
Gast: Generic Automated Software Testing

Pieter Koopman, Artem Alimarine, Jan Tretmans, and Rinus Plasmeijer

Nijmegen Institute for Information and Computing Sciences, The Netherlands
{pieter, alimarine, tretmans, rinus}@cs.kun.nl

Abstract. Software testing is a labor-intensive and hence expensive,
yet heavily used technique to control quality. In this paper we intro-
duce Gast, a fully automatic test-tool. Properties from first order logic
can be expressed in the system, Gast automatically generates appro-
priate test-data, evaluates the property for these values, and analyzes
the test-results. In this way it becomes easier and cheaper to test soft-
ware components. The distinguishing property of our system is that the
test-data are generated in a systematic and generic way using generic
programming techniques. This implies that there is no need for the user
to indicate how data should be generated. Moreover, duplicated tests are
avoided and for finite domains Gast is able to proof a property by testing
it for all possible values. As an important side-effect, it also encourages
stating formal properties of the software.

1 Introduction

Testing is an important and heavily used technique to measure and ensure soft-
ware quality. It is part of almost any software project. The testing phase of
typical projects takes up to 50% of the total project, and hence contributes
significantly to the project costs. Any change in the software can potentially
influence the result of a test. For this reason tests have to be repeated often.
This is error-prone, boring, time consuming, and expensive.

In this paper we introduce a tool for automatic testing. Automatic testing
significantly reduces the effort of individual tests. This implies that performing
the same test becomes cheaper, or one can do more tests within the same budget.
In this paper we restrict ourselves to functional testing, i.e. examination whether
the software obeys the given specification.

In this context we distinguish four steps in the process of functional testing:
1) formulation of a property to be obeyed, what has to be tested; 2) generation of
test data: the decision for which input values the property should be examined,
3) test execution: running the program with the generated test data, and 4) test
result analysis: making a verdict based on the results of the test execution.

The introduced Generic Automatic Software Test–system, Gast, performs
the last three steps fully automatically. Gast generates test-data based on the
types used in the properties, it executes the test for the generated test-values, and
gives a an analysis of these test-results. The system either produces a message
that the software successfully passed the specified number of tests for a particular
property, or shows the arguments for which the property does not hold.

2

Gastmakes testing easier and cheaper. As an important side-effect it en-
courages the writing of properties that should hold. This contribute to the doc-
umentation of the system. Moreover, there is empirical evidence that writing
specifications on its own contributes to the quality of the system [16].

Gast is implemented in the functional programming language Clean[14].
The primary goal is to test software written in Clean. However, it is not re-
stricted to software written in Clean. Functions written in other languages can
be called through the foreign function interface, or programs can be invoked.

The properties to be tested are expressed as functions in Clean. The proper-
ties have the power of first order predicate logic. The properties can state prop-
erties about individual implemented functions and datatypes as well as larger
pieces of software, or even about complete programs. The definition of properties
and their semantics are introduced in section 3.

Existing automatic test-systems, such as [3], use random generation of test-
data. When the test involves user-defined datatypes, the tester has to indicate
how elements of that type should be generated. Our test-system, Gast, improves
both points. Using systematic generation of test-data, duplicated tests involving
user-defined types do not occur. This makes even proofs possible. By using a
generic generator the tester does not have to define how elements of a user-
defined type have to be generated. Generic programming deals with the universal
representation of a type instead of concrete types. This is explained in section 2.
Automatic data generation is treated in section 4. If the tester wants to control
the generation of data explicitly, he is able to do so (section 7).

After these preparations, the test execution is straightforward. The property
is tested for the generated test-data. Gast uses the code generated by the Clean
compiler to compute the result of applying a property to test-data. This has two
important advantages. First, there cannot exist semantical differences between
the ordinary Clean code and the interpretation of properties. Secondly, it keeps
Gast simple. In this way we are able to construct a light-weight test-system.
This is treated in section 5. Next, test result analysis is illustrated by some
examples. In section 7 we introduce some additional tools to improve the test
result analysis. Finally, we will discuss related work, open issues and conclude.

2 Generic Programming

Generic programming [7, 8, 1, 6] is based on a universal tree representation of
datatypes. Whenever required, elements of any datatype can be transformed to
and from that universal tree representation. The generic algorithm is defined
on this tree representation. By applying the appropriate transformations, this
generic algorithm can be applied to any type.

Generic programming is essential for the implementation of Gast. However,
users does not have to know anything about generic programming. The reader
who wants to get an impression of Gast might skip this section on first reading.

Generic extensions are currently developed for Haskell [10] and Clean [14].
In this paper we will use Clean without any loss of generality.

3

2.1 Generic Types

The universal type is constructed using the following type definitions [1].1

:: UNIT = UNIT // leaf of the type tree

:: PAIR a b = PAIR a b // branch in the tree

:: EITHER a b = LEFT a | RIGHT b // choice between a and b

As an example, we give two algebraic datatypes, Color and List, and their generic
representation, Colorg and Listg. The symbol :== in the generic version of the
definition indicates that it are just type synonyms, they do not define new types.

