
When Generic Functions Use Dynamic Values

Peter Achten, Artem Alimarine, and Rinus Plasmeijer

Computing Science Department, University of Nijmegen, 1 Toernooiveld, 6525 ED,
Nijmegen, The Netherlands

Abstract. Dynamic types allow strongly typed programs to link in ex-
ternal code at run-time in a type safe way. Generic programming allows
programmers to write code schemes that can be specialized at compile-
time to arguments of arbitrary type. Both techniques have been inves-
tigated and incorporated in the pure functional programming language
Clean. Because generic functions work on all types and values, they are
the perfect tool when manipulating dynamic values. But generics rely
on compile-time specialization, whereas dynamics rely on run-time type
checking and linking. This seems to be a fundamental contradiction.
In this paper we show that the contradiction does not exist. From any
generic function we derive a function that works on dynamics, and that
can be parameterized with a dynamic type representation. Programs that
use this technique combine the best of both worlds: they have concise
universal code that can be applied to any dynamic value regardless of
its origin. This technique is important for application domains such as
type-safe mobile code and plug-in architectures.

1 Introduction

In this paper we discuss the interaction between two recent additions to the
pure, lazy, functional programming language Clean 2.0(.1) [5, 10, 14]:

Dynamic types Dynamic types allow strongly typed programs to link in ex-
ternal code (dynamics) at run-time in a type safe way. Dynamics can be
used anywhere, regardless from the module or even application that created
them. Dynamics are important for type-safe applications with mobile code
and plug-in architectures.

Generic programming enables us to write general function schemes that work
for any data type. From these schemes the compiler can derive automatically
any required instance of a specific type. This is possible because of Clean’s
strong type system. Generic programs are a compact way to elegantly deal
with an important class of algorithms. To name a few, these are comparison,
pretty printers, parsers.

In order to apply a generic function to a dynamic value in the current sit-
uation, the programmer should to do an exhaustive type pattern-match on all
possible dynamic types. Apart from the fact that this is impossible, this is at

odds with the key idea of generic programming in which functions do an exhaus-
tive distinction on types, but on their finite (and small) structure.

One would imagine that it is alright to apply a generic function to any dy-
namic value. Consider for instance the application of the generic equality func-
tion to two dynamic values. Using the built-in dynamic type unification, we can
easily check the equality of the types of the dynamic values. Now using a generic
equality, we want to check the equality of the values of these dynamics. In or-
der to do this, we need to know at compile-time of which type the instance of
the generic equality should be applied. This is not possible, because the type
representation of a dynamic is only known at run-time.

We present a solution that uses the current implementation of generics and
dynamics. The key to the solution is to guide a generic function through a
dynamic value using an explicit type representation of the dynamic value’s type.
This guide function is predefined once. The programmer writes generic functions
as usual, and in addition provides the explicit type representation.

The solution can be readily used with the current compiler if we assume that
the programmer includes type representations with dynamics. However, this is
at odds with the key idea of dynamics because these already store type repre-
sentations with values. We show that the solution also works for conventional
dynamics if we provide a low-level access function that retrieves the type repre-
sentation of any dynamic.

Contributions of this paper are:

– We show how one can combine generics and dynamics in one single frame-
work in accordance with their current implementation in the compiler.

– We argue that, in principle, the type information available in dynamics is
enough, so we do not need to store extra information, and instead work with
conventional dynamics.

– Programs that exploit the combined power of generics and dynamics are
universally applicable to dynamic values. In particular, the code handles
dynamics in a generic way without precompiled knowledge of their types.

In this paper we give introductions to dynamics (Section 2) and generics
(Section 3) with respect to core properties that we rely on. In Section 4 we show
our solution that allows the application of generic functions to dynamic values.
An example of a generic pretty printing tool is given to illustrate the expressive
power of the combined system (Section 5). We present related work (Section 6),
our current and future plans (Section 7), and conclude (Section 8).

2 Dynamics in Clean

The Clean system has support for dynamics in the style as proposed by Pil [12,
13]. Dynamics serve two major purposes:

Interface between static and run-time types: Programs can convert val-
ues from the statically typed world to the dynamically typed world and

back without loss of type security. Any Clean expression e that has (veri-
fiable or inferable) type t can be formed into a value of type Dynamic by:
dynamic e :: t, or: dynamic e. Here are some examples:

toDynamic :: [Dynamic]

toDynamic = [e1, e2, e3, dynamic [e1,e2,e3]]

where e1 = dynamic 50 :: Int

e2 = dynamic reverse :: A.a: [a] -> [a]

e3 = dynamic reverse [’a’..’z’] :: [Char]

Any Dynamic value can be matched in function alternatives and case expres-
sions. A ‘dynamic pattern match’ consists of an expression pattern e-pat and
a type pattern t-pat as follows: (e-pat::t-pat). Examples are:

dynApply :: Dynamic Dynamic -> Dynamic

dynApply (f::a -> b) (x::a) = dynamic (f x) :: b

dynApply _ _ = abort "dynApply: arguments of wrong type."

