
Appendix C
Clean 0.8 I /O Library

C I/O library

This section describes the Clean 0.8 I/O library converted to 1.0 syntax. A new I/O library which allows
more locality of state within interactive components is being developed.

C I/O library

C.1 General operations on the IOState (deltaEventIO)
definition module deltaEventIO
import deltaIOSystem

:: * EVENTS

The event stream.

:: * IOState * s

The environment on which all event I/O functions operate.

:: InitialIO *s :== [s -> (IOState s) -> (s, IOState s)]

The I/O functions that will be evaluated before starting the interaction.

OpenEvents :: !* WORLD -> (!EVENTS, !* WORLD)

Retrieves the event stream from the world. Attempts to retrieve the event stream from the world
more than once without putting it back result in a run-time error.

CloseEvents :: !EVENTS !* WORLD -> * WORLD

Puts the event stream back into the world.

StartIO :: !(IOSystem s (IOState s)) !s !(InitialIO s) !EVENTS -> (!s, !EVENTS)

Starts a new interaction. The initial state of this interaction is composed of the program state (s) and
the initial I/O state, which consists of the devices participating in the interaction (defined in the
IOSystem argument) and the event stream (EVENTS). Of each device in the initial IOSystem only the
first occurrence is taken into account. The program state must be unique. Before starting the inter-
action the InitialIO functions are evaluated. At the end of the interaction StartIO returns the final

Clean, augustus 12, 1997

program state and the resulting event stream, from which the events that have been handled during
the interaction have been removed.

NestIO :: !(IOSystem s (IOState s)) !s !(InitialIO s) !(IOState t) -> (!s, !IOState t)

Starts a nested interaction. It replaces the current interaction (as specified by the IOState argument)
with a completely new one (as specified by the IOSystem argument). It hides the devices of the cur-
rent interaction (if any) and fills a new IOState with the devices that are specified in the IOSystem
and with the event stream of the old IOState. The program state argument (s) serves as initial pro-
gram state of the new interaction. Before starting the nested interaction the InitialIO functions are
evaluated. NestIO returns the final program state of the new interaction and the original IOState,
such that the original interaction reappears.

QuitIO :: !(IOState s) -> IOState s

Closes all devices that are held in the IOState argument. The resulting IOState will cause StartIO or
NestIO to terminate.

ChangeIOState :: ![(IOState s) -> (IOState s)] !(IOState s) -> IOState s

Applies all functions in its first argument in consecutive order to the second (IOState) argument.

C.2 Definition of the I/O system (deltaIOSystem)
definition module deltaIOSystem
from deltaPicture import Picture, Rectangle, DrawFunction

:: * DialogState * s * io
:: DialogInfo

:: IOSystem * s * io :== [DeviceSystem s io]
:: DeviceSystem * s * io = TimerSystem [TimerDef s io]

| MenuSystem [MenuDef s io]
| WindowSystem [WindowDef s io]
| DialogSystem [DialogDef s io]

The timer device responds only to timer events. A timer event occurs as soon as a certain TimerInterval has expired
since the last time it was ‘sampled’. A TimerInterval is defined as a number of ticks. A macro TicksPerSecond is
defined in deltaTimer.dcl. The timer event causes one of the programmer-defined TimerFunctions to be evaluated.
The TimerState argument of a TimerFunction indicates how many times the TimerInterval has passed since the
last timer event for that timer. When the TimerInterval of one of the timers is smaller than 1 the corresponding
TimerFunction is called as often as possible.

:: TimerDef * s * io = Timer TimerId SelectState TimerInterval (TimerFunction s io)
:: TimerId :== Int
:: TimerInterval :== Int
:: TimerFunction * s * io :== TimerState -> (s -> * (io -> (s, io)))
:: TimerState :== Int

The menu device consists of several PullDownMenus. PullDownMenus are logically grouped into a menu bar, in the
same order as they are specified. They are selected by pressing the mouse on their MenuTitle in the menu bar. Menus
contain MenuElements. The corresponding MenuFunctions are executed when these elements are selected.

:: MenuDef * s * io = PullDownMenu MenuId MenuTitle SelectState [MenuElement s io]
:: MenuElement * s * io

= MenuItem MenuItemId ItemTitle KeyShortcut SelectState (MenuFunction s io)
| CheckMenuItem MenuItemId ItemTitle KeyShortcut SelectState MarkState (MenuFunction s io)
| SubMenuItem MenuId ItemTitle SelectState [MenuElement s io]
| MenuItemGroup MenuItemGroupId [MenuElement s io]
| MenuRadioItems MenuItemId [RadioElement s io]
| MenuSeparator

:: RadioElement * s * io
= MenuRadioItem MenuItemId ItemTitle KeyShortcut SelectState (MenuFunction s io)

:: MenuFunction * s * io :== s -> *(io -> (s, io))
:: MenuId :== Int
:: MenuTitle :== String
:: MenuItemId :== Int
:: MenuItemGroupId :== Int
:: KeyShortcut = Key KeyCode | NoKey

I/O Library

The window device consists of several ScrollWindows or FixedWindows. A ScrollWindow is defined by the follow-
ing arguments:
• WindowId: the number by which the programmer refers to the window.
• WindowPos: the position of the upper-left corner of the window.
• WindowTitle: the title of the window.
• ScrollBarDefs: the horizontal and vertical scroll bars (in that order).
• PictureDomain: the range of the drawing operations in the window.
• MinimumWindowSize: the smallest dimensions of the window.
• InitialWindowSize: the initial dimensions of the window.
• UpdateFunction: the function to redraw parts (UpdateArea) of the window.
• An attribute list that may contain the following window attributes:

– Activate: the way to respond to activation of the window.
– Deactivate: the way to respond to de-activation of the window.
– GoAway: the way to respond when the window is closed.
– Keyboard: the way the window responds to keyboard input.
– Mouse: the way the window responds to mouse events.
– Cursor: the shape of the cursor (mouse pointer) inside the window.
– StandByWindow: when this attribute is present the window will be a so-called

stand-by window.
A FixedWindow has a fixed size, which is defined by its PictureDomain. Therefore it has no scroll bars and no size
parameters. When the PictureDomain of a FixedWindow is or becomes greater than one of the screen’s dimensions it
becomes a ScrollWindow.

