
PROVING LAZY FOLKLORE

WITH MIXED LAZY/STRICT SEMANTICS

MARKO VAN EEKELEN AND MAARTEN DE MOL

Institute for Computing and Information Sciences, Radboud University Nijmegen, NL
e-mail address: {marko, maartenm}@cs.ru.nl

Abstract. Explicit enforcement of strictness is used by functional programmers for many
different purposes. Few functional programmers, however, are aware that explicitly enforc-
ing strictness has serious consequences for (formal) reasoning about their programs. Some
vague “folklore” knowledge has emerged concerning the correspondence between lazy and
strict evaluation but this is based on experience rather than on rigid proof.

This paper employs a model for formal reasoning with enforced strictness based on John
Launchbury’s lazy graph semantics. In this model Launchbury’s semantics are extended
with an explicit strict let construct. Examples are given of the use of these semantics in
formal proofs. We formally prove some “folklore” properties that are often used in informal
reasoning by programmers.

This paper is written at the occasion of the celebration of the 60th anniversary of Henk
Barendregt. Henk was the supervisor for the Ph.D. Thesis of Marko van Eekelen. This
thesis was just one of the many results of the Dutch Parallel Reduction Machine project in
which Henk played a central role.

Quite some time ago, he brought the authors of this paper together knowing that they
had common interests in formal proofs for functional programs. This lead to a Master
Thesis, the Sparkle dedicated proof assistant for the language CLEAN, a pile of papers
and a Ph.D. manuscript in preparation. Henk taught us how to perform research on a
fundamental level without loosing sight of the applications of your work.

We are very grateful to him for enlightening us.

1. Introduction and motivation

Strictness is a mathematical property of a function. A function f is strict in its argu-
ment if its result is undefined when its argument is undefined, in other words: if f⊥ = ⊥,
where ⊥ is the symbol representing the undefined value.

Strictness analysis is used to derive strictness properties for given function definitions in
programs written in a functional programming language. If the results of such an analysis
are indicated in the program via strictness annotations then of course these annotations
do not change the semantics at all. Therefore, it is often recommended to use strictness
annotations only when strictness holds mathematically. These annotations are then meant
to be used by the compiler for optimisation purposes only.

For the cases of explicit strictness that have the intention to change the semantics,
this recommendation is not sensible at all. Although it is seldom mentioned in papers
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and presentations, such explicit strictness that changes the semantics, is present in almost
every lazy programming language (and in almost every program) that is used in real-world
examples. In such programs, strictness is used:

• for improving the efficiency of data structures (e.g. strict lists),
• for improving the efficiency of evaluation (e.g. functions that are made strict in

some arguments due to strictness analysis or due to the programmers annotations),
• for enforcing the evaluation order in interfacing with the outside world (e.g. an

interface to an external call1 is defined to be strict in order to ensure that the
arguments are fully evaluated before the external call is issued).

Language features that are used to denote this strictness include:

• type annotations (in functions: Clean and in data structures: Clean, Haskell),
• special data structures (unboxed arrays: Clean, Haskell),
• special primitives (seq: Haskell),
• special language constructs (let!, #!: Clean),
• special tools (strictness analyzers: Clean, Haskell).

Implementers of real-world applications make it their job to know about strictness aspects,
because without strictness annotations essential parts of their programs would not work
properly. Hence, it is not an option but it is an obligation for the compiler to generate code
that takes these annotations into account. For reasoning about these annotated programs,
however, one tends to forget strictness altogether. Usually, strictness is not taken into ac-
count in a formal graph semantics for a programming language. Disregarding strictness can
lead to unexpected non-termination when programs are changed by hand or automatically
transformed. So, strictness indicated via annotations must form a essential part of the
semantics. This may have surprising consequences.

Example of semantic changes due to strictness annotations::
Consider for instance the following Clean definition of the function f, which by
means of the !-annotation in the type is made explicitly strict in its first argument.
In Haskell a similar effect can be obtained using an application of seq.

f :: !Int -> Int

f x = 5

Without the strictness annotation, the property ∀x[f x = 5] would hold uncondition-
ally by definition. Now consider the effects of the strictness annotation in the type
which makes the function f strict in its argument. Clearly, the proposition f 3 = 5
still holds. However, f undef = 5 does not hold, because f undef does not termi-
nate due to the enforced evaluation of undef. Therefore, ∀x[f x = 5] does not hold
unconditionally. The property can be fixed by adding a definedness condition using
the special symbol ⊥, denoting undefined. This results in ∀x[x 6= ⊥ → f x = 5],
which does hold for the annotated function f.

