The GUI-fest challenges

In this report we present the solutions to two selected challenges that have been proposed in
the 1995 Glasgow GUI-fest. The solutions are defined in the pure, lazy, functional program-
ming language Clean. We have used the currently available version of the Event 1/O library
version 1.0. The two selected challenges are an object oriented counter viewing program, the
‘counter challenge’ and a board game, the ‘Explode challenge’. One interesting aspect in the
way we have approached the counter challenge is to first define a very general framework for
browser/editors, inspired by a challenge proposed by Emden Gansner. The counter challenge
is then defined as an instance of this general browser/editor framework. The Explode chal-
lenge can be worked out as a straightforward Event 1/O program. It demonstrates the ele-
gance and expressiveness of functional programming.

1 Introduction

The 1995 Glasgow GUI-fest was held in the week of 24-28 July, during the Glasgow
Research Festival. The main topic of interest of the GUI-fest was to investigate the
strengths and weaknesses of programming Graphical User Interfacesin functional
languages. A number of challenges have been proposed, and eventually it was decided
to present solutions to two of these challenges. The first challenge, the * counter chal-
lenge’ was created to see how the different languages and I/0O models handle encapsu-
lated state in perhaps an object-oriented style. The second challenge is a modest board
game, ‘Explode’, and it was proposed by Rob Noble and Colin Runciman (introduced
earlier in Noble and Runciman (1995)).

In this report we present the solutions to these challenges using the lazy, pure,
functional programming language Clean (Bruset al., 1987; Nocker et al., 1991,
Plasmeijer and van Eekelen, 1993). The I/0O library that has been used in these exam-
plesisthe current, experimental, Event 1/0O 1.0 version. This system is a successor of
the Event I/O 0.8 distribution version (Achten et al., 1993; Achten and Plasmeijer,
1995), extended with the concept of interactive processes and message passing
(Achten and Plasmijer, 1994). In Section 2 we describe the way we solved the counter
challenge. Section 3 discusses the approach to the Explode game. Section 4 discusses
and concludes. Appendix A contains the full code of the counter challenge, and Ap-
pendix B contains the full code of the Explode game. In this report we assume the
reader is familiar with functional programming and the Clean Event I/O system.

The GUI-fest challenges 2

2 The counter challenge

In this section we show how we have approached the counter challenge. First we give
the specification of the challenge. This rather informal specification describes what
the program should do seen from a user’ s point of view. When starting the program, it
should present to the user awindow as shown in Figure 1. We will call this window a
counter window.

Counterl

0

[Eupg] [Link]

[Close | [ouit |

Figure 1 The initial view of the counter program.

The window displays an integer value. There are six buttons, labelled Manual, Auto,
Copy, Link, Close, and Quit. Their behaviour, when selected, is asfollows:

Manual simply increments the currently displayed value by one.

Auto sets this counter to auto-increment mode in which the count increases periodi-
cally until Manual is pressed. The auto-increment mode is undone by pressing
Manual.

Link creates a new counter window that gives a new view of the value displayed by
the window in which Link has been selected. In general, there can be an arbi-
trary number of windows, each displaying the same current value. Such a
group of windowsiscalled alink.

Copy, like Link, also creates a new counter window, except that the new counter win-
dow has a completely new initial counter value which is also not shared with
any other counter window. So Copy creates a new set of link.

Close closes all windows that are linked to the counter window in which Close has
been selected. If it happens to be the last link, then this also terminates the
application.

Quit simply terminates the application, and thereby closes all links.
The auto-increment mode applies to all counter windows of the same link. The auto-

increment mode is turned off by selecting the Manual button of any of the counter
windows of that link. To inform the user which counter windows belong to the same

2 The counter challenge 3

counter value we number the links and display the link number in the name of the
counter window.

More generally, the program presents a dynamic number of views of a dynam-
ic number of states. The views are all counter windows, and the states are all counter
values and perhaps an auto-increment mode. This lead us to the idea to seeif this
challenge could be solved as a specia kind of browser/editor, a challenge proposed by
Emden Gansner. In this challenge, the task was to: “build a simple graph editor for
creating, viewing and editing directed acyclic graphs. The program should support at
least two different types of concrete representations of a graph. Representations can
be either textual or graphical. Changes to the graph should be propagated to all of the
views.” The directed acyclic graph is called the “model” data, and the representations
arecalled views.