::Color = Red | Yellow | Blue // ordinary algebraic type definition

::Colorg :== EITHER (EITHER UNIT UNIT) UNIT // generic representation

::List a = Nil | Cons a (List a)

::Listg a :== EITHER UNIT (PAIR a (List a))

The transformation from the user-defined type to its generic counterpart are
done by automatically generated functions like2:
ColorToGeneric :: Color -> EITHER (EITHER UNIT UNIT) UNIT

ColorToGeneric Red = LEFT (LEFT UNIT)

ColorToGeneric Yellow = LEFT (RIGHT UNIT)

ColorToGeneric Blue = RIGHT UNIT

ListToGeneric :: (List a) -> EITHER UNIT (PAIR a (List a))

ListToGeneric Nil = LEFT UNIT

ListToGeneric (Cons x xs) = RIGHT (PAIR x xs)

The generic system automatically generates these functions and their inverses.

2.2 Generic Functions

Based on this representation of types one can define generic functions. As exam-
ple we will show the generic definition of equality3.
generic gEq a :: a a -> Bool

gEq{|UNIT|} _ _ = True

gEq{|PAIR|} fa fx (PAIR a x) (PAIR b y) = fa a b && fx x y

gEq{|EITHER|} fl fr (LEFT x) (LEFT y) = fl x y

gEq{|EITHER|} fl fr (RIGHT x) (RIGHT y) = fr x y

gEq{|EITHER|} _ _ _ _ = False

gEq{|Int|} x y = x == y

The instances for PAIR and EITHER have additional arguments. These arguments
(provided by the generic system) define how subtypes can be compared. In this
respect generic functions differ from ordinary classes in functional programming.

In order to use this equality for Color an instance of gEq for Color must be
derived, by: derive gEq Color. The system generates code equivalent to
1 Clean uses additional constructs for information on constructors and record fields.
2 We use the direct generic representation of result types instead of the type synonyms
Colorg and Listg since it shows the structure of result more clearly.

3 We only consider the basic type Int here. Other basic types are handled similarly.

4

gEq{|Color|} x y = gEq{|EITHER|} (gEq{|EITHER|} gEq{|UNIT|} gEq{|UNIT|})

gEq{|UNIT|} (ColorToGeneric x) (ColorToGeneric y)

The additional arguments needed by gEq{|EITHER|} in gEq{|Color|} are deter-
mined by the generic representation of the type Color: Colorg.

If this version of equality is not what you want, you can always define your
own instance of gEq for Color, instead of deriving the default.

The infix version of this equality is defined as:
(===) infix 4 :: !a !a -> Bool | gEq{|*|} a

(===) x y = gEq{|*|} x y

This enables us to write expressions like Red === Blue. The necessary type con-
versions form Color to Colorg need not to be specified, they are generated and
applied at the appropriate places by the generic system.

It is important to note that the user of types like Color and List need not be
aware of the generic representation of types. Types can be used and introduced
as usual; the static type system also checks the consistent use of types as usual.

3 Specification of Properties

The first step in the testing process is the formulation of properties in a formalism
that can be handled by Gast. In order to handle properties from first order
predicate logic in Gast we represent them as functions in Clean. Each property
is expressed by a function yielding a Boolean value. Expressions with value True

indicates a successful test, False indicates a counter example. This solves the
famous oracle problem: how do we decide whether the result of a test is correct
or not.

The arguments of such a property represent the universal variables of the
logical expression. Properties can have any number of arguments, each of these
arguments can be of any non-polymorphically type.

These functions can be used to specify properties of single functions or op-
erations in Clean, as well as properties of large combinations of functions, or
even of entire programs.

In this paper we will only consider well-defined and finite values as test-data.
Due to this restriction we are able to use the and-operator (&&) and or-operator
(||) of Clean to represent the logical operators and (∧) and or (∨) respectively.

Our first example involves the implementation of the logical or-function using
only a two-input nand-function as basic building element.
or :: Bool Bool -> Bool

or x y = nand (not x) (not y) where not x = nand x x

The desired property is that the value of this function is always equal to the value
of the ordinary or-operator, ||, from Clean. That is, the ||-operator serves as
specification for the new implementation, or. In logic, this is:

∀x ∈ Bool .∀y ∈ Bool . x||y = or x y

This property can be represented by the following function in Clean. By con-
vention we will prefix the name properties by prop.

5

propOr :: Bool Bool -> Bool

propOr x y = x||y == or x y

The user invokes the testing of this property by the main function:
Start = test propOr

Gast yields Proof: success for all arguments after 4 tests for this property.
Since there are only finite types involved the property can be proven by testing.

