An Introduction to iTasks:
Defining Interactive Work Flows for the Web

Rinus Plasmeijer, Peter Achten, and Pieter Koopman

Radboud University Nijmegen, Netherlands
{rinus,P.Achten,pieter}@cs.ru.nl

Abstract. In these lecture notes we present the iTask system: a set of
combinators to specify work flows in a pure functional language at a
very high level of abstraction. Work flow systems are automated systems
in which tasks are coordinated that have to be executed by either hu-
mans or computers. The combinators that we propose support work flow
patterns commonly found in commercial work flow systems. In addition,
we introduce novel work flow patterns that capture real world require-
ments, but that can not be dealt with by current systems. Compared
with most of these commercial systems, the iTask system offers several
further advantages: tasks are statically typed, tasks can be higher order,
the combinators are fully compositional, dynamic and recursive work
flows can be specified, and last but not least, the specification is used
to generate an executable web-based multi-user work flow application.
With the iTask system, useful work flows can be defined which cannot be
expressed in other systems: a work can be interrupted and subsequently
directed to other workers for further processing. The iTask system has
been constructed in the programming language Clean, making use of its
generic programming facilities, and its iData toolkit with which inter-
active, thin-client, form-based web applications can be created. In all,
iTasks are an excellent case of the expressive power of functional and
generic programming.

1 Introduction

Work flow systems are automated systems that coordinate tasks. Parts of these
tasks need to be performed by humans, other parts by computers. Automation
of tasks in this way can increase the quality of the process, as the system keeps
track of tasks, who is performing them, and in what order they should be per-
formed. For this reason, there are many commercial work flow systems (such
as Business Process Manager, COSA Workflow, FLOWer, i-Flow 6.0, Staffware,
Websphere MQ Workflow, and YAWL) that are used in industry. If we investigate
contemporary work flow systems from the perspective of a modern functional
programming language such as Clean and Haskell, then there are a number of
salient features that functional programmers are accustomed to that appear to
be missing in work flow systems:

Z. Horvéth ct al. (Eds.): CEFP 2007, LNCS 5161, pp. 1140] 2008.
© Springer-Verlag Berlin Heidelberg 2008

2 R. Plasmeijer, P. Achten, and P. Koopman

— Work flow situations are typically specified in a graphical language, instead
of a textual language as typically used in programming languages. Func-
tional programmers are keen on abstraction using higher order functions,
generic programming techniques, rich type systems, and so on. Although
experiments have been conducted to express these key features graphically
(Vital ﬂﬂ], Eros [B]L functional programs are typically specified textually.

— Work flow systems mainly deal with control flow rather than data flow as in
functional languages. As a result, they have focussed less on expressive type
systems and analysis as has been done in functional language research.

— Within work flow systems, the data typically is globally known and accessi-
ble, and resides in databases. In functional languages, data is passed around
between function arguments and results, and is therefore much more local-
ized.

Given the above observations, we have posed the question if, and which, func-
tional programming techniques can contribute to the expressiveness of work flow
systems. In these lecture notes we show how web-applications with complex con-
trol flows can be constructed by presenting the iTask system: a set of combinators
for the specification of interactive multi-user web-based work flows. It is built
on top of the iData toolkit, and both can be used within the same program.
The library covers all known work flow patterns that are found in contemporary
commercial work flow tools Hﬂ] The iTask toolkit extends these patterns with
strong typing, higher-order functions and tasks, lazy evaluation, and a monadic
style of programming. Its foundation upon the generic @,] features of the
iData toolkit yields compact, robust, reusable and understandable code. Work
flows are defined on a very high level of abstraction. It truly is an executable
specification, as much is done and generated automatically.

The iData toolkit HE, @] is a high level library for creating interactive, thin
client, web applications. For this reason it is well suited as an implementation
platform for iTasks, because work flow systems are typically multi-user applica-
tions. As web browsers are ubiquitously available, it makes sense to implement
a work flow system with web technology. The iData toolkit is a domain specific
language embedded in the pure, lazy functional programming language Clean. In
order to validate the expressiveness of the toolkit, a number of non-trivial web
applications have been developed, such as a web shop, a project administration
system HE], and a conference management system ﬂﬂ] Based on these case stud-
ies, we observe that the iData toolkit is well suited to create complex GUI forms,
which can be used to create and change values of complex data types. However,
the iData toolkit is less suited for the specification of programs that require ex-
plicit control flows. To realize a control flow, the application programmer needs
to keep track of the current application state by means of data storages. This
can lead to programs that are difficult to comprehend and maintain, and it does
not scale well.

A small, yet illustrative, exercise to handle work flow situations was given to
us by Phil Wadler:

An Introduction to iTasks: Defining Interactive Work Flows for the Web 3

“Suppose that you want two integer forms to appear one after another
on the screen and then show the sum of them, how do you programme
this using iData?”

The key idea of an iData program is that it really is a collection of editors.
From this point of view, the concept of a ‘terminated’ editor is not very natural.
Instead, the collection of editors stays alive after each edit operation, allowing
the user to enter other data as is also common in a spreadsheet. The exercise
above illustrates the need to specify the control flow between editors as well.
This is technically possible since all editors are created dynamically. However,
there is no specific support in the iData library to do this conveniently and in
our case studies we have encountered similar situations in which control flows
could be defined with iData elements, but in an ad-hoc way. These issues are
tackled within the iTask system.

In these lecture notes, we assume that the reader is familiar with the functional
programming language Clean L that is used in this paper.

The major part of this tutorial is devoted to presenting the iTask toolkit by
means of a range of examples that demonstrate its major concepts in Sect.
We briefly discuss its implementation in Sect. Bl We end with related work in
Sect. @ and conclusions in Sect. Bl Appendix [Al gives the complete api of the
iTask toolkit.

2 Overview of the iTask System

In this section we present the main concepts of the iTasks toolkit by means of a
number of examples.

2.1 A Simple Example

With the iTask system, the work flow engineer specifies a work flow situation us-
ing combinators. This specification is interpreted by the iTask system. It presents
to the work flow user a web browser interface that implements the given task.
As a starter, we give the complete code of an extremely simple work flow, viz.
that of a single, elemental, task in which the user is requested to fill in an integer
form (see also Fig. [I)):

module example
import StdEnv, iTasks

Start :: *World — *World
Start world = doHtmlServer (singleUserTask 0 True simple) world

simple :: Task Int
simple = editTask "Done" createDefault

© ® N e o p b

! See http://www.st.cs.ru.nl/papers/2007/CleanHaskellQuickGuide.pdf for the main
differences between Clean and Haskell.

4 R. Plasmeijer, P. Achten, and P. Koopman

In line 3, the necessary modules are imported. StdEnv contains the standard
functions, data structures, and type classes of Clean. iTasks imports the iTask sys-
tem. The expression to be reduced as the main function is always given by the
Start function. Because it has an effect on the external world, it is a function of
type #World — *World. In Clean, effects on an environment of some type T are usu-
ally modeled with environment transformer functions of type (...*T— (... *T)).
The uniqueness attribute * indicates that the environment is to be passed along
in a single threaded way. This effect is similar to using the I0 monad in Haskell,
but uniquely attributed states are passed around explicitly. Violations against
single threading are captured by the type system. In the iTask toolkit, tasks that
produce values of some type a have type Task a:

:: Task a = *TSt — (a,*TSt)

Here, *TSt is the unique and opaque environment that is passed along all tasks.

The iTasks library function doHtmlServer is a wrapper function that takes a
function that generates an HTML page, and turns it into a real Clean application.
The library function singleUserTask takes a work flow specification (here simple),
provides it with a single user infrastructure, and computes the corresponding
HTML page that reflects the current state of the work flow system. In Sect.
277 we encounter the multiUserTask function that dresses up multi-user work flow
specifications. The infrastructure is a tracing option at the top of the window.
It displays for each user her main tasks in a column. The selected main task is
displayed next to this column.

The example work flow is given by simple (lines 8-9). It creates a single task
with the library function editTask which has the following type:

editTask :: String zE—>Task a IE iData a

Its first argument is the label of the push button that the user can press to tell
the system that this task is finished. Its second argument is the initial value
that the task will display. When the user is done editing, hence after pressing
the push button, the edited value is emitted by editTask. The type of editTask is
overloaded. The type class iData collects all generic functions that are required
for the iTask library to derive the proper instances.

class iData d | gForm {4}, iCreateAndPrint, gParse{lx}, gerda {4}, TC d
class iCreateAndPrint d | iCreate, iPrint d
class iCreate d | gpd {4} d
class iPrint d | gPrint{} d

They can be used for values of any type to automatically create an HTML
form (gForm), to handle the effect of any edit action with the browser including
the creation of default values (gUpd), to print or serialize any value (gPrint), to

2 Note that in Clean the arity of functions is denoted explicitly by white-space between
the arguments, hence the arity of editTask is two.

3 Type class restrictions always occur at the end of a type signature, after a | sym-
bol. The equivalent Haskell definition reads editTask :: (iData a) => String ->
a -> Task a.

An Introduction to iTasks: Defining Interactive Work Flows for the Web 5

A http://localhost/CEFP_examples_2007 - M.. (= |[B1][%] | A nhttp:1/iocalhost/CEFP_examples_2007 - m... [= |[B][X]

Address |] http: /flocalhost/CEFP_examples_2007

User 0 User 0

Fig. 1. An elemental Int iTask when started (left) and finished (right)

parse or de-serialize any value (gParse), to store, retrieve or update any value in
a relational database (gerda), or to serialize and de-serialize values and functions
in a Dynamic (using the compiler generated TC class).

Note that the type of simple is more restrictive than that of editTask. This is
because it uses the createDefault function which has signature:

createDefault :: d | gUpd{} d

This function can generate a value for any type for which an instance of the
generic gUpd function has been derived. Consequently, the most general type of
simple is:

simple :: Task a | iData a

which is an overloaded type. Using this type makes the type of Start also over-
loaded, which is not allowed in Clean. There are basically two ways to deal with
this: the first way is to replace createDefault with a concrete integer value, say 0:

simple = editTask "Done" 0

In that case, its type is :: Task Int. However, this is not very flexible: simple
is now restricted to being an integer editing task. The second way, which was
used in the original solution, is much more general: by only modifying the type
signature of simple, but not its implementation, we can alter its editing task.

In the remainder of this tutorial, we skip the first three overhead lines of the
examples, and show only the Start function.

Exercises

1. Getting started
Download Clean for free at
http://clean.cs.ru.nl/.
Install the Clean system. Also download the iTask system, which is available at
http://www.cs.ru.nl/ rinus/iTaskIntro.html.
Follow the installation instructions “Tasks - Do Read This Read Me.doc” file
that can be found in the iTasks Examples folder.

6 R. Plasmeijer, P. Achten, and P. Koopman

When done, start the Clean IDE. Create a new Clean implementation module,
named “ezercisel.icl”, and save it in a new directory of your choice. Create a
new project, and confirm the suggested name and location by the Clean IDE (i.e.
“exercisel.prj” in the newly created directory). Set the Environment to “/Tasks
and iData and Util”; otherwise the Clean compiler will complain about a plethora
of missing files. Create, within the newly created directory, a subdirectory with
the same name, and copy the file “back35.jpg” into it. This file can be found in
any of the Examples\iTasks Examples\ example directories of the iTask system.
Use for each of the exercises a separate directory, to allow the system to create
databases in such a way that they do not cause conflicts of name and type.