The example above illustrates that the definition of f cannot unconditionally be substituted
in all its occurrences. It is only allowed to substitute f when it is known that its argument x
is not undefined. This has a fundamental impact on the semantics of function application.

1(An external call is a call to a function which is defined in a different (possibly imperative) programming
language, e.g. C.
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The addition of an exclamation mark by a programmer clearly has an effect on the
logical properties of functions. The change of a logical property due to addition or removal of
strictness can cause problems for program changes made by a programmer. If a programmer
is unaware of the logical consequences, this can lead to errors not only at development time
but also in the later stage of maintaining the program. A programmer will reason formally
or informally about the program and make changes that are consistent with the perceived
logical properties.

Changes in logical properties are not only important for the programmer but also for
those who work on the compiler. Of course, it is obvious that code has to be generated
to accommodate the strictness. Less obvious however, is the consequences adding strict-
ness may have on the correctness of program transformations. There can be far-reaching
consequences on various kinds of program transformations.

In other words: the addition or removal of strictness to programs may cause previously
valid logical properties to be broken. From a proving point of view this is a real problem:
suppose one has successfully proved a difficult property by means of a sequence of lemmata,
then the invalidation of even a single lemma may cause a ripple effect throughout the entire
proof! The adaptation to such a ripple effect is both cumbersome and resource-intensive.

Unfortunately, the invalidation of logical properties due to changed strictness annota-
tions is quite common. This invalidation can usually be fixed by the addition of a condition
for the strict case (see the example below).

Example of the addition of a condition::
∀f,g∀xs [map (f o g) xs = map f (map g xs)]

Affected by strictness::
This property is valid for lazy lists, but invalid for element-strict lists.
Note that no assumptions can be made about the possible strictness of f or g.
Instead, the property must hold for all possible functions f and g.

Invalid in the strict case because::
Suppose xs = [12], g 12 = ⊥ and f (g 12) = 7.
Then map (f o g) xs = [7], both in the lazy and in the strict case.
However, map f (map g xs) = [7] in the lazy case, but ⊥ in the strict case.

Extra definedness condition for the lazy case::
The problematic case can be excluded by demanding that for all elements of the list
g x can be evaluated successfully.

Reformulated property for the strict case::
∀f,g,xs [∀x∈xs [g x 6= ⊥] → map (f o g) xs = map f (map g xs)].

However, quite surprisingly, it may also be that the invalidation of logical properties due
to changed strictness annotations requires the removal of definedness conditions. Below
an example is given where the strict case requires the removal of a condition which was
required for the lazy case.

Example of the removal of a condition::
∀xs [finite xs → reverse (reverse xs) = xs ]

Affected by strictness::
This property is valid both for lazy lists and for spine-strict lists. However, the
condition finite xs is satisfied automatically for spine-strict lists. In the spine-strict
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case, the property can therefore safely be reformulated (or, rather, optimized) by
removing the finite xs condition.

Invalid without finite condition in the lazy case because::
Suppose xs = [1, 1, 1, . . .].
Then reverse (reverse xs) = ⊥, both in the lazy and in the strict case.
However, xs = ⊥ in the strict case, while it is unequal to ⊥ in the lazy case.

Reformulated property for the strict case::
∀xs [reverse (reverse xs) = xs]

For reasoning with strictness, there is only little theory available so far. In this paper we
develop an appropriate mixed denotational and operational semantics for formal reasoning
about programs in a mixed lazy/strict context.

2. Mixed lazy/strict graph semantics

Since we consider graphs as an essential part of the semantics of a lazy language ([4, 18],
we have chosen to extend Launchbury’s graph semantics [14]. Cycles (using recursion),
black hole detection, garbage collection and cost of computation can be analyzed formally
using these semantics. Launchbury has proven that his operational graph rules are correct
and computationally adequate with respect to the corresponding denotational semantics.
Informally, correctness means that an expression which operationally reduces to a value
will denotationally be equal to that value. Computational adequacy informally means that
if the meaning of an expression is defined denotationally it is also defined operationally and
vice-versa. Below, we introduce the required preliminaries.

