An Arrow Based Semantics for Interactive Applications

Peter Achten!, Marko van Eekelen?, Maarten de Mol!, and Rinus Plasmeijer1

{1Software Technology, >Security of Systems}, Nijmegen Institute for Computing and
Information Sciences, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen,
Netherlands
{P.Achten,marko,M.deMol, rinus}@cs.ru.nl

Abstract

Interactive applications, whether they run on the desktop or as a web application, can
be considered to be collections of interconnected editors that allow users to manipu-
late data. This is the view that is advocated by the GEC Toolkit and the iData Toolkit,
which offer a high level of abstraction to desktop and web GUI applications respec-
tively. Special features of these toolkits are that editors have shared, persistent state,
and that they handle events individually. In this paper we cast these toolkits within the
Arrow framework and present a single, unified semantic model that handles shared
state and the event handling behavior. We study the definedness properties of the
semantic model, and of editors in particular. We demonstrate that this is important
when using the Arrow combinators with primitive combinators that have different
definedness properties. We use the proof assistant Sparkle to create and check the
proofs. In the process, we identify a missing tactic in Sparkle.

category: Research Article

1 INTRODUCTION

Graphical User Interfaces in current day applications are either based on a desktop
widget set, or they use web technology. Although one can still see rather quickly
whether an application is constructed with which technology, we signal the trend
that these applications are gradually taking over each other’s functionality. Ex-
amples are the integration of browsing behavior and back/forward buttons within
desktop GUI applications, and local state and local rendering within multiple win-
dows within web applications.

The programming paradigms of desktop GUIs and web applications are radi-
cally different: the desktop GUI paradigm basically utilizes a state based callback
evaluation model and widgets to visualize the interface, whereas the web program-
ming paradigm relies on the stateless http request-response sequence model and
HTML for visualization purposes.

In the past we have developed toolkits for programming desktop GUIs (GEC
Toolkit [1, 2, 3]) and web applications (iData Toolkit [16, 17]). Despite their radi-
cally different implementations, the programs that are written in them are identical
on the top level. It is our goal to create a single, unified, framework for developing,
and reasoning about, interactive applications. Such a single, unified, framework,

IX-1



must necessarily abstract from details. We have used generic programming tech-
niques [9, 4] to obtain a suitable level of abstraction.

In this paper we consider interactive applications to be a collection of intercon-
nected editors with which the user can alter data of arbitrary type. Generic pro-
gramming allows us to abstract from earthly details such as programming widget
sets vs HTML code, event handling models, rendering issues, and so on. Instead,
we can reason about interactive objects as having a well-typed state. User actions
are then edit operations on that state, i.e. the request to change the current value of
an editor into a new value of the same type.

Programs that we have developed in the past with these toolkits have used the
full expressive power of the functional host language, in our case Clean. In order
to facilitate reasoning we restrict ourselves to a combinator approach, based on the
Arrow framework by Hughes [12], and its extension with loops, by Paterson [15].

The operational semantics of our framework is an event handling system, where
the events model user edit operations on editors. This is different from the stan-
dard approach to Arrow based systems, where the value of a system is determined
by evaluating the Arrow system from the start until the end. Event based systems
necessarily need to ‘break into’ the circuit that is created by the arrow expression,
because an event causes an effect only after the targeted editor.

Another unusual feature of interactive applications is sharing editor states. Ed-
itors are identified objects. Two (or more) editor objects with the same identifier
conceptually refer to the same object, and hence, the same state. In the realization,
any two shared editors are mapped to a single appearance in the concrete user inter-
face that is presented to the user. In this way, complex interconnection patterns can
be constructed. Despite these differences, we show that our framework satisfies the
standard set of laws that are imposed on Arrows (with loops).

Part of these proofs have been conducted with Sparkle [7], the interactive proof
assistant that comes with Clean. We aim to handle all proofs with Sparkle. It turns
out that this is not yet possible, because currently, Sparkle is not able to handle
cyclic let definitions. These are crucial in the definition of the loop combinator, and
hence, we are not able to prove the loop laws with Sparkle. Despite this drawback,
we have noticed that the use of a proof tool helps us to gain insight in the properties
of the semantic framework. At several cases, the proof in progress pointed to
situations that were clearly undesired, but that had escaped our scrutiny.