dynSwap :: Dynamic -> Dynamic

dynSwap ((x,y) :: (a,b)) = dynamic (y,x) :: (b,a)

It is important to note that unquantified type pattern variables do not indi-
cate polymorphism. Instead, they are bound to the offered type, and range
over the full function alternative.
Finally, type-dependent functions are a flexible way of parameterizing func-
tions with the type to be matched in a dynamic. Type-dependent functions
are overloaded in the TC class, which is a built-in class that basically rep-
resents all type codeable types. The overloaded argument can be used in a
dynamic type pattern by postfixing it with ^. Typical examples that are also
used in this paper are the packing and unpacking functions:

pack :: a -> Dynamic | TC a

pack x = dynamic x::a^

unpack :: Dynamic -> a | TC a

unpack (x::a^) = x

unpack _ = abort "unpack: argument of wrong type."

Serialization: At least as important as switching between compile-time and
run-time types, is that dynamics allow programs to serialize and deserialize
values without loss of type security. Programs can work safely with data and
code that do not originate from themselves.
Two library functions store and retrieve dynamic values in named files, given
a proper unique environment that supports file I/O:

writeDynamic :: String Dynamic

*env -> (Bool,*env) | FileSystem env

readDynamic :: String *env -> (Bool,Dynamic,*env) | FileSystem env

Making an effective and efficient implementation is hard work and requires
careful design and architecture of the compiler and run-time system. It is not
our intention to go into any detail of such a project, as these are presented in
[15]. What needs to be stressed in the context of this paper is that dynamic
values, when read in from disk, contain a binary representation of a complete
Clean computation graph, a representation of the compile-time type, and
references to the related rewrite rules. The programmer has no means of
access to these representations other than those explained above.

At this stage, the Clean 2.0.1 system restricts the use of dynamics to basic,
algebraic, record, array, and function types. Very recently, support for polymor-
phic functions has been added. Overloaded types and overloaded functions have
been investigated by Pil [13]. Generics obviously haven’t been taken into account,
and that is what this paper addresses.

3 Generics in Clean

The Clean approach to generics [3] combines the polykinded types approach
developed by Hinze [7] and its integration with overloading as developed by Hinze
and Peyton Jones [8]. A generic function basically represents an infinite set of
overloaded classes. Programs define for which types instances of generic functions
have to be generated. During program compilation, all generic functions are
converted to a finite set of overloaded functions and instances. This part of the
compilation process uses the available compile-time type information.

As an example, we show the generic definition of the ubiquitous equality
function. It is important to observe that a generic function is defined in terms
of both the type and the value. The signature of equality is:

generic gEq a :: a a -> Bool

This is the type signature that has to be satisfied by an instance for types of
kind ? (such as the basic types Boolean, Integer, Real, Character, and String).
The generic implementation compares the values of these types, and simply uses
the standard overloaded equality operator ==. In the remainder of this paper we
only show the Integer case, as the other basic types proceed analogously.

gEq{|Int|} x y = x == y

Algebraic types are constructed as sums of pairs – or the empty unit pair –
of types. It is useful to have information (name, arity, priority) about data con-
structors. For brevity we omit record types. The data types that represent sums,
pairs, units, and data constructors are collected in the module StdGeneric.dcl:

:: EITHER a b = LEFT a | RIGHT b

:: PAIR a b = PAIR a b

:: UNIT = UNIT

:: CONS a = CONS a

The built-in function type constructor -> is reused here. The kind of these
cases (EITHER, PAIR, -> : ? → ? → ?, UNIT : ?, and CONS : ? → ?) determines the
number and type of the higher-order function arguments of the generic function
definition. These are used to compare the sub structures of the arguments.

gEq{|UNIT|} UNIT UNIT = True

gEq{|PAIR|} fx fy (PAIR x1 y1) (PAIR x2 y2) = fx x1 x2 && fy y1 y2

gEq{|EITHER|} fx fy (LEFT x1) (LEFT x2) = fx x1 x2

gEq{|EITHER|} fx fy (RIGHT y1) (RIGHT y2) = fy y1 y2

gEq{|EITHER|} _ _ _ _ = False

gEq{|CONS|} f (CONS x) (CONS y) = f x y

The only case that is missing here is the function type ->, as one cannot
define a feasible implementation of function equality.

Programs must ask explicitly for an instance of type T of a generic function
g by: derive g T. This provides the programmer with a kind-indexed family of
functions g?, g?→?, g?→?→?, The function gκ is denoted as: g{|κ|}. The
programmer can parameterize gκ for any κ 6= ? to customize the behaviour of
g. As an example, consider the standard binary tree type :: MyTree a = Leaf |
Node (MyTree a) a (MyTree a) and let a = Node Leaf 5 (Node Leaf 7 Leaf), and
b = Node Leaf 2 (Node Leaf 4 Leaf). The expression (gEq? a b) applies integer
equality to the elements and hence yields false, whereas (gEq?→? (const o const
True) a b) applies the binary true constant function, and hence yields true.