2.1. Basic idea of Launchbury’s natural graph semantics. Basically, sharing is rep-
resented as let-expressions. In contrast to creating a node for every application, nodes are
created only for parts to be shared.

let x = 3 ∗ 7
in x + x

represents the graph on the right:

Graph reduction is formalized by a system of derivation rules. Graph nodes are represented
by variable definitions in an environment. A typical graph reduction proof is given below.
A linear notation is used. Below the correspondence is illustrated by showing the linear
notation on the left and its equivalent graphical notation on the right.
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Each reduction step corresponds to applying a derivation rule (assuming extra rules for
numbers and arithmetic; the standard rules are given in Sect. 2.4). Below we give the
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derivation corresponding to the sharing example above. We leave out normalization and
renaming of variables where this cannot cause confusion.
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{ x 7→ 3 ∗ 7 } : x

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{ } : 21

Num,Num,∗

{ x 7→ 21 } : 21
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V ar

{ x 7→ 21 } : 42

+

{ x 7→ 21 } : 42

Let

2.2. Notational conventions. We will use the following notational conventions:

• x, y, v, x1 and xn are variables,
• e, e′, e1, en, f , g and h are expressions,
• z and z′ are values (i.e. expressions of the form λ x. e and constants, when the

language is extended with constants),
• the notation ẑ stands for a renaming (α-conversion) of a value z such that all lambda

bound and let-bound variables in z are replaced by fresh ones.
• Γ, ∆ and Θ are taken to be heap variables (a heap is assumed to be a set of variable

bindings, i.e. pairs of distinct variables and expressions),
• a binding of a variable x to an expression e is written as x 7→ e,
• ρ, ρ′, ρ0 are environments (an environment is a function from variables to values),
• the judgment Γ : e ⇓ ∆ : z means that in the context of the heap Γ a term e reduces

to the value z with the resulting set of bindings ∆,
• and finally σ and τ are taken to be derivation trees for such judgments.

2.3. Mixed lazy/strict expressions. We extend the expressions of Launchbury’s system
with a non-recursive strict variant of let-expressions.

From a semantic point of view a standard recursive let-expression combined with a strict
non-recursive let-expression gives full expressiveness. Due to the possibility of recursion in
the standard let, there is no need for adding recursion to the strict let. (Consider for
example let x = e x in let! y = x in e′.)

So, we have chosen not to allow recursion in the strict let, although allowing a recursive
strict let would not give any semantic problems (as shown in [19]). This corresponds to the
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semantics of the strictness constructs of Haskell [5, 12, 13] and Clean [6, 15, 16] that do
not allow recursion for their strictness constructs.

In strict let-expressions only one variable can be defined in contrast to multiple ones
for standard lazy let-expressions. This is natural since the order of evaluation is important.
With multiple variables an extra mechanism for specifying their order of evaluation would
have to be introduced. With single variable let-expressions an ordering is imposed easily
by nesting of let-expressions.

With the extension of these strict let-expressions the class of expressions to consider is
given by the following grammar:

x ∈ V ar
e ∈ Exp ::= λ x. e

| e x
| x
| let x1 = e1 · · · xn = en in e
| let! x1 = e1 in e

As in Launchbury’s semantics we assume that the program under consideration is first
translated to a form of lambda terms in which all arguments are variables (expressing sharing
explicitly). This is achieved by a normalization procedure which first performs a renaming
(α-conversion) using completely fresh variables ensuring that all bound variables are distinct
and then introduces a non-strict let-definition for each argument of each application. The
semantics are defined on normalized terms only.

2.4. Definition of mixed lazy/strict graph semantics. We extend the basic rules of
Launchbury’s natural (operational) semantics (the Lambda, Application, Var iable and Let-
rule) with a recursive Str ictLet rule. This operational Str ictLet rule is quite similar to
the rule for a normal let, but it adds a condition to enforce the shared evaluation of the
expression.