The remainder of this paper is structured as follows. We first present the two
toolkits in Sect. 2 and give a small, yet intricate, example of an interactive appli-
cation. In Sect. 3 we give the semantic model of the two toolkits. The Arrow laws
and definedness properties of the semantic model are discussed in Sect. 4. In Sect.
5, we present a variation of the example application and prove the equivalence be-
tween their semantic models. Related work is presented in Sect. 6 and we end with
conclusions in Sect. 7.

IX-2



2 THE GEC AND IDATA TOOLKITS

The basic building block in the GEC Toolkit and the iData Toolkit is an editor.
An editor is a typed unit that provides the application user with a GUI (desktop
in case of the GEC Toolkit, and HTML in case of the iData Toolkit) that allows
her to edit values of that given type only. In the GEC Toolkit the editor is known
as a GEC (Graphical Editor Component), and in the iData Toolkit it is known as
an iData element. In both toolkits we have a single, generic function that creates
editors, given an initial value of the desired type, and some kind of identification.
If we ignore the details of creating editors in both toolkits, then they both offer the
following core function to create an editor:

edit :: ID d «Env — (Edit d,xEnv) | gFuncs d

Here, ID is some kind of identification value (typically an augmented String),
and Env is some kind of opaque environment that takes care of the administration
(a desktop GUI environment (PSt ps) in case of the GEC Toolkit, and an HTML
environment HSt in case of the iData Toolkit). The resulting editor can be used in
the program to display the editor to the user. In both toolkits the function uses a
collection of generic functions that are collected in the type class gfuncs. These
generic functions are used to create a GUI element with which the user can edit
values of given type d.

An interactive application is a collection of interconnected editors. The toolkits
allow a ‘freeform’ style and a ‘disciplined’ style. In the freeform style, any envi-
ronment function of the correct type is admissible to define the interconnection
relation. This provides the application programmer with a great deal of freedom,
as she can use all standard functional programming techniques to create an interac-
tive application. The disciplined style is based on the Arrow combinator approach
by Hughes, and has been extended with loops by Paterson. In this paper we have
chosen to use the disciplined style.

The Arrow class contains three combinator functions, viz. arr,>>>, and first.
Paterson extends this set with the loop combinator. In our toolkits we integrate
the editor creation function as the final combinator. Expressed as a Clean type
constructor class we have:

class Arrow a where

arr :: (b—>c)—abc
(>>) :: (abc) (acd)—abd
first :: (abc)—a (b,d) (c,d)
loop :: (a (b,d) (c,d)) —abc
edit :: ID—add

It should be observed that edit as an Arrow combinator function has no need for
an initial value parameter as it will get one within the Arrow context.

The behavior of desktop GUI applications is typically event driven, whereas
the behavior of web applications is triggered by the user entering data in forms
and submitting changes to the application at the server side. In the toolkits we

IX-3



unify these operational behaviors by defining the behavior of our applications as
edit driven. This means that whenever the user edits the current value of any of the
editors that is currently available, the application responds with recomputing the
states of all subsequently interconnected editors.

To illustrate the use of these editor Arrow combinators Fig. 1 displays the
key fragment of a money-converting application. The function converter intro-
duces two interactive elements, labeled euroId and usdid, that are mutually in-
terconnected in such a way that if either of them is altered by the user, then the
other element responds with the amount of money expressed in the local currency.
The program exploits the fact that editors have shared state: all occurrences of
(edit id) within an Arrow expression refer fo the same editor, and hence the same
state. Hence, (feedback f g) creates a mutual interconnection between the editors
within £ and g simply by repeating £.

:: USDollars = { dollars :: Real }

A hitp://localhost/clean - ... [= |[E][X]

:: Euros ={ euros :: Real } S i v ekt Iy
converter |m7 I
= feedback (edit eurold >>> arr toUSD) I -
| ]
(edit usdId >>> arr toEuro)
where —
toUsD { euros } = { dollars = euros * exchangerateEuroUSD }
toEuro { dollars } = { euros = dollars * exchangerateUSDEuro }
eurold = ...
usdIid = ...
feedback £ g =f >> g >> £

FIGURE 1. The iData money converter program.

3 THE SEMANTICS OF EDITOR ARROWS

In this section we present the complete semantic model of editor arrows. It has
been fully defined within the programming language Clean.

