
Towards A Unified Semantic Model For Interactive
Applications Using Arrows And Generic Editors

Peter Achten1, Marko van Eekelen2, and Rinus Plasmeijer1

{1Software Technology,2Security of Systems} Nijmegen Institute for Computing and
Information Sciences, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen,

Netherlands
P.Achten@cs.ru.nl marko@cs.ru.nl rinus@cs.ru.nl

Abstract

In slightly less than two decades Graphical User Interfaces (GUI) have become stan-
dard in presenting the user a pleasant and intuitive interface to software applications.
Two major paradigms have contributed to this success: the desktop GUI for widget
based programming on a single computer, and the World Wide Web for web applica-
tions with a multitude of client computers. Applications that are created within these
paradigms are constructed in entirely different ways. Desktop applications can use
the vast platform dependentAPI, or rely on platform independent toolkits. Web appli-
cations are confined within web browsers, but they can stretch these limits by relying
on a wide variety of scripting languages. This has resulted in ‘typical’ desktop and
web applications. However, one can observe thetrend that desktop and web appli-
cations are taking over each others functionality: former desktop GUI applications
now also offerback/forward buttons,hyperlinksfrom web applications, and web ap-
plications use multiple windows/dialogues, disallowbrowser window cloning, and
so on. Hence, the clear separation between desktop and web applications is blurring.
This implies that in order to reason rigidly about interactive applications in general,
we need a semantic model that is capable of handling these two, formerly separated,
paradigms. In this paper we present a first step towards such a framework. This work
is based on our earlier work on theiData andGEC toolkits.

1 INTRODUCTION

In slightly less than two decades Graphical User Interfaces (GUI) have become
standard in presenting the user a pleasant and intuitive interface to software appli-
cations. Two major paradigms have contributed to this success: the desktop GUI
for widget based programming on a single computer, and the World Wide Web for
web applications with a multitude of client computers. At a cursory glance, these
two paradigms are closely related as they use the same Windows, Icons, Menus
and Pointing device (WIMP) interface style. However, they are completely differ-
ent. Semantically speaking, desktop GUI applications are essentially a state-based
iterative event-handling process (callback semantics), whereas web applications
are essentially a stateless, single-step procedure. Desktop applications can use the
vast platform dependentAPIs that are available, or rely on platform independent li-
braries, such aswxWidgets. Web applications are confined within web browsers,
but they can stretch these limits by relying on a wide variety of scripting languages.

Until recently, one could immediately tell whether an application was a desktop
or a web application. However, we can observe thetrend that desktop and web ap-
plications are taking over each others functionality: formerly ‘pure’ desktop GUI
applications now also offerback/forward buttons, andhyperlinksfrom the web in-
terface, whereas formerly ‘pure’ web applications are using multiple windows and
dialogues, and disallowbrowser window cloning. Hence, the clear-cut separation
between desktop and web applications is blurring. This implies that in order to
reason rigidly about interactive applications in general, we need a semantic model
that is capable of handling these two, formerly separated, paradigms. In this paper
we present a first step to aunified semantic modelfor interactive applications.

The unified semantic model that we propose needs to strike a balance between
abstraction and practicality. We obtain an abstract semantic model by postponing
reasoning about GUI aspects such as the exact set of interactive elements and their
layout and look and feel. This can be done by adopting the concept ofgeneric
editor that has been used in our earlier work on desktop GUI applications on the
one hand, theGEC Toolkit [1, 2, 3, 4], and web applications on the other hand, the
iData Toolkit [15, 16, 17]. In these toolkits interactive elements are modelled by
means of data types and functions. This allows us to concentrate on the data that
is maintained by the interactive elements of an application. We obtain a practical
semantic model by building it onArrows [12, 14]. WithArrows we get a disci-
plined way of modelling the information flow between interactive elements, and
still handle arbitrarily complex computations.

