Chapter 1

Efficient Interpretation by
Transforming Data Types and
Patterns to Functions

Jan Martin Jansen', Pieter Koopman?, Rinus Plasmeijer?

Abstract: This paper describes an efficient interpreter for lazy functional lan-
guages like Haskell and Clean. The interpreter is based on the elimination of
algebraic data types and pattern-based function definitions by mapping them to
functions using a new efficient variant of the Church encoding. The transforma-
tion is simple and yields concise code. We illustrate the concepts by showing how
to map Haskell and Clean programs to the intermediate language SAPL (Simple
Application Programming Language) consisting of pure functions only.

An interpreter is described for SAPL, based on straightforward graph reduc-
tion techniques. This interpreter can be kept small and elegant because function
application is the only operation in SAPL. The application of a few easy to realize
optimisations turns this interpreter into an efficient one. The resulting perfor-
mance turns out to be competitive in a comparison with other interpreters like
Hugs, Helium, GHCi and Amanda for a large number of benchmarks.

1.1 INTRODUCTION

In this paper we present an implementation technique for lazy functional lan-
guages like Haskell [1] and Clean [16] based on the representation of data types
by functions. Although it is well known that it is possible to represent algebraic
data types as functions by using the Church encoding or variants of it (Berarducci
and Bohm ([6] and [7]) and Barendregt [5]), these representations have never

INetherlands Defence Academy, Faculty of Military Sciences, Den Helder, the
Netherlands; E-mail: j.m. jansen@forcevision.nl

2Institute for Computing and Information Sciences (ICIS), Radboud University
Nijmegen, the Netherlands; E-mail: {pieter, rinus}@cs.ru.nl

been used in implementations for efficiency reasons. Therefore, intermediate lan-
guages always contain special constructs for data types and pattern matching (see
e.g. Peyton Jones [12] and Kluge [10]). In this paper we present a new variant of
the Church encoding for algebraic data types. This variant uses named functions
and explicit recursion instead of lambda expressions for the conversion. We show
how to convert a pattern-based function definition to a single function without
patterns using this encoding. The encoding results in a program in the intermedi-
ate language SAPL consisting of pure functions only. The encoding we use has
important advantages over the Church encoding because it allows for destructor
functions with complexity O(1), instead of proportional to the size of the data
structure (list, tree, etc.).

In the second half of this paper an interpreter is described that can handle the
functions that are the result of this transformation. The interpreter is based on
straightforward graph reduction techniques. To optimise the performance of the
interpreter two types of function annotations are introduced. The first annotation
enables an optimal instantiation of function bodies that are the result of trans-
lating pattern-based function definitions, and the second annotation enables the
inline execution of certain local function definitions. The annotations can easily
be added during the translation of a Haskell or Clean program to SAPL. It is also
possible to add them during a static analysis of the translated programs without
knowledge of the original data types and pattern definitions.

Summarizing, the contributions of this paper are:

e We introduce a new encoding scheme that transforms algebraic data types to
simple function definitions in the intermediate language SAPL. The encod-
ing uses named functions and explicit recursion which simplify the encoding
considerably in comparison with known encodings.

e We show how to transform a pattern-based function definition to a single func-
tion without patterns using this encoding.

e We describe how an efficient interpreter can be realized for lazy functional
programming languages using minimal and elementary effort. The interpreter
takes as input the result of the transformation mentioned above. The imple-
mentation of the interpreter is considerably shorter than that of byte code based
interpreters like Helium, Hugs and GHCi with a better performance. The bet-
ter performance of the interpreter can be attributed to the simplicity of the
intermediate formalism enabling a high-level abstract machine having large
atomic actions with minimal interpretation overhead.

The structure of this paper is as follows. In Section 1.2 we introduce a new
encoding of algebraic data types by functions and we compare this encoding with
two existing encodings. In Section 1.3 we introduce the intermediate functional
programming language SAPL. SAPL has, besides integers and their operations,
no data types. SAPL is similar to the pure functional kernel of languages like
Haskell and Clean. We show how to transform complex pattern-based function
definitions to SAPL based on the representation of data types from Section 1.2.

In Section 1.4 we define an interpreter for this language based on straightforward
graph-rewriting techniques. We show how the interpreter can be optimised by
using two simple annotations that can be added to SAPL programs. The perfor-
mance of the optimised interpreter is compared with other implementations in
Section 1.5. In Section 1.6 we give some conclusions and discuss further research
possibilities.

1.2 REPRESENTATION OF DATA TYPES BY FUNCTIONS

In the lambda calculus several representations of algebraic data types by functions
(or lambda expressions) exist. In this section we introduce a new representation
and compare it with the two most important existing representations. We use
two examples to demonstrate the differences: the Peano representation of natural
numbers with the addition and predecessor operations and lists with the length and
tail operations. We use Haskell syntax for all definitions, although some functions
cannot be typed.