:: WindowDef * s * io
= ScrollWindow WindowId WindowPos WindowTitle ScrollBarDef ScrollBarDef PictureDomain

MinimumWindowSize InitialWindowSize (UpdateFunction s) [WindowAttribute s io]
| FixedWindow WindowId WindowPos WindowTitle PictureDomain

(UpdateFunction s) [WindowAttribute s io]

:: WindowId :== Int
:: WindowPos :== (!Int, !Int)
:: WindowTitle :== String
:: ScrollBarDef = ScrollBar ThumbValue ScrollValue
:: ThumbValue = Thumb Int
:: ScrollValue = Scroll Int
:: MinimumWindowSize :== (!Int, !Int)
:: InitialWindowSize :== (!Int, !Int)
:: UpdateFunction * s :== UpdateArea -> (s -> (s, [DrawFunction]))
:: UpdateArea :== [Rectangle]

:: WindowAttribute * s * io = Activate (WindowFunction s io)
| Deactivate (WindowFunction s io)
| GoAway (WindowFunction s io)
| Mouse SelectState (MouseFunction s io)
| Keyboard SelectState (KeyboardFunction s io)
| Cursor CursorShape
| StandByWindow

:: WindowFunction * s * io :== s -> *(io -> (s, io))
:: MouseFunction * s * io :== MouseState -> (s -> *(io -> (s, io)))
:: KeyboardFunction * s * io :== KeyboardState -> (s -> *(io -> (s, io)))

:: CursorShape = StandardCursor | BusyCursor | IBeamCursor |
CrossCursor | FatCrossCursor | ArrowCursor |
HiddenCursor

The dialog device: dialogs given in the initial I/O system will be opened as modeless dialogs. Use the
Open(Modal)Dialog function (deltaDialog.icl) to open dialogs during the interaction. PropertyDialogs are spe-
cial dialogs that can only be modeless. They are used to change certain properties (default values, preferences etc.) of a
program. They have two predefined buttons: the Set and the Reset buttons. A CommandDialog can be any kind of dia-
log. A PropertyDialog is defined by the following attributes:
• DialogId: a number by which the programmer can refer to the dialog.
• DialogTitle: the title of the dialog.
• A list of attributes that may contain the following dialog attributes:

– DialogPos: the position of the dialog on the screen.
– DialogSize: the size of the dialog.

Clean, augustus 12, 1997

– DialogMargin: the horizontal and vertical margins between the borders of the dialog and the items.
– ItemSpace: the horizontal and vertical space between the items of the dialog.
– StandByDialog: when this attribute is present the dialog will be a so-called

stand-by dialog.
When none of these attributes is specified the dialog is centred on the screen, a size is chosen such that all items fit
in the dialog and save default margins, and item spaces are chosen.

• SetFunction/ResetFunction: the button function for the set/reset button.
• A list of DialogItems: other items such as CheckBoxes, Controls etc.
A CommandDialog also has an id, a title, a position, a size and a list of DialogItems. Furthermore it has the following
attribute:
• DialogItemId: the item id of the default button.
In the AboutDialog, information about the application (version, authors etc.) can be presented. It may also contain a
button that should provide a help facility. The first AboutDialog that is encountered in the initial dialog device be-
comes the AboutDialog of the application. Attempts to open AboutDialogs with Open(Modal)Dialog are ignored.
The AboutDialog will be accessible by the user during the interaction in a system-dependent way.

:: DialogDef * s * io
= PropertyDialog DialogId DialogTitle [DialogAttribute]

 (SetFunction s io) (ResetFunction s io) [DialogItem s io]
| CommandDialog DialogId DialogTitle [DialogAttribute] DialogItemId [DialogItem s io]
| AboutDialog ApplicationName PictureDomain [DrawFunction] (AboutHelpDef s io)

:: DialogId :== Int
:: DialogTitle :== String
:: DialogAttribute = DialogPos Measure Measure

| DialogSize Measure Measure
| DialogMargin Measure Measure
| ItemSpace Measure Measure
| StandByDialog

:: Measure = MM Real | Inch Real | Pixel Int
:: ApplicationName :== String
:: AboutHelpDef * s * io = AboutHelp ItemTitle (AboutHelpFunction s io)

| NoHelp
:: AboutHelpFunction * s * io :== s -> *(io -> (s, io))

A DialogItem can be a final button (DialogButton), a final button with a user-defined look (DialogIconButton), an
unchangeable piece of text (StaticText), a changeable piece of text (DynamicText), an editable text field (EditText), a
pop-up menu (DialogPopUp), a group of RadioButtons, a group of CheckBoxes, or a user-defined Control. The
ItemPos specifies the position of the item relative to the other items. When the ItemPos is Left, Center or Right the
item is placed left-aligned, centred or right-aligned, respectively, beneath all other items.