For our second example we consider the classical implementation of stacks:
:: Stack a :== [a]

pop :: (Stack a) -> Stack a

pop [_:r] = r

top :: (Stack a) -> a

top [a:_] = a

push :: a (Stack a) -> Stack a

push a s = [a:s]

A desirable property for stacks is that after pushing some element onto the stack,
that element is on top of the stack. Popping an element just pushed on the stack
yields the original stack. The combination of these properties is expressed as:
propStack :: a (Stack a) -> Bool | gEq{|*|} a

propStack e s = top (push e s) === e && pop (push e s) === s

This property should hold for any type of stack-element. Hence we used poly-
morphic functions and the generic equality, ===, here. However, Gast can only
generate test-data for some concrete type. Hence, we have to specify which type
Gast should use for the type argument a. For instance by:
propStackInt :: (Int (Stack Int) -> Bool)

propStackInt = propStack

In contrast to properties that use overloaded types, it actually does not matter
much which concrete type we choose. A polymorphic property will hold for el-
ements of any type if it holds for elements of type Int. The test is executed by
Start = test propStackInt. Gast yields: Passed after 1000 tests. This prop-
erty involves the very large type integer and the infinite type stack, only testing
for a finite number of cases, here 1000, is possible.

In propOr we used a reference implementation (||) to state a property about
a function (or). In propStack expressed the desired property directly as a rela-
tion between functions on a datatype. Other kind of properties state relations
between the input and output of functions, or use model checking based proper-
ties. For instance, we have tested a system for safe communication over unreliable
channels by an alternating bit protocol with the requirement that sequence of
received messages should be equal to the input sequence of messages.

One often adds the implication operator, ⇒, as a primitive to the predicate
logic. For instance ∀x.x ≥ 0⇒ (

√
x)2 = x. We can use the law p⇒ q = ¬p ∨ q

to implement it:
(===>) infix 1 :: Bool Bool -> Bool

(===>) p q = not p || q

6

In first order predicate logic one also has the existential quantifier, ∃. If this is
used to introduce values in a constructive way it can be directly transformed to
local definitions in a functional programming language, for instance as: ∀x.x ≥
0⇒ ∃y.y =

√
x ∧ y2 = x can directly be expressed using local definitions.

propSqrt :: Real -> Bool

propSqrt x = x >=0 ===> let y = sqrt x in y*y == x

In general it is not possible to construct an extensionally quantified value. For
instance, for a type Day and a function tomorrow we require that for each day
there exists a tomorrow ∀day.∃d.tomorrow day = d. The day d has to be searched
in the type Day . Gast has the operator Exists to express this:
propTomorrow :: Day -> Property

propTomorrow day = Exists \d = tomorrow day === d

The only task of the tester is to write properties, like propOr, and to invoke
the testing by Start = test propOr. Based on the type of arguments needed by
the property, the test system will generate test-data, execute the test for these
values, and analyze the results of the tests. In the following three sections we
will explain how Gast works. The tester does not have to know this.

3.1 Semantics of Properties

For Gast we extend the standard operational semantics of Clean. The standard
reduction to weak head normal form is denoted as whnf [[e]] . The additional
rules are applied after this ordinary reduction. The implementation will follow
these semantics rules directly. The possible results of the evaluation of a property
are the values Suc for success, and CE for counterexample. In these rules λ x.p
represents any function. That is any expression of type τ → σ (i.e. a partially
parameterized function, or a lambda-expression). The evaluation of a property,
Eval [[p]] , yields a list of results:

Eval [[λ x.p]] = [r|v ← genAll ; r ← Eval [[(λ x.p) v]]] (1)
Eval [[True]] = [Suc] (2)
Eval [[False]] = [CE] (3)

Eval [[e]] = Eval [[whnf [[e]]]] (4)

To test property p we evaluate Test [[p]] . The rule An [[l]]n analysis a list of
the test-results In rule 5 N is the maximum number of tests. There are three
possible test results: Proof indicates that the property holds for all well-defined
values of the argument types, Passed indicated that the property passed N
tests without finding a counterexample, Fail indicates that a counterexample is
found.

Test [[p]] = An [[Eval [[whnf [[p]]]]]] N (5)
An [[[]]]n = Proof (6)
An [[l]] 0 = Passed (7)

An [[[CE : rest]]] n = Fail (8)
An [[[r : rest]]] n = An [[rest]] (n− 1), if r 6= CE (9)

7

The most important properties of this semantics are:

Test [[λx.p]] = Proof ⇒ ∀v.(λx.p)v (10)
Test [[λx.p]] = Fail⇒ ∃v.¬(λx.p)v (11)
Test [[p]] = Passed⇔ ∀r ∈ (take N Eval [[p]]).r 6= CE (12)

Property 10 state that Gast only produces Proof if the property is universal
valid. According to 11 the system yields only Fail if a counter example exists.
Finally, the systems yields Passed if the first N tests does not contain a coun-
terexample, (12). These properties can be proven by induction and case distinc-
tion from the rules 1 to 9 given above. Below we will introduce some additional
rules for Eval [[p]] , in such a way that these properties are preserved.