1.2.1 A New Representation of Data Types by Functions

Consider the following algebraic data type definition in Haskell or Clean:
typenamety ..ty = Cit11 .. tip || Cotind - by,

We map this type definition with m constructors to m functions:

Civig - Vig, =Mfm = fivin-Vig

Cn Vm,21 - Vm,n,, = 7‘fl S = fm Vm,1 - Vm,ny,

Each constructor is represented by a function with the same name. Now consider
the Haskell (multi-case) function f with as argument an element of this data type:

f(C] V1,1 - Vl,nl) :bOdyl

f (Cm Vm,1 - vm-,"m) = bOd)’m
This function is converted to the following function without patterns:

fel = el
(7\,1/111 --Vl,nl — bodyl)

AV - Vinp, — bodyn)

The body of each case is turned into a lambda expression that is placed as an argu-
ment of the data type element. The actual data type argument will select the cor-
rect lambda expression and apply it to the arguments of the constructor. Therefore
we call a function corresponding to a constructor a selector function. The result of
the transformation of recursive functions on recursive data types cannot be typed
by Hindley-Milner type inference (see examples in the next section). This is not
a problem because the functions can be typed before the transformation.

1.2.2 Examples

The Haskell definitions for the examples are (note that we defined tail Nil as Nil
and pred Zero as Zero in order to have total functions):

data Nat = Zero | Suc Nat
add n Zero =n

add n (Suc m) = Suc (add n m)
pred Zero = Zero

pred (Suc n) =n

data List t = Nil | Cons t (List t)
length Nil =0

length (Cons x xs) = 1 + length xs

tail Nil = Nil

tail (Cons x xs) = xs

Using the transformation to functions this becomes:

Zero =Afg—f

Sucn =Afg — gn

addnm = mn(hpm — Suc (add npm))
predn = nZero (Apn — n)

Nil =Afg—f

Consxxs= Afg — gxxs
lengthys = ys0 (Axxs — 1 + lengthxs)
tailys = ysNil (Axxs — xs)

pred and tail both have complexity O(1). The functions Zero, Suc, Nil, Cons, pred
and tail can be typed, but add and length cannot be typed using Hindley-Milner
type inference. In general, the encoding of recursive functions on recursive data
types cannot be typed. The definitions of add and length are explicitly recursive.
In general, to encode recursive functions over recursive data structures, we need
explicit recursion. This is not a problem since we use named functions instead of
lambda expressions in our encoding. The notation is easy to read and close to the
original Haskell data type and function definitions.

1.2.3 Church Encoding

For this encoding we need pairs with the selection functions fst and snd. They can
be represented by functions as follows:

pairxy= Af — fxy
ftp =pxy — x)
sndp =pQAxy —)

The Church encoding is a generalization of the Church numerals. The representa-
tion described here is based on Berarducci and Bohm [6] and Barendregt [5]. For
comparison reasons we use a slightly different notation than is generally used for
describing Church numerals:

Zero =Afg—f

Sucn =MAfg — g(nfg)

addnm = mn (Arpm — Suc rpm)

predn = snd (n (pair Zero Zero) (Ap — pair (Suc (fst p)) (fstp)))
Nil =Afg—f

Consxxs=Afg — gx(xsfg)
lengthys = ysO0 (Axrxs — 1 + rxs)
tailxs = snd (xs (pair Nil Nil)
(Ax pxs — pair (Cons x (fst pxs)) (fst pxs)))

In the add definition add n (Suc m) can be defined using the result of add nm
(represented by rpm). The same holds for length. But in predecessor pred (Suc n)
cannot be expressed in terms of pred n. Instead we need access to n in Suc n (we
need to destruct Sucn). Kleene ([4]) found a way to overcome this by the use of
pairs. In such a pair n is combined with the result of the recursive call, so access
to n is also possible. For fail we also need this pair construction. Through this
construction pred n has complexity O(n) and tail xs has complexity O(length xs).
In this encoding the recursion is put into the data structures. Therefore, functions
on data structures do not have to be recursive themselves. A disadvantage is
that this encoding only works fine for iterative and primitive recursive functions
(see [7]). For destructor functions we need the pair construction. In the Church
encoding data types and functions acting on them can be typed using Hindley-
Milner type inference.

1.2.4 Representation according to Berarducci and Bohm

Another representation is described in Berarducci and Bohm [7] and Barendregt
[5]. Again we adapted the notation to make a comparison with the other represen-
tations possible.

Zero = MAfg—ffg

Sucn =Afg— gnfg

addnm = m (Afzfs — n) (Apmfzfs — Suc (pmfzfs))
predn = n(Afzfs — Zero) (Apnfzfs — pn)

Nil =Afg—ffg

Consxxs= Afg — gxxsfg
lengthys = ys Afnfc — 0) (Axxsfnfc — 1+ xsfnjc)
tailys = ys (Afnfc — Nil) (Axxsfafc — xs)

The basic idea in this representation is that the functions handling the different
cases are propagated by the functions representing the data structures. Therefore,
functions on data structures do not have to be recursive themselves. Here pred n
and tail xs have complexity O(1). In general, destructor functions have complexity
O(1), making this representation more powerful than the Church encoding. In this
representation Zero, Suc, Nil and Cons, as well as the functions acting on them
cannot be typed by Hindley-Milner type inference.

