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Abstract

We define a uniqueness type system for the core lambda calculus which, unlike
Clean’s uniqueness system and the system we proposed in a previouspaper [1], does
not involve inequalities. We claim that this makes the type system sufficiently simi-
lar to the Hindley/Milner type system that standard type inference algorithms can be
applied, and that it can easily be modified to incorporate modern extensions such as
arbitrary rank types and generalized algebraic data types.We substantiate this claim
by sketching out how such a system would be defined.

1 INTRODUCTION

Referential transparency (the principle that we can substitute equals for equals) is
an important feature of pure functional programming languages such asClean and
Haskell and is treasured because it facilitates reasoning about programs. A direct
consequence of insisting on referential transparency is that functions must not be
allowed to modify their arguments. For example, given the definition of split (△):

f △ g = λx · ( f x,gx)

we would expect to be able to prove that

∀ f ,snd◦ ( f △ id) = id

but this will only hold if f does not modify its argument. Itis however safe for a
function to modify its argument if the function has the sole reference to that argu-
ment. This is the basis of substructural type systems such asClean’s uniqueness
type system and the one we present here.

As an example, consider a functionclearArray that sets all values in an array
to zero (given a primitive typeArray). SinceclearArray will destructively modify
its argument, it has the following type:

clearArray :: Array•
u f
−→
×

Array•

The details of this type will become clear in the rest of this paper. Suffice to say at
this point that the bullet (•) in the domain of the function type indicates thatclear-
Array requires aunique reference to an array; likewise, the bullet in the codomain
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of the function indicates thatclearArray promises to return a unique reference to an
array. An expression such asclearArray △ id then is ill-typed and will be rejected
by the type checker (we will consider the type of△ in Section 3.3).

Uniqueness types in Clean (and in the type system we proposedpreviously [1])
often have constraints associated with them. In Clean, for example, the functionfst
that returns the first element of a pair has type

fst :: (au,bv)w → au, [w ≤ u,w ≤ v]

The constraint[w ≤ u] denotes that ifu is unique, thenw must be unique (u implies
w)1. To understand the need for this constraint, suppose we havea pair with two
elements of typea andb. The only references to these elements are from this pair,
soa andb get a unique (•) attribute. Further, suppose that there are two references
x andy to the pair. Since there is more than one reference to the pair, the attribute
of the type of the pair is non-unique (×). We can visualize this as follows:

×(·, ·)

a• b•

x y

In this example, if we were allowed to extract a unique element from a non-unique
pair, we could extracta from the pair and pass it to a functionf that expects a
unique argument and modifies it. But then the value ofa as seen through the other
reference (y) will also change, and referential transparency is lost. Therefore, we
can only extract a unique element from a container if the container is unique itself.

Although these constraints are evidently important, they complicate the work
of the type checker (the heart of the typechecker is a unification algorithm, and
unification cannot deal with inequalities) and make extending the type system to
support modern features such as arbitrary rank types difficult (Section 6.4).

In this paper we show how we can recode the attribute inequalities as attribute
equalities. This results in a uniqueness type system which is sufficiently like the
Hindley/Milner type system that standard type inference algorithms can be applied,
and which can be extended easily using existing techniques to support for example
arbitrary rank types and generalized algebraic data types (we outline such a system
in Section 6).

2 SHARING ANALYSIS

The typing rules we will present in this paper depend on a sharing analysis which
marks variable uses as exclusive (⊙) or shared (⊗). This sharing analysis could

1Perhaps the choice of the symbol≤ is unfortunate. In logica ≤ b denotesa implies
b, whereas hereu ≤ v denotesv impliesu. Usage here conforms toClean conventions.
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be more or less sophisticated [2], but if in any derivation ofthe program the same
variable could be evaluated twice, it must be marked as shared. In this paper, we
assume sharing analysis has been done, leaving a formal definition to future work.
Here we consider a few simple examples only. The identity function is marked as

id = λx · x⊙

since there is only one reference tox in the body ofid. In the definition ofsplit,
however, there are two references to the same variable, which must therefore be
marked as shared:

f △ g = λx · ( f⊙ x⊗,g⊙ x⊗)

