
The Implementation of iData

A Case Study in Generic Programming

Rinus Plasmeijer and Peter Achten

Software Technology, Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen {rinus, P.Achten}@cs.ru.nl

Abstract. The iData Toolkit is a toolkit that allows programmers to
create interactive, type-safe, dynamic web applications with state on a
high level of abstraction. The key element of this toolkit is the iData ele-
ment. An iData element is a form that is generated automatically from a
type definition and that can be plugged in in the web page of a web ap-
plication. In this paper we show how this automatic generation of forms
has been implemented. The technique relies essentially on generic pro-
gramming. It has resulted in a concise and flexible implementation. The
kernel of the implementation can be reused for any graphical package.
The iData Toolkit is an excellent demonstration of the expressive power
of modern generic (poly-typical) programming techniques.

1 Introduction

In this paper we present the implementation of the iData Toolkit, which is a novel
toolkit to program forms in dynamic server-side web applications. The low level
view, and standard definition, of a form is that of a collection of (primitive)
interactive elements, such as text input fields, check boxes, radio buttons, pull
down menus, that provide the application user with a means to exchange struc-
tured information with the web application. Seen from this point of view, and if
programmed that way, creating forms results in a lot of low level HTML coding.
A high level view of forms is to think of them as being editors of structured val-
ues of appropriate type. From the type, the low level realization can be derived
automatically. This can be done once by the toolkit developer. Seen from that
point of view, and if programmed that way, creating forms is all about creating
data types. This results in a lot less code plumbing and no HTML-coding at all.

In the iData Toolkit project, we have adopted the high level view of forms
described above. We call these high level forms iData. An iData has two major
components: (i) a state, or value, which type is determined by the programmer,
and (ii) a form, or rendering, which is derived automatically by the toolkit from
the state and its type. The programmer manipulates the iData in terms of the
state and its type, whereas the user manipulates the iData in terms of a low-
level form. Clearly, the iData Toolkit needs to mediate between these two worlds:
every possible type domain must be mapped to forms, and every user action on
these forms must be mapped back to the original type domain, with a possibly
different value. This is the challenge that is addressed in this paper.

An approach as sketched above can be implemented in any programming lan-
guage with good support for data types and type-driven programming. Modern
functional programming languages such as Clean [22, 2] and Haskell [19] come
with highly expressive type systems. One example of type-driven programming
is generic programming [12, 13, 1], which has been incorporated in Clean and
GenericH∀skell [16]. In this paper we use Clean. We assume the reader is familiar
with functional and generic programming.

Generic programming has proven productive in the iData Toolkit by providing
us with concise and flexible solutions for many of the chores of web programming.
In this paper we focus on its crucial contribution to solving the main challenge in
the context of the iData Toolkit: the automatic creation of forms from arbitrary
data types, and the automatic creation of the correct data type and value from
a user-manipulated form. The key idea is that each iData is fully responsible for
keeping track of its rendering, its state recovery, and correctly handling user-
edit operations. They, and only they, can do this because they have all type
information that is necessary for these operations.

It should be observed that although we give a few examples, this paper is
about the implementation of the iData Toolkit. Due to limitations of space, we
cannot explain the programming method. This is presented elsewhere [20, 21].
We have used the iData Toolkit to create realistic real world applications, such
as a web shop. These demonstrate that this technique can be used in practice.

This paper is structured as follows. We first introduce the concept and im-
plementation challenges of iData (Sect. 2). Then we present the concrete imple-
mentation of iData (Sect. 3). After this, we discuss the achieved results (Sect.
4). We present related work (Sect. 5) and conclude (Sect. 6).

2 The concept of iData

In this section we explain the main concepts of the iData Toolkit by means
of a few key toy examples (Sect. 2.2–2.6). They illustrate the implementation
challenges that need to be solved. These are summarized in Sect. 2.7. Please
notice that although the code of these examples has a static flavor, each of these
examples are complete interactive web applications. We first present the major
design decisions in Sect. 2.1.

2.1 Major Design Decisions

The key idea of an iData Toolkit program is that it is a function that computes
an HTML page that contains a set of interconnected iData elements. An iData
element is a self contained interactive element that is in charge of its state. The
state can be any programmer defined data type. The iData Toolkit is constructed
in such a way that the state of an iData element is always a valid instance of
the type. Type constraints on the input are not always sufficient: individual
iData elements can impose additional constraints on the values of their state
that can not be expressed with types, or they are interconnected and need to

modify their state as a consequence of the modification of another iData change.
For this reason, every complete1 user manipulation of an iData element requires
a response of that element and the iData elements that are connected with it.
Currently, this has been implemented by enforcing a round trip between browser
and server.

The code of an iData Toolkit application is a single function that is evalu-
ated every time a client web browser requires a web page from this application.
Initially, no previous states are available to the application, and the iData el-
ements are activated with their initial values. During subsequent requests, the
web browser provides the states of all iData elements and detailed information
about which iData element has been modified by the user. The implementation of
the toolkit uses this information to recover previous unaltered states, and create
a valid altered new state. This is hidden completely from the programmer. He
can reason about the program as a collection of interconnected iData elements,
one of which has a modified state value.

Generic programming has been crucial to implement the core functionality
of the iData Toolkit: rendering state in terms of low-level forms, recovering pre-
vious states, and incorporating arbitrary user modifications in states. Generic
programming has also been used for tasks that could have been done with more
traditional means: (de-)serialization of states, and printing HTML. A key advan-
tage of generic programming is that one has a default application for free for
any type. If this generic solution is not appropriate, the programmer (or toolkit
developer) can use specialization to replace the default solution with a more
suitable solution. Specialization can be done for individual iData elements, but
also for complete types. With specialization, the iData Toolkit can be extended
with elements that have more logic at the client side, for instance for specialized
text input parsers.