Enter in “exercisel.icl” the complete code that has been displayed in Sect. 211
Compile and run the application. If everything has gone well, you should see a
console window that asks you to open your favorite browser and direct it to the
given address. Follow this instruction, and you should be presented with your
first iTask application that should be similar to Fig. [l

2.2 Playing with Types

In this example we exploit the general purpose code of the previous example.
The only modification we make is in line 8:

simple :: Task (Int,Real) 8.

Compiling and running this example results in a simple task for filling in a form
of a pair of an Int and Real input field (see Fig.).

Now suppose that we want to do the same for a simple person administration
form: we introduce a suitable record type, Person, defined as:

Person = { firstName :: String, surname :: String
, date0fBirth :: HtmlDate, gender :: Gender }
Gender = Male | Female

HtmlDate is a predefined algebraic data type for which an editor is created that
allows the user to manipulate dates with separate editors for the year, month,
and day. The only thing we need to do is to change the signature of simple into:

simple :: Task Person 8.

A hitp://localhost/CEFP_ - ... [2][8]K) | 3 htp://ocalhost/CEFP_examples_2007 - M... [2]

Address | @] http:/flocalnost/CEFP_examples_2007 - Address | @] http:/flocalhost/CEFP_examples_2007

User 0 User 0

Fig. 2. An (Int,Real) iTask when started (left) and finished (right)

An Introduction to iTasks: Defining Interactive Work Flows for the Web 7

i hitp://localhost/CEFP_examples_2007 - Microsoft Inte.... (= |(B][5] ll 3 http://localhost/CEFP_examples_2007 - Microsoft Inte...

Address |] http: {flocalhost/CEFP_examples_2007

Address |] http: {flocalhost/CEFP_examples_2007

User 0

User 0

Fig. 3. A Person iTask when started (left) and finished (right)

We intend to obtain an application such as the one displayed in Fig. Bl

Unfortunately, this does not compile successfully. A range of error messages is
generated that complain that there are no instances of type Person for the generic
functions that belong to the iData class. The reason that the (Int,Real) example
does compile, and the Person example does not, is that for all basic types and
basic type constructors such as (,), instances for these generic functions have
already been asked to be derived. To allow this for Person and Gender values as
well, we only need to be polite and ask for them:

derive gForm Person, Gender
derive glpd Person, Gender
derive gPrint Person, Gender
derive gParse Person, Gender
derive gerda Person, Gender

This example demonstrates that the code is very general purpose, and can be
customized by introducing the desired type definitions, and politely asking the
generic system to derive instance functions for the new types.

Exercises

2. Playing with a type of your own
Create a new directory and subdirectory with the same name. Copy the “ex-
ercisel.icl” file into the new directory, and rename it to “exercise2.icl”. Copy
the “back35.jpg” file into the subdirectory. Within the Clean IDE, open “exer-
cise2.icl” and create a new project. Set the Environment to “Tasks and iData
and Util”.

Define a new (set of) type(s), such as the Person and Gender given in Sect. [Z2]
and create a simple editing task for it.

8 R. Plasmeijer, P. Achten, and P. Koopman

2.3 Playing with Attributes

In the previous examples an extremely simple, single-user, work flow was created.
Even for such simple systems, we need to decide were to store the state of the
application, and whether it should respond to every user editing action or only
after an explicit submit action of the user. These aspects are attributes of tasks,
and they can be set with the overloaded infix operator <<e:

class (<<@) infix]l 3 b :: (Task a) b—Task a
instance <<@ Lifespan // default: Session

, Mode // default: Edit

, GarbageCollect // default: Collect

, StorageFormat // default: PlainString

:: Lifespan = Session | Page | Database | TxtFile | TxtFileRO | Temp
:: Mode = Edit | Submit | Display | NoForm

:: GarbageCollect = Collect | NoCollect

:: StorageFormat = PlainString | StaticDynamic

The Lifespan attribute controls the storage of the value of the iTasks: it can be
stored persistently on the server side on disk in a relational database (Database)
or in a file (TxtFile with RO read-only), it can be stored locally at the client side
in the web page (Session, Page (default)), or one can decide not to store it at
all (Temp). Storage and retrieval of data is done automatically by the system.
The Mode attribute controls the rendering of the iTask: by default it can be
Edited which means that every change made in the form is communicated to
the server, one can choose for the more traditional handling of forms where
local changes can be made that are all communicated when the Submit button
is pressed, but it can also be Displayed as a constant, or it is not rendered at
all (NoForm). The GarbageCollect attribute controls whether the task tree should
be garbage collected. This issue is described in more detail in Sect. Finally,
the StorageFormat attribute determines the way data is stored: either as a string
(PlainString) or as a dynamic (StaticDynamic).

As an example, consider attributing the simple function of Sect. 2] in the
following way (see Fig. H):

simple :: Task Person 8.
simple = editTask "Done" createDefault <<@ Submit <<@ TxtFile 9.
Exercises

3. A persistent type of your own
Create a new project for “ezercise3.icl” as instructed in exercise 2.

Modify the code in such a way that it creates an application in which the most
recently entered data is displayed, regardless whether the browser has been closed
or not.

An Introduction to iTasks: Defining Interactive Work Flows for the Web 9

User 0 User 0

Fig. 4. A Person iTask attributed to be a ‘classic’ form editor

With these attributes, the application only responds to user actions after
she has pressed the “Submit” button, and the value is stored in a text based
database.

2.4 Sequencing with Monads: Wadler’s Exercise

In the previous examples, the work flow consisted of a single task. One obvi-
ous combination of work flows is sequential composition. This has been realized
within the iTask toolkit by providing it with appropriate instances of the monadic
combinator functions:

(=>) infix 1 :: (Task a) (a—Task b) —Task b | iCreateAndPrint b
(f>) infixl 1 :: (Task a) (Task b) — Task b
return_V it b — Task b | iCreateAndPrint b

where=3>is the bind combinator, and return_v the return combinator. Hence, (m
= Ar — n) performs task m if it should be activated, and passes its result value
to m, which is only activated when required. The only task of (return_v v) is to
emit value v. As usual, the shorthand combinator f>that is defined immediately
in terms of == (m $>n = m=> X\ _— n) is provided as well. It is convenient to
have a few alternative return-like combinators:

return_VF :: b [BodyTag| — Task b | iCreateAndPrint b
returnD :: b —Task b | iCreateAndPrint, gForm{jx[} b

With (return_VF v info), customized information info given as HTML is shown to
the application user. The algebraic type BodyTag maps one-to-one to the HTML-
grammar. With (return_D v) the standard generic output of v is used instead.
It should be noted that unlike return_V these combinators are not true return
combinators, as they do have an effect. Hence, the monad law m => \v— return
v = m is invalid when return is constructed with either retwrn_VF or return_D.
When a task is in progress, it is useful to provide feedback to the user what
she is supposed to be doing. For this purpose two combinators are introduced.

10 R. Plasmeijer, P. Achten, and P. Koopman

(p >t) is a task that displays prompt p while task ¢ is running, whereas (p >>1)
displays prompt p from the moment task ¢ is activated. Hence, a message dis-
played with '>> stays displayed once it has appeared, and a message displayed
with 2> disappears as soon as its argument task has finished.

(7>) infix 5 :: [BodyTag] (Task a) —Task a | iCreate a
(>>) infix 5 :: [BodyTag] (Task a) —Task a | iCreate a

The prompt is defined as a piece of HTML.
With these definitions, the solution to Wadler’s exercise becomes surprisingly
simple.

A http://localhost/clean - Micro. ‘7"§Hz‘

sequencelTask :: Task a | iData, + a
sequencelTask el

= editTask "Done" createDefault =>> \vl —
editTask "Done" createDefault =>> \v2 —
[Txt "+ Hr []]
I>> return_D (vi+v2)

Exercises

4. Hello!
Create a work flow that first asks the name of a user, and then replies with
“Hello” and the name of the user.

5. To > orto >
Create a new project with the code of sequencelTask, and modify the '>> combi-
nator into s> What is the difference with the '>> combinator?

6. FEnter a prime number

Create a work flow that uses the <| combinator (see Appendix [A]) to force the
user to enter a prime number. A prime number p is a positive integral number
that can be divided only by 1 and p.

7. Tearing Person apart

In Sect. 22 a Person editing task was created with which the user edits complete
Person values. Create a new work flow in which the user has to enter values for
the fields one by one, i.e. starting with first name, and subsequently asking the
surname, date of birth, and gender. Finally, the work flow should return the
corresponding Person value.

8. Adding numbers
Create a work flow that first asks the user a positive (but not too great) integer
number n, and subsequently have him enter n values of type Real (use the seqTasks

An Introduction to iTasks: Defining Interactive Work Flows for the Web 11

combinator for this purpose — see Appendix[A]). When done, the work flow should
display the sum of these values.

2.5 Sequence and Choice: A Single Step Coffee Machine

Coffee vending machines are popular examples to illustrate sequencing and
choice. We present an example of a coffee machine that offers the user either
coffee or tea. After choosing, the user pays the proper amount of money and
obtains the selected product. This also terminates the coffee machine. This is a
single user task. The Start function is standard:

Start world = doHtmlServer (singleUserTask 0 True coffeemachine) world

The coffee machine is specified by the function coffeemachine. Before we give its
definition, we first introduce a number of functions. In Clean, Strings are arrays
of unboxed Chars. For convenient String concatenation, the overloaded operators
(z+>str) and (str<+z) are used which concatenate the string representation of z
and str. Two iTask combinators will be used in coffeemachine:

buttonTask :: String (Task a) — Task a | iCreateAndPrint a
chooseTask :: [(String, Task a)] — Task a | iCreateAndPrint a

(buttonTask [t) enhances a task ¢ with a push button labeled with ! that needs to
be pressed first by the user before she can do ¢. Choosing between alternatives
of labeled actions l; and tasks ¢; is given by (chooseTask [(lo,t0)--- (In,tn)]). The
resulting value is the value of the selected task ¢;. The choice buttons are aligned
horizontally.

We are now ready to give the definition of coffeemachine:

coffeemachine :: Task (String,Int) 1.
coffeemachine 2.
= [Txt "Choose product:"] 3.
75> chooseTask [(p <+ ": " <+ ¢, return_V prod) \\ prod=:(p,c) < products] 4,
=)prod — 5.
[Txt ("Chosen product: " <+ fst prod)] 6.
73> pay prod (buttonTask "Thanks" (return_V prod)) 7.
where 8.
products = [("Coffee",100),("Tea",50)] 9.

-
e

pay (p,c) t = buttonTask ("Pay " <+ c <+ " cents") t

First, the user is presented with a choice between coffee and tea (lines 3-4).
Having chosen a product, the user is supposed to pay in a single step (line 7).
In Sect. 2.6l we extend this to specifying a sub work flow for inserting coins in
the coffee machine.

Besides chooseTask, the iTask toolkit offers a number of related task selection
combinators:

chooseTaskV :: [(String,Task a)] —Task a | iCreateAndPrint a
chooseTask_pdm :: [(String,Task a)] —Task a | iCreateAndPrint a
mchoiceTasks :: [(String,Task a)] — Task [a] | iCreateAndPrint a

12 R. Plasmeijer, P. Achten, and P. Koopman

chooseTaskV is the same as chooseTask, except that the choice buttons are aligned
vertically. The same holds for chooseTask_pdm, except that it offers a pull down
menu to select the desired task. Finally, a multiple choice of tasks is provided
with mchoiceTasks.

