Math. Struct. in Comp. Science (1996), vol. 00, pp. 1-36 Copyright © Cambridge University Press

Uniqueness Typing for Functional Languages

with Graph Rewriting Semantics

ERIK BARENDSEN and SJAAK SMETSERS

Computing Science Institute, University of Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands,
e-mail erikb@cs.kun.nl, sjakie@cs.kun.nl

Received November 1995, revised May 1996

We present two type systems for term graph rewriting: conventional typing and
(polymorphic) uniqueness typing. The latter is introduced as a natural extension of
simple algebraic and higher-order uniqueness typing. The systems are given in natural
deduction style using an inductive syntax of graph denotations with familiar constructs
such as let and case.

The conventional system resembles traditional Curry-style typing systems in functional
programming languages. Uniqueness typing extends this with reference count
information. In both type systems; typing is preserved during evaluation, and types can
be determined effectively. Moreover, with respect to a graph rewriting semantics, both
type systems turn out to be sound.

Contents

Introduction

Term graph rewriting

Graph denotations

Higher-order functions
Conventional Typing

Introduction to Uniqueness Typing
Simple Uniqueness Typing
Polymorphic Uniqueness Typing
Conclusions and Related Work
References

© 00~ O Ot i W N

1. Introduction

~N 1 W=

13
15
25
34
34

In recent years, various proposals have been brought up to capture the notion of assign-
ment in a functional context. This desire is paradoxical, because the absence of side effects
is one of the main reasons why functional programming languages are often praised. As
a consequence of this absence, functional languages have the fundamental property of

Erik Barendsen and Sjaak Smetsers 2

referential transparency: each (sub)expression denotes a fixed value, independently of
the way this value is computed.

We regard assignments in a broad sense: these include direct mutation of memory
contents but also more indirect I/O operations like file manipulations. The common
aspect of such operations is their destructive behaviour: they (irreversibly) change the
state of their input objects.

There is a solution for this problem which can be achieved entirely within the functional
framework: by delivering a sequence of instructions for the operating system as a result of
a functional expression. One could call this a delegating approach, since the computation
only prepares for the external execution of, for example, I/O tasks. In the literature,
this method is known as stream based 1/O. An application can be found in the language
Haskell.

Rather than this indirect treatment of destructive operations one would like to incorpo-
rate them (and hence the objects they operate on) directly in a functional programming
language. This admits a more refined control of files, for example. However, by admitting
these operations without precaution one loses referential transparency. If two destructive
functions operate on the same file, for example, the result of the program depends on
the order in which these operations are performed.

The problem is, therefore, to identify suitable restrictions on the usage of destructive
operations. The essence of recent solutions (e.g., Wadler (1990), Guzman and Hudak
(1990)) is to restrict destructive operations to arguments that are accessed only once.
Syntactically, this boils down to retricting the number of occurrences of these arguments
inside each program to one.

The uniqueness type system for graph rewrite systems presented in Barendsen and
Smetsers (1993). offers the possibility to indicate such reference count requirements in
type specifications of functions. This is done via so-called uniqueness types which are
annotated versions of traditional Curry-like types. E.g. the operation WriteChar which
writes a character to a file is typed with WriteChar : (Char*, File®) — File*. Here, «, X
stand for ‘unique’ (the requirement that the reference count is 1) and ‘non-unique’ (no
reference requirements) respectively.

Uniqueness typing can be regarded as a combination of linear typing (dealing with
unique objects) and traditional typing (for non-unique objects), connected by a subtyping
mechanism. In fact, the part handling uniqueness allows discarding of objects, so it
corresponds more closely to affine logic, see Blass (1992). A logical/categorical proposal
for a related combination appears in Benton (1994).

The present paper describes the uniqueness type system in natural deduction style,
using an inductive syntax for graph expressions. The emphasis on graph denotations
contrasts the original presentation, which referred directly to the node/reference structure
of (non-inductive) graph objects. The graph syntax is similar to the object language in
the equational approach towards Term Graph Rewriting of Ariola and Klop (1995).
The operational semantics of the object language is given by the concept of Term Graph
Rewriting, as introduced by Barendregt et al. (1987). Each expression is translated into a
term graph. In contrast with Ariola and Klop (1995), we refrain from defining a reduction
relation on the expressions directly.

Uniqueness Typing 3

The paper is organized as follows. After a very short and informal introduction to
Term Graph Rewriting (Section 2), we introduce a formal language for denoting graph
expressions and function definitions (Section 3). Section 4 describes the incorporation
of higher-order functions in our system. In Section 5 a Curry style (conventional) type
system is introduced. The system is not new, but the terminology and techniques in this
section prepare for the development of uniqueness typing, which will proceed along the
same lines. We prove preservation of typing during reduction and the existence of prin-
cipal types. After an informal introduction to uniqueness typing in Section 6, Section 7
describes a simple (i.e., non-polymorphic) algebraic uniqueness type assignment system.
This system is extended via higher-order typing to the complete polymorphic uniqueness
type system (Section 8). The results for the conventional system are extended to unique-
ness typing. At the end of Section 8 we describe how uniqueness type inference proceeds
in the functional programming language Clean (see also Plasmeijer and van Eekelen
(1995). We conclude with a discussion of related work and future research (Section 9).

The original uniqueness type system is rather complex, particularly due to the refined
reference analysis. To avoid that the reader gets entangled in technical details, this anal-
ysis is kept here as simple as possible: it does not take the evaluation order into account.
Due to the present formalization, the system can easily be compared with other proposals
based on linear and affine logic.

This paper is an elaborated version of the work presented in Barendsen and Smetsers
(1995a) and Barendsen and Smetsers (1995c¢).

2. Term graph rewriting

Term graph rewrite systems (TGRS’s) have been introduced in Barendregt et al. (1987)
see also Barendsen and Smetsers (1994). This section summarizes some basic concepts.

Y

Term graph rewriting can be seen as an extension of term rewriting with sharing.
In term rewrite rules, multiple occurrences of variables lead to duplication of actual
instances. In TGRS’s, such duplications are avoided by copying references to the objects
instead of copying the objects themselves.

The objects in TGRS’s are directed graphs in which each node is labelled with a
symbol. Each symbol S, say, has a fixed arity determining the number of outgoing edges
(references to the arguments) of any node labelled with S.

We distinguish two kinds of symbols: function symbols and algebraic constructor sym-
bols. Function symbols are introduced by rewrite rules which specify transformations
of graphs. Each rewrite rule F§ — g consists of left-hand side Fp (the pattern) and a
right-hand side g (the result). Both Fand g are graphs. We say that a rule is left-linear
if the pattern F'p'is a tree (hence g does not contain multiple occurrences of the same
variable). This enables us to denote left-hand sides of rewrite rules as terms. We consider
function/constructor rules: § contains only variables and algebraic constructors.

Erik Barendsen and Sjaak Smetsers 4

The following picture shows a graph rewrite step according to the displayed rule.

Succ %Add (Succ (z),y) — Succ Succ
| Vo |
Add — Add ﬁ Succ
SN SO\ |
Succ Succ T y Add
| 7\
Succ Succ Succ
| L
Zero Zero

Let R be a set of rewrite rules. The (multistep) rewrite relation induced by R is
denoted by —».

Algebraic constructors are assumed to introduced by a so-called algebraic type system
A containing specifications like

List(a) = Cons(q, List(a)) | Nil

declaring the data constructors Cons and Nil (and linking them to the type constructor
List).

3. Graph denotations
Syntax

In order to present our type systems in natural deduction style, we introduce graph de-
notations generated by an inductive syntax. The language constructs reflect the essential
aspects of graph rewriting: application, sharing (implicitly, by multiple occurrences of the
same variable, and explicitly, using let), cycles (sharing using letrec), pattern matching
(case), and function definitions.

Instead of admitting several rules (one for each alternative pattern) for functions, we
collect all alternatives in a case construct.

Definition 3.1 (i) The objects are expressions generated by the following abstract syn-
tax.

E = z|S(Ei,...,E)|letz=EinE |letrec & = E in E' | case E of P|E,

P = C(zi1,...,zk).

Here z,% range over (sequences of) term variables, and S over some set of symbols of
fixed arity (we will suggestively use F for functions and C for data constructors). The
set of free variables of E (notation FV(E)) is defined as usual.

(ii) Function definitions are expressions of the form

F(zy,...,2x) = E.

Some hygiene with respect to variables is necessary: in let z = E in E’, the variable
x should not occur free in E. We only consider left-linear functions: no variable occurs
more than once in the same pattern. Moreover, these pattern variables are ‘local’: they
occur only in P|E.

Uniqueness Typing)

Example 3.2 (i) The expression
let z = 0 in letrec z = F(Cons(z, G(z,2))) in z

denotes the following graph.

(ii) Addition on the algebraic type of natural numbers
Nat = 0 | S(Nat)
can be expressed by

Add(z,y) =case z of 0 | vy
S(z') | S(Add(z',y)).