The number and types of iData elements in an HTML page that is generated
by an iData Toolkit application depends on the values of the states of its iData
elements. During evaluation of the application, these iData elements are activated
and need to recover their previous, or altered, state from this collection of states.
This requires an identification mechanism that is able to associate typed iData
elements with serialized states. Exceptional cases are the absence of such a state
(initial occurrence of an iData element), or that the serialized state is of incorrect
type (page originated from a different application). The problem is reminiscent
of manipulating typed content that comes from files. Currently, this has been
implemented pragmatically: iData elements are identified with text labels. The
state of an iData element can be recovered successfully if it is present in the set
of previous states and can be converted successfully to a value of its type. In
every other case, the iData element obtains the initialization value with which
it is associated in the program code. This makes the approach robust. We are
well aware that this is a deficient solution, particularly considering the strongly
typed discipline that we advocate with the iData Toolkit.

1 In a text box this is the completion of the input, either by changing the input focus
or - for single line edit boxes - pressing the enter key.

The code below shows the standard overhead of every iData Toolkit program:

module IFL2005Examples

import StdEnv , StdHtml 1.

Start :: *World→ *World 2.

Start world = doHtml example world 3.

The proper library modules need to be imported (line 1). Lines 2–3 declare
the main function of every Clean program. The uniqueness attribute * just in
front of World guarantees that values of this type are always used in a sin-
gle threaded manner. Clean uses uniqueness typing [5, 6] to allow destructive
updates and side-effects. The opaque type World represents the entire exter-
nal environment of the program. The iData program is given by the function
example :: *HSt→ (Html ,*HSt). The wrapper function doHtml turns this func-
tion into a common Clean program. It initializes the HSt value with all serialized
values that can be found in the HTML page, and includes the World as well. This
implies that every iData Toolkit application has full access to the external world,
and can, for instance, connect to databases and so on. Below, we only show the
example functions, and skip the standard overhead.

2.2 iData Have Form

The first example demonstrates the fact that iData elements are type driven. It
creates a simple Int editor (Fig. 1(a)).

example :: *HSt→ (Html ,*HSt) 1.

example hst 2.

] (nrF ,hst) = mkEdit (nIDataId "nr") 1 hst 3.

= mkHtml "Int editor" [H1 [] "Int editor" , BodyTag nrF.form] hst 4.

Fig. 1. Key toy examples: (a) a simple integer iData, (b) summing the value of iData,
(c) sharing iData, and (d) model-view separation of iData.

Passing multiple environments around explicitly is supported syntactically in
Clean by means of]-definitions. These are non-recursive let-definitions, which
scope extends to the bottom, but not the right-hand side. This is the standard
approach in Clean. Even though the examples in this paper do not exploit the
flexibility of multiple environment passing (by for instance connnecting to a
database system), we present them in this style.

Key features of the iData Toolkit that are illustrated in this small example
are the activation of an iData element, nrF, from an initial value and its type,
1::Int. It is identified throughout the program with the value (nDataId "nr") ::
IDataId. This is done with the function mkEdit (line 3). This iData element has a
rendering in terms of a form, nrF.form (r.f denotes the selection of field f from
record r). The rendering is a text edit box in which only integer denotations can
be entered. In general, a user can only enter input that is type-safe.

The definition of the web page, given by the function mkHtml :: String

[BodyTag] *HSt→ (Html ,*HSt), is cleanly separated from the definition of the
iData elements. The [BodyTag] argument represents the page content. The alge-
braic type BodyTag is discussed in more detail in Sect. 3.5. In these examples, we
use its data constructor H1 which represents the <h1></h1> HTML tag, and its
data constructor BodyTag which turns a list of BodyTags into a single BodyTag.

2.3 iData Have Value

In this example we show that iData not only have a form rendering, but also a
value in terms of the type that generated them.

example hst 1.

] (nrFs ,hst) = seqList [mkEdit (sumId nr) nr \\ nr← [1..5]] hst 2.

= mkHtml "Numbers" [H1 [] "Numbers" , sumtable nrFs] hst 3.

sumtable nrFs = STable [] ([nrF.form \\ nrF← nrFs] 4.

++ 5.

[[toHtml (sum [nrF.value \\ nrF← nrFs])]]) 6.

sumId i = nDataId ("sum"<$i) 7.

Fig. 1(b) shows the result of the above code. Five iData elements are activated:
nrFs :: [IData Int] (line 2). The function sumtable (lines 4-6) places their forms
in a column, underneath of which the sum of their values is displayed. Whenever
the user alters one of the iData elements, the new sum is calculated and displayed
at the bottom of the iData elements. The reason that this statically looking
program has interactive behaviour, is that the behaviour is delegated to each of
the iData elements that are activated. This is why we prefer to speak of activation
of iData.

The value of an iData is given by the .value field of that iData. The library
function toHtml uses the generic form rendering function to render values of
arbitrary type into HTML. The overloaded operator <$ appends a String version
of its second argument to its first argument.

