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Abstract. Polytypic functional programming has the advantage that it
can derive code for generic functions automatically. However, it is not
clear whether it is useful for anything other than the textbook exam-
ples, and the generated polytypic code is usually too slow for real-life
programs. As a real-life test, we derive a polytypic parser for the Haskell
98 syntax and look into other front-end compiler syntax tree operations.
We present a types—as—grammar approach, which uses polytypic pro-
gramming (in both Generic Haskell and Clean) to automatically derive
the code for a parser based on the syntax tree type, without using ex-
ternal tools. Moreover, we show that using polytypic programming can
even be useful for data—specific syntax tree operations in a (functional)
compiler, such as scope checking and type inference.

Simple speed tests show that the performance of polytypic parsers can
be abominable for real-life inputs. However, we show that much perfor-
mance can be recovered by applying (extended) fusion optimization on
the generated code. We actually have a derived parser whose speed is
close to one generated by a specialized Haskell parser generator.

1 Introduction

The construction of complex software often starts by designing suitable data
types to which functionality is added. Some functionality is data type specific,
other functionality only depends on the structure of the data type. Polytypic
programming is considered an important technique to specify such generic func-
tionality. It enables the specification of functions on the structure of data types,
and therefore, it is characterized as type dependent (type indexed) program-
ming. The requested overall functionality is obtained by designing your data
types such that they reflect the separation of specific and generic functionality.
By overruling the polytypic instantiation mechanism for those parts of the data
type that correspond to specific functionality, one obtains the desired overall
behavior. In essence, a programmer only has to program the exception and a
small polytypic scheme, since polytypic functions automatically work for the
major part of the data types. Examples of such generic operations are equality,
traversals, pretty-printing, and serialization.

The number of such generic operations in a specific program can be quite
small, and hence the applicability of polytypic programming seems limited. Poly-
typic functions that are data specific only make sense if the involved data types



themselves are complex or very big. Otherwise, the definition of the polytypic
version of an operation requires more effort than defining this operation directly.
Moreover, the data-dependent functionality should be restricted to only a small
portion of the data type, while the rest can be treated generically.

This paper investigates the suitability of polytypic programming as a general
programming tool, by applying it to (a part of) compiler construction. Compil-
ers involve both rich data structures and many, more or less complex, operations
on those data structures. We focus on the front-end of compilers: parsing, post-
parsing, and type inference operations on the syntax tree. There exist many
special tools, e.g., parser generators and compiler compilers, that can be used
for constructing such a front-end. We show that polytypic programming tech-
niques can also be used to elegantly specify parsers. This has the advantage
that the polytypic functional compiler can generate most of the code. Another
advantage it that one can specify everything in the functional language itself,
without synchronization issues, e.g., between the syntax tree type and the gram-
mar definition, with external tools.

We have implemented polytypic parsers in both Generic Haskell [1] (a pre-
processor for Haskell [2]) and Clean [3]. We use (Generic) Haskell to present
our implementation in this paper, the Clean code is very similar. The polytypic
parser we use in this paper differs from those commonly described in papers on
polytypic programming [4,5]. Our parser is based on the types—as—grammars ap-
proach: the context-free syntax of the language to parse is specified via appropri-
ate data type definitions. The types—as-grammar approach was previously used
to construct a new version of the Esther shell originally described in Weelden
and Plasmeijer [6]. The shell uses polytypic programming to specify the parser
and post-parsing operations on expressions the size of a single command-line.
This paper tackles larger inputs and grammars, including the Haskell syntax.

Apart from its expressiveness, a programming technique is not very useful
if the performance of the generated code is inadequate. The basic code gener-
ation schema that is used in the current implementations of polytypic systems
produces inefficient code. We asses the efficiency of both the Generic Haskell
and the Clean implementations and compare them with the code generated by
an optimization tool by Alimarine and Smetsers [7]. This tool takes a polytypic
Clean program as input and produces a Haskell/Clean-like output without the
polytypic overhead.

To summarize, the main contributions of this paper are:

— We show that polytypic programming, introduced in Sect. 2, is not only
suited for defining more or less inherently generic operations, but also for
specifying data specific functionality.

— We describe a technique that allows us to derive a parser for context-free
languages automatically from the definition of a syntax tree in Sect. 3. The
technique is based on the idea to interpret types as grammar specifications.



— We show that the same technique applies to several related syntax tree op-
erations in Sect. 4. As operations become more data specific, we gain less
from using polytypic programming. However, we show that it is not totally
unsuitable for non-generic algorithms.