The added let! derivation rule has two requirements. One for the evaluation of e1

(expressing that it is required to evaluate it on forehand) and one for the standard lazy
evaluation of e. Sharing in the evaluation is achieved by extending the environment Θ
resulting form the evaluation of e1 with x1 7→ z1. This environment is then taken as the
environment for the evaluation of e.

A striking difference between a standard let and a strict let is that the environment is
extended before the evaluation for a standard let and after the evaluation for a strict let.
This will by itself never give different results since a strict let is non-recursive. A strict let
will behave the same as a standard let when e1 has a weak head normal form. Otherwise,
no derivation will be possible for the strict let.

If we would replace let!’s by standard let’s in any expression, the weak head normal
form of that expression would not change. However, if we would replace in an expression
non-recursive let’s by let!’s, then the weak head normal form of that expression would either
stay the same or it would become undefined. This is one of the “folklore” properties that
is proven in Sect. 3.
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Definition 2.1. Operational Mixed Lazy/Strict Graph Semantics.

Γ : λ x.e ⇓ Γ : λ x.e

Γ : e ⇓ ∆ : λ y.e′ ∆ : e′[x/y] ⇓ Θ : z
Γ : e x ⇓ Θ : z

Γ : e ⇓ ∆ : z
(Γ, x 7→ e) : x ⇓ (∆, x 7→ z) : ẑ

(Γ, x1 7→ e1 · · · xn 7→ en) : e ⇓ ∆ : z
Γ : let x1 = e1 · · · xn = en in e ⇓ ∆ : z

Lam

App

V ar

Let

Γ : e1 ⇓ Θ : z1 (Θ, x1 7→ z1) : e ⇓ ∆ : z
Γ : let! x1 = e1 in e ⇓ ∆ : z

Str

Corresponding to the operational semantics given above, we define below the denotational
meaning function including the let! construct. As in [14] we have a lifted function space
ordered in the standard way with least element ⊥ following Abramsky and Ong [1, 2].

We use Fn and ↓Fn as lifting and projection functions. An environment ρ is a function
from variables to values where the domain of values is some domain, containing at least
a lifted version of its own function space. We use the following well-defined ordering on
environments expressing that larger environments bind more variables but have the same
values on the same variables: ρ ≤ ρ′ is defined as ∀x.[ρ(x) 6= ⊥ ⇒ ρ(x) = ρ′(x)]. The
initial environment, indicated by ρ0, is the function that maps all variables to ⊥. We
use a special semantic function which is continuous on environments {{ }}. It resolves the
possible recursion and is defined as: {{x1 7→e1···xn 7→en}}ρ = µρ′.ρ⊔(x1 7→ Je1Kρ′ · · · xn 7→ JenKρ′)
where µ stands for the least fixed point operator and ⊔ denotes the least upper bound of two
environments. It is important to note that for this definition to make sense the environment
must be consistent with the heap (i.e. if they bind the same variable then there must exist
an upper bound on the values to which each binds each such variable).

The denotational meaning function extends [14] with meaning for let!-expressions that
is given by a case distinction: If the meaning of the expression to be shared is ⊥, then the
meaning of the let!-expression as a whole becomes ⊥. For the other case, the definition is
similar to the meaning of a let-expression.

Definition 2.2. Denotational Mixed Lazy/Strict Graph Semantics.

Jλx.eKρ = Fn (λv.JeKρ⊔(x 7→v))
Je xKρ = (JeKρ) ↓Fn (JxKρ)
JxKρ = ρ(x)
Jlet x1 = e1 · · · xn = en in eKρ = JeK{{x1 7→e1···xn 7→en}}ρ

Jlet! x1 = e1 in eKρ = ⊥ , if Je1Kρ = ⊥
= JeKρ⊔(x1 7→Je1Kρ)

2.5. Correctness and Computational Adequacy. Using the definitions above, correct-
ness theorems as in [14] have been established (proofs can be found in [19]). The first
theorem deals with proper use of names.
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Theorem 2.3 (Distinct Names). If Γ : e ⇓ ∆ : z and Γ : e is distinctly named (i.e. every
binding occurring in Γ and in e binds a distinct variable which is also distinct from any free
variables of Γ : e), then every heap/term pair occurring in the proof of the reduction is also
distinctly named.