2.4 iData Have Sharing

iData elements with the same identification value refer to the same iData element.
A first advantage of this scheme is that iData serve as storages of arbitrary types.
Hence, we do not need to introduce a separate concept for storing data. A second
advantage is that both the value and rendering of iData can be used arbitrarily
many times in a HTML page without causing ambiguity problems. We illustrate
the latter by replicating the column of integer iData and their sum in the example
below (see Fig. 1(c)):

example hst

] (nrFs ,hst) = seqList [mkEdit (sumId nr) nr \\ nr← [1..5]] hst

= mkHtml "Numbers"

[H1 [] "Numbers" , STable [] [[sumtable nrFs] , [sumtable nrFs]]] hst

Editing any of the iData elements also automatically affects the other iData in
the same row. The sum is displayed twice, at the bottom of both columns.

2.5 iData Have Model-View Separation

In this example we demonstrate that the type of an iData can be uncoupled
from its rendering. The rendering can be derived instead from a different data
type, provided that the programmer defines the mapping between these two
data types. In this way, the type of the iData serves as its model, whereas the
rendered data type serves as its view. In Sect. 3.1, we explain the mapping
and its implementation in detail. Here, we assume the existence of a function,
counterIData, that has an Int model type, but a (Counter Int) view type, where
Counter is defined as a synonym type :: Counter a :== (a ,Button ,Button).

counterIData :: IDataId Int *HSt→ (IData Int ,*HSt)

If we replace mkEdit in example 2.3, line 2, with counterIData then we obtain a
program that displays five counters instead of five integer editors (see Fig. 1(d)).
The counters are self contained. The counter iData ensures that its integer value
is incremented/decremented at every corresponding button press. Still, it has an
integer interface to the programmer, so the remainder of the program does not
change. Self contained iData are fully compositional.

2.6 iData Have Specialization

In this example we show that iData can be specialized, just as generic functions
can. Suppose we like the counters in Sect. 2.5 much better than the default
integer editors that were used in Sect. 2.2 and 2.3. We need to specialize the
generic HTML rendering function gForm for the Int type. This is done by:

gForm{|Int|} iDataId i hst = specialize asCounter iDataId i hst 1.

where asCounter :: IDataId Int *HSt→ (IData Int ,*HSt) 2.

asCounter iDataId i hst 3.

] (counterF ,hst) = counterIData iDataId i hst 4.

= ({ changed = counterF.changed 5.

, value = fst3 counterF.value 6.

, form = counterF.form } , hst) 7.

fst3 (x ,_ ,_) = x // Clean standard library function

Function asCounter (lines 2-7) defines the specialization using counterIData (this
function is also defined via the specialization mechanism). Also, asCounter is a
good example of showing the flexibility of iData programming.

The library function

specialize :: (IDataId a *HSt→ (IData a ,*HSt))
IDataId a *HSt→ (IData a ,*HSt) | gUpd{|?|} a

is able to ‘plug in’ the specialization function into any arbitrary other iData
structure. Given this specialization of Int values, in any place where an iData
of an Integer value is needed, a counter iData will be made. In such a setting,
the programs 2.2, 2.3, and 2.4 now display self contained counters that behave
as expected instead of plain integer editors, without any change in the code of
these examples.

2.7 Implementation Challenges

The examples given in this section show that an implementation of the iData
Toolkit has to be able to perform the following tasks in a strongly typed program-
ming language context: (i) map values of arbitrary types to forms, (ii) map edit
operations in forms to new values of the given types, (iii) handle iData elements
as elements with shared value and shared rendering, (iv) handle model-view
separation correctly, and (v) handle specialization correctly. The key idea to
solve these challenges is by delegating this functionality to each iData element.
The implementation is discussed in the next section.

3 The Implementation of iData

In this section we present the implementation of iData. This is based on a single,
pivotal function, mkIData which applies a number of generic functions to handle
the challenges (i) upto (v) that were mentioned in Sect. 2.7. Because of its com-
plexity, we split up its discussion. In Sect. 3.1 we focus on mkIData, its arguments
and results, and the way that it incorporates the model-view separation (iv).
In Sect. 3.2 we explain the architecture of the HSt environment, in which all
iData values are stored (iii). In Sect. 3.3 we discuss all rendering issues of iData.
Rendering must be done in such a way that forms are generated from types (i),
and that user edit operations are correctly mapped back to values of the source
type (ii). In Sect. 3.4 we show how specialization (v) uses the framework to nest
arbitrarily many iData elements inside each other. Finally, we briefly touch on
the issue of emitting proper HTML code in the toolkit in Sect. 3.5.

3.1 The Pivotal mkIData Function

The iData Toolkit revolves around a single concept, that of an iData. The toolkit
has exactly one function to create iData, mkIData with type signature:

mkIData :: IDataId m (IBimap m v) *HSt→ (IData m ,*HSt)
| gForm{|?|} , gUpd{|?|} , gPrint{|?|} , gParse{|?|} v

This function is applied to four arguments.
The first argument is of type IDataId. Values of this type unambiguously

identify an iData element. The programmer (carefully) chooses String identifiers,
which is a typical way of identifying forms in web applications. It is the task of
the programmer to use unambiguous names in such a way that every use of
(mkIData id) refers to the same iData element of some type m. IDataId values
are created with one of the functions {n,s,p}[d]IDataId :: String→IDataId. The
programmer also controls the life span and edit mode of iData elements with
IDataId values.

:: IDataId = { id::String , lifespan::LifeSpan , mode::Mode }
:: LifeSpan = Page | Session | Persistent

:: Mode = Edit | Display

The life span of an iData element is determined by {n,s,p}: its value is remem-
bered as long as its page is being viewed (n), is stored persistently during a
session (s), or independently of sessions (p). By default, values can be edited in
the browser. If they should be displayed only, then any of the {n,s,p}dIDataId
functions can be used.