Semantics

We now give a formal account of the (intuitively clear) interpretation of expressions and
function definitions as graphs and rewrite rules respectively. Instead of using drawings,
like above, or 4-tuples (see Barendregt et al. (1987) and Barendsen and Smetsers (1994)),
we specify graphs in an equational style (cf. Barendregt et al. (1987), Ariola and Klop
(1995)). Each equation is a node specification of the form

where n,nq,..., ny, are variables. Moreover, the topmost node (root) is indicated explic-

3 3

itly. E.g., the graph in Example 3.2 (i) can be denoted by
(z[{z = F(o),
¢ = Cons(z,g)
9 = G(z,2),
x = 0 b.

Y

Definition 3.3 A graph is a tuple g = (r | G). The wvariable set of g (notation V(g))
is the collection of variables appearing in r,G. The set of free variables of g (notation
FV(g)) consists of those in V(g) that do not appear as the left-hand side of an equation
in G; the other (bound) variables are indicated by BV (g). We will identify graphs that
only differ in the names of bound variables.

Using this formalism, it is easy to define the interpretation of expressions as graphs.

Our type systems for expressions deal with the full syntax of Definition 3.1. However,
to provide a simple and direct translation to graph rewrite systems we only consider case
expressions in function definitions at the topmost level, distinguishing cases as to one
of the input variables. This is no serious restriction: it is always possible to introduce
auxiliary functions to express nested pattern matching.

Erik Barendsen and Sjaak Smetsers 6

Definition 3.4 For each expression F, the graph interpretation of E (notation [E]) is de-
fined inductively as follows. The denotation [# := 7] stands for simultaneous substitution
of 7 for (the free occurrences of) Z.
il = (=10))
[SE] r|{r=S(")}UG) where (r; | G;) = [E;] and r fresh,
[let z = E in E'] r | GUG") [z :=7],
[letrec # = E in E'] | Guaz =

(
(
(
(

We have omitted the case construct: it will be treated in the translation of function
definitions. Note that our interpretation is such that FV(E) = FV([E]).

The interpretation of expressions naturally gives rise to an equivalence relation on
these expressions.

Definition 3.5 The expressions E and E' are graph equivalent (notation E ~ E') if
[E] = [E"].

Once we have interpreted expressions we can interpret function definitions.

Definition 3.6 (i) The graph interpretation of a function definition FZ = F is specified
as follows. We distinguish two cases:

Case 1. No pattern matching: E is case free. Then the interpretation consists of a
single rewrite rule:

[Fi=E] = FZ-[E].

Case 2. Pattern matching. Then the interpretation is a collection of rules:
F(Pla :lj) - [[El]]=
[F(z,7) =case z of P | E] = ;
(ii) Let IF be a set of function definitions. Then [F] is the collection of graph rewrite

rules obtained from F-elements.

The function definitions induce a computation relation on expressions.

Definition 3.7 Let F be a collection of function definitions. Then we write £ —s E' if

[E] = [E'].

E »
! [
! !
! !
! !
E E'

[]

Il

For a formal definition of graph rewriting the reader is referred to Barendregt et al.
(1987) (see also Barendsen and Smetsers (1994)).

Uniqueness Typing 7

4. Higher-order functions

In term graph rewriting all symbols have a fixed arity. Moreover, there is no abstraction
operator (like \) to construct anonymous functions. This prevents the use of functions
as arguments or as results.

The usual way (in functional programming languages) to incorporate higher-order
functions is to admit partial (often called Curried) applications. These are written as

FE, - Ey

(with k < arity(F)), denoting the function AZ.F(E1,..., Ex,Tp11, - s Tarity(F))-

Partial applications can be simulated in graph rewriting by introducing auxiliary sym-
bols Fy, and writing FE; - -- E}, as

Fi(Ey,...,Ep)

(s0 Farity(r) = F). Moreover, we add an application operator Ap to our syntax which
collects arguments, i.e. (roughly),

Ap(Fy(E), E') = Fi4. (E, E').

See Barendsen and Smetsers (1993) for a detailed description of the graph rewriting
semantics.

We will present our type systems first for the traditional, purely algebraic, syntax
and then describe the type-theoretic extension dealing with partial applications. For
conventional typing this extension is straightforward. In the case of uniqueness typing,
however, this turns out to be a subtle matter.

5. Conventional Typing

The notion of conventional typing is common in most functional programming languages.
It combines simple Curry typing with an instantiation mechanism to deal with different
occurrences of function and constructor symbols. This weak form of polymorphism is
necessary due to the separation of specifications (function definitions, algebraic types)
from applications.

Syntaz
Definition 5.1 Types are built up from type variables and type constructors.
o = al|Td|or - o,
Here, T ranges over type constructors which are assumed to be introduced by an algebraic

type system A.

The function space type constructor — is used when dealing with higher-order func-
tions. We will treat these at the end of this section.

We first associate a type with the constructors and function symbols in our language.
The notion of type assignment for expressions is parametric in the choice of these symbol

types.

Erik Barendsen and Sjaak Smetsers 8

Definition 5.2 A symbol type of arity k is a k+1 tuple (o1, ...,0k, 7). We will sugestively
denote this as

The types & are called argument types and 7 is the result type.

Definition 5.3 (i) Let A be an algebraic type system. The specifications in A give the
types of the algebraic constructors. Let

Ta = Cyoi|---
be the specification of T in A. Then we write
AFC;:0;> Ta.
For example, for lists one has

A F Nil : List(a) AF Cons : (a, List(a)) > List(a).

Y

(ii) The function symbols are supplied with a type by a function type environment F,
containing declarations of the form

F:(o1,...,01) > T,
where k is the arity of F. In this case we write
FEF:G> 1.

(iii) The symbol types obtained so far are referred to as the standard types (in F, A)
of the symbols. These are regarded as type schemes: other types are obtained by instan-
tiation, using the following rule ([a := p] denotes substitution).

FARS : Gp>T
FAES :Fla:=p|>rla:=p)

For the sequel, fix an algebraic system A and a function type environment F. Now we
can develop a system of type assignment for expressions and function definitions.

Definition 5.4 (i) A basis is a finite set of declarations of the form x:7 concerning distict
variables.

(ii) The type system deals with typing statements of the form

BFE:o,

Uniqueness Typing 9

where B is a basis. Such a statement is valid if it can be produced using the following
derivation rules. Below we abbreviate B U {z:0} by B, z:0.

B,z:c b x:0 (variable)
FAFS:é>7 BFE:d

— (application)
BFSE:T

BFE:o B,zoFE :0

— (sharing)
Brlete=EinE :0

B, %5+ E; : 0; B, #:6FE :1

- (cyele)

Blletrecf=EinE :1
B,

B+FE:T AFC;:qa>T el IR

= — — (pattern matching)
Bt case Eof PIE: 7T (if P, = C;2})

(iii) A function definition FZ = E is called type correct if
Z2:0FE:T

where & > 7 is the standard type of F. A collection of function definitions is type correct
if its members are type correct in the above sense.

Semantics

We will show that the type system is sound and complete with respect to graph rewriting.
We first recapitulate the notion of typing for graphs and rewrite rules from Barendsen and
Smetsers (1993). This notion is a graph-theoretic variant of the typing concept presented
in van Bakel et al. (1992) for Term Rewrite Systems.

Definition 5.5 (TGRS Graph typing) Let g = (r | G) be a graph. A typing for g is a
function 7 assigning a type to each element of V(g) such that for any equation z = S(%)
in G

FAES: T > T(z).
That is, 7 is a type assignment to nodes that satisfies ‘local correctness’. We say that T
types g with o (notation T (g) = o) if furthermore T (r) = 0. Moreover, g is typable with
o (notation g : o) if there exists T with T (g) = o.

Now we can give a semantic notion of expression typing.

Definition 5.6 Let E be an expression.

(i) We say that T types E with o (notation T = E : o) if T([E]) = 0.

(ii) This notation is extended to sequences (in particular, bases): T = Bif T Ez: 0
for each (z:0) € B.

Erik Barendsen and Sjaak Smetsers 10

(iii) By B |= E : 0 we denote that B is extendible to a typing of [E], i.e., for some T
one has

T=Band T E E:o.
Proposition 5.7 (Soundness of expression typing) For any B, E, o
B+-FE:0 = B=E:o.

Proof. By induction on the derivation of B+ E : . [

Proposition 5.8 (Completeness of expression typing) For any B, E, o
B=E:0 = BFE:o.

Proof. By induction on the structure of E. [

Corollary 5.9 B-FE:0, E~E = BFE :0o

Typing of graph rewrite rules can be formulated as follows.
Definition 5.10 (TGRS Rule typing) (i) A type assignment 7 to variables can be
extended to algebraic patterns in a straightforward way:
FAFC:pro, T(P)=p = T(Cp) =o0.

(ii) Say the standard type of F in F is & > 7. Then the rewrite rule Fg' — g is type
correct if for some 7 one has

Tw) = 7,
T =

Note that the type assignment to the pattern p'is uniquely determined by the input types
d: given C and o, there is at most one sequence p' such that F; A+ C: p>o.
(iii) A collection of rewrite rules is type correct if every member is.

Proposition 5.11 (Soundness of function typing)
F is type correct = [F] is type correct.