4 Dynamics + Generics in Clean

In this section we show how we made it possible for programs to manipulate
dynamics by making use of generic functions. Suppose we want to apply the
generic equality function of Section 3 to two dynamics, as mentioned in Section
1. One would expect the following definition to work:

dynEq :: Dynamic Dynamic -> Bool // This code is incorrect.

dynEq (x::a) (y::a) = gEq{|*|} x y

dynEq = False

However, this is not the case because at compile-time it is impossible to check
if the required instance of gEq exists, or to derive it automatically simply because
of the absence of the proper compile-time type information.

In our solution, the following code is used:

dynEq :: Dynamic Dynamic -> Bool // This code is correct.

dynEq x=:(::a) y=:(::a) = gEqdyn (dynTypeRep x) x y

dynEq = False

Two new functions have come into existence: gEqdyn and dynTypeRep. The
first is a derived function of type Type Dynamic Dynamic → Bool; the second is
a low-level access function of type Dynamic → Type. The crucial difference with
the incorrect program is that gEqdyn works on the complete dynamic.

We obtain gEqdyn by specializing gEq for a certain type τ . Specialization
can be done by a single function specialize that is parameterized with a generic
function and a type, and that returns the instance of the function for the given
type, packed as a dynamic. This requires a suitable representation of types and
generic functions. We encode types with a new type TypeRep and pack it in a
dynamic such that all values (t :: TypeRep τ) :: Dynamic satisfy the invariant
that t is the type representation of τ (Section 4.1). For readability we introduce
the synonym type Type for these dynamics. Generic functions are really code
schemes, and therefore we need to wrap them in a suitable form in order to
pass them to the specialization function. We show how to do this in Section
4.2. A wrapped generic function is of type GenRec. The result of specialize ::
GenRec Type → Dynamic (Section 4.3) is easily transformed to one that works
on dynamics (Section 4.4). For our gEq case, this is gEqdyn.

In Section 4.5 we show that specialization is sufficient to handle all generic
and non-generic functions on dynamics. However, it forces programmers to work
with Dynamics that are extended with the proper Type. An elegant solution is
obtained with the low-level access function dynTypeRep which retrieves Types
from Dynamics, and can therefore be used instead (Section 4.6).

We want to stress the point that except for the dynEq function all code
can be derived automatically by the compiler. However, this is not currently
incorporated, so for the time being the result code needs to be included manually.

The remainder of this section fills in the details of the scheme as sketched
above. We continue to illustrate every step with the gEq example. When speaking
in general terms, we assume that we have a function g that is generic in argument
a and has type (G a) (so g = gEq, and G a = Eq a defined as :: Eq a :== a
a -> Bool). We will have a frequent need for conversions from type a to b and
vice versa. These are conveniently combined into a record of type Bimap a b (see
Appendix A for its type definition and the standard bimaps that we use).

4.1 Dynamic type representations

Dynamic type representations are dynamics of synonym type Type containing
values (t :: TypeRep τ) such that t represents τ , with TypeRep defined as:

:: TypeRep t

= TRInt

| TREither Type Type | TRPair Type Type | TRUnit | TRArrow Type Type

| TRCons String Int Type | TRType [Type] // [TypeRep a1, . . .TypeRep an]
Type // (TypeRep T ◦)

Dynamic // (Bimap T T ◦)

For each data constructor (TRC t1 . . . tn) (n ≤ 0) we provide a n-ary construc-
tor function trC of type Type . . .Type → Type that assembles the corresponding
alternative, and establishes the relation between representation and type. For ba-
sic types and the cases that correspond with generic representations (sum, pair,
unit, and arrow), these are straightforward and proceed as follows:

trInt :: Type

trInt = dynamic TRInt :: TypeRep Int

trEither :: Type Type -> Type

trEither tra=:(::TypeRep a) trb=:(::TypeRep b)

= dynamic (TREither tra trb) :: TypeRep (EITHER a b)

trArrow :: Type Type -> Type

trArrow tra=:(::TypeRep a) trb=:(::TypeRep b)

= dynamic (TRArrow tra trb) :: TypeRep (a -> b)

The last two alternatives of the dynamic type representation handle all cus-
tom type definitions. This is necessary because our solution relies on the fact
that every dynamic value includes a dynamic type representation of the value’s
type. Suppose we have a type constructor T a1 . . . an with a data constructor
C t1 . . . tm. The TRCons alternative collects the name and arity of its data con-
structor. This is the same information a programmer might need when handling
the CONS case of a generic function (although in the generic equality example we
had no need for it). The TRType alternative keeps track of the type representa-
tions of the type arguments ai (TypeRep ai), the dynamic type representation
of the ‘standard’ generic representation (TypeRep T ◦), and the bimap of T and
T ◦. The corresponding constructor functions follow from the type definition:

trCons :: String Int Type -> Type

trCons name arity tra=:(:: TypeRep a)

