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Abstract. Deforestation was introduced to eliminate intermediate data
structures used to connect separate parts of a functional program to-
gether. Fusion is a more sophisticated technique, based on a producer-
consumer model, to eliminate intermediate data structures. It achieves
better results. In this paper we extend this fusion algorithm by refin-
ing this model, and by adding new transformation rules. The extended
fusion algorithm is able to deal with standard deforestation, but also
with higher-order function removal and dictionary elimination. We have
implemented this extended algorithm in the Clean 2.0 compiler.

1 Introduction

Static analysis techniques, such as typing and strictness analysis are crucial
components of state-of-the-art implementations of lazy functional programming
languages. These techniques are employed to determine properties of functions
in a program. These properties can be used by the programmer and also by
the compiler itself. The growing complexity of functional languages like Haskell
[Has92] and Clean [Cle13,Cle20] requires increasingly sophisticated methods for
translating programs written in these languages into efficient executables. Often
these optimization methods are implemented in an ad hoc manner: new language
features seem to require new optimization techniques which are implemented
simultaneously, or added later when it is noticed that the use of these features
leads to inefficient code. For instance, type classes require the elimination of
dictionaries, monadic programs introduce a lot of higher-order functions that
have to be removed, and the intermediate data structures that are built due to
function composition should be avoided.

In Clean 1.3 most of these optimizations were implemented independently.
They also occurred at different phases during the compilation process making
it difficult to combine them into a single optimization phase. The removal of
auxiliary data structures was not implemented at all.

This paper describes the combined method that has been implemented in
Clean 2.0 to perform various optimizations. This method is based on Chin’s
fusion algorithm [Chin94], which in its turn was inspired by Wadler’s deforesta-
tion algorithm [Wad88,Fer88]. The two main differences between our method
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and Chin’s fusion are (1) we use a more refined analysis to determine which
functions can safely be fused, and (2) our algorithm has been implemented as
part of the Clean 2.0 compiler which makes it possible to measure its effect on
real programs (See Section 6).

The paper is organized as follows. We start with a few examples illustrating
what types of optimizations can be performed (Section 2). In Section 3 we explain
the underlying idea for deforestation. Section 4 introduces a formal language
for denoting functional programs. In Section 5 we present our improved fusion
algorithm and illustrate this algorithm with a few example programs (Section
6). We conclude with a discussion of related work (Section 7) and future research
(Section 8).

2 Overview

This section gives an overview of the optimizations that are performed by our
improved fusion algorithm. Besides traditional deforestation, we illustrate so-
called dictionary elimination and general higher-order function removal. We also
indicate the ‘pitfalls’ that may lead to non-termination or to duplication of work,
and present solutions to avoid these pitfalls.

The transformation rules of the fusion algorithm are defined by using a core
language (Section 4). Although there are many syntactical differences between
the core language and Clean we distinguish these languages more explicitly
by using a sans serif style for core programs and a typewriter style for Clean

programs.

2.1 Deforestation

The following example is given in both [Chin94] and [Wad88]. It elegantly shows
that a programmer no longer needs to worry about annoying questions such as
“Which of the following two expressions is more efficient?”

append(append(a, b), c) or append(a, append(b, c))

where append is defined as

append(f, t) = case f of

Nil | t
Cons(x, xs) | Cons(x, append(xs, t))

Experienced programmers almost automatically use the second expression, but
from a more abstract point of view there seems to be no difference.

Deforestation as well as fusion will transform the left expression into the
expression app app(a, b, c) and introduce a new function in which the two appli-
cations of append are combined:

app app(a, b, c) = case a of

Nil | append(b, c)
Cons(x, xs) | Cons(x, app app(xs, b, c))



Transforming the right expression introduces essentially the same function
both using Wadler’s deforestation and by Chin’s fusion. However, this saves only
one evaluation step compared to the original expression at the cost of an extra
function. Our fusion algorithm transforms the left expression just as deforesta-
tion or fusion would, but it leaves the right expression unchanged.

The major difficulty with this kind of transformation is to determine which
applications can be fused (or deforested) safely. Without any precautions there
are many situations in which the transformation will not terminate. Therefore
it is necessary to formulate proper criteria that, on the one hand, guarantee
termination, and on the other hand, do not reject too many fusion candidates.
Besides termination, there is another problem that has to be dealt with: the
transformation should not introduce repeated computations, by duplicating re-
dexes. We will have a closer look at non-termination and redex duplication in
Section 5.