Proof. Straightforward. [

Subject Reduction

The following is proved in Barendsen and Smetsers (1993).

Theorem 5.12 (TGRS Reduction typing) Suppose R is type correct. Then

gf»:;'} = g0
R

Uniqueness Typing 11

Proof. [Sketch] If a rewrite rule (say with typing 7, cf. Definition 5.10) applies to a
certain typed graph g, then there is a substitution * such that 7* (on the pattern of the
rule) corresponds to the typing of the matching part of g. Now 7* (on the result of the
rule) can be used to type the contractum. []

By our soundness and completeness results, the so-called Subject Reduction Property
is an easy corollary of the previous theorem.

Subject Reduction Theorem 5.13 Suppose F is type correct. Then

BFE:o

IO E’} = BFE:o0.
F

Type Inference

In this section we will show that type assignment has the principal type property: if an
expression E is typable then there exists a most general typing for E. The presentation
below has been inspired by Barendregt (1992). The idea of strictly splitting type recon-
struction into generation of equations and unification is due to Wand (1987). The present
algorithm is an inductive variant of the procedure on graphs described in Barendsen and
Smetsers (1993).

Definition 5.14 (i) A type equation is an expression of the form o ~ 7.
(ii) Let £ = {01 ~ 11,...,0, ~ 7, } be a finite set of type equations. A solution for £
is a substitution * such that

oy =T, ..., 00 =Th.
In that case one writes * = £. The notion of most general solution for £ is defined as

usual.

Unification Theorem 5.15 There exists a recursive function Unify having as input
finite sets of equations between types such that

E has a solution = Unify(&) is the most general solution for &;
& has no solution = Unify(€) = fail.

Proof. See Robinson (1965). [

The next step is to associate with each expression E a set of type equations in such a
way that typability of E can be formulated in terms solvability of those equations.

Definition 5.16 Let %, *' be substitutions.

(i) Let o be a type. Then %, *' are equivalent with respect to o (notation % ~, ') if
*(a) = *'(a) for all @ occurring in o.

(ii) This notion is extended sequences of bases and/or types: we write * ~p , *' if
x ~. *' for all types 7 appearing in B, o.

Erik Barendsen and Sjaak Smetsers 12

Definition 5.17 Let E be an expression, B a basis, and o a type. A set of type equations
€ is exact for B, E, o if for each substitution * one has

)xE& = B*FE:o*

(2)B*FE:0* =« |=¢& for some ' with ' ~p , *.

Proposition 5.18 Let E be an expression, B be a basis, and o € T. Then there exists a
finite set of equations £ = E(B, E, o), computable from B, E, o, such that £ is exact for
B, E o.

Proof. Define £(B, E,o0) by induction on E. To avoid notational confusion we write
B U z:0 instead of B, z:0.

E(B,z,0) = {B(z)~o} (regard B as a partial function),
&(B,SE,0) = UE(B,EZ',Ti) U{p=~oc}
i
where 7 > p is the standard F, A-type of S,
EB,letz=EinE' o) = EB,E,a)UE(BUx:a, E' o)
« fresh,
E(Bletrec #=E in E',0) = &BUFA E,0)U|JE(BUTA, E;, a;)
a fresh,
£(B,case E of P|E,0) = &(B,E,a)U|J(E(BUF:6;,Ei o) U{n ~a})

if P; = C;z; and the standard type of C; is d; > 73,
a fresh.
One shows (1) by induction on E and (2) using induction on the derivation of B* - E :
o*. O

Definition 5.19 Let E be an expression. The pair (B, o) is a principal typing for E
if

(1) BFE: o,

(2)B'-E:¢0' = B'DB* o =o0* for some substitution * .

Principal Typing Theorem 5.20 There exists a recursive function pt such that
E is typable = pt(E) is a principal typing for E;
E is not typable = pt(E) = fail.

Proof. Say FV(E) = {x1,...,2}. Set By = {z1:a1,..., 2504}, and 09 = a (all a’s
fresh). Define

pt(E) = (Bj,0p) if Unify(E(Bo, E,0q)) = *,
= fail if Unify(E(Bog, E,0q)) = fail.

The correctness of this procedure follows from Proposition 5.18 and Theorem 5.15. [

Uniqueness Typing 13

Higher-order Typing

The type system can be extended to deal with higher-order functions (see Section 4)
using the function space type constructor —.

The (standard) types of the ‘Curried’ function symbols F}, for partial applications are
obtained from the (standard) type of F, in the following way (set Fiiy(r) = F).

Y

FAE Fiqq (5,T)I>T’

(Curry)
FAFFL: 3> (t—1)

The new syntactic construct Ap is treated by an additional rule.

BFE:0c—T BFE :o

(curried application)
BFAp(E,E'): 7

The results of this section (soundness, completeness, subject reduction, principal typ-
ing) extend to the higher-order system. As to principal typing, the equations for Ap are
generated by

E(B,Ap(E,E"),0) = E(B,E,a—0o)UE(B,E a)

« fresh.
The function space constructor is allowed inside algebraic type definitions: for example

Object(a) = C(a,a = a,a — Int).

6. Introduction to Uniqueness Typing

Uniqueness typing offers the possibility to indicate reference count requirements of func-
tions in the corresponding argument types.

The idea of restricting occurrences of input objects by a type system is not new: we can
make use of ideas developed in so-called resource conscious logics like linear logic. Via
the propositions-as-types correspondence (relating inputs to assumptions and functions
to proofs) restrictions on usage of assumptions in these logics gives the desired reference
count limitations.

Since we deal with both destructive and harmless operations, a purely linear typing
system (in which neither copying nor discarding of input is allowed) is too restrictive
for our purposes. Instead, we propose to divide the type system into two layers: a ‘re-
source conscious’ part in which occurrences are limited, and a ‘conventional’ part with
no reference restrictions. In fact, the former layer (of ‘unique’ types, indicated by)
admits discarding input but excludes copying. Therefore it corresponds to affine logic
(see Blass (1992)) in which weakening is present but no contraction. The latter layer
(of x types) corresponds to ordinary (intuitionistic) logic with the same strength as
conventional typing.

Erik Barendsen and Sjaak Smetsers 14

The two layers are connected: it is possible to move from the ¢ layer to the x layer.
These transitions are regulated by the type system: we have a subtype relation allowing
a unique object to be seen as a conventional one (in case the accessing function has
no reference requirements) and a type correction mechanism (forcing an object with
reference count greater than 1 to be regarded as non-unique).

The operator ! in linear logic should not be confused with the attribute x: the type o*
indicates that there are no reference restrictions, whereas ¢! would stand for ‘as many
(duplicatewise linear) copies as necessary’.

We will now explain the graph-theoretic intuition of our type system. In symbol types,
it can be specified that a given argument should be unique (by the annotation s). Type
correctness means that in any application the concrete function argument should have
reference count 1. So the function has indeed ‘private’ access to its argument, and hence
the argument can be updated in-place.

This analysis was intended for inherently destructive operations and their parameters,
like WriteChar, but can also help to improve storage management. Consider, for in-
stance, the following list reversing function which can be implemented efficiently as a
‘destructive’ function if the given uniqueness type is used.

Rev : List* () > List" (a*)
Rev (I) — H(I,Nil)

H : (List"(a>), List*(a*)) > List* (o)
H(¢,¢,) — case £, of Cons(h,t) | H(t,Cons(h,(s))
Nil b

Note that H’s first argument has reference count 1 in any type correct application. The
topmost node of this argument is not used in the result of the function. Hence this
node becomes obsolete and can be re-cycled: not only its space but also also parts of
its contents. In fact it already suffices to change the reference to t to point to £5. Such
re-usage of space is often called compile-time garbage collection.

We have seen that the environment type F : o® > --- specifies that F’s argument
should be unique for F. In the same way, uniqueness of results is specified: if G : -+ - >0*,
then a well-typed expression F(G(E)) remains type-correct, even if G(E) is subject to
computation.

The above-mentioned transitions between the type layers are motivated as follows.
Sometimes, uniqueness is not required. If F : ¢* > - - - then still F(G(E)) is type correct.
This is expressed in the subtype relation <, such that roughly o° < ¢*. Offering a non-
unique argument if a function requires a unique one fails: * £ o*. The subtype relation
is defined in terms of the ordering « < x on attributes. In an application an argument
can also be non-unique if it has reference count greater than 1 (even though the type of
the argument expression itself is unique). This is covered by a correction mechanism: a
unique result may be used more than once, as long as only non-unique supertypes are
required.

From the types given above it can be seen that the layers « and x are have some
internal structure induced by the presence of type constructors: a « type (at the outer-

Uniqueness Typing 15

most level) can have parts marked with x (and vice versa). This fine structure, with the
possibility of specifying affine or conventional behaviour of substructures, is a powerful
feature of our system.

