Equality Based Uniqueness Typing

Edsko de Vries!, Rinus Plasmeijér and David M Abrahamsdn

L Trinity College Dublin, Ireland{devri ese, davi d}@s.tcd. i e
2 Radboud Universiteit Nijmegen, Netherlandsnus @s. r u. nl

Abstract

We define a uniqueness type system for the core lambda caletich, unlike
Clean’s uniqueness system and the system we proposed in a prepapes[1], does
not involve inequalities. We claim that this makes the tyystesm sufficiently simi-
lar to the Hindley/Milner type system that standard typeiefice algorithms can be
applied, and that it can easily be modified to incorporateeno@xtensions such as
arbitrary rank types and generalized algebraic data tyyWessubstantiate this claim
by sketching out how such a system would be defined.

1 INTRODUCTION

Referential transparency (the principle that we can suitstequals for equals) is
an important feature of pure functional programming lamggsasuch a€lean and
Haskell and is treasured because it facilitates reasoning abogtgnt. A direct
consequence of insisting on referential transparencyaisftinctions must not be
allowed to modify their arguments. For example, given thiiniteon of split (A):

f A g=Ax- (fxgx)
we would expect to be able to prove that
Vf,sndo (f Aid) =id

but this will only hold if f does not modify its argument. i however safe for a
function to modify its argument if the function has the sadéerence to that argu-
ment. This is the basis of substructural type systems su€leas’s uniqueness
type system and the one we present here.

As an example, consider a functictearArray that sets all values in an array
to zero (given a primitive typdrray). SinceclearArray will destructively modify
its argument, it has the following type:

clearArray :: Array &, Array®
X

The details of this type will become clear in the rest of thaper. Suffice to say at
this point that the bullets in the domain of the function type indicates tichdar-
Array requires aunique reference to an array; likewise, the bullet in the codomain

*Supported by the Irish Research Council for Science, Eeging and Technology:
funded by the National Development Plan

XI-1

of the function indicates thatearArray promises to return a unique reference to an
array. An expression such alearArray A id then is ill-typed and will be rejected
by the type checker (we will consider the typesofn Section 3.3).

Unigueness types in Clean (and in the type system we progowsebusly [1])
often have constraints associated with them. In Clean xamgle, the functiorfist
that returns the first element of a pair has type

fst:: (@",b")" — a', [w < u,w < V|

The constrainfw < u] denotes that ifi is unique, thenv must be uniquey(implies

w)!. To understand the need for this constraint, suppose wedaaér with two
elements of typa andb. The only references to these elements are from this pair,
soa andb get a uniqued) attribute. Further, suppose that there are two references
x andy to the pair. Since there is more than one reference to thetpaiattribute

of the type of the pair is non-unique}. We can visualize this as follows:

N

a® b*

In this example, if we were allowed to extract a unique elenfreim a non-unique
pair, we could extrach from the pair and pass it to a functiohthat expects a
unique argument and modifies it. But then the valua a$ seen through the other
reference) will also change, and referential transparency is loster&fore, we
can only extract a unique element from a container if theaiost is unique itself.

Although these constraints are evidently important, theyglicate the work
of the type checker (the heart of the typechecker is a uniicatlgorithm, and
unification cannot deal with inequalities) and make extegdhe type system to
support modern features such as arbitrary rank types diffigaction 6.4).

In this paper we show how we can recode the attribute indpsbls attribute
equalities. This results in a uniqueness type system whicfficiently like the
Hindley/Milner type system that standard type infereng@athms can be applied,
and which can be extended easily using existing technigqusspport for example
arbitrary rank types and generalized algebraic data type®(tline such a system
in Section 6).

2 SHARING ANALYSIS

The typing rules we will present in this paper depend on aispamalysis which
marks variable uses as exclusive)(or shared). This sharing analysis could

Iperhaps the choice of the symbolis unfortunate. In logi@ < b denotesa implies
b, whereas hera < v denotess impliesu. Usage here conforms t@lean conventions.