2.2 Type classes and dictionary removal

Type classes are generally considered to be one of the most powerful concepts of
functional languages. Firstly, type classes allow the language designer to support
its implementation with a collection of libraries in which it is no longer necessary
to use different names for conceptually the same operations. Secondly, it eases the
definition of auxiliary operations on complex data structures. Both advantages
are illustrated with the following example in which an instance of equality for
lists is declared. Here we use the Clean syntax (deviating slightly from the
Haskell notation).

instance == [a] | == a

where

(==) [] [] = True

(==) [x:xs] [y:ys] = x == y && xs == ys

(==) _ _ = False

With type classes one can use the same name (==) for defining equality over all
kinds of different types. In the body of an instance one can use the overloaded
operation itself to compare substructures, i.e. it is not necessary to indicate
the difference between both occurrences of == in the right-hand side of the
second alternative. The translation of such instances into ‘real’ functions is easy:
Each context restriction is converted into a dictionary argument containing the
concrete version of the overloaded class. For the equality example this leads to

eqList eq [] [] = True

eqList eq [x:xs] [y:ys] = eq x y && eqList eq xs ys

eqList eq _ _ = False

An application of == to two lists of integers, e.g. [1,2] == [1,2], is replaced
by an expression containing the list version of equality parameterized with the
integer dictionary of the equality class, eqList eqInt [1,2][1,2].



Applying this simple compilation scheme introduces a lot of overhead which
can be eliminated by specializing eqList for the eqInt dictionary as shown
below

eqListeqInt [] [] = True

eqListeqInt [x:xs] [y:ys] = eqInt x y && eqListeqInt xs ys

eqListeqInt _ _ = False

In Clean 1.3 the specialization of overloaded operations within a single module
was performed immediately, i.e. dictionaries were not built at all, except for
some rare, exotic cases. These exceptions are illustrated by the following type
declaration (taken from [Oka98])

:: Seq a = Nil | Cons a (Seq [a])

Defining an instance of == is easy, specializing such an instance for a concrete
element type cannot be done. The compiler has to recognize such situations in
order to avoid an infinite specialization loop.

In Clean 2.0 specialization is performed by the fusion algorithm. The han-
dling of infinite specialization does not require special measures as the functions
involved will be marked as unsafe by our fusion analysis. Moreover dictionaries
do not contain unevaluated expressions (closures), so copying dictionaries can
never duplicate computations. This means that certain requirements imposed by
the fusion algorithm can be realxed for dictionaries.

2.3 Higher-order function removal

Although dictionary elimination can be seen as a form of higher-order function
removal, we describe these optimizations separately. A straightforward treat-
ment of higher-order functions introduces overhead both in time and space. E.g.
measurements on large programs using a monadic style of programming show
that such overhead can be large; see section 6.3.

In [Wad88] Wadler introduces higher-order macros to elimate some of this
overhead but this method has one major limitation: these macros are not con-
sidered first class citizens. Chin has extended his fusion algorithm so that it is
able to deal with higher-order functions. We adopt his solution with some minor
refinements.

So called accumulating parameters are a source of non-termination. Consider
the following function definitions:

twice f x = f (f x)

f g = f (twice g)

The parameter of f is accumulating: the argument in the recursive call of f is
‘larger’ than the original argument. Trying to fuse f with inc (for some producer
inc) in the application f inc will lead to an a new application of the form f



twice inc. Fusing this one leads to the expression f twice twice inc and so
on.

Partial function applications should also be treated with care. At first one
might think that it is safe to fuse an application f (g E) in which the arity of f
is greater than one and the subexpression g E is a redex. This fusion will combine
f and g into a single function, say f g, and replace the original expression by f g

E. This, however, is dangerous if the original expression was shared, as shown
by the following function h:

h = z 1 + z 2

where z = f (g E)

This function is not equivalent to the version in which f and g have been fused:

h = z 1 + z 2

where z = f_g E

Here the computation encoded in the body of g will be performed twice, as
compared to only once in the original version.