As an example of an application within this semantic model, Fig. 1 displays
the key fragment of a money-converting application. Functionc0 introduces two
interactive elements, labelled witheuroId andpoundId , that are mutually intercon-
nected in such a way that if either of them is altered by the user, that the other
element responds with the amount of money expressed in the local currency. This
is not altogether obvious when considering the mutual dependency of this simple
program. We prove this property using the unified semantic model (Sect. 5).

Contributions presented in this paper are:

• We present a uniform semantic framework that captures the essence of desk-
top and web GUI applications.

• We demonstrate that the framework is practical: real desktop and web appli-
cations can be created with it.

• We demonstrate that the framework is accurate: we can reason thoroughly
about the framework and applications that are created with it.

The layout of this paper is as follows. We first present the major design decisions
that our unified framework needs to satisfy in Sect. 2. We define the unified seman-
tic model in Sect. 3 and present a number of its properties in Sect. 4. We illustrate
the use of the model by means of a case study in Sect. 5. We present related work
in Sect. 6, and conclusions in Sect. 7.

:: Pounds = { pounds :: Real }
:: Euros = { euros :: Real }

c0 :: A Euros Pounds
c0 = feedback (edit euroId >>> arr toPound)

(edit poundId >>> arr toEuro)
where

toPound { euros } = { pounds = euros * exchangerateEuroPound }
toEuro { pounds } = { euros = pounds * exchangeratePoundEuro }
euroId = ...
poundId = ...

FIGURE 1. The iData money converter program.

2 DESIGN RATIONALE

The unified semantic model has been inspired mainly by our earlier work on the
GEC Toolkit and iData Toolkit. The model consists of two levels: at the bottom
level we have the main building blocks, the interactive elements, also known asob-
jects. These objects represent the interactive elements of an interactive application.
At the second level, we haveprogramsthat create collections of objects and inter-
connect them: the state of objects can depend on the state of other objects. Briefly,
we have made the following design decisions for the unified semantic model:

• Objects correspond with primitive interactive elements such as text input
boxes, buttons, scroll bars, and so on but also with arbitrary compositions of
interactive elements. In this paper we abstract from all issues related with
interactive elements, such as their number, layout, and so on. Instead, we
will modelthem by a (composite) data type, that represents the state of the
object. From our earlier work on theGEC Toolkit and iData Toolkit, we
know that we can generate arbitrarily complex user interfaces from values
with generic programming techniques.

• User manipulations of objects are modelled asediting operationson the state
of these objects. This provides us with an object style semantics, in which
user actions update the state of an existing object rather than creating a new
object (a functional style semantics).

• Objects can besharedwithin our model. Shared objects have multiple oc-
currences within an interactive application, but they share the same state.
Sharing of objects turns out to provide us with concise and intuitive ways of
handling feedback (Sect. 3).

• Programs create and interconnect objects. The expressive power of functions
provides programmers with a great deal of freedom to manipulate and create
intricate interfaces. For the unified semantic model, we will not yet tackle
functional expressions in general. Currently, we restrict ourselves to the
Arrow framework. TheArrow framework imposes a typed discipline on top
of the untyped unified semantic model.

3 THE UNIFIED SEMANTIC MODEL

In this section we present the unified semantic model. We express the semantic
model inClean. This has the following advantages:

• It helps us to detect and remove shallow errors in the semantic definition as
we can rely on the language compiler to detect these mistakes at compile
time.

• We cantestthe semantic model with concrete examples by defining a mean-
ing function that can actually compute the output of an interactive program,
given a scenario.

• We can use theproof toolSparkle [7] to guide us in constructing a complete
proof of the desired properties. We intend to do this in a similar style as done
in [8]. At this stage we have not yet completed the proofs, but already the
use ofSparkle has proven productive in structuring the semantic definitions.

The main disadvantage of this approach is that the semantics needs to deal with
collections of elements of arbitrary types. In order to escape typing problems, we
have chosen to use a flat type to represent types with:

:: STATE = INT !Int | REAL !Real | TUPLE !STATE !STATE

This does not cause loss of generality of the results, but it does require extra atten-
tion by ourselves to make sure that no intentional type errors are introduced that
would otherwise be intercepted by the type checker.