Advantages to this approach are that: the language aids us in detecting shallow
mistakes such as typing errors and type errors that lead to undefined entities; the
final model is executable, and can be tested in an ad-hoc way or more rigidly with
the GVST test tool [13]; we can ensure a short distance between the semantic model
and real programs; and last but not least, we can use the proof tool assistant Sparkle
to prove the Arrow laws.

There are also disadvantages to this approach: we are forced to implement ev-
erything of the semantic model; there is lack of standard mathematical concepts

IX-4



such as sets; and the strong type system of the language sometimes hampers intu-
itive definitions and forces us to define work-around solutions.

Despite the disadvantages, we have chosen to use Clean as the modeling lan-
guage. We want to emphasize that in the remainder of this paper we assume that
every instance of the semantic model is always derived from a well-typed source
program, using the editor Arrow definition that was given in Sect. 2.

Editors are identified objects that contain a state value of some type. In our
semantic model the identifier type ID is a synonym type of integers. Modeling col-
lections of arbitrarily typed states is a nuisance within a strongly typed language.
Solutions can be forged using exotic constructs such as existential types and phan-
tom types, but this will hinder reasoning. For this reason we take a pragmatic
approach without loss of generality. A state is either basic or a pair structure. If it
is basic it could be any type, but we restrict ourselves to integers. Hence we obtain
the following definitions:

:: EDITSTATES :=— [(ID,STATE)]
:: ID — Int
.1 STATE = Basic Int | Pair STATE STATE

For readability, we use standard tuple notation (a,b) instead of (Pair a b). EDIT-
STATES models the set of all editors, along with their current state values. The
function write updates this set and read reads the current value of the indicated
editor.

write :: !EDITSTATES !(!ID,!STATE) — EDITSTATES
write sts (i,v) =map (set (i,v)) sts
where set :: !(!ID,!STATE) !(!ID,!STATE) — (!ID,!STATE)
set (1,v) (3,w)
li=3 = (@{€.wv)
| otherwise = (3j,w)

read :: !EDITSTATES !ID — STATE
read [(id,v):idvs] id‘
| id = id°® =V
| otherwise = read idvs id‘

An editor provides the user with a GUI to allow her to alter the current value
of its state that is displayed. Such an event is modeled with a pair of the identifier
of the editor and the new value of the state of the editor.

:: EVENT = Event ID STATE

The current state of an editor can be altered either via an event, as described
above, or because an editor that occurs earlier within the interconnection relation
has been edited. The primitive edit combinator function defines this behavior.
It has type :: !ID !EVENT !(D a) — (D a). Its first argument is the identifier of
the editor; the second argument is the event to which the system should respond;
the last argument is the domain D a on which all combinators operate. It is a
triplet of all editor states (of type EDITSTATES), the current value (of type a) that is

IX-5



passed along the Arrow expression, and a flag (the boolean synonym type EDITED
indicating that an edit action has taken place).

By identifying the required type for the edit combinator, we also identified the
type to use as the basic type for the editor Arrow combinators which have no 1D.
This type isEditF a b which is a synonym for : : !EVENT ! (D a) — D b. This type
EditF a bis also called the Arrow type.

:Da :=— (EDITSTATES, a, EDITED)
:: EDITED :— Bool

:: EditF ab := !EVENT !(D a)—Db
edit :: !ID !EVENT !(D a) —D a

‘We can now define the behavior of an editor that is defined with identifier id:

edit :: !ID !EVENT !(D a) —»D a L.
edit id (Event id‘ v‘) (sts, v, edited) 2.
| evalSTATE v 3.

| edited = (write sts (id,v), v, True) 4.

| id = id‘ = (write sts (id,v‘),v‘,True) 5.

| otherwise = (sts, read sts id,False) 6.

Editors display their current state value. Consequently, the source of these values
need to be fully evaluated values. This is expressed by the guard in line 3, which
enforces the value v to be in normal form. If an editor that occurs earlier within the
interconnection relation has been edited, then the alternative at line 4 is satisfied.
In that case, the editor destructively updates its current state with the current value
that is passed along the interconnection relation. If no editor was edited yet, but
the event is targeted for this editor (their identification values are equal), then the
alternative at line 5 is satisfied. In that case, the editor destructively updates its
current state with the value in the event. This value is also the value that is passed
along to the remaining editors that are interconnected with this editor. They need
to alter their states because this editor has been edited, and therefore the EDITED
flag is set to True. Finally, if no editor was edited yet, and neither was this editor,
then the value that should be passed along the interconnected editors is the current
state of this editor (line 6).