The second argument of mkIData is the initial value of the iData element. It
is used only when no iData element with given IDataId exists. This happens for
instance when the page is viewed for the first time.

The third argument of mkIData defines the model-view abstraction that has
been presented in example 2.5. This allows the application to work with iData
that have state values of type m, but that are visualized by means of values of
type v. This is a variant of the well-known model(-controller)-view paradigm
[15]. What is special about it in this context, is that views are also defined by
means of a data type, and hence can be handled generically in exactly the same
way! This is clearly expressed in the type signature of mkIData, which states that
the generic machinery must be available for the view model v.

The relation between a model m and its view v is given by the following
collection of functions of type IBimap m v:

:: IBimap m v = { toView :: m→ Maybe v→ v

, updView :: Bool→ v→ v

, fromView :: Bool→ v→ m

, resetView :: Maybe (v→ v) }
Model values are transformed to views with toView. It can use the previous view
value if available. The self contained behavior of an iData element is given by
updView. Its first argument records if it has been changed by the user. The same
argument is passed to the function fromView which transforms view values back

to model values. Finally, resetView is an optional separate normalization after
the local behavior function updView has been applied.

The function nextModelView computes a new model-view pair with these func-
tions in the following way:

nextModelView :: (IBimap m v) m (Maybe v) Bool→ (m ,v)
nextModelView ibm init_m maybe_v changed

] v = ibm.toView init_m maybe_v

] v = ibm.updView changed v

] m = ibm.fromView changed v

] v = case ibm.resetView of Nothing = v

Just reset = reset v

= (m ,v)

This explains how the self contained counters in example 2.5 can be constructed.
They use the updView function to correctly set their integer value.

The fourth, and final, argument of mkIData is the HSt environment that is
used to store all iData values in. This environment is discussed thoroughly in
Sect. 3.2. Here, we assume that we have the following access functions available
on HSt environment values:

findIDataValue:: IDataId *HSt→ (Bool ,Maybe a ,*HSt) | gParse{|?|} , gUpd{|?|} a

replaceState :: IDataId a *HSt→ *HSt | gPrint{|?|} a

resetCount :: *HSt→ *HSt

The function findIDataValue locates the stored state of the identified iData el-
ement. The boolean result indicates whether this value has been edited by the
application user. It uses the generic functions gParse and gUpd for deserializa-
tion purposes and updating values that may have been altered by the user. New
iData values are stored in the HSt environment with the function replaceState.
Because these values are serialized, they require the generic function gPrint. Fi-
nally, resetCount makes sure that the internal counting mechanism of the HSt

environment is reset to zero. The reason for this is also explained in Sect. 3.2.
When applied to the arguments described above, mkIData activates the indi-

cated iData element. As a result, it returns a modified HSt environment, and an
(IData m) record value. This record holds the form rendering of the iData ele-
ment, its value, as has been discussed in examples 2.2 and 2.3, and the boolean
that states iff the iData element has been altered.

:: IData m = { form:: [BodyTag] , value::m , changed::Bool }
We can now explain what mkIData does with model values of type m and view

values of type v. We walk through its implementation:

mkIData :: IDataId m (IBimap m v) *HSt→ (IData m ,*HSt)
| gForm{|?|} , gUpd{|?|} , gPrint{|?|} , gParse{|?|} v

mkIData iDataId init_m ibm hst = nextIData (findIDataValue iDataId hst) 1.

where nextIData (changed ,maybe_v ,hst)
] (m ,v) = nextModelView ibm init_m maybe_v changed 2.

] (iData_v ,hst) = gForm{|?|} iDataId v (resetCount hst) 3.

| iData_v.changed && not changed 4.

= nextIData (True ,Just iData_v.value ,hst) 5.

| otherwise

] hst = replaceState iDataId iData_v.value hst 6.

] iData_m = {changed=changed ,value=m ,form=iData_v.form} 7.

= (iData_m ,resetCount hSt)

First the possibly modified value of the given iData element is retrieved (line 1),
using the HSt access function findIDataValue that was introduced above. This is
a view value, and hence has type v. From this value, new model and view values
need to be computed (line 2). Next, the view value is rendered (line 3), using
the generic rendering function gForm (Sect. 3.3). As we have seen in example 2.6,
gForm can be specialized. With specialization, the programmer nests iData inside
each other. It may be the case that one of these nested iData has been altered
by the user. Due to recursion, its altered value shows up at this level. If this
occurs (condition on line 4 holds), then mkIData should proceed with the altered
value (line 5). In the end, the value of the resulting view iData is stored in the
HSt environment (line 6). The final iData has as value the new model value that
was computed by nextModelView, but as rendering the view rendering (line 7).

The function mkIData is a powerful tool to create model-view abstractions
with. Frequently occurring patterns of this function have been captured with
wrapper functions. Consider the mkEdit function that we have used in examples
2.2 and 2.3. It can be used as a ‘store’ in Display mode, or as a straight editor
in Edit mode.

mkEdit :: IDataId m *HSt→ (IData m ,*HSt)
| gForm{|?|} , gUpd{|?|} , gPrint{|?|} , gParse{|?|} m

mkEdit iDataId=:{mode} m hst

= mkIData iDataId m

{ toView = λnew old→ case old of (Just v) → v ; _→ new

, updView = case mode of Edit→ λ_ v→ v ; Display→ λ_ _→ m

, fromView = λ_ v→ v

, resetView = Nothing } hst

3.2 The Implementation of HSt

The HSt environment keeps track of the serialized states of active iData elements
in an iData Toolkit application. These states are either stored locally in the HTML
page of the web application (in case of {n,s}[d]IDataId values) or reside on disk
on the server side (in case of p[d]IDataId values). In addition, it holds a global
counter to generate position values in the generic representation of state values.