Theorem 2.4 essentially states that reductions preserve meaning on terms and that they
possibly only change the meaning of heaps by adding new bindings.

Theorem 2.4 (Correctness).

Γ : e ⇓ ∆ : z ⇒ ∀ρ. {{Γ}}ρ ≤ {{∆}}ρ ∧ JeK{{Γ}}ρ = JzK{{∆}}ρ

The Computational Adequacy theorem below states that a term with a heap has a valid
reduction if and only if they have a non-bottom denotational meaning starting with the
initial environment ρ0.

Theorem 2.5 (Computational Adequacy).

JeK{{Γ}}ρ0
6= ⊥ ⇔ (∃∆, z . Γ : e ⇓ ∆ : z)

3. Relation to lazy semantics

Consider the following “folklore” knowledge statements of programmers:

A expressions that are bottom lazily, will also be bottom when we make something
strict ;

B when strictness is added to an expression that is non-bottom lazily, either the result
stays the same or it becomes bottom;

C expressions that are non-bottom using strictness will (after !-removal) also be non-
bottom lazily with the same result.

We will turn this “folklore” ABC of using strictness into formal statements. The phrase
“is bottom lazily” is taken to mean that when lazy semantics is used the meaning of the
expression is ⊥. The phrase “result” indicates of course a partial result: this can be
formalized with our operational meaning.

Theorem 3.5 will constitute the formal equivalents of these “folklore” statements. In
order to formulate that theorem we first need formally define a few operations. For com-
pleteness we give below the full definition of the trivial operation of !-removal.

Definition 3.1. Removal of strictness within expressions. The function −! is defined on
expressions such that e−! is the expression e in which every let!-expression is replaced by
the corresponding let-expression:

(x)−! = x
(λx.e)−! = λx.(e−!)
(e x)−! = (e−!)(x−!)

(let x1 = e1 · · · xn = en in e)−! = let x1 = e−!
1 · · · xn = e−!

n in e−!

(let! x1 = e1 in e)−! = let x1 = e−!
1 in e−!

Definition 3.2. Removal of strictness within environments. The function −! is defined on
environments such that Γ−! is the environment Γ in which in every binding every expression
e is replaced by the corresponding expression e−!:
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(Γ, x 7→ e)−! = (Γ−!, x 7→ e−!)
{ }−! = { }

We followed here [14] indicating the empty environment by { } instead of by ∅.

The analogue of !-removal is of course !-addition. We model addition of !’s to an
expression e by creating a set of all those expressions that will be the same as e after
!-removal. In this way we cover all possible ways of adding a !.

Definition 3.3. Addition of strictness to expressions and environments. The function
AddStrict is defined on expressions and environments such that AddStrict(e), resepectively
AddStrict(Γ) is the set of all expressions, respectively environments that can be obtained
by replacing any number of lets in e, respectively Γ with let!s.

AddStrict(e) = {e′ | (e′)−! = e}; AddStrict(Γ) = {Γ′ | (Γ′)−! = Γ}

The definition above induces the need of an extension of the semantics of expressions to a
semantics of sets of expressions.

Definition 3.4. Semantics of sets of expressions. In order to formally reason about the
semantics of expressions after the addition of strictness, it must be possible to apply the
meaning predicate JK to sets of expressions and environments, instead of to single expressions
and environments. This is realized as follows:

JEK{{Γs}}ρ0
= {JeK{{Γ}}ρ0

| e ∈ E,Γ ∈ Γs}

We are now almost ready formalize the “folklore” ABC. We will use the standard lazy
denotational and operational meanings of [14] and indicate them by JKlazy and ⇓lazy. It
goes without saying that JKlazy and ⇓lazy are equivalent to JK and ⇓ for expressions and
environments that do not contain any strict let expressions.

Theorem 3.5 (Formal Folklore ABC).
A : JeK{{Γ}}ρ0

= ⊥
⇒ JAddStrict(e)K{{AddStrict(Γ)}}ρ0

= {⊥}
B : JeK{{Γ}}ρ0

= z
⇒ JAddStrict(e)K{{AddStrict(Γ)}}ρ0

⊆ {⊥} ∪ AddStrict(z)
C : JeK{{Γ}}ρ0

= z

⇒ Je−!K{{Γ−!}}ρ0
= z−!