It occurred to us that the counter challenge could be formulated nicely as a
special case of the browser/editor. So we first started out to build a general
browser/editor framework (Section 2.1), and then apply this framework to create the
counter challenge (Section 2.2).

2.1 A general browser/editor framework

The general structure of a browser/editor is some model data, which is a data struc-
ture, and a number of views that can write and read the model data. Each view can
have local data. Whenever aview changes the model data, the other views should be
informed about this change in order to propagate the changes throughout all views.
Figure 2 puts this general structure in a scheme.

Because the framework should be general, the model data should allow any
type of data structure. So the framework should be polymorphic in terms of the model
data. The views are defined as individual interactive processes. The model datais
globally accessibleto all views. It will be managed by one special interactive process,
the control process. All access of the view processes to the model datawill be done
viathe control process. It will take care that manipulation propagation will be done
correctly to all view processes. Finally, the framework should be such that view pro-
cesses, which will be defined by a programmer, do not need to know how the access
and manipulation propagation is actually handled. To the view processes and the pro-
grammer thisinformation is encapsulated. Figure 3 gives the scheme of our approach.

model data

TN

local data local data
View e w
Figure 2 The general structure of the browser/editor.

Below we consider the following main components in sequence: the view processes
(Section 2.1.1), the control process (Section 2.1.2), and information encapsulation
(Section 2.1.3).

The GUI-fest challenges 4

2.1.1 View processes

A view process presents aview on the model data, which is some arbitrary type m.
The behaviour of aview processis defined by three functions:

a)
b)
c)

The manipulation propagation: what should happen when the model data has
been changed.

Theinitial state of the view process: it depends on the current value of the
model data.

Theinitial actions of the view process: besides the common initial actions, this
function is parameterized with an abstract value without which the view pro-
cess has no proper access to the model data.

miodel data
1m

control process

\
/

local data local data
View process View process
Figure 3 The structure of a general browser/editor using interactive processes.

The definition of these functionsis collected in the record type Vi ewDef (Figure 4).

Vi ewDef ...m
= { vRespond :: RespondF m (PState .),
vinitState:: InitStateF ...m
vinitlO :: InitlOF ..m
}
RespondF mps :== ((mnm), ps) -> ps
InitStateF ... m == m-> .
Initl OF ..m == (Browselnfo n) -> (InitlO .)
Figure 4 The definition of a view process.

Given the definition of aview, it can be transformed into an interactive process. A
view processis an interactive process that has one special receiver device which ac-
cepts messages of type (ViewM m), which consists of the single alternative
(RespondTo (m,m)). Such a message always consists of apair of the old model data
and the new model data. Given such a pair, the view process can respond appropri-
ately. This response is the RespondF function of the view’s definition. To accomplish

2 The counter challenge 5

this the receiver is parameterized with the ViewDef structure. Figure 5 gives the def-
inition of the receiver.

Vi ewM m = RespondTo (mm

viewR : (ViewDef ..m) (Viewmm (PState .) -> (PState .)
vi ewR vi ewDef (RespondTo nodel Change) ps
= viewDef.vRespond (nodel Change, ps)

local data
Wit m
receiver
View process
Figure 5 The structure of view processes. Alternative constructors of algebraic

data types are printed in boldface.

We defer the discussion on the creation of view processes until Section 2.1.3.

2.1.2 Control process

The control process manages all access by the view processes, and all manipulation
propagation that is required. It is a special interactive process, defined within the
framework, and isinvisible to the programmer. The control process is a background
process, and consists of areceiver only. It isthe process that sends (ViewM m) mes-
sages to the view processes, in reply to (ControlM m) messages that are sent by the
view processes. View processes, identified by avalueid of type (Viewld m) can re-
guest the control processes to:

a) Change the current model data with afunction f (Action id f).
b) Create anew view process (NewView def).

C) Participate in manipulation propagation (NewViewld id).

d) Refrain from manipulation propagation (CloseView id).

€) Terminate the control process (Quit).

Figure 6 gives the scheme and type definitions.