= dynamic (TRCons name arity tra) :: TypeRep (CONS a)

trType :: [Type] Type Dynamic -> Type

trType args tg=:(::TypeRep tgen) conv=:(::Bimap t tgen)

= dynamic (TRType args tg conv) :: TypeRep t

As a first example, consider the Clean list type constructor. Clean lists are de-
fined internally as :: [] a = _Cons a [a] | _Nil. Generically speaking they
are a sum of: (a) the data constructor (_Cons) of the pair of the element type
and the list itself, and (b) the data constructor (_Nil) of the unit. This struc-
ture is reflected by the generated dynamic type representation of the list data
constructor trListG below, which is also used by the generated dynamic type
representation of the list type constructor trList.

trListG :: Type -> Type

trListG tra

= trEither (trCons "_Cons" 2 (trPair tra (trList tra))) (a)
(trCons "_Nil" 0 trUnit) (b)

:: ListG a :== EITHER (CONS (PAIR a [a])) (CONS UNIT)

trList :: Type -> Type

trList tra=:(::TypeRep a)

= trType [tra] (trListG tra) (dynamic epList :: Bimap [a] (ListG a))

where epList = { map to = map to, map from = map from }
map to [x:xs] = LEFT (CONS (PAIR x xs))

map to [] = RIGHT (CONS UNIT)

map from (LEFT (CONS (PAIR x xs))) = [x:xs]

map from (RIGHT (CONS UNIT)) = []

As a second example, we show the dynamic type representation for our run-
ning example, the equality function which has type Eq a:

trEq :: Type -> Type

trEq tra=:(_::TypeRep a)

= trType [tra]

(trArrow tra (trArrow tra trBool))

(dynamic bimapId :: Bimap (Eq a) (Eq a))

4.2 First-class generic functions

In this section we show how to turn generic functions, that are really compiler
schemes, into first-class values that can be passed to functions for inspection. The
first-class representation of g is obtained simply by taking the desired instance
of g per case, so the Int case is gInt , UNIT is gUNIT , and so on. Each of these
cases is packed into a dynamic, and they are collected in the GenRec record.
(The compiler will actually inline the corresponding right-hand side of g.) In
general, this results in:

genrecg :: GenRec

genrecg

= { genConvert= dynamic convertG (Section 4.3)
, genType = trG (Section 4.1)
, genInt = dynamic gInt :: G Int

, genUNIT = dynamic gUNIT :: G UNIT

, genPAIR = dynamic gPAIR :: A.a b: G a -> G b -> G (PAIR a b)

, genEITHER = dynamic gEITHER :: A.a b: G a -> G b -> G (EITHER a b)

, genARROW = dynamic g→ :: A.a b: G a -> G b -> G ((->) a b)

, genCONS = \n a -> dynamic gCONS

:: A.a : G a -> G (CONS a)

}

The generated code for gEq is:

genrecgEq :: GenRec

genrecgEq
= { genConvert= dynamic convertEq

, genType = trEq

, genInt = dynamic gEq{|*|} :: Eq Int

, genUNIT = dynamic gEq{|*|} :: Eq UNIT

, genPAIR = dynamic gEq{|*->*->*|} :: A.a b: Eq a -> Eq b

-> Eq (PAIR a b)

, genEITHER = dynamic gEq{|*->*->*|} :: A.a b: Eq a -> Eq b

-> Eq (EITHER a b)

, genARROW = dynamic gEq{|*->*->*|} :: A.a b: Eq a -> Eq b

-> Eq ((->) a b)

, genCONS = \n a -> dynamic gEq{|*->*|}
:: A.a : Eq a -> Eq (CONS a)

}

4.3 Specialization of first-class generics

Every generic function g can be passed around to functions as genrecg, and
every type τ as (t :: TypeRep τ) :: Type. This puts us in the position to provide
a function, called specialize, that takes such a generic function representation
and a dynamic type representation, and which yields gτ :: G τ , packed in a
conventional dynamic. This function has type GenRec Type → Dynamic. Its
definition is a case distinction based on the dynamic type representation. The
basic types and the generic unit case are easy:

specialize genrec (TRInt :: TypeRep Int) = genrec.genInt

specialize genrec (TRUnit:: TypeRep UNIT) = genrec.genUNIT

The generic cases (sum, pair, arrow, and constructor) specialize genrecg with
the dynamic type representations of the argument types. These are obtained via
the genType field of the genrec structure. The recursive specialization of genrecg

to the sub structures of the generic cases yield the higher-order arguments of
the corresponding alternatives of genrecg. The definition is surprisingly elegant.
(The constructor case deviates a little because it passes around the name and
arity information.)

specialize genrec ((TREither tra trb) :: TypeRep (EITHER a b))

= applyGenCase2 (genrec.genType tra) (genrec.genType trb)

genrec.genEITHER

(specialize genrec tra) (specialize genrec trb)

specialize genrec ((TRPair tra trb) :: TypeRep (PAIR a b))