The structure of the semantic model is as follows. We first present the arrows
in which programs are to be represented (Sect. 3.1). Based on these arrows, we
first construct a rather straightforward functional interpretation semantics of these
arrows (Sect. 3.2). This interpretation is a natural semantics of pure server side
web applications. Next, we construct a more complex, object oriented, semantics
of these arrows (Sect. 3.3). This semantics fits closely to desktop applications.
Finally, we demonstrate that these two semantics are equivalent in the traditional
functional sense (Sect. 3.4).

3.1 Programs as Arrows

We start with a representation of arrows in which programs will be constructed.

:: A = Arr ! (STATE→STATE)
| (>>>>) inf ixr 1 !A !A
| First !A
| Loop !A
| Edit !UID

The first four data constructors correspond with the standard arrow combinator
functionsarr , >>>, first , and loop . TheEdit data constructor is specific for
interactive applications: it should create an interactive element that presents to the
user a state and that can be edited by the user. We arrangesharingof these editors
by tagging them with values of typeUID:

:: UID : == Int.

Whenever the same integer is used, the corresponding editors are shared. We as-
sume that theUID parameter of anEdit data constructor is a positive integer, and
that the intended types of editors with the sameUID value are equal.

As an example, the program in Fig.1 is represented as:

c0 = feedback (Edit euroId >>>> Arr toPound)
(Edit poundId >>>> Arr toEuro)

where euroId = 1
poundId = 2
toPound (REAL euros) = REAL (euros * exchangerateEuroPound)
toEuro (REAL pounds) = REAL (pounds * exchangeratePoundEuro)

Within the semantic model, the need arises to generateUID values itself. In
order to prevent clashes with the values from the programs, these will always be
negative. TheseUID values are generated with the trivial functions:

initFreshUID :: UID
initFreshUID = -1

nextFreshUID :: !UID →UID
nextFreshUID uid = uid-1

Both web and desktop applications need to maintain state that persists between
distinct web page creations and handling of events. For web applications this can be
done by serializing the required states in the web page, and for desktop applications
this is usually done by storing the states within the interactive elements themselves.
In any case, the semantic model needs to have these states. In the model, the
collection of states is modelled by means of a straightforward association set:

:: ASet k v = ASet ! [AElt k v]
:: AElt k v = AElt !k !v

key :: ! (AElt k v) → k
val :: ! (AElt k v) → v

instance zero (ASet k v)
instance == (ASet k v) | == k

isEmptyASet :: ! (ASet k v) →Bool
isMemberAElt :: !k ! (ASet k v) →Bool | == k
findAElt :: !k ! (ASet k v) →AElt k v | == k
replaceAElt :: ! (AElt k v) ! (ASet k v) →ASet k v | == k
replaceOrAddAElt:: ! (AElt k v) ! (ASet k v) →ASet k v | == k

The definitions of these access functions are such that a set never contains two
elements with the same key value.

Within an arrow program, events can be created for only the editors that are
defined by theEdit data constructor. Because we consider interactive elements to
be editors of values of their state, an event can be modelled by a pair of theUID

value of the editor, and a new value for itsSTATE:

:: Event : == (!UID , !STATE)

Obviously, we assume that the intended type of the state is equal to the actual type
of the state of the indicated editor.

Finally, given a program that is represented by an arrow expression of typeA,
we can extract the initial states of this program:

arrowSTATES :: !A !STATE → (!STATE,!ASet UID STATE)
arrowSTATES f a = (b ,inits)
where (b ,inits ,_) = arrowSTATES ‘ f (a ,zero ,initFreshUID)

arrowSTATES ‘ :: !A ! (!STATE,!ASet UID STATE ,!UID)
→ (!STATE,!ASet UID STATE ,!UID)

arrowSTATES ‘ (Arr f) (a ,states ,uid)
] states = replaceOrAddAElt (AElt uid (f a)) states
= (f a ,states ,nextFreshUID uid)

