
Using a Functional Language as
Embedding Modeling Language for
Web-Based Workflow Applications

Rinus Plasmeijer1, Jan Martin Jansen2, Pieter Koopman1, Peter Achten1

1 Institute for Computing and Information Sciences (ICIS),
Radboud University Nijmegen, the Netherlands,

2 Faculty of Military Sciences,
Netherlands Defence Academy, Den Helder, the Netherlands

jm.jansen.04@nlda.nl, {rinus, pieter, peter88}@cs.ru.nl

Abstract. Workflow management systems guide and monitor tasks per-
formed by humans and computers. Workflow specifications are usually
expressed in special purpose (graphical) formalisms. These models are
concise and made rapidly. These formalisms commonly have as disadvan-
tage that they have limited expressive power, handle only rather static
workflows, do not handle intricate data dependencies, and cannot easily
adapt to the current situation. Furthermore, workflow specification tools
mostly generate a software infrastructure that needs to be extended with
custom crafted code. To overcome these problems, we entirely embed a
workflow modeling language in a modern general purpose functional lan-
guage, and generate a complete workflow application. We have developed
the iTask prototype system in the pure and lazy language Clean. An iTask
workflow specification can use the expressive power and strong type fa-
cilities of Clean. Workflows can be higher-order and adapt their behavior
based on the available data. The generated application is web-based and
runs on both server and clients.

1 Introduction

Workflow Management Systems (WFMS) are computer applications that coordi-
nate, generate, and monitor tasks performed by human workers and computers.
Workflow models play a dominant role in WFMSs: the work that needs to be
done to achieve a certain goal is specified in such a model as a structured and
ordered collection of tasks that are assigned to available resources at run-time.
In most WFMSs, a workflow model is used as input to generate a framework,
i.e. a partial workflow application. Substantial coding is required to complete
the workflow application. For example, most workflow models only deal with
the flow of control of the application. All code with respect to manipulating the
data in the workflow application has to be implemented separately. In this pa-
per we advocate that a workflow model actually can be a computer program: an
entire workflow application can and should be generated from a workflow model.

2

Contemporary WFMSs use special purpose (mostly graphical) modeling lan-
guages. Graphical formalisms are easier to communicate to domain experts than
textual ones. Domain experts are knowledgeable about the work to be mod-
eled, but often lack programming experience or formal training. Special purpose
modeling languages provide workflow engineers with a concise formalism that
enables the rapid development of a workflow framework. Unfortunately, these
formalisms suffer from a number of disadvantages when compared with textual
ones. First, recursive definitions are commonly inexpressible, and there are only
limited ways to make abstractions. Second, workflow models usually only de-
scribe the flow of control. Data involved in the workflow is mostly maintained in
databases and is extracted or inserted when needed (see the ‘Data Interaction –
Task to Task’ workflow data pattern (8) by Russell et al [16]). As a consequence,
workflow models cannot easily use this data to parameterize the flow of work.
The workflow is more or less pre-described and cannot be dynamically adapted.
Third, these dedicated languages usually offer a fixed set of workflow patterns
[17]. However, in the real world work can be arranged in many ways. If it does
not fit in a (combination of) pattern(s), then the workflow modeling language
probably cannot cope with it either. Fourth, and related, is the fact that special
purpose languages cannot express functionality that is not directly related to the
main purpose of the language. To overcome this limitation, one either extends
the special language or interfaces with code written in other formalisms. In both
cases one is better off with a well designed general purpose language.

For the above reasons, we advocate to use a textual programming language
as a workflow modeling language. This allows us to address all computational
concerns in a workflow model and provides us with general recursion. We use
a functional language, because they offer a lot of expressive power in terms
of modeling domains, use of powerful types, and functional abstraction. We use
the pure and lazy functional programming language Clean, which is a state-of-art
language that offers fast compiler technology and generic programming features
[1] which are paramount for generating systems from models in a type-safe way.
Clean is freely available at http://clean.cs.ru.nl/.

To verify our claim, we have developed a prototype workflow modeling lan-
guage called iTask [12, 13]. The iTask system is a combinator library. In the
functional programming community, combinators are a proven method to em-
bed domain specific languages within a functional host language: application
patterns are captured with combinator functions, and the application domain
is defined by means of the expressive type system, using algebraic, record, and
function types. Workflows modeled in iTask result in complete workflow appli-
cations that run on the web distributed over server and client side [15].

