
Math. Struct. in Comp. Science (1996), vol. 00, pp. 1{36 Copyright c
 Cambridge University PressUniqueness Typing for Functional Languageswith Graph Rewriting SemanticsERIK BARENDSEN and SJAAK SMETSERSComputing Science Institute, University of Nijmegen,Toernooiveld 1, 6525 ED Nijmegen, The Netherlands,e-mail erikb@cs.kun.nl, sjakie@cs.kun.nlReceived November 1995, revised May 1996We present two type systems for term graph rewriting: conventional typing and(polymorphic) uniqueness typing. The latter is introduced as a natural extension ofsimple algebraic and higher-order uniqueness typing. The systems are given in naturaldeduction style using an inductive syntax of graph denotations with familiar constructssuch as let and case.The conventional system resembles traditional Curry-style typing systems in functionalprogramming languages. Uniqueness typing extends this with reference countinformation. In both type systems, typing is preserved during evaluation, and types canbe determined e�ectively. Moreover, with respect to a graph rewriting semantics, bothtype systems turn out to be sound.Contents1 Introduction 12 Term graph rewriting 33 Graph denotations 44 Higher-order functions 75 Conventional Typing 76 Introduction to Uniqueness Typing 137 Simple Uniqueness Typing 158 Polymorphic Uniqueness Typing 259 Conclusions and Related Work 34References 341. IntroductionIn recent years, various proposals have been brought up to capture the notion of assign-ment in a functional context. This desire is paradoxical, because the absence of side e�ectsis one of the main reasons why functional programming languages are often praised. Asa consequence of this absence, functional languages have the fundamental property of

Erik Barendsen and Sjaak Smetsers 2referential transparency : each (sub)expression denotes a �xed value, independently ofthe way this value is computed.We regard assignments in a broad sense: these include direct mutation of memorycontents but also more indirect I/O operations like �le manipulations. The commonaspect of such operations is their destructive behaviour: they (irreversibly) change thestate of their input objects.There is a solution for this problem which can be achieved entirely within the functionalframework: by delivering a sequence of instructions for the operating system as a result ofa functional expression. One could call this a delegating approach, since the computationonly prepares for the external execution of, for example, I/O tasks. In the literature,this method is known as stream based I/O. An application can be found in the languageHaskell.Rather than this indirect treatment of destructive operations one would like to incorpo-rate them (and hence the objects they operate on) directly in a functional programminglanguage. This admits a more re�ned control of �les, for example. However, by admittingthese operations without precaution one loses referential transparency. If two destructivefunctions operate on the same �le, for example, the result of the program depends onthe order in which these operations are performed.The problem is, therefore, to identify suitable restrictions on the usage of destructiveoperations. The essence of recent solutions (e.g., Wadler (1990), Guzm�an and Hudak(1990)) is to restrict destructive operations to arguments that are accessed only once.Syntactically, this boils down to retricting the number of occurrences of these argumentsinside each program to one.The uniqueness type system for graph rewrite systems presented in Barendsen andSmetsers (1993). o�ers the possibility to indicate such reference count requirements intype speci�cations of functions. This is done via so-called uniqueness types which areannotated versions of traditional Curry-like types. E.g. the operation WriteChar whichwrites a character to a �le is typed with WriteChar : (Char�;File�)! File�. Here, � ;�stand for `unique' (the requirement that the reference count is 1) and `non-unique' (noreference requirements) respectively.Uniqueness typing can be regarded as a combination of linear typing (dealing withunique objects) and traditional typing (for non-unique objects), connected by a subtypingmechanism. In fact, the part handling uniqueness allows discarding of objects, so itcorresponds more closely to a�ne logic, see Blass (1992). A logical/categorical proposalfor a related combination appears in Benton (1994).The present paper describes the uniqueness type system in natural deduction style,using an inductive syntax for graph expressions. The emphasis on graph denotationscontrasts the original presentation, which referred directly to the node/reference structureof (non-inductive) graph objects . The graph syntax is similar to the object language inthe equational approach towards Term Graph Rewriting of Ariola and Klop (1995).The operational semantics of the object language is given by the concept of Term GraphRewriting, as introduced by Barendregt et al. (1987). Each expression is translated into aterm graph. In contrast with Ariola and Klop (1995), we refrain from de�ning a reductionrelation on the expressions directly.

Uniqueness Typing 3The paper is organized as follows. After a very short and informal introduction toTerm Graph Rewriting (Section 2), we introduce a formal language for denoting graphexpressions and function de�nitions (Section 3). Section 4 describes the incorporationof higher-order functions in our system. In Section 5 a Curry style (conventional) typesystem is introduced. The system is not new, but the terminology and techniques in thissection prepare for the development of uniqueness typing, which will proceed along thesame lines. We prove preservation of typing during reduction and the existence of prin-cipal types. After an informal introduction to uniqueness typing in Section 6, Section 7describes a simple (i.e., non-polymorphic) algebraic uniqueness type assignment system.This system is extended via higher-order typing to the complete polymorphic uniquenesstype system (Section 8). The results for the conventional system are extended to unique-ness typing. At the end of Section 8 we describe how uniqueness type inference proceedsin the functional programming language Clean (see also Plasmeijer and van Eekelen(1995). We conclude with a discussion of related work and future research (Section 9).The original uniqueness type system is rather complex, particularly due to the re�nedreference analysis. To avoid that the reader gets entangled in technical details, this anal-ysis is kept here as simple as possible: it does not take the evaluation order into account.Due to the present formalization, the system can easily be compared with other proposalsbased on linear and a�ne logic.This paper is an elaborated version of the work presented in Barendsen and Smetsers(1995a) and Barendsen and Smetsers (1995c).
2. Term graph rewritingTerm graph rewrite systems (TGRS's) have been introduced in Barendregt et al. (1987),see also Barendsen and Smetsers (1994). This section summarizes some basic concepts.Term graph rewriting can be seen as an extension of term rewriting with sharing.In term rewrite rules, multiple occurrences of variables lead to duplication of actualinstances. In TGRS's, such duplications are avoided by copying references to the objectsinstead of copying the objects themselves.The objects in TGRS's are directed graphs in which each node is labelled with asymbol . Each symbol S, say, has a �xed arity determining the number of outgoing edges(references to the arguments) of any node labelled with S.We distinguish two kinds of symbols: function symbols and algebraic constructor sym-bols. Function symbols are introduced by rewrite rules which specify transformationsof graphs. Each rewrite rule F~p ! g consists of left-hand side F~p (the pattern) and aright-hand side g (the result). Both F~p and g are graphs. We say that a rule is left-linearif the pattern F~p is a tree (hence ~p does not contain multiple occurrences of the samevariable). This enables us to denote left-hand sides of rewrite rules as terms. We considerfunction/constructor rules : ~p contains only variables and algebraic constructors.

Erik Barendsen and Sjaak Smetsers 4The following picture shows a graph rewrite step according to the displayed rule.
Add

Succ

x y

Add (Succ (x),y) →

Zero

Succ

Succ

Add

Succ Succ

Zero

Add

Succ

Succ

Succ

Succ

Let R be a set of rewrite rules. The (multistep) rewrite relation induced by R isdenoted by !!R .Algebraic constructors are assumed to introduced by a so-called algebraic type systemA containing speci�cations likeList(�) = Cons(�; List(�)) j Nildeclaring the data constructors Cons and Nil (and linking them to the type constructorList).3. Graph denotationsSyntaxIn order to present our type systems in natural deduction style, we introduce graph de-notations generated by an inductive syntax. The language constructs re
ect the essentialaspects of graph rewriting: application, sharing (implicitly, by multiple occurrences of thesame variable, and explicitly, using let), cycles (sharing using letrec), pattern matching(case), and function de�nitions.Instead of admitting several rules (one for each alternative pattern) for functions, wecollect all alternatives in a case construct.De�nition 3.1 (i) The objects are expressions generated by the following abstract syn-tax. E ::= x j S(E1; : : : ; Ek) j let x = E in E0 j letrec ~x = ~E in E0 j case E of ~P j ~E;P ::= C(x1; : : : ; xk):Here x; ~x range over (sequences of) term variables, and S over some set of symbols of�xed arity (we will suggestively use F for functions and C for data constructors). Theset of free variables of E (notation FV(E)) is de�ned as usual.(ii) Function de�nitions are expressions of the formF(x1; : : : ; xk) = E:Some hygiene with respect to variables is necessary: in let x = E in E0, the variablex should not occur free in E. We only consider left-linear functions: no variable occursmore than once in the same pattern. Moreover, these pattern variables are `local': theyoccur only in ~P j ~E.