2.4 Optimizing generic functions

Generic programming allows the programmer to write a function once and use
it for different types. It relieves the programmer from having to define new
instances of common operations each time he declares a new data type. The idea
is to consider types as being built up from a small fixed set of type constructors
and to specify generic operations in terms of these constructors. In Clean 2.0,
for example, one can specify all instances of equality by just a few lines of fairly
obvious code:

generic eq a :: a a -> Bool

eq{|UNIT|} x y = True

eq{|PAIR|} eqx eqy (PAIR x y)(PAIR x’ y’) = eqx x x’ && eqy y y’

eq{|EITHER|} eql eqr (LEFT l) (LEFT l’) = eql l l’

eq{|EITHER|} eql eqr (RIGHT r) (RIGHT r’) = eqr r r’

eq{|EITHER|} eql eqr _ _ = False

Here UNIT, PAIR and EITHER are the fixed generic types. With the aid of this
generic specification, the compiler is able to generate instances for any algebraic
data type. The idea is to convert an object of such a data type to its generic
representation (this encoding follows directly from the definition of the data
type), apply the generic operation to this converted object and, if necessary,
convert the object back to a data type. For a comprehensive description of how
generics can be implemented, see [Ali01] or [Hin00].

Without any optimizations one obtains operations which are very inefficient.
The conversions and the fact that generic functions are higher-order functions
(e.g. the instance of eq for PAIR requires two functions as arguments, eqx and



eqy) introduce a lot of overhead. It appears that the combined data and higher-
order fusion is sufficient to get rid of all intermediate data and all higher-order
calls leading to specialized operations that are as efficient as the hand coded
versions. To achieve this, only some minor extensions of the original fusion al-
gorithm were needed.

3 Introduction to fusion

The underlying idea for transformation algorithms like Wadler’s deforestation
or Chin’s fusion is to combine nested applications of functions of the form
F (. . . , G ~E, . . .)1 into a single application F + G(. . . , ~E, . . .), by performing a
sequence of unfold steps of both F and G. Of course, if one of the functions
involved is recursive this sequence is potentially infinite. To avoid this it is nec-
essary that during the sequence of unfold steps an application is reached that
has been encountered before. In that case one can perform the crucial fold step.
But how do we know that we will certainly reach such an application?

Wadler’s solution is to define the notion of treeless form. If the above F and
G are treeless it is guaranteed that no infinite unfolding sequences will occur.
However, Wadler does not distinguish between F and G. Chin recognizes that
the roles of these functions in the fusion process are different. He comes up with
the so called producer-consumer model: F plays the role of consumer, consuming
data through one of its arguments, whereas G acts as a producer, producing data
via its result. Separate safety criteria can then be applied for the different roles.

Although Chin’s criterion indicates more fusion candidates than Wadler’s,
there are still cases in which it appears to be too restrictive. To illustrate these
shortcomings we first repeat Chin’s notion of safety: A function F is a safe
consumer in its ith argument if all recursive calls of F have either a variable or
a constant on the ith parameter position, otherwise it is accumulating in that
argument. A function G is a safe producer if none of its recursive calls appears
on a consuming position.

One of the drawbacks of the safety criterion for consumers is that it indi-
cates too many consuming parameters, and consequently it limits the number
of producers (since the producer property negatively depends on the consumer
property). As an example, consider the following definition for flatten:

flatten(l) = case l of

Nil | Nil

Cons(x, xs) | append(x, flatten(xs))

According to Chin, the append function is consuming in both of is arguments.
Consequently, the flatten function is not a producer, for, its recursive call appears
on a consuming position of append. Wadler will also reject flatten because its
definition is not treeless.

1 We write ~E as shorthand for (E1, . . . , En)



In our definition of consumer we will introduce an auxiliary notion, called
active arguments, that filters out the arguments that will not lead to a fold step,
like the second argument of append. If append is no longer consuming in its
second argument, flatten becomes a decent producer.

Chin also indicates superfluous consuming arguments when we are not deal-
ing with a single recursive function but with a set of mutually recursive functions.
To illustrate this, consider the unary functions f and g being mutually recursive
as follows:

f(x) = g(x)
g(x) = f(h(x))

Now f is accumulating and g is not (e.g. g’s body contains a call to f with
an accumulating argument whereas f’s body just contains a simple call to g).
Although g is a proper consumer, it makes no sense to fuse an application of g

with a producer, for this producer will be passed to f but cannot be fused with f.
Again no fold step will take place. By considering g as consuming, any function
of which the recursive call appears as an argument of g will be rejected as a
producer. There is no need for that, and therefore we indicate both f and g as
non-consuming.