Xl-2

be more or less sophisticated [2], but if in any derivatiothef program the same
variable could be evaluated twice, it must be marked as dhanethis paper, we
assume sharing analysis has been done, leaving a formatidefio future work.
Here we consider a few simple examples only. The identitgtion is marked as

id = Ax- X%

since there is only one referencexan the body ofid. In the definition ofsplit,
however, there are two references to the same variable hwhicst therefore be
marked as shared:

fAg=Ax(f9%%,g”x%)

The sharing analysis does not make a distinction betwegabbas that correspond
to functions and variables that correspond to functionments. For example, the
functiontwice is marked as

twice=Af-Ax- ¢ (f¥x?)

3 TYPING THE CORE A-CALCULUS

In this section, we consider a unigueness type system fardieelambda calculus,
which is completely equality based (we do not use inegealiinywhere). The
main typing relation used in this section is

-V
Muk-e:t

which reads as “in environmeit, given uniqueness attributg, expressiore has
attributed typet””. The purpose ofu, will become clear when we discuss the
rule for abstraction in Section 3.2. The environment masession variables to
attributed types.

The expression and type language for the core system aredéfirTable 1.
The expression syntax is the standard core lambda cal@naept that variables
are marked as exclusive or shared. The type language irchake types, type
variables and functions. The domain and codomain of thenaffonction con-
structor) are both attributed types, and the arrow itsetg g@o attributes: the
“normal” uniqueness attribute (which indicates whether there is more than one
reference to the function) and an additional attribuediscussed in Section 3.2.

The definition of attributes is different from their defioiti in our previous
paper [1] (and from their definition i€lean, too). We treat a uniqueness attribute
as a boolean attribute, reading True (unigue: there is onéy reference to the
term) fore and False (not unique: unknown number of references) forhen, we
allow for arbitrary boolean expressions involving vared)lnegation, conjunction
and disjunction as uniqueness attribétds may not be immediately obvious why

2Uniqueness attributes with free variables only have a nmgginian environment
where those free variables are bound.

XI-3

e .= expression V= attribute

X variable (exclusive) u variable

X% variable (shared) . unique

AX-€e abstraction X non-unigue

ee application -V negation
v1&Vo conjunction

™= type vi|vy disjunction
BY base typeB
tv variable

1! Ty function
TABLE 1. Expression and type language for the core system

this is useful, but as it turns out, all the improvements ef slgstem as presented
in this paper over the previous are made possible by this barge in the type
language.

Note the conspicuous absence of constraints in the typaidayey We will
explain how we deal with this when we discuss the individypirtg rules.

3.1 Variables

To check that a variablg marked as exclusive has attributed tyg¥e we simply
look up the variable in the environméntFor shared variables, we need to correct
the type found in the environment to be non-unique:

VAR® VAR®
(Mx:tv),uy-x@ 1V (Fx:tv),uy - x® 1~

VAR® does not require the tygda the environment to be non-unique. This effec-
tively means that variables can lose their uniqueheBsr example, consider the
functionmkPair = Ax- (x?,x?). The body ofmkPair can be visualized as

()

In other words, both components of the pair point to the salement, which is
therefore non-unique by definition. Thus, the typaréfair is

. us
mkPair ::a" — (a*,a")Y
X

3When a variable is marked as exclusive, that does not auicatigimake it unique;
for example, the identity functiohx - x® has typea” — a, nota" — a°.

4This is also the main difference between a uniqueness tygiersyand an affine type
system, where variables are either affine or not, but camsettheir “affinity”

Xl-4

(The attributes on the arrow will be explained in Sectior).3The previous version
of our type system [1] would assign the same type to this tdwm,n Clean it
would be assigned a different type as explained in [1] (lyi¢fipe variables can
be function valued, and functions are not allowed to lose threqueness in Clean;
therefore, type variables cannot lose their uniqueneberit