Uniqueness Typing 5Example 3.2 (i) The expressionlet x = 0 in letrec z = F(Cons(x;G(x; z))) in zdenotes the following graph.
Cons

0 G

F

(ii) Addition on the algebraic type of natural numbersNat = 0 j S(Nat)can be expressed byAdd(x; y) = case x of 0 j yS(x0) j S(Add(x0; y)):SemanticsWe now give a formal account of the (intuitively clear) interpretation of expressions andfunction de�nitions as graphs and rewrite rules respectively. Instead of using drawings,like above, or 4-tuples (see Barendregt et al. (1987) and Barendsen and Smetsers (1994)),we specify graphs in an equational style (cf. Barendregt et al. (1987), Ariola and Klop(1995)). Each equation is a node speci�cation of the formn = S(n1; : : : ; nk)where n; n1; : : : ; nk are variables. Moreover, the topmost node (root) is indicated explic-itly. E.g., the graph in Example 3.2 (i) can be denoted byhz j fz = F(c);c = Cons(x; g);g = G(x; z);x = 0 gi:De�nition 3.3 A graph is a tuple g = hr j Gi. The variable set of g (notation V(g))is the collection of variables appearing in r;G. The set of free variables of g (notationFV(g)) consists of those in V(g) that do not appear as the left-hand side of an equationin G; the other (bound) variables are indicated by BV(g). We will identify graphs thatonly di�er in the names of bound variables.Using this formalism, it is easy to de�ne the interpretation of expressions as graphs.Our type systems for expressions deal with the full syntax of De�nition 3.1. However,to provide a simple and direct translation to graph rewrite systems we only consider caseexpressions in function de�nitions at the topmost level, distinguishing cases as to oneof the input variables. This is no serious restriction: it is always possible to introduceauxiliary functions to express nested pattern matching.

Erik Barendsen and Sjaak Smetsers 6De�nition 3.4 For each expression E, the graph interpretation of E (notation [[E]]) is de-�ned inductively as follows. The denotation [~x := ~r] stands for simultaneous substitutionof ~r for (the free occurrences of) ~x.[[x]] = hx j ;i;[[S ~E]] = hr j fr = S(~r)g [~Gi where hri j Gii = [[Ei]] and r fresh,[[let x = E in E0]] = hr0 j G [G0i[x := r];[[letrec ~x = ~E in E0]] = hr0 j ~G [G0i[~x := ~r]:We have omitted the case construct: it will be treated in the translation of functionde�nitions. Note that our interpretation is such that FV(E) = FV([[E]]).The interpretation of expressions naturally gives rise to an equivalence relation onthese expressions.De�nition 3.5 The expressions E and E0 are graph equivalent (notation E � E0) if[[E]] = [[E0]].Once we have interpreted expressions we can interpret function de�nitions.De�nition 3.6 (i) The graph interpretation of a function de�nition F~x = E is speci�edas follows. We distinguish two cases:Case 1. No pattern matching: E is case free. Then the interpretation consists of asingle rewrite rule: [[F~x = E]] = F~x! [[E]]:Case 2. Pattern matching. Then the interpretation is a collection of rules:[[F(x; ~y) = case x of ~P j ~E]] = 8><>: F(P1; ~y) ! [[E1]];...F(Pn; ~y) ! [[En]]:(ii) Let F be a set of function de�nitions. Then [[F]] is the collection of graph rewriterules obtained from F -elements.The function de�nitions induce a computation relation on expressions.De�nition 3.7 Let F be a collection of function de�nitions. Then we write E !!F E0 if[[E]]!![[F]] [[E0]]. E // //F���� E0����[[E]] // //[[F]] [[E0]]For a formal de�nition of graph rewriting the reader is referred to Barendregt et al.(1987) (see also Barendsen and Smetsers (1994)).

Uniqueness Typing 74. Higher-order functionsIn term graph rewriting all symbols have a �xed arity. Moreover, there is no abstractionoperator (like �) to construct anonymous functions. This prevents the use of functionsas arguments or as results.The usual way (in functional programming languages) to incorporate higher-orderfunctions is to admit partial (often called Curried) applications. These are written asFE1 � � �Ek(with k < arity(F)), denoting the function �~x:F(E1; : : : ; Ek; xk+1; : : : ; xarity(F)).Partial applications can be simulated in graph rewriting by introducing auxiliary sym-bols Fk and writing FE1 � � �Ek as Fk(E1; : : : ; Ek)(so Farity(F) = F). Moreover, we add an application operator Ap to our syntax whichcollects arguments, i.e. (roughly),Ap(Fk(~E); E0) = Fk+1(~E;E0):See Barendsen and Smetsers (1993) for a detailed description of the graph rewritingsemantics.We will present our type systems �rst for the traditional, purely algebraic, syntaxand then describe the type-theoretic extension dealing with partial applications. Forconventional typing this extension is straightforward. In the case of uniqueness typing,however, this turns out to be a subtle matter.5. Conventional TypingThe notion of conventional typing is common in most functional programming languages.It combines simple Curry typing with an instantiation mechanism to deal with di�erentoccurrences of function and constructor symbols. This weak form of polymorphism isnecessary due to the separation of speci�cations (function de�nitions, algebraic types)from applications.SyntaxDe�nition 5.1 Types are built up from type variables and type constructors.� ::= � j T~� j �1 ! �2:Here, T ranges over type constructors which are assumed to be introduced by an algebraictype system A.The function space type constructor ! is used when dealing with higher-order func-tions. We will treat these at the end of this section.We �rst associate a type with the constructors and function symbols in our language.The notion of type assignment for expressions is parametric in the choice of these symboltypes.

Erik Barendsen and Sjaak Smetsers 8De�nition 5.2 A symbol type of arity k is a k+1 tuple (�1; : : : ; �k; �). We will sugestivelydenote this as (�1; : : : ; �k)B �:The types ~� are called argument types and � is the result type.De�nition 5.3 (i) Let A be an algebraic type system. The speci�cations in A give thetypes of the algebraic constructors. LetT~� = C1 ~�1j � � �be the speci�cation of T in A. Then we writeA ` Ci : ~�i B T~�:For example, for lists one hasA `Nil : List(�); A ` Cons : (�; List(�))B List(�):(ii) The function symbols are supplied with a type by a function type environment F ,containing declarations of the formF : (�1; : : : ; �k)B �;where k is the arity of F. In this case we writeF ` F : ~� B �:(iii) The symbol types obtained so far are referred to as the standard types (in F ;A)of the symbols. These are regarded as type schemes: other types are obtained by instan-tiation, using the following rule ([� := �] denotes substitution).F;A ` S : ~� B �F;A ` S : ~�[� := �]B � [� := �]For the sequel, �x an algebraic system A and a function type environment F . Now wecan develop a system of type assignment for expressions and function de�nitions.De�nition 5.4 (i) A basis is a �nite set of declarations of the form x:� concerning distictvariables.(ii) The type system deals with typing statements of the formB ` E : �;

Uniqueness Typing 9where B is a basis. Such a statement is valid if it can be produced using the followingderivation rules. Below we abbreviate B [fx:�g by B; x:�.B; x:� ` x : � (variable)F;A ` S : ~� B � B ` ~E : ~� (application)B ` S ~E : �B ` E : � B; x:� ` E0 : �0 (sharing)B ` let x = E in E0 : �0B; ~x:~� ` Ei : �i B; ~x:~� ` E0 : � (cycle)B ` letrec ~x = ~E in E0 : �B ` E : � A ` Ci : ~�i B � B; ~xi:~�i ` Ei : � 0 (pattern matching)B ` case E of ~P j ~E : � 0 (if Pi = Ci ~xi)(iii) A function de�nition F~x = E is called type correct if~x : ~� ` E : �where ~�B � is the standard type of F. A collection of function de�nitions is type correctif its members are type correct in the above sense.SemanticsWe will show that the type system is sound and complete with respect to graph rewriting.We �rst recapitulate the notion of typing for graphs and rewrite rules from Barendsen andSmetsers (1993). This notion is a graph-theoretic variant of the typing concept presentedin van Bakel et al. (1992) for Term Rewrite Systems.De�nition 5.5 (TGRS Graph typing) Let g = hr j Gi be a graph. A typing for g is afunction T assigning a type to each element of V(g) such that for any equation x = S(~y)in G F;A ` S : T (~y)B T (x):That is, T is a type assignment to nodes that satis�es `local correctness'. We say that Ttypes g with � (notation T (g) = �) if furthermore T (r) = �. Moreover, g is typable with� (notation g : �) if there exists T with T (g) = �.Now we can give a semantic notion of expression typing.De�nition 5.6 Let E be an expression.(i) We say that T types E with � (notation T j= E : �) if T ([[E]]) = �.(ii) This notation is extended to sequences (in particular, bases): T j= B i� T j= x : �for each (x : �) 2 B.