The remainder of this paper is organized as follows. We present iTask in Sect.
2, and demonstrate the advantages of using a functional programming language
as workflow modeling language. We continue with a larger example in Sect. 3.
We discuss the major design decisions in Sect. 4. Related work is discussed in
Sect. 5. We conclude in Sect. 6.

3

2 Overview of the iTask system

In this section we give an overview of the iTask system. We start with basic
iTasks in Sect. 2.1. We present only a small subset of the available combinators
in Sect. 2.2. In Sect. 2.3 we show how embedding iTasks in a general purpose
language makes the system extensible and adaptable.

2.1 Basic iTasks

An iTask is a unit of work to be performed by a worker or computer. An iTask can
be in different states. It can be: non-active (does not exist yet), active (someone
is still working on it), or finished. Clean is a statically typed language, everything
has a type. A type can be regarded as a model and a value of that type as an
instance of that model. An iTask has the following opaque, parameterized type:

:: Task a

The type parameter a is the type of the value that is delivered by a task. The
Clean compiler infers and checks the concrete type of any specified task.

The iTask library offers several functions for creating basic units of work: a
basic task. For instance, the function editTask takes a label of type String and an
initial value of some type a and creates a Task a: a form in a web page in which
the worker can edit this initial value. Its type is:

editTask :: String a→Task a | iData a

The function editTask is very powerful. It creates an editor for any first-order
concrete type and handles all changes. A worker can change the value as often
as she likes but she cannot alter its type. When the label button is pressed, the
editTask is finished and the final value is delivered as result.

EditTask is not a polymorphic function (i.e. one function which works for any
type), but it is overloaded. For each type it is applied on, a special version is
constructed. One can regard editTask as a kind of type driven or model driven
function. The precise working of the function depends on the concrete type
(model) on which it is applied. This is statically determined. The type depen-
dent behavior is inductively defined on a small number of generic, type driven
functions [1], which is reflected in the type context restriction (| iData a) in the
type definition of editTask. A small, but complete iTask workflow application is:

module SmallButCompleteExample 1.

import iTasks 2.

Start :: *World→*World 3.

Start world = startEngine [addFlow ("simple" , simpleEditor)] world 4.

simpleEditor :: Task Int 5.

simpleEditor = editTask "Done" createDefault 6.

The application imports the iTask library (line 2). Execution begins with the
Start function. It calls the iTask engine, and adds the workflow simpleEditor to the

4

workflow list that can be invoked by workers. SimpleEditor (line 6) only consists
of one invocation of editTask. Eventually, it produces an Int value, indicated by
the type definition (line 5). The button labeled Done finishes the task. The library
function createDefault is used as initial value. It creates a default value for any
type (hence it is also a generic function). The default value for type Int is 0.

Fig. 1. Generated webpage for the simpleEditor example.

The generated web application is shown in Fig. 1. After logging in, the ap-
plication resembles a regular e-mail application. The names of the tasks that
the worker needs to perform are presented in the task list displayed in the right
upper pane. This pane can be compared with the list of incoming e-mails. When
the worker clicks on a task in the task list, the current state of it is displayed in
the right lower task pane. Tasks can be selected from the task list in any order.
The iTask toolkit automatically keeps track of all progress, even if the user quits
the system. When a task is finished, it is removed from the task list. Workers
can start new workflows, by selecting them in the left workflow pane. In our
example there is only one option. In general arbitrarily many workflows can be
started, one can assign different workflow options for different types of workers,
and the options to choose from can be controlled dynamically. The task list is
updated when new tasks are generated, either on her own initiative, or because
they have been delegated to her. The entire interface is generated completely
and automatically from the sole specification shown above.

In the above example the worker can only enter Integer values. Suppose we
want a similar workflow for a custom model type, say person. We define the
necessary domain types (Person and Gender), derive framework code for these
model types, and change the type of simpleEditor to Task Person (Fig. 2).

Hence, the form that is created depends on the type of the value that the
editor should return. For any (user defined) type a standard form can be auto-
matically generated in this way. The details of how a form is actually represented
can be fine-tuned in a separate CSS file. A programmer can specialize the form
generation for a certain type if a completely different view is wanted. One is

5

:: Person = { firstName :: String

, surName :: String

, dateOfBirth :: HtmlDate

, gender :: Gender

}
:: Gender = Male | Female

derive iData Person, Gender

Fig. 2. A standard form editor generated for type Person.

not restricted to use standard browser forms. It is e.g. possible to use a drawing
plug-in as editor for making values of type, say Picture [7].

The function editTask is one of several basic tasks. Examples of other basic
task functions are: obtaining all users of the system (if necessary grouped by
their role); tasks that return at a predefined moment in time or after an amount
of time; tasks that can store information in or read information from a database.