The sharing analysis does not make a distinction between variables that correspond
to functions and variables that correspond to function arguments. For example, the
function twice is marked as

twice= λ f ·λx · f⊗ ( f⊗ x⊙)

3 TYPING THE CORE λ−CALCULUS

In this section, we consider a uniqueness type system for thecore lambda calculus,
which is completely equality based (we do not use inequalities anywhere). The
main typing relation used in this section is

Γ,uγ ⊢ e : τν

which reads as “in environmentΓ, given uniqueness attributeuγ, expressione has
attributed typeτν”. The purpose ofuγ will become clear when we discuss the
rule for abstraction in Section 3.2. The environment maps expression variables to
attributed types.

The expression and type language for the core system are defined in Table 1.
The expression syntax is the standard core lambda calculus,except that variables
are marked as exclusive or shared. The type language includes base types, type
variables and functions. The domain and codomain of the arrow (function con-
structor) are both attributed types, and the arrow itself gets two attributes: the
“normal” uniqueness attributeν (which indicates whether there is more than one
reference to the function) and an additional attributeνa, discussed in Section 3.2.

The definition of attributes is different from their definition in our previous
paper [1] (and from their definition inClean, too). We treat a uniqueness attribute
as a boolean attribute, reading True (unique: there is only one reference to the
term) for• and False (not unique: unknown number of references) for×. Then, we
allow for arbitrary boolean expressions involving variables, negation, conjunction
and disjunction as uniqueness attributes2. It may not be immediately obvious why

2Uniqueness attributes with free variables only have a meaning in an environment
where those free variables are bound.
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e ::= expression ν ::= attribute
x⊙ variable (exclusive) u variable
x⊗ variable (shared) • unique
λx · e abstraction × non-unique
ee application ¬ν negation

ν1&ν2 conjunction
τν ::= type ν1|ν2 disjunction

Bν base typeB
tν variable

τν1
1

ν
−→
νa

τν2
2 function

TABLE 1. Expression and type language for the core system

this is useful, but as it turns out, all the improvements of the system as presented
in this paper over the previous are made possible by this one change in the type
language.

Note the conspicuous absence of constraints in the type language. We will
explain how we deal with this when we discuss the individual typing rules.

3.1 Variables

To check that a variablex marked as exclusive has attributed typeτν, we simply
look up the variable in the environment3. For shared variables, we need to correct
the type found in the environment to be non-unique:

(Γ,x : τν),uγ ⊢ x⊙ : τν VAR⊙

(Γ,x : τν),uγ ⊢ x⊗ : τ×
VAR⊗

VAR⊗ does not require the typein the environment to be non-unique. This effec-
tively means that variables can lose their uniqueness4. For example, consider the
functionmkPair = λx · (x⊗,x⊗). The body ofmkPair can be visualized as

v
(·, ·)

a×

In other words, both components of the pair point to the same element, which is
therefore non-unique by definition. Thus, the type ofmkPair is

mkPair ::au u f
−→
×

(a×,a×)v

3When a variable is marked as exclusive, that does not automatically make it unique;
for example, the identity functionλx · x⊙ has typeau → au, notau → a•.

4This is also the main difference between a uniqueness type system and an affine type
system, where variables are either affine or not, but cannot lose their “affinity”
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(The attributes on the arrow will be explained in Section 3.2). The previous version
of our type system [1] would assign the same type to this term,but in Clean it
would be assigned a different type as explained in [1] (briefly, type variables can
be function valued, and functions are not allowed to lose their uniqueness in Clean;
therefore, type variables cannot lose their uniqueness either).