Erik Barendsen and Sjaak Smetsers 10(iii) By B j= E : � we denote that B is extendible to a typing of [[E]], i.e., for some Tone has T j= B and T j= E : �:Proposition 5.7 (Soundness of expression typing) For any B;E; �B ` E : �) B j= E : �:Proof. By induction on the derivation of B ` E : �.Proposition 5.8 (Completeness of expression typing) For any B;E; �B j= E : �) B ` E : �:Proof. By induction on the structure of E.Corollary 5.9 B ` E : �; E � E0) B ` E0 : �Typing of graph rewrite rules can be formulated as follows.De�nition 5.10 (TGRS Rule typing) (i) A type assignment T to variables can beextended to algebraic patterns in a straightforward way:F;A ` C : ~�B �; T (~p) = ~�) T (C~p) = �:(ii) Say the standard type of F in F is ~� B � . Then the rewrite rule F~p ! g is typecorrect if for some T one has T (~p) = ~�;T (g) = �:Note that the type assignment to the pattern ~p is uniquely determined by the input types~�: given C and �, there is at most one sequence ~� such that F;A ` C : ~�B �.(iii) A collection of rewrite rules is type correct if every member is.Proposition 5.11 (Soundness of function typing)F is type correct) [[F]] is type correct.Proof. Straightforward.Subject ReductionThe following is proved in Barendsen and Smetsers (1993).Theorem 5.12 (TGRS Reduction typing) Suppose R is type correct. Theng : �g !!R g0 �) g0 : �:

Uniqueness Typing 11Proof. [Sketch] If a rewrite rule (say with typing T , cf. De�nition 5.10) applies to acertain typed graph g, then there is a substitution � such that T � (on the pattern of therule) corresponds to the typing of the matching part of g. Now T � (on the result of therule) can be used to type the contractum.By our soundness and completeness results, the so-called Subject Reduction Propertyis an easy corollary of the previous theorem.Subject Reduction Theorem 5.13 Suppose F is type correct. ThenB ` E : �E !!F E0 �) B ` E0 : �:Type InferenceIn this section we will show that type assignment has the principal type property : if anexpression E is typable then there exists a most general typing for E. The presentationbelow has been inspired by Barendregt (1992). The idea of strictly splitting type recon-struction into generation of equations and uni�cation is due to Wand (1987). The presentalgorithm is an inductive variant of the procedure on graphs described in Barendsen andSmetsers (1993).De�nition 5.14 (i) A type equation is an expression of the form � ' � .(ii) Let E = f�1 ' �1; : : : ; �n ' �ng be a �nite set of type equations. A solution for Eis a substitution � such that ��1 = ��1 ; : : : ; ��n = ��n:In that case one writes � j= E . The notion of most general solution for E is de�ned asusual.Uni�cation Theorem 5.15 There exists a recursive function Unify having as input�nite sets of equations between types such thatE has a solution) Unify(E) is the most general solution for E;E has no solution) Unify(E) = fail:Proof. See Robinson (1965).The next step is to associate with each expression E a set of type equations in such away that typability of E can be formulated in terms solvability of those equations.De�nition 5.16 Let �; �0 be substitutions.(i) Let � be a type. Then �; �0 are equivalent with respect to � (notation � �� �0) if�(�) = �0(�) for all � occurring in �.(ii) This notion is extended sequences of bases and/or types: we write � �B;� �0 if� �� �0 for all types � appearing in B; �.

Erik Barendsen and Sjaak Smetsers 12De�nition 5.17 Let E be an expression, B a basis, and � a type. A set of type equationsE is exact for B;E; � if for each substitution � one has(1) � j= E) B� ` E : ��(2) B� ` E : ��) �0 j= E for some �0 with �0 �B;� �.Proposition 5.18 Let E be an expression, B be a basis, and � 2 T. Then there exists a�nite set of equations E = E(B;E; �), computable from B;E; �, such that E is exact forB;E; �.Proof. De�ne E(B;E; �) by induction on E. To avoid notational confusion we writeB [x:� instead of B; x:�.E(B; x; �) = fB(x) ' �g (regard B as a partial function),E(B;S~E; �) = [i E(B;Ei; �i) [f� ' �gwhere ~� B � is the standard F;A-type of S;E(B; let x = E in E0; �) = E(B;E;�) [E(B [x:�;E0; �)� fresh;E(B; letrec ~x = ~E in E0; �) = E(B [~x:~�;E0; �) [[i E(B [~x:~�;Ei; �i)~� fresh;E(B; case E of ~P j~E; �) = E(B;E;�) [[i (E(B [~xi:~�i; Ei; �) [f�i ' �g)if Pi = Ci ~xi and the standard type of Ci is ~�i B �i;� fresh:One shows (1) by induction on E and (2) using induction on the derivation of B� ` E :��.De�nition 5.19 Let E be an expression. The pair (B; �) is a principal typing for Eif (1) B ` E : �;(2) B0 ` E : �0) B0 � B�; �0 = �� for some substitution � :Principal Typing Theorem 5.20 There exists a recursive function pt such thatE is typable) pt(E) is a principal typing for E;E is not typable) pt(E) = fail:Proof. Say FV(E) = fx1; : : : ; xkg. Set B0 = fx1:�1; : : : ; xk:�kg, and �0 = � (all �'sfresh). De�ne pt(E) = (B�0 ; ��0) if Unify(E(B0; E; �0)) = �,= fail if Unify(E(B0; E; �0)) = fail.The correctness of this procedure follows from Proposition 5.18 and Theorem 5.15.

Uniqueness Typing 13Higher-order TypingThe type system can be extended to deal with higher-order functions (see Section 4),using the function space type constructor !.The (standard) types of the `Curried' function symbols Fk for partial applications areobtained from the (standard) type of F, in the following way (set Farity(F) = F).F;A ` Fk+1 : (~�; �)B � 0 (Curry)F;A ` Fk : ~� B (� ! � 0)The new syntactic construct Ap is treated by an additional rule.B ` E : �! � B ` E0 : � (curried application)B ` Ap(E;E0) : �The results of this section (soundness, completeness, subject reduction, principal typ-ing) extend to the higher-order system. As to principal typing, the equations for Ap aregenerated by E(B;Ap(E;E0); �) = E(B;E; �! �) [E(B;E0; �)� fresh:The function space constructor is allowed inside algebraic type de�nitions: for exampleObject(�) = C(�; �! �; �! Int):6. Introduction to Uniqueness TypingUniqueness typing o�ers the possibility to indicate reference count requirements of func-tions in the corresponding argument types.The idea of restricting occurrences of input objects by a type system is not new: we canmake use of ideas developed in so-called resource conscious logics like linear logic. Viathe propositions-as-types correspondence (relating inputs to assumptions and functionsto proofs) restrictions on usage of assumptions in these logics gives the desired referencecount limitations.Since we deal with both destructive and harmless operations, a purely linear typingsystem (in which neither copying nor discarding of input is allowed) is too restrictivefor our purposes. Instead, we propose to divide the type system into two layers: a `re-source conscious' part in which occurrences are limited, and a `conventional' part withno reference restrictions. In fact, the former layer (of `unique' types, indicated by �)admits discarding input but excludes copying. Therefore it corresponds to a�ne logic(see Blass (1992)) in which weakening is present but no contraction. The latter layer(of � types) corresponds to ordinary (intuitionistic) logic with the same strength asconventional typing.

Erik Barendsen and Sjaak Smetsers 14The two layers are connected: it is possible to move from the � layer to the � layer.These transitions are regulated by the type system: we have a subtype relation allowinga unique object to be seen as a conventional one (in case the accessing function hasno reference requirements) and a type correction mechanism (forcing an object withreference count greater than 1 to be regarded as non-unique).The operator ! in linear logic should not be confused with the attribute �: the type ��indicates that there are no reference restrictions, whereas �! would stand for `as many(duplicatewise linear) copies as necessary'.We will now explain the graph-theoretic intuition of our type system. In symbol types,it can be speci�ed that a given argument should be unique (by the annotation �). Typecorrectness means that in any application the concrete function argument should havereference count 1. So the function has indeed `private' access to its argument, and hencethe argument can be updated in-place.This analysis was intended for inherently destructive operations and their parameters,like WriteChar, but can also help to improve storage management. Consider, for in-stance, the following list reversing function which can be implemented e�ciently as a`destructive' function if the given uniqueness type is used.Rev : List�(��)B List�(��)Rev (l) ! H(l;Nil)H : (List�(��); List�(��))B List�(��)H(`1; `2) ! case `1 of Cons(h; t) j H(t;Cons(h; `2))Nil j `2:Note that H's �rst argument has reference count 1 in any type correct application. Thetopmost node of this argument is not used in the result of the function. Hence thisnode becomes obsolete and can be re-cycled: not only its space but also also parts ofits contents. In fact it already su�ces to change the reference to t to point to `2. Suchre-usage of space is often called compile-time garbage collection.We have seen that the environment type F : �� B � � � speci�es that F's argumentshould be unique for F. In the same way, uniqueness of results is speci�ed: if G : � � �B��,then a well-typed expression F(G(E)) remains type-correct, even if G(E) is subject tocomputation.The above-mentioned transitions between the type layers are motivated as follows.Sometimes, uniqueness is not required. If F : ��B � � � then still F(G(E)) is type correct.This is expressed in the subtype relation �, such that roughly �� � ��. O�ering a non-unique argument if a function requires a unique one fails: �� � ��. The subtype relationis de�ned in terms of the ordering � � � on attributes. In an application an argumentcan also be non-unique if it has reference count greater than 1 (even though the type ofthe argument expression itself is unique). This is covered by a correction mechanism: aunique result may be used more than once, as long as only non-unique supertypes arerequired.From the types given above it can be seen that the layers � and � are have someinternal structure induced by the presence of type constructors: a � type (at the outer-