— As most polytypic programmers know, polytypic programs (including our
parsers) have serious performance problems. Fortunately, we show in Sect. 5
that an appropriate optimization tool recovers a lot of efficiency, and that
our parsers can approach the speed of parsers generated by external tools.

Related work is discussed in Sect. 6, and we conclude in Sect. 7.

2 Polytypic Programming

Specifying polytypic functions is a lot like defining a type class and its instances.
The main difference is that a polytypic compiler can derive most of the instances
automatically, given a minimal fixed set of instances for three or four (generic)
types. The programmer can always overrule the derived instance for a certain
type by specifying the instance manually. This powerful derivation scheme even
extends to kinds (the types of types), which we will neither use nor explain in
this paper.

The fact that polytypic functions can be derived for most types is based on
the observation that any (user defined) algebraic data type can be expressed
in terms of eithers, pairs, and units. This generic representation, developed by
Hinze [12], is used by Generic Haskell and is encoded there by the following
Haskell types:

data Sum a b = Inl a | Inr b — either/choice between (In)left and (In)right
data Prod a b=a * b — pair/product of two types, left associative
data Unit = Unit — the unit type

A data type and its generic representation are isomorphic. The corresponding
isomorphism can be specified as a pair of conversion functions. E.g., for lists
the generic representation and automatically generated associated conversion
functions are as follows.

type GenericList a = Sum (Prod a [a]) Unit

fromList :: [a] — GenericList a tolList :: GenericlList a — [a]
fromList (x:xs) = Inl (x :x xs) tolList (Inl (x =: xS)) = x:XS
fromList [] = Inr Unit tolList (Inr Unit) =0

Note that the generic representation type GenericList is not recursive and still
contains the original list type. A polytypic function instance for the list type
can be constructed by the polytypic system using the generic representation.
The derived instance for the list type uses the given instances for Sum, Prod,
Unit, and once again the currently deriving instance for lists. This provides the
recursive call, which one would expect for a recursive type such as lists.



To define a polytypic function, the programmer has to specify its function
type, similar to a type class, and only the instances for the generic types (Prod,
Sum, and Unit) and non-algebraic types (like Int and Double). The polytypic
instances for other types that are actually used inside a program are automati-
cally derived. Polytypic functions are, therefore, most useful if a large collection
of (large) data types is involved, or if the types change a lot during development.

To illustrate polytypic programming we use the following syntax tree excerpt:

data Expr = Apply Expr Expr | Lambda Pattern Expr
| Case Expr [(Pattern, Expr)] | Variable String
| If Expr Expr Expr [

data Pattern = Var String | Constructor String [Pattern] |

data ---

We define a Generic Haskell function print of type a — String that is polytypic
in the type variable a, similar to Haskell’s show of type Show a = a — String
that is overloaded in a. Instead of instances for the Show class, we define type
instances for print using the special parentheses { |} .

print{{af} :: a— String

print {| Int [} i = show i — basic type instance
print { Unit |} Unit =" — unit instance

print {{Sum a b} (Inl 1) =print{lal}f 1  — left either instance
print {{Sum a b} (Inr r) =print{bl} r — right either instance
print {Prod a b} (1 = r) — pair instance

=print{lal} 1+H” ” Hprint{bf} r

print {{Con d af} (Con x) — instance for constructors
=7(” 4 conName d " ” print{al} x+H7)”

To print the parameterized type Sum, and also Prod, print requires printing
functions for the parameter types a and b. These are automatically passed un-
der the hood by Generic Haskell, similar to dictionaries in the case of over-
loading. print {{Sum a b} can refer to these hidden dictionary functions using
print {{a[} and print { b} . Furthermore, the type Con, used in this example,
was added to the set of generic types in Generic Haskell as well as in Clean.
Run-time access to some information about the original data constructors is es-
pecially convenient when writing trace functions, such as print, for debugging
purposes.

data Con a = Con a; data ConDescr = { conName :: String, --- }



When used in Generic Haskell, Con appears to get an additional argument d. This
is not a type argument but a denotation that allows the programmer to access
information about the constructor, which is of type ConDescr. In the example
print {{Con d a|} applies conName to d to retrieve the name of the constructor.

Observe that this polytypic print function does not depend on the structure
of the syntax tree type. If this type definition changes during development, the
underlying system will automatically generate a proper version of print. This
implementation of print is quite minimal, with superfluous parentheses and
spaces. It is easy to adjust the definition to handle these situations correctly, see
for example Jansson and Jeuring [4].

