
Uniqueness Typing Redefined

Edsko de Vries?1, Rinus Plasmeijer2, and David M Abrahamson1

1 Trinity College Dublin, Ireland, {devriese,david}@cs.tcd.ie
2 Radboud Universiteit Nijmegen, Netherlands, rinus@cs.ru.nl

Abstract. We modify Clean’s uniqueness type system in two ways.
First, while Clean functions that are partially applied to a unique argu-
ment are necessarily unique (they cannot lose their uniqueness), we just
require that they must be unique when applied. This ultimately makes
subtyping redundant. Second, we extend the type system to allow for
higher-rank types. To be able to do this, we explicitly associate type con-
straints (attribute inequalities) with type schemes. Consequently, types
in our system are much more precise about constraint propagation.

1 Background

The problem of modelling side effects in pure functional languages, without losing
referential transparency, is well-known. Consider the function freadi that reads
the next integer from a file. The type of this function might be

freadi :: File → Int

To be able to return the next integer on every invocation, freadi advances
the file pointer before returning. This side effect causes a loss of referential
transparency. For instance, f and g are not interchangeable3:

f1 file = (freadi file) + (freadi file)
g1 file = (freadi file) ∗ 2

One way to make freadi’s side effect explicit is modifying its signature to

freadi :: World → File → (World, Int)

where World is some data type representing “the world”. We must then redefine
f and g as

f2 world file =
let (world1, a) = freadi world file in
let (world2, b) = freadi world1 file in
(a + b, world2)

g2 world file =
let (world1, a) = freadi world file in
(a ∗ 2, world1)

? Supported by the Irish Research Council for Science, Engineering and Technology:
funded by the National Development Plan

3 The subscripts of f and g are used only to be able to refer to particular versions of
f and g, and are not part of the code.



which makes it clear that f and g are different functions. But the problem has
not gone away, because nothing is stopping us from writing f as

f3 world file =
let (world1, a) = freadi world file in
let (world2, b) = freadi world file in
(a + b, world2)

In the language Haskell this problem is essentially solved by hiding the “state
threading” in a monad and never giving direct access to the World object. This
makes programs “correct by construction”, but rather affects the style of pro-
gramming. By contrast, uniqueness typing enforces correct state threading in
the type system. The main idea is to ensure that there is never more than one
reference to a particular world state. This is reflected in the type of freadi:

freadi :: World• → File → (World•, Int)

The bullets (•) indicate that freadi requires a unique reference to the World,
and in turn promises to return a unique reference. When the compiler type-
checks f3, it finds that there are two references to world, which violates the
uniqueness requirements; f2 however is accepted.

The type system presented in this paper depends on a sharing analysis of
the program, which is explained briefly in Sect. 2. Since the typing rules for
rank-1 are easier to understand than the typing rules for arbitrary rank, we first
present the rank-1 typing rules in Sect. 3 and then extend them to arbitrary
rank in Sect. 4. We consider a few examples in Sect. 5, outline a type inference
algorithm in Sect. 6, compare our system to the original Clean type system in
Sect. 7, and present our conclusions and list future work in Sect. 8.

2 Sharing Analysis

The typing rules that we will present in this paper depend on a sharing analysis
that marks variable uses as exclusive (�) or shared (⊗). This sharing analysis
could be more or less sophisticated [1], but if in any derivation of the program
the same variable could be evaluated twice, it must be marked as shared. In this
paper, we assume sharing analysis has been done, leaving a formal definition to
future work. Here we look at an example only. Compare again the definitions
of f2 and f3 from Sect. 1. In the correct definition (f2), the variable marking
indicates that the reference to world is indeed unique (as required by freadi)4:

f2 world file =
let (world1, a) = freadi⊗ world� file⊗ in
let (world2, b) = freadi⊗ world1� file⊗ in
(a� + b�, world2�)

4 The sharing analysis does not make a distinction between variables that happen to
be functions and other variables.



The marking in the incorrect definition indicates that there is more than one
reference to the same world state, violating the uniqueness requirement:

f3 world file =
let (world1, a) = freadi⊗ world⊗ file⊗ in
let (world2, b) = freadi⊗ world⊗ file⊗ in
(a� + b�, world2�)

In Sect. 5, we will look at an example that can be typed only if a more sophis-
ticated sharing analysis is applied.

3 Introducing Uniqueness Typing

We will present a uniqueness type system that allows for rank-1 types only,
before showing the full type system in Sect. 4. Although both the expression
language and the type language must be modified to support arbitrary rank
types, the typing rules as presented in this section are easier to understand and
provide a better way to introduce the type system.