The edit combinator introduces a number of subtle cases that need careful
consideration. It is for instance not allowed to swap editors:

edit i>>>edit jFedit j>>>edit 1 (i # J)

This is caused by the fact that events ‘break into’ the Arrow structure: an event for
editor j does not affect the state of editor i on the left hand side, but it does on the
right hand side. This matter is discussed in Sect. 4.3 where we study a number of
editor laws.

In our semantic framework, we can define suitable instances of the Arrow mem-
ber functions as follows!:

!For presentational reasons we use the familiar type class and instance approach. In the actual

IX-6



instance Arrow EditF where
arr :: (a—b) »EditF a b
arr f e (sts, v, b) = (sts, £ v, b)

(>>>) :: (EJitF b c) (EditF c d) —EditF b d
(>>) fged =ge (fed

first :: (EditF b c¢) — EditF (b,d) (c,d)
first g e (sts, v_d, b)
= case g e (sts, fst v_d, b) of (sts‘, v, b‘) = (sts*, (v',snd v.d), b)

loop :: (EditF (b,d) (c,d)) — EditF b c
loop g e (sts, v, b)
= let (sts‘, (v‘,d), b‘) =g e (sts, (v,d), b) in (sts‘, v, b)

The definitions above describe precisely how a single edit event is manipulated
by the system. What remains to be defined is the initialization of the system and
how the system handles arbitrary edit event sequences, which we call scenarios.
This is given by the following definitions:

meaning :: a (EdJitF a b) EDITSTATES [EVENT] — (EDITSTATES,[b])
meaning a editF sts scenario
= let (initializedSTATES,b,_ ) = editF dummyEVENT (sts,a,True)
in handle scenario a editF initializedSTATES scenario

where
handle_scenario :: a (EditF a b) EDITSTATES [EVENT] — (EDITSTATES,[b])
handle_scenario _ _ sts []

= (sts,[])
handle scenario a editF sts [e:es]
f (sts,b,_) = editF e (sts,a,False)
f (sts,bs) = handle_scenario a editF sts es
= (sts,[b:bs])

We assume the following, reasonable, conditions for each (meaning init editF

sts scenario):

e stshas anentry (i,v) for each and every edit i within editF such that v is
a value of the correct type.

e scenario contains only proper edit events for editors within editF.

e dummyEVENT is an event which ID value does not equal that of any editor
within editF.

This completes the semantic model of editor Arrow combinators. There are a
number of final remarks:

semantic model we have defined individual functions with the same, non-synonym types. Also, for
readability, we have chosen to present the infended type signatures of the member functions, instead
of the type correct signatures that have STATE for every type parameter of EJitF.

IX-7



e Editors with the same identifier may have several occurrences within a defi-
nition. Consider for instance:

self £ 1 =edit 1 >>> arr £ >>> edit i

All occurrences of (edit i) in the Arrow relation relate to a single on-screen
occurrence. This particular pattern is rather useful: whenever the user edits
its value to v, the editor applies the canonization function £ to that value, and
then adapts its state to £ v.

e Editors in the semantic framework have very limited functionality: they only
serve as stores of their states, and they can respond to events. In the GEC
Toolkit and the iData Toolkit, editors usually manipulate incoming values
with some function £, and outgoing values with some function g. This can
be expressed directly as £ @> edit i >Q@ g, with:

(@) fg=arrf >>g
(>Q) gf=g >> arr f

e We assume that editors with the same identifier have a state of the same
type. This is not enforced by our semantic model, but it can be done within
the toolkits. We can ignore the issue because we assume that our instances
are derived from well-typed programs (see the beginning of this section).

4 SEMANTIC MODEL PROPERTIES

In this section we investigate the properties of the semantic model that has been
presented in Sect. 3. We discuss the “classic” Arrow laws (Sect. 4.1), the “loop”
laws (Sect. 4.2), and the “editor” laws (Sect. 4.3). After that we investigate the
definedness properties of the combinators (Sect. 4.4).

4.1 The “classic” arrow laws

Def.1 summarizes the “classic” Arrow laws, as introduced by Hughes.