:: DialogItem * s * io
= DialogButton DialogItemId ItemPos ItemTitle SelectState (ButtonFunction s io)
| DialogIconButton DialogItemId ItemPos PictureDomain

 IconLook SelectState (ButtonFunction s io)
| StaticText DialogItemId ItemPos String
| DynamicText DialogItemId ItemPos TextWidth String
| EditText DialogItemId ItemPos TextWidth NrEditLines String
| DialogPopUp DialogItemId ItemPos SelectState DialogItemId [RadioItemDef s io]
| RadioButtons DialogItemId ItemPos RowsOrColumns DialogItemId [RadioItemDef s io]
| CheckBoxes DialogItemId ItemPos RowsOrColumns [CheckBoxDef s io]
| Control DialogItemId ItemPos PictureDomain SelectState ControlState

ControlLook ControlFeel (DialogFunction s io)

:: DialogItemId :== Int
:: ItemPos = Left | Center | Right | RightTo DialogItemId |

Below DialogItemId | XOffset DialogItemId Measure |
YOffset DialogItemId Measure | XY Measure Measure |
ItemBox Int Int Int Int

:: IconLook :== SelectState -> [DrawFunction]
:: TextWidth :== Measure
:: NrEditLines :== Int
:: RowsOrColumns = Rows Int | Columns Int

:: RadioItemDef * s * io = RadioItem DialogItemId ItemTitle SelectState (DialogFunction s io)
:: CheckBoxDef * s * io

 = CheckBox DialogItemId ItemTitle SelectState MarkState (DialogFunction s io)

Attributes of a user-defined Control: the ControlState can be a boolean, an integer, a real or a string. The look of the

I/O Library

control is defined by the DrawFunctions (see deltaPicture.dcl) returned by the ControlLook function. The
ControlFeel defines the way to respond to mouse clicks inside the control’s picture domain.

:: ControlState = BoolCS Bool | IntCS Int |
RealCS Real | StringCS String |
ListCS [ControlState] | PairCS ControlState ControlState

:: ControlLook :== SelectState -> ControlState -> [DrawFunction]
:: ControlFeel :== MouseState -> ControlState -> (ControlState,[DrawFunction])

Types of the several dialog item functions:

:: SetFunction * s * io :== ButtonFunction s io
:: ResetFunction * s * io :== ButtonFunction s io
:: DialogFunction * s * io :== DialogInfo -> (DialogState s io) -> DialogState s io
:: ButtonFunction * s * io :== DialogInfo -> (s -> *(io -> (s, io)))

A notice is a simple, modal dialog containing only text and final buttons. It can be used to inform the user about un-
usual or dangerous situations. A notice is defined by the following attributes:
• A list of Strings: each string is a line of the message of the notice.
• A NoticeButtonDef: the default button of the notice.
• A list of NoticeButtonDefs: the other buttons of the notice.

:: NoticeDef = Notice [String] NoticeButtonDef [NoticeButtonDef]
:: NoticeButtonDef = NoticeButton NoticeButtonId ItemTitle
:: NoticeButtonId :== Int

Keyboard input: a window may respond to keyboard events. Each such event causes the KeyboardFunction to be
evaluated. For certain special keys constants of type KeyCode are provided in deltaSystem.dcl.

:: KeyboardState :== (!KeyCode, !KeyState, !Modifiers)
:: KeyCode :== Char
:: KeyState = KeyUp | KeyDown | KeyStillDown

Mouse input: windows and controls may respond to mouse events. Each such event causes the MouseFunction to be
evaluated.

:: MouseState :== (!MousePosition, !ButtonState, !Modifiers)
:: MousePosition :== (!Int, !Int)
:: ButtonState = ButtonUp | ButtonDown | ButtonDoubleDown | ButtonTripleDown | ButtonStillDown

For each modifier or meta-key (Shift, Option (Alternate), Command, Control) a boolean in Modifiers indicates
whether it was pressed (TRUE) or not (FALSE). On keyboards that have no Command key both the third and the fourth
boolean in Modifiers become TRUE when Control is pressed.

:: Modifiers :== (!Bool, !Bool, !Bool, !Bool)

Other common types:

:: ItemTitle :== String
:: SelectState = Able | Unable
:: MarkState = Mark | NoMark
:: PictureDomain :== Rectangle

C.3 Operations on the timer device (deltaTimer)
definition module deltaTimer
import deltaIOSystem, deltaEventIO

TicksPerSecond :== … // system dependent

:: CurrentTime :== (!Int, !Int, !Int)

(hours (0–23), minutes (0–59), seconds (0–59))

:: CurrentDate :== (!Int, !Int, !Int, !Int)

(year, month (1–12), day (1–31), day of week (1–7, Sunday=1, Saturday=7))

Clean, augustus 12, 1997

OpenTimer :: !(TimerDef s io) !(IOState s) -> IOState s
CloseTimer :: !TimerId !(IOState s) -> IOState s

Open (install) a new timer, close (remove) an existing timer.

EnableTimer :: !TimerId !(IOState s) -> IOState s
DisableTimer :: !TimerId !(IOState s) -> IOState s
ChangeTimerFunction:: !TimerId !(TimerFunction s (IOState s)) !(IOState s) -> IOState s
SetTimerInterval :: !TimerId !TimerInterval !(IOState s) -> IOState s
GetTimerBlinkInterval :: !(IOState s) ->(!TimerInterval, !IOState s)

Enable, disable, change the TimerFunction and TimerInterval of a Timer. GetTimerBlinkInterval re-
turns the number of ticks that should pass between a blink of the cursor (also called caret time).

Wait :: !TimerInterval x -> x
UWait :: !TimerInterval * x -> * x

Delay the evaluation of the second argument for a certain TimerInterval.

GetCurrentTime :: !(IOState s) -> (!CurrentTime, !IOState s)
GetCurrentDate :: !(IOState s) -> (!CurrentDate, !IOState s)

GetCurrentTime / GetCurrentDate return the current time and date.

C.4 Operations on menus (deltaMenu)
definition module deltaMenu
import deltaIOSystem, deltaEventIO

Menu operations on unknown MenuIds/MenuItemIds are ignored.

EnableMenuSystem :: !(IOState s) -> IOState s
DisableMenuSystem :: !(IOState s) -> IOState s

Enable and disable the complete menu system. Enabling the menu system will make the previously
enabled menus and menu items selectable again. Operations on a disabled menu system take effect
when the menu system is re-enabled.

EnableMenus :: ![MenuId] !(IOState s) -> IOState s
DisableMenus :: ![MenuId] !(IOState s) -> IOState s

Enable, disable menus. Disabling a menu causes its contents to be unselectable. Enabling a disabled
menu with partially selectable contents causes the previously selectable items to become selectable
again.