2.2 Basic iTask Combinators

New tasks can be composed out of (basic) tasks by using combinator functions.
As said before, work can be organized in many ways. The expressive power of
the host language allows us to cover all common workflow patterns listed in [17],
and many more, using only relatively few combinators. Here we discuss a few of
them and show their usage.

Sequential composition of tasks can be realized using monadic [20] combina-
tor functions for binding (>>=), called bind, and emitting (return) values:

(>>=) infixl 1 :: (Task a) (a→Task b)→Task b | iData b

return :: a →Task a | iData a

In contrast to most workflow specification languages, in the iTask system
information is passed explicitly from one task to another. The first task (of type
Task a) is activated first and when it finishes, >>= takes care that its result (of
type a) is passed to the second argument (a function of type a→Task b). This
function can inspect the result produced by the previous task and react on it.
When the second task is finished it produces a value of type b. The result of bind
is a task of type Task b. Note that t >>= f integrates computation and sequential
ordering in a single pattern. This is hard to specify in a graphical modeling
language. The return combinator lifts any value (of some type a) to a (Task a)
that yields that value. Before we give an example of sequential composition, we
introduce one of the choice operators: chooseTask.

chooseTask :: [HtmlTag] [(String,Task a)]→Task a | iData a

A worker is offered a choice out of a list of tasks with chooseTask. Each task is
identified with a label (of type String) which is used to display the options to the
worker. When one of the options is chosen, the corresponding task is selected

6

and performed. The additional prompt argument (of type [HtmlTag]) can be used
to explain to the worker what the intention is. Any Html-code can be used.

chooseUser :: Task (UserId,String) 1.

chooseUser 2.

= getUsers 3.

>>= λusers→chooseTask [Text "Select worker who has to do the job:"] 4.

[(name,return user) \\ user=:(_,name)←users] 5.

The example task chooseUser uses several of the basic tasks and combinators
introduced so far. The basic task getUsers returns the list of known users. These
are passed to chooseTask to allow the worker to select one known user. The list
comprehension in line 5 is well known functional idiom for manipulating lists.

Tasks can be assigned to workers. This is done with the @: combinator:

(@:) infix 3 :: UserId (String, Task a)→Task a | iData a

delegateTask :: String (a→Task a) a→Task a | iData a

delegateTask taskname taskf val

= chooseUser >>= λ(user,_)→user@:(taskname, taskf val)

The @: operator is a basic combinator with which any task can be assigned
to a worker (type UserId). The label (of type String) gives a name to the task
(displayed in the task list of this specific user). DelegateTask shows its usage: first
a worker is chosen with chooseUser and this worker is assigned the given task.

Workers can be prompted about their progress with ?>>:

(?>>) infixr 5 :: [HtmlTag] (Task a)→Task a | iData a

taskToDelegate :: a→Task a | iData a

taskToDelegate value

= [Text "Would you be so kind to fill in the following form:"]
?>> editTask "TaskDone" value

The ?>> combinator can be used to add a prompt to any task. The prompt (any
Html-code can be used here again) is displayed as long as the task is not finished.
This facility is used in taskToDelegate to make a polite version of editTask.

Notice that all definitions above can be applied for any task of any type
(read: model). In concreteDelegate below we apply delegateTask to a general task
for filling a form (taskToDelegate) given some initial value (createDefault). As was
the case with a simple form editor, the type specified here completely determines
the actual form to be filled in by the chosen worker:

concreteDelegate :: Task Person

concreteDelegate = delegateTask "person" taskToDelegate createDefault

Finally, iTask specifications can use all features of Clean including recursion.

recursiveDelegate:: String (a→Task a) a→ Task a | iData a 1.

recursiveDelegate taskname taskf val 2.

= delegateTask taskname taskf val 3.

>>= λresult→chooseTask [Text "Result:" , toHtml result, Text "Approved ?"] 4.

7

[("Yes" ,return result) 5.

, ("No" , recursiveDelegate taskname taskf result) 6.

] 7.

concreteRecDelegate :: Task Person 8.

concreteRecDelegate = recursiveDelegate "person" taskToDelegate createDefault 9.

A variant of delegateTask is given in recursiveDelegate. The worker who delegates
the task receives the result back (in result) for examination. It is shown in the
prompt of chooseTask: toHtml (line 4) displays any result of any type. If the worker
chooses not to approve the result, recursiveDelegate is called recursively and the
delegation of the work starts all over, but now with the latest result as starting
point (line 6). Again this recursive version can be used for any task and any
type: it is turned into a Person workflow by concreteRecDelegate (line 8).