It is not difficult to specify the polytypic inverse of the print function. Using
a monadic parser library, with some utility functions such as symbol(s) and
parseInt that take care for low-level token recognition, one could specify a
polytypic parse function (similar to Haskell’s read) as follows:

type Parser a = --- — some monadic parser type
parse{ al} :: Parser a
parse {| Unit [} = return Unit

parse {{Sum a b|[} = mplus (parse{|al} >= return . Inl)
(parse{b[} >= return . Inr)

parse {{|Prod a b[} =do 1« parse{|al}
r « parse {| b}
return (1 = 1)

parse{{Con d af} =do symbol ’(’
symbols (conName d)

symbol ’ ’

x « parse {a}

symbol ’)’

return (Con x)
parse {| Int |} = parselnt

Such a simple parser follows the print definition very closely and is easy to under-
stand. parse is obviously print’s inverse, and it can only parse input generated
by the print function, including redundant spaces and parentheses.

3 Polytypic Parsing of Programming Languages

This section introduces the types—as—grammar approach to polytypically derive
a parser. This parser builds on a small layer of monadic parser combinators, to
abstract from the lower level token recognition machinery. We use very naive
parser combinators (shown below) because they are easy to use and explain.



To abstract from the parsing issues at the lexical level, we assume a separated
scanner/lexer and that the parser will work on a list of tokens. Later in Sect. 5,
we will test the efficiency of the polytypic parser using also a set of continuation
parser combinators that improve the error messages. The naive monadic parser,
using the Maybe monad, is implemented as follows.

newtype Parser a = Parser { parser :: [Token] — Maybe (a, [Token]) }

data Token = IdentToken String | LambdaToken | ArrowToken
| IfToken | ThenToken | ElseToken | --- — all tokens

token :: Token — Parser Token
token tok = Parser (Ats — case ts of
(t:ts’) | t = tok — Just (t, ts’)

. — Nothing
instance Monad Parser where
return x = Parser (Ats — Just (x, ts)) — success parser
1 >»=r = Parser (\ts — case parser 1 ts of — sequence parser
Just (x, ts’) — parser (r x) ts’
Nothing — Nothing )
instance MonadPlus Parser where
mzero = Parser (Ats — Nothing) — fail parser
mplus 1 r = Parser (Ats — case parser 1 ts of — choice parser
Just (x, ts’) — Just (x, ts’)
Nothing — parser r ts )

The mplus instance above defines a deterministic (exclusive) choice parser: if the
left argument of mplus parses successfully, the right argument is never tried. This
is done out of speed considerations and, if the parsers are written in the right way,
it does not matter for deterministic grammars. Algebraic data constructors have
unique names, which makes the grammar deterministic. This is also reflected
in the Parser type, i.e., the parser returns a Maybe result, which shows that it
returns at most one result.

To parse real programming languages we should not parse the constructor
names that occur in the syntax tree type. Instead, we should parse all kinds of
tokens such as if, A, and — This requires writing most of the instances for the
polytypic function parse by hand. Another option is adding these tokens to the
abstract syntax tree, which becomes a non-abstract, or rich, syntax tree. Since
we instruct the polytypic parser using types, we cannot reuse the (constructors of
the) Token data type. Instead, we specify each token as a separate data type. This
gives us the ability to parse our own tokens, without the constructors getting in
the way. We can now define, for example, a nicer parser for lists that uses the
[J and _:_ notation.

data List a = Cons a ColonToken (List a) | Nil EmptyListToken



data ColonToken = ColonToken
data EmptyListToken = EmptyListToken

parse { ColonToken [} symbol ’:’ >> return ColonToken
parse {| EmptyListToken [} = symbols ”"[]” >> return EmptyListToken

parse{{Con d al} = parser {{a|} >= return . Con

intListParser = parse {{List Int|} — automatically derived by the system

We partly reuse the parse definition from Sect. 2. We do not want to parse
the constructor names, therefore, we replace the Parse {{Con d al} alternative
from Sect. 2 with the one shown above. Not parsing constructor names means
that the order of alternatives is important. Since parse {|Sum a b|} uses the
exclusive mplus, it gives priority to the Inl(eft) alternative over the Inr(ight)
alternative. Therefore, the textual order of the constructors of an algebraic data
type determines the order of parsing, which is similar to function definitions with
multiple alternatives in Haskell and Clean.