InsertMenuItems:: !MenuItemGroupId !Int ![MenuElement s (IOState s)] !(IOState s) -> IOState s
AppendMenuItems:: !MenuItemGroupId !Int ![MenuElement s (IOState s)] !(IOState s) -> IOState s
RemoveMenuItems :: ![MenuItemId] !(IOState s) -> IOState s
RemoveMenuGroupItems :: !MenuItemGroupId ![Int] !(IOState s) -> IOState s

Addition, removal of MenuItems in MenuItemGroups. InsertMenuItems inserts menu items before the
item with the specified index, AppendMenuItems inserts them after that item. Items are numbered
starting from one. Indices smaller than one or greater than the number of elements cause the ele-
ments to be inserted, respectively, before the first and after the last item in the group. Only
(Check)MenuItems and MenuSeparators are added to MenuItemGroups. RemoveMenuItems only works on
items that are in a MenuItemGroup. RemoveMenuGroupItems removes the items with the specified indices
(counting from one) from the specified MenuItemGroup.

SelectMenuRadioItem :: !MenuItemId !(IOState s) -> IOState s

Select a MenuRadioItem: the mark will move from the currently selected item in the group to the item
with the specified id.

I/O Library

EnableMenuItems :: ![MenuItemId] !(IOState s) -> IOState s
DisableMenuItems :: ![MenuItemId] !(IOState s) -> IOState s
MarkMenuItems :: ![MenuItemId] !(IOState s) -> IOState s
UnmarkMenuItems :: ![MenuItemId] !(IOState s) -> IOState s
ChangeMenuItemTitles :: ![(MenuItemId, String)] !(IOState s) -> IOState s
ChangeMenuItemFunctions:: ![(MenuItemId, MenuFunction s (IOState s))] !(IOState s)->IOState s

Enable, disable, mark, unmark, change titles and functions of MenuElements.

C.5 Operations on windows (deltaWindow)
definition module deltaWindow
import deltaIOSystem, deltaEventIO, deltaPicture

Functions applied on non-existing windows or unknown WindowIds are ignored. Functions that operate on the active
(or frontmost) window have the same effect as those operating on a (list of) WindowId(s) but are (slightly) faster.

OpenWindows :: ![WindowDef s (IOState s)] !(IOState s) -> IOState s

The windows are opened in the same order as specified in the list of WindowDefinitions. If one of
these windows has the same WindowId as a window that is already open, then this window is not
opened. Each new window is always the active window and is placed in front of all existing windows.

CloseWindows :: ![WindowId] !(IOState s) -> IOState s

The windows are closed in the same order as specified in the list.

CloseActiveWindow :: !(IOState s) -> IOState s

The active window is closed.

GetActiveWindow :: !(IOState s) -> (!Bool, !WindowId, !IOState s)

Returns the id of the active window. If there is no active window the boolean will be FALSE.

ActivateWindow :: !WindowId !(IOState s) -> IOState s

Activates the indicated window. No effect, if the window is already active.

ChangeUpdateFunction :: !WindowId !(UpdateFunction s) !(IOState s)-> IOState s
ChangeActiveUpdateFunction :: !(UpdateFunction s) !(IOState s) -> IOState s

Change the update function of the indicated window.

ChangeWindowTitle :: !WindowId !WindowTitle !(IOState s) -> IOState s
ChangeActiveWindowTitle :: !WindowTitle !(IOState s) -> IOState s

Change the window title of the indicated window.

ChangeWindowCursor :: !WindowId !CursorShape !(IOState s) -> IOState s
ChangeActiveWindowCursor :: !CursorShape !(IOState s) -> IOState s

Change the local cursor shape of a window. When the mouse pointer moves over the content region
of the window the cursor will take the indicated shape.

:: ScrollBarChange
= ChangeThumbs Int Int // set new horizontal and vertical thumb values
| ChangeScrolls Int Int // set new horizontal and vertical scroll values
| ChangeHThumb Int // set new horizontal thumb value
| ChangeVThumb Int // set new vertical thumb value
| ChangeHScroll Int // set new horizontal scroll value
| ChangeVScroll Int // set new vertical scroll value
| ChangeHBar Int Int // set new horizontal thumb and scroll values
| ChangeVBar Int Int ` // set new vertical thumb and scroll values

Clean, augustus 12, 1997

ChangeScrollBar :: !WindowId !ScrollBarChange !s !(IOState s) -> (!s, !IOState s)
ChangeActiveScrollBar :: !ScrollBarChange !s !(IOState s) -> (!s, !IOState s)

Change the scroll bar(s) of a window according to the ScrollBarChange.

ChangePictureDomain :: !WindowId !PictureDomain !s !(IOState s) -> (!s, !IOState s)
ChangeActivePictureDomain :: !PictureDomain !s !(IOState s) -> (!s, !IOState s)

Change the PictureDomain of the indicated window. The settings of the scroll bars are automatically
adjusted. Windows will be resized in cases where the size of the new PictureDomain is smaller than the
current size of the window.

:: DrawInWindow !WindowId ![DrawFunction] !(IOState s) -> IOState s
:: DrawInActiveWindow ![DrawFunction] !(IOState s) -> IOState s

Apply the list of DrawFunctions (see deltaPicture.dcl) to the Picture of the window in the given or-
der.

:: DrawInWindowFrame !WindowId !(UpdateFunction s) !s !(IOState s)
-> (!s, !IOState s)

:: DrawInActiveWindowFrame !(UpdateFunction s) !s !(IOState s)-> (!s,!IOState s)

The UpdateFunction has a list of visible rectangles as parameter. Using this list it is possible to return
a list of drawing functions that only draw in the visible part of the window.

WindowGetFrame :: !WindowId !(IOState s) -> (!PictureDomain, !IOState s)
ActiveWindowGetFrame :: !(IOState s) -> (!PictureDomain, !IOState s)

Return the visible part of the Picture of the indicated window in terms of the PictureDomain. Returns
((0, 0), (0, 0)), if the indicated window does not exist.