3.2 Abstraction

Before we discuss the rule for abstraction, we must firsttpmiha subtlety due to
currying. Consider the function that returns the first otite arguments:

const= AX-Ay-x”
Temporarily ignoring the attributes on arrovespst has type
const ::a' — b' — a“
Givenconst, what would be the type of
funnyMkPair= Ax- let f = constx” in (f¥ 1, f© 2)
It would seem that sincé has typeb¥ — a, this term has type
funnyMkPair ::a" — (a“,a")"

but this is clearly wrong: tha's in the result type are shared within the pair, so
they must be non-unigue. How is this problem solved? In aidib their normal
uniqueness attribute, functions have an additional atii,. The purpose of this
attribute is to indicate whether the function needs to bgumion application: a
function with typea“ = b¥ does not need to be unique when it is applied, but a

function with typea" — b" does.

Recall from the introduction that if we want to extract a wagelement from
a container, the container must be unique itself. When weutgen function, the
function can extract elements from its closure (the enwitent which binds the
free variables in the body of the function). If any of thoseneénts is unique,
executing the function will involve extracting unique elemts from a container
(the closure), which must therefore be unique itself. Simeedo not distinguish
between a function and its closure in the lambda calculisntleans that the func-
tion must be unique. To summarize, a function needs to baiarog application
(that is, a function can be applied only once) if the funct@an access unique
elements from its closure.

Going back to the example, the full type bfin the definition offunnyMkPair
is therefore

u
fop - ad
u

In other words, if you want a uniqueto be returned fronf, f must be unique
when it is applied. In the definition déinnyMkPair, f is not unique when applied

XI-5

since it is marked as shareds(= x), so as expectetiinnyMkPair has the same
type asmkPair:
funnyMkPair ::a" — (a*,a*)"

It should be clear from the preceding discussion that to eetaltype a function,
we need to know whether the function will be able to extradtue elements from

its closure. This is indicated ky, in the typing relation, and will be the case if
the function is defined within another function, where thguament to the outer
function is unique. Initiallyu, will be x, but as soon as we start typechecking the
body of a lambda abstraction, must be unique when the argument to the lambda
abstraction is unique. Using constraints, we can therafive the following rule

for lambda abstraction:

(M, x:Ty%),uy Ferty? Va < Uy, Uy <Vq,

v Uy = Uy CONSTRABS
MUy EAX-e: Tyt V—>T\£2

The constraints specify thag must be unique wheu, is, anduy (used to type the
body of the abstraction) must be unique when eitygs orvy is. Without making
the system more restrictive, we can remove these consttajratating that, must
be equal to uy, and by using the disjunction aof, andv; to type the body of the

abstraction, thus:

rx:tit Vi e: T2
() 1)’uv‘ 1 2 ABS

Y
MouyFAx-e:Tit — Ty
Uy

3.3 Application

The rule for application must enforce that functions whichsirbe unique when
applied, are unique when applied. Again, we can use a camtstoaexpress this

property:

covi Vi Y
F,uyl—el.Tllng2 Muwke: 4! Vi <Va

CONSTRAPP
MU ke Ty

How can we model the requirement < v, without using constraints? The easiest
solution is to require that; = vg:

Couy ke Ty %T‘f Muyh e Ti
= ApPp

MUy ke Ty

While this makes the type system more restrictive, thatmatlbe very noticeable
in practice; besides, it is possible to give a rule for agian which is not more
restrictive (and yet does not use constraints). Both thesges are discussed in
Section 4.

XI-6

3.4 Examples

We discuss two examples. First, we consider the typapply = A f - Ax- fOx®:

cfau Yoy UE g Uy

apply ::(a Kb)Ta u—a>b
Unsurprisingly,apply takes a functionf from a to b, and a term of type, and
returns a term of typb. Sinceapply f appliesf, if f must be unique on application,
it must be unique when passed as an argumeapby (in the type ofapply, this
requirement is encoded by specifying tHfamust have the same attribute below
and above the arrow). Finally, if is unique, therapply f must be unique on
application, since it can extract a unique element fromldgswre (that isf).

