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Abstract. With generic functional programming techniques, we have
eased GUI programming by constructing a programming toolkit with
which one can create GUIs in an abstract and compositional way, us-
ing type-directed Graphical Editor Components (GECs). In this toolkit,
the programmer specifies a GUI by means of a data model instead of
low-level GUI programming. In earlier versions of this toolkit, the data
model must have a first-order type. In this paper we show that the pro-
gramming toolkit can be extended in two ways, such that the data model
can contain higher-order data structures. We added support for dynamic
polymorphic higher-order editors using the functional shell Esther. By
combining the earlier developed techniques of generic GECs, abstract ed-
itors, we also added statically typed higher-order editors. In principle this
solution extends our GUI programming toolkit with the full expressive
power of functional programming languages.

1 Introduction

In the last decade, Graphical User Interfaces (GUIs) have become the standard
for user interaction. Programming these interfaces can be done without much ef-
fort when the interface is rather static, and for many of these situations excellent
tools are available. However, when there is more dynamic interaction between
interface and application logic, such applications require tedious manual pro-
gramming in any programming language. Programmers need to be skilled in the
use of a large programming toolkit.

The goal of the Graphical Editor project is to obtain a concise programming
toolkit that is abstract, compositional, and type-directed. Abstraction is required
to reduce the size of the toolkit, compositionality reduces the effort of putting
together (or altering) GUI code, and type-directed automatic creation of GUIs
allows the programmer to focus on the data model. In contrast to visual pro-
gramming environments, programming toolkits can provide ultimate flexibility,
type safety, and dynamic behavior within a single framework. We use a pure
functional programming language (Clean [20]) because functional programming
languages have proven to be very suited for creating abstraction layers on top of
each other. Additionally, they have strong support for type definitions and type
safety.



Our programming toolkit utilizes the Graphical Editor Component (GEC) [6]
as universal building block for constructing GUIs. A GECt is a graphical editor
for values of any monomorphic first-order type t. This type-directed creation of
GECs has been obtained by generic programming techniques [8, 17, 16]. Generic
programming is extremely beneficial when applied to composite custom types.
With generic programming one defines a family of functions that depend on
the structure of types. Although one structural element is the function type
constructor (→), it is fundamentally impossible to define a generic function that
edits these higher-order values directly, because pure functional programs cannot
look inside functions without losing referential-transparency (for instance by
distinguishing λx→ x+1 from λx→ 1+x).

In this paper we extend the GEC toolkit in two ways, such that it can
construct higher-order value editors. The first extension uses run-time dynamic
typing [1, 19], which allows us to include them in the GEC toolkit, but this does
not allow type-directed GUI creation. It does, however, enable the toolkit to use
polymorphic higher-order functions and data structures. The second extension
uses compile-time static typing, in order to gain monomorphic higher-order type-
directed GUI creation of abstract types. It uses the abstraction mechanism of the
GEC toolkit [7].

Both extensions require a means of using functional expressions, entered by
the user, as functional values. Instead of writing our own parser/interpreter/type
inference system we use the functional Esther shell [22], which provides type
checking at the command line and can use compiled functions from disk. These
functions can have arbitrary size and complexity, and even interface with the
imperative world. Esther makes extensive use of dynamic types. Dynamic types
turn arbitrary (polymorphic, higher-order) data structures (for instance of type
[Int→ Int ] or (Tree a) → a) into a first-order data structure of type Dynamic

without losing the original type.
Contributions of this paper are:

– We provide type-safe expression editors, which are needed for higher-order
value editors.
We obtain, as a bonus, the ability to edit first-order values using expressions.
Another bonus: within these expressions one can use compiled functions from
disk, incorporating real world functionality.

– The programming toolkit can now create polymorphic dynamically typed,
and monomorphic statically typed, higher-order value editors.

– The programming toolkit is type-safe and type-directed.

This paper is structured as follows. Section 2 contains an overview of the
first-order GEC toolkit. In Sect. 3 we present the first extension, in which we
explain how Esther incorporates expressions as functional values using dynamic
types. We present in Sect. 4 the second extension, and explain how we obtain
higher-order type-directed GUI creation using the abstraction mechanism of the
GEC toolkit. Section 5 gives examples of the new system that illustrate its
expressive power. We discuss related work in Sect. 6 and conclude in Sect. 7.