= applyGenCase2 (genrec.genType tra) (genrec.genType trb)

genrec.genPAIR

(specialize genrec tra) (specialize genrec trb)

specialize genrec ((TRArrow tra trb) :: TypeRep (a -> b))

= applyGenCase2 (genrec.genType tra) (genrec.genType trb)

genrec.genARROW

(specialize genrec tra) (specialize genrec trb)

specialize genrec ((TRCons name arity tra) :: TypeRep (CONS a))

= applyGenCase1 (genrec.genType tra)

(genrec.genCONS name arity)

(specialize genrec tra)

applyGenCase1 :: Type Dynamic Dynamic -> Dynamic

applyGenCase1 (a :: TypeRep fa) (fta :: fa -> fta) dfa

= dynamic fta (unwrapTR a dfa) :: fta

applyGenCase2 :: Type Type Dynamic Dynamic Dynamic -> Dynamic

applyGenCase2 (trfa :: TypeRep fa) (trfb :: TypeRep fb)

(ftab :: fa fb -> ftab)

dfa dfb

= dynamic ftab (unwrapTR trfa dfa) (unwrapTR trfb dfb) :: ftab

unwrapTR :: (TypeRep a) Dynamic -> a | TC a

unwrapTR _ (x :: a^) = x

Type constructors are more complicated because the packed bimap between
a and a◦ needs to be transformed to (G a). This conversion is done by convertG
below, and is also included in the generic representation of g in the genConvert
field (Section 4.2). Let dynApply2 be the 2-ary version of dynApply, then:

specialize genrec ((TRType args tr ep) :: TypeRep a)

= dynApply2 genrec.genConvert ep (specialize genrec tr)

The definition of convertG has a standard form, namely:

convertG :: (Bimap a b) → (G b) → (G a)
convertG ep = (bimapG ep).map from

The function body of bimapG a is derived from the structure of the type
term G a: bimapG a = 〈G a〉 with the following rules:

〈x〉 = x (type variables, including a)
〈t1 → t2〉 = 〈t1〉 --> 〈t2〉
〈c t1 . . . tn : κ〉 = bimapId if a 6∈

⋃
Var(ti)(n ≥ 0)

= bimapId{|κ|} 〈t1〉 . . . 〈tn〉 otherwise

Appendix A defines --> and bimapId; Var yields the variables of a type term.
The generated code for convertEq and bimapEq is:

convertEq :: (Bimap a b) -> (Eq b) -> (Eq a)

convertEq ep = (bimapEq ep).map_from

bimapEq :: (Bimap a b) -> Bimap (a -> a -> c) (b -> b -> c)

bimapEq ep = ep --> ep --> bimapId

4.4 Generic dynamic functions

In the previous section we have shown how the specialize function uses a dynamic
type representation as a ‘switch’ to construct the required generic function g,
packed in a dynamic. We now transform such a function into a function of
type (G Dynamic), using a function gdyn . This function gdyn takes the same
dynamic type representation argument as specialize. Its body invariably takes
the following form (bimapDynamic and inv are included in Appendix A):

gdyn :: Type -> G Dynamic

gdyn tr = case specialize genrecg tr of

(f::G a) -> convertG (inv bimapDynamic) f

As discussed in the previous section, convertG transforms a (Bimap a
b) to a conversion function of type (G b) → (G a). When applied to
(inv bimapDynamic) :: (Bimap Dynamic a), it results in a conversion function
of type (G a) → (G Dynamic). This is applied to the packed generic function
f :: G a, so the result function has the desired type (G Dynamic).

When applied to our running example, we obtain:

gEqdyn :: Type -> Eq Dynamic

gEqdyn tr = case specialize genrecgEq tr of

(f::Eq a) -> convertEq (inv bimapDynamic) f

4.5 Applying generic dynamic functions

The previous section shows how to obtain a function gdyn from a generic func-
tion g of type (G a) that basically applies g to dynamic arguments, assuming
that these arguments internally have the same type a. In this section we show
that with this function we can handle all generic and non-generic functions on
dynamics. In order to do so, we require the programmer to work with extended
dynamics, defined as:

:: DynamicExt = DynExt Dynamic Type

An extended dynamic value (DynExt(v :: τ)(t :: TypeRep τ)) basically is a
pair of a conventional Dynamic (v :: τ) and its dynamic type representation
(t :: TypeRep τ). Note that we make effective use of the built-in unification of
dynamics to enforce that the dynamic type representation really is the same as
the type of the conventional dynamic.

For the running example gEq we can now write an equality function on ex-
tended dynamics, making use of the generated function gEqdyn:

dynEq :: DynamicExt DynamicExt -> Bool

dynEq (DynExt x=:(::a) tx) (DynExt y=:(::a)) = gEqdyn tx x y

dynEq = False

It is the task of the programmer to handle the cases in which the (extended)
dynamics do not contain values of the proper type. This is an artefact of dynamic
programming, as we can never make assumptions about the content of dynamics.