Exercises

9. Calculating on numbers

In this exercise you extend the work flow in exercise 8 with the option to add (+),
subtract (0), multiply (), or divide (/) all numbers. Hence, if the input consists
of numbers z7 ...xz,, and the operator ®, then the result should be computed
as (... (x1 0O x2) ©...Zp_1) O Ty

2.6 Repetition, Recursion and State: A Coffee Machine

The coffee machine in the previous example offers a single beverage, and termi-
nates. In order to get more profit out of this machine, we extend it to a beverage
vending machine that runs forever with the foreverTask combinator:

Start world = doHtmlServer (singleUserTask 0 True (foreverTask coffeemachine)) world

The signature of foreverTask is not surprising:

foreverTask :: (Task a) —Task a | iData a

It repeats its argument task infinitely many times.

The previous example abstracted from the paying task: the function call
(pay (p,c) t) offers a labeled action to pay the full amount of money ¢ for the
chosen product p, and then continues with task ¢. In a more refined model, the
user is able to insert coins until the inserted amount of money exceeds the cost
of the product. Moreover, she can also choose to abandon the paying task and
not get the selected beverage at all. This is suitably modeled with a recursive
task specification:

getCoins :: ((Bool,Int,Int) — Task (Bool,Int,Int))

getCoins = repeatTask_Std get (\(cancel,cost,_) — cancel || cost < 0)

where

get (cancel,cost,paid)
= newTask "pay" (
[Txt ("To pay: " <+ cost)]
73> chooseTask [(c +> " cents", return_V (False,c)) \\ c+«coins |
“1-

buttonTask "Cancel" (return_V (True,0)) == A(cancel,c) —
return_V (cancel,cost-c,paid+c)

)

coins = [5,10,20,50,100,200]

An Introduction to iTasks: Defining Interactive Work Flows for the Web 13

The iteration of inserting coins is modeled with the repeatTask_Std combinator:
repeatTask_Std :: (a—Task a) (a—Bool) a— Task a | iCreateAndPrint a

(repeatTask_Std t p vg) executes a sequence of tasks ¢ vg,t v1,...1 v, along a
progressing sequence of values v, v1,...v,. Here, v; is the result value of task
(t v;—1). The final result value, vy, is also the result value of (repeatTask_Std
t p vg). For each i < n, we have —(p v;), and (p v,). Hence, it works in a
way similar to a repeat t until p control structure in imperative languages. The
combinator -||- allows evaluation of two tasks in any order, and is finished as
soon as either one task is finished. This is different from the behaviour of the
task selection combinators that were discussed above in Sect. they allow the
user to select one task, which is then evaluated to the end. A similar combinator
to - |- is -&&- which allows evaluation of two tasks in any order, but that finishes
only if both tasks have finished.

The crucial combinator in this example is newTask (the implementation of
newTask is discussed in Sect. B0)). (newTask [t) promotes any user defined task
t to a proper iTask such that ¢ is only called when it is its turn to be activated.
This is to prevent unwanted non-termination: although a task description is al-
lowed to be defined recursively, at any stage of its execution, a workflow system
is in some well defined state. Clearly, we regard getCoins not as a common re-
cursive function, but as a definition of a recursive task that has to be activated
when the previous task, which might be the previous invocation of getCoins, is
finished.

We can now redefine the pay function of Sect.

pay (p,c) t = getCoins (False,c,0) =>> A(cancel,_,paid) —
[Txt ("Product = "<+if cancel "cancelled" p
<+". Returned money = "<+(paid-c))]
>t

It should be noted that getCoins and pay illustrate that tasks may depend on the
actual values that are generated within the system. These kind of workflows are
hard to model with other current day work flow specification tools.

Exercises

10. A mini calculator
Create a work flow that repeatedly offers the user the choice between:

— First enter a Real number r and next choose an operator ® (as in exercise
9) and that returns ¢ ® r, with ¢ the current value; ¢ ® r becomes the new
current value.

— Return the current value c.

14 R. Plasmeijer, P. Achten, and P. Koopman
2.7 Multi-user Workflows

The solution to Phil Wadler’s exercise that was given in Sect. [Z4] was a single
user application. Work flow systems usually involve arbitrarily many users. This
is supported by the iTask system.

multiUserTask :: !Int !Bool !(Task a) !*¥HSt — (Html,*HSt) | iCreate a
:: UserID :=— Int

We identify users (using type synonym UserID) with integer index values ¢ > 0.
The wrapper function multiUserTask n trace ¢ creates a work flow system, defined
by t for users 0...n—1. For quick testing, it provides an additional user interface
for selecting the proper user.

By default, tasks store their information on the client side of the HTML inter-
face. If one wants to use the system with multiple users over the net, one has to
store iTask information persistently on the server side. To conveniently control
this, we use the attribute setting operator <<e@ that was introduced in Sect.

Assigning a task t to user ¢ with some motivation m is done by (m,i)e:¢. If
there is no motivation, then one uses i@: :t.

(@:) infix 3 :: (String,UserID) (Task a) —Task a | iCreate a
(@::) infix 3 :: UserID (Task a) —Task a | iCreate a

Suppose that the first integer editing task in Wadler’s exercise should be per-
formed by user 1, the second by user 2, and the result is shown to user 0 (the
default user). The code becomes:

sequenceMU :: Task a | iData, +, zero a

sequenceMU

= ("Enter a number",1) @: editTask "Done" zero =>> \vl —
("Enter a number",2) @: editTask "Done" zero =3> W2 —
[Txt "+" Hr []] !>> return D (vl + v2)

Start world = doHtmlServer (multiUserTask 2 True sequenceMU <<@ Persistent) world

The iTask system ensures that each user sees only tasks assigned to them. This
is essentially a filter of the full task tree, because any task may decide to assign
tasks to any other user. It should be noted that users have access to data only
via the editor tasks. Because every task is always assigned to exactly one user,
there is no danger of having multiple users attempting to update the same data
item.

Exercises

11. orTasks versus andTasks

Create a work flow that first asks the user to enter a positive integral value n,
and that subsequently creates n tasks with orTasks and andTasks. The tasks are
simple buttonTasks. Study the different behavior of orTasks and andTasks.

An Introduction to iTasks: Defining Interactive Work Flows for the Web 15

12. Number guessing

Create a 2-person work flow in which person 1 enters an integer value 1 < N <
100, and who has person 2 guess this number. At every guess, the work flow
should give feedback to person 2 whether the number guessed is too low, too
high, or just right. In the latter case, the work flow returns Just/N. Person 2 can
also give up, in which case the work flow should return Nothing.

Optional: Person 1 is given the result of person 2, and has a chance to respond
with a ‘personal’ message.

13. Tic-tac-toe

Create a 2-person work flow for playing the classic ‘tic-tac-toe’ game. The tic-
tac-toe game consists of a 3 x 3 matrix. Player 1 places x marks in this matrix,
and player 2 places o marks. The first person to create a (horizontal, vertical, or
diagonal) line of three identical marks wins. The work flow has to ensure that
players enter marks only when it is their turn to do so.

2.8 Speculative Tasks and Multiple Users: Deadlines

Work flow systems need to handle time-related tasks: for instance, some task ¢
has to be finished before a given time 7" or it is canceled. In this example we
show how this is expressed with the iTasks toolkit. The time related combinators
are the following:

waitForDateTask :: HtmlDate — Task HtmlDate
waitForTimeTask :: HtmlTime — Task HtmlTime
waitForTimerTask :: HtmlTime — Task HtmlTime

The algebraic types HtmlDate and HtmlTime are elements of the iData toolkit that
have been specialized to show user convenient date and time editors. waitForDate-
(Time)Task terminates in case the given date (time of day) has passed; waitForTimer-
Task terminates after a given time interval.

In our example, we use the latter combinator to delegate work:

delegateTask who time t
= ("Timed Task",who)@:
@:((waitForTimerTask time f>> return_V Nothing)
“1-
([Txt ("Please finish task within" <+ time)]
7> (t => Av—return V (Just v)))
)

(delegateTask i df t) assigns a task ¢ to user ¢ that needs to be finished before
dt time (line 5-6) is passed. If the user does not complete the task on time,
delegation fails, and should also terminate (line 3).

The main work flow situation is modeled as follows:

No oo s w N e

deadline :: (Task a) —Task a | iData a 1.
deadline t 2.
= [Txt "Choose person you want to delegate work to:"| a3

16 R. Plasmeijer, P. Achten, and P. Koopman

75> editTask "Set" (PullDown size (0,map toString [1..n])) == dwho —

4.

[Txt "How long do you want to wait?"] 5.
7>> editTask "SetTime" createDefault => Mtime — 6.
[Txt "Cancel delegated work if you get impatient:"] 7.
7>> delegateTask who time t 8.
-11- 9.
buttonTask "Cancel" (return_V Nothing) =3> check 10.
check (Just v) 11,
= [Txt ("Result of task: " <+ v)] 7> buttonTask "OK" (return_V v) 12.
check Nothing 13.
= [Txt "Task expired/canceled; do it yourself!"] 7>> buttonTask "OK" t 14.

The main task consists of selecting a user to whom a task ¢ should be delegated
(lines 3-4), deciding how much time this user is given for this exercise (lines
5-6), and then delegating the task (line 8). We also model the situation that the
current user gets impatient, and decides to abandon the delegated task (line 10).
Either way, we know whether the task has succeeded and display the result and
terminate (lines 11-12), or the current user has to do it herself (lines 13-14).

The work flow described by (deadline t) defines a single delegation. It can be
transformed into an iteration with the foreverTask combinator that we have also
used in Sect. We are obviously creating a multi-user system, and hence use
the multiUserTask wrapper function for some constant n > 0. As example task we
reuse the simple task from Sect. [Z] with a concrete, non-overloaded type. This
finalizes the example:

Start world

= doHtmlServer (multiUserTask n True (foreverTask (deadline simple) <<@ Database))
world

Exercises

14. Delayed task

Create a work flow in which first an integral value n is asked, and that subse-
quently waits n seconds before it is finished. Use the waitForTimerTask combinator
for this purpose.

15. Number guessing with deadline
Use the delegation example of Sect. in such a way that the number guessing
game of exercise 12 can be created with it.

16. Tic-tac-toe with deadline
Use the delegation example of Sect. in such a way that the tic-tac-toe game
of exercise 13 can be created with it.

An Introduction to iTasks: Defining Interactive Work Flows for the Web 17

2.9 Parameterized Tasks: A Reviewing Process

In this example we show that iTasks and iData cooperate in close harmony. We
present a reviewing process in which the product of a user is judged by a reviewer
who can either approve, reject, or demand rework of the product. The latter is
described with an algebraic data type:

NeedsRework |V fyore

Approved
Rejected

:: Review = Approved
| Rejected
| NeedsRework TextArea

TextArea is an algebraic data type that is specialized by the iData toolkit as a
multi-line text edit box that can be used by the reviewer to enter comments, as
shown above.

A reviewer inspects the product v that needs to be judged, and makes a
decision. This is defined concisely as:

review :: a— Task Review | iData a
review v = [toHtml v]
7>> chooseTask
[("Rework", editTask "Done" (NeedsRework createDefault) <<@ Submit)
,("Approved" ,return_V Approved)
,("Reject", return_V Rejected)

]

Any task result that can be displayed, can also be subject to reviewing, hence
the restriction to the generic iData class. The rendering is done with the iData
toolkit function toHtml, which has signature:

toHtml :: a— BodyTag | gForm{jx} a

Hence, (review v) displays v in the browser. The reviewer subsequently has to
choose whether v should be reworked, and can comment on her decision, or v
can be approved or rejected.