2.3 The Expressive Power of the Combinators

In [17] an inventory is made of the workflow patterns offered by commercial
WFMSs. This collection is rather large. The reason for this is that the underly-
ing workflow languages generally do not offer the right abstraction mechanism
for defining new patterns. In this section we show how iTask makes use of the
functional host language to capture new patterns concisely.

Two commonly available workflow patterns are orTasks and andTasks. Both
work on a collection of tasks but have different termination conditions: orTasks
finishes as soon as one of its subtasks finishes, andTasks finishes as soon as all
subtasks are finished. We can capture this common behavior with a more general
combinator, parallel, that can be used to define orTasks and andTasks:

parallel :: String ([a] →Bool) (Bool→ [a] →b) [(String, Task a)]→Task b

| iData a & iData b

orTasks = parallel "orTasks" (not o isEmpty) (const hd)
andTasks = parallel "andTasks" (const False) (const id)

The parallel combinator is given a predicate (of type [a] →Bool) which deter-
mines when to stop. The predicate is applied on the list of values of all completed
subtasks. As soon as the predicate holds, all unfinished subtasks are stopped
(even if other workers are working on it) and the results of the finished tasks
are collected and converted (by the function of type Bool→ [a] →b) to the type
b demanded by the application. The Bool argument is true iff the predicate was
satisfied. Parallel also terminates when all subtasks have terminated, but the
predicate is still invalid. With parallel, orTasks and andTasks are easily expressed,
as shown above. (The const function ignores the boolean argument and applies
its argument function to the list of results.) Many other imaginable and useful
patterns can be defined in a similar way, e.g. when one wants to stop as soon as
enough information has been produced by the finished tasks (see also Sec. 3),
or as soon as someone has given up. Such user defined stop criteria cannot be
defined in most commercial workflow languages.

8

Another useful pattern is the ability to cancel a task (even when performed
by someone else), which can concisely be expressed with orTasks as shown in the
function cancelable.

:: Maybe a = Just a | Nothing

cancelable :: (Task a)→Task (Maybe a) | iData a

cancelable task

= orTasks [("Cancel" ,editTask "Cancel" Void >>= λ_→return Nothing)
,("Normal" ,task >>= λresult→return (Just result))
]

cancelableDelegate = cancelable concreteRecDelegate

The Void type has no visualization, hence editTask only shows a button labeled
Cancel. Nothing is returned when Cancel is pressed.

The iTask library has several of these general purpose combinators, but there
is no room here to discuss them all. There are combinators for workflow process
creation and handling, thread handling, exception handling, and combinators
which enable the change of work under execution. Compared to the set of well-
known workflow patterns, we have far less combinators yet we can express a lot
more different work situations. The reason is that with Swiss-army-knife com-
binators such as parallel and the expressive power of the host language we can
construct not only many well-known workflow patterns, but also new variants,
as explained above. Furthermore, the system is open ended: the programmer can
add new combinators when the basic collection is insufficient.

3 Order Booking Example

To demonstrate the expressive power of iTask, we present an order booking ex-
ample. The code presented below is a complete, executable, iTask workflow. The
workflow has a recursive structure and monitors intermediate results in a paral-
lel and-task. This case study is hard to express in traditional workflow systems.
The overall structure contains the following steps (see getSupplies below): first,
an inventory is made to determine the required amount of goods (getAmount)
(e.g. vaccines for a new influenza virus); second, suppliers are asked in parallel
how much they can supply (inviteOffers); third, as soon as sufficient goods can
be ordered, these orders are booked at the respective suppliers (placeOrders). A
Supplier is a pair (UserId,String), and Amount is a non-negative Int.

getSupplies :: Task [Void] 1.

getSupplies = getAmount >>= inviteOffers >>= placeOrders 2.

Determining the required amount of goods also proceeds in two steps: first,
the institute enquires other institutes recursively in parallel (using the andTasks

combinator) how many goods they need (lines 6-9). This means that each of
these institutes can ask other institutes for the same thing, and so on. Note that
an institute can decide to select no other institutes. In that case the recursion

9

stops. Second, given this amount, the institute can alter this number (line 11).
Also, chooseUsers (line 6) is a variant of chooseUser (Sect. 2.2) that uses multiple
choice and yields a list of workers. The operator <+ converts its second argument
to String and concatenates it to its first argument.

getAmount :: Task Amount 3.

getAmount = [Text "Ask other institutes"] ?>> chooseUsers 4.