Finally, we show how to handle non-generic dynamic functions, such as the
dynApply and dynSwap in Section 2. These examples illustrate that it is possi-
ble to maintain the invariant that extended dynamics always have a dynamic
type representation of the type of the value in the corresponding conventional
dynamic. It should be observed that these non-generic functions are basically
monomorphic dynamic functions due to the fact that unquantified type pattern
variables are implicitly existentially quantified. The function wrapDynamicExt is
a predefined function that conveniently packs a conventional dynamic and the
corresponding dynamic type representation into an extended dynamic.

dynApply :: DynamicExt DynamicExt -> DynamicExt

dynApply (DynExt (f::a->b) ((TRArrow tra trb) :: TypeRep (a->b)))

(DynExt (x::a) _)

= wrapDynamicExt (f x) trb

dynSwap :: DynamicExt -> DynamicExt

dynSwap (DynExt ((x,y)::(a,b)) ((TRType [tra,trb] _ _) :: TypeRep (a,b)))

= wrapDynamicExt (y,x) (trTuple2 trb tra)

wrapDynamicExt :: a Type -> DynamicExt | TC a

wrapDynamicExt x tr=:(_::TypeRep a^) = DynExt (dynamic x::a^) tr

4.6 Elimination of extended dynamics

In the previous section we have shown how we can apply generic functions to
conventional dynamics if the program manages extended dynamics. We empha-
sized in Section 2 that every conventional dynamic stores the representation of
all compile-time types that are related to the type of the dynamic value [15].
This enables us to write a low-level function dynTypeRep that computes the dy-
namic type representation as given in the previous section from any dynamic
value. Informally, we can have:

dynTypeRep :: Dynamic -> Type

dynTypeRep (x::t) = dynamic (tr::TypeRep t)

If we assume that we have this function (future work), we do not need the
extended dynamics anymore. The dynEq function can now be written as:

dynEq :: Dynamic Dynamic -> Bool

dynEq x=:(::a) y=:(::a) = gEqdyn (dynTypeRep x) x y

dynEq = False

The signature of this function suggests that we might be able to derive dy-
namic versions of generic functions automatically as just another instance. In-
deed, for type schemes G a in which a appears at an argument position, there
is always a dynamic argument from which a dynamic type representation can
be constructed. However, such an automatically derived function is necessarily a
partial function when a appears at more than one argument position, because one
cannot decide what the function should do in case the dynamic arguments have
non-matching contents. In addition, if a appears only at the result position, then
the type scheme is not an instance of G Dynamic, but rather Type → G Dynamic.

5 Example: a pretty printer

Pretty printers belong to the classic examples of generic programming. In this
section we deviate a little from this well-trodden path by developing a program
that sends a graphical version of any dynamic value to a user-selected printer.

The generic function gPretty that we will develop below is given a value to
display. It computes the bounding box (Box) and a function that draws the value
if provided with the location of the image (Point2 Picture → Picture). Graphical
metrics information (such as text width and height) depends on the resolution
properties of the output environment (the abstract and unique type *Picture).
Therefore gPretty is a state transformer on Pictures. Picture is predefined in
the Clean Object I/O library [2], and so are Point2 and Box.

generic gPretty t :: t -> St Picture (Box,Point2 Picture -> Picture)

:: Point2 = { x :: Int, y :: Int }

:: Box = { box_w :: Int, box_h :: Int }

The key issue of this example is how gPretty handles dynamics. If we assume
the existence of the derived code of gPretty as presented in Section 4 (that is
either generated by the compiler or manually included by the programmer), then
this code does the job:

dynPretty :: Dynamic -> St Picture (Box,Point2 Picture -> Picture)

dynPretty dx = gPrettydyn (dynTypeRep dx) dx

It is important to observe that the program contains no derived instances of
the generic gPretty function. Still, it can display every possible dynamic value.

We first implement the gPretty function and then embed it in a simple GUI.
In the example we use a monadic programming style. Clean has no special syntax
for monads, but the standard combinators are easily defined. For the synonym
type :: St s a :== s → (a,s), we assume the functions return :: a → St s a and
the infix binding operator >>= :: (St s a) (a → St s b) → St s b in the usual way.

Basic values simply refer to the string instance that does the real work. It
draws the text and the enclosing rectangle (we assume that the getMetrics-
Info function returns the width and height of the argument string, proportional
margins, and base line offset of the font):

gPretty{|Int|} x = gPretty{|*|} (toString x)

gPretty{|String|} s

= getMetricsInfo s >>= \(width,height,hMargin,vMargin,fontBase) ->

let bound = { box_w=2*hMargin + width, box_h=2*vMargin + height }

in return (bound

, \{x,y} -> drawAt {x=x+hMargin, y=y+vMargin+fontBase} s

o drawAt {x=x+1,y=y+1}

{box_w=bound.box_w-2,box_h=bound.box_h-2}

)

The other cases only place the recursive parts at the proper positions and
compute the corresponding bounding boxes. The most trivial ones are UNIT,
which draws nothing, and EITHER, which continues recursively (poly)typically:

gPretty{|UNIT|} _ = return (zero,const id)

gPretty{|EITHER|} pl pr (LEFT x) = pl x

gPretty{|EITHER|} pl pr (RIGHT x) = pr x

PAIRs are drawn in juxtaposition with top edges aligned. A CONS draws the re-
cursive component below the constructor name and centres the bounding boxes.