Pattern matching (expressed by the case construction) is an essential aspect of term
graph rewriting, causing a function to have access to ‘deeper’ arguments via data paths
instead of a single reference. This gives rise to ‘indirect sharing’ of objects by access via
intermediate data nodes. For example, if a function F has access to a list with non-unique
spine, the list elements should also be considered as non-unique for F: other functions
may access them via the spine. This effect is taken into account by a restriction on the
uniqueness types of data constructors: the result of a constructor is unique whenever
one of its arguments is. For the constructor Cons of lists, for example, the possible
uniqueness variant are:

Cons : (aX,List*(a*)) > List*(a*) (1)
Cons : (aX,List’(a*)) > List*(a*) (2)
Cons : (a°*,List"(a®)) > List*(a*) (3)

With (1) ordinary lists can be built. (2) can be used for lists of which the ‘spine’ is unique,
and (3) for lists of which both the spine and the elements are unique. Observe that in
the above example, the List argument of Cons is always attributed in the same way
as the corresponding List result. In general, such a uniform way of attributing recursive
occurrences of a type constructor leads to homogeneous data objects: All recursive parts
of such an object have the same uniqueness properties as the object itself. A procedure
for generating consistent attributions of arbitrary data types can be found in Barendsen
and Smetsers (1993).
We can also express propagation by using the < relation. E.g.

Cons : (a", List"(a")) > List’(a")

is well-attributed if v < u. Note that this indeed excludes a constructor for List*(Int*).
A similar restriction on types of data constructors can be found in the type systems of
Guzman and Hudak (1990) and Turner et al. (1995).

Some parts of the uniqueness type system are complicated. The treatment of cyclic de-
pendencies is subtle; moreover dealing with higher-order functions is a non-trivial matter.
This seems to be a common aspect of related approaches.

The way references are counted can be refined, by making use of information on the
evaluation order. To avoid unnecessary complications we will not treat this in detail but
give an idea of the method at the end of Section 8.

7. Simple Uniqueness Typing
Algebraic Uniqueness Types

Uniqueness types are constructed from conventional types by assigning a uniqueness
attribute to each subexpression. We will denote the attributes as superscripts; for non-
variable types these are attached to the topmost type constructor of each type. Below,

Erik Barendsen and Sjaak Smetsers 16

S,T,...range over uniqueness types and u, v, ... over the attributes «, x. The outermost
attribute of S is denoted by "S™. Moreover |S| denotes its underlying conventional type.
We will first describe the system without the type constructor —.

Definition 7.1 The subtype relation < is very simple: the validity of S < S’ depends
subtypewise on the validity of u < u' with u,u’ attributes in S, S’. One has, for example,

List“ (List”(Int®)) < List* (List” (Int*")) iff w<u',v <o ,w<w'.

In order to account for multiple references to the same object we introduce a uniqueness
correction.

Definition 7.2 For each S, we construct the smallest non-unique supertype [S] of S, as
follows.

"] = a*,

T*S] = TS

The last clause possibly introduces types like List*(Int*). Contrasting Turner et al.
(1995), we allow these types in our system. This is harmless since these ‘inconsistent’
types have no proper inhabitants (for example, there is no Cons yielding type List* (Int*)).

Type correction is applied when dealing with plain sharing (through multiple occur-
rences of the same variable). In a ‘resource conscious’ system these variable duplications
are easy to detect: they correspond to contraction steps in the logical setting. The treat-
ment of recursive objects (occurring as letrec # = E in E') is special: we account for
possible cycles by correcting both internal (in E) and external (in E') references to their
roots Z.

The notion of standard type is adapted in the following way. As can be seen from the
List example, there are several standard types for each data constructor.

Definition 7.3 (i) As before, standard types of function symbols (F : §>T') are collected
in an environment F.
(ii) Say the algebraic environment 4 contains

A set of standard types for C; consists of attributed versions of the conventional type
g; > Ta, such that

(1) multiple occurrences of the same variable and of the constructor T have the same
uniqueness attribute throughout each version;

(2) each version is uniqueness propagating;

(3) the set contains at most one version for each attributed variant of Td.

This leaves some freedom as to the choice of attributes on positions not corresponding
to T,&. Barendsen and Smetsers (1993) offer a general method for constructing a rea-
sonable set of standard types for each constructor. In most cases (like List, see above),
however, the choice of attributes of T& fixes those for the ;. From now on we assume that

Uniqueness Typing 17

standard types have been determined. For these standard types SeT weset A C: ST
as before.

Definition 7.4 Symbol types are instantiated via the rule

FAFS:S>T Ta'=TRY

— (instantiation)
F,AFS:Sla:=R]>T[a:=R]

Now we are ready to present the derivation system.

Definition 7.5 A uniqueness typing statement (in F, A) has the form
BFE:S.

Like in linear logic, we have to be precise when dealing with bases used for typing
subterms. In particular, duplicating and discarding of inputs are treated explicitly. The
denotation By, Bs stands for a disjoint union of bases.

(i) The rules for type assignment are the following.

z:Skx:S (variable)

FA+S:S>T BiFE;:S;

— — (application)
B+-SE:T

B+FE:S B ,z:SFE:T
(sharing)

B,B'Fletx=FEinE:T

-

B, #[S|F B :S; B ,#[S|FE:T
E,B’ FletrecZ=E in B : T

(cycle)

B+E:T FArC;:S>T B.,#&:S+E T
— (pattern matching)
B,B' Fcase Eof PIE:T' (if Pi = Ci1})

BFE:S s<s

- (subsumption)
BFE:S

Additionally, we have the following ‘structural rules’. Weakening expresses that one can
discard (unique or non-unique) input. The contraction rule deals with correction of types
of shared objects: multiple use of the same object is allowed as long as only non-unique

Erik Barendsen and Sjaak Smetsers 18

variants of the types are used.

BFE:T
———— (weakening)
B,z.SFE:T

B,y:[S),z[S]FE:T
B,o:SFtEly:=z,z:=z]:T

(contraction)

(ii) Correctness of function definitions is expressed as before: the specification F¥ = E,
say with standard type S > T for F, is type correct if

ZSHE:T.
A collection of function definitions is type correct if its members are type correct.

In the derivation one clearly recognizes the ‘logical’ difference between the affine ()
and conventional (x) layer: with respect to « one only has weakening as structural rule,
whereas x admits both weakening and contraction since [S] = S if "S™ = x.

Higher-Order Uniqueness Types

The treatment of higher-order functions in the uniqueness type system is a subtle matter.
Types of partial applications FE need to be assigned a uniqueness attribute. If these
partial applications contain unique subexpressions one has to be careful. Consider, for
example, a function F with type F : (¢*,7>) > ¢* in the partial application FE. Clearly,
the result type of this application is of the form 7* < *. If one allows that this application
is used more than once, one cannot guarantee that the argument E (with type o*)
remains unique during evaluation. E.g. if FE is passed to a function G(f) = (f0, f1),
the occurrences of f will result in two applications of F sharing the same expression E.
Apparently, the FE expression is necessarily unique: its reference count should never
become greater than 1, i.e. it is not allowed to move from the affine to the conventional
type layer. There are several ways to achieve this. For instance, one might introduce a new
uniqueness attribute, say 2, for any unique object that does not coerce to a non-unique
variant. This has been described in Barendsen and Smetsers (1993). Another solution is
the region-administration introduced by Reynolds (1995).

Instead of introducing a new attribute, the present paper assigns the attribute « to
the above —-type, but considers the — constructor in combination with the « attribute
as special: it is not permitted to discard its uniqueness. The leads to an adjustment of
the subtyping relations as well as of the type correction operator [-].

As to the subtyping relation, the attributes of corresponding occurrences of the — con-
structors (in the left-hand and the right-hand side of an inequality) should be identical.
The same is required (to ensure substitutivity of the subtyping relation) for variables.

The subtyping relation becomes inherently more complex than in the algebraic case
because of the so-called contravariance of — in its first argument:

SLHS<TAT & T<8§ 8<T.

Uniqueness Typing 19

Since — may appear in the definitions of algebraic type constructors, these constructors
may inherit the co- or contravariant subtyping behaviour with respect to their arguments.
We can classify the ‘sign’ of the arguments of each type constructor as @ (positive,
covariant), © (negative, contravariant) or T (both positive and negative). In general this
is done by analyzing the (possibly mutually recursive) algebraic type definitions by a
fixedpoint construction, with basis sign(—) = (S, ®).
Notation. The variants <®, <© and <7 are defined in terms of <, as follows.

S<®T & S8§<T,

S<®°T & T<S,

S<'T & S<®TandS<°T.

Moreover we set
S ng & S, <% T; for each i.
Definition 7.6 The subtyping relation < is defined by induction.
a'<a’ & u=uv,
T“§§ T & < v and §§Si9"(T) f,
SHS<TAHT < w=vand S<®Tand S’ <®7T".
Then we have, for example,
Int* 5 gY < Int* 5 8% iff o <w,v=0v,w=uw

Adjusting the type correction operator is easy: correction of — types simply fails. Thus
the operator [] becomes a partial function:

[@"] = a* if u=x,
[T“5] = T*3§,
[S5T) = S5T if u=x,
[S] = 1 (undefined) in all other cases.

The type of Fy, is defined in terms the type of F;; by the following rule.