1.2.5 Conclusions

Our representation is more efficient than the Church encoding, because it realizes
destructor functions with O(1). Although this also holds for the representation of
Berarducci and Bohm, the use of named functions and explicit recursion in our
representation result in a simpler representation, which is suitable for an efficient
implementation (see Section 1.4).

1.3 SAPL: AN INTERMEDIATE FUNCTIONAL LANGUAGE

SAPL is an intermediate language that can be used for the compilation and inter-
pretation of functional programming languages like Haskell and Clean. The main
difference between SAPL and the intermediate formalisms normally used is the
absence of algebraic data types and constructs for pattern matching in SAPL. This
makes SAPL a compact and simple language. In Section 1.4 we show that it is
possible to make an efficient implementation for SAPL. SAPL is described by the
following syntax:

function = identifier {identifier} x =" expr

expr ::= application | "N {identifier} + '—' expr
application ::= factor {factor}x

factor ::= identifier | integer | '(' expr')’

A function has a name followed by zero or more variable names. An expression
is either an application or a lambda expression. In an expression only variable
names, integers and other function names may occur. SAPL function definitions
start in the first column and can extend over several lines (as long as these are
indented). SAPL is un-typed. The language has the usual lazy rewrite semantics
(see Section 1.4). For efficiency we added integers and their basic operations to
the language. In SAPL it is common that a curried application of a function is
the result of a computation. This result will be presented as the application of the
function name to the evaluated arguments.

SAPL’s main difference with the lambda calculus is the use of explicitly named
functions (enabling explicit recursion) which makes SAPL usable as a basic func-
tional programming language and suitable for an efficient implementation.

For the use of SAPL as an intermediate language for implementing lazy func-
tional languages like Haskell and Clean we must translate constructs from these
languages to SAPL functions. Constructions like list-comprehensions, where and

let(rec) expressions can be converted to functions with standard techniques as de-
scribed in [12] and [14]. Algebraic data types and simple pattern-based functions
are treated specially using the translation scheme from Section 1.2. In the next
subsection the transformation of complex pattern-based functions is sketched.

1.3.1 Compiling Complex Pattern Definitions to Functions

In the implementations of Haskell and Clean pattern-based definitions are tradi-
tionally compiled to dedicated structures in a special pattern formalism that can be
used to generate pattern-matching code (Augustsson [3] and Peyton Jones [12]).
Here we transform a pattern-based function definition from Clean or Haskell to
a single SAPL function without patterns. This function is capable of handling
an actual call for the original pattern-based function. The conversion to a single
function can be obtained using techniques similar to those used for the generation
of pattern-matching code (see [3] and [12]). We use three examples to illustrate
this conversion: mappair (zipWith), samelength and complex. Note that the pat-
tern compiler introduces a name for every constructor (e.g. as in mappair) and
uses existing names whenever possible (e.g. ps and gs in samelength).

mappair f Nil & = Nil
mappair f (Cons x xs) Nil = Nil
mappair (Cons x xs) (Cons 'y ys) = Cons (f xy) (mappair f xs ys)

samelength Nil Nil = True
samelength (Cons x xs) (Cons 'y ys) = samelength xs ys
samelength ps qs = False

complex (Cons a (Cons b (Cons ¢ Nil))) = a + b + ¢

complex (Cons a (Cons b Nil)) =2%xa+b
complex (Cons a Nil) =3xa
complex xs =0

The translation to SAPL results in:

mappair f aszs = as Nil (Axxs — zsNil (Ayys —
Cons (f xy) (mappair f xs ys)))

samelength ps gs = ps (qs True (Ayys — Fulse))
(Axxs — gs False (Ayys — samelength xs ys))

complexxs = xs0 (A apl — pl (mult3a)(Abp2 —
p2 (add (mult2 a) D)
(Acp3 — p3(add (add ab) ¢) (A pd p5 —0))))

1.4 AN INTERPRETER FOR SAPL

The only operations in SAPL programs are function application and a number
of (built-in) integer operations. Therefore an interpreter can be kept small and
elegant. The interpreter is implemented in C and is based on straightforward
graph reduction techniques as described in Peyton Jones [12], Plasmeijer and van
Eekelen [14] and Kluge [10]. We assume that a pre-compiler has eliminated all
algebraic data types and pattern definitions (as described earlier) and all let(rec)-
and where- clauses and lifted all lambda expressions to the global level. The
interpreter is only capable of executing function rewriting and the basic operations
on integers. The most important features of the interpreter are:

e It uses 4 types of memory Cells. A Cell corresponds to a node in the syntax
tree and is either an: Integer, (Binary) Application, Variable or Function Call.
To keep memory management simple, all Cells have the same size. A type
byte in the Cell distinguishes between the different types. Each Cell uses 12
bytes of memory.

e The memory heap consists only of Cells. The heap has a fixed size, definable
at start-up. We use a mark and (implicit) sweep garbage collection. Cells are
not recollected, but the dirty bit is inverted after every mark.

o It uses a single argument stack containing only references to Cells. The C
(function) stack is used as the dump for keeping intermediate results when
evaluating strict functions (numeric operations only) and for administration
overhead during the marking phase of garbage collection.

e The state of the interpreter consists of the stack, the heap, the dump, an array
of function definitions and a reference to the node to be evaluated next. In
each state the next step to be taken depends on the type of the current node:
either an application node or a function node.

o It reduces an expression to head-normal-form. The printing routine causes
further reduction. This is only necessary for arguments of curried functions.