3.2 Abstraction

Before we discuss the rule for abstraction, we must first point out a subtlety due to
currying. Consider the function that returns the first of itstwo arguments:

const= λx ·λy · x⊙

Temporarily ignoring the attributes on arrows,const has type

const ::au → bv → au

Givenconst, what would be the type of

funnyMkPair= λx · let f = constx⊙ in ( f⊗1, f⊗ 2)

It would seem that sincef has typebv → au, this term has type

funnyMkPair ::au → (au,au)w

but this is clearly wrong: thea’s in the result type are shared within the pair, so
they must be non-unique. How is this problem solved? In addition to their normal
uniqueness attribute, functions have an additional attributeνa. The purpose of this
attribute is to indicate whether the function needs to be unique on application: a
function with typeau −→

×
bv does not need to be unique when it is applied, but a

function with typeau −→
•

bv does.

Recall from the introduction that if we want to extract a unique element from
a container, the container must be unique itself. When we execute a function, the
function can extract elements from its closure (the environment which binds the
free variables in the body of the function). If any of those elements is unique,
executing the function will involve extracting unique elements from a container
(the closure), which must therefore be unique itself. Sincewe do not distinguish
between a function and its closure in the lambda calculus, this means that the func-
tion must be unique. To summarize, a function needs to be unique on application
(that is, a function can be applied only once) if the functioncan access unique
elements from its closure.

Going back to the example, the full type off in the definition offunnyMkPair
is therefore

f :: bv u f
−→

u
au

In other words, if you want a uniquea to be returned fromf , f must be unique
when it is applied. In the definition offunnyMkPair, f is not unique when applied
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since it is marked as shared (u f = ×), so as expectedfunnyMkPair has the same
type asmkPair:

funnyMkPair ::au → (a×,a×)w

It should be clear from the preceding discussion that to be able to type a function,
we need to know whether the function will be able to extract unique elements from
its closure. This is indicated byuγ in the typing relation, and will be the case if
the function is defined within another function, where the argument to the outer
function is unique. Initially,uγ will be ×, but as soon as we start typechecking the
body of a lambda abstraction,uγ must be unique when the argument to the lambda
abstraction is unique. Using constraints, we can thereforegive the following rule
for lambda abstraction:

(Γ,x : τν1
1 ),uγ′ ⊢ e : τν2

2 νa ≤ uγ,uγ′ ≤ ν1,uγ′ ≤ uγ

Γ,uγ ⊢ λx · e : τν1
1

ν f
−→
νa

τν2
2

CONSTRABS

The constraints specify thatνa must be unique whenuγ is, anduγ′ (used to type the
body of the abstraction) must be unique when eitheruγ is orν1 is. Without making
the system more restrictive, we can remove these constraints by stating thatνa must
be equal to uγ, and by using the disjunction ofuγ andν1 to type the body of the
abstraction, thus:

(Γ,x : τν1
1 ),uγ|ν1 ⊢ e : τν2

2

Γ,uγ ⊢ λx · e : τν1
1

ν f
−→
uγ

τν2
2

ABS

3.3 Application

The rule for application must enforce that functions which must be unique when
applied, are unique when applied. Again, we can use a constraint to express this
property:

Γ,uγ ⊢ e1 : τν1
1

ν f
−→
νa

τν2
2 Γ,uγ ⊢ e2 : τν1

1 ν f ≤ νa

Γ,uγ ⊢ e1 e2 : τν2
2

CONSTRAPP

How can we model the requirementν f ≤ νa without using constraints? The easiest
solution is to require thatν f = νa:

Γ,uγ ⊢ e1 : τν1
1

νa−→
νa

τν2
2 Γ,uγ ⊢ e2 : τν1

1

Γ,uγ ⊢ e1 e2 : τν2
2

APP

While this makes the type system more restrictive, that willnot be very noticeable
in practice; besides, it is possible to give a rule for application which is not more
restrictive (and yet does not use constraints). Both these issues are discussed in
Section 4.
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3.4 Examples

We discuss two examples. First, we consider the type ofapply = λ f ·λx · f⊙x⊙:

apply ::(au ua−→
ua

bv)
u f
−→
×

au u f ′
−→
ua

bv

Unsurprisingly,apply takes a functionf from a to b, and a term of typea, and
returns a term of typeb. Sinceapply f appliesf , if f must be unique on application,
it must be unique when passed as an argument toapply (in the type ofapply, this
requirement is encoded by specifying thatf must have the same attribute below
and above the arrow). Finally, iff is unique, thenapply f must be unique on
application, since it can extract a unique element from its closure (that is,f ).