The type ofa, discussed in the introduction, is only slightly more coicgtied:

A @) U @ 2 oy U qu 4T v gy
Uy X u2 up Uz U2

In words, A wants two functions andg, which return &" and ac", given a non-
uniquea, and returns a pair of typ@",c")% If either f or g must be unique on
application, then they must be unique when they are passadjasents ta\, as

A will apply them. Finally,f A g must itself be unique on application when either
f orgis unique, because if they are A g will be able to extract unique elements
from its closure (i.e.f andg) when it is applied. The functionlearArray from
the introduction cannot be passed as an argument $ince it does not accept
non-unigue arguments (Arragloes not unify witha*).

4 REFLECTION ON THE CORE SYSTEM

In Section 3.3, we claimed that it is possible to give a ruledpplication which
does not use constraints but is not more restrictive thabApP. One solution is
to use a disjunction with a free variable:

Mouy ety —»v;‘va o Tuke: T ,
2 AP
MU -ere:1)?

Whenv, = X, V¢ |va reduces to; (a free variable), but whew, = e, v |v, reduces
toe. So, whernvy = x, the function may or may not be unique, but wivgn= e, the
functionmust be unique, which is exactly what the constrdint < v,] specified.
We nevertheless prefer ruler& (requiring thatvs = v,), since it leads to simpler
types. For example, based on rulem, split would have the type

Ufl

|ual us uf2|ua2 Uy Ugr
bV) N (aX d Y bV’CW)Z

A (@

Uay x Uay ufy \ual Ufy \ual|uf2 |ua2

which is still much better than the type our previous typaeayswould assign, but
rather complex all the same.

However, we claimed that rule #e is not as restrictive as it may seem. An
expression will be rejected by but allowed by A°F if and only if the function
that we are applying is unique, but does not need to be uniguspplication; so,
if we have an expressiohx wheref has type

fral b
X
Clearly, e does not unify withx, so rule AP will reject this application. The cor-
responding error message will be a bit mystifying; someghike: “The function
you are applying is too unique (please use it more than once)”. Of course, this is a
direct consequence of replacing the implication by an egu&lowever, it is very
unlikely that f has the type shown above! It is much more likely to have the typ
foal s pY
X
That is, it is much more likely to be polymorphic in its unigpess than actually be
unique. None of the typing rules even mentwanywhere! The typing rules force
terms to be non-unique if they are shared, but they nevee finem to be unique.
Given the latter type of, rule App has no difficulty typing the application, since
us trivially unifies with x.

In the presence of algebraic data types and pattern matohimgan apply a

similar technique. Recall the type 3t in Clean (discussed in the introduction).

u
fst:: (a",b")" = &', w< u,w < V]
We can recode the constraints as follows:

fst :: (¥, b)ulvw 2, g
X
That is, the pair must be unique if eitheor v is unique, but if neitheu norv is
unique, the pair may or may not be uniqué.(This is a faithful translation of the
implication; we can also give a slightly more restrictivpdy

fst :: (¥, bV)ulv L qu
X

This type requires the pair to be non-unique if botAndv are non-unique. How-
ever, as for functions, the pair is much more likely to be patyphic in its unique-
ness than actually be unique, so the fact that this (simpyg@@ of fst is more
restrictive than it needs to be will not be very noticeablgrnactice. Finally, since
fst does not refer to the second component of the pair at all, wkl @ven givefst
the type

fst:: (a,b")" -
X

which is arguably the most intuitive type we could gfeg however, this final type
would require slightly more advanced typing rules to analwhich variables are
referenced and which are not.

XI-8

5 TYPE INFERENCE

One advantage of removing constraints from the type langisghat standard
inference algorithms (such as algorithi [3]) can be applied without any mod-
ifications. The inference algorithm will depend on a unifizatalgorithm, which
must be modified in two ways. It must treat a unification gak= 152 as two sep-
arate goals; = 1, andv; = v, (in other words, base types and their attributes must
be unified independently), and it must be adapted to deallwaititean expressions.
The rest of this section explains how boolean unificationkaor

Consider the function that returns the first of its three argnts.