EnableKeyboard :: !WindowId !(IOState s) -> IOState s
DisableKeyboard :: !WindowId !(IOState s) -> IOState s
EnableActiveKeyboard :: !(IOState s) -> IOState s
DisableActiveKeyboard :: !(IOState s) -> IOState s
ChangeKeyboardFunction :: !WindowId !(KeyboardFunction s (IOState s)) !(IOState s) -> IOState s
ChangeActiveKeyboardFunction :: !(KeyboardFunction s (IOState s)) !(IOState s) -> IOState s

Enable, disable, change KeyboardFunction of a window.

EnableMouse :: !WindowId !(IOState s) -> IOState s
DisableMouse :: !WindowId !(IOState s) -> IOState s
EnableActiveMouse :: !(IOState s) -> IOState s
DisableActiveMouse :: !(IOState s) -> IOState s
ChangeMouseFunction :: !WindowId !(MouseFunction s (IOState s)) !(IOState s) -> IOState s
ChangeActiveMouseFunction :: !(MouseFunction s (IOState s)) !(IOState s) -> IOState s

Enable, disable, change MouseFunction of a window.

C.6 Operations on dialogs (deltaDialog)
definition module deltaDialog
import deltaIOSystem, deltaEventIO

Functions applied on non-existent dialogs or unknown ids are ignored.

:: DialogChange s :== (DialogState s (IOState s)) -> (DialogState s (IOState s))

OpenDialog opens a PropertyDialog or CommandDialog as a modeless dialog.

OpenDialog :: !(DialogDef s (IOState s)) !(IOState s) -> IOState s

OpenModalDialog opens a CommandDialog as a modal dialog. The function terminates when the dialog is closed (by
means of Close(Active)Dialog). Attempts to open property dialogs with this function are ignored.

OpenModalDialog :: !(DialogDef s (IOState s)) !s !(IOState s) -> (!s, !IOState s)

Close(Active)Dialog closes the indicated dialog.

CloseDialog :: !DialogId !(IOState s) -> IOState s
CloseActiveDialog :: !(IOState s) -> IOState s

I/O Library

OpenNotice opens a notice and returns the id of the selected notice button.

OpenNotice :: !NoticeDef !(IOState s) -> (!NoticeButtonId, !IOState s)

A Beep is the simplest kind of notice.

Beep :: !(IOState s) -> IOState s

With the following functions the state of dialog items can be changed. They have no effect when an id is specified for an
item for which the state change is invalid.

EnableDialogItems :: ![DialogItemId]
!(DialogState s (IOState s)) -> DialogState s (IOState s)

DisableDialogItems :: ![DialogItemId]
!(DialogState s (IOState s)) -> DialogState s (IOState s)

MarkCheckBoxes :: ![DialogItemId]
!(DialogState s (IOState s)) -> DialogState s (IOState s)

UnmarkCheckBoxes :: ![DialogItemId]
!(DialogState s (IOState s)) -> DialogState s (IOState s)

SelectDialogRadioItem :: !DialogItemId
!(DialogState s (IOState s)) -> DialogState s (IOState s)

ChangeEditText :: !DialogItemId !String
!(DialogState s (IOState s)) -> DialogState s (IOState s)

ChangeDynamicText :: !DialogItemId !String
!(DialogState s (IOState s)) -> DialogState s (IOState s)

ChangeIconLook :: !DialogItemId !IconLook
!(DialogState s (IOState s)) -> DialogState s (IOState s)

Functions to change state, look and feel (behaviour) of Controls. When the id is not the id of a Control the functions
have no effect.

ChangeControlState :: !DialogItemId !ControlState
!(DialogState s (IOState s)) -> DialogState s (IOState s)

ChangeControlLook :: !DialogItemId !ControlLook
!(DialogState s (IOState s)) -> DialogState s (IOState s)

ChangeControlFeel :: !DialogItemId !ControlFeel
!(DialogState s (IOState s)) -> DialogState s (IOState s)

Functions to change the functions related to dialog items.

ChangeDialogFunction :: !DialogItemId !(DialogFunction s (IOState s))
!(DialogState s (IOState s)) -> DialogState s (IOState s)

ChangeButtonFunction :: !DialogItemId !(ButtonFunction s (IOState s))
!(DialogState s (IOState s)) -> DialogState s (IOState s)

ChangeSetFunction :: !(SetFunction s (IOState s))
!(DialogState s (IOState s)) -> DialogState s (IOState s)

ChangeResetFunction :: !(ResetFunction s (IOState s))
!(DialogState s (IOState s)) -> DialogState s (IOState s)

Get(Active)DialogInfo returns the current settings (DialogInfo) of the indicated dialog. The boolean indicates
whether the indicated dialog is open. When it is FALSE a dummy DialogInfo is returned.

GetDialogInfo :: !DialogId !(IOState s) -> (!Bool, !DialogInfo, !IOState s)
GetActiveDialogInfo :: !(IOState s) -> (!Bool, !DialogInfo, !IOState s)

DialogStateGetDialogInfo returns the DialogInfo corresponding to a DialogState.

DialogStateGetDialogInfo :: !(DialogState s (IOState s))
-> (!DialogInfo, !DialogState s (IOState s))

The following functions return the current settings of certain dialog items (those that can be changed by the user). When
the corresponding item does not exist a run-time error occurs. The id passed to GetSelectedRadioItemId must be the
id of a DialogPopUp or a group of RadioButtons. The function CheckBoxesMarked returns the settings of a group of
CheckBoxes. The id passed to it must be the id of such a group.

GetEditText :: !DialogItemId !DialogInfo -> String
GetSelectedRadioItemId :: !DialogItemId !DialogInfo -> DialogItemId
CheckBoxesMarked :: !DialogItemId !DialogInfo -> [(DialogItemId, Bool)]
CheckBoxMarked :: !DialogItemId !DialogInfo -> Bool

Clean, augustus 12, 1997

GetControlState :: !DialogItemId !DialogInfo -> ControlState

ChangeDialog can be used to modify open dialogs.

