click in the window or a search from a query) is
highlighted (see Figure 1.6) by the function HighLight.

HighLight :: TableAdm Int -> [Picture -> Picture]
HighLight state i = [ SetPenMode HiLiteMode

   , FillRectangle (DbPictureDomain state i (i+1))
            , SetPenNormal

]

A mouse click in the window will have the effect that the call-back function MouseSelec-
tItem is called which will change the current card being selected accordingly. Notice
that the old card being selected is high-lighted again. High-lighting an area twice will
remove the high-light. The information in the Edit window is changed accordingly
(SetCardTextattributes).

MouseSelectItem :: MouseState SimpleDataBase IO -> (SimpleDataBase, IO)
MouseSelectItem ((_,mvpos),ButtonDown,_)

(state=:{records,descriptor,selection},files) io
| isEmpty records = ((state, files), io)
| otherwise = (({state & selection=index},files),

ChangeSelection state selection index io)
where

index = toCardCo descriptor mvpos
MouseSelectItem _ database io = (database, io)

ChangeSelection:: TableAdm Int Int IO -> IO
ChangeSelection state=:{descriptor=d,records,editinfoid} old new io
 = seq [ DrawInWindow TableWindowId

(HighLight state old ++ HighLight state new)
, SetCardTextattributes state new
] io

1.5 Changing the database contents
The function ShowEditDialog will be applied e.g. when Edit… is chosen from the menu.
It displays a multi-purpose dialogue. The dialogue has two modes. In one mode
(SetCardTextattributes) it displays by default the current card (record) being selected
(SetTextattributes). By pressing Delete the selected card can be deleted (DeleteRecord).
One can also edit the displayed attribute values and Replace the contents of the selected
card with the new values (AddRecord Replace). It is also possible to Add a complete new
card (AddRecord (not Replace)). Finally the database can be sorted (Sort) by pressing
Sort. In the other mode the same dialogue can also be used to fill in a query to search for
a certain card in the database (see 1.6).

Figure 1.7. The edit dialogue to change the selected card.

ShowEditDialog :: SimpleDataBase IO -> (SimpleDataBase, IO)
ShowEditDialog (s=:{descriptor=descr,records=recs,selection=sel},files) io
 = ((nstate,files), seq [ OpenDialog editDialog,

SetCardTextattributes nstate sel] io)
where
 nstate      = {s & editinfoid=infoid}



164 Functional Programming in Clean

 editDialog  = CommandDialog EdDialogId "Edit Record" [] addId dialogitems
 dialogitems =
  [ DynamicText infoid Left InputBoxWidth "" ] ++
  flatten [ inputattribute sid eid attribute \\ attribute <- map fst descr

    &  eid  <- [0..]
 & sid <- [size descr..]] ++

  [ DialogButton dispQId (Below (maxindex descr)) "DisplQ" Able DisplQuery
  , DialogButton setQId  (RightTo dispQId) "SetQ"       Able SetQuery
  , DialogButton srchQId (RightTo setQId)  "SearchQ"    Able Search
  , DialogButton slctQId (RightTo srchQId) "SelectAllQ" Able SelectAll
  , DialogButton replId  (Below dispQId)   "Replace"    Able (AddRecord Replace)
  , DialogButton delId  (Below setQId)    "Delete"     Able DeleteRecord
  , DialogButton addId  (Below srchQId)   "Add" Able

(AddRecord (not Replace))
  , DialogButton sortId  (Below slctQId)   "Sort" Able Sort
  ]

 inputattribute sid eid attribute = [ StaticText sid Left attribute
, EditText eid pos InputBoxWidth 1 ""
]

 where
pos = case eid of

  0    -> XOffset sid offset
  else -> Below (dec eid)

  offset = Pixel (DfFont.width +
MaxWidth DfFont.font (map fst descr) -

MaxWidth DfFont.font [attribute])

  [infoid,dispQId,setQId,srchQId,slctQId,replId,delId,addId,sortId:_]
 = [2*(size descr)..]