The main task is to produce a product v according to some task ¢ that can
be judged by a reviewer u. If the reviewer demands rework of v, the task should
be restarted with that particular v, because the user would have to completely
recreate a new product otherwise. Therefore, the product and the task to produce
it are given as a pair (a, a— Task a), and the result of the main task is to return
a product and its review (a,Review). This is done as follows:

taskToReview :: UserID (a,a— Task a) — Task (a,Review) | iData a 1.
taskToReview reviewer (v,task) 2.
= newTask "taskToReview" 3.
(task v => v — 4
reviewer Q:: review nv => \r — 5.
[Txt ("Reviewer " <+ reviewer <+ " says "), toHtml r| 6

7>> buttonTask "OK" 7.

18 R. Plasmeijer, P. Achten, and P. Koopman

case r of 8.
(NeedsRework _) — taskToReview reviewer (nv,task) 9.
else —return_V (nv,r) 10.

)

The task is performed to return a product (line 4), which is reviewed by the
given reviewer (line 5). Her decision is reported (line 6), and only in case of a
demanded rework, this has to be repeated (line 9).

For the example, we select a two-user system (multiUserTask 2) in which user
0 creates the product, and user 1 reviews it:

Start world
= doHtmlServer (multiUserTask 2 True (foreverTask reviewtask <<@ TxtFile)) world

reviewtask :: Task (Person,Review)
reviewtask = taskToReview 1 (createDefault, t)

t :: a—Task a | iData a
t v = [Txt "Fill in Form:"] 7>> editTask "TaskDone" v <<@ Submit

Note the high degree of parameterization and therefore re-useability of the
code: taskToReview handles any task, and by providing only a type signature
to reviewtask above, we get a form task for values of that type for free. Above,
we have chosen the Person type. This is similar to the simple example that we
started with in Sect. 2Tl

2.10 Higher Order Tasks: Shifting Work

A distinctive feature of the iTask system is that tasks can be higher order: data
can be communicated but also (partially evaluated) tasks can. One can create
task closures, i.e. a task ¢ that already has been partially evaluated by someone
can be shipped to some other user as (TC1 ¢) who can continue to work on ¢.

:: TC1 a =TCl (Task a)

The proper generic functions have been specialized for type TC1 such that it acts
as a container of tasks. Any task can be put in a value of this type, but we want
to be able to put a partially evaluated task in it. Therefore we need a way to
interrupt a task that is being evaluated.

(->) infix 4 :: (Task stop) (Task a) — Task (Maybe stop,TCl a)
| iCreateAndPrint stop & iCreateAndPrint a

(stop -t>t) is a variant of an or-task which takes two tasks: whenever stop is
done, t is interrupted and this possibly partially evaluated task is delivered as
result. However, ¢ can also finish normally, and the fully completed task is de-
livered. The result of stop, therefore, is only returned when it finishes before ¢.
Note that, because stop is a type variable, any task can be used as the stop task.

As an example of using -!> we present a highly dynamic case in which a
worker pool of people can work on a given task. At any time, a worker can

An Introduction to iTasks: Defining Interactive Work Flows for the Web 19

decide to stop working on that task, which should then be continued to work
on by somebody else. Of course, the next person should not restart the task,
but work with the partially evaluated task. The code of this example is given by
delegate:

delegate :: (Task a) HtmlTime — Task a | iData a 1.
delegate t time 2.
= [Txt "Choose persons you want to delegate work to:"| 3.
7>> determineSet [] =>>)people — 4.
delegateToSomeone t people =3> Aresult — 5.
return_D result 6.
where 7.
delegateToSomeone :: (Task a) [UserID] —Task a | iData a 8.
delegateToSomeone t people = newTask "delegateToSet" doDelegate 9.
where 10.
doDelegate 11.

= orTasks | ("Waiting for " <+ who 12.

, who @:: buttonTask "I Will Do It" (return_V who) 13.

) 14.

\\ who < people 15.

] = Xwho — 6.

who @:: stopTask -!>t =>> A(stopped,TCl t) — 17,

if (isJust stopped) (delegateToSomeone t people) t 1s.

stopTask = buttonTask "Stop" (return_V True) 19.

The function delegate first creates a worker pool of people to choose from (line
3-4). All people are asked whether they want the task (line 5 and lines 8-18).
The first user who accepts the task obtains it and she can work on it. However,
the work can be interrupted by completion of stopTask which ends when the user
has pushed the Stop button. If this is the case, all persons are asked again to
volunteer for the job. The one who accepts, obtains the task in the state as it
has been left by the previous worker and she can continue to work on it. The
whole recursively defined process finally ends when the delegated task is fully
completed by someone.

The conditions for stopping a task can be arbitrarily complex. For instance,
by using stop2 not only the user herself can stop the task, but someone else can
do it for her as well (e.g. the user who delegated the task in the first place), or
it can be timed out.
stop2 user time = stopTask -||- (0 @:: stopTask) -||- timer time
timer time — waitForTimerTask time]i>> return_V True

Finally, creating the worker pool is a recursive work flow in which the user
can select from candidates 1 upto n.

determineSet :: [UserID| — Task [UserID] 1.
determineSet people = newTask "determineSet" pool 2.
where 3.

pool = [Txt ("Current set:" <+ people)] 4,

7>> chooseTask 5.

20 R. Plasmeijer, P. Achten, and P. Koopman

("Add Person", cancelTask person)

[6.

,("Finished", return_V Nothing) 7.

| => Xresult — 8.

case result of 9.

(Just new) — determineSet (sort (removeDup [new:people])) 10.

Nothing — return_V people 11.

person = editTask "Set" (PullDown size (0,map toString [1..npersons])) 12.
=>> whomPD — return_V (Just (toInt (toString whomPD))) 13.

cancelTask task = task -||- buttonTask "Cancel" (return_V createDefault) 14.

Exercises

17. Number guessing in a group

In this exercise you extend the number guessing game of exercises 12 and 15 to
a fixed set of persons 1...N in which user 0 determines who of 1... N is the
next person to try to guess the number.

2.11 Summary

In this section we have given a range of examples to illustrate the expressive
power of the iTask toolkit. We have not covered all of the available combinators.
They can be found in Appendix [Al

3 The iTasks Core System

The examples that have been given in Sect. [2] illustrate that iTask applications
are multi-user applications that use mainly forms to communicate with end
users, have various options to store data (client side and server side), and are
highly dynamic. In general, implementing such kind of web applications is quite
a challenge, especially when compared with desktop applications. One reason
for this complication is that desktop applications can directly interact with the
environment at any point in time because they are directly connected with that
environment. Due to the client-server architecture, web applications cannot do
this. A web application emits an HTML page and terminates. It has to store in-
formation somewhere to handle the next request from the user in an appropriate
way. It has to recover the relevant states, find out what it was doing and what
it has to do next. The resulting code is hard to understand.

A conceivable alternative is to adopt the Seaside approach ﬂa] If the appli-
cation can automatically remember where it was, programs become easier to
write and read. Since a Clean application is compiled to native code, suspend-
ing execution, as Seaside does, involves creating core dumps of the run-time
system. However, a work flow system needs to support several users that work
together. The action of one user can influence the work of others. A core dump
only reflects the work of one user. For this reason, we propose a simpler set-up

An Introduction to iTasks: Defining Interactive Work Flows for the Web 21

of the system: we start the same application from scratch, as we already did,
and use iData elements to remember the state for all users. For a programmer,
the application still appears to behave as if it continues evaluation after an 1/O
request from a browser.

In this section we introduce the main implementation principles of the iTasks
system. For didactic reasons we restrain ourselves to a strongly simplified iTask
core system. This core system is single user and has limited possibilities to ma-
nipulate tasks. The core system is already sufficient to create the solution to
Wadler’s exercise that was shown in Sect. 2241 The full iTask toolkit that has
been shown in Sect. 2 is built according to these principles.

3.1 iData as Primitive iTask in the Core System

In this section we describe how to lift iData elements to become iTasks. The
iData library function mkIData creates an iData element. mkIData is an explicit *HSt
environment transformer function. Its signature is:

mkIData :: (InIDatald d) —HStIO d | iData d

:: HStIO d :— *HSt — (Form d,*HSt)

*HSt contains the internal administration that is required for creating HTML
pages and handling forms. Please consult ﬂﬁ] for details. mkIData is applied to an
(InIDatald d) argument that describes the type and value of the iData element
that is to be created:

:: InIDatald d :=— (Init, FormId d)
: Init = Const | Init | Set

mkFormId :: String d — FormId d

The function mkFormId creates a default (FormId d) value, given a unique identifier
strinﬂ and the value of the iData element. The Init value describes the use of
that value: it is either a Constant or it can be edited by the user. In case of Init,
it concerns the initial value of the editor. Finally, it can be Set to a new value
by the program. A (FormId d) value is a record that identifies and describes the
use of the iData element:

:: FormId d = { id :: String, ival :: d, lifespan :: Lifespan, mode :: Mode }

The Lifespan and Mode types were introduced in Sect. They have the same
meaning in the context of iData. To facilitate the creation of non-default (FormId d)
values, the following straightforward type classes have been defined:

class (<@) infixl 4 att :: (FormId d) att — FormId d
class (>0@) infixr 4 att :: att (FormId d) — FormId d
instance <@ String, Lifespan, Mode
instance >0@ String, Lifespan, Mode

* The use of strings for form identification is an artifact of the iData toolkit. It can be
a source of (hard to locate) errors. The iTask system eliminates these issues by an
automated systematic identification system.

22 R. Plasmeijer, P. Achten, and P. Koopman

When evaluated, (mkIData (init, iDatald)) basically performs the following ac-
tions: it first checks whether an earlier incarnation of the iData element (identified
by iDatald.id, i.e. the name of the iData element) exists. If this is not the case,
or init equals Set, then iDatald.ival is used as the current value of the iData el-
ement. If it already existed, then it contains a possibly user-edited value, which
is used subsequently. Hence, the final iData element is always up-to-date. This
is kept track of in the (Form d) record:

:: Form d = { changed :: Bool, value :: d, form :: [BodyTag] }

The changed field records the fact whether the application user has previously
edited the value of the iData element; the value is the up-to-date value; form is
the HTML rendering of this iData element that can be used within an arbitrary
HTML page.

If we want to lift iData elements to the iTask domain, we need to include a
concept of termination because this is absent in the iData framework: an iData
application behaves as a set of iData elements that can be edited over and over
again by the application user without predetermining some evaluation order.
We ‘enhance’ iData elements with a concept of termination. We define a special
function to make such a taskEditor. It is an ‘ordinary’ editor extended with a
Boolean iData state in which we record whether the editor task is finished. It is
not up to an iData editor to decide whether a task is finished, but this is indicated
by the user by pressing an additional button. Hence, a standard iData editor is
extended with a button and a boolean storage. These elements are created by
the functions simpleButton and mkStoreForm:

simpleButton :: String String (d—d) —HStIO (d—d)
mkStoreForm :: (InIDatald d) (d—d) —HStIO d | iData d

(simpleButton name [f) creates an iData element whose appearance is that of a
push button labeled I It is identified with name. When pressed (which is an edit
operation by the user), its value is the function f, otherwise it is the identity
function. (mkStoreForm iD f) creates an iData element that applies f to its current
state.