3.1 The Language

We define our type system over a core lambda calculus:

e ::= expression
x�, x⊗ variable (exclusive, shared)
λx · e abstraction
e1 e2 application
i integer

The typing rules assign an attributed type τν to an expression e, given a type
environment Γ and a uniqueness attribute uγ (explained in Sect. 3.4), denoted

Γ, uγ ` e : τν

The language of types and uniqueness attributes is defined as

τ ::= type ν ::= uniqueness attribute
a, b type variable u, v variable
τν1
1 −→νa

τν2
2 function • unique

Int constant type × non-unique

The syntax for arrows (function space constructor) warrants a closer look. The
domain and codomain of the arrow are two attributed types τν1

1 and τν2
2 . The

arrow itself has an additional attribute νa, whose role will become apparent when
we discuss the rule for abstractions. We will adopt the notational convention of



writing (τν1
1 −→νa

τν2
2 )νf , where νf is “normal” uniqueness attribute of the arrow,

as (τν1
1

νf−→
νa

τν2
2 ).

As is customary, all type and attribute variables in an attributed type τν

are implicitly universally quantified at the outermost level (of course, this will
not be true for the arbitrary rank system). In this section, a type environment
maps variable names to attributed types (in Sect. 4, it will map variable names
to type schemes).

3.2 Integers

We can specify two alternative rules for integers (only one of which is required):

Γ, uγ ` i : Intν Int
Γ, uγ ` i : Int•

Int′

Int says that integers have type Intν , for an arbitrary ν: the programmer is free
to assume the integer is unique or non-unique. Alternatively, Int′ states that an
integer is always unique. We will discuss why we prefer Int in Sect. 3.4.

3.3 Variables

To find the type of the variable, we look up the variable in the environment,
correcting the type to be non-unique for shared variables:

(Γ, x : τν), uγ ` x� : τν
Var�

(Γ, x : τν), uγ ` x⊗ : τ×
Var⊗

Note that Var⊗ leaves the uniqueness attribute of the variable in the envi-
ronment arbitrary. This means that variables can “lose” their uniqueness. For
example, the function mkPair defined as λx · (x⊗, x⊗) has type au → (a×, a×)
(assuming a product type); in other words, no matter what the uniqueness of a
on input is, each a in the pair will be non-unique.

3.4 Abstractions

Before we discuss the typing rule for abstractions, we must return to the example
discussed in Sect. 1 and point out a subtlety. Consider f3 again:

f3 world file =
let (world1, a) = freadi⊗ world⊗ file⊗ in
let (world2, b) = freadi⊗ world⊗ file⊗ in
(a� + b�, world2�)

The compiler is able to reject this definition because world is marked as shared,
which will cause its type to be inferred as non-unique by rule Var⊗. But what
happens if we “curry” freadi?



f world file =
let curried = freadi� world� in
let (world1, a) = curried⊗ file⊗ in
let (world2, b) = curried⊗ file⊗ in
(a� + b�, world2�)

Both programs are semantically equivalent, so the type-checker should reject
both. However, the argument world to freadi is in fact exclusive in the second
example, so how can we detect the type error? The general principle is

when a function accesses unique objects from its closure, that closure
(i.e., the function) must be unique itself (∗)

In the example above, curried accesses the unique world state from its closure,
and must therefore be unique itself—but is not, resulting in a type error. We
can approximate5 (∗) by

if a function is curried, and its curried argument is unique, the resulting
function must be unique when applied (∗′)

In the lambda calculus, functions only take a single argument, and the notion of
currying translates into lambda abstractions returning new lambda abstractions.
Thus, we can rephrase (∗′) as

if a lambda abstraction returns a new lambda abstraction, and the ar-
gument to the outer lambda abstraction is unique, the inner lambda ab-
straction must be unique when applied (∗′′)

In our type language, the additional attribute νa in the arrow type τν1
1 −→νa

τν2
2

indicates whether the function is required to be “unique when applied”. The
purpose of uγ in the typing rules is to indicate whether we are currently in the
body of an (outer) lambda abstraction whose argument must be unique. Thus
we arrive at rule Abs:

(Γ, x : τν1
1 ), uγ′ ` e : τν2

2 νa ≤ uγ , uγ′ ≤ ν1, uγ′ ≤ uγ

Γ, uγ ` λx · e : τν1
1

νf−→
νa

τν2
2

Abs

This rule is very similar to the normal rule for abstractions in a Hindley/Milner
type system, with the exception of the attribute inequalities in the premise of
the rule. The u ≤ v operator can be read as an implication: if v is unique, then
u must be unique (v implies u, u← v)6.

5 This is an approximation since the function may not use the curried argument. In
λx · λy · y�, x is not used in the body of the function, so its uniqueness need not
affect the type of the function.

6 Perhaps the choice of the symbol ≤ is unfortunate. In logic a ≤ b denotes ab′ = 0
(i.e., a implies b), whereas here we use u ≤ v to mean v implies u. We use it here to
conform to Clean conventions.