InputBoxWidth   :== Pixel (20*DfFont.width) // DefaultWidth boxes (20 chars)
Replace   :== True

SetCardTextattributes :: TableAdm Int IO -> IO
SetCardTextattributes {editinfoid,descriptor=d,records=recs} index io
| isEmpty recs = SetTextattributes editinfoid

"No Table: Empty Database!" d (repeatn (size d) (AS "")) io
| otherwise = SetTextattributes editinfoid

("Current Record Nr: " +++ toString index) d (recs!index) io

SetTextattributes:: Int String Descriptor Record IO -> IO
SetTextattributes id s d rec io

= ChangeDialog EdDialogId
[ ChangeDynamicText id s
: [ ChangeEditText id f \\ id <- [0..maxindex d] & AS f<-rec ]
] io

DfFont =: {font = f, width = maxwidth, height = ascent+descent+leading}
where // Global graph def: default font (in dialogs)

(ascent, descent, maxwidth, leading) = FontMetrics f
(_, f)  = SelectFont name styles size
(name,styles,size)  = DefaultFont

The current card being selected is deleted by removing the corresponding record from
the list of records. The next card in the database becomes selected. Now also the picture
showing the table has to be redrawn (see 1.4) accordingly.

DeleteRecord :: DialogInfo SimpleDataBase IO -> (SimpleDataBase, IO)
DeleteRecord dialogInfo
db=:(state=:{records=oldrecs,selection=index,descriptor,fw},files) io
| isEmpty oldrecs = (db,Beep io)
| otherwise   = UpdateDbDomain (nstate,files)

(ChangeSelection nstate index nindex io)
where
 newrecs  = remove index oldrecs
 attributewidth  = if fw == MaxWidth DbFont.font (map toString (oldrecs!index))

  (MaxWidth DbFont.font (map toString (flatten newrecs)))
  fw

 nindex  = if (isEmpty newrecs) 0 (index mod (size newrecs))



II.1 A Simple Database (Draft, 12 augustus 1997) 165

 nstate = { state & records = newrecs,
selection = nindex,
fw = attributewidth }

The function AddRecord reads the changed or new attribute values from the editable text
boxes in the edit dialogue (GetTextattributes). Depending on the Boolean argument it ei-
ther adds a complete new card or it replaces the selected one.

AddRecord :: Bool DialogInfo SimpleDataBase IO -> (SimpleDataBase, IO)
AddRecord replace dialogInfo

db=:(state=:{descriptor,selection,records=recs,fw},files) io
| isEmpty recs && replace = (db,Beep io)
| otherwise = UpdateDbDomain (nstate,files)

(ChangeSelection nstate selection index io1)
where

(newrec,io1) = GetTextattributes descriptor io
(index,newrecs) = insertindex (\a b -> a <= b) newrec

(if replace (remove selection recs) recs)
attributewidth  = if recalc

 (MaxWidth DbFont.font (map toString (flatten newrecs)))
 (max (MaxWidth DbFont.font (map toString newrec)) fw)

recalc = replace && MaxWidth DbFont.font
(map toString (recs!selection)) < fw

nstate = { state & records = newrecs,
selection = index,
fw = attributewidth }

insertindex :: (a -> .(a -> .Bool)) a u:[a] -> (Int,u:[a])
insertindex r x ls = inserti r 0 x ls
where

inserti r i x ls=:[y : ys]
| r x y  = (    i,[x : ls])
| otherwise  = (index,[y : list])
with

(index,list) = inserti r (inc i) x ys
inserti r i x [] = (    i,[x])

GetTextattributes :: Descriptor IO -> (Record,IO)
GetTextattributes descr io

= ([AS (GetEditText id dialogInfo) \\ id <- [0..maxindex descr]],nio)
where

(_,dialogInfo,nio) = GetDialogInfo EdDialogId io

To sort the database one can simply call the library function sort from Cleans StdEnv un-
der the condition that the class < is instantiated for attribute values.