IX-8



Definition 1 (Arrow Laws)

arrid > f =f= f>>arrid
f>>g>>h = (f>g>h
) —

arr(go f = arrf>>arrg
first (f >>g) = first f>>first g
first f >> arr fst = arr fst >> f
first f>> arr (id x g) = arr(idxg)>>first f

first (first f) >> arrassoc = arr assoc >> first f
where

(<) fg@bh) = (fa.gh)

assoc ((a,b),c) = (a,(b,c))

Note that we omit two laws:

arr (f>>g) = arrf>>arrg
first (arr f) = arr (first f)

In our toolkits arr lifts pure functions to the Arrow domain. In such a context
arr (f =>> g) coincides with arr (g o f). The same reasons apply for the second
law.

These laws can be proven completely with Sparkle in a few steps each.

4.2 The “loop” arrow laws
Def. 2 summarizes the “loop” laws, as introduced by Paterson.

Definition 2 (Loop Laws)

loop (firsth>> f) = h>>loop f
loop (f =>> firsth) = loop f>>h
loop (f => arr (id x k)) = loop (arr (id x k) >> f)
loop (loop f) = loop (arr assoc™' > f > arr assoc)
second (loop f) = loop (arr assoc > second f > arr assoc™")
loop (arr f) = arr (simple_loop f)
where
simple_loop fb = let(c,d)=f (b,d)inc
second f = arr swap > first f >> arr swap
swap (a,b) = (b,a)

Currently, the loop laws cannot be proven completely with the aid of Sparkle. The
loop combinator relies essentially on a cyclic let-definition, and it is currently be-
yond the capacity of Sparkle to deal with such definitions. In these cases, we resort
to manual proofs. Fig. 2 shows the proof of the sliding law. The proofs of the other
laws are analogous.

IX-9



loop (f >> arr (id x k)) e (sts,v,b)
= let (sts', (v’ d),b)) = (f>>arr(idxk))e (sts,(v,d),D)

d”) by = fel(arr(idxk)e (sts,(v,d"),b)

U

(sts' V',
= let st (V) )b’) = fe(sts,(v,kd"),b)

(sts’ V)b

(

(sts',V,
(

in (sts',V,b")
= let (sts',(V',d),b') =arr(idxk)e(fe (sts,(v,d),b))
in (sts',V b’)
= let (sts”,(v",d"),b") = f e (sts,(v,d),b)
(sts’,(V',d),b") =arr(idxk)e (sts”",(v',d"),b")
in (sts',V b’)
= let (sts”,(v",d"),b") = f e (sts,(v,d),D)
(515, (), b) = (15", (oK ), B
in (st )
(
(
(

= let (sts',(V/ d”) by = (arr (idxk)>> f)e (sts,(v,d"),b)
in (sts',V,b")
= loop (arr (id x k) >> f)

FIGURE 2. Manual proof of the sliding law

4.3 Editor Laws

The correctness proofs of the Arrow laws do not rely on other combinator functions,
hence they are also valid for the edit combinator. This means that we get a lot of
equivalences ‘for free’ when edit is involved. In addition, we impose the following
laws that are specific to edit in Def. 3.

Definition 3 (Editor Laws)

editi >> editi = editi (edit elimination)
self (go f)i = self fi =>> self gi (self distribution)
feedback(edit i)(edit j) = feedback(edit j)(edit i) (edit swap)
feedback(editarr i f)

(editarr j g) >@b2a = a2b@> feedback(editarr j g)
(editarri f) (editarr swap)
where editarri f = editi >@ f

The edit elimination law states that editors behave as pure stores: it is harmless
(and pointless) to store the very same data in the same location in sequence. The
self distribution law states that function composition distributes over the self pat-
tern. The feedback combinator is essential in controlling when it is allowed to swap

IX-10



editors, which can not be done in general. The edit swap law states that within the
context of a feedback, it is allowed to swap editors, because they always update
each other in case of occurring edit events. The exception is in case of an edit
event that is not targeted at editor i or j: in that case we must assume the precon-
dition that their state values already have the desired interconnection value. It is
sufficient to prove that the precondition holds for the initialized state. Due to the
presence of sharing, this law can only be applied within an Arrow structure when
there are no further occurrences of edit i and edit j. Finally, the editarr swap law
extends the edit swap law when editors modify their output values. In that case, two
additional conversion functionsa2b :: a —bandb2a :: b — a are required when
editarr i f :: EditF a bandeditarr j g :: EditF b a. For this law, the same
conditions apply: the state values need to have the desired interconnection value,
and there should be no other occurrences of the involved editors.