Finally, a note on the implementation and the examples in this paper. The
project has been realized in Clean. Familiarity with Haskell [18] is assumed,
relevant differences between Haskell and Clean are explained in footnotes. The
GUI code is mapped to Object I/O [4], which is Clean’s library for GUIs. Given
sufficient support for dynamic types, the results of this project can be transferred
to Generic Haskell [12], using the Haskell [18] port of Object I/O [3]. The complete
code of all examples (including the complete GEC implementation in Clean) can
be downloaded from http://www.cs.kun.nl/∼clean/gec.

2 The GEC Programming Toolkit

With the GEC programming toolkit [6], one constructs GUI applications in a
compositional way using a high level of abstraction. The basic building block is
the Graphical Editor Component (GEC). It is generated by a generic function,
which makes the approach type-directed.

Before explaining GECs in more detail, we need to point out that Clean
uses an explicit multiple environment passing style [2] for I/O programming.
As GECs are integrated with Clean Object I/O, the I/O functions that are pre-
sented in this paper are state transition functions on the program state (PSt ps).
The program state represents the external world of an interactive program, tai-
lored for GUI operations. In this paper the identifier env is a value of this type.
The uniqueness type system [9] of Clean ensures single threaded use of the en-
vironment. To improve the readability, uniqueness type attributes that actually
appear in the type signatures are not shown. Furthermore, the code has been
slightly simplified, leaving out a few details that are irrelevant for this paper.

Graphical Editor Components A GECt is an editor for values of type t. It
is generated with a generic function [16, 8]. A generic function is a meta function
that works on a description of the structure of types. For any concrete type t,
the compiler is able to automatically derive an instance function of this generic
function for the type t. The power of a generic scheme is that we obtain an editor
for free for any monomorphic data type. This makes the approach particularly
suited for rapid prototyping.

The generic function gGEC creates GECs. It takes a definition (GECDef t env) of
a GECt and creates the GECt object in the environment. It returns an interface
(GECInterface t env) to that GECt object. The environment env is in this case
(PSt ps), since gGEC uses Object I/O.

generic1 gGEC t :: (GECDef t (PSt ps)) (PSt ps)
→ (GECInterface t (PSt ps) , PSt ps)2

The (GECDef t env) consists of three elements. The first is a string that iden-
tifies the top-level Object I/O element (window or dialog) in which the editor
1 generic f t :: T (t) introduces a generic function f with type scheme T (t). Keywords

are type-set in bold.
2 Clean separates function arguments by whitespace, instead of ->.



must be created. The second is the initial value of type t of the editor. The
third is a callback function of type t→ env→ env. This callback function tells
the editor which parts of the program need to be informed of user actions. The
editor uses this function to respond to changes to the value of the editor.

::3 GECDef t env :==4 (String ,t ,CallBackFunction t env)
:: CallBackFunction t env :== t→ env→ env

The (GECInterface t env) is a record that contains all methods of the newly
created GECt.

:: GECInterface t env = { gecGetValue :: env→ (t ,env)
, gecSetValue :: t→ env→ env }5

The gecGetValue method returns the current value, and gecSetValue sets the
current value of the associated GECt object. Programs can be constructed com-
bining editors by tying together the various gecSetValues and gecGetValues. We
are working on an arrow combinator library that abstracts from the necessary
plumbing [5]. For the examples in this paper, it is sufficient to use the following
tying function:

selfGEC :: String (t→ t) t (PSt ps) → (PSt ps) |6 gGEC{|?|} t

selfGEC s f v env = env1

where ({gecSetValue} ,env1) = gGEC{|?|} (s ,f v ,λx→ gecSetValue (f x)) env

Given an f of type t→ t on the data model of type t and an initial value
v of type t, selfGEC gui f v creates the associated GECt using gGEC (hence the
context restriction). selfGEC creates a feedback loop that sends every edited
output value back as an input to the same editor, after applying the function f.

Example 1: The standard appearance of a GEC is given by the following
program that creates an editor for a self-balancing binary tree:

module Editor

import StdEnv , StdIO , StdGEC

Start :: *World→ *World

Start world = startIO MDI Void myEditor world

myEditor :: (PSt ps) → (PSt ps)
myEditor = selfGEC "Tree" balance (Node Leaf 1 Leaf)

:: Tree a = Node (Tree a) a (Tree a) | Leaf

In this example, we create a GECTree Int which displays the indicated ini-
tial value Node Leaf 1 Leaf (upper screen shot). The user can manipulate this

3 Type definitions are preceded by ::.
4 :== introduces a synonym type.
5 {f0 :: t0, . . . , fn :: tn} denotes a record with field names fi and types ti.
6 In a function type, | introduces all overloading class restrictions.



value in any desired order, producing new values of type Tree Int (e.g., turning
the upper Leaf into a Node with the pull-down menu). Each time a new value
is created or edited, the feedback function balance is applied. balance takes a
argument of type Tree a and returns the tree after balancing it. The shape and
lay-out of the tree being displayed adjusts itself automatically. Default values
are generated by the editor when needed.