4 Syntax

We will focus on program transformations in functional programming languages
by describing a ‘core language’ capturing the essential aspects such as pattern
matching, sharing and higher-order functions.2

Functional expressions are built up from applications of function symbols F

and data constructors C.

Pattern matching is expressed by a construction case · · · of · · ·. In function
definitions, one can express pattern matching with respect to one argument
at a time. This means that compound patterns are decomposed into nested
(‘sequentialized’) case expressions.

Sharing of objects is expressed by a let construction and higher-order appli-
cations by an @.

We do not allow functions that contain case expressions as nested subexpres-
sions on the right-hand side, i.e. case expressions can only occur at the outermost
level. And as in [Chin94], we distinguish so called g-type functions (starting with
a single pattern match) and f -type functions (with no pattern match at all).

2 We leave out the treatment of dictionaries because it very much resembles the way
other constructs are analyzed and transformed.



Definition 1. (i) The set of expressions is defined by the following grammar.
Below, x ranges over variables, C over constructors and F over function symbols.

E ::= x

|| C(E1, . . . , Ek)
|| F (E1, . . . , Ek)

|| let ~x = ~E in E′

|| case E of P1|E1 . . . Pn|En

|| E @ E′

P ::= C(x1, . . . , xk)

(ii) The set of free variables (in the obvious sense) of E is denoted by FV(E).
An expression E is said to be open if FV(E) 6= ∅, otherwise E is called closed.

(iii) A function definition is an equation of the form

F (x1, . . . , xk) = E

where all the xi’s are disjoint and FV(E) ⊆ {x1, . . . , xk}.

The semantics of the language is call-by-need.

5 Fusion Algorithm

5.1 Consumers

We say that an occurrence of variable x in E is active if x is either a pattern
matching variable (case x of . . .), a higher-order variable (x @ . . .), or x is used
as an argument on an active position of a function. The idea is to define the
notion of ‘active occurrence’ actocc(x, E) and ‘active position’ act(F )i simulta-
neously as the least solution of some predicate equations.

Definition 2. (i) The predicates actocc and act are specified by mutual in-
duction as follows.

actocc(x, y) = true, if y = x

= false, otherwise

actocc(x, F ~E) = true, if for some i: Ei = x ∧ act(F )i

=
∨

i actocc(x, Ei), otherwise

actocc(x, C ~E) =
∨

i actocc(x, Ei)
actocc(x, case E of . . . Pi|Ei . . .) = true, if E = x

=
∨

i actocc(x, Ei), otherwise

actocc(x, let ~x = ~E in E′) = actocc(x, E′) ∨
∨

i actocc(x, Ei)
actocc(x, E @ E′) = true, if E = x

= actocc(x, E) ∨ actocc(x, E ′), otherwise

Moreover, for each function F , defined by F~x = E

act(F )i ⇔ actocc(xi, E)



(ii) We say that F is active in argument i if act(F )i is true.

The notion of accumulating parameter is borrowed from [Chin94] and slightly
modified.

Definition 3. Let F1, . . . , Fn be a set of mutually recursive functions with re-
spective right-hand sides E1, . . . , En. The function Fj is accumulating in its ith

parameter if either

(1) there exists a right-hand side Ek containing an application Fj(. . . , E
′

i, . . .) in
which E′

i is open and not just an argument or a pattern variable, or

(2) the right-hand side of Fj , Ej , contains an application Fk(. . . , E′

l , . . .) such
that E′

l = xi and Fk is accumulating in l.

The first requirement corresponds to Chin’s notion of accumulating parameter.
The second requirement will prevent functions that recursively depend on other
accumulating functions from being regarded as non-accumulating. Combining
active and accumulating leads to the notion of consuming.

Definition 4. A function F is consuming in its ith parameter if it is both non-
accumulating and active in i.

5.2 Producers

The notion of producer is also taken from [Chin94] again with a minor adjustment
to deal with constructors.