Uniqueness Typing 15most level) can have parts marked with � (and vice versa). This �ne structure, with thepossibility of specifying a�ne or conventional behaviour of substructures, is a powerfulfeature of our system.Pattern matching (expressed by the case construction) is an essential aspect of termgraph rewriting, causing a function to have access to `deeper' arguments via data pathsinstead of a single reference. This gives rise to `indirect sharing' of objects by access viaintermediate data nodes. For example, if a function F has access to a list with non-uniquespine, the list elements should also be considered as non-unique for F: other functionsmay access them via the spine. This e�ect is taken into account by a restriction on theuniqueness types of data constructors: the result of a constructor is unique wheneverone of its arguments is. For the constructor Cons of lists, for example, the possibleuniqueness variant are:Cons : (��; List�(��))B List�(��) (1)Cons : (��; List� (��))B List� (��) (2)Cons : (�� ; List� (��))B List� (��) (3)With (1) ordinary lists can be built. (2) can be used for lists of which the `spine' is unique,and (3) for lists of which both the spine and the elements are unique. Observe that inthe above example, the List argument of Cons is always attributed in the same wayas the corresponding List result. In general, such a uniform way of attributing recursiveoccurrences of a type constructor leads to homogeneous data objects: All recursive partsof such an object have the same uniqueness properties as the object itself. A procedurefor generating consistent attributions of arbitrary data types can be found in Barendsenand Smetsers (1993).We can also express propagation by using the � relation. E.g.Cons : (�u; Listv(�u))B Listv(�u)is well-attributed if v � u. Note that this indeed excludes a constructor for List�(Int�).A similar restriction on types of data constructors can be found in the type systems ofGuzm�an and Hudak (1990) and Turner et al. (1995).Some parts of the uniqueness type system are complicated. The treatment of cyclic de-pendencies is subtle; moreover dealing with higher-order functions is a non-trivial matter.This seems to be a common aspect of related approaches.The way references are counted can be re�ned, by making use of information on theevaluation order. To avoid unnecessary complications we will not treat this in detail butgive an idea of the method at the end of Section 8.7. Simple Uniqueness TypingAlgebraic Uniqueness TypesUniqueness types are constructed from conventional types by assigning a uniquenessattribute to each subexpression. We will denote the attributes as superscripts; for non-variable types these are attached to the topmost type constructor of each type. Below,

Erik Barendsen and Sjaak Smetsers 16S; T; : : : range over uniqueness types and u; v; : : : over the attributes � ;�. The outermostattribute of S is denoted by pSq. Moreover jSj denotes its underlying conventional type.We will �rst describe the system without the type constructor !.De�nition 7.1 The subtype relation � is very simple: the validity of S � S0 dependssubtypewise on the validity of u � u0 with u; u0 attributes in S; S0. One has, for example,Listu(Listv(Intw)) � Listu0(Listv0(Intw0)) i� u � u0; v � v0; w � w0:In order to account for multiple references to the same object we introduce a uniquenesscorrection.De�nition 7.2 For each S, we construct the smallest non-unique supertype [S] of S, asfollows. [�u] = ��;[Tu ~S] = T�~S:The last clause possibly introduces types like List�(Int�). Contrasting Turner et al.(1995), we allow these types in our system. This is harmless since these `inconsistent'types have no proper inhabitants (for example, there is noCons yielding type List�(Int�)).Type correction is applied when dealing with plain sharing (through multiple occur-rences of the same variable). In a `resource conscious' system these variable duplicationsare easy to detect: they correspond to contraction steps in the logical setting. The treat-ment of recursive objects (occurring as letrec ~x = ~E in E0) is special: we account forpossible cycles by correcting both internal (in ~E) and external (in E0) references to theirroots ~x.The notion of standard type is adapted in the following way. As can be seen from theList example, there are several standard types for each data constructor.De�nition 7.3 (i) As before, standard types of function symbols (F : ~SBT) are collectedin an environment F .(ii) Say the algebraic environment A containsT~� = C1 ~�1j � � �A set of standard types for Ci consists of attributed versions of the conventional type~�i B T~�, such that(1) multiple occurrences of the same variable and of the constructor T have the sameuniqueness attribute throughout each version;(2) each version is uniqueness propagating;(3) the set contains at most one version for each attributed variant of T~�.This leaves some freedom as to the choice of attributes on positions not correspondingto T; ~�. Barendsen and Smetsers (1993) o�er a general method for constructing a rea-sonable set of standard types for each constructor. In most cases (like List, see above),however, the choice of attributes of T~� �xes those for the ~�i. From now on we assume that

Uniqueness Typing 17standard types have been determined. For these standard types ~SBT we set A ` C : ~SBTas before.De�nition 7.4 Symbol types are instantiated via the ruleF;A ` S : ~S B T p�q = pRq (instantiation)F;A ` S : ~S[� := R]B T [� := R]Now we are ready to present the derivation system.De�nition 7.5 A uniqueness typing statement (in F;A) has the formB ` E : S:Like in linear logic, we have to be precise when dealing with bases used for typingsubterms. In particular, duplicating and discarding of inputs are treated explicitly. Thedenotation B1; B2 stands for a disjoint union of bases.(i) The rules for type assignment are the following.x:S ` x : S (variable)F;A ` S : ~S B T Bi ` Ei : Si (application)~B ` S ~E : TB ` E : S B0; x:S ` E0 : T (sharing)B;B0 ` let x = E in E0 : TBi; ~x:[~S] ` Ei : Si B0; ~x:[~S] ` E0 : T (cycle)~B;B0 ` letrec ~x = ~E in E0 : TB ` E : T F;A ` Ci : ~S B T B0; ~xi: ~Si ` Ei : T 0 (pattern matching)B;B0 ` case E of ~P j ~E : T 0 (if Pi = Ci ~xi)B ` E : S S � S0 (subsumption)B ` E : S0Additionally, we have the following `structural rules'. Weakening expresses that one candiscard (unique or non-unique) input. The contraction rule deals with correction of typesof shared objects: multiple use of the same object is allowed as long as only non-unique

Erik Barendsen and Sjaak Smetsers 18variants of the types are used. B ` E : T (weakening)B; x:S ` E : TB; y:[S]; z:[S] ` E : T (contraction)B; x:S ` E[y := x; z := x] : T(ii) Correctness of function de�nitions is expressed as before: the speci�cation F~x = E,say with standard type ~S B T for F, is type correct if~x:~S ` E : T:A collection of function de�nitions is type correct if its members are type correct.In the derivation one clearly recognizes the `logical' di�erence between the a�ne (�)and conventional (�) layer: with respect to � one only has weakening as structural rule,whereas � admits both weakening and contraction since [S] = S if pSq = �.Higher-Order Uniqueness TypesThe treatment of higher-order functions in the uniqueness type system is a subtle matter.Types of partial applications F ~E need to be assigned a uniqueness attribute. If thesepartial applications contain unique subexpressions one has to be careful. Consider, forexample, a function F with type F : (��; ��)B�� in the partial application FE. Clearly,the result type of this application is of the form �� u!��. If one allows that this applicationis used more than once, one cannot guarantee that the argument E (with type ��)remains unique during evaluation. E.g. if FE is passed to a function G(f) = (f0; f1),the occurrences of f will result in two applications of F sharing the same expression E.Apparently, the FE expression is necessarily unique: its reference count should neverbecome greater than 1, i.e. it is not allowed to move from the a�ne to the conventionaltype layer. There are several ways to achieve this. For instance, one might introduce a newuniqueness attribute, say 4 , for any unique object that does not coerce to a non-uniquevariant. This has been described in Barendsen and Smetsers (1993). Another solution isthe region-administration introduced by Reynolds (1995).Instead of introducing a new attribute, the present paper assigns the attribute � tothe above !-type, but considers the ! constructor in combination with the � attributeas special: it is not permitted to discard its uniqueness. The leads to an adjustment ofthe subtyping relations as well as of the type correction operator [�].As to the subtyping relation, the attributes of corresponding occurrences of the! con-structors (in the left-hand and the right-hand side of an inequality) should be identical.The same is required (to ensure substitutivity of the subtyping relation) for variables.The subtyping relation becomes inherently more complex than in the algebraic casebecause of the so-called contravariance of ! in its �rst argument:S u! S0 � T u! T 0 , T � S; S0 � T 0:

Uniqueness Typing 19Since ! may appear in the de�nitions of algebraic type constructors, these constructorsmay inherit the co- or contravariant subtyping behaviour with respect to their arguments.We can classify the `sign' of the arguments of each type constructor as � (positive,covariant), 	 (negative, contravariant) or > (both positive and negative). In general thisis done by analyzing the (possibly mutually recursive) algebraic type de�nitions by a�xedpoint construction, with basis sign(!) = (;�).Notation. The variants ��, �	 and �> are de�ned in terms of �, as follows.S �� T , S � T;S �	 T , T � S;S �> T , S �� T and S �	 T:Moreover we set ~S �~s ~T , Si �si Ti for each i:De�nition 7.6 The subtyping relation � is de�ned by induction.�u � �v , u = v;Tu~S � Tv ~T , u � v and ~S �sign(T) ~T ;S u! S0 � T v! T 0 , u = v and S �	 T and S0 �� T 0:Then we have, for example,Intu v! �w � Intu0 v0! �w0 i� u0 � u; v = v0; w = w0:Adjusting the type correction operator is easy: correction of �! types simply fails. Thusthe operator [�] becomes a partial function:[�u] = �� if u = �,[Tu~S] = T�~S;[S u! T] = S �! T if u = �,[S] = " (unde�ned) in all other cases.The type of Fk is de�ned in terms the type of Fk+1 by the following rule.F;A ` Fk+1 : (~S; T)B T 0 u � �p~Sq (Curry)F;A ` Fk : ~S B (T u! T 0)Here, �~u stands for the so-called cumulative uniqueness attribute of ~u: it equals � when-ever some ui is � , and � otherwise.The typing rule for Ap is de�ned straightforwardly.B ` E : S u! T B0 ` E0 : S (curried application)B;B0 ` Ap(E;E0) : T