Proof. The proofs proceeds by straightforwardly combining computational adequacy (for
lazy and for mixed semantics) and the three additional Theorems 3.6, 3.7 and 3.8 below
that capture the essential properties of !-removal.

Consider e.g. property C : applying computational adequacy on JeK{{Γ}}ρ0
= z yields

that Γ : e ⇓ ∆ : z , applying Theorem 3.7 gives ∃Θ. Γ−! : e−! ⇓lazy Θ : z−! and computa-
tional adequacy gives the required Je−!K{{Γ−!}}ρ0

= z−!.

Theorem 3.6 (Meaning of !-removal).

JeK{{Γ}}ρ0
6= ⊥ ⇒ JeK{{Γ}}ρ0

= Je−!Klazy

{{Γ−!}}ρ0

6= ⊥.

Proof. Since by definition both for lazy and mixed semantics JeK{{x1 7→e1}}ρ = JeKρ⊔(x1 7→Je1Kρ),
a difference between lazy and mixed meaning can only occur when the mixed semantics is

⊥ due to a let!-rule. So, if JeK{{Γ}}ρ0
6= ⊥ then JeK{{Γ}}ρ0

= Je−!Klazy

{{Γ−!}}ρ0

6= ⊥.
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Theorem 3.7 (Compare with Lazy Reduction).

Γ : e ⇓ ∆ : z ⇒ ∃Θ. Γ−! : e−! ⇓lazy Θ : z−! ∧ Jz−!Klazy
{{Θ}}ρ0

= JzK{{∆}}ρ0

Proof. Assume we have Γ : e ⇓ ∆ : z with derivation tree σ. Compare the operational
rules for let! and let. The condition on the right of the let! rule has (up to !-removal)
the very same expressions as the let! rule but a different environment. This environment
captures the ’extra’ non-lazy reductions that are induced by the let!-rule. Clearly, there is
an environment Θ such that Γ−! : e−! ⇓lazy Θ : z−!. By lazy correctness and computational

adequacy Je−!Klazy

{{Γ−!}}ρ0

= Jz−!Klazy
{{Θ}}ρ0

6= ⊥. By mixed correctness and Theorem 3.6 it follows

that JeK{{Γ}}ρ0
= JzK{{∆}}ρ0

= Je−!Klazy

{{Γ−!}}ρ0

= Jz−!Klazy
{{Θ}}ρ0

6= ⊥.

Theorem 3.8 (Reduction and !-removal).

Γ−! : e−! ⇓lazy ∆ : z−! ⇒ JeK{{Γ}}ρ0
= ⊥ ∨ ∃Θ. Γ : e ⇓ Θ : z ∧ JzK{{Θ}}ρ0

= JzK{{∆}}ρ0

Proof. Assume that JeK{{Γ}}ρ0
6= ⊥ then by mixed computational adequacy ∃Θ. Γ : e ⇓

Θ : z and by mixed correctness, Theorem 3.6 and lazy correctness JzK{{Θ}}ρ0
= JeK{{Γ}}ρ0

=

Je−!Klazy

{{Γ−!}}ρ0

= JzK{{∆}}ρ0
.

4. Example proofs with mixed semantics

With a small example we will show how proofs can be made using mixed semantics; the
proof shows formally that with mixed semantics it is possible to distinguish operationally
between terms that were indistinguishable lazily.

The lazy semantics as defined by Launchbury [14] makes it possible to yield λx.Ω (Ω is
defined below) and Ω as different results. However, in such lazy semantics it is not possible
to define a function f that produces a different observational result depending on which
one is given as an argument [2]. We say that two terms “produce a different observational
result” if at least one term produces a basic value and the other one either produces a
different basic value or ⊥. This means that in lazy natural semantics λx.Ω and Ω belong
to a single equivalence class of which the members cannot be distinguished observationally
by the programmer.

With mixed semantics a definition for such a distinguishing function f is given below.
The result of f on λx.Ω will be 42 and the result of f on Ω will be ⊥. Note that it is not
possible to return anything else than ⊥ in the Ω case.

Theorem 4.1 (λx.Ω and Ω can be distinguished).