Note that the only things that need to be specified by the programmer are
the initial value of the desired type, and the feedback function. In all remaining
examples, we only modify myEditor and the type for which an instance of gGEC
is derived.

The tree example shows that a GECt explicitly reflects the structure of type
t. For the creation of GUI applications, we need to model both specific GUI ele-
ments (such as buttons) and layout control (such as horizontal, vertical layout).
This has been done by specializing gGEC [6] for a number of types that either rep-
resent GUI elements or layout. Here are the types and their gGEC specialization
that are used in the examples in this paper:

:: Display a = Display a // a non-editable GUI: e.g., .
:: Hide a = Hide a // an invisible GUI, useful for state.
:: UpDown = UpPressed | DownPressed | Neutral // a spin button: .

3 Dynamically Typed Higher-order GECs

In this section we show how to extend GECs with the ability to deal with
functions and expressions. Because functions are opaque, the solution requires
a means of interpreting functional expressions as functional values. Instead of
writing our own parser/interpreter/type inference system we use the Esther shell
[22] (Sect. 3.1).

Esther enables the user to enter expressions (using a subset of Clean) that are
dynamically typed, and transformed into values and functions using compiled
code. It is also possible to reuse earlier created functions, which are stored on
disk. Its implementation relies on the dynamic type system [1, 19, 23] of Clean.

The shell uses a text-based interface, and hence it makes sense to create a
special string-editor (Sect. 3.2), which converts any string into the corresponding
dynamically typed value. This special editor has the same power as the Esther
command interpreter and can deliver any dynamic value, including higher-order
polymorphic functions.

3.1 Dynamics in Clean

A dynamic is a value of static type Dynamic, which contains an expression as well
as a representation of its static type, e.g., dynamic 42 :: Int, dynamic map fst

:: ∀a b: [ (a , b) ] → [a ] . Basically, dynamic types turn every (first and higher-
order) data structure into a first-order structure, while providing run-time access
to the original type and value.



Function alternatives and case patterns can match on values of type Dynamic.
Such a pattern match consists of a value pattern and a type pattern, e.g., [4 , 2]

:: [Int ] . The compiler translates a pattern match on a type into a run-time
type unification. If the unification is successful, type variables in a type pattern
are bound to the offered type. Applying dynamics at run-time will be used to
create an editor that changes according to the type of entered expressions (Sect.
3.2, Example 2).

dynamicApply :: Dynamic Dynamic→ Dynamic

dynamicApply (f :: a→ b) (x :: a) = dynamic f x :: b

dynamicApply df dx = dynamic "Error" :: String

dynamicApply tests if the argument type of the function f, inside its first
argument, can be unified with the type of the value x, inside the second argument.
dynamicApply can safely apply f to x, if the type pattern match succeeds. It yields
a value of the type that is bound to the type variable b by unification, wrapped
in a dynamic. If the match fails, it yields a string in a dynamic.

Type variables in type patterns can also relate to type variables in the static
type of a function. A ^ behind a variable in a pattern associates it with the same
type variable in the static type of the function.

matchDynamic :: Dynamic→ t | TC t

matchDynamic (x :: t^) = x

The static type variable t, in the example above, is determined by the static
context in which it is used, and imposes a restriction on the actual type that is
accepted at run-time by matchDynamic. The function becomes overloaded in the
predefined TC (type code) class. This makes it a type dependent function [19].