ChangeDialog :: !DialogId ![DialogChange s] !(IOState s) -> IOState s

C.7 The file selector dialogs (deltaFileSelect)
definition module deltaFileSelect
import deltaFile, deltaEventIO

With the functions defined in this module, standard file selector dialogs can be opened, which provide a user-friendly
way to select input or output files. The lay-out of these dialogs depends on the operating system.

SelectInputFile :: !Files !(IOState s) -> (!Bool, !String, !Files, !IOState s)
Opens a dialog in which the user can traverse the file system to indicate an existing file. The Boolean
result indicates whether the user has pressed the Open button (TRUE) or the Cancel button (FALSE). The
String result is the complete path name of the selected file. If the Cancel button has been pressed, an
empty string will be returned.

SelectOutputFile:: !String !String !Files !(IOState s) -> (!Bool, !String, !Files, !IOState s)
Opens a dialog in which the user can specify the name of a file that should be created in a certain di-
rectory. The first parameter is the prompt of the dialog (default: "Save As:"). The second parameter
is the default file name. The Boolean result indicates whether the user has pressed the Save button
(TRUE) or the Cancel button (FALSE). The String result is the complete path name of the selected file.
If the Cancel button has been pressed, an empty string will be returned. When a file with the indicated
name already exists in the indicated directory a confirm dialog will be opened after pressing Save.

C.8 Predefined Controls (deltaControls)
definition module deltaControls
import deltaIOSystem, deltaEventIO

General scrolling list and slider bar definition. These predefined dialog items are implemented entirely in Concurrent
Clean as a user-defined Control.

:: NrVisible :== Int
:: SliderDirection = Horizontal | Vertical
:: SliderPos :== Int
:: SliderMax :== Int

A ScrollingList is defined by the following attributes:
• Id, ItemPos and SelectState (like other dialog items).
• The minimum width of the scrolling list (Measure).

This attribute is important only when ChangeScrollingList is used. Use a minimum width of zero when the
scrolling list is not changed.

• The number of items that is visible in the list (NrVisible).
• The item that is initially selected (ItemTitle).
• The list of items ([ItemTitle]).
• A DialogFunction that is called whenever a new item is selected.
The function ScrollingList returns a DialogItem (a Control) that can be used in any dialog definition.

ScrollingList :: !DialogItemId !ItemPos !Measure !SelectState !NrVisible !ItemTitle
![ItemTitle] !(DialogFunction s (IOState s)) -> DialogItem s (IOState s)

With ChangeScrollingList the items in the scrolling list can be changed. Its arguments are the id of the scrolling
list, the newly selected item and the new list of items. When the id is not the id of a ScrollingList a run-time error
is generated.

ChangeScrollingList :: !DialogItemId !ItemTitle ![ItemTitle]
!(DialogState s (IOState s)) -> DialogState s (IOState s)

GetScrollingListItem returns the currently selected item in the scrolling list with the indicated id from the
DialogInfo parameter. When the id is not the id of a ScrollingList a run-time error is generated.

GetScrollingListItem :: !DialogItemId !DialogInfo -> ItemTitle

I/O Library

A SliderBar is defined by the following attributes:
• Id, ItemPos and SelectState, like other DialogItems.
• SliderDirection: Horizontal or Vertical.
• SliderPos: the initial position of the slider. This position is always adjusted between 0 and SliderMax.
• SliderMax: the slider can take on positions between 0 and SliderMax.
• A DialogFunction that is called whenever the slider moves.

SliderBar :: !DialogItemId !ItemPos !SelectState !SliderDirection !SliderPos
!SliderMax !(DialogFunction s (IOState s)) -> DialogItem s (IOState s)

ChangeSliderBar moves the slider of the indicated slider bar to the new position. The position is always adjusted be-
tween 0 and SliderMax.

ChangeSliderBar :: !DialogItemId !SliderPos !(DialogState s (IOState s))
-> DialogState s (IOState s)

GetSliderPosition returns the current slider position of the slider bar with the indicated id from the DialogInfo pa-
rameter. When the id is not the id of a SliderBar a run-time error is generated.

GetSliderPosition :: !DialogItemId !DialogInfo -> SliderPos

C.9 Miscellaneous operations (deltaIOState)
definition module deltaIOState
import deltaIOSystem, deltaEventIO

SetGlobalCursor :: !CursorShape !(IOState s) -> IOState s

Sets the shape of the cursor (mouse pointer) globally. This shape overrules the local cursor shapes of
windows. Attempts to set the global cursor to HiddenCursor are ignored.

ResetCursor :: !(IOState s) -> IOState s

Undoes the effect of SetGlobalCursor. It resets the cursor to the standard shape outside windows with
a local cursor shape and to the local shape inside such windows.

ObscureCursor :: !(IOState s) -> IOState s

Hides the cursor until the next time that the mouse is moved.

SetDoubleDownDistance :: !Int !(IOState s) -> IOState s

Set the maximum distance (in pixels) between two mouse clicks such that they will be treated as a
ButtonDoubleDown or ButtonTripleDown.

C.10 Operations on pictures (deltaPicture)
definition module deltaPicture
import deltaFont

:: * Picture

:: DrawFunction :== Picture -> Picture

The predefined figures that can be drawn:

:: Point :== (!Int, !Int)
:: Line :== (!Point, !Point)
:: Curve :== (!Oval, !Int, !Int)
:: Rectangle :== (!Point, !Point)
:: RoundRectangle :== (!Rectangle, !Int, !Int)
:: Oval :== Rectangle
:: Circle :== (!Point, !Int)
:: Wedge :== (!Oval, !Int, !Int)
:: Polygon :== (!Point, !PolygonShape)
:: PolygonShape :== [Vector]
:: Vector :== (!Int, !Int)

Clean, augustus 12, 1997

The pen attributes influence the way figures are drawn. The PenMode also influences the way text is drawn. The Not...
modes do not work when text is drawn. When the PenMode is a Not... mode text is drawn in OrMode.