One can parse any context-free syntax by specifying the grammar using al-
gebraic data types. The grammar below is an excerpt of a small functional
programming language. It uses the convention that Ntype represents the non-
terminal type and Ttype represents a terminal symbol type.

data Nexpression = Apply Nexpression Nexpression
| Lambda Tlambda Nvariable Tarrow Nexpression
| If Tif Nexpression Tthen Nexpression
Telse Nexpression
| Variable Nvariable
| Value Nvalue

data Nvariable = Variable String

data Nvalue = Integer Int | Boolean Bool

data Tlambda = Tlambda; data Tarrow = Tarrow

data Tif = Tif; data Tthen = Tthen; data Telse = Telse
parse {{Con d a|} = parse{al} >= return . Con

parse {| String|} = identifierToken >= A\(IdentToken s) — return s

parse {| Tlambda |} = token LambdaToken >> return Tlambda

parse {| Tarrow |} = token ArrowToken >> return Tarrow
parse { Tif |} = token IfToken >> return Tif
parse {{ Tthen|} = token ThenToken >> return Tthen

parse {{ Telse|} = token ElseToken >> return Telse



If we remove all constructors from the type definitions above, we end up with
something that looks very similar to the following grammar description in BNF
notation:

<expression> ::= <expression> <expression>
| 7N <variable> ¥ <expression>
| 7if” <expression> "then” <expressiom>
"else” <expression>

| <variable>

| <wvalue>
<variable> ::= String
<value> ::= Int | Bool

It is also easy to support extended BNF (EBNF) notation by introducing some
auxiliary data types: Plus to mimic (---)T, Option to mimic [---], and Star to
mimic (---)*. The parsers for all of them can be derived automatically.

data Plus a = Plus a (Plus a) | One a
type Star a = Option (Plus a)
type Option a = Maybe a

data Nexpression = ---
| Lambda Tlambda (Plus Nvariable) Tarrow Nexpression

The use of parameterized data types, such as Plus, can make the definition of
the syntax tree type very concise. It is similar to two-level or van Wijngaarden
grammars [8]. We can now specify a lambda expression with multiple arguments
using Plus as shown above. Clearly, this corresponds to the following EBNF
grammar:

<expression> ::= ---
| 7\ <variable>t "3 <expression>
| ...

An issue with this types—as—grammar approach is left-recursive type defi-
nitions. Most parser combinator libraries do not support left-recursive parser
definitions and run out of heap or stack space. Recently, Baars and Swierstra
developed parser combinators [9] that detect and remove left-recursion automat-
ically . Our current solution is manually removing the (few occurrences of) left-
recursion by splitting the left-recursive type, as shown below. Only Nexpression
is (mutually) left-recursive because it has no argument of type Ttoken before
the Nexpression arguments. We write a small parser for the left-recursive part,
making sure that most of the parser is still derived automatically.

data Nexpression = Apply Nexpression Nexpression
| Term Nterm — separate non-recursive part



data Nterm = Lambda Tlambda (Plus Nvariable) Tarrow Nexpression

parse {| Nexpression |} = parse {|{Plus Nterm[} >= return . app
where

app (One t) = Term t
app (Plus t ts) = app’ (Term t) ts
app’ acc (One t) = Apply acc t

app’ acc (Plus t ts) = app’ (Apply acc t) ts

We extended this example to a basic functional language grammar, to test
our generated parser. Moreover, as a larger test, we converted Haskell’s grammar
to types and derived a parser for it. The results of those tests appear in Sect. 5.

4 Other Polytypic Syntax Tree Operations

Polytypic parsing and several other polytypic syntax tree operations are used in
the current version of the Esther shell [6], which is written using Clean’s gener-
ics. The Esther shell offers a basic lazy functional language as shell syntax. Its
grammar is specified as a type, using the approach of Sect. 3. This section uses
excerpts from the Esther shell to give an impression about how data specific syn-
tax tree operations, written using polytypic programming techniques, improve
conciseness, modularity, and allow easy changes to the syntax by adding and
rearranging types.