The first constraint establishes the conclusion of (∗′′): if we are in the body of
an outer lambda abstraction whose argument must be unique (uγ), then the inner
lambda abstraction must be unique when applied (νa). The second constraint
uγ′ ≤ ν1 is a near direct translation of the premise of (∗′′). Finally, uγ′ ≤ uγ

simply propagates uγ : if the premise of (∗′′) already holds (uγ), it will continue
to do so in the body of the abstraction (uγ′). Note that Abs is the only rule that
changes the value of uγ ; all the other rules simply propagate it. When typing an
expression, uγ is initially assumed to be non-unique.

It is instructive to consider an example at this point. We show the type
derivation for λx ·λy ·x�, the function that returns the first of its two arguments:

(x : τν1
1 , y : τν2

2 ), uγ′′ ` x� :: τν1
1 νa′ ≤ uγ′ , uγ′′ ≤ ν2, uγ′′ ≤ uγ′

Var�

(x : τν1
1 ), uγ′ ` λy · x� :: τν2

2

νf′
−−→
νa′

τν1
1 νa ≤ ×, uγ′ ≤ ν1, uγ′ ≤ ×

Abs

∅,× ` λx · λy · x� :: τν1
1

νf−→
νa

(τν2
2

νf′
−−→
νa′

τν1
1 )

Abs

Noting that νa ≤ × and uγ′ ≤ × are vacuously true, that uγ′′ ≤ ν2 and uγ′′ ≤ uγ′

are irrelevant as uγ′′ does not constrain any other attributes, and that νa′ ≤ uγ′

and uγ′ ≤ ν1 imply that νa′ ≤ ν1 (by transitivity), we arrive at the type

λx · λy · x� :: τν1
1

νf−→
νa

(τν2
2

νf′
−−→
νa′

τν1
1 ) νa′ ≤ ν1

where the constraint νa′ ≤ ν1 says that if we curry the function (specify x but
not y), and x happens to be unique, the result function must be unique on
application (its attribute νa′ must be •).

If we now consider rule Int′, which says that integers are always unique,
this definition of Abs would imply that if we curry a function by passing in an
integer, the result function must be unique on application, which is unnecessary.
For example, we want the following expression to be type correct:

let fst = λx · λy · x in let one = fst 1 in (one 2, one 3)

For the same reason, nothing in Abs constrains νf , and the actual uniqueness
of the function is left free.

3.5 Application

The rule for function application is relatively straightforward. The only difference
between the rule as presented here and the usual definition is that App enforces
the constraint that functions that must be unique when applied, are unique when
applied (νf ≤ νa):

Γ, uγ ` e1 : τν1
1

νf−→
νa

τν2
2 Γ, uγ ` e2 : τν1

1 νf ≤ νa

Γ, uγ ` e1 e2 : τν2
2

App



4 Arbitrary Rank Types

The rank of a type is the depth at which universal quantifiers appear in the
domain of functions. In most cases, universal quantifiers appear only at the
outermost level, for example

id :: ∀a.a→ a

which is a type of rank 1. In higher-rank types, we have nested universal quan-
tifiers. For example [2],

g :: (∀a.[a]→ [a])→ ([Bool], [Int]) = λf. (f [True,False], f [1, 2, 3])

In this example, g requires a function f that works on lists of type [a] for all a
(the rank of the type of g is 2). Type inference is undecidable for types with rank
n > 2, but we can support type inference by combining type inference with type
checking. Thus, higher-rank types are only supported when function arguments
are given an explicit type signature. We extend the expression language with
annotated lambda expressions (and let expressions):

e += expression (ctd.)
λx :: σ · e annotated abstraction
let x = e in e′ local definition

In the rank-1 system presented in section 3 (as well as in Clean’s type system),
constraints are never explicitly associated with types, but are left implicit in
the typing rules. Although this makes the types simpler, we can no longer do
so if we want to support arbitrary rank types. When we generalize a type τν

to a type scheme σ, τν may be constrained by a set of constraints C. Those
constraints should be associated with the type scheme σ, because if at a later
stage we instantiate σ to get a type τν ′, the same set of constraints should apply
to τν ′ as well. This makes the types more complicated, but it also makes them
more precise (see sections 7 and 8). So, we define a type scheme as

σ ::= ∀~x.τν , C type scheme

where ~x is a set of type and uniqueness variables, and C is set of constraints or
a constraint variable. We modify the type language to allow for type schemes in
the domain of the arrow. We follow [2] and do not allow for type schemes in the
codomain:

τ ::= type
a, b type variable
σ −→

νa

τν2
2 arrow type (functions)

Int constant type



Typing derivations now have the structure

Γ, uγ ` e : τν | C

which says that e has type τν , given an environment Γ and uniqueness attribute
uγ (see Sect. 3.4), provided constraints C are satisfied (where environments now
map variable names to type schemes). The full typing rules are listed in Fig. 1;
we will explain them separately below.