With these two standard functions from the iData toolkit we can enhance any
iData editor with a button and boolean storage:

taskEditor :: String String a *HSt — (Bool,a,[BodyTag],*HSt) | iData a
taskEditor btnName label v hst
f (btn, hst) = simpleButton btnLabel btnName (const True) hst
f (done, hst) = mkStoreForm (Init,mkFormId storeLabel False) btn.value hst
f (f, btnF) = if done.value ((>Q) Display,Br) (id,btn.form)
f (idata,hst) = mkIData (Init,f (mkFormId editlabel v)) hst
= (done.value,idata.value,idata.form ++ [btnF],hst)
where editLabel = label +> "_Editor"
btnLabel = label +> "_Button"
storeLabel = label +> "_Store"

© ® N o o p® b

"
e

In the function taskEditor we create, as usual, an iData element for the value v
(line 6). The label argument is used to create three additional identifiers for the

An Introduction to iTasks: Defining Interactive Work Flows for the Web 23

value (editLabel), the button element (btnLabel), and the boolean storage element
(storeLabel) .

The trigger button (line 3) is a simple button that, when pressed, has the
function value (const True), and which is the identity function id otherwise. The
boolean storage is created as an iData storage (line 4). It is interconnected with
the trigger button by its value: it applies the function value of the button to
its boolean value (initially False). Therefore, the value of the boolean storage
becomes True only if the user presses the trigger button. If the user has indicated
that the editor has terminated, then the trigger button should not appear, and
the iData element should be in Display mode, and otherwise the trigger button
should be shown and the iData element should still be editable (line 5). In this
way, the user is forced to continue with whatever user interface is created after
pressing the trigger button.

The definition of taskEditor suggests that we need to extend the *HSt with
some administration to keep track of the generated HTML, and identification
labels for the editors that are lifted. This is what *TSt is for. It extends the *HSt
environment with a boolean value activated to indicate the status of a task (when
a task is called it tells whether it has to be activated or not, when a task has
been evaluated it tells whether it is finished or not), a tasknr for the automatic
generation of fresh task identifier values, and html which accumulates all HTML
output. For each of these fields, we introduce corresponding update functions
(set_activated, set_tasknr, and set_html):

:: #TSt = { hst :: #HSt, activated :: Bool, tasknr :: TaskID, html :: [BodyTag] }
:: TaskID : = [Int]

set_activated :: Bool *TSt — *TSt
set_tasknr :: TaskID *TSt — *TSt
set_html :: [BodyTag] *TSt — *TSt

With this administration in place, we can use taskEditor to lift iData elements
to elemental iTasks, viz. ones that allow the user to edit data and indicate ter-
mination of this elemental task. Recall that Task a was defined as (Sect. 21
*TSt — (a,*TSt):

editTask :: String a—Task a | iData a

editTask label a = doTask editTask’

where
editTask‘ tst=:{tasknr hst,html}
f (done,na,nhtml hst) = taskEditor label (toString tasknr) a hst
= (na,{tst & activated = done, hst = hst, html = html -+ nhtml})

editTask takes an initial value of any type and delivers an iTask of that type. When
the task is activated, an extended iData element is created by calling taskEditor. A
unique identifier is generated by this system (function doTask, which is explained
below), which eliminates the shortcoming that was mentioned above. Any iData
element automatically remembers the state of any edit action, no matter how
complicated the editor is. The HTML code produced by taskEditor is added to
the accumulator of the iTask state. In the end all HTML code of all iTasks can
be displayed by showing the HTML of the top-task. There can be many active

24 R. Plasmeijer, P. Achten, and P. Koopman

iTasks, so in practice this is probably not what we want. However, for the core
system this will do.

The function doTask is an internal wrapper function that is used within the
iTasks toolkit for every iTask.

doTask :: (Task a) —Task a | iCreate a
doTask mytask = doTask‘ o incTaskNr
where doTask‘ tst=:{activated, tasknr}

| not activated = (createDefault, tst)

f (val, tst) =mytask tst

= (val,{tst & tasknr = tasknr})

doTask first ensures that the task number is incremented. In this way, each task
obtains a unique number. Tasks are numbered systematically, in the same way as
chapters, sections and subsections are numbered in a book or in this paper: tasks
on the same level are numbered subsequently with incTaskNr below, whereas a
subtask j of task i is numbered i.j with subTaskNr below. Fresh subtask numbers
are generated with newSubTaskNr. We represent the numbering with an integer list,
in reversed order.

incTaskNr tst = {tst & tasknr — case tst.tasknr of

[=10]
[i:is] = [i+1:is]
}
subTaskNr i tst = {tst & tasknr = | i:tst.tasknr]}
newSubTaskNr tst = {tst & tasknr = [-1:tst.tasknr|}

The systematic numbering is important because it is also used for garbage col-
lection of subtasks (see Sect. B.0).

Next doTask checks whether the task indeed is the next task to be activated
by inspecting the value of tst.activated:

— If not activated, the createDefault value is returned. This explains the over-
loading context restriction of doTask. As a consequence, an iTask always has
a value, just as an iData element.

— If activated, the task can be executed. This means that the user can select
this task via the web interface, and proceed by generating an input event for
this task. Task definitions are fully compositional, so the started tasks may
actually consist of many subtasks of arbitrary complexity. When a task is
started, it is either activated (or re-activated for further evaluation) or, the
task has already been finished in the past, its result is stored as an iData
object and is retrieved. In any of these cases, the result of a task (either
finished or not yet finished) is returned to the caller of doTask and the task
number is reset to its original value.

It is assumed that any task sets activated to True if the task is finished
(indicating that the next task can be activated), and to False otherwise. In
the latter case the user still has to do more work on it in the newly created
web page.

An Introduction to iTasks: Defining Interactive Work Flows for the Web 25

3.2 Basic Combinators of the Core System

As we have discussed in Sect. 2.4l sequential composition within the iTask toolkit
is based on monads. Thanks to uniqueness typing we can freely choose how to
thread the unique iTask state *TSt: either in explicit environment passing style
or in implicit monadic style. In the implementation of the iTask system we have
chosen for the explicit style: it gives more flexibility because we have direct access
to both the unique iTask state *TSt and the unique iData state *HSt as is shown
in the definition of editTask. However, to the application programmer *TSt should
be opaque, and for her we provide a monadic interface. In the core system, their
implementation is simply that of a state transformer function. Therefore, we do
not include their code.
The implementation of the alternative return_D function is straightforward:

return D :: a—Task a | gForm{j4}, iCreateAndPrint a
return D a = doTask (Atst — (a,{tst & html = tst.html ++ toHtml a})

The implementation of the prompting combinators 7>>and >>is also not very
difficult:

(7>) infix 5 :: [BodyTag] (Task a) —Task a | iCreate a
(7>>) prompt task = prompt_task
where
prompt_task tst=:{html = ohtml,activated}
| not activated = (createDefault,tst)
f (a,tst=:{activated,html = nhtml}) = task {tst & html = []}
| activated = (a,{tst & html = ohtml})
| otherwise = (a,{tst & html = ohtml -H prompt -+ nhtml})

(>>) infix 5 :: [BodyTag] (Task a) —Task a | iCreate a
(>>) prompt task = prompt_task
where
prompt_task tst=:{html = ohtml,activated}
| not activated = (createDefault,tst)
f (a,tst=:{html = nhtml}) = task {tst & html = [|}
= (a,{tst & html = ohtml -+ prompt -+ nhtml})

3.3 Reflection (Part I)

The behavior of the described core system is a combination of re-evaluating
the application and having the enhanced iData elements retrieve their previous
states that are possibly updated with the latest changes done by the application
user. The Clean application is still restarted from scratch when a new page is
requested from the browser. However, the application now automatically finds
its way back to the tasks it was working on during the previous incarnation. Any
iTask editor created with editTask automatically remembers its contents and state
(finished or not) while the other iTask combinators are pure functions which can
be recalculated and in this way the system can determine which other tasks have
to be inspected next. Tasks that are not yet activated might deliver some default

26 R. Plasmeijer, P. Achten, and P. Koopman

value, but it is not important because it is not used anywhere yet, and the task
produces no HTML code. In this way we achieve the same result as in Seaside,
albeit that we reconstruct the state of the run-time system by a combination of
re-evaluation from scratch and restoring of the previous edit states.

3.4 Work Flow Pattern Combinators of the Core System

The core system presented above is extendable. The sequential composition is
covered by the combinators =s> and #>>. In this section we introduce parallel
composition, repetition and recursion.

The infix operator (1 -&&- t3) activates subtasks ¢; and ¢5 and ends when
both subtasks are completed; the infix operator (¢; -11- t2) also activates two
subtasks t; and t5 but ends as soon as one of them terminates, but it is biased
to the first task at the same time. In both cases, the user can work on each
subtask in any desired order. A subtask, like any other task, can consist of any
composition of iTasks.

(-&&-) infixr 4 :: (Task a) (Task b) —Task (a,b) | iCreate a & iCreate b
(-&&-) taska taskb = doTask and
where and tst=:{tasknr}

f (a,tst=:{activated—adone}) = mkParSubTask 0 tasknr taska tst

f (b,tst=:{activated-bdone}) = mkParSubTask 1 tasknr taskb tst

= ((a,b),set_activated (adone && bdone) tst

(-11-) infixr 3 :: (Task a) (Task a) —Task a | iCreate a
(=11-) taska taskb = doTask or
where or tst=:{tasknr}
f (a,tst=:{activated=adone}) = mkParSubTask O tasknr taska tst
f (b,tst=:{activated=bdone}) = mkParSubTask 1 tasknr taskb tst
= (if adone a (if bdone b createDefault)
, set_activated (adone || bdone) tst

)

mkParSubTask :: Int TaskID (Task a) — Task a
mkParSubTask i tasknr task = task o newSubTaskNr o set_activated True o subTaskNr i

The function mkParSubTask is a special wrapper function for subtasks. It is used
to activate a subtask and to ensure that it gets a correct task number.
Another iTask combinator is foreverTask which repeats a task infinitely many
times.
foreverTask :: (Task a) —Task a | iCreate a
foreverTask task = doTask (foreverTask task o snd o task o newSubTaskNr)

As an example, consider the following definition:
t = foreverTask (sequenceITask -||- editTask "Cancel" createDefault)

In t the user can work on sequenceITask (Sect. 2], but while doing this, she
can always decide to cancel it. After completion of any of these alternatives the
whole task is repeated.

An Introduction to iTasks: Defining Interactive Work Flows for the Web 27

More general than repetition is to allow arbitrary recursive work flows. As we
have stated in Sect. 2.6l a crucial combinator for recursion is newTask.

newTask :: (Task a) —Task a | iCreate a
newTask task = doTask (task o newSubTaskNr)

(newTask t) promotes any user defined task t to a proper iTask such that it can
be recursively called without causing possible non-termination. It ensures that ¢
is only called when it is its turn to be activated and that an appropriate subtask
number is assigned to it. Consider the following example of a recursive work
flow:

getPositive :: Int — Task Int

getPositive i = newTask (getPositive‘ i)
where
getPositive‘ i = [Txt "Type in a positive number:"|

7>> editTask "Done" i => Jni —
if (ni > 0) (return ni) (getPositive ni)

A A

Function getPositive requests a positive number from the user. If this is the case
the number typed in is returned, otherwise the task calls itself recursively for
a new attempt. This example works fine. However, it would not terminate if
getPositive calls itself directly in line 5 instead of indirectly via a call to newTask.
Remember that every editor returns a value, whether it is finished or not. If
it is not yet finished, it returns createDefault. The default value for type Int
happens to be zero, and therefore by default getPositive‘ goes into recursion.
The function newTask will prevent infinite recursion because the indicated task
will not be activated when the previous task is not yet finished. Hence, one has
to keep in mind to regard getPositive as a task that can be recursively activated,
and not as a plain recursive function.
The combinator repeatTask repeats a given task, until the predicate p holds.

repeatTask task p = t createDefault
where
t v =newTask (task v) = v — if (p nv) (return_D nv) (t nv)

Using this combinator the task getPositive can be expressed as:

getPositive = repeatTask (Ai— [Txt "Type in a positive number:"]
75> editTask "Done" i) (Ax—x > 0)

Note the importance of the place of the newTask. If it would be moved to the
recursive call, by replacing (t v) by newTask t v, the task would always be exe-
cuted immediately for a first time (i.e. without waiting for activation). This is
generally not the desired behavior.