>>= λinsts → andTasks [("Request for " <+ name 5.

, uid @: ("Amount request" , getAmount) 6.

) \\ (uid,name)←insts] 7.

>>= λothers→ [Text "Enter the required amount"] 8.

?>> editTask "Done" (sum others) 9.

Once the amount of goods is established, the workflow can continue by inviting
offers from a collection of candidate suppliers. This collection is determined first
(line 14). Each supplier can provide an amount (line 18). This is again done in
parallel (line 15-20). The termination criterium is the enough predicate which is
satisfied as soon as the sum of provided offers exceeds the requested amount
(line 22). The canonization function maximum is discussed below. Hence, the result
of this workflow task is a list of offers. Each offer is a pair of a supplier and the
amount of goods that it offers to deliver.

inviteOffers :: Amount→Task [(Supplier,Amount)] 10.

inviteOffers needed 11.

= [Text "Choose candidate suppliers"] ?>> chooseUsers 12.

>>= λsups→parallel "Supplier_requests" enough (maximum needed) 13.

[("Request for " <+ name 14.

,uid @: ("Order request" 15.

,prompt ?>> editTask "Done" needed >>= λa→return (sup,a) 16.

)) 17.

\\ sup=:(uid,name)←sups 18.

] 19.

where enough as = sum (map snd as) >= needed 20.

prompt = [Text "Request for delivery, how much can you deliver?"] 21.

The total number of offered goods can differ from the required number of goods.
The function maximum makes sure that not too many goods are ordered. This is
an easy exercise in functional programming:

maximum :: Amount Bool [(Supplier,Amount)]→ [(Supplier,Amount)] 22.

maximum needed enough offers 23.

| not enough = offers 24.

| otherwise = [(supplier,exact) : less] 25.

where [(supplier,_) : less] = sortBy (λ(_,a1) (_,a2)→a1 > a2) offers 26.

exact = needed - sum (map snd less) 27.

With the correct list of offerings, we can place an order for each supplier. This
can be expressed directly with andTasks:

placeOrders :: [(Supplier,Amount)]→Task [Void] 28.

placeOrders offers 29.

= andTasks [("Order for " <+ name, 30.

10

uid @: ("Order request for " <+ name 31.

, [Text ("Please deliver " <+ a)] ?>> editTask "Done" Void) 32.

) 33.

\\ ((uid,name) ,a)←offers] 34.

4 Modeling by Abstracting from Details

An iTask workflow specification is modeled in a functional language. This means
that the host language needs to support abstraction from (almost) all annoying
details. On the other hand, all information has to be provided somehow because
from this single source specification a complete real working distributed web
application has to be generated. How has this been realized?
Defining General Workflow Schemes. By using polymorphic, overloaded,
and generic (type driven) functions, one can specify custom workflow schemes
for any frequently occurring work situation that works for any concrete task
of any type. The type system ensures that everything is type correct. To get a
working application, a scheme somewhere has to be applied to a concrete model
(i.e. type). This is used by the compiler to generate specialized functions that
handle the low level details.
Abstracting from Form Views and Form Handling. One does not have
to worry about the user interface as a whole. It is defined separately, handled
by the client and it can be fine-tuned if desired without affecting the workflow
specification. Using generic programming techniques, an editor can be generated
for any concrete type specified by the programmer, the information is displayed
in a web page and can be interactively modified. Any change made in the form is
handled automatically by the application. The input given interactively is type
checked; it is impossible to create ill-typed values. It is also possible to specify
user-defined predicates over the input which consistency is checked at run-time.
Abstracting from specific Html Output. Sometimes it is necessary to show
additional information to the worker, e.g. for prompting and feedback. Abstract-
ing from this is not always completely possible. However, with the function toHtml

any value of any type can be converted to Html-code (Sec. 2). Furthermore, it
is possible to abstract from a concrete prompt or feedback by defining functions
for it, which can be given as argument to ?>> (Sec. 2).
Abstracting from Layout. Lay-out details of the output generated can be
specified separately as is common in web applications. The dynamic behavior of
the iTask system requires additional run-time facilities for controlling the lay-out.