Control M m

= Action (Viewd m (m>n
| Newview (ViewDef ..m

| Newvi ewl d (Vi ewl d m

| Cl oseView (View d m

I

Qui t

The GUI-fest challenges 6

local data

CConrolkd m Wit m

receiver

contiol process

Figure 6 The structure of the control process.

Thelocal state of the control process, the record type (LocalC m), contains of course
the model data, but also some further information: the identifications of the view pro-
cesses that have currently subscribed to be informed about changes of the model data,
and the identification of the control process itself.

Local C m
= { views :: [Viemd n],
nodel oom

nysel f :: Maybe (Controlld m

}
*CState m

== PState (LocalC m) Int

Figure 7 The local and process state of the control process.

Because the control process consists of one receiver only, its behaviour is defined
completely by the definition of the receiver function cont r ol R of the control pro-
cess which has type:

controlR: (ControlMm (CState m -> (CState n

For every (Action sender act) message, compute the new value of the model data, and
send to every other view process the pair of the old and new model data values:

control R (Action sender act) ps=:{pLocal =l ocal }
= {ps & pLocal ={local & nodel =newnpdel },
pl OSt at e=br oadcast ot hers mess ps. pl Cst at e}

wher e
newnodel = act | ocal. nodel
ot hers = filter (not o eqRId sender) I|ocal.views
ness = RespondTo (| ocal . nodel , newnodel)

For every (NewView viewDef) message, create a new view process.

control R (Newi ew vi ewDef) ps = openVi ew vi ewDef ps

For every (NewViewld id) message, add the view process to the administration of
view processes that have subscribed for manipulation propagation.

control R (Newiew d id) ps=:{pLocal =l ocal }
= {ps & pLocal ={l ocal & views=[id:|ocal.views]}}

2 The counter challenge 7

For every (CloseView id) message, remove the view process from the administration
of view processes that have subscribed for manipulation propagation (so thisis basi-
cally the reverse operation of the previous alternative).

control R (Cl oseView id) ps=:{pLocal =l ocal }
= {ps & pLocal ={local & views=filter (not o eqRId id)
| ocal . views}}

For every Quit message, quit the control process.

controlR Quit ps = seqPIO [Quitl O ps

2.1.3 Information encapsulation

In the previous two sections we have defined the view and control processes, and the
communication protocol. To get things cooperating properly, the programmer must
know in what order messages should be sent. For instance, opening a new view pro-
cess (by sending NewView) should be followed by registering the identification of the
new view process (by sending NewViewld). These kind of requirements are likely to
go wrong. In this section we discuss how we can circumvent these problems and ob-
tain a safe system. We show how we can encapsul ate the communication protocol and
the view process creation.

First we introduce an abstract data type, Br owsel nf o m that will be the sole
interface to the programmer to access the model data. The creation of the view pro-
cesses will guarantee that the bControl field of a Browselnfo value always is the
identification of the receiver of the control process (which is of type RId
(ControlM m) because it receives messages of type (ControlM m)). For each view
process, the bView field of a Browselnfo value is always the identification of its re-
ceiver that receives the messages of type (ViewM m), and thus is of type
RId (ViewM m). The signature of Browselnfo, containing the view management op-
erations, isgiven in Figure 8.

Browsel nfo m

= { bView o Viewd m
bControl :: Controlld m
}
View d m:== Rid (ViewM n
Controlld m:== Rid (ControlMm

changeModel Dat a: : (Browselnfo m (m>m

(PState .1 .p) -> PState .1 .p
cl oseMbdel Data :: (Browselnfo m
(PState .1 .p) -> PState .1 .p
openVi ewer . (Browselnfo m (ViewDef® Void Void nm
(PState .1 .p) -> PState .1 .p
cl oseVi ew ::(Browselnfo m (PState .1 .p) -> PState .l .p
Figure 8 The signature of the abstract data type Browselnfo.

As we saw in Section 2.1.1., view processes are defined by values of type
ViewDef m. In general, a browser/editor can consist of several initial views. Each
view can have its private data, which types can be different. For this reason, the exis-
tentially quantified type ViewDef" is introduced which hides the type information of

The GUI-fest challenges 8

the private data of the initial views (see Figure 9). Furthermore, an initial value for the
model data has to be supplied. The only function available to create a browser/editor
isthe function openBr owser . When applied to a browser/editor definition, open-
Br owser creates the control process, and then applies for each view definition the
function openView. Recall that openView was also applied by controlR when a view
process requested a new view to be created (Section 2.1.2.).