arrowSTATES ‘ (f>>>>g) (a ,states ,uid)
= ((arrowSTATES ‘ g) o (arrowSTATES ‘ f)) (a ,states ,uid)

arrowSTATES ‘ (First f) (v=: (TUPLE a c) ,states ,uid)
] states = replaceOrAddAElt (AElt uid v) states
] (b ,states ,uid_1) = arrowSTATES ‘ f (a ,states ,nextFreshUID uid)
= (TUPLE b c,states ,uid_1)

arrowSTATES ‘ (Loop f) (b ,states ,uid)
] states = replaceOrAddAElt (AElt uid b) states
] (TUPLE c d,states ,uid_1)

= arrowSTATES ‘ f
(TUPLE b undef ,states ,nextFreshUID uid)

= (c ,states ,uid_1)
arrowSTATES ‘ (Edit id) (a ,states ,uid)

= (a ,replaceOrAddAElt (AElt id a) states ,uid)

3.2 Interpretation Semantics

In this section we present a more or less straightforward interpretation semantics
for arrow expressions of typeA that have been introduced in Sect. 3.1. This seman-
tics is well suited to capture the nature of pure web server based applications. The
interpretation is a state based functional version:

:: CircF e a b : == (CircSt e a) → (CircSt e b)
:: CircSt e a : == (a ,e)

(>>>) inf ixr 1 :: (CircF e a b) (CircF e b c) → (CircF e a c)
(>>>) f g = g o f

The environment that these functions will manipulate consists of the states of
the objects, as discussed above, as well as the current event that is inspected:

:: Env : == (!ASet UID STATE , !Maybe Event)

Initially, the (Maybe Event) component is set to (Just e) for an evente. It is set to
Nothing by the concrete object for which the event was intended (see interpretation
of object below). For each of the components of the arrow program, we define a
functional interpretation:

arrowFunctional :: !A →CircF Env (Maybe STATE) (Maybe STATE)

Please note that one might expect (CircF Env STATE STATE) as the type of func-
tionals. However, this presumes that values are always sent through the complete
program. This is in general not the case for interactive programs. Any of the
interactive elements that are ‘in front’ of the interactive element that has been ma-
nipulated should not be changed. For this reason, when handling an event, the
system starts with aNothing value.

Here is the functional interpretation of an arrow program:

arrowFunctional :: !A →CircF Env (Maybe STATE) (Maybe STATE)
arrowFunctional (Arr f) = arr_W f
arrowFunctional (f >>>> g) = arrowFunctional f >>>arrowFunctional g
arrowFunctional (First f) = first_W (arrowFunctional f)
arrowFunctional (Loop f) = loop_W (arrowFunctional f)
arrowFunctional (Edit uid) = object (uid ,const id)

The functionsarr_W , first_W , andloop_W are the standard functional definitions,
but need to handle these awkwardSTATEvalues instead of straight values and tuples:

arr_W :: ! (STATE→STATE) →CircF Env (Maybe STATE) (Maybe STATE)
arr_W fun

= λ(ma,env) → case ma of
Just a → (Just (fun a) ,env)
nothing → (Nothing ,env)

first_W :: ! (CircF Env (Maybe STATE) (Maybe STATE))
→CircF Env (Maybe STATE) (Maybe STATE)

first_W f

= λ(m_ac,env) → casem_ac of
Just (TUPLE a c) → le t (mb,env ‘) = f (Just a ,env)

in (Just (TUPLE (fromJust mb) c) ,env ‘)
nothing → (Nothing ,env)

loop_W :: ! (CircF Env (Maybe STATE) (Maybe STATE))
→CircF Env (Maybe STATE) (Maybe STATE)

loop_W f = loop ‘ f
where

loop ‘ f (mb,env)
= case mb of

Just b → le t (mt ,env_1) = f (Just (TUPLE b d) ,env)
(c ,d) = toTuple (fromJust mt)

in (Just c ,env_1)
nothing → (Nothing ,env)

Of more interest is the functional interpretation of theEdit alternative.