:: TaskCombination

= TTSplit [HtmlTag] | TTVertical| TTHorizontal | TTCustom ([[HtmlTag]] → [HtmlTag])

myCancelable task = cancelable task <<@ TTVertical

To influence the layout of Html-code generated by subtasks, one can use the
(overloaded) tuning operator <<@. One can place the Html-code of each sub-
task in a separate worktab (TTSplit), below each other(TTVertical), next to each

11

other (TTHorizontal), or give a user defined recipe how to combine it (TTCustum).
MyCancelable gives an example of its usage. <<@ can be used to fine tune a system,
but the application also works without it.
Abstracting from Storage. In the iTask system information is passed explic-
itly from one task to another. This may involve different workers. Between the
events all information has to be stored somewhere. For a web-application there
are many possibilities, e.g. in a file, in a database, on the client. Furthermore,
we need to remember the progress of every worker. Again, by using generic pro-
gramming techniques, all this information is stored fully automatically. With the
overloaded tuning operator <<@ the workflow programmer can decide where and
in what format the information is stored (text, binary).

An iTask application also needs access to information stored in standard in-
formation systems. We do not have to bother workflow programmers with some-
thing low level as SQL queries. We can systematically convert an information
model defined in e.g. ORM to Clean data type definitions. This enables the au-
tomatic conversion between values of these types and the corresponding values
stored in a relational database [9].
Abstracting from the Web Architecture. The architecture (Fig. 3) of iTask
applications is representative for Ajax [4] based web applications. Initially a web
page is generated as shown in Fig. 1. Whenever a worker clicks on something, an

Fig. 3. The architecture of an iTask application

asynchronous Ajax request is sent to the iTask application to handle it. It reacts
by sending an update of those parts of the page that have to be changed. All
web handling is done automatically. Although one is defining a multi-user web
application, one does not need any knowledge about the underlying architecture.

One of the most interesting aspects of the architecture is that it is possible
to execute, in principle, any iTask on either the server or on a client [15]. For
example, a function like concreteDelegate (Sect. 2.2) is executed on the server by
default. It can be executed on the client by using the tuning operator <<@ and the

12

OnClient pragma: concreteDelegate <<@ OnClient. The <<@ operator accepts any task.
However, not all tasks can be executed (completely) on the client (e.g. tasks that
access a database). This is detected at run-time and the system automatically
migrates such a task back to the server.

To implement this, the Clean compiler generates two executable instances
from a single source. An executable iTask system runs on the server, while an
interpreted version runs on every client. Both implementations are efficient. The
Clean compiler is well-known for the excellent code it generates which is com-
parable to C. In the browser we use the Sapl-interpreter [6] which is currently
one of the fastest interpreters for a functional language. One JavaScript function
decides for each user action whether it is handled on the client or on the server.
Abstracting from the Evaluation Order. The iTask combinators define the
order in which tasks can be executed: tasks can be performed sequentially, in
parallel, distributively (on clients), and there even is strong support for exception
handling. Notice that iTasks are just plain Clean applications (there is no special
interpreter for iTask applications or something like that). A functional language
like Clean evaluates expressions in a fixed way: lazily (normal order). Clean does
not support parallel evaluation, distributed evaluation, nor exception handling.
It is very remarkable that the wild scala of evaluation orders offered by the
iTask library can nevertheless be embedded in the host language. This has been
achieved by making clever use of generic techniques for the automatic storage of
the state of the iTask application in combination with re-evaluation of (part of)
the application [12]. This allows us to mimic any evaluation strategy without
the need to make any change or extension in the host language.

5 Related Work

The WebWorkFlow project [5] shares our point of view that a workflow spec-
ification is regarded as a web application. WebWorkFlow is an object oriented
workflow modeling language that is embedded in WebDSL [19], a domain spe-
cific language for developing web applications. In WebWorkFlow, workflow objects
accumulate the progress made in a workflow. Workflow procedures define the ac-
tual workflow. Their specification is broken down into clauses that individually
control who can perform when, what the view is, what should be done when
the workflow procedure is applied, and what further workflow procedures should
be processed afterwards. Like in iTask, one can derive a GUI from a workflow
object. The main difference is that iTask is embedded in a functional language,
but this has significant consequences: iTask supports higher-order functions in
both the data models and the workflow specifications; arbitrary recursive work-
flows can be defined (WebWorkFlow is restricted to tail recursion and recursion
on simpler structures); reasoning about the evaluation of an iTask program is
reasoning about the combinators instead of the collection of clauses.

Brambilla et al [3] enrich a domain model (specified as UML entities) with
a workflow model (specified as BPMN) by modeling the workflow activities as
additional UML entities and use OCL to capture the constraints imposed by the

13

workflow. The similarity with iTask is to model the problem domain separately.
However, in iTask a workflow is a function that can manipulate the model values
in a natural way, which enables us to express functional properties seamlessly
(Sect. 3). This connection is ignored in [3] and can only be done ad-hoc.