Erik Barendsen and Sjaak Smetsers 20SemanticsWe start with de�ning a notion of uniqueness typing for graphs, based on type assign-ment to nodes in graphs. Subtyping and type correction will be done along referencesto objects, whereas on expressions one can perform coercions regardless of their context.This di�erence becomes apparent in the root of a graph. By making a small adjustment(introduced in Barendsen and Smetsers (1993) as a tool to obtain subject reduction) wecan reconcile the two approaches.De�nition 7.7 (i) Let g be a graph. Then g+ is the graph that results from g by addinga new root r+ with in-degree 0 containing the data symbol Root of arity 1, pointing tothe root r of g.(ii) The standard types of Root are given by �u B �u.Since Root is not a function, the root of g+ will never be involved in the rewriteprocess. Furthermore, for each cycle in g+ there is always an external reference (i.e., areference from a node that is not part of the cycle) to that cycle. This makes cycle andsharing detection more uniform.De�nition 7.8 Let n be a node in g. The reference count of n in g (notation rcg(n) orjust rc(n)) is
 if n appears more than once in the right-hand sides of equations in g+,and � otherwise.Note that the above mechanism only di�ers from ordinary reference counting at theroot of the graph, notably when the root is part of a cycle.De�nition 7.9 (TGRS uniqueness graph typing) Let g be a graph.(i) A uniqueness typing for g is a function T assigning a uniqueness type to eachnode in g+ such that for any node speci�cation x = S(~y) there exist types ~S with thefollowing properties. F;A ` S : ~S B T (x);and for all i � k T (ni) � Si if rcg(ni) = �,[T (ni)] � Si if rcg(ni) =
:(ii) We say that T types g with S (notation T (g) = S) if moreover T (r+) = S.Furthermore g is typable with S (notation g : S) if T (g) = S for some T .The constraints in the above de�nition re
ect the uniqueness property of functionapplications mentioned in Section 6. If, say, F with arity 2 has a standard type in whichthe �rst argument is unique, then for any application x = F(y; z) in a type correct graphg we have that rcg(y) = 1. The following subsection shows that this property is indeedestablished by the natural deduction system.

Uniqueness Typing 21SoundnessAs a �rst step towards the soundness proof we need the following technical results.De�nition 7.10 (i) [S]
 = [S]; [S]� = S.(ii) By T j= B we denote that T (x) = S for each (x:S) 2 B.Lemma 7.11 Let B ` E : S. Set rE = r[[E]], rcE = rc[[E]](rE). Then there exists a typeassignment T such that T is a uniqueness typing for [[E]] and moreoverT j= B;[T (rE)]rcE � S:Proof. By induction on the derivation of B ` E : S. We will only consider two cases:application and contraction. All other cases are handled in the same way.� ~B ` S ~E : T since F;A ` S : ~S B T and Bi ` Ei : Si. By induction hypothesis wehave Ti for [[Ei]] with Ti j= Bi and [T (rEi)]rcEi � Si. Note that rcEi = rc[[S~E]](rEi). SetT = Si Ti [frS~E ; r+ 7! Tg. Then T satis�es the requirements.� B; x:S ` E[y; z := x] : T since B; y:[S]; z:[S] ` E : T . By induction hypothesis wehave T j= B; y:[S]; z:[S] and [T (rE)]rcE � T . Set T 0 = T [[x 7! S]. Then T 0 j= B; x:Sand T 0 is a uniqueness typing for [[E[y; z := x]]] = [[E]][y; z := x] by transitivity of �,using S � [S] and [S] � [S] and we are done.De�nition 7.12 Let E be an expression.(i) We say that T types E with S (notation T j= E : S) if T is a uniqueness typingfor [[E]] such that T ([[E]]) = S:(ii) By B j= E : S we denote that B is extendible to a typing of [[E]], i.e., for some Tone has T j= B; T j= E : S:Theorem 7.13 (Soundness of expression uniqueness typing) For any B;E; SB ` E : S) B j= E : S:Proof. Suppose B ` E : S. By Lemma 7.11 there exists a type assignment T for [[E]]with [T (rE)]rcE � S. Set T 0 = T [r+E 7! S]. Then T 0 is a uniqueness typing for [[E]].(The additional root reference allows an extra `top coercion'.) Moreover T 0 j= B andT 0 j= E : S.CompletenessShowing that the inductive uniqueness type system is powerful enough to capture unique-ness typing of graphs is more involved than for the conventional case. This is because ourtyping rules are rather intensional : Due to the pessimistic treatment of letrec-expressions

Erik Barendsen and Sjaak Smetsers 22(type correction even in the case of a degenerate cycle) there are expressions E;E0 andtype S such that [[E]] = [[E0]], E is typable with S whereas E0 is not typable at all.The idea is to transform a given graph g = hr jGi into an expression g~ that contains a`minimal' amount of letrec-expressions. This is done by stepwise substitution of equationsin G corresponding to nodes with reference count 1. Take, for example, the followinggraph.
b:B

d:Dc:C

e:E

a:A

g:G

f:FThe intended procedure leads to the expressionletrec b = B(C(g; d); d);d = D(e;F(g); b);e = E(e);g = Gin A(b)De�nition 7.14 Let g = hr jGi be a graph. Say En is the right-hand side of the equationin G corresponding to variable n.(i) The expressions En are translated into expressions En�, as follows.(S(n1; : : : ; nk))� = S(n1; : : : ; nk):Moreover n = n if rcg(n) =
 or n 2 FV(g)= En� otherwise.(ii) Finally, the standard expression denoting g (notation g~) is given byg~ = letrec ~n = ~En� in r;where ~n is the collection of bound variables with reference count
.The above transformation is an instance of the hiding operation de�ned by Ariola andKlop (1995).It is not completely trivial that the (mutually recursive) de�nition of � and � is sound.To see that this is indeed the case consider the following measure on g-nodes.De�nition 7.15 Let n 2 V (g). Then n is said to have degree 0 if n 2 FV(g) or n has noarguments with reference count �. Otherwise, if the maximal degree of n's argumentswith reference count � is d, then n has degree d+ 1.

Uniqueness Typing 23This is a sound de�nition: since there exists no in�nite path of nodes with referencecount �, each node n can be assigned a unique, �nite degree, denoted by deg(n).It is clear that the degree of nodes decreases with each recursive occurrence of theoperator � above.Lemma 7.16 [[g~]] = gProof. Obvious.Below we will use the degree as a technical tool to prove that g~ can be typed withthe same type as g. In the sequel, �x a graph g and an uniqueness typing T for g.De�nition 7.17 (i) The initial basis (of g) (notation BI) is the setBI = fn : [T (n)]rcg(n) j n 2 FV(g)g:(ii) The recursion basis (notation BR) is the setBR = fn : [T (n)] j rcg(n) =
g:Lemma 7.18 For all n 2 V(g) one has(i) BI; BR ` En� : T (n);(ii) BI; BR ` n : [T (n)]rcg(n).Proof. By simultaneous course-of-values induction on the degree of n. Suppose (i) and(ii) hold for all nodes with degree < d. Let n have degree d.(i) Say En� = S(n1; : : : ; nk) and F;A ` S : ~S B T with T (n) = T and [T (ni)]rc(ni) �Si for all i � k.Claim. BI; BR ` n : Si: Then we are done: we can complete the derivation using the rulesapplication and contraction. The latter deals with multiple occurrences of the variablesin BI; BR; note that [�] is idempotent, i.e. [[S]] = [S] for each type S.Proof. Let i � k.Case 1. rc(ni) = � and ni 2 BV(g). Then by induction hypothesis (ii) (note thatdeg(ni) < d) we have BI; BR ` ni : T (ni):Now we can apply subsumption.Case 2. rc(ni) =
 and ni 2 BV(g). ThenBI; BR ` ni : [T (ni)];by variable and weakening, so by subsumption the result follows.Case 3. ni 2 FV(g). Then BI ` ni : [T (ni)]rc(ni). Again by subsumption the resultfollows. Claim(ii) The case rc(n) = � and n 2 BV(g) is covered by (i). Otherwise, either BR (incase n 2 BV(g)) or BI (in case n 2 FV(g)) contains n : [T (n)]rc(n). Now we are done byvariable and weakening.Proposition 7.19 BI ` g~ : T (g):

Erik Barendsen and Sjaak Smetsers 24Proof. Since T is a typing for g we have [T (r)]rc(r) � T (r+) by the standard type forRoot. Now by Lemma 7.18, using the rule cycle and the rule weakening (also to dealwith multiple occurrences of the variables in BI) and subsumption the result follows.Theorem 7.20 (Completeness for expression uniqueness typing)B j= E : S) 9E0 � E [B ` E0 : S]:Proof. Without loss of generality, we can assume that B contains no declarationsfor variables not appearing in E. Suppose B j= E : S; say T j= B and T ([[E]]) = S.Observe that B = BI. Set E0 = [[E]]~. Then E0 � E by Lemma 7.16 and we are done byProposition 7.19.We now relate function typings with typings of graph rewrite rules. Uniqueness typingof graph rewrite rules is de�ned as follows.De�nition 7.21 (TGRS Rule uniqueness typing)(i) A uniqueness type assignment T to variables can be extended to patterns in thefollowing way: F;A ` C : ~S B T; T (~p) = ~S) T (C ~p) = T:(ii) Say the standard type for F in F is ~S B T . Then the rewrite rule F~p ! g is(uniqueness) type correct if for some uniqueness typing T one hasT (~p) = ~S;T (g) = T:(iii) A collection of rewrite rules is type correct in F if every member is.Proposition 7.22 (Soundness of uniqueness function typing)F is uniqueness type correct) [[F]] is uniqueness type correct:Proof. Straightforward.Subject ReductionTheorem 7.23 (TGRS Uniqueness reduction typing) Suppose R is uniquenesstype correct. Then for any g; h; S g : Sg !!R h �) h : S:Moreover the latter type assignment coincides with the original for g with respect to thefree variables of h.Proof. See Barendsen and Smetsers (1993).Finally, by combining this result with the results from the previous subsection we canformulate the soundness of the uniqueness type system for expressions with respect tograph rewriting.