Definition 5. Let F1, . . . , Fn be a set of mutually recursive functions. These
functions are called producers if none of their recursive calls (in the right-hand
sides of their definitions) occurs on a consuming position.

An application of S e.g. S(E1, . . . , Ek) is a producer if:

1. arity(S) > k, or

2. S is a constructor

3. S is a producer function

5.3 Linearity

The notion of linearity is identical to that used by Chin.

Definition 6. Let F be a function with definition F (x1, . . . , xn) = E. The func-
tion F is linear in its ith parameter if

(1) F is an f -type function and xi occurs at most once in E, or

(2) F is a g-type function and xi occurs at most once in each of the branches of
the top-level case.



5.4 Transformation rules

Our adjusted version of the fusion algorithm consists of one general transfor-
mation rule, dealing with all expressions, and three auxiliary rules for function
applications, higher-order application, and for case expressions. The idea is that
during fusion both consumer and producer have to be unfolded and combined.
This combination forms the body of the newly generated function. Sometimes
however, it appears to be more convenient if the unfold step of the consumer
could be undone, in particular if the consumer and the producer are both g-type
functions. For this reason we supply some of the case expressions with the func-
tion symbol to which it corresponds (caseF ). Note that this correspondence is
always unique because g-type functions contain exactly one case on their right-
hand side.

We use F+iS as a name for the function that results from fusing F that
is consuming in its ith argument, with producer S. Suppose F is defined as
F~x = E. Then the resulting function is defined, distinguishing three cases

1. S is a fully applied function and F is a g-type function: the resulting function
consists of the unfoldings of F and S. The top-level case is annotated.

2. S is a partially applied function or F is a f -type function: the resulting
function consists of the unfolding of F with the application of S substituted
for formal argument i.

3. S is a constructor (either fully or partially applied): the resulting function
consists of the unfolding of F with the application of S substituted for formal
argument i.

Definition 7. Rules for introducing new functions.

F+iG(x1, . . . , xi−1, y1, . . . , ym, xi+1, . . . , xn)
= T JE[E′/xi]K, if arity(G) = m and F is a g-type function

where G~y = E′

= T JE[G(y1, . . . , ym)/xi]K, otherwise
F+iC(x1, . . . , xi−1, y1, . . . , ym, xi+1, . . . , xn)

= T JE[C(y1, . . . , ym)/xi]K

F+(x1, . . . , xn, x)
= T JRxJEKK

RyJxK
= x @ y

RyJF (E1, . . . , En)K
= F (E1, . . . , En, y), if arity(F ) > n
= F (E1, . . . , En) @ y, otherwise

RyJlet ~x = ~E in E′K

= let ~x = ~E in RyJE′K
RyJcase E of . . . Pi|Ei . . .K

= case E of . . . Pi|RyJEiK . . .
RyJE @ E′K

= (E @ E′) @ y



Note that we generate each F+iS only once. We use F + as a name for the
function that results from raising the arity of F by one.

Definition 8. Transformation rules for first and higher-order expressions

T JxK = x

T JC ~EK = CT J ~EK

T JF ~EK = FJFT J ~EKK
T Jcase E of . . . Pi|Ei . . .K = CJcase T JEK of . . . Pi|Ei . . .K

T Jlet ~x = ~E in E′K = let ~x = T J ~EK in T JE′K
T JE @ E′K = HJT JEK @ T JE′KK

T J ~EK = (T JE1K, . . . , T JEnK)

FJF (E1, . . . , Ei, . . . , Em)K
= FJF+iS(E1, . . . , Ei−1, E

′

1, . . . , E
′

n, Ei+1 . . . , Em)K,
if: for some i with Ei = S(E′

1, . . . , E
′

n)
1) F is consuming in i
2) S(E′

1, . . . , E
′

n) is a producer
3) F is linear in i if arity(S) = n
or
1) F is both consuming and linear in i
2) arity(F ) = m and arity(S) = n
3) S(E′

1, . . . , E
′

n) has a higher order type
= F (E1, . . . , Ei, . . . , Em), otherwise

HJC(E1, . . . , Ek) @ EK = C(E1, . . . , Ek, E)
HJF (E1, . . . , Ek) @ EK = FJF (E1, . . . , Ek, E)K, if arity(F ) > k

= FJF+(E1, . . . , Ek, E)K, otherwise

CJcaseF G(E1, . . . , En) of . . .K
= FJF (x1, . . . , xi−1, G(E1, . . . , En), xi+1, . . . , xn)K

where
F (x1, . . . , xn) = case xi of . . .