FAFFry: (S,T)>T w<IIF§
FAFF: S (TST)

(Curry)

Here, ITu stands for the so-called cumulative uniqueness attribute of @: it equals « when-
ever some u; is «, and X otherwise.
The typing rule for Ap is defined straightforwardly.

BFE:S5T B'FRE:S

(curried application)
B,B'FAp(E,E'): T

Erik Barendsen and Sjaak Smetsers 20

Semantics

We start with defining a notion of uniqueness typing for graphs, based on type assign-
ment to nodes in graphs. Subtyping and type correction will be done along references
to objects, whereas on expressions one can perform coercions regardless of their context.
This difference becomes apparent in the root of a graph. By making a small adjustment
(introduced in Barendsen and Smetsers (1993) as a tool to obtain subject reduction) we
can reconcile the two approaches.

Definition 7.7 (i) Let g be a graph. Then g% is the graph that results from g by adding
a new root r* with in-degree 0 containing the data symbol Root of arity 1, pointing to
the root r of g.

(ii) The standard types of Root are given by a > a*.

Since Root is not a function, the root of g% will never be involved in the rewrite
process. Furthermore, for each cycle in g7 there is always an external reference (i.e., a
reference from a node that is not part of the cycle) to that cycle. This makes cycle and
sharing detection more uniform.

Definition 7.8 Let n be a node in g. The reference count of n in g (notation rcy(n) or
just rc(n)) is ® if n appears more than once in the right-hand sides of equations in g*,
and ® otherwise.

Note that the above mechanism only differs from ordinary reference counting at the
root of the graph, notably when the root is part of a cycle.

Definition 7.9 (TGRS uniqueness graph typing) Let g be a graph.

(i) A uniqueness typing for g is a function 7 assigning a uniqueness type to each
node in g such that for any node specification * = S(¥) there exist types S with the
following properties.

FAFS: 8> T(z),
and for all i < k

S; if rey(n;) = ©,

<)
< 5 if rey(n;) =
)

®
(ii) We say that T types g with S (notation 7(g) = S) if moreover T (rt) = S.
Furthermore g is typable with S (notation g : S) if T(g) = S for some T.

The constraints in the above definition reflect the uniqueness property of function
applications mentioned in Section 6. If, say, F with arity 2 has a standard type in which
the first argument is unique, then for any application z = F(y,) in a type correct graph
g we have that rcy(y) = 1. The following subsection shows that this property is indeed
established by the natural deduction system.

Uniqueness Typing 21

Soundness

As a first step towards the soundness proof we need the following technical results.

Definition 7.10 (i) [S]® =[S],[S]® = S.
(ii) By T = B we denote that 7 (z) = S for each (2:S) € B.

Lemma 7.11 Let B+ E : S. Set rg = r[g], rcg = rc[g)(rr). Then there exists a type
assignment T such that T is a unigueness typing for [E] and moreover

T B,
[T(rg)]°® < S.

Proof. By induction on the derivation of B - E : S. We will only consider two cases:
application and contraction. All other cases are handled in the same way.

e B+ SE : T since FAES: ST and B; - E; : S;. By induction hypothesis we
have T; for [E;] with T; = B; and [T (rg,)]"“#: < S;. Note that rcg, = ICis A] (rg;). Set
T =U,; TiU{rgg,r* = T}. Then T satisfies the requirements.

e B,x:SF Ely,z:=z]: T since B,y:[S],z:[S]F E : T. By induction hypothesis we
have T = B, y:[S],2:[S] and [T (rg)]*® < T.Set T' = T U [z — S]. Then 7' E B,z:S
and 7' is a uniqueness typing for [Ely,z := z]] = [E]ly,z := z] by transitivity of <,
using S < [S] and [S] < [S] and we are done. []

Definition 7.12 Let E be an expression.
(i) We say that T types E with S (notation 7 = E : S) if T is a uniqueness typing
for [E] such that
T([E]) = S.
(ii) By B = E : S we denote that B is extendible to a typing of [E], i.e., for some T

one has

TEB, TEE:S.

Theorem 7.13 (Soundness of expression uniqueness typing) For any B, E, S
BFE:S = BE=E:S.

Proof. Suppose B F E : S. By Lemma 7.11 there exists a type assignment 7 for [E]
with [T(rg)]™® < S. Set 7' = T[rf; — S]. Then 7' is a uniqueness typing for [E].
(The additional root reference allows an extra ‘top coercion’.) Moreover 7' = B and

T'=E:S. 0O

Completeness

Showing that the inductive uniqueness type system is powerful enough to capture unique-
ness typing of graphs is more involved than for the conventional case. This is because our
typing rules are rather intensional: Due to the pessimistic treatment of letrec-expressions

Erik Barendsen and Sjaak Smetsers 22

(type correction even in the case of a degenerate cycle) there are expressions E, E' and
type S such that [E] = [E'], E is typable with S whereas E’ is not typable at all.

The idea is to transform a given graph g = (r|G) into an expression g® that contains a
‘minimal’ amount of letrec-expressions. This is done by stepwise substitution of equations
in G corresponding to nodes with reference count 1. Take, for example, the following
graph.

fF
g:G/

The intended procedure leads to the expression
letrec b = B(C(g,d),d),
d = D(e F(g).b),
e = E(),
g = G
in A(b)

Definition 7.14 Let g = (r|G) be a graph. Say E, is the right-hand side of the equation
in G corresponding to variable n.
(i) The expressions E,, are translated into expressions E,*, as follows.

(S(nl,...,nk))* = S(n_l,,n_k)

Moreover

3|

= n if reg(n) = ® or n € FV(g)

= E,” otherwise.

(ii) Finally, the standard expression denoting g (notation g®) is given by

g® =letrecm = E,* inT,
where 77 is the collection of bound variables with reference count ®.

The above transformation is an instance of the hiding operation defined by Ariola and
Klop (1995).

It is not completely trivial that the (mutually recursive) definition of * and * is sound.
To see that this is indeed the case consider the following measure on g-nodes.

Definition 7.15 Let n € V(g). Then n is said to have degree 0 if n € FV(g) or n has no
arguments with reference count ®. Otherwise, if the maximal degree of n’s arguments
with reference count ® is d, then n has degree d + 1.

Uniqueness Typing 23

This is a sound definition: since there exists no infinite path of nodes with reference
count @, each node n can be assigned a unique, finite degree, denoted by deg(n).

It is clear that the degree of nodes decreases with each recursive occurrence of the
operator * above.

Lemma 7.16 [¢®] = ¢

Proof. Obvious. [

Below we will use the degree as a technical tool to prove that ¢g® can be typed with
the same type as g. In the sequel, fix a graph g and an uniqueness typing 7 for g.

Definition 7.17 (i) The initial basis (of g) (notation B') is the set
B'={n:[T(n)]*"™ |neFV(g)}
(ii) The recursion basis (notation BR) is the set

BY = {n:[T(n)] | rcy(n) = @}.

Lemma 7.18 For all n € V(g) one has
(i) BY,B® - E," : T(n);
(ii) B, BR 7« [T (n)]res (™.

Proof. By simultaneous course-of-values induction on the degree of n. Suppose (i) and

(ii) hold for all nodes with degree < d. Let n have degree d.
(i) Say E,* = S(mt,...,n5) and F, A+ S : ST with T(n) = T and [T (n;)]"(™) <

S; for all i < k.
Claim. B, BR F 7 : S;. Then we are done: we can complete the derivation using the rules
application and contraction. The latter deals with multiple occurrences of the variables
in B!, BR; note that [-] is idempotent, i.e. [[S]] = [S] for each type S.
Proof. Let i < k.
Case 1. rc(n;) = © and n; € BV(g). Then by induction hypothesis (ii) (note that
deg(n;) < d) we have

B, BR F@; - T(ny).
Now we can apply subsumption.
Case 2. rc(n;) = ® and n; € BV(g). Then

B, B kg« [T (n)],
by wvariable and weakening, so by subsumption the result follows.
Case 3. n; € FV(g). Then B' F n; : [T(n;)]"*™). Again by subsumption the result
follows. Uaraim
(ii) The case rc(n) = ® and n € BV(g) is covered by (i). Otherwise, either B® (in
)

case n € BV(g)) or B' (in case n € FV(g)) contains n : [T (n)]"*("™). Now we are done by
variable and weakening. [

Proposition 7.19 B' F ¢® : T(g).

Erik Barendsen and Sjaak Smetsers 24

Proof. Since T is a typing for g we have [T (r)]"*(") < T (r*) by the standard type for
Root. Now by Lemma 7.18, using the rule cycle and the rule weakening (also to deal
with multiple occurrences of the variables in B') and subsumption the result follows. []

Theorem 7.20 (Completeness for expression uniqueness typing)
B=E:S = JE'~E[BFE':S].

Proof. Without loss of generality, we can assume that B contains no declarations
for variables not appearing in E. Suppose B = E : S; say T = B and T([E]) = S.
Observe that B = B'. Set E' = [E]®. Then E' ~ E by Lemma 7.16 and we are done by
Proposition 7.19. [

We now relate function typings with typings of graph rewrite rules. Uniqueness typing
of graph rewrite rules is defined as follows.