Uniqueness Typing 25Subject Reduction Theorem 7.24 Suppose F is type correct. ThenB ` E : SE !!F E 0 �) 9E00 � E0 [B ` E00 : S]:Proof. First note that [[F]] is type correct by Proposition 7.22. Suppose B ` E : S andE !!F E 0. Then B j= E : S by soundness (Theorem 7.13). By Theorem 7.23 we haveB j= E0 : S. Hence by completeness (Theorem 7.20) the result follows.8. Polymorphic Uniqueness TypingIn order to denote uniqueness schemes, we extend the attribute set with attribute vari-ables (a; b; a1; : : :). This increases the expressiveness of the type system. Moreover, at-tribute polymorphism is needed for the determination of `principal' uniqueness variantsof typings.Uniqueness constraints are indicated by (�nite) sets of attribute inequalities calledattribute environments. For example, the standard type of the symbol Cons is nowexpressed by Cons : (�a; Listb(�a))B Listb(�a) j b � a:Note that this expression captures the collection of standard types for Cons in one singletype. The former types for Cons can be obtained by substituting concrete attributes fora and b satisfying the requirement a � b. The same is done for all symbols: each symbolhas one polymorphic standard type ~S B T j �.SyntaxAll notions of the previous section (type environment, subtyping, type derivation) arere-de�ned relative to attribute environments.De�nition 8.1 (i) As to the attribute relation �, we say that u � v is derivable fromthe attribute environment � (notation � ` u � v) if � ` u � v can be produced by theaxioms � ` u � v if (u � v) 2 �;� ` u � u; � ` u � �; � ` � � uand rule � ` u � v � ` v � w� ` u � w :(ii) This denotation is extended to �nite sets of inequalities: � ` �0 if � ` u � v foreach (u � v) 2 �0. By u = v we denote the pair u � v; v � u.(iii) We say that � is consistent if � 6` � � � .De�nition 8.2 (i) For every �, the subtyping relation �� is de�ned by induction.�u �� �v , � ` u = v;

Erik Barendsen and Sjaak Smetsers 26Tu~S �� Tv ~T , � ` u � v and ~S �sign(T)� ~T ;S u! S0 �� T v! T 0 , � ` u = v and S �	� T and S0 ��� T 0:(ii) The types S and T are equal modulo � (notation S =� T) if S �� T and T �� S.One has, for example,Listu(Intv w! �x) �� Listu0(Intv0 w0! �x0) i� � ` u � u0; v0 � v; w = w0; x = x0:De�nition 8.3 The context rules for the polymorphic system areF;A ` S : ~S B T j � �0 ` � (attribute instantiation)F;A ` S : ~S B T j �0F;A ` S : ~S B T j � � ` p�q = pRq (instantiation)F;A ` S : ~S[� := R]B T [� := R] j �F;A ` Fi+1 : (~S; T)B T 0 j � � ` u � p~Sq (Curry)F;A ` Fi : ~S B (T u! T 0) j �The correction operation is also relativized.De�nition 8.4 For every �, the �-correction of types is the partial function [�]� de�nedinductively as follows. [�u]� = �u if � ` u = �,[Tu~S]� = T�~S;[S u! T]� = S u! T if � ` u = �,[S]� = " otherwise.The rules for producing typing statements B `� E : S are obtained from the previousones, roughly by replacing ` by `� . The application rule, for example, becomesF;A ` S : ~S B T j � Bi `� Ei : Si (application)~B `� S~E : Tand the subsumption ruleB `� E : S S �� S0 (subsumption)B `� E : S0The environments � in the deduction system are global in the sense that they may con-tain auxiliary uniqueness constraints (attribute inequalities appearing in some derivation

Uniqueness Typing 27step, but not occurring in the �nal basis and type). In order to eliminate these super
uousconstraints in the conclusion of a deduction, we re�ne the notion of derivability.De�nition 8.5 (i) Let �, �0 be coercion environments, and let S be a uniqueness type.Then �;�0 are equivalent with respect to S (notation � �S �0) if for all attributes u; vin S; � ;� � ` u � v , �0 ` u � v:(ii) This denotation is extended to bases and/or types: we write � �B;S �0 if � �T �0for all T appearing in B;S.De�nition 8.6 (i) A polymorphic uniqueness typing statement is an expression of theform B ` E : S j �:Such a statement is derivable if there exists a consistent �0 such that �0 �B;S � andB `�0 E : S can be produced via the above axioms and rules.(ii) Say the standard type for F in F is ~SBT j�. Then the function de�nition F~x = Eis type correct if ~x:~S ` E : T j �:Formulating the notion of attribute instance (via attribute substitutions �) for poly-morphic uniqueness typing is more subtle than for conventional type instantiation. Onehas to take into account that the uniqueness information is divided into two parts: unique-ness types and coercion environments. For example, the typings Inta j a� � and Int� havethe same `uniqueness content', but the uniqueness information is denoted in two di�er-ent ways. The following de�nition of instantiation focusses on the uniqueness content,abstracting from the speci�c type denotation.De�nition 8.7 (i) The typing S0 j �0 is a uniqueness instance of S j � (notation S0j�0 �Sj�) if S; S0 have the same conventional skeleton (jSj = jS0j) and there exists an attributesubstitution � such that �0 ` ��; S0 =�0 S�:(ii) We also use this denotation for sequences of types: ~S0j�0 � ~Sj�.The following expresses that attribute variables and attribute environments can beregarded as uniqueness schemes: all instances of a given typing are correct.Proposition 8.8 B ` E : S j �B0;S0j�0 � B;Sj� �) B0 ` E : S0 j �0:Proof. Induction on the derivation showing B ` E : S j �.

Erik Barendsen and Sjaak Smetsers 28SemanticsThe semantic results of Section 7 go through in the polymorphic system. Below wereformulate the main results.De�nition 8.9 (TGRS polymorphic uniqueness graph typing) Let g = hr j Gibe a graph. A polymorphic uniqueness typing for g is a pair hT ;�i where T is a uniquenesstype assignment to nodes in g and � is a consistent coercion environment such that forany equation x = S(~y) in G there exist types ~S with the following properties.F;A ` S : ~S B T (x) j �;and for all i � k T (ni) �� Si if rcg(ni) = �,[T (ni)]� �� Si if rcg(ni) =
:The following de�nition prepares for the soundness result.De�nition 8.10 E an expression and S a uniqueness type.(i) Let B be a basis. By T j=� B we denote that T (x) =� T for each (x:T) in B.(ii) We say that T types E with S in � (notation T j=� E : S) if hT ;�i is a uniquenesstyping for [[E]]+ such that T ([[E]]+) =� S.(iii) By B j= E : S j � we denote that for some T and �0 �B;S �T j=�0 B; T j=�0 E : S:Theorem 8.11 (Soundness) B ` E : S j �) B j= E : S j �.Theorem 8.12 (Completeness) B j= E : S j �) 9E0 � E [B ` E 0 : S j �]:Subject Reduction Theorem 8.13 Suppose F is type correct. ThenB ` E : S j �E !!F E 0 �) 9E00 � E0 [B ` E00 : S j �]:Uniqueness Type InferenceIn this section we will describe how to compute uniqueness variants of conventionaltypings. The presentation will proceed along the same lines as the conventional case:given an expression, we collect a `minimal' set of requirements (this time in the form ofinequalities). It will be decidable whether this set has a solution; moreover, in the positivecase a `principal' solution is computable. For the graph theoretic setting, uniqueness typeinference has been described in Barendsen and Smetsers (1995b).In order to generate uniqueness requirements in an inductive way, we construct asyntax-directed variant of the type derivation system. The substitution in the contrac-tion rule is a global operation which does not �t into a syntax-directed (decompositional)