:: F : == (ASet UID STATE) STATE→STATE

object :: ! (!UID ,!F) ! (!Maybe STATE,! (!ASet UID STATE ,Maybe Event))
→ (!Maybe STATE,! (!ASet UID STATE ,Maybe Event))

object (uid ,f) (ma, (states ,event))
= case (ma,event) of

(_ ,Just (id ,v))
| uid ==id = le t b = f states v

in (Just b , (replaceAElt (AElt uid v) states ,Nothing))
(Just a ,Nothing)= le t b = f states a

in (Just b , (replaceAElt (AElt uid a) states ,Nothing))
otherwise = (Nothing , (states ,event))

This definition shows that the object to which an event is directed (first alternative
of the case distinction), takes over the value of the event and updates its state in
the environment. In addition, it signals the fact that it has handled the event by
setting the event toNothing . The new value that should be propagated through the
program depends on this new value. The second case states that whenever such a
value has been set, that the interactive elements that depend on this value use this
value. Finally, the third case states that elements that occur before the modified
element are not affected.

The meaning of a functional style program is to apply the functional interpre-
tation to each and every event that is directed to the program. Of course, first
the program needs to be initialized. This is expressed by the following, general,
meaning function:

meaning :: ! (A (!Event ,!Env) → (!STATE,!Env))
!A !STATE ! [Event] → (! [STATE] ,!Env)

meaning mf f a es = ([b:bs] ,env)
where (b ,states) = arrowSTATES f a

(bs ,env) = mapSt (mf f) (es , (states ,Nothing))

A functional style interpretation therefore has the following meaning:

meaning_W :: (A STATE [Event] → (! [STATE] ,!Env))
meaning_W = meaning handle_event_W

handle_event_W :: !A ! (!Event ,!Env) → (!STATE,!Env)
handle_event_W f (e , (states ,_))

= le t (mb,env_1) = arrowFunctional f (Nothing , (states ,Just e))
in (fromJust mb ,env_1)

3.3 Object Semantics

In this section we present an object based semantics of arrow expressions of type
A. It turns out that this is a much more complicated semantic model than the func-
tional interpretation semantics as given above in Sect. 3.2. This semantics is well
suited for desktop GUI applications that distributes the interactive behavior over a
collection of persistent widgets with state and callback functions.

It is useful break up the concept of a widget with state and callback functions
into its state and its callback functions. The environmentEnv already contains all
states of all elements, so what remains are the callback functions. The key idea is
to present programs of typeA in a different way, namely as the sequence of callback
functions that they would call in case of occurring events. We call this awiring:

:: Wiring : == [Wire]
:: Wire : == (!UID , !F)

Every program of typeA can be transformed into a linearized form of typeWiring :

arrowWiring :: !A →Wiring
arrowWiring f = fst (arrowWiring ‘ f ([] , initFreshUID))
where

arrowWiring ‘ :: !A ! (!Wiring ,!UID) → (!Wiring ,!UID)
arrowWiring ‘ (Arr fun) (wiring ,uid)

= (appendWire (uid ,const fun) wiring ,nextFreshUID uid)
arrowWiring ‘ (f >>>> g) (wiring ,uid)

= ((arrowWiring ‘ g) o (arrowWiring ‘ f)) (wiring ,uid)
arrowWiring ‘ (First f) (wiring ,uid)

] wiring = appendWire (uid ,F_1) wiring
] (wiring ,uid_1) = arrowWiring ‘ f (wiring ,nextFreshUID uid)
] wiring = appendWire (uid ,F_2) wiring
= (wiring ,uid_1)

where
F_1 _ (TUPLE a c) = a
F_2 states b = le t (TUPLE a c) = val (findAElt uid states)

in TUPLE b c
arrowWiring ‘ (Loop f) (wiring ,uid)