The type of△, discussed in the introduction, is only slightly more complicated:

△:: (a×
u1−→
u1

bv)
u f
−→
×

(a×
u2−→
u2

cw)
u f ′
−→

u1
au u f ′′

−−−→
u1|u2

(bv,cw)z

In words,△ wants two functionsf andg, which return abv and acw, given a non-
uniquea, and returns a pair of type(bv,cw)z. If either f or g must be unique on
application, then they must be unique when they are passed asarguments to△, as
△ will apply them. Finally, f △ g must itself be unique on application when either
f or g is unique, because if they are,f △ g will be able to extract unique elements
from its closure (i.e.,f andg) when it is applied. The functionclearArray from
the introduction cannot be passed as an argument to△ since it does not accept
non-unique arguments (Array• does not unify witha×).

4 REFLECTION ON THE CORE SYSTEM

In Section 3.3, we claimed that it is possible to give a rule for application which
does not use constraints but is not more restrictive than OLDAPP. One solution is
to use a disjunction with a free variable:

Γ,uγ ⊢ e1 : τν1
1

ν f |νa
−−−→

νa
τν2

2 Γ,uγ ⊢ e2 : τν1
1

Γ,uγ ⊢ e1e2 : τν2
2

APP′

Whenνa =×, ν f |νa reduces toν f (a free variable), but whenνa = •, ν f |νa reduces
to•. So, whenνa =×, the function may or may not be unique, but whenνa = •, the
function must be unique, which is exactly what the constraint[ν f ≤ νa] specified.
We nevertheless prefer rule APP (requiring thatν f = νa), since it leads to simpler
types. For example, based on rule APP′, split would have the type

△ :: (a×
u f1 |ua1−−−−→

ua1

bv)
u f
−→
×

(a×
u f2 |ua2−−−−→

ua2

cw)
u f ′

−−−−→
u f1 |ua1

au u f ′′
−−−−−−−−→
u f1 |ua1|u f2 |ua2

(bv,cw)z

which is still much better than the type our previous type system would assign, but
rather complex all the same.
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However, we claimed that rule APP is not as restrictive as it may seem. An
expression will be rejected by APPbut allowed by APP′ if and only if the function
that we are applying is unique, but does not need to be unique on application; so,
if we have an expressionf x where f has type

f :: au •
−→
×

bv

Clearly,• does not unify with×, so rule APP will reject this application. The cor-
responding error message will be a bit mystifying; something like: “The function
you are applying is too unique (please use it more than once)”. Of course, this is a
direct consequence of replacing the implication by an equality. However, it is very
unlikely that f has the type shown above! It is much more likely to have the type

f :: au u f
−→
×

bv

That is, it is much more likely to be polymorphic in its uniqueness than actually be
unique. None of the typing rules even mention• anywhere! The typing rules force
terms to be non-unique if they are shared, but they never force them to be unique.
Given the latter type off , rule APP has no difficulty typing the application, since
u f trivially unifies with×.

In the presence of algebraic data types and pattern matching, we can apply a
similar technique. Recall the type offst in Clean (discussed in the introduction).

fst :: (au,bv)w u f
−→ au, [w ≤ u,w ≤ v]

We can recode the constraints as follows:

fst :: (au,bv)u|v|w u f
−→
×

au

That is, the pair must be unique if eitheru or v is unique, but if neitheru nor v is
unique, the pair may or may not be unique (w). This is a faithful translation of the
implication; we can also give a slightly more restrictive type:

fst :: (au,bv)u|v u f
−→
×

au

This type requires the pair to be non-unique if bothu andv are non-unique. How-
ever, as for functions, the pair is much more likely to be polymorphic in its unique-
ness than actually be unique, so the fact that this (simpler)type of fst is more
restrictive than it needs to be will not be very noticeable inpractice. Finally, since
fst does not refer to the second component of the pair at all, we could even givefst
the type

fst :: (au,bv)u u f
−→
×

au

which is arguably the most intuitive type we could givefst; however, this final type
would require slightly more advanced typing rules to analyze which variables are
referenced and which are not.
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5 TYPE INFERENCE