The interpreter is based on the following ‘executable specification’ (without inte-
gers and their operations):

data Expr = App Expr Expr | Func Int Int | Var Int

The first Int in Func Int Int denotes the number of arguments of the function, the

second Int the position of the function definition in the list of definitions. The Int

in Var Int indicates the position on the stack where the argument can be found.
The interpreter consists of three functions:

instantiate (App I r) es = App (instantiate | es) (instantiate r es)
instantiate (Varn) es = es!!n
instantiate x es =X

rebuild e || =e
rebuild e (x : xs) = rebuild(App e x) xs

eval :: Expr — [Expr] — [Expr] — Expr

eval (Applr)esfs = evall(r : es)fs

eval (Func na fn) es fs

= if lengthes > na
then eval (instantiate (fs !! fn) es) (drop na es) fs
else rebuild (Func na fn) es

Here es represents the stack and fs the list of function body definitions. One
of the benchmarks in Section 1.5 is a SAPL version of the interpreter (including
integers and their operations), which is the translation to SAPL of the Haskell ver-
sion of the interpreter (a meta-circular implementation for SAPL). The C versions
(including integers and operations on them) of eval and instantiate are straight-
forward implementations of this specification and fit on less than one page.

1.4.1 Optimising the SAPL Interpreter

For data-type-free programs the interpreter from the previous subsection has a
performance comparable to Helium, GHCi and Amanda. But for programs in-
volving algebraic data types the performance is worse. The difference depends
on the number of alternatives and the complexity of the data type definition and
varies from 30% slower for programs involving only if-then-else constructs, to
several hundreds of times slower for programs involving complex data types and
pattern matching (see section 1.5). This is not surprising because a pattern defini-
tion is converted to one large function containing all different cases. Instantiation
of such a function is therefore relatively expensive, particularly because only a
small part of the body will actually be used in a call for the function.

For optimising the SAPL interpreter we used both general optimisation tech-
niques, commonly used for implementing functional languages, as well as tech-
niques that are more specific for the way SAPL handles data types and pattern
definitions.

General Optimisations

We use a more efficient memory representation for function calls with one or two
arguments. For these function applications APP nodes are removed. This reduces
the size of the bodies of functions and consequently copying overhead.

In the interpreter curried function calls are rebuilt. This can be prevented by
keeping a reference to the top node of the application. If the number of arguments
for a function call can be computed at compile time, the top node of a curried
call can be marked. In this way an attempt to reduce a curried call can even be
prevented.

Applying these two optimisations results in an average speed-up of 60% (see
section 1.5). This speed-up is high since many functions have only 1 or 2 argu-
ments and because SAPL programs contain many curried functions (due to the
representation of data types by functions).

Specific Optimisations

We applied two specific optimisations. The first one addresses the instantiation
problem for functions that are the result of the translation of pattern-based func-
tion definitions. The second one optimises the use of lambda expressions in these
functions. Although the speed-up realized by these optimisations is significant,
the implementation of them requires only small changes in the interpreter.

Selective Instantiation of Function Bodies The body of a transformed pattern-
based definition consists of the application of a so-called selector function (see
Section 1.3) to a number of arguments consisting of anonymous local function
definitions. The selector function will select one of these local function defini-
tions and apply it to the arguments of the corresponding constructor. All other
arguments of the selector function will be ignored. In the mappair example below
we have tagged the applications of selector functions with the keyword select.

mappair f as zs =
select as Nil (A xxs =
select zs Nil (Ly ys = Cons (f xy) (mappair f xs ys)))

The interpreter uses the select (semantically equivalent to the identity function)
tag to optimise the instantiation of the body of mappair. Instead of copying the
entire body, at first only the selector function part is instantiated (as) and depend-
ing on the result (Nil or Cons x xs), the correct remainder is instantiated. This is
similar to evaluating the condition of an if expression before we decide to build
the then part or the else part (but not both). In fact, in SAPL True and False are
also implemented as selector functions. The optimisation is applied recursively to
the bodies of all local definitions.

The optimisation realised in this way is significant. Varying from 30% faster
for programs involving only if-then-else constructs, to up to 500 times faster for
programs involving complex data type definitions like interpreters etc.

We can add the select tag during the transformation of the pattern-based func-
tion definition to SAPL, but it is also possible to infer the application of selector
functions by a compile time analysis of a SAPL program. Selector functions must
be recognized and the propagation of arguments and results of functions that are
selector functions must be inferred. In this way this optimisation is a generic one
and can even be used for the efficient reduction of lambda expressions.