4.1 Variables

Because the type environment now associates variable names with type schemes
rather than types, to find the type of a variable we must look up the associated
type scheme in the environment, and instantiate it. Instantiation is defined as

`inst ∀~x.τν , C � Sxτν | SxC
Inst

where Sx is some substitution [~x 7→ . . . ] mapping all variables ~x to fresh vari-
ables. Since we associate a set of constraints C with a type scheme, a type Sxτν

is only an instance of a type scheme σ if those constraints are satisfied.

4.2 Abstraction

The rule for abstraction remains unchanged except for the domain of the arrow
operator which is now a type scheme. However, since we can only infer rank-1
types, the type scheme for unannotated lambda expressions must be a “degen-
erate” type scheme with no quantified variables (∀.τν , C)—in other words, a
type7.

4.3 Application

The rule for application looks slightly different from the rank-1 version. Previ-
ously, with App the type of the actual parameter had to equal the type of the
formal parameter of the function:

Γ, uγ ` e1 : τν1
1

νf−→
νa

τν2
2 Γ, uγ ` e2 : τν1

1 νf ≤ νa

Γ, uγ ` e1 e2 : τν2
2

App1

In the rank-n case, the only requirement is that the type of the actual parameter
is an instance of the type of the formal parameter. To this end, we infer a type
scheme for the actual parameter, and do a subsumption check:

Γ, uγ ` e1 : σ1
νf−→
νa

τν2
2 | C Γ, uγ `

gen
e2 : σ2 `subs

σ2 � σ1

Γ, uγ ` e1 e2 : τν2
2 | C, νf ≤ νa

App

7 In [2] the arrow → is overloaded; there is an arrow τ → τ and an arrow σ → τ . Since
we do not use the notion of ρ–types, our arrows always have type σ → τν .



Γ, uγ ` i : Intν | ∅ Int

`inst
σ � τν | C

(Γ, x : σ), uγ ` x� : τν | C Var�

`inst
σ � τν | C

(Γ, x : σ), uγ ` x⊗ : τ× | C Var⊗

(Γ, x : ∀.τν1
1 , C1), uγ′ ` e : τν2

2 | C2

Γ, uγ ` λx · e : (∀.τν1
1 , C1)

νf−→
νa

τν2
2 | C2, νa ≤ uγ , uγ′ ≤ uγ , uγ′ ≤ ν1

Abs

Γ, uγ ` e1 : σ1

νf−→
νa

τν2
2 | C Γ, uγ `

gen
e2 : σ2 `subs

σ2 � σ1

Γ, uγ ` e1 e2 : τν2
2 | C, νf ≤ νa

App

Γ, uγ `
gen

e : σ (Γ, x : σ), uγ ` e′ : τν | C
Γ, uγ ` let x = e in e′ : τν | C Let

(Γ, x : σ), uγ′ ` e : τν2
2 | C

Γ, uγ ` λx :: σ · e : σ
νf−→
νa

τν2
2 | C, νa ≤ uγ , uγ′ ≤ uγ , uγ′ ≤ dσe

Annot

Γ, uγ ` e : τν | C ~x = freevars(τν)− freevars(Γ )

Γ, uγ `
gen

e : ∀~x.τν , C
Gen

`inst ∀~x.τν , C � Sxτν | SxC
Inst

~y /∈ freevars(∀~x.τν1
1 ) `subs

Sxτν1
1 � τν2

2 C2 � SxC1

`subs ∀~x.τν1
1 , C1 � ∀~y.τν2

2 , C2

Subsσ

`subs
σ2 � σ1 `subs ∀.τν1

1 , ∅ � ∀.τν2
2 , ∅

`subs
σ1 → τν1

1 � σ2 → τν2
2

Subs→

`subs
τν � τν

Subsτ

Fig. 1. Uniqueness Typing Rules



(We will explain subsumption separately in section 4.5.) To infer a type scheme,
we first infer a type, and then generalize over all the free variables in the type,
excluding the free variables in the environment:

Γ, uγ ` e : τν | C ~x = freevars(τν)− freevars(Γ )
Γ, uγ `

gen
e : ∀~x.τν , C

Gen

4.4 Annotated Lambda Abstractions

The rule for annotated lambda abstractions is similar to the rule for “ordinary”
lambda abstractions, except that programmers can now specify a type scheme
manually, allowing for higher-rank types:

(Γ, x : σ), uγ′ ` e : τν2
2 | C

Γ, uγ ` λx :: σ · e : σ
νf−→
νa

τν2
2 | C, νa ≤ uγ , uγ′ ≤ uγ , uγ′ ≤ dσe

Annot

We have to be careful defining d∀~x.τνe, used to constrain uγ′ . The obvious answer
(ν) is only correct if ν is not itself universally quantified. For example, consider

λx :: ∀u.au · λy · x� :: (∀u.au)
uf−−→
ua

bv uf′
−−→
ua′

aw, ?