3.5 Reflection (Part II)

With the combinators presented above, iTasks can be composed as desired. As
discussed in Sect. 3], one can imagine all kinds of additional combinators. For
all well-known work flow patterns we have defined iTask combinators that mimic

28 R. Plasmeijer, P. Achten, and P. Koopman

their behavior. They have been discussed in Sect. 2l The actual implementation
of the combinators in the iTask library is more complicated than the combinators
introduced in the core system. There are additional requirements, such as:

Presentation issues: One can construct complicated tasks that have to be
presented to the user systematically and clearly. The system needs to prompt
the user for information on the right moment, remove feedback information
when it is no longer needed, and so on. Users should be able to work on
several tasks in any order they want. Such tasks have to be presented clearly
as well, e.g. by creating a separate web page for each task and a button to
navigate between these tasks.

Multiple users: A work flow system is a multi-user system. Tasks can be as-
signed to different users, persistent storage and retrieval of information in a
database needs to be handled, think about version control, ensure consistent
behavior by ruling out possible race conditions, ensure that the correct in-
formation is communicated to each user, inform a user that she has to wait
on information to be produced by someone else, and so on.

Efficiency: Real world work flow systems run for years. How can we ensure
that the system will scale up and that it can reconstruct itself efficiently?

Features: One can imagine many more options one would like to have. For
instance, it might be important that tasks are performed on time. A man-
ager might want to know which tasks and/or persons are preventing the
completion of other tasks.

The consequences for the implementation of the core system are described next.

3.6 The Actual iTask Implementation

In this section we discuss the most interesting aspects of the actual implemen-
tation by building on the core system.

Handling Multiple Users. On each event every i Task application is (re)started
for all its users. All tasks are recalculated from scratch, but only for one user
the tasks are shown. By default, tasks are assigned to user 0. As presented in
Sect. 2.7, users can be assigned to tasks with the operators @: and e::. We give
the HTML accumulator within the TSt environment (Sect. B)) a tree structure
instead of a list structure, and we keep track of the user to whom a task is
assigned, as well as the identification of the application user:

11 TSt ={...
, myld :: UserID //id of task user
, userld :: UserID //id of application user
, html :: HtmlTree // accumulator for html code
}

:: HtmlTree = BT [BodyTag]
| (@@:) infix O (UserID,String) HtmlTree

An Introduction to iTasks: Defining Interactive Work Flows for the Web 29

| (-@:) infix 0 UserID HtmlTree
| (+=+) infixl 1 HtmlTree HtmlTree
| (+1+) infixl 1 HtmlTree HtmlTree

defaultUser

(BT out) represents HTML output; ((u,name)ee:t) assigns the html tree ¢ to user
u where name is the label of the button with which the user can select this task;
(u-@:t) also assigns the html tree ¢ to user u, but now ¢t should not be displayed.
These two alternatives are used to distinguish between output for a given user,
and other output. The remaining constructors ({1+-+t2) (and (¢1+|+t2)) place
output t; left (above) of output t.

In a single-user application, the only user is defaultUser; in a multi-user appli-
cation, the current user can be selected with a menu at the top of the browser
window. This feature is added for testing, for the final application one needs
of course to add a decent login procedure. Initially, myId is defaultUser, userId is
the selected user, and the accumulator html is empty (BT []). After evaluation of
a task, the accumulator contains all HTML output of each and every activated
iTask. It is not hard to define a filtering function that extracts all tasks for the
current user from the output tree.

Version management is important as well for a multi-user web enabled system.
Back buttons of browsers and cloning of browser windows might destroy the
correct behavior of an application. For every user a version number is stored
and only requests matching the latest version are granted. An error message is
given otherwise after which the browser window is updated showing the most
recent version. Since we only have one application running on the server side,
storage and retrieval of any information is guaranteed to be indivisible such that
problems in this area cannot occur.

Another aspect to think about is that the completion of one task by one
user, e.g. a Cancel action, may remove tasks others are working on (see e.g.
the deadlines example in Section [Z])). This effects the implementation of all
choice combinators: one has to remember which task was chosen to avoid race
conditions.

Optimizing the Reconstruction of the Task Tree. An iTask application
reconstructs itself over and over each time a client browser is manipulated by
someone. The more progress made in the application, the more tasks are created.
Hence, the evaluation tree increases in size and it takes longer to reconstruct it.
In a naive implementation, this would lead to a linear increase in time per user
action on the work flow, which is clearly unacceptable.

We optimize the reconstruction process similar to the normal rewriting that
takes place in the implementation of functional languages such as Clean and
Haskell. When a closure is evaluated, the function call is replaced by its result.
Similar, when a task is finished, it can be replaced by its result. We have to
store such a result persistently, for which we can of course again use an iData
element. However, it is not necessary to optimize each result in order to avoid the
creation of too many iData storages. We can freely choose between recalculation
(saving space) or storing (saving time). In the iTask toolkit we have decided to

30 R. Plasmeijer, P. Achten, and P. Koopman

optimize “big” tasks only. Combinators such as repeatTask produce only inter-
mediate results and can be replaced by the next call to itself. For these kinds of
combinators the task tree will not grow at all. However, user defined tasks that
are created with newTask are likely being used to abstract from such “big” tasks.

Here is what the actual newTask combinator does, as opposed to the core version

of Sect. 3.4

newTask :: (Task a) —Task a | iData a

1.

newTask ¢ = doTask (Mtst=:{tasknr,hst} 2.
(taskval,hst) = mkStoreForm (Init,storeld) id hst 3.
f (done,v) = taskval.value 4,

| done = (v,{tst & hst =hst}) 5.
f (v,tst=:{activated = done,hst}) 6.
=1t {tst & tasknr = [-1:tasknr],hst = hst} 7.

| not done = (v,{tst & tasknr = tasknr}) 5.
g (_,hst) = mkStoreForm (Init,storeld) (const (True,v)) hst 9.
= (v,{tst & tasknr = tasknr, hst = hst}) 10.
) 11.
where storeId = mkFormlId (tasknr +> "_New") (False,createDefault) <@ Session 12.

A storage is associated with task ¢ (line 3) that initially has a default value
(line 12). If the task was finished in the past, it is not re-evaluated. Instead,
its value is retrieved from the storage (line 4 and 5), otherwise it needs to be
evaluated (lines 6-7). If the user actions have not terminated task ¢, then it has
not produced a final value yet, thus the storage need not be updated (line 8).
If the user has terminated the task, then the storage is updated with the final
value (line 9), and a boolean mark to prevent re-evaluation of this “redex”.

Garbage Collection of iData Objects. The optimization described above
prevents the task evaluation tree from growing, but all persistent iData objects
created in previous runs are not garbage collected automatically. Although cer-
tain results are not needed for the computation of the task tree anymore, one
nevertheless might want to keep them for other reasons. Consider the gather-
ing of statistical information such as “who has performed a certain task in the
past?” and “which tasks have taken a long time to complete?”. Another reason
is that one wants to remember a result of a task, but not of any of its subtasks.
We have therefore included variants of certain combinators in the iTask library,
such as repeatTaskGC and newTaskGC which automatically take care of the garbage
collection of their subtasks, no matter where they are stored. The numbering
discipline plays a crucial role in identifying which subtasks belong to a given
task, such that any choice of garbage collection strategy can be implemented.

Higher-Order Tasks. A distinctive feature of the iTask toolkit is the ability to
communicate higher-order tasks that have been partially evaluated (Sect. 2I0).
In the real world it is obvious that work that has been done partially can be
handed over to other persons who finish the work. This is not one of the standard
work flow patterns that can be found in contemporary work flow tools (see M])
We show that the iTask toolkit does support this work flow pattern, and that it
does so in a concise way. The complete realization of the (p-!>t) is as follows:

An Introduction to iTasks: Defining Interactive Work Flows for the Web 31
(->) infix 4 :: (Task s) (Task a) — Task (Maybe s,TClosure a) 1.
| iCreateAndPrint s & iCreateAndPrint a 2,

(=>) p t = doTask (Mtst=:{tasknr,html} 3.
f (v,tst=:{activated = done,html = task}) 4.
=1t {set (BT []) True tst & tasknr = taskId} 5.

f (s,tst=:{activated = halt,html = stop}) 6.
=p {set (BT []) True tst & tasknr = stopId} 7.

| halt = return (Just s, TClosure (close t)) 5.
(set html True tst) 9.

| done = return (Nothing,TClosure (return v)) 10.
(set (html +|+ task) True tst) 11

| otherwise = return (Nothing,TClosure (return v)) 12,
(set (html +|+ task +|+ stop) False tst) 13.

) 14.
where close t =1 o (set_tasknr taskId) 15.
set html done = (set_html html) o (set_activated done) 16.
stopId = [-1,0:tasknr] 17.
taskId = [-1,1:tasknr| 18,

Both the suspendable task ¢ and the terminator task p are evaluated (lines 4-5
and 6-7). Their current renderings are task and stop respectively, and they both
contain the most recent user edit operations. The most exciting spot is line 8: if p
is finished (condition halt is true), then the task ¢ as far as it has been evaluated
has to be returned. However one has to realize that a task ¢ is only a recipe
that is executed by applying it to its state. When a task is executed, it always
returns a result and a state, even if the task is not yet finished. This also holds
for task ¢ when it is activated in line 5. There actually are no partially evaluated
task closures in this system, there are only tasks and when they are applied they
return their result. The crucial issue is how to return a partially evaluated task if
none exist? The answer is given in line 15! Remember that an iTask application
can reconstruct itself completely from scratch. This property also holds for any
iTask expression in the application. The only thing we need is the task recipe
and the state of a task, and in particular, the task number stored in this state.
Given a task number and a task we can reconstruct the work done so far! So by
passing the task function and the task number to somebody else, the work can
be reconstructed and the person can continue the work. Line 15 assures that an
interrupted task is reapplied on the original task number when it is restarted.

4 Related Work

In the realm of functional programming, many solutions that have been inspiring
for our work have been proposed to program web applications. We mention just
a few of them in a number of languages: the Haskell CGIl library ﬂﬁ], the Curry
approach [12]; writing XML applications [d] in SMLserver [§]. One sophisticated
system is WASH/CGI by [@], based on Haskell. Here, HTML is produced as
an effect of the CGI monad whereas we consider HTML as a first-class citizen,
using data types. Instead of storing state, WASH/CGI logs all user responses and

32 R. Plasmeijer, P. Achten, and P. Koopman

I/0 operations. These are replayed when needed to bring the application to its
desired, most recent state. In iTasks, we replay the program instead of the session,
and restore the state of the program on-the-fly using the storage capabilities
of the underlying iData. Forms are programmed explicitly in HTML, and their
elements may, or may not, contain values. In the iTask toolkit, forms and tasks
are generated from arbitrary data types, and always have value. Interconnecting
forms in WASH/CGI is done by adding callback actions to submit fields, whereas
the iData toolkit uses a functional dependency relation.