] wiring = appendWire (uid ,F_1) wiring
] (wiring ,uid_1) = arrowWiring ‘ f (wiring ,nextFreshUID uid)
] wiring = appendWire (uid ,F_2) wiring
= (wiring ,uid_1)

where

F_1 _ b = TUPLE b undef
F_2 b (TUPLE c d) = c

arrowWiring ‘ (Edit eid) (wiring ,uid)
= (appendWire (eid ,const id) wiring ,uid)

appendWire :: !Wire !Wiring →Wiring
appendWire w wires = wires ++ [w]

This definition states that every element of an arrow is mapped to an object with
state and callback function. We only have objects in this semantics. For this reason,
the meaning of an object based semantics is to let the objects that can be derived
from an arrow based program of typeA (done byarrowWiring) handle each and
every event. For this we can reuse theobject function that we have already defined:

meaning_D :: (A STATE [Event] → (! [STATE] ,!Env))
meaning_D = meaning (handle_event_D o arrowWiring)

handle_event_from_start_D :: !Wiring ! (!Event ,!Env) → (!STATE,!Env)
handle_event_from_start_D wiring (event ,env)

] (mb,env) = foldl (flip object) (Nothing ,env) wiring
= (fromJust mb ,env)

3.4 Equivalence of Interpretation vs Object Semantics

In the above two sections, we have introduced two meanings of arrow programs of
typeA:

meaning_W :: (A STATE [Event] → (! [STATE] ,!Env))
meaning_W = meaning handle_event_W

meaning_D :: (A STATE [Event] → (! [STATE] ,!Env))
meaning_D = meaning (handle_event_D o arrowWiring)

We need to prove thatmeaning_W = meaning_D . As stated earlier, we want to do the
proof in the proof assistantSparkle. Unfortunately, at this stage we have not yet
finished the proof. The proof proceeds by case distinction on the structure ofA.

4 UNIFIED MODEL PROPERTIES

We define a number of semantic equivalence relations:

Definition 1 (Initial I/O Equivalence)
Two systems are said to beinitially I/O equivalentif for the initial event the corre-
sponding output is the same.

Definition 2 (Behavioural I/O Equivalence)
Two systems are said to bebehaviorally I/O equivalentif for each list of input
events the list of corresponding outputs is the same.

Definition 3 (Event Identical)
Two systems are said to beevent identicalw.r.t. to a set ofUntypedIdif for each
list of input events the collection of theObjects that correspond with the ids are
identical.

Definition 4 (Identical)
Two systems are said to beidenticalif the collection of theirObjects is identical up
to a global renaming of theiridself’s.

In the unified model it is straightforward to prove that the interpretation seman-
tics as given in Sect. 3.2 satisfies the usual collection ofArrow laws:

Definition 5 (Arrow Laws)

arr id >>> f = f = f >>> arr id
f >>> (g >>> h) = (f >>> g) >>> h

arr (f >>> g) = arr f >>> arr g
arr (g o f) = arr f >>> arr g

first (f >>> g) = first f >>> first g
first f >>> arr f st = arr f st >>> f

first (arr f) = arr (first f)
first f >>> arr (id×g) = arr (id×g) >>> first f

first (first f) >>> arr assoc = arr assoc>>> first f

loop (first h >>> f) = h >>> loop f
loop (f >>> first h) = loop f >>> h

loop (f >>> arr (id×k)) = loop (arr (id×k) >>> f)
loop (loop f) = loop (arr assoc−1 >>> f >>> arr assoc)

second(loop f) = loop (arr assoc>>> secondf >>> arr assoc−1)
loop (arr f) = arr (simpleloop f)

wheresimpleloop is the ‘stateless’ variant of ourloopcombinator:

simple loop :: ((b,d)→ (c,d)) →b→ c
simple loop f b= let (c,d) = f (b,d) in c

Proving theArrow laws for the object semantics directly is very hard. Even if this
can be done, then the result is weaker than that for the interpretative semantics, be-
cause the laws must necessarily bebehavioural I/O equivalenceinstead of equality
(because (Arr id >>>>f)) will always create one more state in the environment than
f by itself). However, using the equivalence result of Sect. 3.4 we need not go
through the trouble of proving theArrow laws directly.