(Note that this is a rank-2 type.) What should the constraint at the question
mark be? One possible solution is

∀u · ua′ ≤ u

which is equivalent to saying
ua′ ≤ •

So, to avoid unnecessary complication by introducing universal quantification
into the constraint language, we define d e as

d∀~x.τνe =

{
ν if ν /∈ ~x

• otherwise

4.5 Subsumption

The rules for subsumption are defined as in [2], except that we have collapsed
rules Skol and Spec into one rule (Subsσ) and added one additional premise.
Subsσ is the main rule that checks whether one type scheme is a (generic)
instance of another.

~y /∈ freevars(∀~x.τν1
1 ) `subs

Sxτν1
1 � τν2

2 C2 � SxC1
`subs ∀~x.τν1

1 , C1 � ∀~y.τν2
2 , C2

Subsσ

In a standard type system, as here, a type scheme σ1 = ∀~x.τ1 is at least
as polymorphic as another type scheme σ2 = ∀~y.τ2 if a unifier Sx can be



found that instantiates τ1 to an arbitrary instantiation of τ2 (guaranteed by
~y /∈ freevars(∀~x.τν1

1 )). In our system, however, we need an additional constraint
C2 � SxC1, which is best explained by example. Suppose we have two functions
f , g

f :: (∀u, v.au uf−−→
ua

bv)→ . . .

g :: au uf−−→
ua

bv, [u ≤ v]

Should the application f g type-check? Intuitively, f expects to be able to use
the function it is passed to obtain a b with uniqueness v (say, a unique b),
independent of the uniqueness of a. However, g only promises to return a unique
b if a is also unique! Thus, the application f g should be disallowed. Conversely,
if we instead define f ′ and g′ as

f ′ :: (∀u, v.au uf−−→
ua

bv, [u ≤ v])→ . . .

g′ :: au uf−−→
ua

bv

the application f ′ g′ should be allowed because the type of g′ is more general than
the type expected by f ′. The condition C2 � SxC1, where the � symbol stands
for logical entailment from propositional logic, means that if constraints C2 are
satisfied, constraints C1 must also be satisfied8. In other words, the constraints
of the offered type must be the same or less restrictive than the constraints of
the requested type.

5 Examples

In this section we consider a few example expressions and their associated types.
We start with very simple expressions and slowly build up from there. First, we
consider a single integer:

5 :: ∀u.Intu, ∅

Rule Int says that integers have type Int with an arbitrary uniqueness, hence
the universally quantified u. Next we consider the identity function id:

λx.x� :: ∀a, u, uf , ua, c.(∀.au, c)
uf−−→
ua

au, c

This type may appear more complicated than it really is, because we show top-
level attributes and degenerate type schemes; we can be slightly less formal:

λx.x� :: (au, c)
uf−−→
ua

au, c

8 If either C1 or C2 in C1 � C2 is a constraint variable, we apply unification instead of
the entailment check.



Either way, this is the type one would expect an identity function to have.
Note that this function is polymorphic in the constraints of its argument: if the
argument has type au under constraints c, then the result has type au only if
the same set of constraints is satisfied.

The function apply ($ in Haskell) behaves like id restricted to function types:

λf.λx.f� x� ::
(

(au, c1)
uf′′
−−→
ua′′

bv, c2

)
uf−−→
ua

(
(au, c1)

uf′
−−→
ua′

bv

)
, [c2,

ua′ ≤ ua′′ , ua′ ≤ uf ′′ , uf ′′ ≤ ua′′ ]

With the exception of the constraints, this type should be self-explanatory. We
consider each constraint in turn:

c2 If f has type (au, c1)
uf′′
−−→
ua′′

bv only when constraints c2 are

satisfied, then apply f also has that type only when those con-
straints are satisfied (cf. the constraint c in the type of id.)

ua′ ≤ ua′′ If f can only be executed once (in other words, if f must be
unique on application, if ua′′ is unique), then apply f can also
only be executed once.

ua′ ≤ uf ′′ If f is unique, then apply f can only be executed once; this is
a direct consequence of the “currying rule” from Sect. 3.4.

uf ′′ ≤ ua′′ Finally, apply f applies f , so if f must be unique on application,
we require that it is unique.