Uy U

fst3=Ax-Ay-Az-x” : a" Mg Lew g
X u ulv

Given two variablesn andn, with typesa" andb¥, we have

Usrr u
—a
ulv

g= (AX-Ay-Az-X7)m“n® :: cV

Now suppose we have a functibrwith the following type:

h::(c""ma“)—m..
[]

Is the applicatiorhg well-typed? If it is, we must be able to unifyv ande. Of
course, there are various solutions to this equation, famgte

Ur— e u—u Ur— e

B M [
(Recall that we treat attributes as boolean expressionsce $here are solutions,
hg is certainly well-typed; but whas its type? None of the solutions listed above
is most general, and it not so obvious that the equation= e even has a most
general unifier, which would mean that we lose principal $yp&ortunately, it
turns out that unification in a boolean algebra is unitary 4] other words, if a

boolean equation has a solution, it has a most general@oluti the example, one
most general solution is
u—u
e

Boolean unification has an even stronger property: if a lzolequation has a
solution, it will have areproductive unifier. Recall that for a unified to be a most
general unifier, we must have the property that for all otimefiers ¢,

{=Co0 for some unifiel’
A unifier o is a reproductive unifier if for all other unifiels

(=00

XI-9

There are two well-known algorithms for unification in a bearh algebra, known
as Lowenheim’s formula and successive variable elimamatiFor the core type
system defined in this paper, either technique will work vidoen we scale the type
system to arbitrary rank types (Section 6), only successwiable elimination is
practicaP. The description of successive variable elimination weediere is a
combination of the methods described in [4] and [5], but ibdvesuited than either
for our purposes. Switching temporarily to the more usuahtian for boolean
expressions (as it makes the definitions clearer), to salvegaationv; = vo, it
suffices to solve

(V1-V5) +(V3-v2) =0

Successive variable elimination is then defined as folldves.
t(x) =X -t(0) +x-t(1)
and definee=1t(0) -t(1). Then,
1. Every unifier oft ~ 0 is a unifier ofe~ 0.

2. If oc is a reproductive unifier of ~ 0 andx ¢ dom(ae), then
Ot := O U {X— 0g(t(0)) +X- Oe(t(1))'}

is a reproductive unifier df(x) ~ 0.

6 ADVANCED FEATURES

The main claim of this paper is that our core uniqueness sy#esufficiently
similar to a standard Hindley/Milner type systems that niodextensions can be
added without much difficulty. To substantiate this clainme have defined and
implemented a much more advanced system based on the ctam$yem Section
3, that supports arbitrary rank types and generalized edgeldata types, using
techniques from two recent papers by Simon Peyton Jetreds[6, 7].

Due to the limited scope and length of this paper, we canwettbie full details
of the type system here but can only sketch out how a typemylsésed on [6] and
[7], but supporting only “normal” types, must be adaptedéaldvith uniqueness.

SLéwenheim’s formula maps a ground unifier to an most genenrdier, reducing the
problem of finding an mgu to finding a specific unifier. For thetalement boolean
algebra, that is very simple (just try all possible instatitins of the variables) but it is not
so easy in the presence of skolem constants (Section 6.dlerSkconstants introduce
new elements into the underlying boolean algebra, makimgiith more difficult to guess
ground unifiers. For example, assuming tiyiandvg are skolem constants, ands an
“ordinary” uniqueness attribute, the equatiagvr = w has an obvious solution
[w — ug|vg], but we can no longer guess this solution by instantiatihgealables to
either true ¢) or false ().

XI-10

We explain what arbitrary rank types and generalized alijelfata types are
and (at a very high level) how they are dealt with in sectiodsafid 6.2. We high-
light the changes that need to be made to the typing rulesaiovdth uniqueness
in section 6.3. Finally, we explain in Section 6.4 why thestrsions are much
simpler in a system without inequalities than in a systenmiviequalities.