Sort :: DialogInfo SimpleDataBase IO -> (SimpleDataBase, IO)
Sort dialogInfo (state=:{records=recs,selection},files) io
 = UpdateDbDomain (nstate,files) (SetCardTextattributes nstate selection io)
where

nstate = {state & records = sort recs}

instance < AttributeValue
where

(<) (AS a) (AS b) = a < b

1.6 Handling database queries
The dialogue shown by the function ShowEditDialog (see the specification in 1.5) can also
be used to fill in a query to search for certain cards in the database. When DisplQ is pres-
sed (DisplQuery is called) a query previously set is displayed. The dialogue box now
starts with Query:,  set by SetQueryTextattributes). A new query can be typed in the edi-
table boxes and set by pressing SetQ (SetQuery). Hereafter one can search for the next
card matching the previously set query by pressing SearchQ (calling Search). It is also
possible to find all cards matching the query set by pressing SelectAllQ (SelectAll).



166 Functional Programming in Clean

Figure 1.8 The edit dialogue now used to define a query.

DisplQuery ::DialogInfo SimpleDataBase IO -> (SimpleDataBase, IO)
DisplQuery info db=:({descriptor=d,query=q,editinfoid},_) io

= (db,SetQueryTextattributes editinfoid d q io)

SetQueryTextattributes:: Int Descriptor Record IO -> IO
SetQueryTextattributes editinfoid d q io

= SetTextattributes editinfoid "Query: " d q io

SetQuery ::DialogInfo SimpleDataBase IO -> (SimpleDataBase, IO)
SetQuery info (state, files) io = (({state & query = nquery},files), nio)
where

(nquery,nio) = GetTextattributes state.descriptor io

When a query is set one can search for a card in the database matching this query. Each
query value typed in is compared with the corresponding attribute value of a card. They
are considered equal when the query value is a prefix sub-string of the card value. A card
is found if all attribute values match the query (QueryRecord). A search for a card starts
with the card following the card currently being selected. Cards are inspected in a round
robin way until a matching card is found or the searching is stopped because none of the
cards turn out to match the query. If a card is found it will be selected and its contents is
b o t h  d i s p l a y e d  i n  t h e  e d i t  w i n d o w  a s  w e l l  a s  i n  t h e  d a t a b a s e  w i n d o w
(MakeSelectionVisible).

Search ::DialogInfo SimpleDataBase IO -> (SimpleDataBase, IO)
Search  info database=:(state=:{records,query,selection=sel},files) io
| isEmpty found = (database, Beep io)
| otherwise

= MakeSelectionVisible ({state & selection=nsel},files)
(ChangeSelection state sel nsel io)

where
nsel    = hd found
found = [ i \\ e <- el ++ bl

  &  i <- [sel+1 .. maxindex records] ++ [0..]
  |  QueryRecord query e

  ]
(bl,el) = splitAt (sel+1) records

QueryRecord:: Record Record -> Bool
QueryRecord query e = and [ EqPref qf f \\ AS f <- e & AS qf <- query ]
where

EqPref pref name
| size pref > size name = False
| otherwise = pref == name%(0,maxindex pref)

MakeSelectionVisible:: SimpleDataBase IO -> (SimpleDataBase,IO)
MakeSelectionVisible db=:({records,selection,descriptor},_) io
| isEmpty records   = (db,io)
| selection_invisible = ChangeScrollBar TableWindowId

(ChangeVThumb selthumb) db io1
| otherwise   = (db,io1)
where

selection_invisible = selthumb < visibletop || selthumb >= visiblebot
selthumb = toPicCo descriptor selection
(((_,visibletop),(_,visiblebot)), io1) = WindowGetFrame TableWindowId io



II.1 A Simple Database (Draft, 12 augustus 1997) 167

The function SelectAll filters out all cards which do not satisfy the query set. A new da-
tabase (named SelectedTable) is formed by those cards who pass the test.