The semantics of the Exists-operator is:

Eval [[Exists λ x.p]] = One [[[r|v←genAll ; r←Eval [[(λ x.p) v]]]]]M (13)
One [[[]]]m = [CE] (14)

One [[l]] 0 = [Undef] (15)
One [[[Suc : rest]]] m = [Suc] (16)

One [[[r : rest]]] m = One [[rest]] (m− 1), if r 6= Suc (17)

The rule One [[l]] scans a list of semantic results, it yields success if the list of
results contains at least one success within the first M results. As soon as one or
more results are rejected the system cannot proof the property any more. It can,
however, successfully test the property for N values. To ensure termination also
the number of rejected test is limited by an additional counter. These changes
for An [[l]] are implemented by analyse in section 6.

4 Generating Test-Data

To test a property, step 2) in the test process, we need a list of values of the
argument type. Gast will evaluate the property for the values in this list.

Since we are testing in the context of a referentially transparent language,
we are only dealing with pure functions: the result of a function is completely
determined by its arguments. This implies that repeating the test for the same
arguments is useless: referential transparency guarantees that the results will be
identical. Gast should prevent the generation of duplicated test-data.

For finite types like Bool or non-recursive algebraic datatypes we can generate
all elements of the type as test-data. For basic types like Real and Int, generating
all elements is not feasible. There are far too many elements, e.g. there are 232

integers on a typical computer. For these types, we want Gast to generate some
common border values, like 0 and 1, as well as random values of the type. Here,
preventing duplicates is usually more work than repeating the test. Hence we do
not require that Gast prevents duplicates here.

For recursive types, like list, there are infinitely many instances. Gast is
only able to test properties involving these types for a finite fractionnumber of

8

these values. Recursive types are usually handled by recursive functions. Such
a function typically contains special cases for small elements of the type, and
recursive cases to handle other elements. In order to test these functions we
need values for the special cases as well as some values for the general cases. We
achieve this by generating a list of values of increasing size. Preventing duplicates
is important here as well.

The standard implementation technique in functional languages would proba-
bly make use of classes to generate, compare and print elements of each datatype
involved in the tests [3]. Instances for standard datatypes can be provided by a
test-system. User-defined types however, would require user-defined instances for
all types, for all classes. Defining such instances is error prone, time consuming
and boring. Hence, a class based approach would hinder the ease of use of the
test-system. Special about Gast is that we use generic programming techniques
such that one general solution can be provided once and for all.

For the generation of test-data, Gast generates a list of generic representa-
tions of the desired type. The generic-system transforms these values to instances
of the types needed.

Obviously, not any generic tree can be transformed to instances of a given
type. For the type Color only the trees LEFT (LEFT UNIT), LEFT (RIGHT UNIT), and
RIGHT UNIT represent valid values. Fortunately, the generic system provides the
necessary information to guide the generation of trees in the form of additional
arguments, as in the gEq example shown above.

For recursive types, the generic tree can grow infinitely. Without detailed
knowledge about the type, one cannot predict where infinite branches occur.
This implies that any systematic depth-first strategy to traverse the tree for
possible values can fail to terminate. Moreover, small values which appear close
to the root of the generic tree, have to be generated first. A depth-first traversal
will encounter these values too late. Finally, a left-to-right strategy will favor
values in the left branches and visa versa. A bias in any direction is undesirable.

In order to meet all these requirements, we use a strategy that uses a random
choice at each EITHER in the type tree. To prevent duplicates we record the tree
representation of the generated values in the datatype Trace.

:: Trace = Unit | Pair [(Trace,Trace)] [(Trace,Trace)]

| Either Bool Trace Trace | Int [Int] | Done | Empty

We use a single type Trace to keep track of visited parts of the generic tree
(rather than the generated values or their generic representation) to avoid type
incompatibilities. We want to manipulate generic representations of any type
in a single function nextTrace (instead of a generic nextTrace). The type Trace

looks quite different from the ordinary generic tree since we record all generated
values in a single tree. An ordinary generic tree just represents one single value.

New parts of the trace are constructed by the generic function generate. The
function nextTrace prepares the trace for the generation of the next element from
the list of test-data. It uses the RandomStream, a list of pseudo random values, to
choose randomly between extending the left or right branch of the trace. When
the generation of the chosen branch fails, it tries to extend the other branch. If

9

both branches cannot be extended, all values in this subtree are generated and
the result is Done.

The function genAll uses generate to produce the list of all values of the
desired type. It generates values until the next trace indicates that we are done.

genAll :: RandomStream -> [a] | generate{|*|} a

genAll rnd = g Empty rnd

where g Done rnd = []

g t rnd = let (x, t2, rnd2) = generate{|*|} t rnd

(t3, rnd3) = nextTrace t2 rnd3

in [x: g t3 rnd3]

The code fragment of nextTrace handling Either is listed here. This is the most
interesting case. The class genElem produces an element of the desired type using
the random stream.
nextTrace (Either _ tl tr) rnd

= let (b, rnd2) = genElem rnd in

if b (let (tl‘, rnd3) = nextTrace tl rnd2 in

case tl‘ of

Done = let (tr‘, rnd4) = nextTrace tr rnd3 in

case tr‘ of

Done = (Done, rnd4)

_ = (Either Right tl tr‘, rnd4)

= (Either Left tl‘ tr, rnd3))