Browser m
= { bViews :: [ViewDef ™ Void Void m,
bModel Data :: m
}
ViewDef® E.I Ep m
= Hi dden (Viewbef | p m

openBrowser :: (Browser m *Wrld -> *Wrld
openBrowser browser world
= Qpenl O [initControl GUl browser]
(i nitLocal browser.bMdel Data, 0)
wor | d

initControlGJ :: (Browser m (CState m) -> (CState m
initControl GJU browser ps=:{plLocal =l ocal }
= seq (nmap openVi ew browser. bVi ews) psl

wher e
(me,i0l) = OQpenReceiver receiver ps.plCsState
recei ver = Receiver [ReceiverFunction control R]
psl = {ps & pLocal = {local & nyself = Just ne},
pl CSt at e= i 01}
Figure 9 The creation of a browser/editor, defined by an initial set of view pro-

cess definitions.

When a new view is created, the control process evaluates the function openView.
Given aview definition, openView spawns a new interactive process. This process,
before evaluating the initial actions of the view process, first creates the receiver that
will communicate with the control process, sends the identification of the receiver to
the control process, and generates the appropriate Browselnfo value for this view pro-
cess.

openView : (ViewDef~ Void Void m) (CState m -> (CState n
openVi ew (Hi dden vi ewDef) ps=:{pLocal =l ocal }
= ..Newl O [initView me vi ewDef]
(viewDef.vlnitState | ocal. nodel)
wher e
Just ne = local.nyself

initView:: (Controlld m (ViewDef .I .p m
(PState .1 .p) -> (PState .| .p)

initView controlld viewbef ps

= seq initlO {ps & pl Cst at e=i 02}

wher e
(id,iol) = OpenReceiver rDef ps.plCState
r Def = Receiver ..(viewR viewDef) ...
i 02 = ASyncSend controlld (Newiewd id) iol
initlO = viewbef.vinitlO{ bView =id,

2 The counter challenge 9

bControl =control Id }

Figure 10 The creation of a new view process.

Finally, we can consider the implementation of the abstract operations of Browselnfo.
These are givein Figure 11. They should be self-explanatory by now.

changeMbdel Dat a: : (Browselnfo m (m>m

(PState .1 .p) -> PState .|l .p
changeMdel Data blnfo f ps
= seqPl O [ASyncSend bl nfo. bControl (Action blnfo.bViewf)] ps

cl osewbdel Data ::(Browselnfo m (PState .| .p) -> PState .1 .p
cl oseMbdel Data bl nfo ps
= segPl O [ASyncSend bl nfo. bControl Quit] ps

openVi ewer ::(Browselnfo n) (ViewDef' Void Void m

(PState .| .p) -> PState .1 .p
openVi ewer bl nfo viewDef ps
= seqgPl O [ASyncSend bl nfo. bControl (Newiew viewDef)] ps

closeView :: (Browselnfo m (PState .1 .p) -> PState .|l .p
cl oseVi ew bl nfo ps
= segPl O [ASyncSend bl nfo. bControl (C oseView blnfo.bView] ps

Figure 11 The implementation of the abstract operations on Browselnfo.

2.2 Thechallenge as a special instance

In this section we show how the counter challenge can be defined as a special case of
the browser/editor framework. To do this, we need to settle the model data and a def-
inition of views.

Figure 12 gives the model data type, named Model, which consists of alist of
links. A link isidentified by a number (the synonym type Linkld), and it contains the
current count value, and a flag stating whether the link is running in auto-increment
mode. The private state of each view process, of type Local, consists of the identifica-
tion of the link to which it presents a view, the most recent ‘ up-to-date’ value of the
model data, and an optional abstract Browselnfo value.

Model : == [Link]

Link = { link :: Linkld,
count :: Int,
auto :: Bool

}

Local = { nyLink:: Linkld,

links :: [Link],

binfo :: Maybe (Browsel nfo Model)
}

Figure 12 The model data type.