:: PenSize :== (!Int, !Int)
:: PenMode = CopyMode | OrMode | XorMode |

ClearMode | NotCopyMode | NotOrMode |
NotXorMode | NotClearMode | HiliteMode

:: PenPattern = BlackPattern | DkGreyPattern | GreyPattern |
LtGreyPattern | WhitePattern

The predefined colours:

:: Colour = RGB Real Real Real |
BlackColour | WhiteColour | BlueColour | CyanColour |
RedColour | GreenColour | YellowColour | MagentaColour

MinRGB :== 0.0
MaxRGB :== 1.0

Rules setting the attributes of a Picture:

SetPenSize (w, h) sets the PenSize to w pixels wide and h pixels high.
SetPenMode sets the drawing mode of the pen.
SetPenPattern sets the pattern of the pen.
SetPenNormal sets the PenSize to (1,1), the PenMode to CopyMode and the PenPattern to BlackPattern.

SetPenSize :: !PenSize !Picture -> Picture
SetPenMode :: !PenMode !Picture -> Picture
SetPenPattern :: !PenPattern !Picture -> Picture
SetPenNormal :: !Picture -> Picture

Colour: there are two types of Colour: RGB colours and basic colours. An RGB colour defines the amount of red (r),
green (g) and blue (b) in a certain colour by the tuple (r,g,b). These are Real values and each of them must be be-
tween MinRGB and MaxRGB (0.0 and 1.0). The colour black is defined by (MinRGB, MinRGB, MinRGB) and white by
(MaxRGB, MaxRGB, MaxRGB). Given an RGB colour, all amounts are adjusted between MinRGB and MaxRGB.

SetPenColour sets the colour of the pen.
SetBackColour sets the background colour.

SetPenColour :: !Colour !Picture -> Picture
SetBackColour :: !Colour !Picture -> Picture

Fonts: the initial font of a Picture is the default font (see deltaFont.dcl).

SetFont sets a new complete Font in the Picture.
SetFontName sets a new font without changing the style or size.
SetFontStyle sets a new style without changing font or size.
SetFontSize sets a new size without changing font or style. The size is always adjusted between MinFontSize and
MaxFontSize (see deltaFont.dcl).

SetFont :: !Font !Picture -> Picture
SetFontName :: !FontName !Picture -> Picture
SetFontStyle :: ![FontStyle] !Picture -> Picture
SetFontSize :: !FontSize !Picture -> Picture

PictureCharWidth (PictureStringWidth) yield the width of the given Char (String) given the current font of the
Picture. PictureFontMetrics yields the FontInfo of the current font.

PictureCharWidth :: !Char !Picture -> (!Int, !Picture)
PictureStringWidth :: !String !Picture -> (!Int, !Picture)
PictureFontMetrics :: !Picture -> (!FontInfo, !Picture)

Absolute and relative pen move operations without drawing.

MovePenTo :: !Point !Picture -> Picture
MovePen :: !Vector !Picture -> Picture

I/O Library

Absolute and relative pen move operations with drawing.

LinePenTo :: !Point !Picture -> Picture
LinePen :: !Vector !Picture -> Picture

DrawChar (DrawString) draws a character (string) in the current font. The baseline of the characters is the y-coordinate
of the pen. The new position of the pen is directly after the (last) character (of the string).

DrawChar :: !Char !Picture -> Picture
DrawString :: !String !Picture -> Picture

All following rules do not change the position of the pen after drawing.

Draw(C)Point draws the pixel (in the given colour) in the Picture.
Draw(C)Line draws the line (in the given colour) in the Picture.
Draw(C)Curve draws the curve (in the given colour) in the Picture. A Curve is a part of an Oval o starting from angle
a up to angle b (both in degrees modulo 360): (o, a, b). Angles are always taken anticlockwise, starting from 3 o’-
clock.

DrawPoint :: !Point !Picture -> Picture
DrawLine :: !Line !Picture -> Picture
DrawCurve :: !Curve !Picture -> Picture
DrawCPoint :: !Point !Colour !Picture -> Picture
DrawCLine :: !Line !Colour !Picture -> Picture
DrawCCurve :: !Curve !Colour !Picture -> Picture

A Rectangle is defined by two diagonal corner points.
DrawRectangle draws the edges of the rectangle.
FillRectangle draws the edges and interior of the rectangle.
EraseRectangle erases the edges and interior of the rectangle.
InvertRectangle inverts the edges and interior of the rectangle.
MoveRectangleTo moves the contents of the rectangle to a new top-left corner.
MoveRectangle moves the contents of the rectangle over the given vector.
CopyRectangleTo copies the contents of the rectangle to a new top-left corner.
CopyRectangle moves the contents of the rectangle over the given vector, but leaves the original untouched.

DrawRectangle :: !Rectangle !Picture -> Picture
FillRectangle :: !Rectangle !Picture -> Picture
EraseRectangle :: !Rectangle !Picture -> Picture
InvertRectangle :: !Rectangle !Picture -> Picture

MoveRectangleTo :: !Rectangle !Point !Picture -> Picture
MoveRectangle :: !Rectangle !Vector !Picture -> Picture
CopyRectangleTo :: !Rectangle !Point !Picture -> Picture
CopyRectangle :: !Rectangle !Vector !Picture -> Picture

Rounded corner rectangles: a RoundRectangle with enclosing Rectangle r and corner curvatures x and y is defined
by the tuple (r, x, y). x and y define the horizontal and vertical diameter of the corner curves. They are always ad-
justed between 0 and the width (height) of r.

DrawRoundRectangle :: !RoundRectangle !Picture -> Picture
FillRoundRectangle :: !RoundRectangle !Picture -> Picture
EraseRoundRectangle :: !RoundRectangle !Picture -> Picture
InvertRoundRectangle :: !RoundRectangle !Picture -> Picture

An Oval is defined by its enclosing Rectangle.