CJcaseF Ci(E1, . . . , En) of . . . Ci(x1, . . . , xn)|E′

i . . .K
= T JE′

i[E1/x1, . . . , En/xn]K
CJcaseF (case E of . . . Pi|E

′

i . . .) of . . .K
= case T JEK of . . . Pi|E

′′

i . . .
where E′′

i = FJF (x1, . . . , xi−1, T JE′

iK, xi+1, . . . , xn)K3

and
F (x1, . . . , xn) = case xi of . . .

CJcaseF x of . . . Pi|Ei . . .K = caseF x of . . . Pi|T JEiK . . .

3 A minor improvement here is obtained by examining the expression E ′

i. If this ex-
pression starts with a constructor, it is better to perform the pattern match instead
of undoing the unfold step of F .



6 Examples

We now present a few examples of fusion using the adjusted transformation rules.

6.1 Deforestation

We start with a rather trivial example involving the functions Append, Flatten

and Reverse. The first two functions have been defined earlier. We will use three
different versions of Reverse to illustrate the effect of alternative, but equivalent,
function definitions on the fusion result. The applications being fused are the
right-hand sides of the functions called test1, test2, and test3.

The first definition of Reverse uses a helper function with an explicit accu-
mulator:

Reverse1(l) = Rev(l, Nil)

Rev(l, a) = case l of

Nil | a
Cons(x, xs) | Rev(xs, Cons(x, a))

test1(l) = Reverse1(Flatten(l))

The result of applying the transformation rules to the function test1 is shown
below. To make the description less baroque we have left out the + and subscript
in the names of the combined functions.

test1(l) = Reverse1Flatten(l)

Reverse1Flatten(l) = RevFlatten(l, Nil)

RevFlatten(l, r) = case l of

Nil | r
Cons(x, xs) | RevAppendFlatten(x, xs, r)

RevAppendFlatten(xs, l, r)
= case xs of

Nil | RevFlatten(l, r)
Cons(x, xs) | RevAppendFlatten(xs, l, Cons(x, r))

The transformation steps that were needed to achieve part of this result are:

T JReverse1(Flatten(l))K
= FJReverse1(Flatten(l))K
= Reverse1Flatten(l)

Reverse1Flatten(l)
= T JRev(Flatten(l), Nil)K
= RevFlatten(l, Nil)



RevFlatten(l, r)
= CJ case





case l of

Nil | Nil

Cons(x, xs) | Append(x, Flatten(xs))





of

Nil | r
Cons(x, xs) | Rev(xs, Cons(x, r))K

= case l of

Nil | r4

Cons(x, xs) | FJRev(Append(x, Flatten(xs)), r)K
= case l of

Nil | r
Cons(x, xs) | FJRevAppend(x, Flatten(xs)), r)K

= case l of

Nil | r
Cons(x, xs) | FJRevAppendFlatten(x, xs, r)K

The generation of RevAppendFlatten out of RevAppend and Flatten proceeds in
the same way.

The second definition of Reverse uses the standard higher-order foldl function:

Reverse2(l) = Foldl(Snoc, Nil, l)

Foldl(f, r, l) = case l of

Nil | r
Cons(x, xs) | Foldl(f, (f @ r) @ x, xs)

Snoc(xs, x) = Cons(x, xs)

test2(l) = Reverse2(Flatten(l))

Transforming test2 results in two mutually recursive functions that are, except
for the order of the parameters, identical to the auxiliary functions RevFlatten

and RevAppendFlatten generated by the transformation of test1.
Fusion appears to be much less successful if the following direct definition of

Reverse is used:

Reverse3(l) = case l of

Nil | Nil

Cons(x, xs) | Append(Reverse3(xs), Cons(x, Nil))

test3(l) = Reverse3(Flatten(l))

When transforming test3 again Reverse3 will be combined with Flatten but the
fact that Reverse3 itself is not a producer (the recursive occurrence of this func-
tion appears on a consuming position), will prevent the combined right-hand
side from being deforested completely.