:: *HSt = { cntr::InputId , states::*IDataStates , world::*World }
:: InputId :== Int

IDataStates stores the serialized states of iData elements, together with their
IDataId value, and if they have been changed by the user. IDataStates is basically
an association list with a look-up function lookupState and update function
replaceState (replaceState was also encountered in Sect. 3.1).

lookupState :: IDataId *HSt→ (Bool ,Maybe a ,*HSt) | gParse{|?|} a

replaceState :: IDataId a *HSt→ *HSt | gPrint{|?|} a

These require the World environment in case of persistent forms. The generic
functions gParse and gPrint are used for (de)serialization purposes.

In addition to the serialized states of iData, the *HSt environment also keeps
track of the user modifications by storing what has been changed into which new
value. This information can be retrieved by the function

getUserEdit :: *HSt→ ((Maybe a ,Maybe b) ,*HSt) | gParse{|?|} a & gParse{|?|} b

The type of getUserEdit reveals that we are dealing with serialized values. The
first result is what has been changed, and the second result is its new value. For
the identification purpose an identification triplet is used. Its first element is the
identification string of the iData element. For convenience, it can be retrieved
separately as well with

getIDataName :: *HSt→ (String ,*HSt)

The second element of the triplet is the value that has been changed. Generically
speaking, this can only be a basic value (alternatives UpdI upto UpdS) or a data
constructor (the name of which is stored in the UpdC alternative).

:: UpdValue = UpdI Int | UpdR Real | UpdB Bool | UpdS String | UpdC String

Of course, also the new value can be encoded in this way. The third element is
the position of the generic element in the generic representation. Because the
generic representation is a tree structure, this position can be obtained with a
straightforward numbering scheme. This information is sufficient to determine
for any iData element whether it has been changed, and, if so, which generic com-
ponent has been changed into what new value. This case analysis is performed
by decodeInput:

:: FormUpdate :== (InputId ,UpdValue)

decodeInput :: IDataId *HSt→ (Maybe FormUpdate , (Bool ,Maybe a ,*HSt))
| gParse{|?|} a

decodeInput iDataId hst

] (name ,hst) = getIDataName hst

| name == iDataId.id

= case getUserEdit hst of
((Just (sid ,pos ,UpdI i) ,newi) ,hst) // case distinction on Int

= let ni = case newi of (Just ni) → ni ; _→ i

in (Just (pos ,UpdI ni) ,lookupState {iDataId & id=sid} hst)
(_ ,hst) = . . . // case distinction on other basic types

| otherwise

= (Nothing , lookupState iDataId hst)

This function checks whether the iData element that is identified by IDataId has
been edited. If so, its exact location in the generic representation is returned (of
type FormUpdate), as well as its current value (the result of using lookupState).
It should be noted that lookupState may fail to parse the input (e.g. the user

entered 42.0 instead of 42 for an integer form). In that case, parsing fails, and
the previous (correct) value is restored. This makes the system type safe.

In the previous section the pivotal function mkIData used the function

findIDataValue:: IDataId *HSt→ (Bool ,Maybe m ,*HSt) | gParse{|?|} , gUpd{|?|} m

that was able to retrieve the possibly modified value of an iData identified by
the IDataId argument. Before we can explain its definition, we need to delve
into the generic function gUpd that is able to repair any value of type a to a
new modified value of the same type a. It must be a generic function because
it needs to traverse the generic data representation of the old value in order to
locate the generic element that has been changed. This location is passed to the
application in the identification value.

generic gUpd a :: UpdMode a→ (UpdMode ,a)

:: UpdMode = UpdSearch UpdValue InputId | UpdCreate [ConsPos] | UpdDone

The UpdMode type represents the two passes gUpd goes through: (UpdSearch newv

cnt) represents the search for the generic element at location cnt with new value
newv, and (UpdCreate path) represents the creation of new values for a selected
data constructor that can be found at path (:: ConsPos= ConsLeft | ConsRight).

We illustrate the working of gUpd for basic types with the case for integers
(the other cases for basic types are analogous):

gUpd{|Int|} (UpdSearch (UpdI new) 0) _ = (UpdDone ,new) 1.

gUpd{|Int|} (UpdSearch val cnt) i = (UpdSearch val (cnt-1) ,i) 2.

gUpd{|Int|} (UpdCreate l) _ = (UpdCreate l,0) 3.

gUpd{|Int|} mode i = (mode ,i) 4.

An existing value is replaced with new somewhere in a generic value at position
cnt if cnt = 0, otherwise it is not changed and the position is decreased (lines 1
and 2). The default value for new integers is 0 (line 3).