Two more recent approaches that are also based on functional languages are
Links ﬂa] and Hop HE] Both languages aim to deal with web programming within
a single framework, just as the iData and iTask approach do. Links compiles to
JavaScript for rendering HTML pages, and SQL to communicate with a back-end
database. A Links program stores its session state at the client side. Notable dif-
ferences between Links and iData and iTasks are that the latter has a more refined
control over the location of state storage, and even the presence of state, which
needs to be mimicked in Links with recursive functions. Compiling to JavaScript
gives Links programs more expressive and computational power at the client
side: in particular Links offers thread-creation and message-passing communica-
tion, and finally, the client side code can call server side logic and vice versa.
The particular focus of Hop is on rendering graphically attractive applications,
like desktop GUI applications can. Hop implements a strict separation between
programming the user interface and the logic of an application. The main com-
putation runs on the server, and the GUI runs on the client(s). Annotations
decide where a computation is performed. Computations can communicate with
each other, which gives it similar expressiveness as Links. The main difference
between these systems and iTasks (and iData) is that the latter are restricted to
thin-client web applications, and provide a high degree of automation using the
generic foundation.

iData components that reside in iTasks are abstractions of forms. A pioneer
project to experiment with form-based services is Mawl @] It has been improved
upon by means of Powerforms BL used in the <bigwig> project M] These projects
provide templates which, roughly speaking, are HTML pages with holes in which
scalar data as well as lists can be plugged in (Mawl), but also other templates
(<bigwig>). They advocate compile-time systems, because this allows one to use
type systems and other static analysis. Powerforms reside on the client-side of a
web application. The type system is used to filter out illegal user input. Their
and our approach make good use of the type system. Because iData are encoded
by ADTs, we get higher-order forms for free. Moreover, we provide higher-order
tasks that can be suspended and migrated.

Web applications can be structured with continuations. This has been done by
Hughes, in his arrow framework ﬂﬂ} Queinnec states that “A browser is a device
that can invoke continuations multiply /simultaneously” [21]. Graunke et al [1(]
have explored continuations as one of three functional compilation techniques
to transform sequential interactive programs to CGl programs. The Seaside ﬂa]
system offers an API for programming web pages using a Smalltalk interpreter.

An Introduction to iTasks: Defining Interactive Work Flows for the Web 33

When waiting for new information from the browser, a Seaside application is
suspended and continues evaluation as soon as input is available. To make this
possible, the whole state of the interpreter’s run-time system is stored after a
page has been produced and this state is recovered when the next user event
is posted such that the application can resume execution. In contrast to iTask,
Seaside has to be by construction a single user system.

Our approach is simpler yet more powerful: every page has a complete (set
of) model value(s) that can be stored and recovered generically. An application
is resurrected by restarting the very same program, which recovers its previous
state on-the-fly.

Workflow systems are distributed software systems, and as such can also be
implemented using a programming language with support for distributed com-
puting such as D-Clean E], GdH [20], Erlang, and Java. iTasks, on the other
hand, makes effective use of the distributed nature of the web: web browsers act
as distributed rendering resources, and the server controls what gets displayed
where and when. Furthermore, the interactive components are created in a type-
directed way, which makes the code concise. There is no need to program the
data flow between the participating users, again reducing the code size.

Our combinator library has been inspired by the comprehensive analysis of
work flow patterns of over more than 30 contemporary commercial work flow sys-
tems M] These patterns are typically based on a Petri-net style, which implies
that patterns for distributing work (also called splitting) and merging (joining)
work are distinct and can be combined more or less arbitrarily. In the setting of
a strongly typed combinatorial approach such as the iTasks, it is more natural
to define combinator functions that pair splitting and merging patterns. For in-
stance, the two combinators -&&- and -| |- that were introduced in Sect. pair
the and split — and join and or split — synchronizing merge patterns. Concep-
tually, the Petri-net based approach is more fine-grained, and should allow the
work flow designer greater flexibility. However, we believe that we have captured
the essential combinators of these systems. We plan to study the relationship be-
tween the typical functional approach and the classic Petri-net based approach
in the near future.

Contemporary commercial work flow tools use a graphical formalism to specify
work flow cases. We believe that a textual specification, based on a state-of-the-
art functional language, provides more expressive power. The system is strongly
typed, and guarantees all user input to be type safe as well. In commercial sys-
tems, the connection between the specification of the work flow and the (type
of the) concrete information being processed, is not always well typed. Our sys-
tem is fully dynamic, depending on the values of the concrete information. For
instance, recursive work flows can easily be defined. In a graphical system the
flows are much more static. Our system is higher order: tasks can communicate
tasks. Work can be interrupted and conditionally moved to other users for fur-
ther completion. Last but not least: we generate a complete working multi-user
web application out of the specification. Database storage and retrieval of the
information, version management control, type driven generation of web forms,

34 R. Plasmeijer, P. Achten, and P. Koopman

handling of web forms, it is all done automatically such that the programmer
only needs to focus on the flow specification itself.

5 Conclusions

The iTask system is a domain specific language for the specification of work flows,
embedded in Clean. The specification is used to generate a multi-user interactive
web-based work flow management system.

The notation we offer is concise as well as intuitive. For functional program-
mers the monadic style of programming should look familiar. Users of commercial
work flow systems, who design work flows, typically use a graphical formalism
for this purpose. For this group of potential users a text based approach is likely
to be harder to understand. It should be investigated in what way a mapping
from a graphical approach to the textual approach can be constructed.

The iTask toolkit covers all standard work flow patterns in a combinatorial
style (see Appendix [A]). Moreover, it adds further expressive power in terms of a
strongly typed system, dynamic run-time behavior, and higher-order tasks that
can be suspended, passed on to other users, and continued. At the same time
it generates a multi-user interactive web-based application that automatically
handles sessions, state and state storage, HTML rendering, and more.

This latter feature is due to building the iTask toolkit on top of the iData
toolkit. This project provides further evidence that the iData concept is a ver-
satile, elementary unit to create interactive web applications. One particular
helpful design decision was to separate handling values and constructing the
rendering of the application in the iData toolkit. This allows the iTask toolkit to
separately handle the flow of information and the filtering of the correct HTML
code for the end user. The iData enabled us to do “task rewriting” in a sim-
ilar way as expressions are rewritten in languages such as Clean and Haskell.
Finally, iTasks profit from these advantages, and strengthen them by extended
the expressive power by defining work flow system on a sophisticated high level
of abstraction.

Future work will be the investigation of more “unusual” useful work flow
patterns. Also we are working on a new option for the evaluation of tasks on the
client side using Ajax technology in combination with an efficient interpreter for
functional languages [15].

Acknowledgements

The authors would like to thank Phil Wadler for his inspiring exercise, Erik
Zuurbier for the many discussions on the state-of-art of contemporary work flow
systems and as a source of many examples, and Wil van der Aalst for commenting
on the difference between the combinator approach and contemporary work flow
specification languages.

An Introduction to iTasks: Defining Interactive Work Flows for the Web 35

References

10.

11.

12.

13.

14.

15.

16.

17.

Alimarine, A.: Generic Functional Programming - Conceptual Design, Implemen-
tation and Applications. PhD thesis, University of Nijmegen, The Netherlands
(2005) ISBN 3-540-67658-9

. Atkins, D., Ball, T., Benedikt, M., Bruns, G., Cox, K., Mataga, P., Rehor, K.:

Experience with a Domain Specific Language for Form-based Services. In: Usenix
Conference on Domain Specific Languages (October 1997)

Brabrand, C., Mgller, A., Ricky, M., Schwartzbach, M.: Powerforms: Declarative
client-side form field validation. World Wide Web Journal 3(4), 205-314 (2000)

. Brabrand, C., Mgller, A., Schwartzbach, M.: The <bigwig> Project. ACM Trans-

actions on Internet Technology (TOIT) (2002)

Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without
tiers. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2006. LNCS, vol. 4709. Springer, Heidelberg (2007)

. Ducasse, S., Lienhard, A., Renggli, L.: Seaside - A Multiple Control Flow Web Ap-

plication Framework. In: Ducasse, S. (ed.), Proceedings ESUG 2004 International
Conference — Research Track, volume Technical Report IAM-04-008, pp. 231-254.
Institut fir Informatik und Angewandte Mathematik, University of Bern, Switzer-
land, November 7 (2004)

Elliot, C.: Tangible Functional Programming. In: Proceedings of the 12th ACM
SIGPLAN International Conference on Functional Programming (ICFP 2007),
Freiburg, Germany, October 1-3, pp. 59-70. ACM, New York (2007)

Elsman, M., Hallenberg, N.: Web programming with SMLserver. In: Dahl, V.,
Wadler, P. (eds.) PADL 2003. Springer, Heidelberg (2003)

Elsman, M., Larsen, K.F.: Typing XHTML Web applications in ML. In: Jayara-
man, B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 224-238. Springer, Heidelberg
(2004)

Graunke, P., Krishnamurthi, S., Findler, R.B., Felleisen, M.: Automatically Re-
structuring Programs for the Web. In: Feather, M., Goedicke, M. (eds.) Proceedings
16th IEEE International Conference on Automated Software Engineering (ASE
2001). IEEE CS Press, Los Alamitos (2001)

Hanna, K.: A Document-Centered Environment for Haskell. In: Butterfield, A.,
Grelck, C., Huch, F. (eds.) IFL 2005. LNCS, vol. 4015. Springer, Heidelberg (2006)
Hanus, M.: High-Level Server Side Web Scripting in Curry. In: Ramakrishnan, . V.
(ed.) PADL 2001. LNCS, vol. 1990, pp. 76-92. Springer, Heidelberg (2001)
Hinze, R.: A new approach to generic functional programming. In: The 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Massachusetts, Boston, pp. 119-132 (January 2000)

Hughes, J.: Generalising Monads to Arrows. Science of Computer Programming 37,
67-111 (2000)

Jansen, J., Koopman, P.; Plasmeijer, R.: Efficient Interpretation by Transforming
Data Types and Patterns to Functions. In: Nilsson, H. (ed.) Proceedings Seventh
Symposium on Trends in Functional Programming, TFP 2006, Nottingham, UK,
April 19-21, 2006, pp. 157-172. The University of Nottingham (2006)

Meijer, E.: Server Side Web Scripting in Haskell. Journal of Functional Program-
ming 10(1), 1-18 (2000)

Plasmeijer, R., Achten, P.: A Conference Management System based on the iData
Toolkit. In: Horvath, Z., Zsék, V., Butterfield, A. (eds.) IFL 2006. LNCS, vol. 4449,
pp. 108-125. Springer, Heidelberg (2007)

36

18.

19.

20.

21.

22.

23.

24.

25.