One advantage of removing constraints from the type language is that standard
inference algorithms (such as algorithmW [3]) can be applied without any mod-
ifications. The inference algorithm will depend on a unification algorithm, which
must be modified in two ways. It must treat a unification goalτν1

1
.
= τν2

2 as two sep-
arate goalsτ1

.
= τ2 andν1

.
= ν2 (in other words, base types and their attributes must

be unified independently), and it must be adapted to deal withboolean expressions.
The rest of this section explains how boolean unification works.

Consider the function that returns the first of its three arguments.

fst3= λx ·λy ·λz · x⊙ :: au u f
−→
×

bv u f ′
−→

u
cw u f ′′

−−→
u|v

au

Given two variablesm andn, with typesau andbv, we have

g = (λx ·λy ·λz · x⊙)m⊙ n⊙ :: cw u f ′′
−−→
u|v

au

Now suppose we have a functionh with the following type:

h :: (cw u f ′′
−−→
•

au) → . . .

Is the applicationhg well-typed? If it is, we must be able to unifyu|v and•. Of
course, there are various solutions to this equation, for example

[

u 7→ •
v 7→ v

] [

u 7→ u
v 7→ •

] [

u 7→ •
v 7→ •

]

(Recall that we treat attributes as boolean expressions.) Since there are solutions,
hg is certainly well-typed; but whatis its type? None of the solutions listed above
is most general, and it not so obvious that the equationu|v = • even has a most
general unifier, which would mean that we lose principal types. Fortunately, it
turns out that unification in a boolean algebra is unitary [4]. In other words, if a
boolean equation has a solution, it has a most general solution. In the example, one
most general solution is

[

u 7→ u
v 7→ v|¬u

]

Boolean unification has an even stronger property: if a boolean equation has a
solution, it will have areproductive unifier. Recall that for a unifierθ to be a most
general unifier, we must have the property that for all other unifiersζ,

ζ = ζ′ ◦σ for some unifierζ′

A unifier σ is a reproductive unifier if for all other unifiersζ,

ζ = ζ◦σ

XI–9



There are two well-known algorithms for unification in a boolean algebra, known
as Löwenheim’s formula and successive variable elimination. For the core type
system defined in this paper, either technique will work, butwhen we scale the type
system to arbitrary rank types (Section 6), only successivevariable elimination is
practical5. The description of successive variable elimination we give here is a
combination of the methods described in [4] and [5], but is better suited than either
for our purposes. Switching temporarily to the more usual notation for boolean
expressions (as it makes the definitions clearer), to solve an equationν1

.
= ν2, it

suffices to solve
(ν1 ·ν′2)+ (ν′1 ·ν2) = 0

Successive variable elimination is then defined as follows.Let

t(x) = x′ · t(0)+ x · t(1)

and definee = t(0) · t(1). Then,

1. Every unifier oft ≈ 0 is a unifier ofe ≈ 0.

2. If σe is a reproductive unifier ofe ≈ 0 andx /∈ dom(σe), then

σt := σe ∪{x 7→ σe(t(0))+ x ·σe(t(1))′}

is a reproductive unifier oft(x) ≈ 0.

6 ADVANCED FEATURES

The main claim of this paper is that our core uniqueness system is sufficiently
similar to a standard Hindley/Milner type systems that modern extensions can be
added without much difficulty. To substantiate this claim, we have defined and
implemented a much more advanced system based on the core system from Section
3, that supports arbitrary rank types and generalized algebraic data types, using
techniques from two recent papers by Simon Peyton Joneset al. [6, 7].

Due to the limited scope and length of this paper, we cannot give the full details
of the type system here but can only sketch out how a type system based on [6] and
[7], but supporting only “normal” types, must be adapted to deal with uniqueness.