The next example emphasises a point with respect to the sharing analysis. Sup-
pose that we have a primitive type Array and two functions resize to (destruc-
tively) resize the array, and size to return the current size of the array:

resize :: Array•
uf−−→
ua

Intv uf′
−−→
•

Array•

size :: Arrayu uf−−→
ua

Intv

Then the following expression is correctly marked and type correct:

λarr · if size� arr⊗ < 10 then resize⊗ arr� 20 else resize⊗ arr� 30

This expression is marked correctly, because only one of the two branches of
the conditional expression will be executed, and the shared mark arr⊗ in the
condition guarantees that the condition cannot modify arr .

To conclude this section, we consider two examples that contain a type error,
which in both cases will be detected in the subsumption check (although for
different reasons). The first example shows a simple case of an argument not
being polymorphic enough:

let id f = λf :: ∀u.au uf−−→
ua

au · f�

in let id int = λi :: Int• · i�

in id�f id�int



Here, id f demands that its argument is polymorphic in u, but id int is not (it works
only on unique integers). The problem is detected when we do the subsumption
check

`subs ∀.Int•
uf−−→
ua

Int• � ∀u.au uf′
−−→
ua′

au

We have to check that we can unify Int• and au for an arbitrary instantiation of
u, but that will clearly fail9. The second “incorrect” example that we consider
fails due to the entailment check explained in section 4.5:

let first = λf :: au uf−−→
ua

bv uf′
−−→
ua′

au · λx · λy · f� x� y�

in first� (λx · λy · x�)

The function that is passed as an argument to first has type10

λx · λy · x� :: au uf−−→
ua

bv uf′
−−→
ua′

au, [ua′ ≤ u]

whereas the type specified for the argument f of first does not allow for the
constraint ua′ ≤ u; so, the type-checker will fail with

[] does not entail [ua′ ≤ u]

6 Type Inference

We have written a prototype implementation of the type system presented in this
paper. The typing rules as presented in Fig. 1 allow for a relatively straightfor-
ward translation to an algorithm W [3] style type-checker (our prototype is just
under a thousand lines long) once the following subtleties have been observed.

When doing unification, a unification goal, τν1
1 ≡ τν2

2 should be expanded
into two subgoals τ1 ≡ τ2 and ν1 ≡ ν2. In other words, the base types and the
uniqueness attributes should be unified independently.

Unification should not be used to unify functions because, as far as unifica-
tion is concerned, σ1 → τν1

1 ≡ σ2 → τν2
2 is the same as σ2 → τν2

2 ≡ σ1 → τν1
1 ,

but to compare two type schemes we need to use subsumption, which clearly
gives different answers for `subs

σ1 � σ2 and `subs
σ2 � σ1. However, when prop-

erly implemented, by the time we need unification, the subsumption rules (in
particular, Subs→) will have taken care of all arrows11.
9 The implementation of Subsσ will have instantiated u with a fresh “skolem con-

stant”: an unknown, but fixed, uniqueness attribute. These skolem constants are the
“rigid variables” known from, for example, ghc, and the type error the user will get
is Cannot unify rigid attribute u and •.

10 There are additional “polymorphic” constraint variables in these types that we are
leaving out for conciseness.

11 In [2], due to the distinction between ρ functions and τ functions, unification must
still deal with arrows τ → τ ; since we only have one arrow type, this is unnecessary
in our approach.



To implement the subsumption check, the technique suggested by Peyton
Jones [2] of using skolem constants can be applied, introducing skolem constants
both type and uniqueness variables.

Logical entailment of two sets of constraints C1 and C2 can be implemented
as a validity check for the propositional logic formula C1 → C2, where the
u ≤ v operator is regarded as an implication v → u. Although the complexity of
checking the validity of functions in propositional logic is exponential, that will
not matter much in practice since the formulae generated by the type-checker
will be small (most type schemes will not have many associated constraints).
A simple algorithm (the one we have implemented) to check the validity of a
formula in propositional logic is to convert the formula to conjunctive normal
form. Then inspect every conjunct and search for atoms in the conjunct such
that the conjunct contains the atom and its negation. If such a match is found
for all conjuncts, the formula is valid (see [4, Sect. 1.5] for details).

Finally, when generalizing a type τν with respect to a set of constraints C, the
set should be checked for inconsistencies; these should be reported as type errors.
For improved readability of types, it is also useful to take the transitive closure of
C instead of C itself, and add only the “relevant” inequalities to the type scheme
(rule Abs might generate unnecessary constraints [uγ′ ≤ uγ , uγ′ ≤ ν1] if uγ′ is
never used to constrain other attributes); this is demonstrated in the example
in Sect. 3.4.

7 Comparison with Clean

The uniqueness type system presented here is based on that of the programming
language Clean [1, 5], which is in turn strongly related to substructural logics
(see [6] for an accessible introduction to linear logic; [7] is a good introduction to
substructural type systems). However, there are a number of important differ-
ences, one being that Clean’s system is defined over graph rewrite rules rather
than the lambda calculus; this gives the type system a very different “feel”.