gPretty{|PAIR|} px py (PAIR x y)

= px x >>= \({ box_w = wx, box_h = hx}, fx) ->

py y >>= \({ box_w = wy, box_h = hy}, fy) ->

let bound = { box_w = wx + wy, box_h = max hx hy }

in return (bound, \pos -> fy {pos & x=pos.x+wx} o fx pos)

gPretty{|CONS of {gcd_name}|} px (CONS x)

= gPretty{|*|} gcd_name >>= \({ box_w = wc, box_h = hc}, fc) ->

px x >>= \({ box_w = wx, box_h = hx}, fx) ->

let bound = { box_w = max wc wx, box_h = hc + hx }

in return (bound, \pos -> fx (pos + {x=(bound.box_w-wx)/2, y=hc})

o fc (pos + {x=(bound.box_w-wc)/2, y=0 })

)

This completes the generic pretty printing function. We will now embed it
in a GUI program. The Start function creates a GUI framework on which the
user can drop files. The program response is defined by the ProcessOpenFiles
attribute function which applies showDynamic to each dropped file path name.

module prettyprinter

import StdEnv, StdIO, StdDynamic, StdGeneric

Start :: *World -> *World

Start world = startIO SDI Void id

[ProcessClose closeProcess

, ProcessOpenFiles (\fs pSt -> foldr showDynamic pSt fs)

] world

The function showDynamic checks if the file contains a dynamic, and if so,
sends it to the printer. This job is taken care of by the print function, which
takes as third argument a Picture state transformer that produces the list of
pages. For reasons of simplicity we assume that the image fits on one page.

showDynamic :: String (PSt Void) -> PSt Void

showDynamic fName pSt

= case readDynamic fName pSt of

(True,dx,pSt) = (snd

o uncurry (print True False (pages dx))

o defaultPrintSetup

) pSt

(_, _, pSt) = pSt

where pages :: Dynamic PrintInfo -> St Picture [IdFun Picture]

pages dx _ = dynPretty dx >>= \(_,draw_x) -> return [draw_x zero]

6 Related work

Cheney and Hinze [6] present an approach that unifies dynamics and generics
in a single framework. Their approach is based on explicit type representations

for every type, which allows for poor man’s dynamics to be defined explicitly by
pairing a value with its type representation. In this way, a generic function is
just a function defined by induction on type representations. An advantage of
their approach is that it reconciles generic and dynamic programming right from
start, which results in an elegant representation of types that can be used both for
generic and dynamic programming. Dynamics in Clean have been designed and
implemented to offer a rich man’s dynamics (Section 2). Generics in Clean are
schemes used to generate functions based on types available at compile-time. For
this reason we have developed a first-class mechanism to be able to specialize
generics at run-time. Our dynamic type representation has been inspired by
Cheney and Hinze, but is less verbose since we can rely on built-in dynamic
type unification.

Altenkirch and McBride [4] implement generic programming support as a
library in the dependently typed language OLEG. They present the generic
specialization algorithm due to Hinze [9] as a function fold. For a generic function
(given by the set of base cases) and an argument type, fold returns the generic
function specialized to the type. Our specialize is similar to their fold; it also
specializes a generic to a type.

7 Current and future work

The low-level function dynTypeRep (Section 4.6) has to be implemented. We
expect that this function gives some opportunity to simplify the TypeRep data
type. Polymorphic functions are a recent addition to dynamics, and we will want
to handle them by generic functions as well. The solution as presented in this
paper works for generic functions of kind ?. We want to extend the scheme so
that higher order kinds can be handled as well. In addition, the approach has
to be extended to handle generic functions with several generic arguments. The
scheme has to be incorporated in the compiler, and we need to decide how the
derived code should be made available to the programmer.

8 Summary and Conclusions

In this paper we have shown how generic functions can be applied to dynamic
values. The technique makes essential use of dynamics to obtain first-class rep-
resentations of generic functions and dynamic type representations. The scheme
works for all generic functions. Applications built in this way combine the best
of two worlds: they have compact definitions and they work for any dynamic
value even if these originate from different sources and even if these dynamics
rely on alien types and functions. Such a powerful technology is crucial for type-
safe mobile code, flexible communication, and plug-in architectures. A concrete
application domain that has opportunities for this technique is the functional
operating system Famke [16] (parsers, pretty printers, tool specialization).

References

1. Achten, P. and Hinze, R. Combining Generics and Dynamics. Technical Report NIII-
R0206, July, 2002, Nijmegen Institute for Computing and Information Sciences,
Faculty of Sciences, University of Nijmegen, The Netherlands.

2. Achten, P.M. and Wierich, M. A Tutorial to the Clean Object I/O Library - version
1.2. Technical Report CSI-R0003, February 2, 2000, Computing Science Institute,
Faculty of Mathematics and Informatics, University of Nijmegen, The Netherlands.