The dynamic run-time system of Clean supports writing dynamics to disk and
reading them back again, possibly in another program or during another execu-
tion of the same program. This provides a means of type safe communication,
the ability to use compiled plug-ins in a type safe way, and a rudimentary basis
for mobile code. The dynamic is read in lazily after a successful run-time unifi-
cation. The amount of data and code that the dynamic linker links is, therefore,
determined by the evaluation of the value inside the dynamic.

writeDynamic :: String Dynamic env→ (Bool ,env) | FileSystem env

readDynamic :: String env→ (Bool ,Dynamic ,env) | FileSystem env

Programs, stored as dynamics, have Clean types and can be regarded as a
typed file system. We have shown that dynamicApply can be used to type check
any function application at run-time using the static types stored in dynamics.
Combining both in an interactive ‘read expression – apply dynamics – evaluate
and show result’ loop, already gives a simple shell that supports the type checked
run-time application of programs to documents. The composeDynamic function
below, taken from the Esther shell, applies dynamics and infers the type of an
expression.

composeDynamic :: String env→ (Dynamic ,env) | FileSystem env

showValueDynamic :: Dynamic→ String



composeDynamic expr env parses expr. Unbound identifiers in expr are resolved
by reading them from the file system. In addition, overloading is resolved. Using
the parse tree of expr and the resolved identifiers, the dynamicApply function
is used to construct the (functional) value v and its type τ . These are packed
in a dynamic v :: τ and returned by composeDynamic. In other words, if env `
expr :: τ and [[expr]]env = v then composeDynamic expr env = (v :: τ , env). The
showValueDynamic function yields a string representation of the value inside a
dynamic.

3.2 Creating a GEC for the type Dynamic

With the composeDynamic function, an editor for dynamics can easily be con-
structed. This function needs an appropriate environment to access the dynamic
values and functions (plug-ins) that are stored on disk. The standard (PSt ps)

environment used by the generic gGEC function (Sect. 2) is such an environment.
This means that we can simply use composeDynamic in a specialized editor to
offer the same functionality as the command line interpreter. Instead of Esther’s
console we use a String editor as interface to the application user. In addition we
need to convert the provided string into the corresponding dynamic. We there-
fore define a composite data type DynString and a specialized gGEC-editor for this
type (a GECDynString) that performs the required conversions.

:: DynString = DynStr Dynamic String

The choice of the composite data type is motivated mainly by simplicity
and convenience: the string can be used by the application user for typing in
the expression. It also stores the original user input, which cannot be extracted
from the dynamic when it contains a function.

Now we specialize gGEC for this type DynString. The complete definition of
gGEC{|DynString|} is given below.

gGEC{|DynString|} (gui ,DynStr _ expr ,dynStringUpdate) env

]7(stringGEC ,env) = gGEC{|?|} (gui ,expr ,stringUpdate dynStringUpdate) env

= ({ gecSetValue = dynSetValue stringGEC.gecSetValue

, gecGetValue = dynGetValue stringGEC.gecGetValue } ,env)
where dynSetValue stringSetValue (DynStr _ expr) env

= stringSetValue expr env

dynGetValue stringGetValue env

] (nexpr ,env) = stringGetValue env

] (ndyn , env) = composeDynamic nexpr env

= (DynStr ndyn nexpr ,env)
stringUpdate dynStringUpdate nexpr env

] (ndyn ,env) = composeDynamic nexpr env

= dynStringUpdate (DynStr ndyn nexpr) env

The created GECDynString displays a box for entering a string by calling
the standard generic gGEC{|?|} function for the value expr of type String, yield-
ing a stringGEC. The DynString-editor is completely defined in terms of this
7 This is Clean’s ‘do-notation’ for environment passing.



String-editor. It only has to take care of the conversions between a String and
a DynString. This means that its gecSetValue method dynSetValue simply sets
the string component of a new DynString in the underlying String-editor. Its
gecGetValue method dynGetValue retrieves the string from the String-editor, con-
verts it to the corresponding Dynamic by applying composeDynamic, and combines
these two values in a DynString-value. When a new string is created by the appli-
cation user, the callback function stringUpdate is evaluated, which invokes the
callback function dynStringUpdate (provided as an argument upon creation of
the DynString-editor), after converting the String to a DynString.

It is convenient to define a constructor function mkDynStr that converts any
input expr, that has value v of type τ , into a value of type DynString guaranteeing
that if v :: τ and [[expr]] = v, then (DynStr (v::τ) expr) :: DynString.

mkDynStr :: a→ DynString | TC a

mkDynStr x = let dx = dynamic x in DynStr dx (showValueDynamic dx)

Example 2: We construct an interactive editor that can be used to test func-
tions. It can be a newly defined function, say λx→ x^2, or any existing function
stored on disk as a Dynamic. Hence the tested function can vary from a small
function, say factorial, to a large complete application.