All view processes are equal except for the link to which they present aview. So the
definition of a view process can be suitably defined as a function parameterized with

The GUI-fest challenges 10

the link identification. As we have discussed in Section 2.1.1., view processes are de-
fined as ViewDef values, by an initial state creation, initial action, and response func-
tion.

2.2.1 Theinitial state

Thefunctioni ni t st at e, which is parameterized with a link identification, deter-
mines the initial state of aview process. When applied to the current value of the
model data, i ni t st at e determines whether there are already views open to this
link. In that case the model data does not need to be changed. If not, then anew entry
to the links field should be added, stating that the initial count value is zero, and that
the link isinitially running in manual mode. The binfo field is Nothing, because the
proper Browselnfo structure has not been created yet.

initstate :: Linkld Mddel -> (Local,Nl)
initstate | nodel

= ({ nmyLink =1,
links = if i_exist nodel [{link=l,count=0,auto=Fal se}:
nodel],
bi nfo = Not hi ng},
Nil)
wher e

(i _exist,_) = selectLink | nodel

2.2.2 The initial actions

The initial actions of aview process are given by the functioni ni ti o (see Ap-
pendix A.2). Because theinitial actions of all view processesareequal,i nitiois
not parameterized with the link identification. The proper Browselnfo structure is put
in the local state of the view process. Each view process has one dialogue window and
onetimer (which isinitially disabled). Their definitions are straightforward. Below
we will first discuss the timer function Incr, and then the control functions that are as-
sociated with the buttons Manual, Auto, Copy, Link, Close, and Quit respectively.
(Thelibrary function seq is defined as seq [f,..f] x = f,0...0 f; x. The function seg-
P10 applies seq to the list of 10State transition functions and updates the plOState
field of its process state argument correspondingly. The function setLocalLinks re-
places the links field of the pLocal field of the process state argument with itsfirst ar-
gument.)

The timer, when enabled, should increment the counter value by one. So it up-
datesitslocal state, takes care of the proper visual feedback, and applies the abstract
Browselnfo operation changeM odel Data to change the current model data.

Incr :: (State .p) -> State .p
I ncr ps=:{pLocal ={nyLi nk, | i nks, bi nfo=Just b}}
= seq [setLocal Li nks (new ink Iinks),
seqPl O [Set W ndow wi ndow d
[Set Text Control textld (toString newcount)]],
changeModel Data b new i nk] ps

wher e
(_,me) = sel ect Li nk nyLink |inks
newcount = 1+ne. count

newink Is= map (\I->if (nyLink==l.1ink) {l&count=newcount}

) Is

2 The counter challenge 11

The manual button should increment the count value by one. So its meaning is very
similar to that of the timer. However, it should turn to manual mode if the link is cur-
rently running in auto-increment mode. So, to do this, Manual first sets the auto-in-
crement flag to False, and enables the Auto button and disables the timer. Note that
these operations have no effect in case the button and the timer are already enabled
and disabled respectively. Finally, Manual applies Incr.

Manual :: (State .p) -> State .p
Manual ps=: {pLocal ={nyLi nk, | i nks, bi nfo=Just b}}
= seq [setLocal Li nks (set Auto nyLink Fal se |inks),

enabl eAut o,
changeModel Data b (set Auto nyLi nk Fal se),
Incr] ps

enabl eAuto ps
= seqgPl O [Set W ndow wi ndowl d [Enabl eControls [autold]],
Di sabl eTimer timerld] ps

The auto button should turn the link to auto-increment mode. Therefore Auto sets the
auto-increment flag to True and enables its timer. Furthermore, the auto button itself
isdisabled. Note that the auto-increment mode is undone by pressing Manual.

Auto :: (State .p) -> State .p

Aut o ps=:{pLocal ={ nyLi nk, | i nks, bi nfo=Just b}}

= seq [setLocal Li nks (set Auto nyLink True I|inks),
seqPl O [Enabl eTimer timerld],
di sabl eAut o,
changeModel Data b (set Auto nyLink True)] ps

di sabl eAut o ps
= seqPl O [Set Wndow wi ndowl d [Di sabl eControls [autold]]] ps

Copy creates a new set of linked counter windows. It generates a new link identifica-
tion (newlinknr), and adds a new link element to the model data. Then it applies the
abstract Browselnfo operation openViewer to create the new view process.