A

R. Plasmeijer, P. Achten, and P. Koopman

Plasmeijer, R., Achten, P.: iData For The World Wide Web - Programming In-
terconnected Web Forms. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS,
vol. 3945. Springer, Heidelberg (2006)

Plasmeijer, R., Achten, P.: The Implementation of iData - A Case Study in Generic
Programming. In: Butterfield, A., Grelck, C., Huch, F. (eds.) IFL 2005. LNCS,
vol. 4015, pp. 106-123. Springer, Heidelberg (2006)

Pointon, R., Trinder, P., Loidl, H.: The Design and Implementation of Glasgow dis-
tributed Haskell. In: Mohnen, M., Koopman, P. (eds.) IFL 2000. LNCS, vol. 2011.
Springer, Heidelberg (2001)

Queinnec, C.: The influence of browsers on evaluators or, continuations to pro-
gram web servers. In: Proceedings Fifth International Conference on Functional
Programming (ICFP 2000) (September 2000)

Serrano, M., Gallesio, E., Loitsch, F.: Hop, a language for programming the web
2.0. In: Proceedings ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2006), Portland,
Oregon, USA, pp. 975-985, October 22-26 (2006)

Thiemann, P.: WASH/CGI: Server-side Web Scripting with Sessions and Typed,
Compositional Form. In: Krishnamurthi, S., Ramakrishnan, C. (eds.) PADL 2002.
LNCS, vol. 2257, pp. 192-208. Springer, Heidelberg (2002)

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. QUT Technical report, FIT-TR-2002-02, Queensland University of Technol-
ogy, Brisbane (2002)

7Zsok, V., Hernydk, Z., Horvath, Z.: Distributed Pattern Design in D-Clean. In:
Central-European Functional Programming School, CEFP 2005, oldal, vol. 33
(2005),

http://plc.inf.elte.hu/cefp/download/dclean dbox lecturenotes.pdf

iTask Toolkit

This is the complete api of the iTask toolkit.

definition module iTasks

// iTasks library for defining interactive multi-user workflow tasks (iTask) for the web
// defined on top of the iData library

// ©iTask & iData Concept and Implementation by Rinus Plasmeijer, 2006,2007 - MJP
// Version 1.0 - april 2007 - MJP
// This library is still under construction - MJP

import iDataSettings, iDataButtons

derive gForm Void
derive gUpd Void, TCl
derive gPrint Void, TCl
derive gParse Void
derive gerda Void

http://plc.inf.elte.hu/cefp/download/dclean_dbox_lecturenotes.pdf

An Introduction to iTasks: Defining Interactive Work Flows for the Web 37

:: *TSt
:: Task a
:: Void

// task state

:=— St *TSt a // an interactive task
= Void

// for tasks returning non interesting results,
// won’t show up in editors either

/% Initiating the iTask library: to be used with an iData server wrapper!

startTask

startNewTask
singleUserTask
multiUserTask

multiUserTask2
*/

startTask
startNewTask

singleUserTask
multiUserTask
multiUserTask2

/x Setting options
. set iData attribute globally for indicated (composition of) iTasks

9
*/

class (<<@) infix 3 b ::

:: start iTasks beginning with user with given id, True if trace allowed

id < 0 : for login purposes.

o same, lifted to iTask domain, use it after a login ritual
;o start wrapper function for single user
o start wrapper function for user with indicated id with option to switch

between [0..users — 1]

: same, but forces an automatic update request every (n minutes, m seconds)

'Int !'Bool !(Task a) !*HSt — (a,[BodyTag],!*HSt) | iCreate a
1Int !Bool !(Task a) —Task a | iCreateAndPrint a

'Int !Bool !(Task a) !*HSt — (Html,*HSt) | iCreate a
'Int !'Bool !(Task a) !#HSt — (Html,*HSt) | iCreate a

:: !(!Int,!Int) !Int !Bool !(Task a) !*¥HSt — (Html,*HSt) | iCreate a

for any collection of iTask workflows

(Task a) b—Task a

:: GarbageCollect = Collect | NoCollect

instance <<@

defaultUser

Lifespan // default: Session
StorageFormat // default: PlainString
Mode // default: Edit
GarbageCollect // deafult: Collect
=20 // default id of user

// Here follow the iTask combinators:

/* promote any iData
:: create a task editor to edit a value of given type,

editTask

*/

editTask

1t String a

editor to the iTask domain
and add a button with given name to finish the task

—Task a | iData a

/x standard monadic combinators on iTask

)

()

return V'

*/

(=) infix 1
(f>) infixl 1

return_V

: for sequencing: bind
:: for sequencing: bind, but no argument passed

lift a value to the iTask domain and return it

:: (Task a) (a—Task b) —Task b | iCreateAndPrint b
:: (Task a) (Task b) — Task b
ta —Task a | iCreateAndPrint a

38 R. Plasmeijer, P. Achten, and P. Koopman

/% prompting variants

(2>) :: prompt as long as task is active but not finished
(=) :: prompt when task is activated
<) ;2 repeat task as long as predicate does not hold, give error otherwise
return VF ;o return the value and show the HTML code specified
return D :: return the value and show it in iData display format
*/
(7>>) infix 5 :: [BodyTag| (Task a) —Task a | iCreate a
(>>) infix 5 :: [BodyTag] (Task a) —Task a | iCreate a
(1) infix 6 :: (Task a) (a— .Bool, a— [BodyTag])
—Task a | iCreate a
return_VF :: a [BodyTag] —Task a | iCreateAndPrint a
return_D iia —Task a | gForm {4}, iCreateAndPrint a

/x Assign tasks to user with indicated id

(@:) 22 will prompt who is waiting for task with give name

(@::) :: same, default task mname given

*/

(@:) infix 3 :: !(!String,!Int) (Task a) —Task a | iCreateAndPrint a
(@::) infix 3 :: !Int (Task a) —Task a | iCreate a

/+ Handling recursion and loops

newTask ;o use the to promote a (recursively) defined user function to as task
foreverTask ::anfinitely repeating Task

repeatTask ;o repeat Task until predict is valid

*/

newTask :: !String (Task a) —Task a | iData a

foreverTask i (Task a) —Task a | iData a

repeatTask_Std :: (a—Task a) (a—Bool) —a—Task a | iCreateAndPrint a

/x Sequencing Tasks:

seqTasks :: do all iTasks one after another, task completed when all done
*/
seqTasks :: [(String,Task a)] —Task [a] | iCreateAndPrint a

/* Choose Tasks

buttonTask :: Choose the iTask when button pressed

chooseTask :: Select one iTask with button, buttons horizontally displayed
chooseTaskV :: Select one iTask with button, buttons vertically displayed
chooseTask pdm —:: Select one iTask with pull down memu

mchoiceTask :: Select several iTasks with marked check boxes

*/

buttonTask :: String (Task a) — Task a | iCreateAndPrint a
chooseTask [(String,Task a)] —Task a | iCreateAndPrint a
chooseTaskV [(String,Task a)] — Task a | iCreateAndPrint a
chooseTask_pdm [(String,Task a)] — Task a | iCreateAndPrint a
mchoiceTasks [(String,Task a)] — Task [a] | iCreateAndPrint a

/% Dom Tasks parallel / interleaved and FINISH as soon as SOME Task completes:
orTask ;2 both iTasks in any order, completion when first done

—-) 1 same, now as infix combinator

orTask2 :: both iTasks in any order, completion when first done

An Introduction to iTasks: Defining Interactive Work Flows for the Web 39

orTasks :: all iTasks in any order, completion when first done

*/

orTask :: (Task a, Task a) —Task a | iCreateAndPrint a

(=11-) infixr 3 :: (Task a) (Task a) — Task a | iCreateAndPrint a

orTask2 :: (Task a, Task b) —Task (EITHER a b) | iCreateAndPrint a
& iCreateAndPrint b

orTasks :: [(String, Task a)] —Task a | iData a

/* Do Tasks parallel / interleaved and FINISH when ALL Tasks done:

andTask ;2 both iTasks in any order, completion when both done

(E#5-) 1 same, now as infix combinator

andTasks ::oall iTasks in any order, completion when all done

andTasks mu 12 assign task to indicated users, task completed when all done

*/

andTask :: (Task a, Task b) — Task (a,b) | iCreateAndPrint a
& iCreateAndPrint b

(-&&-) infixr 4 :: (Task a) (Task b) —Task (a,b) | iCreateAndPrint a
& iCreateAndPrint b

andTasks :: [(String,Task a)] — Task [a] | iCreateAndPrint a

andTasks_mu :: String [(Int,Task a)] — Task [a] | iData a

/+ Time and Date management:
waitForTimeTask :: Task is done when time has come
waitForTimerTask:: Task is done when specified amount of time has passed

waitForDateTask :: Task is done when date has come

*/

waitForTimeTask :: HtmlTime — Task HtmlTime
waitForTimerTask: : HtmlTime — Task HtmlTime
waitForDateTask :: HtmlDate — Task HtmlDate

/+ Experimental department
Will not work when the tasks are garbage collected to soon !!

-5 ;i a task, either finished or interrupted (by completion of the first task)
is returned in the closure if interrupted, the work done so far is
returned(!) which can be continued somewhere else

channel :: splits a task in respectively a sender task closure and receiver task
closure; when the sender is evaluated, the original task is evaluated as
usual; when the receiver task is evaluated, it will wait upon completion
of the sender and then gets its result;

Important:
Notice that a receiver will never finish if you don’t activate the
corresponding receiver somewhere.

closureTask :: The task is executed as usual, but a receiver closure is returned
immediately. When the closure is evaluated somewhere, one has to wait
until the task is finished. Handy for passing a result to several
interested parties.

closureLzTask :: Same, but now the original task will not be done unless someone is asking
for the result somewhere.

*/

: TC1 a =TCl (Task a)

40 R. Plasmeijer, P. Achten, and P. Koopman

(='>) infix 4 :: (Task stop) (Task a) — Task (Maybe stop,TCl a) | iCreateAndPrint stop
& iCreateAndPrint a
channel :: String (Task a) — Task (TCL a,TCl a) | iCreateAndPrint a
closureTask :: String (Task a) — Task (TCL a) | iCreateAndPrint a
closureLzTask :: String (Task a) — Task (TCL a) | iCreateAndPrint a

/* Operations on Task state

taskld 22 id assigned to task
userld ;2 id of application user
addHtml 22 add HTML code

*/

taskId :: TSt — (Int,TSt)
userIld :: TSt — (Int,TSt)
addHtml :: [BodyTag] TSt — TSt

/% Lifting to iTask domain

(=>) co lift functions of type (TSt— (a,TSt)) to iTask domain
(@) :o lift functions of (TSt— TSt) to iTask domain
applData :: lift iData editors to iTask domain
appHSt s lift HSt domain to TSt domain, will be executed only once
appHSt2 s lift HSt domain to TSt domain, will be executed on each invocation
*/
(¥>) infix 4 (TSt — (a,TSt)) (a— Task b) — Task b
(e>) infix 4 (TSt — TSt) (Task a) —Task a
appIData :: (IDataFun a) — Task a | iData a
appHSt :: (HSt — (a,HSt)) — Task a | iData a
appHSt2 (HSt — (a,HSt)) — Task a | iData a
/x Controlling side effects
Once :; task will be done only once, the value of the task will be remembered
*
/

Once :: (Task a) —Task a | iData a

	An Introduction to $\sf iTasks$: Defining Interactive Work Flows for the Web
	Introduction
	Overview of the iTask System
	A Simple Example
	Playing with Types
	Playing with Attributes
	Sequencing with Monads: Wadler's Exercise
	Sequence and Choice: A Single Step Coffee Machine
	Repetition, Recursion and State: A Coffee Machine
	Multi-user Workflows
	Speculative Tasks and Multiple Users: Deadlines
	Parameterized Tasks: A Reviewing Process
	Higher Order Tasks: Shifting Work
	Summary

	The $\sf iTasks$ Core System
	$\sf iData$ as Primitive $\sf iTask$ in the Core System
	Basic Combinators of the Core System
	Reflection (Part I)
	Work Flow Pattern Combinators of the Core System
	Reflection (Part II)
	The Actual $\sf iTask$ Implementation

	Related Work
	Conclusions
	$\sf iTask Toolkit$

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