Inlining of Local Definitions As a last optimisation we again consider the bod-
ies of transformed pattern-based definitions. They contain local function defini-
tions corresponding to the different cases. Normally these definitions are lambda

10

lifted to the global level. During this lifting extra arguments are added to the func-
tion, causing extra stack operations at run-time. These local functions can also be
reduced in the context of the reduction of the surrounding function call. This
means that the local function is called (reduced) while the arguments of the main
function are still on the stack and that at the end all arguments together are cleared
from the stack. This can only be done because the reduction to head-normal-form
of the local function call is necessary for the reduction to head-normal-form of
the original function call, which is indeed the case for these transformed pattern-
based functions. This optimisation results in an extra speed-up of about 10 to 25%
for programs involving transformed pattern-based functions (see section 1.5). The
optimisation is implemented by replacing — by = in the local definition as a sig-
nal for the interpreter not to lambda lift this local function (see example in 1.4.1).

Again this optimisation can be applied not only for local definitions in trans-
lated pattern-based functions, but for all local function calls that must be reduced
to head-normal-form while reducing the surrounding function call. But the gain
for SAPL programs will be higher than for applying this optimisation for other
functional languages, because SAPL programs, due to the translation scheme for
pattern-based functions, contain more local function definitions.

1.5 BENCHMARKS

In this section we present the results of several benchmark tests for SAPL and a
comparison of SAPL with other implementations. We ran the benchmarks on a
2.66 Ghz Pentium 4 computer with 512Mb of memory under Windows XP. SAPL
was implemented using the Microsoft Visual C++ compiler using the -O2 option.
The benchmark programs we used for the comparison are:

1. Prime Sieve The prime number sieve program, calculating the 5000th prime
number.

2. Symbolic Primes Symbolic prime number sieve using Peano numbers, calcu-
lating the 280th prime number.

3. Interpreter An interpreter for SAPL, as described in Section 1.4 (including
integers). As an example we coded the prime number sieve for this interpreter
and calculated the 100th prime number.

4. Fibonacci The (naive) Fibonacci function, calculating fib 35.

5. Match Nested pattern matching (5 levels deep) like the complex function from
section 1.3.1, repeated 2000000 times.

6. Hamming The generation of the list of Hamming numbers (a cyclic defini-
tion) and taking the 1000th Hamming number, repeated 4000 times.

7. Twice A higher order function (twice twice twice twice (add 1) 0), repeated
400 times.

8. Sorting Tree Sort (6000 elements), Quick Sort (6000 elements), Merge Sort
(40000 elements, merge sort is much faster) and Insertion Sort (6000 ele-
ments).

11

TABLE 1.1. SAPL with/without Selective Instantiation (Time in seconds)

Pri Sym Inter Fib Match Twi Sort Qns Kns Parse Plog
With 114 60 22 11.6 147 11.0 1.0 105 40 80 0.2
Without | 21.5 107.0 53.0 19.2 23.0 109 17.8 16.0 6.1 16.0 106.0

9. Queens Number of placements of 11 Queens ona 11 * 11 chess board.
10. Knights Finding a Knights tour on a 5 * 5 chess board.

11. Parser Combinators A parser for Prolog programs based on Parser Combi-
nators parsing a 17000 lines Prolog program.

12. Prolog A small Prolog interpreter based on unification only (no arithmetic
operations), calculating ancestors in a four generation family tree, repeated
500 times.

For sorting a list of size n we used a source list consisting of numbers 1 to n. The
elements that are 0 modulo 10 are put before those that are 1 modulo 10, etc.

Three of the benchmarks (Interpreter, Prolog and Parser Combinators) are
realistic programs, the others are typical benchmark programs that are often used
for comparing implementations. They cover a wide range of aspects of functional
programming (lists, laziness, deep recursion, higher order functions, cyclic def-
initions, pattern matching, heavy calculations, heavy memory usage). All times
are machine measured. The programs where chosen in such a way that they ran
for at least several seconds (interpreters only). Therefore start-up times can be
neglected. The output was always converted to a single number (e.g. by summing
the elements of a list) to eliminate the influence of slow output routines.

The input for the SAPL interpreter is code generated by an experimental data
type and pattern compiler from sources equivalent to the Haskell and Clean pro-
grams (only minor syntactic differences). This compiler also generates the anno-
tations needed for the optimisations. The inline optimisation is only applied for
the lambda expressions that are the result of encoding a pattern- based definition.
The benchmarks programs can be found in [17].

1.5.1 Optimisations for SAPL

In table 1.1 we first compare SAPL with and without the selective instantiation op-
timisation. In this comparison the other optimisation are not applied. Hamming is
missing because the version of the interpreter without selective instantiation does
not support cyclic definitions. We conclude that the selective instantiation opti-
misation is essential. Because SAPL also uses selective instantiation to optimise
the if- then-else construct there is a speed-up for all benchmarks except twice (the
only benchmarks without if-then-else and data structures). In the other examples
the speed-up varies from around 1.5 times (Primes, Fibonacci, Match, Queens,
Knights), around 20 times (Symbolic Primes, Interpreter, Sorting) to more than
500 times for Prolog (due to the complicated unification function).

Table 1.2 shows the results of applying the other optimisations.