The remaining code of gUpd proceeds polytypically except for OBJECTs. The
generic constructor OBJECT marks the occurrence of a type constructor. It has
access to all data constructors of that type. In this case its new value is deter-
mined by the name of the selected data constructor (cname). At that point, gUpd
switches from searching mode into creation mode, in order to create arguments
of the data constructor. The route to the desired data constructor is returned
by getConsPath :: GenericConsDescriptor→ [ConsPos] .

gUpd{|OBJECT of desc|} gUpd_obj (UpdSearch (UpdC cname) 0) (OBJECT obj)
] (mode ,obj) = gUpd_obj (UpdCreate path) obj

= (UpdDone ,OBJECT obj)
where path = getConsPath (hd [cons \\ cons← desc.gtd_conses

| cons.gcd_name == cname]

We now have gathered all the building blocks to explain the behavior of
findIDataValue. As we have stated in the introduction, the key idea to the iData
Toolkit is to delegate state handling to every individual iData element. Every
manipulation in a web page that changes the current value of a form triggers

the execution of the Clean application on the server side. The application, and
hence every iData element, has to figure out why it has been launched. There
can be only three reasons: 1. The iData has no previous state. This is the case
for instance for all iData when a page is created for the first time. The iData
should be initialized. 2. The iData has a previous state, but it was not edited.
This is the case when another iData has been edited. The iData should recover
its previous state. 3. The iData was edited. The application user has altered the
iData. The iData should calculate its new state, given the update information and
the recovered previous state. This case analysis is performed by findIDataValue

(the numbers to the right coincide with the above cases):

findIDataValue :: IDataId *HSt→ (Bool ,Maybe m ,*HSt) | gUpd{|?|} , gParse{|?|} m

findIDataValue iDataId hst

= case decodeInput iDataId hst of
(Just (cnt ,newv) ,(changed ,Just m ,hst)) 3.

] m = i f changed (snd (gUpd{|?|} (UpdSearch newv cnt) m)) m

= (True , Just m , hst)
(_ , (_ ,Just m ,hst)) 2.

= (False , Just m , hst)
(_ , (_ ,_ ,hst)) 1.

= (False , Nothing ,hst)

It uses decodeInput to deserialize the input data that has been passed to the
web application and look for the iData element with the given identification. The
reason of activating the iData element can then be determined straightforwardly.

3.3 Rendering iData

The final part of the implementation of the iData Toolkit is the rendering of
iData elements into forms in such a way that forms are generated for any type,
and that user manipulations can be traced back to a modified value of the same
type. The key idea to realize this relationship is by associating the identification
triplet (Sect. 3.2) with each element along the generic representation, and make
it send the new value in case of a user action. The generic function gForm creates
this form rendering of an iData element with a model value of type m:

generic gForm m :: IDataId m *HSt→ (IData m ,*HSt)

The basic types are handled in the same way, using the function mkInput and the
union type Value:

gForm{|Int|} iDataId i hst

] (form ,hst) = mkInput iDataId (IV i) (UpdI i) hst

= ({changed=False ,value=i ,form=[form]} ,hst)

:: Value = IV Int | RV Real | BV Bool | SV String | NQV String

The code of mkInput is given below. As mentioned earlier, we have used a types-
as-grammar approach to specify HTML. Readers that are familiar with HTML,
may be able to deduce the HTML output that is printed systematically from
these algebraic data types (Sect. 3.5). We discuss the interesting parts.

mkInput :: IDataId Value UpdValue *HSt→ (BodyTag ,*HSt)
mkInput iDataId val updval hst=:{cntr} 1.

= (Input [Inp_Type Inp_Text , Inp_Value val , Inp_Size defsize 2.

: case mode of 3.

Edit = [Inp_Name identification_triplet 4.

, ‘Inp_Std [EditBoxStyle] 5.

, ‘Inp_Events [OnChange callClean]] 6.

Display = [Inp_ReadOnly ReadOnly 7.

, ‘Inp_Std [DisplayBoxStyle]]] "" 8.

, {hst & cntr=cntr+1}) 9.

where identification_triplet = encodeInfo (iDataId.id ,cntr ,updval) 10.

Basic forms in Display mode are read-only, and show this to the user (lines 7-8).
When Edited, the web application on the server side needs to resurrected, and
provided with the proper information. A script is called that sends all serialized
states, the identification triplet (line 4 and 10), and the new value of the edited
element back to the server, causing the application to be started with the new
data (Sect. 3.2).

For the generic constructors (UNIT, PAIR, EITHER, OBJECT, and CONS) gForm pro-
ceeds polytypically. UNIT values are displayed as EmptyBody. (PAIR a b) values are
placed below each other. (EITHER a b) values proceed recursively and display ei-
ther their left or right value. (OBJECT o) values proceed recursively. The form
that corresponds with (CONS c) values requires more HTML programming be-
cause it deals with the selection of data constructors. It generates a pull down
menu which entries correspond with all data constructors. In Edit mode, the
user can select one of these data constructors. Changes are handled in the same
way as with basic types, except that the selected constructor name is passed as
argument. All in all, gForm’s implementation requires 150 loc.

Finally, gForm has been specialized for several standard form elements. We
do not discuss their implementation. They are similar to the above Int instance.

3.4 Handling specialization

In example 2.6, we have shown that programmers can specialize the iData Toolkit
in the same way as generic functions using the function specialize.

specialize :: (IDataId a *HSt→ (IData a ,*HSt))
IDataId a *HSt→ (IData a ,*HSt) | gUpd{|?|} a

specialize f iDataId v hst=:{cntr}
] newIDataId = {iDataId & id = iDataId.id<@"_"<@cntr} 1.

] (vF ,hst) = f newIDataId v (resetCount hst) 2.

] (UpdSearch _ c) = fst (gUpd{|?|} (UpdSearch (UpdI 0) -1) v) 3.

= (vF ,setCount (cntr - (c+1)) hst) 4.