Copy :: (State .p) -> State .p
Copy ps=:{pLocal ={1i nks, bi nfo=Just b}}
= seq [changeMbdel Data b (newi ews new i nknr),

openVi ewer b (view new i nknr)] ps
wher e
new i nknr = 1+(foldr max O (map (\x->x.link) links))
newiews | nmodel = [{link=l, count=0, aut o=Fal se}: nodel]

Link creates a new counter window that gives a new view of the value displayed by
the window in which Link has been selected. So it is sufficient to apply the abstract
Browsel nfo operation openViewer, parameterized with its link identification, to create
the new view process.

Link :: (State .p) -> State .p
Li nk ps=: {pLocal ={ nyLi nk, bi nf o=Just b}}
= openViewer b (view nyLink) ps

Close closes all windows that are linked to the counter window in which Close has
been selected. This is done by removing the entry identified by its linkid from the

The GUI-fest challenges 12

model data. Aswe will seein Section 2.2.3, the response function will then close all
further linked view processes. If the link happens to be the last link, then Close also
terminates the application (the first aternative of Close).

Close :: (State .p) -> State .p

Cl ose ps=:{pLocal ={links=[_]}} = Qit ps

Cl ose ps=:{pLocal ={myLi nk, bi nf o=Just b}}

= seq [changeMbdel Data b (renoveLi nk myLi nk),
cl oseVi ew b

seqPIO [QuitI] ,ps

Quit terminates the application. Thisis done by setting the model data to the empty
list which will cause the response functions of the view processes to terminate their
processes. It furthermore also terminates the control process by applying the abstract
Browselnfo operation cl oseMbdel Dat a.

Quit :: (State .p) -> State .p
Quit ps=:{pLocal ={ nyLi nk, bi nfo=Just b}}
= seq [changeMddel Data b (_->[]),

cl oseMbdel Data b,

seqPIO [Quit1 O] ps

2.2.3 Theresponse function

The response function r espond is the function that handles the manipulation propa-
gation of aview process whenever the model data has changed. There are three cases:

a) The model data does not contain an entry to the link anymore.
b) The count value of the link has not changed.
C) The count value of the link has changed.

In case a the view should be removed from the model data, and the view process
terminated. In case b and c, the running mode of the link should be reflected (enabling
or disabling the Auto button) and the new model data should be stored in the local
state of the view process. In case c the text field of the dialogue window should also
display the new counter value.

respond :: ((Mbdel, Model), State .p) -> State .p
respond ((_, newrodel), ps=: {pLocal ={ nyLi nk, | i nks, bi nfo=Just b}})
| not i_exi st
= segPIO [Quitl O (closeView b ps)
| ol dcount ==newcount

= psl
= segPl O [Set W ndow wi ndow d
[Set Text Control textld (toString newcount)]] psl
wher e
(i _exist,newne) = selectLink nyLi nk newrodel
newcount = newne. count
(_, ol dne) = sel ectLi nk nyLink |inks
ol dcount = ol dne. count
psl = control Change (setLocal Li nks newnpdel ps)

cont r ol Change if (autoOn ol dme newne) disabl eAuto

(if (autoOFf ol dme newre) enabl eAuto I)

2 The counter challenge 13

3 The Explode game

The specification of the Explode challenge is as follows. The Explode game challenge
concerns a program that provides a purely graphical interface to a game of Explode,
which is a game for two or more players, in which each player has an inexhaustible
supply of stones of their own distinctive colour. The game is played by placing the
stones on the vertices of afinite connected graph, according to the rules below (in
which we say avertex is ‘full’ when it holds as many stones as it has incident edges).
For this challenge, the program should support a game for arectangular board, which
dimensions can be set before playing.

Initially there are no stones on the graph. Players take it in turns to make a
move. Each move increases the number of stones on the graph by one. A player takes
a stone from their supply and places it on any vertex v not already containing stones
of another colour. If this does not make v full, the move finishes. If it does make v
full, then v ‘explodes’: each adjacent vertex is invaded by one of the stones. The
colour of any stones already in the invaded vertex turnsto that of the invaders. Any of
the invaded vertices that is now full also explodesin turn, and so on until the graph is
stable. The aim of the game for each player isto make it impossible for their oppo-
nents to move. A winning move for player P is either (a) one that causes an endless
sequence of explosions, or (b) one that results in a stable graph in which every vertex
contains at least one stone of P's colour (and hence no other stones).