Pešić and van der Aalst [11] base an entire formalism, ConDec, on linear
temporal logic (LTL) constraints. Frequently occurring constraint patterns are
represented graphically. This approach has resulted in the declare tool [10]. In
iTask a workflow can use the rich facilities of the host language for computations
and data declarations – such facilities are currently absent in declare.

Andersson et al [2] distinguish high level business models (value transfers be-
tween agents), low level process models (workflows in BPMN), and medium level
activity dependency models (activities for value transfers of business models).
Activities are value transfer, assigning an agent to a value transfer, value pro-
duction, and coordination of mutual value transfers and activities. Activities are
modeled as nodes in a directed graph. The edges relate activities in a way simi-
lar to [3] and [11]: they capture the workflow, but now at a conceptual level. A
conformance relation is specified between a process model and an activity depen-
dency model. Currently, there is no tool support for their approach. The activity
dependency models provide a declarative foundation to bridge the gap between
business models and process models. One of the goals of the iTask project is to
provide a formalism that has sufficient abstraction to accomodate both business
models and process models.

Vanderfeesten et al [18] have been inspired by the Bill-of-Material concept
from manufacturing, recasted as Product Data Model (PDM). A PDM is a di-
rected graph. Nodes are product data items, and arcs connect at least one node
to one target node, using a functional style computation to determine the value
of the target. A tool can inspect which product data items are available, and
hence, which arcs can be computed to produce next candidate nodes. This allows
for flexible scheduling of tasks. Similarities with the iTask approach are the focus
on tasks that yield a data item and the functional connection from source nodes
to target node. We expect that we can handle PDM in a similar way in iTask.
iTask adds to such an approach strong typing of product data items (and hence
type correct assembly) as well as the functions that connect these data items.

6 Conclusions and Future Work

The iTask system demonstrates that a high level general purpose functional
language such as Clean (or Haskell which is also supported by the Clean compiler)
is very suited to embed a special purpose modeling language. A library provides
the domain specific constructs and the specification language inherits the power
and advantages of the embedding language. Because only pure functions can
be used, one is forced to model in a mathematical way. Strong typing prevents
modeling mistakes. The use of generic (type driven) functions enable the use
of types as models. Powerful abstraction mechanisms allow to abstract from
annoying details such that one can concentrate on modeling. With relatively

14

few combinators all common workflow patterns are supported, but many more
complex workflow situations can be expressed. iTask workflows are dynamic: the
flow can depend on the outcome of other tasks. From the specification we are
able to generate a real working, distributed evaluated, web enabled, multi-user
workflow system. Any task can be shifted from the server to the client. The
whole system is generated from one source: a concise iTask specification defined
in Clean. Reasoning about the behavior of the system is relatively easy. The
semantics of the iTask system and the properties it has are treated in [8].

We have tested the system with larger examples, such as a Conference Man-
agement System [14]. We are extending our prototype to a full system which
can be applied in industrial environments. In collaboration with the Nether-
lands Ministry of Defense we are investigating the suitability of the iTask system
for handling operational planning and crisis management scenarios. To support
these kind of complex dynamic applications we are currently adding the ability
to adapt and/or extend running workflows on the fly.

References

1. A. Alimarine and R. Plasmeijer. A generic programming extension for Clean.
In T. Arts and M. Mohnen, editors, Selected Papers of the 13th International
Symposium on the Implementation of Functional Languages, IFL’01, volume 2312
of LNCS, pages 168–186. Springer-Verlag, Sept. 2002.

2. B. Andersson, M. Bergholtz, and A. Edirisuriya. A Declarative Foundation of
Process Models. In O. Pastor and J. Cunha, editors, Proceedings 17 Int’l Confer-
ence on Advanced Information Systems Engineering, CAiSE 2005, volume 3520 of
LNCS, pages 233–247. Springer-Verlag, 2005.

3. M. Brambilla, J. Cabot, and S. Cornai. Automatic Generation of Workflow-
Extended Domain Models. In G. Engels, B. Opdyke, D. Schmidt, and F. Weil,
editors, Proceedings Model Driven Engineering Languages and Systems, 10th Intl’
Symposium, MoDELS 2007, volume 4735 of LNCS, pages 375–389. Springer-Verlag,
2007.

4. J. Garrett. Ajax: a new approach to web applications, 18, Feb. 2005.
5. Z. Hemel, R. Verhaaf, and E. Visser. WebWorkFlow: an object-oriented workflow

modeling language for web applications. In K. Czarnecki, I. Ober, J. Bruel, A. Uhl,
and M. Völter, editors, Proceedings of the 11th International Conference on Model
Driven Engineering Languages and Systems, MoDELS’08, volume 5301 of LNCS,
pages 113–127. Springer-Verlag, 2008.