4.1 Restructuring Infix Expressions

A common syntax tree operation is re-parsing expressions that contain user
defined infix operators. Because they are user defined, they cannot be correctly
parsed during the first parse. The usual solution is to restructure the syntax tree
after parsing, once the precedence and associativity information is available.

data FixityInfo = --- — precedence and associativity information

fixInfix{{a | m[} :: (Functor m, Monad m) = a — FixityInfo —m a

fixInfix {| Int [} i ops = return i

fixInfix {| Unit [} Unit ops = return Unit

fixInfix {{Sum a b[} (Inl 1) ops =do 1’ «— fixInfix {{al} 1 ops
return (Inl 17)

fixInfix{{Sum a b[} (Inr r) ops =do 1’ « fixInfix{|b[} r ops
return (Inr r’)

fixInfix {{Prod a b[} (1 = r) ops =do 1’ « fixInfix{a|} 1 ops
r’ « fixInfix{b|} r ops

return (1’ = )



fixInfix {| Nexpression|} (Term t) ops = do
t’ « fixInfix {{Nterm[} t ops
return (Nterm t)

fixInfix {| Nexpression|} (Apply el e2) ops = ---— rebuild expression tree

We overloaded fixInfix with the Monad class because this operation can fail due
to conflicting priorities. Generic Haskell requires mentioning this type variable
m at the left side of the function type definition. The polytypic restructuring
fixInfix function can be derived for all types except Nexpression, which is
where we intervene to restructure the syntax tree. Note that manually removing
the left-recursion and splitting the Nexpression type allows us to override the
polytypic function derivation at exactly the right spot. We lack the space to
show exactly how to restructure the expression tree. This can be found in the
current version of the Esther shell [6].

The traversal code in the instances for the generic representation types is
a common occurring pattern. This shows that we can elegantly and concisely
specify a syntax tree operation that operates on a very specific part of the tree.
There is no need to specify traversal code for any other type in the syntax tree,
these are all automatically derived.

4.2 Adding Local Variable Scopes

Another common operation is checking variable declarations in the context of
local scope. Scope can easily be added into the syntax tree using polytypic
programming. We simply define the Scope data type below and inject it into the
syntax tree where appropriate.

data Scope a = Scope a

data Nterm = LambdaWithScope (Scope Nlambda)

I
data Nlambda = Lambda Tlambda (Plus Npattern) Tarrow Nexpression

data Ncase = Case Tcase Nexpression Tof
(Plus (Scope Nalt, Tsemicolon))
data Nalt = Alternative (Plus Npattern) Tarrow Nexpression

data Npattern = ---
| VariablePattern Nvariable

We overrule the derived polytypic code for chkVars at the following positions in
the syntax tree types: Nvariable is an applied occurrence, except for occurrences
after a VariablePattern constructor (part of the Npattern type), where it is a
defining occurrence. Furthermore, we override the polytypic instance for Scope,
which ends a variable scope after lambda expressions and case alternatives.

chkVars{a | m[} :: (Functor m, Monad m) = a — [String] —m [String]

chkVars {| Unit [} - vs = return vs
chkVars { Int [} _ Vs = return vs



chkVars {{Prod a b[} (1 x r) vs = chkVars{la[} 1 vs>=chkVars{b[} r
chkVars {{Sum a b[} (Inl 1) vs = chkVars{al} 1 vs
chkVars {{Sum a b[} (Inr r) vs = chkVars{b[} r vs

chkVars {| Nvariable |} (Variable v) vs
| v ‘elem‘ vs = return vs
| otherwise = fail ("unbound variable: ” H v)

chkVars { case VariablePattern | (VariablePattern (Variable v)) vs
= return (v:vs) — polytypic instance for a single constructor

chkVars {|Scope al} (Scope x) vs = chkVars{|a|} x vs >> return vs

We make use of a Generic Haskell feature in the chkVars example above, which
is not found in Clean: overriding the generic scheme at the constructor level.
Instead of writing code for all constructors of the Npattern type, we only specify
the semantics for the VariablePattern (hence the use of the case keyword) and
let Generic Haskell derive the code for the other alternatives of the type.

4.3 Type Inference

As the compilation process proceeds, syntax tree operations tend to be less
generic and more data specific. Program transformations and code generation,
but also type checking, usually require writing polymorphic instances for almost
all types, since each type must be treated differently. At first sight, it seems as
if polytypic programming is no longer useful to implement such operations. In
this section, we will show that even for more data specific functions a polytypic
definition improves modularity because it splits the specification per type, even
if there is little profit from the automatic derivation mechanism. As an exam-
ple, we specify a type inference algorithm in a polytypic way. Type inference is
much more data specific than any other example in this paper, nevertheless, it
illustrates the way to polytypically specify syntax operations that occur later in
the compilation process.