The Explode challenge can be written as a simple single interactive process
application in the Clean 1/O library. So the explanation of its code gives a good ex-
ample of one way to write such an application.

In the Clean Event I/O system, interactive processes are state transition sys-
tems. Their state, the process state, is arecord consisting of a private state (completely
local to the process), a public state (shared between a group of processes), afile sys-
tem environment (shared between all processes), and the |OState environment (par-
tially local to the process, and containing amongst other things its Graphical User
Interface elements). Because the challenge is a single process application, we need to
consider the private state only. The private (and public) state of an interactive process
represent the ‘logical’ state the processisin. The crucial component of the logical
state of the Explode process is the state of the board. For this reason, this component
is defined as an abstract data type (see Appendix B.1). Itsimplementation is straight-
forward.

The user interface is defined in a separate module (see Appendix B.2). In the
design of the program we need consider the following topics:

a) What isthe logical state of the Explode process?

b) How isthe board graphically represented to the user?

C) How can infinite sequences of explosions be handled without making the pro-
gram mute to user interrupts?

These subjects are handled in the following sub sections.

3.1 Thelogical state

The logical state of the Explode process is arecord type Explode consisting of the
current state of the board, the number of playersthat are currently playing, who'sturn

The GUI-fest challenges 14

it isto play, and a colour table used to identify playersvisually. Theinitial value of
the Explode record consists of aboard of size 5x5, 2 players, starting with player 1,
and the basic colours provided by the I/O library (so the maximum number of players
iseight).

Expl ode = { board ;. Board,
nrplayers :: Int,
turn oo Int,
col ours ;. Col ourTabl e }
Col our Tabl e : == [Col our]

i ni t Expl ode = { board = initBoard,
nrplayers = initPlayers,
turn =1,
col ours = initCol ours }

wher e

i ni t Board = justis (newRectBoard initSize)
initSize = (initCols,initRows)

initCols =5

i ni t Rows =5

initPlayers = 2

i nitCol ours = [Bl ackCol our, Wi t eCol our, RedCol our,

G eenCol our, Bl ueCol our, Yel | onCol our,
CyanCol our, Magent aCol our]

3.2 The user interface of the board

The program presents a window, showing the state of the board, the players, and an
indication of who is currently playing. Figure 13 gives a snapshot of the window. This
window is opened by the function GpenExpl odeW ndow, given in Figure 14. The
window is a dialogue window, so the size of the window is determined completely by
the controls it contains. There are two top-level compound controls, both centered
below each other. The first compound control contains a text control with the text
“Player:”, and a custom control defined by the function PlayerControl. The second
compound control contains alist of custom button controls, defined by the function
ExplodeControl. One ExplodeControl corresponds exactly with one field of the board.
Each ExplodeControl is therefore parameterized with the element of the board it rep-
resents. The window itself isidentified by the identification value ExplodeWindowld,
and the compound control displaying the board is identified by ExplodeDisplayld.
These values are defined globally.

3 The Explode game 15

=— Explode

Figure 13 The Explode game running with two players, indicating who's playing.

OpenExpl odeW ndow :: (State .p) -> State .p
OpenExpl odeW ndow ps=: { pLocal ={ board, nrpl ayers, turn, col ours}}
= seqPl O [OpenW ndow expl odeDef] ps
wher e
expl odeDef
= Di al ogW ndow " Expl ode"
[ConpoundCont r ol

[Text Contr ol "Player:" [],
Pl ayer Control nrplayers turn col ours]
(_ _->11) [Control Pos (Center,(0,0))],

ConpoundCont r ol
[Expl odeControl board col ours Expl odeW ndowi d
(col, row
\\ rows-[1..initRows],
col<-[1..initCols]]
(_ size -> background [Set PenCol our backCol our,
Fill Rectangle ((0,0),size),
Set PenCol our Bl ackCol our 1)
[Control Pos (Center, (0, 10)),
Controlld Expl odeDi splayld]
]
[Wndowl d Expl odeW ndow d,
W ndowl t enSpace (hmm 2.5, vnm 2.5),
W ndowUpdat e backgr ound]
(initCols,initRows) = dinension board

Figure 14 The definition of the Explode window. PlayerControl and Explode-
Control are program defined controls. Observe the use of a list com-
prehension to summarize the ExplodeControls concisely.