12

TABLE 1.2. Comparison Versions of SAPL (Time in seconds)

Pri Sym Inter Fib Match Ham Twi Sort Qns Kns Parse Plog
Full 6.1 176 7.8 173 85 64 79 59 65 20 44 47
Select|11.4 37.6 143 11.6 147 113 11.0 94 106 40 80 104
Mem | 62 280 93 75 90 80 79 64 70 27 49 67
Inline | 11.4 244 129 115 144 92 11.0 87 100 33 75 78

TABLE 1.3. Different Memory Configurations (Time sec, Heap/Stack kB)

Pri Sym Inter Fib Match Ham Twi Sort Qns Kns Parse Plog
Heap (223 47 2350 12 101 105 785 2350 43 18 9700 150
Stack [270 35 1100 1 1 1 1 200 1 1 200 4
10.8 Mb

Time | 6.7 17.1 13.0 8.0 92 69 91 67 70 21 170 52
%GC| 15 12 46 13 18 14 18 21 17 14 76 17
nrGC| 87 204 150 117 157 100 120 83 114 32 190 &3
24 Mb

Time | 64 175 8.8 7.8 91 67 88 65 70 21 60 5.1
%GC| 13 10 24 13 18 15 15 15 14 14 38 16
nrGC| 38 91 61 53 70 45 52 37 51 15 40 37
60 Mb

Time | 64 186 83 7.6 91 66 85 65 69 21 50 5.1
%GC| 13 10 18 13 16 15 13 16 14 14 24 16
nrGC| 15 36 24 28 28 18 21 15 21 6 14 15

e Full The fully optimised interpreter (Select, Mem and Inline).
e Select The interpreter using only the selective instantiation optimisation.

e Mem The interpreter using selective instantiation and the efficient representa-
tion of functions with 1 or 2 arguments.

o Inline The interpreter using selective instantiation and inlining of lambda ex-
pressions in encoded pattern-based functions.

From this comparison we learn that the fully optimised version is about 1.8
times faster than the version using only selective instantiation, 1.2 times faster
than the version with selective instantiation and memory optimisation and 1.6
times faster than the version with selective instantiation and inlining. The benefit
from the inline optimisation is modest, but the implementation of it in the run-
time system consists of only moving a stack pop operation to another line. The
more efficient memory representation gives a significant speed-up.

In table 1.3 we compare the behaviour of SAPL for a number of memory con-
figurations: 10.8 Mb (90000 Cells), 24 Mb (2000000 Cells) and 60 Mb (5000000
Cells). 900000 Cells is the minimal heap size needed to run all benchmarks. We
also give peak heap and stack usage in Kb and percentage of time spent in GC
and number of GC. Because heap and stack usage are only measured at GC the
actual maximum values can be (slightly) higher than those measured. For these

13

TABLE 1.4. Run-Times (in seconds) for different Implementations

Pri Sym Inter Fib Match Ham Twi Sort Qns Kns Parse Plog
SAPL 6.1 176 78 73 85 64 79 59 65 20 44 47
Helium |13,6 17,6 16,3 12,2 174 12.8 232 104 9,7 34 84 7.1

Amanda | 18.0 33.0 - 88 172 14.0 - 125 77 24 109 85
GHCi 18.0 19.5 250 38.6 353 235 193 138 240 7.0 87 119
Hugs 44.0 26.0 - 1200 66.0 36.0 - 540 420 13.0 104 16.2

GHC 1.8 15 82 40 41 38 66 16 37 09 23 13
GHC-O| 09 15 18 02 10 14 01 11 04 02 16 04
Clean 09 08 06 02 09 14 24 07 04 02 49 06

tests we used a garbage collector with an explicit sweep phase instead of the im-
plicit sweep (during memory allocation). This is done to make it possible to give
meaningful figures about time spent in garbage collection. The price to be paid is
a small performance penalty (< 10%) and the use of an administration array for
the collected free cells.

We conclude that if the peak heap memory stays under 30% of the total heap
size execution times do not differ too much. If peak heap usage rises above 50%
of total memory, performance drops radically and the amount of time spent in
garbage collection grows rapidly. Because SAPL has a fixed heap, the mem-
ory management overhead is lower than in implementations with a flexible heap.
SAPL uses relatively few GC cycles, because SAPL has a fixed heap and only
starts garbage collection if there are less than 1000 free cells left.

The stack usage of SAPL is modest. Note, however, that SAPL also uses the
C stack. The maximum amount of C stack for SAPL is 8Mb.

1.5.2 Comparison with other Implementations

In this subsection we compare SAPL with several other interpreters: Amanda
V2.03 [9], Helium 1.5 [15], Hugs 20050113 [2] and GHCi V6.4 [1] and with the
GHC V6.4 and Clean V2.1 compilers. We used the same amount of (fixed or
maximal) heap space (64 Mb) and stack space (8 Mb) for all examples whenever
this was possible (for Amanda the stack size cannot be set). For Interpreter and
Twice the Amanda results are missing because of a stack overflow. Hugs also
could not run these examples (C stack overflow).