The algorithm is based on the idea of strictly separating type inference into
the generation of constraints (in the form of type equations), and solving these
constraints by standard unification. We restrict ourselves to the generation part,
which is usually done by traversing the syntax tree and collecting constraints
corresponding to each syntactical construct. Such an algorithm not only takes
the syntax tree as input but also an environment containing type declarations
for functions, constructors, and variables. Moreover, during the generation pro-
cess we sometimes need fresh type variables, e.g., to instantiate a function’s
type scheme or to create local type variables used to express dependencies be-
tween derivations. Therefore, we supply the generation function with a heap data
structure and we use an accumulator to collect type equations. This leads to the
following polytypic function type and auxiliary type definitions.



data Type = TVar String | TTVar VHeap | TBasic TBasic
| TApp String [Typel | TArr Type Type | TAll [String] Type

data TBasic = TBool | TInt
data Equ = Equ Type Type

type TypeState a = State (VHeap, [Equl) a — a state monad

gtype{{t [} :: t — Envs — TypeState Type

The VHeap is used to allocate fresh type variables. Mostly it suffices to gener-
ate unique integers to distinguish different type variables. These fresh variables
are represented by the TTVar-alternative in the definition of Type. The other
alternatives are used to represent type variables, basic types, type constructor
applications, arrow types, and type schemes, respectively.

The type equations are represented as a list of Equ elements. Together with
the VHeap, they form the state of the polytypic function. For convenience, the
implementation of the polytypic gtype function is based on the standard State
monad. For creating fresh variables, and for extending the list of type equations
we introduce the following functions.

freshVar :: TypeState VHeap
freshVar = State {runState = A\(vh, eqs) — (vh, (vh+1, eqs))}

newEqu :: Type — Type — TypeState ()
newEqu dt ot = State
{runState = A(vh, egqs) — ((), (vh, Equ dt ot:eqs))}

The polytypic instance declarations are straightforward. We chose to interpret
a Prod of two terms as an application of the first to the second. The advantage
is that we can derive the instance for the type Nexpression automatically.

gtype{{Sum a b} (Inl 1) env =gtypef{all 1 env
gtype{{Sum a b} (Inr r) env = gtype{b[} r env
gtype {{Prod a b} (x = y) env=do  tx< gtype{a| x env
ty < gtype{b[} y env
fv < freshVar
newEqu (TArr ty (TTVar fv)) tx
return (TTVar fv)

Clearly, there are not many other types for which we use the polytypic version;
most of the instances have to be given explicitly. E.g., for TfunctionId we can
use the following definition:

gtype { TfunctionId|[} (FunctionId name) env
= freshType name (fun_env env)

The overall environment has three separate environments: for functions, for con-
structors, and for type variables.



type Env = String — Type
data Envs = Envs { fun_env :: Env, cons_env :: Env, var_env :: Env }

The function freshType takes care of the instantiation of the environment type.
It can be defined easily, using the freshVar function, for type variables intro-
duced by a TA1l type. Another example is the alternative for Nif. Again, its
definition is straightforward.

gtype {|Nif [} (If Tif c Tthen t Telse e) env =do
tc «— gtype {| Nterm[} c env
newEqu tc (TBasic TBool)
tt <« gtype {| Nterm[} t env
te — gtype {| Nterm[} e env
newEqu tt te
return tt

Although we have to specify many instances explicitly, it is not inconve-
nient to use a polytypic specification: it splits the implementation into compact
polytypic instances, which are easy to write while the resulting structure of the
algorithm remains clear.

Concluding this section, we want to remark that polytypic programming
allowed easy changes to the syntax by adding and rearranging types. Usually,
this was done by adding types and instances to polytypic functions, instead of
rewriting existing instances.

5 Performance of Polytypic Parsers

In this section we investigate the efficiency of the generated parsers for two dif-
ferent grammars/languages. Our elegant types—as-grammar technique is of little
practical use if the resulting programs perform poorly because of the automat-
ically derived code by the polytypic system. Who cares about the advantage of
not having to use an external tool, when the polytypic parsers performs an order
of magnitude worse than parser generator based parsers.

5.1 A Basic Functional Language Parser

The first example is the derived parser for the basic functional language from
Sect. 3. Since we are not interested in lexical analysis, we have tokenized the
test input for the parser manually resulting in a list of 663 tokens representing
45 small functions in this language. The programs under test copy the input list
of tokens 100 times and parse the resulting list 100 times. The results are shown
in Table 1. For Haskell we used Generic Haskell (GH) 1.42, which requires the
GHC 6.2.2 compiler. For Clean we used the Clean 2.1.1 distribution.