6. J. Jansen, P. Koopman, and R. Plasmeijer. Efficient interpretation by transforming
data types and patterns to functions. In H. Nilsson, editor, Selected Papers of the
7th Symposium on Trends in Functional Programming, TFP’06, volume 7, pages
73–90, Nottingham, UK, 2006. Intellect Books.

7. J. Jansen, P. Koopman, and R. Plasmeijer. iEditors: extending iTask with inter-
active plug-ins. In S.-B. Scholz, editor, Proceedings of the 20th International Sym-
posium on the Implementation and Application of Functional Languages, IFL’08,
pages 170–186, Hertfordshire, UK, 10-12, Sept. 2008. University of Hertfordshire.

8. P. Koopman, R. Plasmeijer, and P. Achten. An executable and testable semantics
for iTasks. In S.-B. Scholz, editor, Proceedings of the 20th International Symposium

15

on the Implementation and Application of Functional Languages, IFL’08, pages
53–64, Hertfordshire, UK, 10-12, Sept. 2008. University of Hertfordshire.

9. B. Lijnse. Between types and tables - Generic mapping between relational
databases and data structures in Clean. Master’s thesis, Institute for Comput-
ing and Information Sciences, Radboud University Nijmegen, The Netherlands,
July 2008. Number 590.

10. M. Pešić. Constraint-based workflow management systems: shifting control to users.
PhD thesis, Technical University Eindhoven, 8, Oct. 2008.

11. M. Pešić and W. van der Aalst. A declarative approach for flexible business pro-
cesses management. In J. Eder and S. Dustdar, editors, Proceedings of the 1st Busi-
ness Process Management Workshop on Dynamic Process Management, DPM’06,
volume 4103 of LNCS, pages 169–180. Springer-Verlag, 2006.

12. R. Plasmeijer, P. Achten, and P. Koopman. iTasks: executable specifications of
interactive work flow systems for the web. In Proceedings of the 12th Interna-
tional Conference on Functional Programming, ICFP’07, pages 141–152, Freiburg,
Germany, 1-3, Oct. 2007. ACM Press.

13. R. Plasmeijer, P. Achten, and P. Koopman. An introduction to iTasks: defining
interactive work flows for the web. In Selected Lectures of the 2nd Central European
Functional Programming School, CEFP’07, volume 5161 of LNCS, pages 1–40,
Cluj-Napoca, Romania, 2008. Springer-Verlag.

14. R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse, and T. van Noort. An iTask case
study: a conference management system. In Selected Lectures of the 6th Interna-
tional Summer School on Advanced Functional Programming, AFP’08, LNCS, Cen-
ter Parcs “Het Heijderbos”, The Netherlands, 19-24, May 2008. Springer-Verlag.

15. R. Plasmeijer, J. Jansen, P. Koopman, and P. Achten. Declarative Ajax and client
side evaluation of workflows using iTasks. In Proceedings of the 10th International
Conference on Principles and Practice of Declarative Programming, PPDP’08, Va-
lencia, Spain, 15-17, July 2008.

16. N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst. Workflow resource
patterns: identification, representation and tool support. Technical report, FIT-
TR-2004-01, Queensland University of Technology, Brisbane, Australia, 2004.

17. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
patterns. QUT technical report, FIT-TR-2002-02, Queensland University of Tech-
nology, Brisbane, Australia, 2002.

18. I. Vanderfeesten, H. Reijers, and W. van der Aalst. Product based workflow sup-
port: dynamic workflow execution. In Z. Bellahsène and M. Léonard, editors,
Proceedings of the 20th International Conference on Advanced Information Sys-
tems Engineering, CAiSE’08, volume 5074 of LNCS, pages 571–574, Montpellier,
France, 2008. Springer-Verlag.

19. E. Visser. WebDSL: a case study in domain-specific language engineering. In
R. Lämmel, J. Visser, and J. a. Saraiva, editors, Selected Lectures of the 2nd
International Summer School on Generative and Transformational Techniques in
Software Engineering, GTTSE’07, volume 5235 of LNCS, pages 291–373, Braga,
Portugal, 2-7, July 2007.

20. P. Wadler. Comprehending monads. In Proceedings of the 6th Conference on Lisp
and Functional Programming, LFP’90, pages 61–77, Nice, France, 1990.