SelectAll ::DialogInfo SimpleDataBase IO -> (SimpleDataBase, IO)
SelectAll info db=:(state=:{records,query,selection,descriptor},files) io
| isEmpty recs = (db, Beep io)
| otherwise    = UpdateDbDomain (nstate,files)

(seq [ ChangeSelection nstate selection 0,
ChangeWindowTitle TableWindowId nstate.name] io)

where
nstate = { state & selection = 0,

records = recs,
name = "SelectedTable",
fw = MaxWidth DbFont.font

(map toString (flatten recs)) }
recs    = filter (QueryRecord query) records

1.7 Changing the format of the database
The function ShowAttributeDialog which will be applied when choosing Change Set
Up… from the menu (see 1.2) opens a dialogue (see Figure 1.9.a) in which all the attri-
bute names of the database are displayed. One can click Delete to delete the selected
attribute (Deleteattribute), click Move to move the order in which the attributes are sto-
red  (Moveattribute) ,  c l i ck  Rename to give a new name to an existing attribute
(Renameattribute), and click Add New to add a new attribute name (Addattribute). If the
database is empty a dialogue is opened (see Figure 1.9.b) using the auxiliary function in-
putdialog prompting for a first attribute name to be added (see 1.7.4).

Figure 1.9.a The change set up dialogue showing the attribute names of a non-empty database.

Figure 1.9.b The change set up dialogue in case of an empty database

ShowAttributeDialog :: SimpleDataBase IO -> (SimpleDataBase, IO)
ShowAttributeDialog db=:({descriptor=d},_) io
| isEmpty d = inputdialog "Give first attribute" InputBoxWidth

(\input->AttributeChangeIO (adda (-1) input)) db nio
| otherwise = (db,OpenDialog attributedialog nio)
where

nio = CloseDialog EdDialogId io
attributedialog
 = CommandDialog AttributeDialogId "Change Set Up" [] addId

[ StaticText DontCareId Left "Select attribute..."
, RadioButtons selectId Left (Columns 1) firstRadioId

(radioitems firstRadioId (map fst d))
, DialogButton deleteId Left "Delete"  Able

(Deleteattribute getselectedattribute)
, DialogButton moveId (RightTo deleteId) "Move" Able

(Moveattribute getselectedattribute)
, DialogButton renameId Left "Rename"  Able

(Renameattribute getselectedattribute)



168 Functional Programming in Clean

, DialogButton addId (Below moveId) "Add New" Able
(Addattribute getselectedattribute)

]

getselectedattribute dialoginfo
= GetSelectedRadioItemId selectId dialoginfo - firstRadioId

[deleteId,moveId,renameId,addId,selectId,firstRadioId:_] = [0..]

radioitems firstid titles
= [RadioItem id t Able selectdummy \\ id <- [firstid..] & t <- titles]

where
selectdummy dialoginfo dialogstate = dialogstate

inputdialog name width fun s io = (s,OpenDialog dialogdef io)
where

dialogdef
 = CommandDialog dlgId name [] okId

[ StaticText nameId Left (name+++": ")
, EditText inputId (RightTo nameId) width 1 ""
, DialogButton cancelId (Below inputId) "Cancel" Able (cancel dlgId)
, DialogButton okId (RightTo cancelId) "OK" Able (ok fun)
]

ok fun dlginfo s io
 = fun (GetEditText inputId dlginfo) s (CloseDialog dlgId io)
cancel id dialoginfo s io = (s, CloseDialog id io)
[dlgId,nameId,inputId,cancelId,okId:_] = [0..]

Any change in the attribute names will close the change set up and edit dialogue while the
database window is redrawn taking the changes into account (AttributeChangeIO). When
the change set up and edit dialogue are re-opened the changes are taken into account. This
shows the dynamic behaviour of these kind of dialogues specification in contrast with the
static description often generated by many dedicated (visual) dialogue editors (see e.g.
Figure 1.12).