:: MyRecord = { function :: DynString

, argument :: DynString

, result :: DynString }
myEditor = selfGEC "test" guiApply (initval id 0)
where

initval f v = { function = mkDynStr f

, argument = mkDynStr v

, result = mkDynStr (f v) }
guiApply r=:8{ function = DynStr (f::a→ b) _

, argument = DynStr (v::a) _ }
= {r &9 result = mkDynStr (f v)}

guiApply r = r

The type MyRecord is a record with three fields, function, argument, and result,
all of type DynString. The user can use this editor to enter a function definition
and its argument. The selfGEC function will ensure that each time a new string
is created with the editor "test", the function guiApply is applied that provides
a new value of type MyRecord to the editor. The function guiApply tests, in a
similar way as the function dynamicApply (see Sect. 3.1), whether the type of the
supplied function and argument match. If so, a new result is calculated. If not,
nothing happens.

This editor can only be used to test functions with one argument. What
happens if we edit the function and the argument in such a way that the result
8 x =:e binds x to e.
9 {r & f0=v0,..., fn=vn} is a record equal to r, except that fields fi have value vi.



is not a plain value but a function itself? Take, e.g., as function the twice func-
tion λf x→ f (f x), and as argument the increment function ((+) 1). Then the
result is also a function λx→ ((+) 1) ((+) 1 x). The editor displays <function>

as result. There is no way to pass an argument to the resulting function.

With an editor like the one above, the user can enter expressions that are au-
tomatically converted into the corresponding Dynamic value. As in the shell, un-
bound names are expected to be dynamics on disk. Illegal expressions result in
a Dynamic containing an error message.

To have a properly higher-order dynamic application example, one needs an
editor in which the user can type in functions of arbitrary arity, and subse-
quently enter arguments for this function. The result is then treated such that,
if it is a function, editors are added dynamically for the appropriate number of
arguments. This is explained in the following example.

Example 3: We construct a test program that accepts arbitrary expressions
and adds the proper number of argument editors, which again can be arbitrary
expressions. The number of arguments cannot be statically determined and has
to be recalculated each time a new value is provided. Instead of an editor for a
record, we therefore create an editor for a list of tuples. Each tuple consists of
a string used to prompt to the user, and a DynString-value. The tuple elements
are displayed below each other using the predefined list editor vertlistAGEC and
access operator ^^, which will be presented in Sect. 4.1. The selfGEC function is
used to ensure that each change made with the editor is tested with the guiApply

function and the result is shown in the editor.
myEditor = selfGEC "test" (guiApply o (^^))

(vertlistAGEC [show "expression " 0])
where

guiApply [f=:(_ , (DynStr d _)):args ]
= vertlistAGEC [f:check (fromDynStr d) args ]

where
check (f::a→ b) [arg=:(_ ,DynStr (x::a) _):args ]

= [arg : check (dynamic f x) args ]
check (f::a→ b) _ = [show "argument " "??" ]
check (x::a) _ = [show "result " x ]

show s v = (Display s ,mkDynStr v)

The key part of this example is formed by the function check which calls it-
self recursively on the result of the dynamic application. As long as function
and argument match, and the resulting type is still a function, it will require
another argument which will be checked for type consistency. If function and
argument do not match, "??" is displayed, and the user can try again. As soon
as the resulting type is a plain value, it is evaluated and shown using the data
constructor Display, which creates a non-editable editor that just displays its



value. With this editor, any higher-order polymorphic function can be entered
and tested.

4 Statically Typed Higher-order GECs

The editors presented in the previous section are flexible because they deliver a
Dynamic (packed into the type DynString). They have the disadvantage that the
programmer has to program a check, such as the check function in the previous
example, on the type consistency of the resulting Dynamics.

In many applications it is statically known what the type of a supplied func-
tion must be. In this section we show how the run-time type check can be replaced
by a compile-time check, using the abstraction mechanism for GECs. This gives
us a second solution for higher-order data structures that is statically typed,
which allows, therefore, type-directed generic GUI creation.

4.1 Abstract Graphical Editor Components

The generic function gGEC derives a GUI for its instance type. Because it is a
function, the appearance of the GUI is completely determined by that type. This
is in some cases much to rigid. One cannot use different visual appearances of the
same type within a program. For this purpose abstract GECs (AGEC) [7] have
been introduced. An instance of gGEC for AGEC has been defined. Therefore, an
AGECd can be used as a GECd, i.e., it behaves as an editor for values of a certain
domain, say of type d. However, an AGECd never displays nor edits values of
type d, but rather a view on values of this type, say of type v. Values of type v

are shown and edited, and internally converted to the values of domain d. The
view is again generated automatically as a GECv. To makes this possible, the
ViewGEC d v record is used to define the relation between the domain d and the
view v.