It is the task of this function to embed the iData result of its argument function
inside the generic representation of an arbitrary data structure. What it does is
to create a new iData element that has a new IDataId identification value (line
1), and in which position counting starts afresh at zero (line 2). The proper
new count can be derived by creatively using the functionality of gUpd: having

it search for an integer value at position -1 always fails, but it does return the
size of the generic representation of the newly created iData (line 3). This size c

is used to calculate the next legal position value (line 4).

3.5 Handling HTML

We have used a types-as-grammar approach to capture the official HTML gram-
mar with a family of algebraic data types. We have encountered them in the
above sections. The algebraic type BodyTag represents the collection of HTML
tags from anchors (A) to variables (Var), and includes a few data constructors
that allow flexible HTML generation:

:: BodyTag = A [A_Attr] [BodyTag] | . . . | Var [Std_Attr] String

| STable [Table_Attr] [[BodyTag]] | BodyTag [BodyTag] | EmptyBody

One generic function, gHpr, has been written that generates proper HTML code
from values of these types. Generic programming is not strictly necessary for
this purpose. It does provide us with a concise generic function that can display
any HTML code. Its core definition is only 27 loc. Printing of 73 types can be
derived. Specialization is required for a few types, which adds 170 loc.

4 Discussion

In the previous section we have presented the implementation of the iData
Toolkit. The implementation relies essentially on generic programming: the func-
tions gForm and gUpd are able to manipulate values of arbitrary types in a type-
safe way. The generic descriptions of these functions are small: 150 loc for gForm,
and 80 loc for gUpd. We can provide specializations of these functions without
changing the core definition. This greatly enhances their flexibility.

For serialization and deserialization we have used folklore generic printing
and parsing functions that come with the standard generic Clean distribution.
These generic functions are not essential for the iData Toolkit. Currently we are
investigating whether we can use Clean dynamics for this purpose. They have as
advantage that they can handle higher-order data types as well. However, their
use and implementation is very delicate when compared with the robustness of
their string based generic counterparts. The types-as-grammar approach of han-
dling HTML is also very suited for generic programming. Again, it is not essential,
but it has proven to provide us with concise code that is easily maintainable.

Finally, the architecture of the iData Toolkit allows us to target any arbitrary
GUI library without much code modification. This is due to the fact that only
state information and the change information, both in serialized form, is required
by an iData Toolkit application in order to resurrect its next state and rendering.

5 Related Work

iData components are form abstractions. A pioneer project to experiment with
form-based services is Mawl [4]. The <bigwig> project [8] uses Powerforms [7].

Both projects provide templates which, roughly speaking, are HTML pages with
holes in which scalar data as well as lists can be plugged in (Mawl), but also other
templates (<bigwig>). Powerforms reside on the client-side of a web application.
The type system is used to filter out illegal user input. They advocate compile-
time systems, just as we do, because this allows one to use type systems and
other static analysis. The main differences are that in our approach all first
order user types are admissible in iData, that iData are automatically derived
from these types, and that we can use the expressiveness of the host language
to obtain higher-order forms/pages.

Continuations are a natural means to structure interactive web applications.
This has been done by Hughes [14], using his Arrow framework; Queinnec [23],
who takes the position that continuations are at the essence of web browsers;
Graunke et al [10], who have explored continuations as (one of three) functional
compilation technique(s) to transform sequential interactive programs to CGI
programs. Our approach is simpler because for every page we have a complete
(set of) model value(s) that can be stored and retrieved generically in a page.
An application is resurrected by recovering its previous state, merging the user
modification, if any, and computing the proper next state that is re-rendered.

Many authors have worked on creating and manipulating HTML (XML) pages
in a strongly typed setting. Early work is by Wallace and Runciman [26] on XML
transformers in Haskell. The Haskell CGI library by Meijer [17] frees the program-
mer from dealing with CGI printing and parsing. Hanus uses similar types [11]
in Curry. Thiemann constructs typed encodings of HTML in extended Haskell
in an increasing level of precision for valid documents [24, 25]. XML transform-
ing programs with GenericH∀skell has been investigated in UUXML [3]. Elsman
and Larsen [9] have worked on typed representations of XML in ML [18]. Our
types-as-grammar approach eliminates all syntactically incorrect programs, but
we have not put effort in eradicating all semantically incorrect programs. Our
research interest is in the automatic creation of forms from type specifications,
and less in the definition of the HTML pages in which they reside.

6 Conclusions

This paper focusses on the implementation of the iData Toolkit. We have not
been able to show how realistic, interconnected, real world applications are con-
structed with the toolkit. We have made a number of large applications, one of
which is a web shop that uses many interconnected iData elements in a dynamic
way, using server side data storage. Even these kind of applications can be made
in the same declarative style as shown by the key toy examples in this paper.

Creating the iData Toolkit is truly a challenge because it boils down to im-
plementing a multi-purpose unit, the iData, that automatically takes care of
initialization, state recovery and update, abstraction, and rendering. Generic
programming brings down the complexity significantly. It also provides us with
an open-ended implementation: without modifications to the core implementa-
tion, program developers can specialize the toolkit to their own preferences and

needs per application. Although the iData Toolkit was designed for web applica-
tions, its architecture can be targeted at any graphical user interface platform
without significant changes. This is a major improvement to our previous work
on desktop applications. The implementation is concise, elegant, and efficient.
In all, the results of this project show that the iData Toolkit is an excellent case
study in the appropriateness of generic programming.