AttributeChangeIO :: (TableAdm -> TableAdm) SimpleDataBase IO ->
(SimpleDataBase,IO)
AttributeChangeIO changefun (state,files) io

= UpdateDbDomain (changefun state,files) (closeDbDialogs io)

1.7.1 Deleting an attribute field
The function Deleteattribute will delete the indicated attribute name and all the corres-
ponding attribute values from the database administration. Which attribute is deleted is
depending on which radio button is set in the change set up dialogue (see Figure 1.9.b). A
dialogue (Figure 1.10) warns the user that the a complete attribute will be deleted if OK
is pressed.

Figure 1.10 The change set up dialogue showing the attribute names of a non-empty database.

Deleteattribute :: (DialogInfo -> Int) DialogInfo SimpleDataBase IO
-> (SimpleDataBase, IO)

Deleteattribute getattribute dialoginfo db io
= warn warning (AttributeChangeIO (deletea (getattribute dialoginfo))) db io

where
warning = [ "This will also remove the attributes contents in all records!",

"Are you sure?" ]



II.1 A Simple Database (Draft, 12 augustus 1997) 169

deletea i s=:{records=rs,descriptor=d,query=q}
 = {s & records = newrs,

descriptor = newdescr,
query = remove i q,
dw = MaxWidth DbFont.font (map fst newdescr),
fw = nfw }

where
newrs    = map (remove i) rs
newdescr = remove i d
nfw      = MaxWidth DbFont.font (map toString (flatten newrs))

1.7.2 Moving an attribute field
The function Moveattribute will move the indicated attribute name and all the correspon-
ding attribute values from the database administration to a new position. Which attribute
is moved is depending on which radio button is set in the change set up dialogue (see Fi-
gure 1.9.b). A move attribute dialogue (Figure 1.12) will ask the user to which new posi-
tion the attribute has to be moved. When the change set up dialogue or edit dialogue is
re-opened one can inspect that the move indeed has taken place.

Figure 1.12 Moving an attribute from position effects the appearance of the change set up dialogue.

Moveattribute :: (DialogInfo -> Int) DialogInfo SimpleDataBase IO
 ->

(SimpleDataBase,IO)
Moveattribute getattribute dialoginfo db=:({descriptor=d},_) io

= (db,OpenDialog movedialog io)
where
 attributetomove = getattribute dialoginfo
 movedialog

= CommandDialog moveDialogId "Move attribute" [] okId
  [ StaticText   infoId   Left

("Move '" +++ fst (d!attributetomove) +++ "' before: ")
  , RadioButtons selectId Left (Rows (inc (size d))) firstRadioId

(radioitems firstRadioId (map fst d++[""]))
  , DialogButton cancelId Left "Cancel" Able (cancel moveDialogId),
  , DialogButton okId     (RightTo cancelId) "Move" Able

(ok (movea attributetomove))
     ]

 [moveDialogId,cancelId,okId,infoId, selectId,firstRadioId:_] = [0..]

 ok mvf dlginfo s io
  = AttributeChangeIO (mvf destinationattribute) s (CloseDialog moveDialogId io)
 where
   destinationattribute = GetSelectedRadioItemId selectId dlginfo - firstRadioId

1.7.3 Renaming an attribute field
The function Renameattribute allows to rename the chosen attribute name. An input dia-
logue (Figure 1.13) will prompt the user for the new name. The administration (the de-
scriptor) is changed accordingly.



170 Functional Programming in Clean

Figure 1.13 Defining the new field attribute to be added to a card

Renameattribute :: (DialogInfo -> Int) DialogInfo SimpleDataBase IO
-> (SimpleDataBase,IO)

Renameattribute getattribute dialoginfo db=:(state,files) io
 = inputdialog infotext InputBoxWidth

(\input->AttributeChangeIO (renamea attributetorename input)) db io
where
 infotext = "Rename '" +++ fst (state.descriptor!attributetorename) +++ "' to"
 attributetorename  = getattribute dialoginfo

 renamea selectedattribute newattributename s=:{descriptor=d}
 = {s &  descriptor = newdescr,

dw = MaxWidth DbFont.font (map fst newdescr) }
 where

newdescr = updateAt selectedattribute (newattributename,STRING) d

updateAt :: .Int .a [.a] -> [.a]
updateAt i x ys = before ++ [ x : case at of [] -> []; [r:rs] -> rs ]
where

(before,at) = splitAt i ys

1.7.4 Adding an attribute field
The function Addattribute will add a new attribute name after the selected old attribute
name. An input dialogue (Figure 1.13) will ask the user to for the new attribute name.
The database administration is changed accordingly. A corresponding attribute value
initialized with a default value is added to each card. In the database window the new
field is added (see Figure 1.15).