(let (tr‘, rnd3) = nextTrace tr rnd2 in

case tr‘ of

Done = let (tl‘, rnd4) = nextTrace tl rnd3 in

case tl‘ of

Done = (Done, rnd4)

_ = (Either Left tl‘ tr, rnd4)

= (Either Right tl tr‘, rnd3))

The corresponding instance of generate follows the direction indicated in the
trace. When the trace is empty, it takes a boolean from the random stream and
creates the desired value as well as the initial extension of the trace.
generic generate a :: Trace RandomStream -> (a, Trace, RandomStream)

generate{|EITHER|} fl fr Empty rnd

= let (f,rnd2) = genElem rnd in

if f (let (l,tl,rnd3) = fl Empty rnd2

in (LEFT l, Either Left tl Empty, rnd3))

(let (r,tr,rnd3) = fr Empty rnd2

in (RIGHT r, Either Right Empty tr, rnd3))

generate{|EITHER|} fl fr (Either left tl tr) rnd

| left = let (l,tl2,rnd2) = fl tl rnd

in (LEFT l, Either left tl2 tr, rnd2)

= let (r,tr2,rnd2) = fr tr rnd

in (RIGHT r, Either left tl tr2, rnd2)

For Pair we extend both branches in turn with a step. Two lists of tuples are
used to keep track of this. By convention the first tuple of the first list contains

10

the traces to be used by generate. The second list is used to efficiently implement
adding new tuples to the tail of the list. At each step two new tuples are added
(if they exist): the current left branch, with the next right branch; and the next
left branch, with a new (empty) right branch.

4.1 Generic generation of Functions as Test-Data

Since Clean is a higher order language it is perfectly legal to use a function as
an argument or result of a function. Also in properties, the use of higher order
functions can be very useful. A well-known property of the function map can be
expressed as:
propMap :: (a->b) (b->c) [a] -> Bool | gEq{|*|} c

propMap f g xs = map g (map f xs) === map (g o f) xs

In order to test such a property we must choose a concrete type for the poly-
morphic arguments. Choosing Int for all type variables yields:
propMapInt :: ((Int->Int) (Int->Int) [Int] -> Bool)

propMapInt = propMap

This leaves us with the problem of generating functions automatically. Func-
tions are not datatypes and hence cannot be generated by the default generic
generator. Fortunately, the generic framework provides a way to create func-
tions. We generate function of type a->b by defining a generic instance for
generate{|(->)|}. Such a function is defined by generating a list of values of
type b. The argument of type a is transformed in a generic way to an index in
this list. The generated function just transforms its argument to an index and
selects the corresponding element from the list of values. For instance, a gener-
ated function of type Int -> Color could look like \a = [Red,Yellow,Blue] !!

(abs a % 3). Due to space limitations we omit the details here.

5 Test Execution

Step 3) in the test process is the test execution. The implementation of an
individual test is a direct translation of the given semantic rules introduced
above. The type class Testable contains the function evaluate which directly
implements the rules for Eval [[p]] .
class Testable a where evaluate :: a RandomStream Admin -> [Admin]

In order to be able to show the arguments used in a specific test, we administrate
the arguments represented as strings as well as the result of the test in a record
called Admin. There are three possible results of a test: undefined (UnDef), success
(OK), and counter example found (CE).
:: Admin = {res::Result, args::[String]}

:: Result = UnDef | OK | CE

Instances of TestArg can be argument of a property. The system should be able
to generate elements of such a type (generate) and to transform them to string
(genShow) in order to add them to the administration.
class TestArg a | genShow{|*|}, generate{|*|} a

11

The semantic equations 2 and 3 are implemented by the instance of evaluate for
the type Bool.
instance Testable Bool

where evaluate b rs result

= [{result & res = if b OK CE, args = reverse result.args}]

The rule for function application, semantic equation 1, is complicated slightly
by administrating function arguments.
instance Testable (a->b) | Testable b & TestArg a

where evaluate f rs result

= let (rs, rs2) = split rs in forAll f (gen rs) rs2 result

forAll f list rs r

= diagonal [apply f a (genRandInt seed) r \\ a<-list & seed<-rs]

apply f a rs r = evaluate (f a) rs {r & args = [show a:r.args]}

The function diagonal takes care of a fair order of tests. For a 2-argument
function f , the system generates two sequences of arguments, call them [a, b, c, ..]
and [u, v, w, ..] respectively. The order of tests is f a u, f a v, f b u, f b v, f c u, ..
rather than f a u, f a v, f aw, .., f b u, f b v, f b w, ...