:: ViewGEC d v

= { d_val :: d // initial domain value
, d_oldv_to_v :: d→ (Maybe v) → v // convert domain value to view value
, update_v :: v→ v // correct view value
, v_to_d :: v→ d } // convert view value to domain value

It should be noted that the programmer does not need to be knowledgeable
about Object I/O programming to construct an AGECd with a view of type v.
The specification is only in terms of the involved data domains. The complete
interface to AGECs is given below.

:: AGEC d // abstract data type
mkAGEC :: (ViewGEC d v) → AGEC d | gGEC{|?|} v

(^^) :: (AGEC d) → d // Read current domain value
( =̂) infixl :: (AGEC d) d→ AGEC d // Set new domain value

The ViewGEC record can be converted to the abstract type AGEC, using the
function mkAGEC above. Because AGEC is an abstract data type we need access



functions to read (^^) and write (^=) its current value. AGECs allow us to define
arbitrarily many editors geci :: AGECd that have a private implementation of
type GECvi . Because AGEC is abstract, code that has been written for editors
that manipulates some type containing AGECd, does not change when the value
of type AGECd is exchanged for another AGECd. This facilitates experimenting
with various designs for an interface without changing any other code.

We built a collection of functions creating abstract editors for various pur-
poses. Below, we summarize only those functions of the collection that are used
in the examples in this paper:

vertlistAGEC :: [a ] → AGEC [a ] | gGEC{|?|} a // all elements displayed in a column
counterAGEC :: a → AGEC a | gGEC{|?|} , IncDec a // a special number editor
hidAGEC :: a → AGEC a // identity, no editor
displayAGEC :: a → AGEC a | gGEC{|?|} a // identity, non-editable editor

The counter editor below is a typical member of this library.

counterAGEC :: a→ AGEC a | gGEC{|?|} , IncDec a

counterAGEC j = mkAGEC { d_val = j , d_oldv_to_v = λi _→ (i ,Neutral)
, update_v = updateCounter , v_to_d = fst }

where updateCounter (n ,UpPressed) = (n+one ,Neutral)
updateCounter (n ,DownPressed) = (n-one ,Neutral)
updateCounter (n ,Neutral) = ( n ,Neutral)

A programmer can use the counter editor as an integer editor, but because
of its internal representation it presents the application user with an edit field
combined with an up-down, or spin, button. The updateCounter function is used
to synchronize the spin button and the integer edit field. The right part of the
tuple is of type UpDown (Sect. 2), which is used to create the spin button.

4.2 Adding Static Type Constraints to Dynamic GECs

The abstraction mechanism provided by AGECs is used to build type-directed
editors for higher-order data structures, which check the type of the entered
expressions dynamically. These statically typed higher-order editors are created
using the function dynamicAGEC. The full definition of this function is specified
and explained below.

dynamicAGEC :: d→ AGEC d | TC d

dynamicAGEC x = mkAGEC { d_val=x , d_oldv_to_v=toView
, update_v=updView x , v_to_d=fromView x }

where toView newx Nothing = let dx = mkDynStr newx in (dx ,hidAGEC dx)
toView _ (Just oldx) = oldx

fromView :: d (DynString ,AGEC DynString) → d | TC d

fromView _ (_ ,oldx) = case ^^oldx of DynStr (x::d^) _→ x



updView :: d (DynString ,AGEC DynString)
→ (DynString ,AGEC DynString) | TC d

updView _ (newx=:(DynStr (x::d^) _) ,_) = (newx ,hidAGEC newx)
updView _ (_ ,oldx) = (^^oldx ,oldx)

The abstract Dynamic editor, which is the result of the function dynamicAGEC

initially takes a value of some statically determined type d. It converts this value
into a value of type DynString, such that it can be edited by the application
user as explained in Sect. 3.2. The application user can enter an expression of
arbitrary type, but now it is ensured that only expressions of type d are approved.

The function updView, which is called in the abstract editor after any edit
action, checks, using a type pattern match, whether the newly created dynamic
can be unified with the type d of the initial value (using the ^-notation in the
pattern match as explained in Sect. 3.1). If the type of the entered expression
is different, it is rejected10 and the previous value is restored and shown. To
do this, the abstract editor has to remember the previously accepted correctly
typed value. Clearly, we do not want to show this part of the internal state to
the application user. This is achieved using the abstract editor hidAGEC (Sect.
4.1), which creates an invisible editor, i.e., a store, for any type.