Definition 7.21 (TGRS Rule uniqueness typing)
(i) A uniqueness type assignment 7 to variables can be extended to patterns in the
following way:

FAFC:S>T, T =S5 = T(Cp =T.
(i) Say the standard type for F in F is S > T. Then the rewrite rule F§ — g is
(uniqueness) type correct if for some uniqueness typing 7 one has

-

T = 5,
T(9 = T

(iii) A collection of rewrite rules is type correct in F if every member is.

Proposition 7.22 (Soundness of uniqueness function typing)

F is uniqueness type correct = [F] is uniqueness type correct.

Proof. Straightforward. [

Subject Reduction

Theorem 7.23 (TGRS Uniqueness reduction typing) Suppose R is uniqueness
type correct. Then for any g, h, S
9:9 = h:S.
g h
Moreover the latter type assignment coincides with the original for g with respect to the
free variables of h.

Proof. See Barendsen and Smetsers (1993). [

Finally, by combining this result with the results from the previous subsection we can
formulate the soundness of the uniqueness type system for expressions with respect to
graph rewriting.

Uniqueness Typing 25

Subject Reduction Theorem 7.24 Suppose F is type correct. Then

BI—E:S}

oy B 3E" ~E' [BFE":S].

Proof. First note that [F] is type correct by Proposition 7.22. Suppose B+ E : S and
E —p E'. Then B = E : S by soundness (Theorem 7.13). By Theorem 7.23 we have
B |= E': S. Hence by completeness (Theorem 7.20) the result follows. []

8. Polymorphic Uniqueness Typing

In order to denote uniqueness schemes, we extend the attribute set with attribute vari-
ables (a,b,ay,...). This increases the expressiveness of the type system. Moreover, at-
tribute polymorphism is needed for the determination of ‘principal’ uniqueness variants
of typings.

Uniqueness constraints are indicated by (finite) sets of attribute inequalities called
attribute environments. For example, the standard type of the symbol Cons is now
expressed by

Cons : (%, List’(a®)) > List’(a®) | b<a.
Note that this expression captures the collection of standard types for Cons in one single
type. The former types for Cons can be obtained by substituting concrete attributes for
a and b satisfying the requirement a < b. The same is done for all symbols: each symbol
has one polymorphic standard type SeT |T.

Syntaz

All notions of the previous section (type environment, subtyping, type derivation) are
re-defined relative to attribute environments.

Definition 8.1 (i) As to the attribute relation <, we say that u < v is derivable from
the attribute environment I' (notation I' F w < v) if I' - u < v can be produced by the
axioms

F'Fu<w if (u<wv)erT,
'-u<u, I'u< x, '« <u
and rule
TFu<ov Trov<w

'-u<w
(ii) This denotation is extended to finite sets of inequalities: T =T if I' - u < v for
each (u <v) € I'. By u = v we denote the pair u < v,v < u.
(iii) We say that T is consistent if T I x < «.

Definition 8.2 (i) For every I', the subtyping relation <p is defined by induction.

a"<ra’ & Tlru=uv,

Erik Barendsen and Sjaak Smetsers 26
T§<r T'T & Tru<vand §<p"D T,
SHS < THT & Tru=vandS<fTandS <& T
(ii) The types S and T are equal modulo T’ (notation S =p T) if S <r T'and T <r S.
One has, for example,
List" (Int” % o”) <r List" (Int" w, o) iff Thu<u,v <vw=uw'z=2a"

Definition 8.3 The context rules for the polymorphic system are

FAFS:Sp>T|T T'HT
FAFS:SpT|T

(attribute instantiation)

FAFS:S>T|I TFfa'="R"
F,AtS:Sla:=R]>Tla:=R]|T

(instantiation)

FAFFi (S T)>T' T Thu<r§
FAFF; : S (TST)|T

(Curry)

The correction operation is also relativized.

Definition 8.4 For every T, the I'-correction of types is the partial function [|r defined
inductively as follows.

[@“r = a" ifTku=x,
TSy = T%8,
[SSHTr = S3T ifTku=x,
[Slr = 1t otherwise.

The rules for producing typing statements B Fp FE : S are obtained from the previous
ones, roughly by replacing - by Fr . The application rule, for example, becomes

FAFS:S>T|T B br Ei: S

B i SE.T (application)
T .
and the subsumption rule
Btr E:S S<r¥&
- (subsumption)
Btr E:S

The environments I in the deduction system are global in the sense that they may con-
tain auxiliary uniqueness constraints (attribute inequalities appearing in some derivation

Uniqueness Typing 27

step, but not occurring in the final basis and type). In order to eliminate these superfluous
constraints in the conclusion of a deduction, we refine the notion of derivability.

Definition 8.5 (i) Let I, I be coercion environments, and let S be a uniqueness type.
Then T',T" are equivalent with respect to S (notation T' ~g I") if for all attributes u,v
in S+, x

Nu<ov & I'Fu<o.

(ii) This denotation is extended to bases and/or types: we write I' ~g g I'" if ' ~p I
for all T appearing in B, S.

Definition 8.6 (i) A polymorphic uniqueness typing statement is an expression of the
form

BrE:S|T.

Such a statement is derivable if there exists a consistent I' such that I'' ~p ¢ I' and
B Fpi E : S can be produced via the above axioms and rules.

(i) Say the standard type for F in F is St T'|T'. Then the function definition F# = E
is type correct if

#SHE:T|T.

Formulating the notion of attribute instance (via attribute substitutions ¢) for poly-
morphic uniqueness typing is more subtle than for conventional type instantiation. One
has to take into account that the uniqueness information is divided into two parts: unique-
ness types and coercion environments. For example, the typings Int® | a<+ and Int* have
the same ‘uniqueness content’, but the uniqueness information is denoted in two differ-
ent ways. The following definition of instantiation focusses on the uniqueness content,
abstracting from the specific type denotation.

Definition 8.7 (i) The typing S’ |I" is a uniqueness instance of S |I' (notation S'|I" C
S|T) if S, S’ have the same conventional skeleton (|S| = |S'|) and there exists an attribute
substitution ¢ such that

I'ET°, S =p S°.
(ii) We also use this denotation for sequences of types: S'|I” C S|

The following expresses that attribute variables and attribute environments can be
regarded as uniqueness schemes: all instances of a given typing are correct.

Proposition 8.8
BFE:S|T

B'RFE:S"|T.
B',S'I" C B,ST } = 5]

Proof. Induction on the derivation showing B+ E: S |T. [J

Erik Barendsen and Sjaak Smetsers 28

Semantics

The semantic results of Section 7 go through in the polymorphic system. Below we
reformulate the main results.

Definition 8.9 (TGRS polymorphic uniqueness graph typing) Let ¢ = (r | G)
be a graph. A polymorphic uniqueness typing for g is a pair (T,T') where T is a uniqueness
type assignment to nodes in g and T' is a consistent coercion environment such that for
any equation z = S(7) in G there exist types S with the following properties.

FAFS: 8> T(x)|T,
and for all i <k

T(nl) SF Sz if I'Cy (nl)
[T(TLZ)]F <r S; if rcg(ni)

:@)
=®

The following definition prepares for the soundness result.

Definition 8.10 E an expression and S a uniqueness type.
(i) Let B be a basis. By T =r B we denote that 7 (z) =r T for each (z:T) in B.
(ii) We say that 7 types E with Sin T (notation 7 |=r E : S) if (7,T) is a uniqueness
typing for [E]" such that 7([E]") =r S.
(i) By B |= E: S| T we denote that for some 7 and ' ~p ¢ T

T |:F’ B, T |:1"r E : S
Theorem 8.11 (Soundness) BFE:S|I' = BE=E:S|I.
Theorem 8.12 (Completeness) BEE:S|I' = JE'~E[BFE':S|T].

Subject Reduction Theorem 8.13 Suppose F is type correct. Then

B+E:S|T

i E,} = 3E'~FE[BFE":S|T]
F

Uniqueness Type Inference

In this section we will describe how to compute uniqueness variants of conventional
typings. The presentation will proceed along the same lines as the conventional case:
given an expression, we collect a ‘minimal’ set of requirements (this time in the form of
inequalities). It will be decidable whether this set has a solution; moreover, in the positive
case a ‘principal’ solution is computable. For the graph theoretic setting, uniqueness type
inference has been described in Barendsen and Smetsers (1995b).

In order to generate uniqueness requirements in an inductive way, we construct a
syntax-directed variant of the type derivation system. The substitution in the contrac-
tion rule is a global operation which does not fit into a syntax-directed (decompositional)

Uniqueness Typing 29

system. Therefore we introduce variable annotations for administration of multiple vari-
able occurrences.

We assume that the applied occurrences of variables in our expressions are marked:
x® if z either occurs more than once or z is a letrec-variable, and z® if z occurs only
once. Defining occurrences (let = --+) are not marked. This marking corresponds to a
simple reference-count determination in graphs.

The subsumption rule is incorporated in the rules (variable) and (application). The
contraction rule has become obsolete by our new administration of sharing: uniqueness
correction can now be combined with the (variable) rule. Weakening is taken into account
by allowing a larger basis in the rules. Moreover, strict separation of bases for typing is
not longer necessary, again by our local administration of multiple variable occurrences.