6 Test Result Evaluation

The final step, step 4), in the test process is the evaluation of results. The system
just scans the generated list of test-results as indicated by An [[l]] . The only
extension is the showing of the number and arguments of the current test before
the test result is evaluated. In this way the tester of Gast is able to identify the
data causing an runtime error or taking a lot of time. A somewhat simplified
version of the function test is:
test :: p -> [String] | Testable p

test p = analyse (evaluate p RandomStream newAdmin) maxTests MaxArgs

where analyse :: [Admin] Int Int -> [String]

analyse [] n m = ["\nProof: success for all arguments"]

analyse l 0 m = ["\nPassed ",toString maxTests," tests"]

analyse l n 0 = ["\nPassed ",toString maxArgs," arguments"]

analyse [res:rest] n m

= [blank,toString (maxTests-n+1),":":showArgs res.args

case res.res of

UnDef = analyse rest n (m-1)

OK = analyse rest (n-1) (m-1)

CE = ["\nCounterexample: ": showArgs res.args []]]

7 Additional features

In order to improve the power of the test-tool, we introduce some additional
features. These possibilities are realized by combinators (functions) that manip-
ulate the administration. We consider the following groups of combinators: 1) an
improved implication, p ⇒ q, that discards the test if p does not hold; 2) com-
binators to collect information about the actual test-data used; 3) combinators
to apply user-defined test-data instead of generated test-data.

12

7.1 Implication

Although the implication operator ===> works correctly it has an operational
drawback: if p does not hold, the property p ⇒ q holds and is counted as a
successful test. This operator is often used to put an restriction on arguments
to be considered, as in ∀x.x ≥ 0⇒ (

√
x)2 = x. Here we wants only to consider

tests where x ≥ 0 holds, in other situations the test should not be taken into
account. This is represented by the result undefined. We introduce the operator
==> for this purpose.

Eval [[True==>p]] = Eval [[p]] (18)
Eval [[False==>p]] = [Rej] (19)

If the predicate holds the property p is evaluated, otherwise we explicitly yield
an undefined result. The implementation is:
(==>) infixr 1 :: Bool p -> Property | Testable p

(==>) c p

| c = Prop (evaluate p)

= Prop (\rs r = [{r & res = Undef}])

Since we need to access the administration here, the property on the right-
hand side is not a Boolean, but a datatype holding the function to access the
administration.
:: Property = Prop (RandomStream Admin -> [Admin])

instance Testable Property

where evaluate (Prop p) rs result = p rs result

The operator ==> can be used as ===> in propSqrt above. The result of execut-
ing test propSqrt is Counter-example found after 2 tests: 3.07787e-09. The
failure is caused by the finite precision of reals.

7.2 Information about Test-Data used

For properties like propStack, it is impossible to test all possible arguments. The
tester might be curious to known more about the actual test-data used in a test.
The system provides two combinators to help him:
label :: l p -> Property | Testable p & genShow{|*|} l

classify :: Bool l p -> Property | Testable p & genShow{|*|} l

The function label always adds the given label; classify only adds the label
when the condition holds. In order to be able to collect labels we extend the
administration Admin with a field labels of type [String]. Gast collects the
strings, orders them alphabetically, counts them and computes the fraction of
tests that contain this label. The label can be an expression of any type, it is
converted to a string in a generic way (by genShow{|*|}).

These functions do not change the semantics of the specification, their only
effect is the additional information in the report to the tester.

Eval [[label l p]] = Eval [[p]] adds l to the administration (20)
Eval [[classify True l p]] = Eval [[label l p]] (21)
Eval [[classify False l p]] = Eval [[p]] (22)

13

We will illustrate the use of these functions. It is possible to view the exact
test-data used for testing the property of stacks by
propStackL :: Int (Stack Int) -> Property

propStackL e s = label (e,s) (top (push e s)===e && pop (push e s)===s)

A possible result of testing propStackL for only 4 combinations of arguments is:
Passed 4 tests

(0,[0,1]): 1 (25%)

(0,[0]): 1 (25%)

(0,[]): 1 (25%)

(1,[]): 1 (25%)

The function classify can, for instance, be used to count the number of empty
stacks occurring in test-data.
propStackC :: Int (Stack Int) -> Property

propStackC e s

= classify (isEmpty s) s (top (push e s) === e && pop (push e s) === s)

A typical result for 200 tests is:
Passed 200 tests

[]: 18 (9%)

7.3 User-defined Test-Data

Gast generates sensible test-data based on the type of the arguments. Some-
times the tester is not satisfied with this behavior. This occurs if very few gen-
erated elements obey the condition of an implication, or cause enormous calcu-
lations, or overflow.

The property propFib below uses the well-known naive definition of the Fi-
bonacci function, fib, as specification. The property states that the value of the
efficient version of this function, fibLin, should be equal to the value of Fib for
non-negative arguments.
fib 0 = 1

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

fibLin n = f n 1 1

where f 0 a b = a

f n a b = f (n-1) b (a+b)

propFib n = n>=0 ==> fib n == fibLin n

One can prevent long computations and overflow by limiting the size of the
argument by an implication. For instance:
propFib n = n>=0 && n<=15 ==> fib n == fibLin n

This is a rather unsatisfactory solution. The success rate of tests in the generated
list of test-values will be low, due to the condition many test results will be
undefined (since the condition of the implication is false). In those situations it
is more efficient if the user specifies the test-values, instead of letting the Gast
generate it. For this purpose the combinator For is defined. The implementation
is very simple using the machinery developed above:

14

(For) infixl 0 :: (x->p) [x] -> Property | Testable p & TestArg x

(For) p list = Prop (forAll p list)

This can for instance be used to test the equivalence of the Fibonacci functions
for all arguments from 0 to 15:
propFibR = propFib For [0..15]

Testing yields Proof: success for all arguments after 16 tests.
The semantics of the For combinator is:

Eval [[λ x. p For list]] = [r|v ← list ; r ← Eval [[(λ x.p) v]]] (23)

8 Related Work

Testing is labor-intensive, boring and error-prone. Moreover, it has to be done
often by software engineers. Not surprisingly, a large number of tools has been
developed to automate testing [2]. See [15] for an (incomplete) overview of exist-
ing tools. Although some of these tools are well engineered, none of them gives
automatic support like Gast does for all steps of the testing process. None of
the other tool is able to generate test-data systematically for arbitrary types
based on the types used in properties.

In the functional programming world there are some related tools. The tool
QuickCheck [3, 4] has similar ambitions as our tool. Distinguishing features of
our tool are: the generic generation of test-data for arbitrary types (instead of
based on a user-defined instance of a class), and the systematic generation of
test-data (instead of random). As a consequence of the systematic generation
of test-data, our system is able to detect that all possible values are tested and
hence the property is proven. Moreover, Gast offers a complete implementation
of first order predicate logic.

Auburn [13] is a tool for automatic benchmarking of functional datatypes.
It is also able to generate some form of test-data, but not in a systematic and
generic way. Since there is no specification of properties, only runtime errors can
be detected.

HUnit [9] is the Haskell variant of JUnit [11] for Java. JUnit defines how to
structure your test cases and provides the tools to run them. It executes the test
defined by the user. Tests are implemented in a subclass of TestCase.

An important area of automatic test generation is testing of reactive sys-
tems, or control-intensive systems. In these systems the interaction with the
environment in terms of stimuli and responses is important. Typical examples
are communication protocols, embedded systems, and control systems. Such sys-
tems are usually modelled and specified using some kind of automaton or state
machine. There are two main approaches for automatic test generation from such
specifications. The first is based on Finite State Machines (FSM), and uses the
theory of checking experiments for Mealy-machines [17]. Several academic tools
exist with which tests can be derived from FSM specifications, e.g., Phact/The
Conformance Kit [18]. Although Gast is able to test properties of an FSM,
checking the actual state requires additional research.

15

The second approach is based on labelled transition systems and emanates
from the theory of concurrency and testing equivalences [19]. Tools for this ap-
proach are, e.g., Tgv [20], TestComposer [21], TestGen [22], and TorX [23,
24]. State-based tools concentrate on the control flow, and cannot usually cope
with complicated data structures. As shown above Gast is able to cope with
these data structures.

9 Discussion

In this paper we introduce Gast, a generic tool to test software. The complete
code, about 600 lines, can be downloaded from www.cs.kun.nl/~pieter. The tests
are based on properties of the software, stated as functions based on first order
predicate logic. Based on the types used in these properties the system gener-
ates automatically test-data in a systematic way, checks the property for these
generated values, and analyzes the results of these tests.

One can define various kind of properties. The functions used to describe
properties are slightly more powerful than first order predicate logic [5]. In our
system we are able to express properties known under names as black-box tests,
algebraic properties, and model based, pre- and post-conditional. Using the abil-
ity to specify the test-data, also user-guided white-box tests are possible.

Based on our experience we indicate four kinds of errors spotted by Gast.
The system cannot distinguish these errors. The tester has to analyze them.

1. Errors in the implementation. The kind of mistakes you expect to find.
2. Errors in the specification. In this situation the tested software also does not

obey the given property. Analysis of the indicated counter example shows
that the specification is wrong instead of the software. Testing improves also
the confidence in the accuracy of the properties

3. Errors caused by the finite precision of the computer used. Especially for
properties involving reals, e.g. propSqrt, this is a frequent problem. In general
we have to specify that the difference between the obtained answer and the
required solution is smaller than some allowed error range.

4. Non-termination or run-time errors. Although the system does not explicitly
handle these errors, the tester notices that the error occurs. Since Gast lists
the arguments before executing the test, the values causing the error are
known. This appears to detect partially defined functions effectively.

The efficiency of Gast is mainly determined by the evaluation of the prop-
erty, not by the generation of data. For instance, on a standard PC the system
generates up to 100,000 integers or up to 2000 lists of integers per second. In our
experience errors pop up rather soon, if they exist. Usually 100 to 1000 tests are
sufficient to be reasonably sure about the validity of a property.

In contrast to proof-systems like Sparkle [12], Gast is restricted to well-
defined and finite arguments. In proof-systems one also investigates the property
for non-terminating arguments, usually denoted as ⊥, and infinite arguments (for
instance a list with infinite length). Although it is possible to generate undefined

16

and infinite arguments, it is impossible to stop the evaluation of the property
when such an argument is used. This is a direct consequence of our decision to
use ordinary compiled code for the evaluation of properties.