Example 5: Consider the following variation of Example 2:

:: MyRecord a b = { function :: AGEC (a→ b)
, argument :: AGEC a

, result :: AGEC b }
myEditor = selfGEC "test" guiApply (initval ((+) 1.0) 0.0)
where

initval f v = { function = dynamicAGEC f

, argument = dynamicAGEC v

, result = displayAGEC (f v) }
guiApply myrec=:{ function = af , argument = av }

= {myrec & result = displayAGEC ((^^af) (^^av))}
The editor above can be used to test functions of a certain statically de-

termined type. Due to the particular choice of the initial values ((+) 1.0 ::

Real→ Real and 0.0 :: Real), the editor can only be used to test functions of type
Real→ Real applied to arguments of type Real. Notice that it is now statically
guaranteed that the provided dynamics are correctly typed. The dynamicAGEC-
editors take care of the required checks at run-time and they reject ill-typed
expressions. The programmer therefore does not have to perform any checks
anymore. The abstract dynamicAGEC-editor delivers a value of the proper type
just like any other abstract editor.

The code in the above example is not only simple and elegant, but it is also
10 There is currently no feedback on why the type is rejected. Generating good error

messages as in [15] certainly improves the user interface.



very flexible. The dynamicAGEC abstract editor can be replaced by any other ab-
stract editor, provided that the statically derived type constraints (concerning f

and v) are met. This is illustrated by the next example.

Example 6: If one prefers a counter as input editor for the argument value,
one only has to replace dynamicAGEC by counterAGEC in the definition of initval:

initval f v = { function = dynamicAGEC f

, argument = counterAGEC v

, result = displayAGEC (f v) }

The dynamicAGEC is typically used when expression editors are preferred over
value editors of a type, and when application users need to be able to enter
functions of a statically fixed monomorphic type.

One can create an editor for any higher-order data structure τ , even if it con-
tains polymorphic functions. It is required that all higher-order parts of τ are
abstracted, by wrapping them with an AGEC type. Basically, this means that
each part of τ of the form a→ b must be changed into AGEC (a→ b). For the
resulting type τ ′ an edit dialog can be automatically created, e.g., by applying
selfGEC. However, the initial value that is passed to selfGEC must be monomor-
phic, as usual for any instantiation of a generic function. Therefore, editors for
polymorphic types cannot be created automatically using this statically typed
generic technique. As explained in Sect. 3.2 polymorphic types can be handled
with dynamic type checking.

5 Applications of higher-order GECs

The ability to generate editors for higher-order data structures greatly enhances
the applicability of GECs. Firstly, it becomes possible to create applications in
which functions can be edited as part of a complex data structure. Secondly, these
functions can be composed dynamically from earlier created compiled functions
on disk. Both are particular useful for rapid prototyping purposes, as they can
add real-life functionality.

In this section we discuss one small and one somewhat larger application.
Even the code for the latter application is still rather small (just a few pages).
The code is omitted in this paper due to space limitations, but it can be found at
http://www.cs.kun.nl/∼clean/gec. Screen shots of the running applications
are given in Appendix A.

An Adaptable Calculator. In the first example we use GEC to create a ‘more
or less’ standard calculator. The default look of the calculator was adapted using
the aforementioned AGEC customization techniques. Special about this calcu-
lator is that its functionality can be easily extended at run-time: the application
user can add his or her own buttons with a user defined functionality. In addition
to the calculator editor, a GEC editor is created, which enables the application



user to maintain a list of button definitions consisting of button names with
corresponding functions. Since the type of the calculator functions are statically
known, a statically typed higher-order GEC is used in this example. The user
can enter a new function definition using a lambda expression, but it is also
possible to open and use an earlier created function from disk. Each time the
list is changed with the list editor, the calculator editor is updated and adjusted
accordingly. For a typical screen shot see Fig. 1.