Definition 8.14 The syntax directed polymorphic system looks as follows.

S <r s’ [Sr <r s’
(variable ©®) (variable ®)
B,z:S Fr z° .9 B,z:S tr z®. 9
FAFS:S>T|T Btbtr E:S, T<rT
— (application)
BFr SE: T
Bbtr E:S B,z:S Fr E:T
(sharing)

Btrleez=EinE :T

B,:E:g br E: S B,#&:S Fr E': T
= (cycle)
B Fr letrecZ=EinE T

Btr E:T FAbrr Ci:S>T B,&:S br Ei: T

——— — (pattern matching)
B tr case Eof P|[E: T (if P, = C;13)

Derivability in the resulting (syntax directed) system is denoted by sd

Theorem 8.15 If E is well-marked, then
BHYE:S e BFp E™:8S,
where E~ results from E by removing all markings ©, ®.

We need an equivalent of the statements £ that were used in the conventional case.

Definition 8.16 (i) An attribute inequality is an expression of the form u < v, where
u,v are uniqueness attributes. A type inequality statement is an expression of the form
S = T, where S, T are uniqueness types. The expression S ~ T stands for the combination
S<T,T<S.

(ii) A system of uniqueness requirements is a pair U = (S, A), where S consists of
type inequality statements and A of attribute inequality statements.

Erik Barendsen and Sjaak Smetsers 30

(iii) For each U, the set |U| is the underlying conventional set of equations |S| = |T|
associated with the inequality statements S < T in U.

Definition 8.17 (i) A uniqueness type substitution is an assignment * of uniqueness
types to uniqueness type variables such that "x(a%)™ = u for each a* in *’s domain.

(ii) A solution for a system U = (S, A) consists of a substitution * and a consistent
coercion environment ' such that

(1) S* <p T* for each (S <% T) in S.

(2)TFA.
In this case we write *,I' |= U.

In the sequel we will express uniqueness typing constraints in the form of a system
U. Towards a procedure for solving such a system, we consider the case where a partial
solution * has been determined that ‘conventionally satisfies’ U, i.e. |¥| |= [U|. We now
focus on determining a suitable T' which solves the remaining inequalities by so-called
uniqueness unification.

In view of this, the unification algorithm takes ‘conventionally correct’ systems as
input, i.e., systems in which for all inequality statements S < T we have |S| = |T.

Lemma 8.18 Consistency of attribute environments is a decidable property.

Proof. Note that I is consistent iff the ‘transitive closure’ of I' does not contain x < «.
This can be verified effectively by the finiteness of attribute environments. []

Proposition 8.19 (Uniqueness Unification) There exists a computable function
attr, having as input conventionally correct systems of uniqueness requirements and re-
turning an attribute environment or fail, such that

attr() =T = T EU andT is consistent,

and T' =T for each consistent T' |= U
attr(U) = fail = there is no consistent I such that T' = U.

Proof. For each S,T with |S| = |T, the set I'(S,T) (ensuring S < T) is defined
inductively as follows.
Notation. T®(S,T)=T(S,T), T°(S,T)=TI(T,S)
LT(S,T) =T%(S, T)uT°(S,T),
%S, T) = U, T%(Si, T)).

Y

Now set
o, a") = {u=v},
NS48, 1T5T) = TS, T)UT®(S, T") U {u = v},
D(T(S), T(T)) = T (S, T)U{u < v},

Say U = (S, A). Finally, set

Uniqueness Typing 31

Clearly, I' is computable from ¢/. If T' is consistent (Lemma 8.18), output atér(U) = T
otherwise attr(U) = fail. [

In practice, the strategy to solve a system U/ will be based on a conventional typing
algorithm. We will describe how to combine the attribution procedure with a lifting
concept: given a system U and a conventional solution o of || we can compute a ‘most
general’ uniqueness variant x, I' of %o (if it exists) solving ¢. The result is called an
attribution of *q.

We first have to define the notion ‘most general attribution’, using the concept of
attribute instantiation, cf. Definition 8.7.

Definition 8.20 (i) The pair (+',I") is an instance of (x,T) if for some o
FI '_ 1—\0, *, =r *O,

where the latter equation is to be taken argumentwise.
(ii) A (conventional) solution *q of || is called attributable if there exists a uniqueness
substitution * with |*| = %9 and a consistent environment I" such that

« [EU.

The above definition of instantiation induces a notion of principal attribution.

Principal Attribution Theorem 8.21 Let U be a system of uniqueness requirements.
It is decidable whether a given (conventional) solution of U is attributable. Moreover, if
this is the case, a principal attribution can be computed.

Proof. [Sketch of the algorithm] Given %q |= |U|, lift %, to a uniqueness type substitution
* by choosing fresh attribute variables at each subtype, such that outermost attributes
correspond to the attributes of variables in /. Now compute attr(U*). If this gives fail,
then xq is not attributable. Otherwise (say attr(U*) =T') output (x,T'). [

Analogous to the situation in conventional typing, we formulate a notion of ‘exactness’
to express that a certain system precisely captures the minimal uniqueness requirements
needed for a valid typing.

Definition 8.22 A system of uniqueness requirements U is called uniqueness exact for
B, E,S if for all x,T
()« TEU = B* 9 E:S*|T.
(2)B* 4 E:S*|T = «I'EU
for some *',I'" such that «',[" ~p5 g *,T.

Proposition 8.23 Let E be an expression, B a basis and S a uniqueness type. Then
there exists a finite system of requirements U = U(B, E,S), computable from B, E,S,
such that U is exact for B,E,S.

Proof. The following inductively defines U (B, E, S). Union of requirement systems is

Erik Barendsen and Sjaak Smetsers 32

to be taken componentwise.

UB,z%,S) = ({B(zx) <S},0),
UB,z%,S) = ({B(z) <SH{"S"=x}),
U(B,SE.S) = |(JU(B E;,T:)U({R = S}A)

(3

ifT>R | A is the standard F, A-type of S,
UB,letz=EinE'S) = UBUza" E' S)UUB,E,a")

a, a fresh,
U(B,letrec i = Ein E',S) = | JU(BUZ:ab, E;, ;) UU(BUZ:ab, E',)
i
&, d fresh,
U(B,case E of P|E,S) = U(B,E,a%)U

JWU(BUzT;, B, S) U ({a® ~ Ri}, Ay)),
if P; = C;z;; the standard type of C; is T: > R; | A,

a,a fresh.

The verification is similar to the one in the conventional case. As to variables 2%, note
that

[Sr<r &' & S<p S8, THT8"=x.0

As in the conventional case, the typing procedure is started with parameters that do
not impose any restriction on solutions, cf. the proof of Theorem 5.20.

Definition 8.24 Let F be an expression, say with FV(E) = {z,...,z,}. The basic
system for E is the system U(E) = U(By, E,Sy), where By = {x1:01%, ..., 2y, }
and Sy = a’.

The above discussion suggests the following strategy for determining uniqueness types.
Given E, determine a (conventional) solution g of [//(E)|; then use the Principal Attri-
bution Theorem to lift this solution to a uniqueness typing. If this succeeds (say with
output *,I'), then conclude B§ Fr E : 5.

A natural attempt is to take the most general conventional solution for xy;. However,
because of our treatment of higher-order functions (involving a restriction on the subtype
relation w.r.t. variables), it might be the case that lifting this most general solution fails,
whereas some specific instance is attributable. Therefore, a reasonable notion of ‘most
general solution’ cannot be formulated for the combination x,I'. Consequently, there is
no ‘Principal Uniqueness Type Theorem’. Instead, we stick to the asymmetric approach
suggested by the notion of principal attribution with respect to a given (previously de-
termined) substitution. This is reflected in the description of the typing procedure in
Clean.

Uniqueness Typing 33

Uniqueness Type Inference in Clean

In order to translate the above into a suitable actual typing algorithm we indeed try to
lift the most general solution of |/(E)|. If this attempt fails, however, we do not try any
specific instances but consider the expression untypable.

As a consequence, the underlying conventional typings of the derived uniqueness types
are exactly the principal ones, so from the programmer’s point of view the uniqueness
system is a transparent extension of conventional typing: if one disregards the uniqueness
information the types are as one would expect.

Having seen how to derive expression typings in a given environment, we can focus
on type inference for functional programs. As in any other functional language, in Clean
type checking is concerned with the determination of a suitable environment type for
each function symbol, such that all program parts are well-typed.

By our definition of function typing, this boils down to determining uniqueness types
for the right-hand expressions of the function definitions, using the above procedure.
The only problem is the possibility of (mutually) recursive function specifications. It is
well-known that typing of these definitions is undecidable in general.

In fact, the Clean compiler adopts the Hindley-Milner approach towards recursion:
in the definition of, say, F, all occurrences of F should be typed with F’s environment
type (i.e., without instantiation). Indirect recursion is treated similarly. This can be
achieved, for instance, by adjusting the definition of #(B, E, S) for E = SE in the proof
of Proposition 8.23.