Ω ≡ (λx.xx)(λx.xx)
f ≡ λx.(let! y = x in 42)

∄∆, z. {} : f Ω ⇓ ∆ : z (4.1)

∃∆. {} : f (λx.Ω) ⇓ ∆ : 42 (4.2)

Proof. For proving property 4.1 we have to prove that it is impossible to construct a finite
derivation according to the operational semantics. Applying Theorem 2.5, the computa-
tional adequacy theorem, it is sufficient to show that the denotational meaning of f Ω is
undefined. The proof is as follows using the denotational semantics:
Jf ΩKρ0

= J(λx.let! y = x in 42)(Ω)Kρ0
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= (Jλx.let! y = x in 42Kρ0
) ↓Fn (JΩKρ0

)
= (Fn (λv.Jlet! y = x in 42Kρ0⊔(x 7→v))) ↓Fn (JΩKρ0

)
= (λv.Jlet! y = x in 42Kρ0⊔(x 7→v))JΩKρ0

= Jlet! y = x in 42Kρ0⊔(x 7→JΩKρ0
)

= ⊥ since JxKρ0⊔(x 7→JΩKρ0
) = (ρ0 ⊔ (x 7→ JΩKρ0

))(x) = JΩKρ0
= ⊥ since for Ω no derivation

can be made.

Proof. The proof of property 4.2 is given by a derivation in the operational semantics written
down as in Sect 2.1. To work with numerals we assume the availability of a standard
reduction rule (Num) that states that each numeral reduces to itself.









































































{ } : f (λx.Ω)

{ } : (λx. let! y = x in 42) (λx.Ω)






{ } : (λx. let! y = x in 42)

{ } : (λx. let! y = x in 42)

Lam






































{ } : (let! y = x in 42) [λx.Ω/x]

{ } : let! y = λx.Ω in 42






{} : λx.Ω

{} : λx.Ω

Lam






{y 7→ λx.Ω} : 42

{y 7→ λx.Ω} : 42

Num

{y 7→ λx.Ω} : 42

let!

{y 7→ λx.Ω} : 42

App

5. Related work

In [9] a case study is done in program verification using partial and undefined values.
They assume proof rules to be valid for the programming language. The connection with
our approach could be that our formal semantic approach can be used as a basis to prove
their proof rules.

With the purpose of deriving a lazy abstract machine Sestoft [17] has revised Launch-
bury’s semantics. Launchbury’s semantics require global inspection (which is unwanted for
an abstract machine) for preserving the Distinct Names property. When an abstract ma-
chine is to be derived from our mixed semantics, analogue revisions will be required. As is
further pointed out by Sestoft [17] the rules given by Launchbury are not fully lazy. Full
laziness can be achieved by introducing new let-bindings for every maximal free expression
[11].
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Another extension of Launchbury’s semantics is given by Baker-Finch, King and Trinder
in [3]. They construct a formal semantics for Glasgow Parallel Haskell on top of the standard
Launchbury’s semantics. Their semantics that are developed for dealing with parallelism,
are equivalent to our semantics that are developed independently for dealing with strictness.
Equivalence can be shown easily by translating seq into let!-expressions. They do not prove
properties expressing relations between ‘lazy’ and ‘strict’ terms.

As part of the Cover project [7], it is argued in [8] that “loose reasoning” is “morally
correct”, i.e. that if, under the assumption that every subexpression is strict and termi-
nating, you can prove your theorem than the theorem will also hold in the lazy case under
certain conditions. However, the conditions that are found in this way, may be too restric-
tive for the lazy case. The Nijmegen proof assistant Sparkle [10] has several facilities for
defining and proving the proper definedness conditions [20].

6. Conclusions

We have extended Launchbury’s lazy graph semantics with a construct for explicit
strictness. We have explored what happens when strictness is added or removed within
such mixed lazy/strict graph semantics. Correspondences and differences between lazy and
mixed semantics have been established by studying the effects of removal and addition of
strictness. Our results formalize the common “folklore” knowledge about the use of explicit
strictness in a lazy context.

Mixed lazy/strict graph semantics differs significantly from lazy graph semantics. It
is possible to write expressions that with mixed semantics distinguish between particular
terms that have different lazy semantics while these terms can not be distinguished by an
expression within that lazy semantics. We have proven this formally.
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