6.1 Arbitrary rank types

The rank of a type is the depth at which universal quantifippear in the domain
of functions. In most types, universal quantifiers appedr arthe outermost level,
for example

id::Vaa—a
which is atype of rank 1. In higher rank types, we have nestégetsal quantifiers.
For example [6],

g:: (Va.[a] — [a]) — ([Bool],[Int])
g=Af-(f[TrugFalse, f[1,23])

In this exampleg requires a functiorf that works on lists of typga] for all a
(the rank of the type of is 2). It is actually not that difficult to support arbitrary
rank types, but the problem is that tyjpéerence is undecidable for types with rank
n > 2. To solve that problem, the type checker must combine tyfezdnce with
type checking, and higher rank types are only allowed if grlie type signature
is provided (like we did for the type aj).

6.2 Generalized algebraic data types

Generalized algebraic data types are a generalizatiogeledic data types, where
the programmer explicitly specifies the type of each corsiru As a simple ex-
ample, here is a definition of a GADT that holds either a baol&aan integer:

data T :: * — * where
TInt :: Int — T Int
TBool :: Bool — T Bool

Since we can specify the types of the constructors manwedyan vary the argu-
ment of T for each constructor. This allows us to write the followingpétion:
projT ::: Ta — a

projT (TInt i) =i

projT (TBool b) =b

Without GADTSs, we cannot not write this function becauseottld not be typed.
This is only a simple example of GADTSs; there are many moremgias in the
literature; see [7] for a number of references.

Apart from the usual arguments for GADTS, supporting GAD@&s an addi-
tional benefit in a uniqueness type system. Consider théripedata typdrose
of trees with an arbitrary number of branchesClean, this type is defined as

XI-11

Rose a = Rose a [Rose a]

The problem with this definition is that it is unclear how thequeness of the list

of rose trees relates to the uniqueness of the overall rese@lean provides some
hooks to influence this, but with a GADT, the problem disappedtogether since

we can explicitly specify the type of the constructor:

data Rose :: * -> x where
ug Ugr
Rose :: a'—ListY(Rose'a") — Rose'a"
X u

With the definition as given, the list of rose trees must héasesame uniqueness
attribute as the overall rose tree (which can be accompigh€lean by adding a
dot, asin. [Rose a]), but other options are also possfle

The main problem with typing GADTSs is that without type arat@ins, the
type checker can no longer guarantee principal types (defof&an example).
The solution is again to require type annotations, andrdjatsh between type
inference and type checking.

6.3 Maodifications to deal with uniqueness

In this section we briefly highlight how a type system based6jrand [7] must
be modified to deal with uniqueness, assuming that the regapidint is the core
unigueness system from Section 3. Since we cannot give thg/fing rules in

this paper, we can only give intuitive descriptions in théstson.

6.3.1 Abstractions

Recall from Section 3 that to be able to type a function, wetrkngw whether the
function will be able to extract unique elements from itsscliee. This is indicated
by uy, and will be the case if the function is defined inside anotbaction, and

the argument to the outer function is unique. However, withiei argument to the
outer lambda abstraction has a universally quantified @mgss attribute?

fovuah 22
X ?

f=...

What should the attribute at the location of the questionknte? We cannot
simply useu, becausel is not in scope. However, since the first argument to the
function has a universally quantified uniqueness attridht=function can assume
at will that the argument is unique or non-unique (and pass another function
that expects a unique argument); therefore, we should itraatif the argument

5We do not require outwards propagation in the type of thetcoa®r; it is possible
to construct a unique rose tree with non-unique elements.igmpossible in Clean
where the constructors enforce outwards propagationhltitg unnecessary. It suffices
that the case statement enforces outwards propagation

XI-12

had a unique attribute, and the attribute at the questiok stawuld bee. Thus,
where in the core system we use the disjunctiomacdndv; to type the body of
the function (where, is the attribute on the argument of the function), in the case
of a lambda abstraction where the argument is annotatedavtjipe scheme, we
must use the disjunction of and[a], where the ceiling operator is defined as

v ifvéa
e oOtherwise

Vi L] = {

6.3.2 Recursive let definitions

For recursive let definitions, we follow the approach usefliean [2], where a
recursive let definition is always non-unique (since it poto itself). For annotated
recursive let definitions, it is convenient to syntactigatquire that the annotation
must be of the fornvt,u.t> (i.e., the top-level attribute of the type scheme must
be non-unique).