Uniqueness Typing 29system. Therefore we introduce variable annotations for administration of multiple vari-able occurrences.We assume that the applied occurrences of variables in our expressions are marked:x
 if x either occurs more than once or x is a letrec-variable, and x� if x occurs onlyonce. De�ning occurrences (let x = � � �) are not marked. This marking corresponds to asimple reference-count determination in graphs.The subsumption rule is incorporated in the rules (variable) and (application). Thecontraction rule has become obsolete by our new administration of sharing: uniquenesscorrection can now be combined with the (variable) rule. Weakening is taken into accountby allowing a larger basis in the rules. Moreover, strict separation of bases for typing isnot longer necessary, again by our local administration of multiple variable occurrences.De�nition 8.14 The syntax directed polymorphic system looks as follows.S �� S0 (variable �)B; x:S `� x� : S0 [S]� �� S0 (variable
)B; x:S `� x
 : S0F;A ` S : ~S B T j � B `� Ei : Si T �� T 0 (application)B `� S ~E : T 0B `� E : S B; x:S `� E0 : T (sharing)B `� let x = E in E0 : TB; ~x:~S `� ~E : ~S B; ~x:~S `� E0 : T (cycle)B `� letrec ~x = ~E in E0 : TB `� E : T F;A `� Ci : ~S B T B; ~xi: ~Si `� Ei : T 0 (pattern matching)B `� case E of ~P j ~E : T 0 (if Pi = Ci ~xi)Derivability in the resulting (syntax directed) system is denoted by `sd .Theorem 8.15 If E is well-marked, thenB `sd� E : S , B `� E� : S;where E� results from E by removing all markings �,
.We need an equivalent of the statements E that were used in the conventional case.De�nition 8.16 (i) An attribute inequality is an expression of the form u � v, whereu; v are uniqueness attributes. A type inequality statement is an expression of the formS � T , where S; T are uniqueness types. The expression S ' T stands for the combinationS � T; T � S.(ii) A system of uniqueness requirements is a pair U = hS;�i, where S consists oftype inequality statements and � of attribute inequality statements.

Erik Barendsen and Sjaak Smetsers 30(iii) For each U , the set jUj is the underlying conventional set of equations jSj = jT jassociated with the inequality statements S � T in U .De�nition 8.17 (i) A uniqueness type substitution is an assignment � of uniquenesstypes to uniqueness type variables such that p�(�u)q = u for each �u in �'s domain.(ii) A solution for a system U = hS;�i consists of a substitution � and a consistentcoercion environment � such that(1) S� �� T � for each (S � T) in S .(2) � ` �.In this case we write �;� j= U .In the sequel we will express uniqueness typing constraints in the form of a systemU . Towards a procedure for solving such a system, we consider the case where a partialsolution � has been determined that `conventionally satis�es' U , i.e. j�j j= jUj. We nowfocus on determining a suitable � which solves the remaining inequalities by so-calleduniqueness uni�cation.In view of this, the uni�cation algorithm takes `conventionally correct' systems asinput, i.e., systems in which for all inequality statements S � T we have jSj = jT j.Lemma 8.18 Consistency of attribute environments is a decidable property.Proof. Note that � is consistent i� the `transitive closure' of � does not contain � � � .This can be veri�ed e�ectively by the �niteness of attribute environments.Proposition 8.19 (Uniqueness Uni�cation) There exists a computable functionattr , having as input conventionally correct systems of uniqueness requirements and re-turning an attribute environment or fail, such thatattr(U) = �) � j= U and � is consistent;and �0 ` � for each consistent �0 j= Uattr(U) = fail) there is no consistent � such that � j= U :Proof. For each S; T with jSj = jT j, the set �(S; T) (ensuring S � T) is de�nedinductively as follows.Notation. ��(S; T) = �(S; T); �	(S; T) = �(T; S);�>(S; T) = ��(S; T) [�	(S; T);�~s(S; T) = Si �si(Si; Ti):Now set �(�u; �v) = fu = vg;�(S u! S0; T v! T 0) = �	(S; T) [��(S0; T 0) [fu = vg;�(Tu(~S);Tv(~T)) = �sign(T)(~S; ~T) [fu � vg:Say U = hS ;�i. Finally, set � = [`S�T '2S �(S; T) [�:

Uniqueness Typing 31Clearly, � is computable from U . If � is consistent (Lemma 8.18), output attr(U) = �;otherwise attr(U) = fail.In practice, the strategy to solve a system U will be based on a conventional typingalgorithm. We will describe how to combine the attribution procedure with a liftingconcept: given a system U and a conventional solution �0 of jUj we can compute a `mostgeneral' uniqueness variant �;� of �0 (if it exists) solving U . The result is called anattribution of �0.We �rst have to de�ne the notion `most general attribution', using the concept ofattribute instantiation, cf. De�nition 8.7.De�nition 8.20 (i) The pair (�0;�0) is an instance of (�;�) if for some ��0 ` ��; �0 =�0 ��;where the latter equation is to be taken argumentwise.(ii) A (conventional) solution �0 of jUj is called attributable if there exists a uniquenesssubstitution � with j�j = �0 and a consistent environment � such that�;� j= U :The above de�nition of instantiation induces a notion of principal attribution.Principal Attribution Theorem 8.21 Let U be a system of uniqueness requirements.It is decidable whether a given (conventional) solution of U is attributable. Moreover, ifthis is the case, a principal attribution can be computed.Proof. [Sketch of the algorithm] Given �0 j= jUj, lift �0 to a uniqueness type substitution� by choosing fresh attribute variables at each subtype, such that outermost attributescorrespond to the attributes of variables in U . Now compute attr(U�). If this gives fail,then �0 is not attributable. Otherwise (say attr(U�) = �) output (�;�).Analogous to the situation in conventional typing, we formulate a notion of `exactness'to express that a certain system precisely captures the minimal uniqueness requirementsneeded for a valid typing.De�nition 8.22 A system of uniqueness requirements U is called uniqueness exact forB;E; S if for all �;�(1) �;� j= U) B� `sd E : S� j �:(2) B� `sd E : S� j �) �0;�0 j= Ufor some �0;�0 such that �0;�0 �B;S �;�:Proposition 8.23 Let E be an expression, B a basis and S a uniqueness type. Thenthere exists a �nite system of requirements U = U(B;E; S), computable from B;E; S,such that U is exact for B;E; S.Proof. The following inductively de�nes U(B;E; S). Union of requirement systems is

Erik Barendsen and Sjaak Smetsers 32to be taken componentwise.U(B; x�; S) = hfB(x) � Sg; ;i;U(B; x
; S) = hfB(x) � Sg; fpSq = �gi;U(B;S ~E; S) = [i U(B;Ei; Ti) [hfR � Sg;�iif ~T BR j� is the standard F;A-type of S;U(B; let x = E in E0; S) = U(B [x:�a; E0; S) [U(B;E; �a)�; a fresh;U(B; letrec ~x = ~E in E0; S) = [i U(B [~x: ~�a; Ei; �iai) [U(B [~x: ~�a; E0; S)~�;~a fresh;U(B; case E of ~P j ~E; S) = U(B;E;�a) [[i (U(B [~xi:~Ti; Ei; S) [hf�a ' Rig;�ii);if Pi = Ci ~xi; the standard type of Ci is ~Ti BRi j�i;�; a fresh:The veri�cation is similar to the one in the conventional case. As to variables x
, notethat [S]� �� S0 , S �� S0; � ` pS0q = �:As in the conventional case, the typing procedure is started with parameters that donot impose any restriction on solutions, cf. the proof of Theorem 5.20.De�nition 8.24 Let E be an expression, say with FV(E) = fx1; : : : ; xng. The basicsystem for E is the system U(E) = U(B0; E; S0), where B0 = fx1:�1a1 ; : : : ; xn:�nangand S0 = �a.The above discussion suggests the following strategy for determining uniqueness types.Given E, determine a (conventional) solution �0 of jU(E)j; then use the Principal Attri-bution Theorem to lift this solution to a uniqueness typing. If this succeeds (say withoutput �;�), then conclude B�0 `� E : S�0 .A natural attempt is to take the most general conventional solution for �0. However,because of our treatment of higher-order functions (involving a restriction on the subtyperelation w.r.t. variables), it might be the case that lifting this most general solution fails,whereas some speci�c instance is attributable. Therefore, a reasonable notion of `mostgeneral solution' cannot be formulated for the combination �;�. Consequently, there isno `Principal Uniqueness Type Theorem'. Instead, we stick to the asymmetric approachsuggested by the notion of principal attribution with respect to a given (previously de-termined) substitution. This is re
ected in the description of the typing procedure inClean.