Run-Time Comparison

The run-time results can be found in table 1.4. The results show us that the SAPL
interpreter is almost 2 times faster than Amanda and Helium, about 3 times faster
than GHCi and between 1.5 and 15 times faster than Hugs.

For the compilers there is more variation in the results due to the different
optimisations applied by them. Comparing SAPL with GHC, the average speed-
up of GHC is less than 3 times. The speed-ups of GHC -O and Clean vary between
1.1 (Parser Combinators in Clean) and 80 (Twice in GHC -O).

14

TABLE 1.5. Comparison Max Heap (kB) usage (upper) and GC time (%) (lower)

Pri. Sym Inter Fib Mch Ham Twi Sort Qns Kns Parse Plog
SAPL 223 47 2344 12 101 107 762 2344 43 17 9700 150
Helium 774 16000 3000 258 774 516 1800 9000 258 256 10700 500

GHC 140 21 1800 6 46 50 800 1600 7 6 7000 50
SAPL 13 10 24 13 18 15 15 15 14 14 38 16
Helium 47 7 45 5 25 25 59 7 12 46 47 17
GHC def 18 1 87 1 22 16 67 5 1 45 70 25
GHC 24M 1 1 23 1 1 1 4 1 1 5 59 1

Comparison of Heap Usage

In table 1.5 we compare the memory usage and the time spent in garbage collec-
tion of SAPL (24 Mb heap) with that of Helium (standard heap) and the GHC
compiler (standard and 24Mb initial heap). For Hugs, GHCi and Amanda no
meaningful figures about memory usage can be given. We do not include a stack
size comparison because SAPL also uses an unknown part of the C stack.

We conclude that GHC and SAPL use roughly the same amount of heap but
that Helium uses more heap. The difference between SAPL and GHC can be
explained by the fixed Cell size of 12 bytes used by SAPL. The unexpected high
value of Helium for Symbolic Primes is probably a memory leak.

The amount of time spent in garbage collection of SAPL is mostly slightly
lower than that of Helium and lower than that of GHC (default heap) for memory
intensive programs like Interpreter and Parser. Variations of the (initial) heap
size have only a small effect on the SAPL and Helium performance, but have a
big impact on the performance of GHC. Setting the initial heap to 24Mb gives an
almost 3-time speed-up for Interpreter and Twice, but halves the speed of almost
all other benchmarks.

1.5.3 Discussion about Interpreter Comparison

What is the source of the good performance of SAPL compared with GHCi, He-
lium, Hugs and Amanda? The simplified memory management contributes to
this better performance, but cannot be the only source (see table 1.5). Helium
performs an overflow check on integer operations, which slows down integer in-
tensive programs. If we compare SAPL with Amanda we see that for (almost)
data type free programs there is not much difference in performance (Fibonacci,
Queens and Knights). The difference in performance appears for programs using
data types and pattern matching. Amanda uses a similar implementation of graph
reduction as SAPL, but has a less sophisticated implementation of pattern match-
ing using case-by-case matching [8]. If we compare the performance of SAPL
with that of GHCi, Helium and Hugs we see that SAPL already has a better per-
formance for data type free programs (Twice, Fibonacci). This increase in speed
remains about the same for programs using data types and pattern matching. He-
lium uses techniques based on the STG machine to generate LVM byte code [11].

15

This byte code is interpreted. GHCi also compiles to byte code and is based on
the GHC compiler that also uses the STG machine [13]. The Hugs implemen-
tation is based on byte code interpretation too. The SAPL interpreter is based
on graph rewriting only and has no special constructs for data types and pattern
matching. This enables a simple, high- level abstract machine with few, relatively
large, atomic operations. There is no need for a more low level intermediate (byte
code) formalism. The main difference between an interpreter and a compiler is
that an interpreter has to check what to do next at every step. Keeping this over-
head as small as possible is important for the construction of efficient interpreters.
The easiest way to keep this overhead small is to use large atomic steps in the
interpreter. Byte code instructions are mostly quite small. SAPL has a simple
structure and uses large atomic steps. As a result the interpretation overhead for
SAPL is lower than that for byte code based interpreters. The atomic operations
in the SAPL interpreter are:

e Push a reference on the stack.

o Instantiate a function body, clear its arguments from the stack and place the
result at the top application node.

e Call a built-in function, clear arguments from stack and place result at top
application node.

o For a function call with as body a selector function application: Partly instan-
tiate the body, recursively call eval for this instantiation and use the result to
select and instantiate the appropriate other part of the body.

Except for the push operation these are all relatively large operations. The only
benchmark for which the SAPL interpreter is not significant faster than Helium
and GHCi, is Symbolic Primes. For this example the bodies of the (local) func-
tions are mostly very small. Therefore the interpretation overhead will be much
higher and comparable to the overhead of GHCi, Helium and Hugs.