Acknowledgements

Jan Kuper coined the name iData for our editor components. Pieter Koopman
provided input for the gUpd function. Paul de Mast kindly provided us with a web
server application written in Clean which has allowed us to readily test the iData
Toolkit. Javier Pomer Tendillo, as an Erasmus guest, has been helpful in setting
up the toolkit, and find out the nitty-gritty details of HTML programming.
Finally, we thank the anonymous referees.

References

1. A. Alimarine. Generic Functional Programming - Conceptual Design, Implemen-
tation and Applications. PhD thesis, University of Nijmegen, The Netherlands,
2005. ISBN 3-540-67658-9.

2. A. Alimarine and R. Plasmeijer. A Generic Programming Extension for Clean.
In T. Arts and M. Mohnen, editors, The 13th International workshop on the Im-
plementation of Functional Languages, IFL’01, Selected Papers, volume 2312 of
LNCS, pages 168–186. Älvsjö, Sweden, Springer, Sept. 2002.

3. F. Atanassow, D. Clarke, and J. Jeuring. UUXML: A Type-Preserving XML
Schema-Haskell Data Binding. In International Symposium on Practical Aspects of
Declarative Languages (PADL’04), volume 3057 of LNCS, pages 71–85. Springer-
Verlag, June 2004.

4. D. Atkins, T. Ball, M. Benedikt, G. Bruns, K. Cox, P. Mataga, and K. Rehor.
Experience with a Domain Specific Language for Form-based Services. In Usenix
Conference on Domain Specific Languages, Oct. 1997.

5. E. Barendsen and S. Smetsers. Uniqueness typing for functional languages with
graph rewriting semantics. In Mathematical Structures in Computer Science, vol-
ume 6, pages 579–612, 1996.

6. E. Barendsen and S. Smetsers. Graph Rewriting Aspects of Functional Program-
ming, chapter 2, pages 63–102. World scientific, 1999.

7. C. Brabrand, A. Møller, M. Ricky, and M. Schwartzbach. Powerforms: Declarative
client-side form field validation. World Wide Web Journal, 3(4):205–314, 2000.

8. C. Brabrand, A. Møller, and M. Schwartzbach. The <bigwig> Project. In ACM
Transactions on Internet Technology (TOIT), 2002.

9. M. Elsman and K. F. Larsen. Typing XHTML Web applications in ML. In In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’04),
volume 3057 of LNCS, pages 224–238. Springer-Verlag, June 2004.

10. P. Graunke, S. Krishnamurthi, R. Bruce Findler, and M. Felleisen. Automatically
Restructuring Programs for the Web. In M. Feather and M. Goedicke, editors, Pro-
ceedings 16th IEEE International Conference on Automated Software Engineering
(ASE’01). IEEE CS Press, Sept. 2001.

11. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pages 76–92. Springer LNCS 1990, 2001.

12. R. Hinze. A new approach to generic functional programming. In The 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 119–132. Boston, Massachusetts, January 2000.

13. R. Hinze and S. Peyton Jones. Derivable Type Classes. In G. Hutton, editor, 2000
ACM SIGPLAN Haskell Workshop, volume 41(1) of ENTCS. Montreal, Canada,
Elsevier Science, 2001.

14. J. Hughes. Generalising Monads to Arrows. Science of Computer Programming,
37:67–111, May 2000.

15. G. Krasner and S. Pope. A cookbook for using the Model-View-Controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming,
1(3):26–49, August 1988.

16. A. Löh, D. Clarke, and J. Jeuring. Dependency-style Generic Haskell. In Pro-
ceedings of the eighth ACM SIGPLAN International Conference on Functional
Programming (ICFP’03), pages 141–152. ACM Press, 2003.

17. E. Meijer. Server Side Web Scripting in Haskell. Journal of Functional Program-
ming, 10(1):1–18, 2000.

18. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

19. S. Peyton Jones and Hughes J. et al. Report on the programming language Haskell
98. University of Yale, 1999. http://www.haskell.org/definition/.

20. R. Plasmeijer and P. Achten. Generic Editors for the World Wide Web. In Central-
European Functional Programming School, Eötvös Loránd University, Budapest,
Hungary, Jul 4-16 2005.

21. R. Plasmeijer and P. Achten. iData For The World Wide Web - Programming
Interconnected Web Forms. In Proceedings Eighth International Symposium on
Functional and Logic Programming (FLOPS 2006), volume 3945 of LNCS, Fuji
Susono, Japan, Apr 24-26 2006. Springer Verlag.

22. R. Plasmeijer and M. van Eekelen. Concurrent CLEAN Language Report (version
2.0), December 2001. http://www.cs.ru.nl/∼clean/.

23. C. Queinnec. The influence of browsers on evaluators or, continuations to pro-
gram web servers. In Proceedings Fifth International Conference on Functional
Programming (ICFP’00), Sept. 2000.

24. P. Thiemann. WASH/CGI: Server-side Web Scripting with Sessions and Typed,
Compositional Forms. In S. Krishnamurthi and C. Ramakrishnan, editors, Prac-
tical Aspects of Declarative Languages: 4th International Symposium, PADL 2002,
volume 2257 of LNCS, pages 192–208, Portland, OR, USA, January 19-20 2002.
Springer-Verlag.

25. P. Thiemann. A Typed Representation for HTML and XML Documents in Haskell.
Journal of Functional Programming, 2005. Under consideration for publication.

26. M. Wallace and C. Runciman. Haskell and XML: Generic combinators or type-
based translation? In Proc. of the Fourth ACM SIGPLAN Intnl. Conference
on Functional Programming (ICFP‘99), volume 34–9, pages 148–159, N.Y., 1999.
ACM.