A Form Editor. In the previous example we have shown that one can use
one editor to change the look and functionality of another. This principle is also
used in a more serious example: the form editor. The form editor is an editor
with which electronic forms can be defined and changed. This is achieved using
a meta-description of a form. This meta-description is itself a data structure,
and therefore, we can generate an editor for it. One can regard a form as a
dedicated spreadsheet, and with the form editor one can define the actual shape
and functionality of such a spreadsheet. With the form editor one can create
and edit fields. Each field can be used for a certain purpose. It can be used to
show a string, it can be used as editor for a value of a certain basic type, it can
be used to display a field in a certain way by assigning an abstract editor to it
(e.g., a counter or a calculator), and it can be used to calculate and show new
values depending on the contents of other fields. For this purpose, the application
user has to be able to define functions that have the contents of other fields as
arguments. The form editor uses a mixed mode strategy. The contents of some
fields can be statically determined (e.g., a field for editing an integer value). But
the form editor can only dynamically check whether the argument fields of a
specified function are indeed of the right type. The output of the form editor
is used to create the actual form in another editor which is part of the same
application. By filling in the form fields with the actual value, the application
user can test whether the corresponding form behaves as intended. For a typical
screen shot see Fig. 2.

6 Related Work

In the previous sections we have shown that we can create editors that can
deal with higher order data structures. We can create dynamically typed higher-
order editors, which have the advantages that we can deal with polymorphic
higher order data structures and overloading. This has the disadvantage that
the programmer has to check type safety in the editor. The compiler can ensure
type correctness of higher-order data structures in statically typed editors, but
they can only edit monomorphic types. Related work can be sought in three
areas:

Grammars instead of types: Taking a different perspective on the type-direc-
ted nature of our approach, one can argue that it is also possible to obtained



editors by starting from a grammar specification instead of a type. Such toolkits
require a grammar as input and yield an editor GUI as result. Projects in this fla-
vor are for instance the recent Proxima project [21], which relies on XML and its
DTD (Document Type Definition language), and the Asf+Sdf Meta-Environment
[10] which uses an Asf syntax specification and Sdf semantics specification. The
major difference with such an approach is that these systems need both a gram-
mar and some kind of interpreter. In our system higher-order elements are im-
mediately available as a functional value that can be applied and passed to other
components.

GUI programming toolkits: From the abstract nature of the GEC toolkit it
is clear that we need to look at GUI toolkits that also offer a high level of abstrac-
tion. Most GUI toolkits are concerned with the low level management of widgets
in an imperative style. One well-known example of an abstract, compositional
GUI toolkit based on a combinator library is Fudgets [11]. These combinators
are required for plumbing when building complex GUI structures from simpler
ones. In our system far less plumbing is needed. Most work is done automat-
ically by the generic function gGEC. The only plumbing needed in our system
is for combining the GEC-editors themselves. Furthermore, the Fudget system
does not provide support for editing function values or expressions.

Because a GECt is a t-stateful object, it makes sense to have a look at
object oriented approaches. The power of abstraction and composition in our
functional framework is similar to mixins [13] in object oriented languages. One
can imagine an OO GUI library based on compositional and abstract mixins
in order to obtain a similar toolkit. Still, such a system lacks higher-order data
structures.

Visual programming languages: Due to the extension of the GEC program-
ming toolkit with higher-order data structures, visual programming languages
have come within reach as application domain. One interesting example is the
Vital system [14] in which Haskell-like scripts can be edited. Both systems al-
low direct manipulation of expressions and custom types, allow customization of
views, and have guarded data types (like the selfGEC function). In contrast with
the Vital system, which is a dedicated system and has been implemented in Java,
our system is a general purpose toolkit. We could use our toolkit to construct a
visual environment in the spirit of Vital.

7 Conclusions

With the original GEC-toolkit one can construct GUI applications without much
programming effort. This is done on a high level of abstraction, in a fully com-
positional manner, and type-directed. It can be used for any monomorphic first-
order data type. In this paper we have shown how the programming toolkit
can be extended in such a way that GECs can be created for higher-order data



structures. We have presented two methods, each with its own advantage and
disadvantage.

We can create an editor for higher-order data structures using dynamic typ-
ing, which has as advantage that it can deal with polymorphism and overloading,
but with as disadvantage that the programmer has to ensure type safety at run-
time. We can create a editor for higher-order data structures using the static
typing such that type correctness of entered expressions or functions is guaran-
teed at compile-time. In that case we can only cope with monomorphic types,
but we can generate type-directed GUIs automatically.

As a result, applications constructed with this toolkit can manipulate the
same set of data types as modern functional programming languages can. The
system is type-directed and type safe, as well as the GUI applications that are
constructed with it.
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A Screen Shots of Example Applications

Fig. 1. A screen shot of the adaptable calculator. Left the editor for defining button
names with the corresponding function definitions. Right the resulting calculator editor.

Fig. 2. A screen shot of the form editor. The form editor itself is shown in the upper
left window, the corresponding editable spreadsheet-like form is shown in the other.