5Löwenheim’s formula maps a ground unifier to an most generalunifier, reducing the
problem of finding an mgu to finding a specific unifier. For the two-element boolean
algebra, that is very simple (just try all possible instantiations of the variables) but it is not
so easy in the presence of skolem constants (Section 6.4). Skolem constants introduce
new elements into the underlying boolean algebra, making itmuch more difficult to guess
ground unifiers. For example, assuming thatuR andvR are skolem constants, andw is an
“ordinary” uniqueness attribute, the equationuR|vR

.
= w has an obvious solution

[w 7→ uR|vR], but we can no longer guess this solution by instantiating all variables to
either true (•) or false (×).
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We explain what arbitrary rank types and generalized algebraic data types are
and (at a very high level) how they are dealt with in sections 6.1 and 6.2. We high-
light the changes that need to be made to the typing rules to deal with uniqueness
in section 6.3. Finally, we explain in Section 6.4 why these extensions are much
simpler in a system without inequalities than in a system with inequalities.

6.1 Arbitrary rank types

The rank of a type is the depth at which universal quantifiers appear in the domain
of functions. In most types, universal quantifiers appear only at the outermost level,
for example

id :: ∀a.a → a

which is a type of rank 1. In higher rank types, we have nested universal quantifiers.
For example [6],

g :: (∀a.[a] → [a]) → ([Bool], [Int])

g = λ f · ( f [True,False], f [1,2,3])

In this example,g requires a functionf that works on lists of type[a] for all a
(the rank of the type ofg is 2). It is actually not that difficult to support arbitrary
rank types, but the problem is that typeinference is undecidable for types with rank
n > 2. To solve that problem, the type checker must combine type inference with
type checking, and higher rank types are only allowed if an explicit type signature
is provided (like we did for the type ofg).

6.2 Generalized algebraic data types

Generalized algebraic data types are a generalization of algebraic data types, where
the programmer explicitly specifies the type of each constructor. As a simple ex-
ample, here is a definition of a GADT that holds either a boolean or an integer:

data T :: * → * where
TInt :: Int → T Int
TBool :: Bool → T Bool

Since we can specify the types of the constructors manually,we can vary the argu-
ment ofT for each constructor. This allows us to write the following function:

projT ::: T a → a
projT (TInt i) = i
projT (TBool b) = b

Without GADTs, we cannot not write this function because it could not be typed.
This is only a simple example of GADTs; there are many more examples in the
literature; see [7] for a number of references.

Apart from the usual arguments for GADTs, supporting GADTs has an addi-
tional benefit in a uniqueness type system. Consider the algebraic data typeRose
of trees with an arbitrary number of branches. InClean, this type is defined as
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:: Rose a = Rose a [Rose a]

The problem with this definition is that it is unclear how the uniqueness of the list
of rose trees relates to the uniqueness of the overall rose tree. Clean provides some
hooks to influence this, but with a GADT, the problem disappears altogether since
we can explicitly specify the type of the constructor:

data Rose :: * -> * where

Rose :: au u f
−→
×

Listv (Rosev au)
u f ′
−−→

u
Rosev au

With the definition as given, the list of rose trees must have the same uniqueness
attribute as the overall rose tree (which can be accomplished in Clean by adding a
dot, as in.[Rose a]), but other options are also possible6.

The main problem with typing GADTs is that without type annotations, the
type checker can no longer guarantee principal types (see [7] for an example).
The solution is again to require type annotations, and distinguish between type
inference and type checking.

6.3 Modifications to deal with uniqueness

In this section we briefly highlight how a type system based on[6] and [7] must
be modified to deal with uniqueness, assuming that the starting point is the core
uniqueness system from Section 3. Since we cannot give the full typing rules in
this paper, we can only give intuitive descriptions in this section.

6.3.1 Abstractions

Recall from Section 3 that to be able to type a function, we must know whether the
function will be able to extract unique elements from its closure. This is indicated
by uγ, and will be the case if the function is defined inside anotherfunction, and
the argument to the outer function is unique. However, what if the argument to the
outer lambda abstraction has a universally quantified uniqueness attribute?

f :: (∀u.au)
u f
−→
×

. . .
u f ′
−→

?
. . .

f = . . .