Figure 1.14 Defining the new field attribute to be added to a card

Figure 1.15 The attribute has been added to each card, the empty string has been taken as default value.

Addattribute :: (DialogInfo -> Int) DialogInfo SimpleDataBase IO
  ->

(SimpleDataBase,IO)
Addattribute getattribute dialoginfo db=:(state,files) io
 = inputdialog infotext InputBoxWidth

(\input->AttributeChangeIO (adda attributename input)) db io
where

infotext = "Add after '" +++
fst (state.descriptor!attributename) +++
"' new attribute"

attributename  = getattribute dialoginfo



II.1 A Simple Database (Draft, 12 augustus 1997) 171

adda :: Int String TableAdm -> TableAdm
adda afterattribute attributename state=:{records=rs,descriptor=d,query=q,dw}
 =  {state & records = map (ins (AS "")) rs,

descriptor = ins (attributename,STRING) d,
query = ins (AS "") q,
dw = descrwidth }

where
ins x ys   = insertAt (inc afterattribute) x ys
descrwidth = max (MaxWidth DbFont.font [attributename]) dw

insertAt :: .Int .a u:[.a] -> u:[.a]
insertAt i x ys = before ++ [ x : at ]
where

(before,at) = splitAt i ys

movea :: Int Int TableAdm -> TableAdm
movea sf df s=:{records=rs,descriptor=d,query=q}
 = {s & records = map (moveinlist sf df) rs,

descriptor = moveinlist sf df d,
query = moveinlist sf df q }

moveinlist :: .Int .Int .[a] -> [a]
moveinlist src dest l
 | src < dest = remove src beforedest ++ [l!src : atdest]
 | src > dest = beforedest ++ [l!src : remove (src - dest) atdest]
 | otherwise  = l
where

(beforedest,atdest) = splitAt dest l

1.8 Exercises
1.1 Assume that the database can also contain attribute values of other type, say Int and Real. Mo-

dify the program (the table administration, the ReadSimpleDataBase,  the  SaveTable and all
other functions which manipulate the database) such that the database application can deal with
these other types.

1.2 Make it possible for the user to choose anyone of the other fonts and font sizes available on the
system to be used to write the information in the database window. Add a new item to the menu
which opens a standard dialogue to make the font selection. Safe the information of the chosen font
in the database state.

1.3 The query one can define is rather rigid. Only if the prefix of an attribute value exactly matches the
query a match is possible. Change the function QueryRecord such that the query string is
considered equal when the string can be found anywhere in the corresponding attribute value.

1.4 Using one and the same dialogue for editing and defining queries is not so user friendly. Split the
dialogue up in two parts.

1.5 Define an overloaded ==, <, <=, >, >=, || and && on all attribute and query values, also for values
of type Int and Real. Define a query expression language in which these operators can be used.
Make a parser for this language. It should be possible to specify a search for an integer value >= 0
&& <= 10.

1.6 Make it possible to define several query alternatives. For each of the alternatives a separate query
dialogue has to be filled in. A search for a card should succeed when the card matches any of the
query alternatives specified in this way.

1.7 Make it possible to display the database contents in the database windows in a way as defined by
the user. Open a window in which the user can add, delete and drag any of the attribute names or
values. Make a menu from which the available attribute names and values can be chosen. Also al-
low to draw lines and boxes to give the user a possibility to create his own lay-out. Store the lay-
out in the database file.