6.3.3 Case analysis

In [7], a number of rules are defined to typecheck the scretwofea case state-
ment. In the most basic case there are two rules, one for afeamnisbles and
constructors) and one for all other expressions. These (aled their more ad-
vanced variations) can be used without difficulty, but tHe far atoms must make
sure to deal with sharing:

case X% of ...

Clearly, the scrutinee of a case expression must be givem-aimgue type when
it is marked as shared. The rules to type the branches of geestatement must
get an additional premise that the attribute on the contaimest be the disjunction
of the attributes on each of the elements of the containertfsadiscussion dkt
in Section 4).

6.4 Complications due to inequalities

We argued above that it is easy to extend the core uniquepstEssof this paper
with advanced features such as arbitrary rank types andaemel algebraic data
types. These extensions are not so trivial when the typemsystvolves inequali-
ties (constraints). In this section we explain why, and caraghe type system in
this paper with our previous type system, which did make digeegualities [1].

In Clean, constraints are never explicitly associated with typethatyping
rules. Rather, the typing rules simply list the constraassadditional premises.
However, that approach does not scale up to arbitrary rgrgstyWhen we gener-
alize a typer}® to a type scheme, 132 may be constrained by a set of constraints
C. Those constraints should be associated with the type stbelmecause if at

XI-13

a later stage we instantiateto get a typet‘gb, the same set of constraints should
apply tOT\éb as well. Thus, in [1], we defined a type schemas

VX1, C

In other words, a type scheme is an attributed t§fe¢ogether with a set of univer-
sally quantified (type and uniqueness) variatlgand a set of constraints. The
typing rules then are careful to manipulate constraint. Sets example, the rule
for instantiating a type scheme read

WO CSSuse oINSt

This rule says that we can instantiate a type scheme to a 8ipg & substitution
Sx, but we can only do so if the constraints associated with ype scheme are
satisfied.

If we want to allow for arbitrary rank types, we must modifgttlomain of the
arrow (the function type constructor) to be a type schemedgudd also modify
the codomain, but that is not strictly necessary). Unfataly, that means that we
now have constraints appearing in multiple places in typeses. For example,
we might have

id' :: Vauug.(v.a",0) a0 = Ax- x
X

We could add some syntactic sugar to make this type morelvka(ta geta” & au
X

or evena" — a'), but that hides a more fundamental problem: the type/adnly
accepts arguments of ty@, if those arguments have tyjge under the empty set

of constraints. If a term has type@“ only if a particular set of constraints is satisfied,
that term cannot be used as an argumeid'tolo get around this problem we need
to introduce types that are polymorphic in their constraets. This is what we did
in the previous paper. The type iafwould then be

. us
id :: Vauug c.(v.a",c) — a',c
X

which says thaid accepts terms that have tygéunder the set of constraintsthe
result then also has ty@d, if the same set of constraints is satisfied. This becomes
particularly cumbersome for functions with many argumgeatsd especially for
higher order functions (functions taking functions as anguts).

The definition of subsumption (checking whether one typesthis at least
as general as another) is also complicated by the presente @bnstraint sets
and constraint variables associated with type schemes.hdckovhether a type
schemeao; subsume®,, we need to check whether the constraints associated with
0> logically entailo;. For details we refer to [1]; here we consider an example
only. Suppose we have two functioisg with types

f: (Vuva" l:—f> bY,0) — ...

g::a“%b",[ugv]
a

XI-14

Should the applicatior g type-check? Intuitivelyf expects to be able to use the
function it is passed to obtainkawith uniquenesy (say, a uniqud), independent
of the uniqueness of. However,g only promises to return a unigueif a is
also unique; the applicatiohg should therefore be disallowed. Conversely, if we
instead defind’ andg’ as

f’::(VU\/.a“E—f>b", u<sv]) —...
/oqu Yoy
g:a u—a>b,0

the applicationf’ g’ should be allowed because the typegifis more general than
the type expected by’. It is not completely clear however how to define sub-
sumption in a completely general fashion. For example, aspp was defined
as

f:(Vuva' :—f> b [c1,c0)) — ...