What should the attribute at the location of the question mark be? We cannot
simply useu, becauseu is not in scope. However, since the first argument to the
function has a universally quantified uniqueness attribute, the function can assume
at will that the argument is unique or non-unique (and pass itto another function
that expects a unique argument); therefore, we should treatit as if the argument

6We do not require outwards propagation in the type of the constructor; it is possible
to construct a unique rose tree with non-unique elements. This is impossible in Clean
where the constructors enforce outwards propagation, but that is unnecessary. It suffices
that the case statement enforces outwards propagation
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had a unique attribute, and the attribute at the question mark should be•. Thus,
where in the core system we use the disjunction ofuγ andν1 to type the body of
the function (whereν1 is the attribute on the argument of the function), in the case
of a lambda abstraction where the argument is annotated witha type schemeσ, we
must use the disjunction ofuγ and⌈σ⌉, where the ceiling operator is defined as

⌈∀ t,u.τν⌉ =

{

ν if ν /∈ u

• otherwise

6.3.2 Recursive let definitions

For recursive let definitions, we follow the approach used inClean [2], where a
recursive let definition is always non-unique (since it points to itself). For annotated
recursive let definitions, it is convenient to syntactically require that the annotation
must be of the form∀t,u.τ× (i.e., the top-level attribute of the type scheme must
be non-unique).

6.3.3 Case analysis

In [7], a number of rules are defined to typecheck the scrutinee of a case state-
ment. In the most basic case there are two rules, one for atoms(variables and
constructors) and one for all other expressions. These rules (and their more ad-
vanced variations) can be used without difficulty, but the rule for atoms must make
sure to deal with sharing:

case x⊗ of . . .

Clearly, the scrutinee of a case expression must be given a non-unique type when
it is marked as shared. The rules to type the branches of the case statement must
get an additional premise that the attribute on the container must be the disjunction
of the attributes on each of the elements of the container (see the discussion offst
in Section 4).

6.4 Complications due to inequalities

We argued above that it is easy to extend the core uniqueness system of this paper
with advanced features such as arbitrary rank types and generalized algebraic data
types. These extensions are not so trivial when the type system involves inequali-
ties (constraints). In this section we explain why, and compare the type system in
this paper with our previous type system, which did make use of inequalities [1].

In Clean, constraints are never explicitly associated with types inthe typing
rules. Rather, the typing rules simply list the constraintsas additional premises.
However, that approach does not scale up to arbitrary rank types. When we gener-
alize a typeτνb

a to a type schemeσ, τνa
a may be constrained by a set of constraints

C . Those constraints should be associated with the type scheme σ, because if at
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a later stage we instantiateσ to get a typeτνb
b , the same set of constraints should

apply toτνb
b as well. Thus, in [1], we defined a type schemeσ as

∀x.τν,C

In other words, a type scheme is an attributed typeτν, together with a set of univer-
sally quantified (type and uniqueness) variablesx, and a set of constraintsC . The
typing rules then are careful to manipulate constraint sets. For example, the rule
for instantiating a type scheme read

∀x.τν,C ≤ Sxτν|SxC
OLD INST

This rule says that we can instantiate a type scheme to a type using a substitution
Sx, but we can only do so if the constraints associated with the type scheme are
satisfied.

If we want to allow for arbitrary rank types, we must modify the domain of the
arrow (the function type constructor) to be a type scheme (wecould also modify
the codomain, but that is not strictly necessary). Unfortunately, that means that we
now have constraints appearing in multiple places in type schemes. For example,
we might have

id′ :: ∀auu f .(∀.au, /0)
u f
−→
×

au, /0 = λx · x

We could add some syntactic sugar to make this type more readable (to getau u f
−→
×

au

or evenau → au), but that hides a more fundamental problem: the type ofid′ only
accepts arguments of typeau, if those arguments have typeau under the empty set
of constraints. If a term has typeau only if a particular set of constraints is satisfied,
that term cannot be used as an argument toid′. To get around this problem we need
to introduce types that are polymorphic in their constraintsets. This is what we did
in the previous paper. The type ofid would then be

id :: ∀auu f c.(∀.au,c)
u f
−→
×

au,c

which says thatid accepts terms that have typeau under the set of constraintsc; the
result then also has typeau, if the same set of constraints is satisfied. This becomes
particularly cumbersome for functions with many arguments, and especially for
higher order functions (functions taking functions as arguments).