Arrow-structured programs have the further property that every user manip-
ulation ends in a stable state of the application; i.e. events always arrive at the
sink element. This is an important property for both desktop GUI applications (the

program ‘freezes’ if this property does not hold) as well as web applications (no
new page is computed, causing the browser to fail). This depends solely on the
functions that are provided by the programmer when using thearr combinator.

5 CASE STUDY

In Sect. 1 we have presented a small money exchange program that has two intri-
cately mutually interconnected objects (Fig. 1). Consider the following variations
of this little program:

c0 = feedback (edit euroId >>> arr toPound)
(edit poundId >>> arr toEuro)

c1 = feedback (edit euroId)
(arr toPound >>>edit poundId >>>arr toEuro)

c2 = c0>>>arr toEuro
c3 = c1>>>arr toPound

For this program, it is reasonable to assumetoPound = toEuro −1. All programs are
event identical w.r.t.{euroId, poundId}. These are the objects that are visible to the
user, so from a user’s perception it does not matter which one to use. Programsc0
andc3 are identical, hence they are also initial I/O and behavioral I/O equivalent.
Programsc1 andc2 areArrow equivalent, hence also initial and behavioral I/O
equivalent.

We can use the framework to explain what happens if we drop the assump-
tion that the conversion functions are each others inverse, sotoPound 6= toEuro −1.
Editing the pound editor behaves as before, but every event (euroId,x) results in
displaying the value (toPound x) in thepoundIdobject, but also modifies the en-
tered value in theeuroIdobject into (toEuro (toPound x)).

6 RELATED WORK

This work is about providing a semantic framework that can handle both interactive
applications for the desktop as well as web applications, or even a mixture of these
systems. Due to the radically different nature of these two paradigms, such a se-
mantic framework needs to be sufficiently abstract without loosing the opportunity
to reason about the application logic.

In this project we have chosen to build the semantic model onArrows. The
advantage of using a functional style formalism is that integration of computation
can be done within the framework, using functions. Other projects, such asFruit
[6] and Fran [11] have taken this route as well. In these systemsArrows were
also necessary to eliminate subtle performance problems. In our case, we use them
chiefly to structure our programs in order to facilitate reasoning.

Another way of modelling interactive programs is to regard them as collec-
tions of communicating processes. From this point of view, it seems to be natural
to provide a model in terms of aprocess algebra. There is a wide variety of pro-
cess algebras available, such as CCS (Calculus of Communicating Systems) [13],

CSP (Communicating Sequential Processes) [10], ACP (Algebra of Communicat-
ing Processes) [5], andµCRL (micro Common Representation Language) [9]. Es-
pecially the latter might be interesting in this context because it augments ACP
with algebraic data types in a spirit that is very similar to functional programming.
In general, the fine grained control over concurrency that is usually provided by
process algebraic models is not necessary when dealing with interactive applica-
tions. It is our opinion that the dependency between interactive elements can be
dealt with more suitably in a functional style than an inherent concurrent style.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have identified the trend that interactive applications that are de-
veloped for either the desktop or the web tend to take over functionality that used
to be the exclusive domain of either paradigm. This implies that in order to rea-
son about interactive programs, we need a suitable model that can capture aspects
of both paradigms. In this paper we have presented a first step to such a unified
semantic model.

We have restricted ourselves deliberately to programs that are expressed in the
Arrow framework, because we expected that this would facilitate reasoning over
programs. In our experience with the two toolkits, it is very natural to write non-
Arrow programs that use the full expressiveness of the functional host language.
We want to investigate if reasoning in a much less restricted framework still allows
feasible reasoning.