All programs were run with a heap size of 256MB. It’s remarkable to see
that the Haskell version used only a quarter of the heap allocated by the Clean
version. At first glance, it might not be clear that the generated executables
are very slow and consume huge amounts of memory. Both Generic Haskell



Execution| Garbage Total Total heap
time (s) |collection (s)|time (s)|allocation (MB)
GH+GHC| 27.2 1.4 28.6 3,500
Clean 45.0 6.7 51.8 11,600

Table 1. Performance figures for the derived basic functional language parser, using
Maybe parsers.

and Clean have some built-in specific optimization techniques to improve the
performance of the derived functions. Moreover, these derived functions also
benefit from standard optimizations, such as dictionary elimination, higher-order
removal, etc. However, it appears that this is insufficient to obtain any acceptable
performance.

5.2 Improving the Automatically Derived Code

In [7] Alimarine and Smetsers present an optimization technique, called fusion,
of which they claim that it removes all the overhead introduced by the compila-
tion scheme for polytypic functions (developed by Hinze [12]) that is used both
in Generic Haskell and in Clean. Like deforestation, fusion aims at removing
intermediate data used for passing information between function calls. This is
done by combining nested pairs of consumer and producer calls into a single
function application, making the construction of intermediate data structures
from the producer to the consumer superfluous.

Fusion is not implemented in the Clean compiler, but incorporated in a sepa-
rate source—to—source translator. The input language for this translator is a basic
functional language extended with syntactical constructs for specifying polytypic
functions. The translator first converts polytypic definitions into ordinary func-
tion definitions and optimizes these generated functions, by eliminating data
conversions that are necessary to convert each object from and to its generic
representation. The optimized output is both Clean and Haskell syntax com-
patible, so it was easy to include performance figures using both compilers as a
back—end. These figures are shown in Table 2.

Execution| Garbage Total Total heap
time (s) |collection (s)|time (s)|allocation (MB)
Fusion+GHC 4.3 0.03 4.5 340
Fusion+Clean 6.3 0.4 6.7 1,500

Table 2. Execution times for the optimized basic functional language parser, using
Maybe parsers.



The programs ran under the same circumstances as those shown in Table 1.
Each test yields a syntax tree consisting of approximately 300,000 constructors
per iteration. In the optimized Haskell version this leads to an allocation of 12
bytes per node. Representing a similar syntax tree in an imperative language
would require approximately the same number of bytes per node.

5.3 Using Continuation Based Parser Combinators

A nice aspect of our approach, is that the polytypic specification of the parser
in Sect. 3 and the underlying parser combinator library are independent: we
are free to choose different combinators, e.g., combinators that produce better
error messages, without having to adjust the polytypic definitions. To illustrate
this, we replaced the simple Maybe-combinators, by a set of continuation based
parser combinators, which collect erroneous parsings. These are similar to the
combinators by, e.g., Koopman [10] or Leijen and Meijer [11]. Although the error
reporting technique itself is simple, it appears that the results are already quite
accurate. Of course, one can fine-tune these underlying combinators or even
switch to an existing set of advanced combinators, e.g., Parsec [11], without
having to change the polytypic parser definition itself.

Execution| Garbage Total

time (s) [collection (s)|time (s)
GH+GHC 137.9 10.2 148.2
Clean 77.3 20.0 97.3
Fusion+GHC 18.6 0.41 19.0
Fusion+Clean| 55.5 8.74 64.2

Table 3. Execution times for the derived and optimized basic functional language
parser, using continuation based parsers.

We have tested the unoptimized as well as the optimized version of the con-
tinuation based parser, see Table 3. This time, the figures are more difficult to
explain, in particular if you compare them with the execution times from the pre-
vious tables. In the literature, continuation passing parsers are often presented
as an efficient alternative for the naive combinators. However, our measurements
do not confirm this. The polytypic, as well as the optimized versions, are much
slower than the corresponding parser from the first test set, up to a factor of ten.
One might believe that the additional error information causes this overhead.
However, the loss in efficiency is almost the same when this information is not
included. Apparently, the gain that is obtained by avoiding explicit constructors
and pattern matching is completely undone by the use of continuations and,
therefore, higher-order applications.