The definition of subsumption (checking whether one type scheme is at least
as general as another) is also complicated by the presence ofthe constraint sets
and constraint variables associated with type schemes. To check whether a type
schemeσ1 subsumesσ2, we need to check whether the constraints associated with
σ2 logically entail σ1. For details we refer to [1]; here we consider an example
only. Suppose we have two functionsf , g with types

f :: (∀uv.au u f
−→
ua

bv, /0) → . . .

g :: au u f
−→
ua

bv, [u ≤ v]
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Should the applicationf g type-check? Intuitively,f expects to be able to use the
function it is passed to obtain ab with uniquenessv (say, a uniqueb), independent
of the uniqueness ofa. However,g only promises to return a uniqueb if a is
also unique; the applicationf g should therefore be disallowed. Conversely, if we
instead definef ′ andg′ as

f ′ :: (∀uv.au u f
−→
ua

bv, [u ≤ v]) → . . .

g′ :: au u f
−→
ua

bv, /0

the applicationf ′ g′ should be allowed because the type ofg′ is more general than
the type expected byf ′. It is not completely clear however how to define sub-
sumption in a completely general fashion. For example, suppose f was defined
as

f :: (∀uv.au u f
−→
ua

bv, [c1,c2]) → . . .

Then should the applicationf g be allowed? Intuitively it should, since we can in-
stantiatec1 to u ≤ v andc2 to the empty constraint (the constraint that is vacuously
satisfied), but it is not easy to define this formally.

The fact that we do not have to do anything special to define subsumption in
this paper is interesting, and it is instructive to reconsider the last two examples.
Recast in the new type system, the types off andg are

f :: (∀uv.au u f
−→
ua

bv) → . . .

g :: au|v u f
−→
ua

bv

where we have remodelled the implicationu ≤ v as a disjunctionu|v. Of course,
by the same argument as the one used above, the applicationf g should still be dis-
allowed. This will be detected by the subsumption check. Part of the subsumption
check will try to solveuR

.
= u|v andvR

.
= v (whereuR andvR are skolem constants).

Taken individually, each equation can be solved. However, as soon as we solve
one, the other becomes insoluble and the subsumption check fails with an error
message such as

Cannot unify vR and v&uR

On the other hand, given the types off ′ andg′

f ′ :: (∀uv.au|v u f
−→
ua

bv) → . . .

g′ :: au u f
−→
ua

bv

subsumption will need to solve the equationsuR|vR
.
= u andvR = v, which have

a trivial solution [u 7→ uR|vR,v 7→ vR], and the applicationf ′ g′ is therefore ac-
cepted. So, where we needed to check for logical entailment before, the technique
of skolemisation (which we needed anyway) will suffice in thenew system.
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7 CONCLUSIONS

We have shown that the major cause of the complexities of the types in our previ-
ous paper [1] is the presence of constraints. We have defined auniqueness system
for a core lambda calculus that is as expressive as our previous system, but does
not require constraints anywhere. We claim that this makes the type system suf-
ficiently similar to the Hindley/Milner type system that modern extensions can be
added to it without much difficulty, and we have substantiated this claim by defin-
ing and implementing a uniqueness type system that supportsarbitrary rank types
and generalized algebraic data types. Most of the typing rules in this system are
identical or very similar to their Hindley/Milner counterparts. Other extensions
such as impredicativity should not be difficult to add either. We believe that we
have designed a highly expressive uniqueness type system, that is practical to use
and not difficult to understand.
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