A rather more important difference is the treatment of curried functions.
In Clean, a function that is (partially) applied to a unique argument, is it-
self unique. Moreover, unique functions are necessarily unique: they cannot lose
their uniqueness. In the curry example in Sect. 3.4, there are two references to
curried, causing curried to be marked as ⊗. The type correction in rule Var⊗

(a trivial operation in our system) must check whether the variable represents
a function, and if so, reject the program. While this solves the curried function
problem, it has far reaching consequences for the type system.

The first is that type variables, as well as functions, are not allowed to lose
their uniqueness, since a type variable can be instantiated to a function type. In
Clean, for example, the function mkPair has type

λx · (x⊗, x⊗) :: a× → (a×, a×)

and not
λx · (x⊗, x⊗) :: au → (a×, a×)



The type assigned by Clean is not as restrictive at is seems, however, due to
Clean’s subtyping relation: a unique type is considered to be subtype of its non-
unique counterpart. For example, the following is a correct Clean program:

five :: Int•

five = 5

mkPair :: a× → (a×, a×)
mkPair x = (x, x)

Start = mkPair five

where Start is assigned the type (Int×, Int×). Of course, the subtyping relation
is adapted for arrows [5]:

S
u−→ S′ ≤ T

v−→ T ′ iff u = v and T ≤ S and S′ ≤ T ′

There are two things to note about this definition: a unique function is never
a subtype of its non-unique version (condition u = v), since functions are not
allowed to lose their uniqueness (a similar restriction applies to type variables);
and subtyping is contravariant in the function argument. Although this is not
surprising, it complicates the type system—especially in the presence of algebraic
data types. We have not discussed ADTs in this paper (see Sect. 8), but they
are easy to add to our system. However, algebraic data constructors can include
arrows, for example

data Fun a b = Fun (a → b)

which means that arguments to constructors must be analysed to check whether
they have covariant, contravariant or invariant subtyping behaviour.

By contrast, in our system we do not have the notion of “necessarily unique”;
instead, we add a single additional attribute νa as explained before, and the con-
dition that (some) curried functions can only be executed once becomes a local
constraint νf ≤ νa in the rule for function application. There are no global effects
(for example, type variables are unaffected) and we do not need subtyping12.

That last point is worth emphasizing. The subtyping relation in Clean is very
shallow. The only advantage of subtyping is that we can pass in a unique object
to a function that expects a non-unique object. So, in Clean, marking a formal
parameter as non-unique really means, “I do not care about the uniqueness
of this parameter”. However, in our system, we can always use an attribute
variable to mean the same thing. That is not always possible in Clean, since
type variables are not allowed to lose their uniqueness (the type we assign to the
function mkPair above would be illegal in Clean).

Since we do not have subtyping, functions can specify that their arguments
must be unique (a•), non-unique (a×), or indicate that the uniqueness of the
12 One might argue that subsumption introduces subtyping between type schemes;

however, due to the predicative nature of our type system, this does not have an
effect on algebraic data type arguments; see the discussion in [2, Sect. 7.3].



input does not matter (au). In Clean, it is only possible to specify that arguments
must be unique (a•) or that the uniqueness of an argument does not matter (au

or, due to subtyping, a×). Experience will tell whether this extra functionality
is useful.

Another consequence is mentioned in [5, Sect. Uniqueness Type Inference]:

However, because of our treatment of higher-order functions (involving a
restriction on the subtype relation w.r.t. variables), it might be the case
that lifting this most general solution fails, whereas some specific in-
stance is attributable. (...) Consequently, there is no “Principal Unique-
ness Type Theorem”.

The authors hope that the system presented here does have principal types,
although a formal proof is future work.

An additional benefit of allowing for type schemes in the domain of arrows
(necessary to support higher-rank types) is that we can be more conscientious
about associating uniqueness inequalities (constraints) with types. For example,
in Clean, the function apply from Sect. 5 has type

λf · λx · f x :: (au → bv)→ au → bv

But given a function f with type

f :: au → bv, [u ≤ v]

the Clean type-checker assigns the following type to apply f :

apply f :: au → bv, [u ≤ v]

This type is quite reasonable, and similar to the type we would assign. However,
it contains constraints that do not appear in the type of apply, which suggests
that the type of apply as assigned by the Clean type-checker is somehow “in-
complete”. The type we assign to apply is explicit about the propagation of
constraints13:

λf · λx · f x :: ((au, c1)→ bv, c2)→ (au, c1)→ bv, c2

8 Future Work and Conclusions

We have designed a uniqueness type system for the lambda calculus that can be
used to add side effects to a pure functional language without losing referential
transparency. This type system is based on the type system of the functional
programming language Clean, but modifies it in a number of ways. First, it is
defined over the lambda calculus rather than a graph rewrite system. Second, our
treatment of curried functions is completely different and makes the type system
13 Not showing the attributes on the arrows.



much simpler; in particular, there is no need for subtyping. Third, our system
supports arbitrary rank types, and it is much more careful about associating
constraints with types.