Restrictions of our current system are that the types should be known to
the system (it is not possible to handle abstract types by generics); if there
are restrictions on the types used they should be enforced explicitly; and world
access is not supported. In general it is very undesirable when the world (e.g.
the file system on disk) is effected by random tests.

Currently the tester has to indicate that a property has to be tested by
writing an appropriate Start function. In the near future we want to construct
a tool that extracts properties from Clean modules and tests these properties
fully automatically.

Gast is not restricted to testing software written in its implementation lan-
guage, Clean. It is possible to call a function written in some other language
through the foreign function interface, or to invoke another program.

Acknowledgements

Many people have contributed to Gast and this paper. We would like to name
Marko van Eekelen, Maarten de Mol, Peter Achten, and Susan Evens.

References

1. A. Alimarine and R. Plasmeijer A Generic Programming Extension for Clean.
IFL2001, LNCS 2312, pp.168–185, 2001.

2. G. Bernot, M.C. Gaudel, B.Marre: Software Testing based on Formal Specifications:
a theory and a tool, Software Engineering Journal, 6(6), pp 287–405, 1991.

3. K. Claessen, J. Hughes. QuickCheck: A lightweight Tool for Random Testing of
Hasskell Programs. International Conference on Functional Programming, ACM,
pp 268–279, 2000. See also www.cs.chalmers.se/~rjmh/QuickCheck.

4. K. Claessen, J. Hughes. Testing Monadic Code with QuickCheck, Haskell Work-
shop, 2002.

5. M. van Eekelen, M. de Mol: Reasoning about explicit strictness in a lazy lan-
guage using mixed lazy/strict semantics, Draft proceedings IFL2002, Report 127-
02, Computer Science, Universidad Complutense de Madrid, pp 357–373, 2002.

6. R. Hinze and J. Jeuring. Generic Haskell: Practice and Theory, Summer School
on Generic Programming, 2002.

7. R. Hinze, and S. Peyton Jones Derivable Type Classes, Proceedings of the Fourth
Haskell Workshop, Montreal Canada, 2000.

8. Hinze, R. Polytypic values possess polykinded types, Fifth International Conference
on Mathematics of Program Construction, LNCS 1837, pp 2–27, 2000.

9. HUnit home page: hunit.sourceforge.net
10. S. Peyton Jones, J. Hughes: Report on the programming language Haskell 98 – A

Non-strict, Purely Functional Language, 2002 www.haskell.org/onlinereport.
11. JUint home page: junit.sourceforge.net
12. M. de Mol, M. van Eekelen, R. Plasmeijer. Theorem Proving for Functional Pro-

grammers, , LNCS 2312, pp 55–72, 2001. See also www.cs.kun.nl/Sparkle.

17

13. Graeme E. Moss and Colin Runciman. Inductive benchmarking for purely func-
tional data structures, Journal of Functional Programming, 11(5): pp 525–556,
2001. Auburn home page: www.cs.york.ac.uk/fp/auburn

14. Rinus Plasmeijer and Marko van Eekelen: Concurrent Clean Language Report (ver-
sion 2.0), 2002. www.cs.kun.nl/~clean.

15. Maurice Siteur: Testing with tools–Sleep while you are working. See also
www.siteur.myweb.nl.

16. J. Tretmans, K. Wijbrans, M. Chaudron: Software Engineering with Formal Meth-
ods: The development of a storm surge barrier control system–revisiting seven
myths of formal methods, Formal Methods in System Design, 19(2) pp 195–215,
2001.

17. D. Lee, and M. Yannakakis, M Principles and Methods for Testing Finite State
Machines– A Survey, The Proceedings of the IEEE, 84(8), pp 1090-1123, 1996.

18. L. Feijs, F. Meijs, J. Moonen, J. Wamel Conformance Testing of a Multimedia
System Using PHACT in Workshop on Testing of Communicating Systems 11 pp
193–210, 1998.

19. E. Brinksma, J. Tretmans Testing Transition Systems: An Annotated Bibliog-
raphy”, in Modeling and Verification of Parallel Processes–4th Summer School
MOVEP 2000 LNCS 2067, pp 186-195, 2001.

20. J. Fernandez, C. Jard, T. Jéron, C. Viho Using On-the-Fly Verification Techniques
for the generation of test suites, LNCS 1102, 1996.

21. A. Kerbrat, T. Jéron, R. Groz Automated Test Generation from SDL Specifications,
in SDL’99, The Next Millennium–Proceedings of the 9th SDL Forum, pp 135–152,
1999.

22. J. He, K. Turner Protocol-Inspired Hardware Testing, in Int. Workshop on Testing
of Communicating Systems 12 pp 131–147, 1999.

23. A. Belinfante, J. Feenstra, R. Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,
L. Heerink Formal Test Automation: A Simple Experiment, in Int. Workshop on
Testing of Communicating Systems 12 pp 179-196, 1999”.

24. J. Tretmans, E. Brinksma Côte de Resyste – Automated Model Based Testing, in
Progress 2002 – 3rd Workshop on Embedded Systems, pp 246–255, 2002.