REFERENCES

[1] P. Achten, M. van Eekelen, and R. Plasmeijer. Generic Graphical User Interfaces. In
G. Michaelson and P. Trinder, editors,Selected Papers of the 15th Int. Workshop on
the Implementation of Functional Languages, IFL03, volume 3145 ofLNCS. Edin-
burgh, UK, Springer, 2003.

[2] P. Achten, M. van Eekelen, and R. Plasmeijer. Compositional Model-Views with
Generic Graphical User Interfaces. InPractical Aspects of Declarative Program-
ming, PADL04, volume 3057 ofLNCS, pages 39–55. Springer, 2004.

[3] P. Achten, M. van Eekelen, R. Plasmeijer, and A. van Weelden. Automatic Genera-
tion of Editors for Higher-Order Data Structures. In Wei-Ngan Chin, editor,Second
ASIAN Symposium on Programming Languages and Systems (APLAS 2004), volume
3302 ofLNCS, pages 262–279. Springer, 2004.

[4] P. Achten, M. van Eekelen, R. Plasmeijer, and A. van Weelden. GEC: a toolkit for
Generic Rapid Prototyping of Type Safe Interactive Applications. In5th Interna-
tional Summer School on Advanced Functional Programming (AFP 2004), volume
3622 ofLNCS, pages 210–244. Springer, August 14-21 2004.

[5] J. Baeten and W. Weijland.Process Algebra, volume 18 ofCambridge Tracts. in
Theoretical Computer Science. Cambridge University Press, 1990.

[6] A. Courtney and C. Elliott. Genuinely Functional User Interfaces. InProceedings of
the 2001 Haskell Workshop, September 2001.

[7] M. de Mol, M. van Eekelen, and R. Plasmeijer. Theorem proving for functional pro-
grammers - Sparkle: A functional theorem prover. In T. Arts and M. Mohnen, editors,
The 13th International Workshop on Implementation of Functional Languages, IFL
2001, Selected Papers, volume 2312 ofLNCS, pages 55–72, Stockholm, Sweden,
2002. Springer.

[8] M. Dowse, A. Butterfield, and M. van Eekelen. Reasoning About Deterministic
Concurrent Functional I/O. In C. Grelck, F. Huch, G. Michaelson, and P. Trinder,
editors,Proceedings Implementation and Application of Functional Languages, 16th
International Workshop, IFL’04, volume 3474 ofLNCS, pages 469–480. Springer,
September 8-10 2004.

[9] J. Grootte and M. Reniers.Algebraic Process Verification, chapter 17, pages 1151–
1208. Elsevier Science B.V., 2001.

[10] C. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice-Hall International, 1985.

[11] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, Robots, and Functional
Reactive Programming. In J. Jeuring and S. Peyton Jones, editors,Advanced Func-
tional Programming, 4th International School, volume 2638 ofLNCS, Oxford, 2003.
Springer.

[12] J. Hughes. Generalising Monads to Arrows.Science of Computer Programming,
37:67–111, May 2000.

[13] R. Milner. A Calculus of Communicating Systems, volume 92 ofLNCS. Springer
Verlag, 1980.

[14] R. Paterson. A new notation for arrows. InInternational Conference on Functional
Programming, pages 229–240. ACM Press, Sept. 2001.

[15] R. Plasmeijer and P. Achten. Generic Editors for the World Wide Web. InCentral-
European Functional Programming School, Eötvös Loŕand University, Budapest,
Hungary, Jul 4-16 2005.

[16] R. Plasmeijer and P. Achten. The Implementation of iData - A Case Study in Generic
Programming. In A. Butterfield, editor,Proceedings Implementation and Applica-
tion of Functional Languages, 17th International Workshop, IFL05, Dublin, Ireland,
September 19-21 2005. Technical Report No: TCD-CS-2005-60.

[17] R. Plasmeijer and P. Achten. iData For The World Wide Web - Programming In-
terconnected Web Forms. InProceedings Eighth International Symposium on Func-
tional and Logic Programming (FLOPS 2006), volume 3945 ofLNCS, Fuji Susono,
Japan, Apr 24-26 2006. Springer Verlag.