DrawOval :: !Oval !Picture -> Picture
FillOval :: !Oval !Picture -> Picture
EraseOval :: !Oval !Picture -> Picture
InvertOval :: !Oval !Picture -> Picture

A Circle with centre c (a Point) and radius r (an Int) is defined by the tuple (c, r).

DrawCircle :: !Circle !Picture -> Picture
FillCircle :: !Circle !Picture -> Picture
EraseCircle :: !Circle !Picture -> Picture

Clean, augustus 12, 1997

InvertCircle :: !Circle !Picture -> Picture

A Wedge is a part of an Oval o starting from angle a up to angle b (both in degrees modulo 360): (o, a, b). Angles
are taken anticlockwise, starting from 3 o’-clock.

DrawWedge :: !Wedge !Picture -> Picture
FillWedge :: !Wedge !Picture -> Picture
EraseWedge :: !Wedge !Picture -> Picture
InvertWedge :: !Wedge !Picture -> Picture

A Polygon is a figure drawn by a number of lines without taking the pen off the Picture, starting from and ending at
some Point p. The PolygonShape is a list of Vectors ([v1,...,vn]) that defines how the Polygon is drawn: (p,
[v1,...,vn]).

ScalePolygon scales the polygon. Non-positive scale factors are allowed.
MovePolygonTo changes the starting point into the given Point and
MovePolygon moves the starting point by the given Vector.

ScalePolygon :: !Int !Polygon -> Polygon
MovePolygonTo :: !Point !Polygon -> Polygon
MovePolygon :: !Vector !Polygon -> Polygon

DrawPolygon :: !Polygon !Picture -> Picture
FillPolygon :: !Polygon !Picture -> Picture
ErasePolygon :: !Polygon !Picture -> Picture
InvertPolygon :: !Polygon !Picture -> Picture

C.11 Operations on fonts (deltaFont)
definition module deltaFont

:: Font

:: FontName :== String
:: FontStyle :== String
:: FontSize :== Int
:: FontInfo :== (!Int, !Int, !Int, !Int)

MinFontSize :== … // system dependent
MaxFontSize :== … // system dependent

SelectFont creates the font as specified by the name, the stylistic variations and size. The size is always adjusted be-
tween MinFontSize and MaxFontSize. The Boolean result is TRUE if the font is available and need not be scaled. In
cases where the font is not available, the default font is chosen in the specified style and size.

SelectFont :: !FontName ![FontStyle] !FontSize -> (!Bool, !Font)

DefaultFont returns the default font, specified by name, style and size.

DefaultFont :: (!FontName, ![FontStyle], !FontSize)

FontNames returns the FontNames of all available fonts.
FontStyles returns the available FontStyles for a certain font.
FontSizes returns all FontSizes of a font that are available without scaling.
In cases where the font is not available, the styles or sizes of the default font are returned.

FontNames :: [FontName]
FontStyles :: !FontName -> [FontStyle]
FontSizes :: !FontName -> [FontSize]

FontCharWidth(s) and FontStringWidth(s) return the width(s) in terms of pixels of given character(s) or string(s) in
a certain Font.

FontCharWidth :: !Char !Font -> Int
FontCharWidths :: ![Char] !Font -> [Int]
FontStringWidth :: !String !Font -> Int
FontStringWidths :: ![String] !Font -> [Int]

I/O Library

FontMetrics yields the FontInfo in terms of pixels of a given Font. The FontInfo is a 4-tuple (ascent, descent,
maxwidth, leading), which defines the font metrics:
• ascent is the maximum height of a character measured from the base line.
• descent is the maximum depth of a character measured from the base line.
• maxwidth is the width of the widest character.
• leading is the vertical distance between two lines of the same font.
The full height of a line is the sum of the ascent, descent and leading.

FontMetrics :: !Font -> FontInfo

C.12 System-dependent constants and functions (deltaSystem)
definition module deltaSystem

Keyboard constants (of type KeyCode):

UpKey :== ... BackSpKey :== ...
DownKey :== ... DelKey :== ...
LeftKey :== ... TabKey :== ...
RightKey :== ... ReturnKey :== ...
PgUpKey :== ... EnterKey :== ...
PgDownKey :== ... EscapeKey :== ...
BeginKey :== ... HelpKey :== ...
EndKey :== ...

Separator between directory and filenames in a pathname (of type Char):

DirSeparator :== ...

Constants to check which of the meta-keys (modifiers) is down (of type Modifiers):

ShiftOnly :== (TRUE,FALSE,FALSE,FALSE)
OptionOnly :== (FALSE,TRUE,FALSE,FALSE)
CommandOnly :== ... // depends on whether the keyboard of the system
ControlOnly :== ... // has a Command key.

The minimum and maximum sizes of a picture domain (of type Int):

MinPictureDomain :== ...
MaxPictureDomain :== ...

The functions HomePath and ApplicationPath prefix the filename given to them with the full pathnames of the 'home'
and 'application' directory. These functions have been added for compatibility with the Sun version of the Clean sys-
tem. In the 'home' directory settings-files (containing preferences, options etc.) should be stored. In the 'application' di-
rectory (i.e. the directory in which the application resides) files that are used read-only by the application (such as help
files) should be stored. On the Macintosh these functions just return the filename given to them, which means that the
file will be stored in the same folder as the application.

HomePath :: !String -> String
ApplicationPath :: !String -> String

Functions to retrieve the horizontal and vertical screen resolution.

MMToHorPixels :: !Real -> Int
MMToVerPixels :: !Real -> Int
InchToHorPixels :: !Real -> Int
InchToVerPixels :: !Real -> Int

The maximum width and height for the indicated type of window such that the window will fit on the screen. For
FixedWindows this is the maximum size of the PictureDomain such that the window does not become a
ScrollWindow.

MaxScrollWindowSize :: (!Int, !Int)
MaxFixedWindowSize :: (!Int, !Int)