The first two laws have been proven manually, as well as a variant of the last
two laws. We expect no issues when redoing the proofs in Sparkle.

4.4 Definedness properties of the combinators

Hughes and Paterson have taken great care to construct the Arrow combinators in
such a way that they impose as little as possible restrictions to the behavior of ad-
ditional primitive combinators that will be glued together with these combinators.
In this section, we study what happens with the definedness properties when we
extend their combinators with our edit combinator. This is motivated by the ob-
servation that the edit combinator imposes strong definedness properties on events
and state values.

Sparkle defines the type class class eval a :: !a—Bool. It specifies, per
instance type, the definedness of its value. In order to shorten the definitions below,
we first introduce a synonym type for predicates:

:: P a:=a—Bool

We first connect the definedness of the domain triplet of type (D a) and the tuple
tree structure of its value type a:

instance eval EVENT where eval (Event id v) = eval id && eval v

evalp :: (P a) —P (D a)
evalp eval, (sts, v, edited) = eval sts A eval, v A eval edited

evalggisr :: (P a) (P b) — P (EdJitF a b)
evalEditF evala eval;, f
& Veervent Vaepa) [(eval e) — (evalp eval, d) — (evalp eval, (f e d))]

The EVENT instance of eval yields True only if its argument is completely evalu-
ated. The evalp predicate combines the definedness predicate of a value of type
a with the definedness of a domain triplet of type (D a). Predicate evalgqgitr lifts
this property to the concrete Arrow domain: given the definedness of the event ar-

IX-11



gument and domain triplet with a defined input value, then the definedness of the
arrow combinator is set by the definedness of the output value.

For functions, we provide a different definedness predicate, that is based on the
function’s argument and result:
evalp :: (P a) (Pb)—P (a—Db)
evalp eval, eval, £

& Vaca [(eval, a) — (evaly (f a))l

We can now specify the definedness properties of the Arrow combinators. These
are given in Def. 4.

Definition 4 (Definedness of the Arrow combinators)

evalp eval, eval, f = evalggitr eval, eval, (arr f) (arr)
evalEditF evala evalb f
A = evalggitr evalg eval, (f >>g) ()

evalggitr eval, eval, g
evalgqitr (eval, o fst)
evalgqitr eval, eval, f = (eval, o fst) (first)
(first f)
evalgqitr (eval, o fst)
(eval, o fst) = evalggitr eval, evaly (loop f) (loop)

f

The above properties have been proven correct with Sparkle.

Finally, we can declare the definedness property of edit. Editors expect fully
evaluated input values and produce fully evaluated output values, within domain
triplets that are in rnf. The STATE instance of eval enforces nf values:

instance eval STATE where eval (Basic v) =eval v
eval (Pair sl s2) = eval sl && eval s2

Def. 5 gives the definedness axiom for editors.

Definition 5 (Definedness axiom of the edit combinator)

evalggitr eval eval (edit i) (edit)

Also this property has been proven correct with Sparkle.

5 CASE STUDY

In Sect. 2 we have given the toolkit code for a money converter application. The
key part of the code was:

converter = feedback (edit euroId>>>arr toUSD)
(edit usdId >>>arr toEuro)

IX-12



In this example, the euro editor happens to be the first editor in the sequence, and
the dollar editor is second. Hence, the initial value of this application must be of
type Euros, and the final value is of type UsDollars. Intuitively, the meaning of the
program should be the same if we had chosen to start with the dollar editor instead.
Put in other words, the following program should have the same meaning:

converter®
= toUSD >Q@ feedback (edit usdId >>>arr toEuro)
(edit euroId>>>arr toUSD) >Q@ toUSD

The conversion functions toUsD need to be added in order to obtain an application
of the same type.