4 Here we have applied the optimization step that was suggested in the footnote of
definition 8.



In general combinations of standard list functions (except for accumulating
functions, such as Reverse), e.g.

Sum(Map Inc(Map Inc(Take(n, Repeat(1)))))

are transformed into a single function that generates no list at all and that does
not contain any higher-order function applications.

6.2 Generics

Generic functions are translated into real functions in three steps. The first step,
taking place before type checking, converts the generic specifications into class
definitions and instances of those classes.5 Furthermore, conversion functions (so-
called bidirectional mappings) are generated to convert the function arguments
and result to and from the generic representation.

The second translation step takes place during type checking: all overloading
is resolved and replaced by appropriate dictionaries.

Finally, the overhead introduced by dictionaries, higher-order functions and
by using the generic representations is removed by the fusion algorithm. For an
in-depth description we refer to [Ali01]. Here, we briefly illustrate fusion with
the aid of the example mentioned in the introduction. Suppose we have used
the instance of equality for lists of integers, called eqListInt. This function can
be directly expressed in terms of the library function eqInt, for comparing two
integers, and the function eqList, for comparing lists. The latter is generated
according to the generic specification of equality. The result is shown below:

eqListInt l1 l2 = eqList eqInt l1 l2

eqList eqa x y = fromBM (bimapEq isoList) (eqListG eqa) x y

The bidirectional mapping bimapEq isoList converts a function of type [a]

-> [a] -> Bool to and from a function of type GList a -> GList a -> Bool,
where GList denotes the generic list type. In this example we need the ‘from’
version selected by fromBM. The function eqListG is defined directly in terms
of the user defined instances of equality for the generic type constructors. The
structure of the list type itself determines how these user defined instances are
combined.

eqListG eqa = eqEITHER eqUNIT (eqPAIR eqa (eqList eqa))

The complete program contains nearly twenty auxiliary operations that are used
to define bimapEq and isoList. There is no need to say that, without any further
optimizations, operations defined in this way are very inefficient. It is pointless
to show all fusion steps that were performed in order to obtain the optimized

5 Currently the programmer has to specify for which types an instance is wanted. We
could also generate instances lazily, i.e. when the compiler detects that a certain
instance is required. For technical reasons this appears to be difficult.



result: it appears that no less than 70 intermediate functions were generated.
However, most of these become obsolete after the fusion process. After removing
these superfluous functions we end up with the following result where the names
of the generated functions give some information about the functions that were
combined.

eqListeqInt x y =

eqEITHEReqUNITeqPAIReqListeqInteqIntmapListTomapListTo x y

eqEITHEReqUNITeqPAIReqListeqInteqIntmapListTomapListTo l1 l2 =

case l1 of

Nil = eqEITHERLEFTeqUNITUNITmapListTo l2

Cons x xs

= eqEITHERRIGHTeqPAIReqListeqInteqIntPAIRmapListTo x xs l2

eqEITHERLEFTeqUNITUNITmapListTo l =

case l of

Nil = True

Cons x xs

= False

eqEITHERRIGHTeqPAIReqListeqInteqIntPAIRmapListTo y ys l =

case l of

Nil = False

Cons x xs

= eqPAIR2eqListeqInteqIntPAIR y ys x xs

eqPAIR2eqListeqInteqIntPAIR y ys x xs =

And (Equal x y) (eqListeqInt xs ys)

This result is essentially the same as any efficient hand written program.

6.3 Self-application

As a practical test of the effectiveness of the adjusted fusion algorithm we com-
pared the memory allocation and speed of a Clean 2.0 compiler generated with
fusion enabled with that of the same compiler generated without fusion. In both
cases specialization of overloaded functions (i.e. dictionary removal) was enabled.

The fused compiler compiled its own code approximately 5 percent faster,
and 10 percent less memory was allocated relative to the non-fused compiler.
These improvements were almost entirely caused by better optimization of a
few modules that use a monadic style, and not by removal of intermediate data
structures using deforestation. Note that generics are not used inside the com-
piler.

In one of these modules all curried function applications introduced by the
monadic style were eliminated. Due to these optimizations the module executed
25 percent faster and allocated 50 percent less memory.