5.4 A Haskell 98 Parser

As a second test we have implemented a (nearly) complete Haskell parser, sim-
ply by deriving polytypic parser instances for the Haskell syntax specified as
a collection of algebraic data types. These data types were obtained by a di-
rect conversion of the Haskell syntax specification as given in section 9.5 of the
Haskell 98 Report [2]. Again, we have compared the results for Generic Haskell
and Clean for both the Maybe and the continuation passing combinators. We
also optimized the generic code and compared the performance of all different
versions. The results are shown in Table 4. The parsers were run on an example
input consisting of approximately 500 again manually tokenized lines of Haskell
code, 2637 tokens

An optimization that replaces update-frames with indirections was added
to the Clean run-time system, reducing both heap and stack usage enough too
complete the tests on a 1.5Ghz 512MB Windows PC.

GH+GHC (s)|Clean (s)|Fusion+GHC (s)|Fusion+Clean (s)
Naybe|  20.6 17.6 0.03 2.30
CPS 182 15.2 1.12 5.40

Table 4. Performance figures for the derived and optimized Haskell 98 parser, using
both Maybe and continuation bases parsers.

These execution times are quite revealing. We can conclude that Generic
Haskell as well as Clean generate extremely inefficient polytypic code. It is doubt-
ful whether these polytypic language extensions are really useful for building
serious applications. However, the optimization tool changes this completely, at
least for Haskell. The performance gain for the Maybe-parsers is even a factor of
700. This test indicates once more that the continuation passing parsers are less
efficient. It is strange to see that for Haskell the difference is much bigger than
for Clean: a factor of 35 and 2, respectively. We do not have an explanation for
the factor of 75 between GHC and Clean for the optimized Maybe-parsers.

We have also compared the efficiency of the optimized parsers with a Haskell
parser generated with the Happy tool [13]. This parser is included in the libraries
of the GHC Haskell compiler we used. The result is surprising: its execution time
is exactly the same as our Fusion+GHC Maybe-parser! To get more significant
results we ran both with 100 times the input (50, 000 lines of Haskell code, using
a 4MB heap). Our parser is five percent faster, but does not have a lexer or
decent error messages. Nonetheless, we believe that this shows that fusion is
really needed and that fusion works for polytypic parsers.



6 Related Work

Parsers are standard examples for polytypic programming (see Jansson and Jeur-
ing [4], Hinze [14]). However, the common definition gives a parser that can only
recognize expressions that can be defined in the corresponding programming lan-
guage itself. This is very natural because the type definitions in a programming
language can be regarded as a kind of grammar defining legal expressions in the
corresponding programming language. We have shown that this also works for
any context-free grammar.

It has also been shown how a parser for another language can be constructed
from a grammar description. Atanassow, Clarke, and Jeuring [15] construct
parsers for XML from the corresponding DTD description. To the best of our
knowledge this paper is the first that describes the use of algebraic data type
definitions as a grammar for deriving polytypic parsers for arbitrary languages.

There exist other (lazy, functional) parser generator tools and combinator
libraries [13, 16,9-11], which may generate better parsers than our approach, due
to grammar analysis or handwritten optimizations. What makes our approach
appealing, is that the tool used to generate the parser is part of the language.
This removes the need to keep your syntax tree data structures synchronized
with an external tool: one can do it within the polytypic functional language,
and efficiently too, using extended fusion.

7 Conclusions

With this paper we have illustrated that polytypic programming techniques, as
offered by the Generic Haskell preprocessor and the Clean compiler, can effec-
tively be used for compiler construction. Additionally, we hope to have illustrated
that the technique is interesting for programming in general.

Polytypic functions are type driven, it is therefore important to know what
can be expressed in a type. In this paper we have shown that context-free gram-
mars can be encoded in a straightforward way using algebraic data types. We
have defined a polytypic parser using a types—as—grammar approach. Using such
a polytypic definition, a parser for an arbitrary context-free language can be
derived automatically. The polytypic function is defined in terms of parser com-
binators, and one can easily switch from one library to another.

Moreover, we have shown how other convenient polytypic post-parsing oper-
ations on the resulting rich syntax tree can be defined, even if not all syntax tree
operations gain much from the polytypic programming style. It gives you the
flexibility of moving data types within larger type structures, mostly by adding
polytypic instances without having to change (much of) the existing code.

Finally, we have shown that optimizations that remove the polytypic over-
head are really necessary to make polytypic programs usable. Currently, poly-
typic programming, in either Generic Haskell or Clean, may be suitable for toy
examples and rapid prototyping but the derived code is definitely not efficient
enough for larger programs. Using the extended fusion optimization technique,



the parser’s efficiency came close to a parser generated by Happy. We believe
that fusion makes polytypic programming for real-world applications possible.
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