Before we start to prove the equivalence between converter and converter®,
we need to derive their semantic models. We start with the semantic model of
converter:

convertermodel = feedback (edit euroId >>> arr toUSD)
(edit usdId >>> arr toEuro‘)
where curold =1
usdId =2

The main difference is that we can not use the USDollars and Euros state types.
Instead, we model these values as Basic Int values, and introduce integer manip-
ulation functions toUsD* and toEuro‘. The only property they should obey is that
they are each other’s inverse (so toUSD‘ o toEuro‘ = id and toEuro‘ o toUSD‘ =
id). The semantic model of converter® is derived similarly:

convertermodel®
= toUSD‘ >Q@ feedback (edit usdId >>> arr toEuro‘)
(edit euroId >>> arr toUSD‘) >@ toUSD*

This demonstrates that the distance between the source code and the semantic
model is short.
The proof is rather straightforward:

convertermodel
= feedback (edit eurold > arr toUSD') (edit usdld => arr toEuro')
feedback (editarr eurold toUSD') (editarr usdld toEuro')
= feedback (editarr eurold toUSD') (editarr usdld toEuro’) > arr id
feedback (editarr eurold toUSD') (editarr usdld toEuro’) > arr (toUSD' o toEuro')
feedback (editarr eurold toUSD') (editarr usdld toEuro') > arr toEuro’ > arr toUSD’
feedback (editarr eurold toUSD') (editarr usdld toEuro’) >@toEuro’ > arr toUSD’
toUSD' @> feedback (editarr usdld toEuro') (editarr eurold toUSD') > arr toUSD’
= toUSD' @> feedback (editarr usdld toEuro') (editarr eurold toUSD') >@toUSD'
toUSD' @> feedback (edit usdld > arr toEuro') (edit eurold > arr toUSD') >@1oUSD’
= convertermodel

Because we use the edit swapping law, we need to show that the precondition
holds for the initial value of the system. This is done with a symbolic calculation

IX-13



of the domain after initialization:

converter dummyEVENT ([(eurold,v), (usdld,w)],init, True)
= ([(eurold,toEuro(toUSD init)), (usdld,toUSD init)],t0USD (toEuro(toUSD init)), True)
= ([(eurold,init), (usdld,toUSD init)],toUSD init, True)

It is clear that the desired relation between the state of the eurold and usdld editors
holds.

6 RELATED WORK

We have presented a semantic model for interactive applications. The model is
inspired on our work on high level toolkits for desktop GUI applications and web
applications, viz. the GEC Toolkit and the iData Toolkit. It uses the same level of
abstraction as the toolkits by considering the elementary interactive components as
being editors of arbitrary values that are rendered, and can be edited by the user.
The elementary elements are glued together by means of the Arrow combinator
functions. The advantage of using a functional style formalism is that integration
of computation can be done within the framework, using functions. Other projects,
such as Fruit [6] and Fran [11] have taken this route as well. These systems also
had to resort to Arrows in order to eliminate subtle performance problems. In our
case, we use them chiefly to structure our programs in order to facilitate reasoning.

Another way of modeling interactive programs is to regard them as collections
of communicating processes. From this point of view, it seems to be natural to
provide a model in terms of a process algebra. There is a wide variety of pro-
cess algebras available, such as CCS (Calculus of Communicating Systems) [14],
CSP (Communicating Sequential Processes) [10], ACP (Algebra of Communicat-
ing Processes) [5], and uCRL (micro Common Representation Language) [8]. Es-
pecially the latter might be interesting in this context because it augments ACP
with algebraic data types in a spirit that is very similar to functional programming.
In general, the fine grained control over concurrency that is usually provided by
process algebraic models is not necessary when dealing with interactive applica-
tions. We hope to have demonstrated that the use of a disciplined, functional style
is well suited to create intricate interactive applications that can still be reasoned
about with traditional equational reasoning techniques.

7 CONCLUSIONS

In this paper we have introduced the formal semantic model of the GEC Toolkit
and the iData Toolkit. This model is based on the Arrow framework by Hughes,
and includes the loop combinator by Paterson. The semantic model extends the
framework with a single primitive combinator function, edit, for creating editors
with shared state.

We have proven that the associated Arrow laws hold within our model, and ex-
tended the set with a number of laws for editors. Editors have subtle behavior, and

IX-14



this is expressed clearly with the conditions that are imposed by the swapping laws.
We have further investigated the definedness properties of the semantic model. This
is relevant because the edit combinator imposes very strict requirements on its in-
put values, output values and events that are passed through the system, which is
in contrast with the requirements of the Arrow combinators. We have shown that
the Arrow combinators are quite liberal with respect to these values. When instan-
tiating the Arrow laws with the edit combinator, these definedness properties must
be taken into account.