However in the most expensive module using a monadic style only 70 percent
of the curried function applications were eliminated. This improved the execution
speed 30 percent and the memory allocation 50 percent.



It should be possible to remove nearly all these curried function applications.
The current algorithm is not able to do this, because some functions that are
called with a higher order function as argument are not optimized, because the
argument is accumulating.

This happens also in the following example:

add :: Int Int -> Int

add a b = a+b

f :: [Int] Int -> Int

f [e:l] s = g (add e) l s

f [] s = s

g :: (Int -> Int) [Int] Int -> Int

g h l s = f l (h s)

The argument h of the function g is accumulating because g is called with (add

e) as argument, therefore g is not fused with (add e). In this case it would be
safe to fuse.

This limitation prevents the compiler from removing nearly all the remaining
curried function applications from the above mentioned module. However, if a
call f (g x), for some functions f and g, appears in a program, the argument of
the function f does not always have to be treated as an accumulating argument.
This is the case when the argument of g is always the same or does not grow
in the recursion. By recognizing such cases we hope to optimize most of the
remaining curried function applications. Or instead, we could fuse a limited
number of times in these cases, to make the fusion algorithm terminate.

Another example of curried applications in this module that cannot be op-
timized are foldl calls that yield a higher order function. Such a higher order
function occurs at an accumulating argument position in the foldl call, and can
therefore not be fused.

7 Related Work

Gill, Launchbury, and Peyton Jones [Gil93] use a restrictive consumer producer
model by translating list functions into combinations of the primitive functions
fold (consumer) and build (producer). This idea has been generalized to arbitrary
data structures by Fegaras, Sheard and Zhou [Feg94], and also by Takano and
Meijer [Tak95]. The approach of the latter is based on the category theoreti-
cal notion of hylomorphism. These hylomorphisms are the building blocks for
functions. By applying transformation rules one can fuse these hylomorphisms
resulting in deforested functions. These methods are able to optimize programs
that cannot be improved by traditional deforestation. In particular, programs
that contain reverse-like producers, i.e. producer functions with accumulators
as arguments. On the other hand, Gill ([Gil96]) also shows some examples of



functions that are deforested by the traditional method and not by these tech-
niques. However, the main problem with these approaches is that they require
that functions are written in some fixed format. Although for some functions
this format can be generated from their ordinary definitions it is unclear how to
do this automatically in general.

Peyton Jones and Marlow give a solid overview of the issues involved in trans-
forming lazy functional programs in their paper in the related area of inlining
[Pey99]. Specifically they identify code duplication, work duplication, and the
uncovering of new transformation opportunities as three key issues to take into
account.

Seidl and Sørensen [Sei97] develop a constraint-based system in an attempt
to avoid the restrictions imposed by the purely syntactical approach used in the
treeless approach to deforestation as used by Wadler and Marlow. Their analysis
is a kind of abstract interpretation with which deforestation is approximated.
This approximation results in a number of conditions on subterms and variables
appearing in the program/function. If these conditions are met, it is guaranteed
that deforestation will terminate. For instance, by using this more refined method
the example program at the end of section 6.3 would be indicated as being safe.

Deforestation is also implemented in the compiler for the logic/functional
programming language Mercury. To ensure termination of the algorithm a stack
of unfolded calls is maintained, recursive calls can be unfolded only when they
are smaller than the elements on the stack. This ordering is based on the sizes
of the instantation tree of the arguments of a call. Accumulating parameters are
removed from this sum of sizes. For details see [Tay98]. Our fusion algorithm
can optimize some programs which the Mercury compiler does not optimize, for
example Reverse1Flatten from section 6.1

8 Conclusion

The original fusion algorithm has been extended and now combines deforestation
together with dictionary elimination and higher-order removal. This adjusted
algorithm has been implemented in the Clean 2.0 compiler allowing for tests
on real-world applications. Initial results indicate that the main benefits are
achieved for specialised features such as type classes, generics, and monads rather
than in ‘ordinary’ code.

Further work remains to be done in the handling of accumulating parame-
ters. Marlow presents a higher-order deforestation algorithm in his PhD thesis
[Mar95] which builds on Wadler’s original first-order deforestation scheme. A
full comparison with the algorithm presented here remains to be done. Finally
a formal proof of termination would be reassuring to have.
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