The system as presented in this paper deals only with the core lambda calcu-
lus; however, extensions to deal with algebraic data types and recursive defini-
tions are straightforward. For recursive definitions µ ·e, the type of e is corrected
to be non-unique (this is the same approach as taken in [5] for letrec expres-
sions). The main principle in dealing with algebraic data types is that if a unique
object is extracted from an enclosing container, the enclosing container must in
turn be unique (this is a slightly more permissive definition than the one used
in Clean, which requires that a container must be unique when it is constructed
if any of its elements are unique).

We need to define a semantics for our small core language and show that
a number of standard properties of the type system hold with respect to the
semantics (in particular, subject reduction). Also, we would like to prove that
our system has principal types. Given an appropriate semantics with an explicit
representation of sharing (for example, Launchbury’s natural semantics for lazy
evaluation [8], or perhaps a graph rewriting semantics), we should also prove
that our type system guarantees that there is never more than one reference to
an object with a unique type.

The inference algorithm described briefly in Sect. 6 is based on algorithm W
and inherits its associated problems, in particular unhelpful error messages. We
are planning to investigate the feasibility of other approaches—the constraint
based algorithm proposed by Heeren looks promising [9].

The formalization of the constraint language in this paper is not as precise as
it could be, but a more precise definition is difficult to give. Moreover, constraints
considerably complicate the type system and the types assigned to terms. We
are currently investigating the possibility of removing the constraints altogether
by replacing the inequalities in the constraints with equalities. This will make
the type system more restrictive, but will also make it much simpler. It remains
to be seen whether this trade-off between simplicity and generality is desirable.

In the explanation of the rule for abstractions Abs in Sect. 3.4, we mentioned
that our method of constraining νa is conservative. For example, the constraint
ua′ ≤ u in

λx.λy.y� :: (au, c1)
uf−−→
ua

(bv, c2)
uf′
−−→
ua′

bv, [c2, ua′ ≤ u]

is not actually necessary since x is not referenced in λy · x. Hence, it may be
possible to relax the rules to be less conservative. This would only affect how νa

in Abs is established; it would not change the type language.
Finally, the original motivation for wanting to extend Clean’s uniqueness

system to arbitrary rank is the fact that generic programming [10] frequently
generates higher-rank types. We plan to extend our prototype implementation
of the system to support generics, with the ultimate goal of proving that if
a function defined generically is type correct (with respect to some “generic”
uniqueness type system), then the functions derived from the generic function



will also be type correct. This will give us some experience with the type sys-
tem, which may provide more insights into whether the extra power that our
uniqueness system gives over Clean’s system (see Sect. 7) is useful in practice.

Acknowledgements

We thank Bastiaan Heeren, Dervla O’Keeffe, John Gilbert, Wendy Verbruggen,
and Sjaak Smetsers for their comments on various drafts of this paper, and the
anonymous referees for their thorough reviews and helpful suggestions.

References

1. Barendsen, E., Smetsers, S.: Conventional and uniqueness typing in graph rewrite
systems. Technical Report CSI-R9328, University of Nijmegen (1993)

2. Peyton Jones, S., Shields, M.: Practical type inference for arbitrary rank types.
Under consideration for publication in J. Functional Programming (2004)

3. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL
’82: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, New York, NY, USA, ACM Press (1982) 207–212

4. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, New York, NY, USA (2004)

5. Barendsen, E., Smetsers, S.: Uniqueness typing for functional languages with graph
rewriting semantics. Mathematical Structures in Computer Science 6 (1996) 579–
612

6. Wadler, P.: A taste of linear logic. In: MFCS ’93: Proceedings of the 18th Inter-
national Symposium on Mathematical Foundations of Computer Science, London,
UK, Springer-Verlag (1993) 185–210

7. Walker, D.: Substructural type systems. In Pierce, B., ed.: Advanced Topics in
Types and Programming Languages. The MIT Press (2005)

8. Launchbury, J.: A natural semantics for lazy evaluation. In: POPL ’93: Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, New York, NY, USA, ACM Press (1993) 144–154

9. Heeren, B., Hage, J., Swierstra, S.D.: Generalizing Hindley-Milner type inference
algorithms. Technical Report UU-CS-2002-031, Institute of Information and Com-
puting Science, University Utrecht, Netherlands (2002)

10. Alimarine, A., Plasmeijer, M.J.: A generic programming extension for Clean. In:
IFL ’02: Selected Papers from the 13th International Workshop on Implementation
of Functional Languages, London, UK, Springer-Verlag (2002) 168–185