Uniqueness Typing 33Uniqueness Type Inference in CleanIn order to translate the above into a suitable actual typing algorithm we indeed try tolift the most general solution of jU(E)j. If this attempt fails, however, we do not try anyspeci�c instances but consider the expression untypable.As a consequence, the underlying conventional typings of the derived uniqueness typesare exactly the principal ones, so from the programmer's point of view the uniquenesssystem is a transparent extension of conventional typing: if one disregards the uniquenessinformation the types are as one would expect.Having seen how to derive expression typings in a given environment, we can focuson type inference for functional programs. As in any other functional language, in Cleantype checking is concerned with the determination of a suitable environment type foreach function symbol, such that all program parts are well-typed.By our de�nition of function typing, this boils down to determining uniqueness typesfor the right-hand expressions of the function de�nitions, using the above procedure.The only problem is the possibility of (mutually) recursive function speci�cations. It iswell-known that typing of these de�nitions is undecidable in general.In fact, the Clean compiler adopts the Hindley-Milner approach towards recursion:in the de�nition of, say, F, all occurrences of F should be typed with F's environmenttype (i.e., without instantiation). Indirect recursion is treated similarly. This can beachieved, for instance, by adjusting the de�nition of U(B;E; S) for E = S ~E in the proofof Proposition 8.23.Alternative reference count analysisA straightforward (static) reference counting treats all references to a given object in thesame way. This can be re�ned: multiple access to a unique argument is harmless if oneknows that only one of the references will be present at the moment of evaluation.An example of this evaluation-strategy-aware (dynamic) reference counting is the treat-ment of conditional expressions in Clean. For example, if we de�ne the conditional byCond(b; x; y) = case b of True j xFalse j yand compute Cond(B;E;E0) in the standard way, the condition is evaluated �rst (withpossible sharing between B and E;E 0) and subsequently one of the alternatives is chosenand evaluated (so sharing between E and E0 has disappeared). This suggests that wecan distinguish between references to the same object inside B;E and E0 respectively,allowing a less restrictive uniqueness typing.Note that the syntax directed system of De�nition 8.14 provides the possibility tohave di�erent markings of the same variable. In view of the above analysis, the followingexpression is well-marked:let x = A in Cond(F(x
);G(x�);H(x�)):In fact, the results of Barendsen and Smetsers (1993) already abstract from the wayreferences are counted: they capture both the standard and the re�ned approach.

Erik Barendsen and Sjaak Smetsers 349. Conclusions and Related WorkWe have developed a very powerful type system in natural deduction style. Its aim is tocharacterize reference structures in graphs, in order to express uniqueness constraints offunction arguments. In the present paper, polymorphism has been extended to uniquenessattributes. Both soundness (with respect to a graph rewriting semantics) and decidabilityof resulting system have been shown.The system has been implemented as part of the Clean-compiler.The present work has been inspired by Guzm�an and Hudak (1990), addressing themutability problem in a `single threaded polymorphic lambda calculus' (poly-�st). Insteadof using an operational semantics directly based on graph rewriting, they apply lambda-graph reduction due to Wadsworth (1971). Type reconstruction is (roughly) describedby de�ning a type inference algorithm, refraining from a formal correctness proof.In Turner et al. (1995), a type system is presented that is strongly related to ours.However, the design was guided by di�erent motives: its main purpose is to deal withprogram transformations (in particular, inlining of unique expressions) and with super-
uous closure updates. The main di�erence with our system is that uniqueness (use 1,using their terminology) is not a property of a reference to an expression but rather ofthe expression itself. The subtyping relation (in our system needed to adjust an o�eredargument type to the corresponding requested type) is absent, since it would destroy theintended uniqueness property.In spite of the fundamental e�orts of Guzm�an and Hudak (1990) and Turner et al.(1995), none of the described approaches has been turned into a real implementation.Type systems with subtyping have, among others, been studied in Mitchell (1991),presenting a type inference algorithm which determines the minimal set of coercions nec-essary to type a given term. The algorithm essentially derives the same set of coercionsas our procedure introduced at the end of section 8. However, due to our consistencyrequirement and the subtyping restriction on arrow types (and on type variables), theformer may lead to a collection containing unrealizable coercions. It needs to be inves-tigated whether it is decidable if a given expression is uniqueness typable, even thoughthere need not be a `minimal' uniqueness type (see the discussion in Section 8).Hankin and le M�etayer (1994) present a general method for deriving type inferencealgorithms from (non-standard) type systems. The main application of this method isstrictness analysis. It would be an interesting experiment to formulate uniqueness typingin this framework, and to compare the resulting type inference algorithm with the onedescribed in the present paper.In any case, we are planning to investigate whether our way of (non-standard) typingand type inference applies to other areas of static analysis, such as strictness analysis.As has been mentioned before, our system is closely connected to substructural logics.A combined linear/full intuitionistic logic can be found in Benton (1994). The systemdescribed in this paper could be the �rst step towards a `propositions as types/proofs asgraphs' notion.

Uniqueness Typing 35ReferencesAriola, Z.M. and J.W. Klop (1995). Equational term graph rewriting, Technical Report CS-R9552 , Centrum voor Wiskunde en Informatica (CWI), Computer Science/Department ofSoftware Technology.van Bakel, S.J., J.E.W. Smetsers and S. Brock (1992). Partial type assignment in left-linearterm rewriting systems, in: J.C. Raoult (ed.), Proceedings of the 17th Colloqium on Trees andAlgebra in Programming (CAAP'92), Rennes, France, Lecture Notes in Computer Science581, Springer-Verlag, Berlin, pp. 300{322.Barendregt, H.P. (1992). Lambda calculi with types, in: S. Abramsky, D.M. Gabbay and T.S.E.Maibaum (eds.), Handbook of Logic in Computer Science, Vol. II, Oxford University Press.Barendregt, H.P., M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer andM.R. Sleep (1987). Term graph reduction, in: J.W. de Bakker, A.J. Nijman and P.C. Tre-leaven (eds.), Proceedings of the Conference on Parallel Architectures and Languages Europe(PARLE) II, Eindhoven, The Netherlands, Lecture Notes in Computer Science 259, Springer-Verlag, Berlin, pp. 141{158.Barendsen, E. (1995). Types and Computations in Lambda Calculi and Graph Rewrite Systems,Dissertation, University of Nijmegen.Barendsen, E. and J.E.W. Smetsers (1993). Conventional and uniqueness typing in graph rewritesystems (extended abstract), in: R.K. Shyamasundar (ed.), Proceedings of the 13th Conferenceon Foundations of Software Technology and Theoretical Computer Science, Bombay, India,Lecture Notes in Computer Science 761, Springer-Verlag, Berlin, pp. 41{51. Full paper: seeTechnical Report CSI-R9328, University of Nijmegen, and Barendsen (1995).Barendsen, E. and J.E.W. Smetsers (1994). Extending graph rewriting with copying, in: H.J.Schneider and H. Ehrig (eds.), Graph Transformations in Computer Science, InternationalWorkshop, Dagstuhl Castle, Germany, Lecture Notes in Computer Science 776, Springer-Verlag, Berlin, pp. 51{70.Barendsen, E. and J.E.W. Smetsers (1995a). A derivation system for uniqueness typing, in:A. Corradini and U. Montanari (eds.), SEGRAGRA'95: Joint Compugraph/Semagraph Work-shop on Graph Rewriting and Computation, Volterra (Pisa), Italy, Electronic Notes in Theo-retical Computer Science, Elsevier Science, pp. 151{158.Barendsen, E. and J.E.W. Smetsers (1995b). Uniqueness type inference, in: M. Hermenegildoand S.D. Swierstra (eds.), Programming Languages: Implementations, Logics and Programs(PLILP'95), Utrecht, The Netherlands, Lecture Notes in Computer Science 982, Springer-Verlag, Berlin, pp. 189{206.Barendsen, E. and J.E.W. Smetsers (1995c). Uniqueness typing in natural deduction style (ex-tended abstract), 1995 Glasgow Workshop on Functional Programming , pp. XVI 1{XVI 10.Accepted for the formal proceedings (to appear).Benton, P.N. (1994). A mixed linear and non-linear logic: Proofs, terms and models, in: L. Pa-cholski and J. Tiuryn (eds.), Computer Science Logic, 8th Workshop, Kazimierz, Poland,Lecture Notes in Computer Science 933, Springer-Verlag, Berlin, pp. 121{135.Blass, A. (1992). A game semantics for linear logic, Annals of Pure and Applied Logic 56,pp. 183{220.Guzm�an, J.C. and P. Hudak (1990). Single-threaded polymorphic lambda calculus, Proceedingsof the 5th Annual Symposium on Logic in Computer Science, Philadelphia, IEEE ComputerSociety Press, pp. 333{343.Hankin, C. and D. le M�etayer (1994). Deriving algorithms from type inference systems: Applica-ton to strictness analysis, POPL'94: 21st ACM SIGPLAN-SIGACT Symposium of Principlesof Programming Languages, Portland, Oregon, ACM Press, pp. 202{213.

Erik Barendsen and Sjaak Smetsers 36Mitchell, J.C (1991). Type inference with simple subtypes, Journal of Functional Programming1, pp. 245{285.Plasmeijer, M.J. and M.C.J.D. van Eekelen (1995). Concurrent Clean. Available viawww.cs.kun.nl/~clean/.Reynolds, J.C. (1995). Passivity and linear types. Talk given at the conference on Types forProofs and Programs, Turin, Italy, June 1995.Robinson, J.A. (1965). A machine-oriented logic based on the resolution principle, Journal ofthe Association for Computing Machinery 12, pp. 23{41.Turner, D.N., P. Wadler and C. Mossin (1995). Once upon a type, Proceedings of the Conferenceon Functional Languages and Computer Architectures (FPCA), La Jolla, California, ACMPress, pp. 1{11.Wadler, P. (1990). Linear types can change the world!, Proceedings of the Working Conferenceon Programming Concepts and Methods , Israel, North-Holland, Amsterdam, pp. 385{407.Wadsworth, C.P. (1971). Semantics and Pragmatics of the Lambda Calculus, Dissertation, OxfordUniversity.Wand, M. (1987). A simple algorithm and proof for type inference, Fundamenta InformaticaeX, pp. 115{122.