Then should the applicatiohg be allowed? Intuitively it should, since we can in-
stantiatec; to u < v andc; to the empty constraint (the constraint that is vacuously
satisfied), but it is not easy to define this formally.

The fact that we do not have to do anything special to definewuption in
this paper is interesting, and it is instructive to recoesithe last two examples.
Recast in the new type system, the types ahdg are

f:(Vuva' :—f>b") — ...

woauv Uty

g:a | o b
where we have remodelled the implicatior< v as a disjunctiorulv. Of course,
by the same argument as the one used above, the appli¢agisimould still be dis-
allowed. This will be detected by the subsumption checkt &fahe subsumption
check will try to solveug = u|v andvgr = v (Whereug andvgr are skolem constants).
Taken individually, each equation can be solved. Howevgisan as we solve
one, the other becomes insoluble and the subsumption chéskwiith an error
message such as

Cannot unify vg and v&ur
On the other hand, given the typesféfandg’

subsumption will need to solve the equatiaggvg = u andvg = v, which have

a trivial solution [u — Ugr|VRr,V — VR], and the applicatiorf’d’ is therefore ac-
cepted. So, where we needed to check for logical entailmeford, the technique
of skolemisation (which we needed anyway) will suffice in tigsv system.

XI-15

7 CONCLUSIONS

We have shown that the major cause of the complexities ofytstin our previ-
ous paper [1] is the presence of constraints. We have definaijaeness system
for a core lambda calculus that is as expressive as our pe@gstem, but does
not require constraints anywhere. We claim that this mahkedype system suf-
ficiently similar to the Hindley/Milner type system that neyd extensions can be
added to it without much difficulty, and we have substantidtes claim by defin-
ing and implementing a uniqueness type system that supgdnitsary rank types
and generalized algebraic data types. Most of the typingsrin this system are
identical or very similar to their Hindley/Milner countemis. Other extensions
such as impredicativity should not be difficult to add eithé/e believe that we
have designed a highly expressive uniqueness type systatristpractical to use
and not difficult to understand.

ACKNOWLEDGEMENTS

We thank Dimitri Vytiniotis for his patient explanations sbme of the details in
his paper [7].

REFERENCES

[1] De Vries, E., Plasmeijer, R., Abrahamson, D.: Uniquenégping rede-
fined. In: Proceedings of the 18th International Symposium lmplementa-
tion and Application of Functional Languages. (2006) To hblished; online at
http://ww. cs.tcd.iel/ ~devriese/ pub.

[2] Barendsen, E., Smetsers, S.: Conventional and unigsetyping in graph rewrite
systems. Technical Report CSI-R9328, University of Nijer@¢1993)

[3] Damas, L., Milner, R.: Principal type-schemes for fuantl programs. In: POPL
'82: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium Principles of
programming languages, New York, NY, USA, ACM Press (198P}-212

[4] Baader, F., Niphow, T.: Term Rewriting and All That. Cardge University Press
(1998)

[5] Brown, F.M.: Boolean Reasoning, The Logic of Boolean &fipns. Dover Publica-
tions, Inc. (2003)

[6] Peyton Jones, S., Vytiniotis, D., Weirich, S., Shiellls; Practical type inference for
arbitrary-rank types. Journal of Functional Programmifi¢l) (2007) 1-82

[7] Peyton Jones, S., Vytiniotis, D., Weirich, S., Washhu@n Simple unification-based
type inference for GADTS. In: Proceedings of the 11th ACM BL@AN International
Conference on Functional Programming. (2006) 50-61

XI-16