Alternative reference count analysis

A straightforward (static) reference counting treats all references to a given object in the
same way. This can be refined: multiple access to a unique argument is harmless if one
knows that only one of the references will be present at the moment of evaluation.

An example of this evaluation-strategy-aware (dynamic) reference counting is the treat-
ment of conditional expressions in Clean. For example, if we define the conditional by

Cond(b,z,y) = case b of True | =z
False | y

and compute Cond(B, E, E') in the standard way, the condition is evaluated first (with
possible sharing between B and E, E') and subsequently one of the alternatives is chosen
and evaluated (so sharing between E and E' has disappeared). This suggests that we
can distinguish between references to the same object inside B, E and E' respectively,
allowing a less restrictive uniqueness typing.

Note that the syntax directed system of Definition 8.14 provides the possibility to
have different markings of the same variable. In view of the above analysis, the following
expression is well-marked:

let 2 = A in Cond(F(2%),G(z®), H(z®)).

In fact, the results of Barendsen and Smetsers (1993) already abstract from the way
references are counted: they capture both the standard and the refined approach.

Erik Barendsen and Sjaak Smetsers 34

9. Conclusions and Related Work

We have developed a very powerful type system in natural deduction style. Its aim is to
characterize reference structures in graphs, in order to express uniqueness constraints of
function arguments. In the present paper, polymorphism has been extended to uniqueness
attributes. Both soundness (with respect to a graph rewriting semantics) and decidability
of resulting system have been shown.

The system has been implemented as part of the Clean-compiler.

The present work has been inspired by Guzman and Hudak (1990), addressing the
mutability problem in a ‘single threaded polymorphic lambda calculus’ (poly-As;). Instead
of using an operational semantics directly based on graph rewriting, they apply lambda-
graph reduction due to Wadsworth (1971). Type reconstruction is (roughly) described
by defining a type inference algorithm, refraining from a formal correctness proof.

In Turner et al. (1995), a type system is presented that is strongly related to ours.
However, the design was guided by different motives: its main purpose is to deal with
program transformations (in particular, inlining of unique expressions) and with super-
fluous closure updates. The main difference with our system is that uniqueness (use 1,
using their terminology) is not a property of a reference to an expression but rather of
the expression itself. The subtyping relation (in our system needed to adjust an offered
argument type to the corresponding requested type) is absent, since it would destroy the
intended uniqueness property.

In spite of the fundamental efforts of Guzman and Hudak (1990) and Turner et al.
(1995), none of the described approaches has been turned into a real implementation.

Type systems with subtyping have, among others, been studied in Mitchell (1991),
presenting a type inference algorithm which determines the minimal set of coercions nec-
essary to type a given term. The algorithm essentially derives the same set of coercions
as our procedure introduced at the end of section 8. However, due to our consistency
requirement and the subtyping restriction on arrow types (and on type variables), the
former may lead to a collection containing unrealizable coercions. It needs to be inves-
tigated whether it is decidable if a given expression is uniqueness typable, even though

there need not be a ‘minimal’ uniqueness type (see the discussion in Section 8).

Hankin and le Métayer (1994) present a general method for deriving type inference
algorithms from (non-standard) type systems. The main application of this method is
strictness analysis. It would be an interesting experiment to formulate uniqueness typing
in this framework, and to compare the resulting type inference algorithm with the one
described in the present paper.

In any case, we are planning to investigate whether our way of (non-standard) typing
and type inference applies to other areas of static analysis, such as strictness analysis.

As has been mentioned before, our system is closely connected to substructural logics.
A combined linear/full intuitionistic logic can be found in Benton (1994). The system
described in this paper could be the first step towards a ‘propositions as types/proofs as
graphs’ notion.

Uniqueness Typing 35

References

Ariola, Z.M. and J.W. Klop (1995). Equational term graph rewriting, Technical Report CS-
R9552, Centrum voor Wiskunde en Informatica (CWI), Computer Science/Department of
Software Technology.

van Bakel, S.J., JJE.-W. Smetsers and S. Brock (1992). Partial type assignment in left-linear
term rewriting systems, in: J.C. Raoult (ed.), Proceedings of the 17th Collogium on Trees and
Algebra in Programming (CAAP’92), Rennes, France, Lecture Notes in Computer Science
581, Springer-Verlag, Berlin, pp. 300-322.

Barendregt, H.P. (1992). Lambda calculi with types, in: S. Abramsky, D.M. Gabbay and T.S.E.
Maibaum (eds.), Handbook of Logic in Computer Science, Vol. II, Oxford University Press.
Barendregt, H.P., M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer and
M.R. Sleep (1987). Term graph reduction, in: J.W. de Bakker, A.J. Nijman and P.C. Tre-
leaven (eds.), Proceedings of the Conference on Parallel Architectures and Languages Europe
(PARLE) 11, Eindhoven, The Netherlands, Lecture Notes in Computer Science 259, Springer-

Verlag, Berlin, pp. 141-158.

Barendsen, E. (1995). Types and Computations in Lambda Calculi and Graph Rewrite Systems,
Dissertation, University of Nijmegen.

Barendsen, E. and J.E.W. Smetsers (1993). Conventional and uniqueness typing in graph rewrite
systems (extended abstract), in: R.K. Shyamasundar (ed.), Proceedings of the 13th Conference
on Foundations of Software Technology and Theoretical Computer Science, Bombay, India,
Lecture Notes in Computer Science 761, Springer-Verlag, Berlin, pp. 41-51. Full paper: see
Technical Report CSI-R9328, University of Nijmegen, and Barendsen (1995).

Barendsen, E. and J.E.-W. Smetsers (1994). Extending graph rewriting with copying, in: H.J.
Schneider and H. Ehrig (eds.), Graph Transformations in Computer Science, International
Workshop, Dagstuhl Castle, Germany, Lecture Notes in Computer Science 776, Springer-
Verlag, Berlin, pp. 51-70.

Barendsen, E. and J.E.W. Smetsers (1995a). A derivation system for uniqueness typing, in:
A. Corradini and U. Montanari (eds.), SEGRAGRA95: Joint Compugraph/Semagraph Work-
shop on Graph Rewriting and Computation, Volterra (Pisa), Italy, Electronic Notes in Theo-
retical Computer Science, Elsevier Science, pp. 151-158.

Barendsen, E. and J.E.-W. Smetsers (1995b). Uniqueness type inference, in: M. Hermenegildo
and S.D. Swierstra (eds.), Programming Languages: Implementations, Logics and Programs
(PLILP’95), Utrecht, The Netherlands, Lecture Notes in Computer Science 982, Springer-
Verlag, Berlin, pp. 189-206.

Barendsen, E. and J.E.W. Smetsers (1995¢). Uniqueness typing in natural deduction style (ex-
tended abstract), 1995 Glasgow Workshop on Functional Programming, pp. XVI 1-XVI 10.
Accepted for the formal proceedings (to appear).

Benton, P.N. (1994). A mixed linear and non-linear logic: Proofs, terms and models, in: L. Pa-
cholski and J. Tiuryn (eds.), Computer Science Logic, 8th Workshop, Kazimierz, Poland,
Lecture Notes in Computer Science 933, Springer-Verlag, Berlin, pp. 121-135.

Blass, A. (1992). A game semantics for linear logic, Annals of Pure and Applied Logic 56,
pp. 183-220.

Guzmadn, J.C. and P. Hudak (1990). Single-threaded polymorphic lambda calculus, Proceedings
of the 5th Annual Symposium on Logic in Computer Science, Philadelphia, IEEE Computer
Society Press, pp. 333-343.

Hankin, C. and D. le Métayer (1994). Deriving algorithms from type inference systems: Applica-
ton to strictness analysis, POPL’9): 21st ACM SIGPLAN-SIGACT Symposium of Principles
of Programming Languages, Portland, Oregon, ACM Press, pp. 202-213.

Erik Barendsen and Sjaak Smetsers 36

Mitchell, J.C (1991). Type inference with simple subtypes, Journal of Functional Programming
1, pp. 245-285.

Plasmeijer, M.J. and M.C.J.D. van Eekelen (1995). Concurrent Clean. Available via
www.cs.kun.nl/"clean/.

Reynolds, J.C. (1995). Passivity and linear types. Talk given at the conference on Types for
Proofs and Programs, Turin, Italy, June 1995.

Robinson, J.A. (1965). A machine-oriented logic based on the resolution principle, Journal of
the Association for Computing Machinery 12, pp. 23-41.

Turner, D.N., P. Wadler and C. Mossin (1995). Once upon a type, Proceedings of the Conference
on Functional Languages and Computer Architectures (FPCA), La Jolla, California, ACM
Press, pp. 1-11.

Wadler, P. (1990). Linear types can change the world!, Proceedings of the Working Conference
on Programming Concepts and Methods, Israel, North-Holland, Amsterdam, pp. 385-407.
Wadsworth, C.P. (1971). Semantics and Pragmatics of the Lambda Calculus, Dissertation, Oxford

University.

Wand, M. (1987). A simple algorithm and proof for type inference, Fundamenta Informaticae

X, pp. 115-122.