3. Alimarine, A. and Plasmeijer, M. A Generic Programming Extension for Clean. In
Arts, Th., Mohnen M., eds. Proceedings of 13th International Workshop on the Im-
plementation of Functional Languages (IFL2001), Selected Papers, Älvsjö, Sweden,
September 24-26, 2001, Springer-Verlag, LNCS 2312, pp.168-185.

4. Altenkirch, T. and McBride, C. Generic Programming Within Dependently Typed
Programming. To appear in Proceedings Working Conference on Generic Program-
ming, Dagstuhl, Castle, Germany, July 11-12, 2002.

5. Brus, T., Eekelen, M.C.J.D. van, Leer, M.O. van, and Plasmeijer, M.J. Clean: A
Language for Functional Graph Rewriting. In Kahn. G. ed. Proceedings of the Third
International Conference on Functional Programming Languages and Computer Ar-
chitecture, Portland, Oregon, USA, LNCS 274, Springer-Verlag, pp. 364-384.

6. Cheney, J. and Hinze, R. A Lightweight Implementation of Generics and Dynamics.
Work in progress.

7. Hinze, R. Polytypic values possess polykinded types. In Roland Backhouse and J.N.
Oliveira, editors, Proceedings of the Fifth International Conference on Mathematics
of Program Construction (MPC 2000), July 3-5, 2000, volume 1837 of Lecture Notes
in Computer Science, pages 2–27. Springer-Verlag, July 2000.

8. Hinze, R. and Peyton Jones, S. Derivable Type Classes. In Graham Hutton, ed.,
Proceedings of the Fourth Haskell Workshop, Montreal, Canada, September 17, 2000.

9. Hinze, R. Generic Programming and Proofs. Habilitationsshrift, Universität Bonn,
2000.

10. Nöcker, E.G.J.M.H., Smetsers, J.E.W., Eekelen, M.C.J.D. van, and Plasmeijer,
M.J. Concurrent Clean. In Aarts, E.H.L., Leeuwen, J. van, Rem, M., eds., Proceed-
ings of Parallel Architectures and Languages Europe, June, Eindhoven, The Nether-
lands. LNCS 506, Springer-Verlag, pp. 202-219.

11. Peyton Jones, S. and Hughes, J. eds. Report on the Programming Language Haskell
98 – A Non-strict, Purely Functional Language, 1 February 1999.

12. Pil, M.R.C., Dynamic types and type dependent functions. In Hammond, Davie,
Clack, eds., Proc. of Implementation of Functional Languages (IFL ’98), London,
U.K., Springer-Verlag, Berlin, LNCS 1595, pp.169-185.

13. Pil, M. First Class File I/O, PhD Thesis, in preparation.
14. Plasmeijer, M.J. and van Eekelen, M.C.J.D. Functional Programming and Parallel

Graph Rewriting, Addison-Wesley Publishing Company, 1993.
15. Vervoort, M. and Plasmeijer, R. Lazy Dynamic Input/Output in the lazy functional

language Clean. In Peña, R. ed. Proc. of the 14th International Workshop on the
Implementation of Functional Languages (IFL 2002), Madrid, Spain, September
16-18 2002, Technical Report 127-02, Departamento de Sistemas Informáticos y
Programación, Universidad Complutense de Madrid, pp. 404-408.

16. van Weelden, A. and Plasmeijer, R. Towards a Strongly Typed Functional Op-
erating System. In Peña, R. ed. Proc. of the 14th International Workshop on the
Implementation of Functional Languages (IFL 2002), Madrid, Spain, September
16-18 2002, Technical Report 127-02, Departamento de Sistemas Informáticos y
Programación, Universidad Complutense de Madrid, pp. 301-319.

A Bimap combinators

A (Bimap a b) is a pair of two conversion functions of type a → b and b → a.
The trivial Bimaps bimapId and bimapDynamic are predefined:

:: Bimap a b = { map to :: a -> b, map from :: b -> a }

bimapId :: Bimap a a

bimapId = { map to = id, map from = id }

bimapDynamic :: Bimap a Dynamic | TC a

bimapDynamic = { map to = pack, map from = unpack } (Section 2)

The bimap combinator inv swaps the conversion functions of a bimap, oo
forms the sequential composition of two bimaps, and --> obtains a functional
bimap from a domain and range bimap.

inv :: (Bimap a b) -> Bimap b a

inv {map_to, map_from} = {map_to = map_from, map_from = map_to}

(oo) infixr 9 :: (Bimap b c) (Bimap a b) -> Bimap a c

(oo) f g = { map_to = f.map_to o g.map_to

, map_from = g.map_from o f.map_from

}

(-->) infixr 0 :: (Bimap a b) (Bimap c d) -> Bimap (a -> c) (b -> d)

(-->) x y = { map_to = \f -> y.map_to o f o x.map_from

, map_from = \f -> y.map_from o f o x.map_to

}