Most of the proofs have been conducted with the aid of Sparkle. We were not
able to prove the loop laws due to a missing tactic to handle cyclic let definitions.
The use of Sparkle in case of the proven laws increases confidence in their correct-
ness. In addition, working on the proofs with a tool assistant has helped us identify
issues that escaped our attention when constructing theorems.

REFERENCES

[1] P. Achten, M. van Eekelen, and R. Plasmeijer. Generic Graphical User Interfaces. In
G. Michaelson and P. Trinder, editors, Selected Papers of the 15th Int. Workshop on
the Implementation of Functional Languages, IFLO3, volume 3145 of LNCS. Edin-
burgh, UK, Springer, 2003.

[2] P. Achten, M. van Eekelen, and R. Plasmeijer. Compositional Model-Views with
Generic Graphical User Interfaces. In Practical Aspects of Declarative Program-
ming, PADLO4, volume 3057 of LNCS, pages 39-55. Springer, 2004.

[3] P. Achten, M. van Eekelen, R. Plasmeijer, and A. van Weelden. Automatic Genera-
tion of Editors for Higher-Order Data Structures. In Wei-Ngan Chin, editor, Second
ASIAN Symposium on Programming Languages and Systems (APLAS 2004), volume
3302 of LNCS, pages 262-279. Springer, 2004.

[4] A. Alimarine and R. Plasmeijer. A Generic Programming Extension for Clean. In
T. Arts and M. Mohnen, editors, The 13th International workshop on the Implemen-
tation of Functional Languages, IFL’01, Selected Papers, volume 2312 of LNCS,
pages 168—186. Alvsjo, Sweden, Springer, Sept. 2002.

[5] J. Baeten and W. Weijland. Process Algebra, volume 18 of Cambridge Tracts. in
Theoretical Computer Science. Cambridge University Press, 1990.

[6] A. Courtney and C. Elliott. Genuinely Functional User Interfaces. In Proceedings of
the 2001 Haskell Workshop, September 2001.

[7] M. de Mol, M. van Eekelen, and R. Plasmeijer. Theorem proving for functional pro-
grammers - Sparkle: A functional theorem prover. In T. Arts and M. Mohnen, editors,
The 13th International Workshop on Implementation of Functional Languages, IFL
2001, Selected Papers, volume 2312 of LNCS, pages 55-72, Stockholm, Sweden,
2002. Springer.

[8] J. Groote and M. Reniers. Algebraic Process Verification. In J. Bergstra, A. Ponse,
and S. Smolka, editors, Handbook of Process Algebra, chapter 17, pages 1151-1208.
Elsevier Science B.V., 2001.

[9] R. Hinze. A new approach to generic functional programming. In The 27th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 119-132. Boston, Massachusetts, January 2000.

IX-15



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice-Hall International, 1985.

P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, Robots, and Functional
Reactive Programming. In J. Jeuring and S. Peyton Jones, editors, Advanced Func-
tional Programming, 4th International School, volume 2638 of LNCS, Oxford, 2003.
Springer.

J. Hughes. Generalising Monads to Arrows. Science of Computer Programming,
37:67-111, May 2000.

P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic automated
software testing. In R. Pefia and T. Arts, editors, The 14th International Workshop on
the Implementation of Functional Languages, IFL’02, Selected Papers, volume 2670
of LNCS, pages 84—100. Springer, 2003.

R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer
Verlag, 1980.

R. Paterson. A new notation for arrows. In International Conference on Functional
Programming, pages 229-240. ACM Press, Sept. 2001.

R. Plasmeijer and P. Achten. Generic Editors for the World Wide Web. In Central-
European Functional Programming School - Revised Selected Lectures, volume 4164
of LNCS, pages 1-34, Eotvos Lorand University, Budapest, Hungary, Jul 4-16 2005.
Springer.

R. Plasmeijer and P. Achten. The Implementation of iData - A Case Study in Generic
Programming. In A. Butterfield, editor, Proceedings Implementation and Application
of Functional Languages - Revised Selected Papers, 17th International Workshop,
IFLO5, LNCS 4015, Department of Computer Science, Trinity College, University
of Dublin, September 19-21 2006.

IX-16