Benefits of the Functional Encoding for the Interpreter Performance

First of all, we already concluded that the selective instantiation optimisation is
essential for an efficient implementation of pattern-based function definitions us-
ing this encoding. It is therefore useless to try to run a SAPL program using
another interpreter or compiler that doesn’t uses the selective instantiation opti-
misation. Furthermore, in the previous subsection we concluded that the extra
efficiency of the SAPL interpreter is not a result of the functional encoding and its
implementation, but is a result of the simpler structure of the interpreter using a
high level abstract machine with minimal interpretation overhead. The functional
encoding enables this simple structure. It is possible to implement a traditional
pattern matcher along the same lines as the functional pattern matcher with com-
parable performance, because both are based on the same techniques for encoding
the pattern-based definition (see section 1.3.1).

We conclude that the most important benefit of the functional encoding is that
it enables an elegant implementation of algebraic data types and pattern matching

16

entirely within a pure functional domain and that this implementation can be made
efficient by applying generic optimisations to a basic graph- rewriting interpreter.

1.6 CONCLUSIONS AND FURTHER RESEARCH POSSIBILITIES

In this paper we have defined the minimal (intermediate) functional programming
language SAPL and an interpreter for it, based on a new variant of the Church
encoding for algebraic data types. SAPL consists of pure functions only and has,
besides integers, no other data types. For SAPL we have achieved the following
results:

e The representation of data structures as functions in SAPL is more efficient
than the Church encoding and the encoding of Berarducci and Bohm. The use
of explicitly named functions (enabling explicit recursion) instead of lambda
expressions enables an efficient implementation of this representation. We
also showed how to translate pattern-based function definitions to SAPL. This
makes SAPL usable as an intermediate language for interpretation of programs
written in languages like Clean or Haskell.

e We described an efficient interpreter for SAPL based on straightforward graph
rewriting techniques. The basic version of the interpreter is an ideal subject
for educational purposes and for experimenting with implementation issues
for functional languages. After applying two optimisations to speed up the
execution of functions that are the result of the translation of pattern-based
function definitions, the interpreter turns out to be competitive in a comparison
with other interpreters. The results show us that for interpretation a high-level
abstract machine with large atomic operations yields better results than low-
level byte code interpreters based on techniques used for compilers.

1.6.1 Future Work
We plan to investigate the following issues for SAPL:

e We want to investigate whether the techniques used for implementing SAPL
are also usable for realizing a compiler. We did some small experiments for
this. We hand compiled the internal SAPL data structures to C code for a few
benchmarks. This eliminates interpretation overhead and makes it possible to
hard code the instantiation of functions (instead of a recursive copy). Speed-
ups of 2 to 3 times seem possible, but more experiments are needed.

e We want to extend SAPL with IO features for creating interactive programs.
Because SAPL is an interpreter it is also possible to use SAPL only as a cal-
culation engine for another environment that does the 10.

e We want to investigate applications of SAPL. For example, SAPL can be used
at the client side of Internet browsers as a plug-in, or inside a spreadsheet
application.

17

REFERENCES

[1] The Haskell Home Page. www.Haskell.org.
[2] Hugs Online. www.Haskell.org/hugs.

[3] L. Augustsson. Compiling pattern matching. In Jouannaud, editor, Conference on
Functional Programming Languages and Computer Architectures, Nancy, volume
201 of Lecture Notes in Computer Science, pages 368-381. Springer Verlag, 1985.

[4] H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. Studies in Logic
and the Foundations of Mathematics. North-Holland, 1981.

[5] H.P. Barendregt. The impact of the lambda calculus in logic and computer science.
The Bulletin of Symbolic Logic, 3(2):181-215, 1997.

[6] A. Berarducci and C. Bohm. A self-interpreter of lambda calculus having a normal
form, volume 702 of Lecture Notes in Computer Science, pages 85-99. Springer
Verlag, 1993.

[7] C. Bohm and A. Berarducci. Automatic synthesis of typed A—programs on term alge-
bras. Theoretical Computer Science, 39:135-154, 1985.

[8] D. Bruin. Personal communication.

[9] D. Bruin. The amanda interpreter.
www.engineering.tech.nhl.nl/engineering/personeel/bruin/data/amanda203.zip.

[10] W. Kluge. Abstract Computing Machines. Texts in Theoretical Computer Science.
Springer-Verlag, 2004.

[11] D. Leijen. The A Abroad — A Functional Approach to Software Components. PhD the-
sis, Department of Computer Science, Universiteit Utrecht, The Netherlands, 2003.

[12] S.L. Peyton Jones. The Implementation of Functional Programming Languages. In-
ternational Series in Computer Science. Prentice-Hall, 1987.

[13] S.L. Peyton Jones. Implementing lazy functional languages on stock hardware: the
spineless tagless g-machine. Journal of Functional Programming, 2(2):127-202,
1992.

[14] R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph
Rewriting. International Computer Science Series. Addison-Wesley, 1993.

[15] Software Technology Group, the Institute of Information and Computing Sciences,
Utrecht University, the Netherlands. The Helium Project. www.cs.uu.nl/helium.

[16] Software Technology Research Group, Radboud University Nijmegen. The Clean
Home Page. www.cs.ru.nl/"clean.

[17] Software Technology Research Group, Radboud University Nijmegen. The SAPL
Home Page. www.cs.ru.nl/"jmjansen/sapl.

18