An ExplodeControl is a CustomButtonControl. Its definition is given below. The two
most important aspects of its definition are the function ExplodelLook that defines the
way it looks, and the abstract event handler placeStone that should be evaluated in
case the control has actually been selected.

The GUI-fest challenges 16

Expl odeControl :: Board Col ourTable Id Position
-> Control Def (State .p)
Expl odeControl board col ours wi d position=:(col,row
= Cust onBut t onContr o
(Expl odeLook position board col ours)
(if (col>1) control Atts
[Control Pos (Left,(0,0)):control Atts])
wher e
nyi d
control Atts

Expl odel d position (snd (dimension board))
[Controlld nyi d
Control Function (placeStone position)]

The function Explodel ook is defined as aglobal function. The reason for thisisthat it
IS now easy to define a function that compares two boards, and performs the visual
feedback of the changes between the two boards:

showchanges :: |d Board Board (State .p) -> State .p
showchanges wi d ol dboard newboard ps=:{pLocal ={board, col ours}}
= seqPl O [Set Wndow wid (map | ook differences)] ps
wher e
di fferences
| ook (pos,)

conpare ol dboard newboard

Set Cont r ol Look
(Expl odel d pos (snd (dinmension board)))
(Expl odeLook pos board col ours)

The function compare yields alist of positions in which the two argument boards have
adifferent content. ExplodelL ook is mapped over this list, parameterized properly
with the position that should be updated visually. These updates are process state tran-
sition functions. Thislist of functions can suitably be sequenced over the process state
argument of showchanges.

The function placeStone, parameterized with the position of the board element
that it represents, places a stone on that position. Its definition is as follows:

pl aceStone :: Position (State .p) -> State .p
pl aceStone position=:(col,row) ps=:{pLocal ={board,turn}}
| | egal Move nove board

= seq [seqPLoc [\I->{| & board=boardl}],
showchanges wi d board boardl
seqgPl O [Set W ndow Expl odeW ndow d
[D sabl eControls [Expl odeDisplayld]],
Enabl eTi mer Expl osi onsl d,

Di sabl eMenul t ens [Next Pl ayerld],
Enabl eMenultens [Haltld]]] ps
= seqPl O [Beep] ps

wher e
nove = (turn, position)
boardl = addStone nove board

If the moveis not legal, then placeStone simply emits a Beep sound and the move had
no further effect. If the move islegal then placeStone sets the local state of the Ex-
plode process to the new board obtained by adding a stone to the board. It provides
the proper visual feedback using the function showchanges discussed above. Then it
disables the compound control that contains all ExplodeControls, because other play-
ers have to wait to play until a stable situation has been reached. The computation of

3 The Explode game 17

this stable situation is done by atimer, explained in the next section, and so the timer
isenabled. To be able to interrupt this computation the halt command is enabled.

3.3 Interruptable infinite explosions

Placing a stone on afield that thereby becomes full causes an explosion as explained
in Section 3. In general it is possible that such an explosion causes a sequence of ex-
plosions. This sequence can be infinite. In the Clean Event 1/0 system, abstract event
handlers are evaluated atomically. So, if one would evaluate the full sequence of ex-
plosions triggered by a move within one abstract event handler, then the evaluation of
this function may possible not terminate and lock the program. One way to circum-
vent this problem is to have the abstract event handler analyse whether this sequence
isinfinite. However, also in this case, if the sequence happens to be very long, the
program can not be interrupted by the user.

The solution we have taken is to use a timer that evaluates the moves. This
timer is opened during the initial actions of the Explode process. Initially, the timer is
disabled. In the previous sub section we saw that whenever alegal move has been
made, the timer is enabled. In that case the timer’s abstract event handler, doAnEx-
plosion, is being evaluated.

doAnExplosion :: NrOflntervals (State .p) -> State .p
doAnExpl osi on _ ps=:{pLocal ={board}}
| stable board
= seqPl O [Di sabl eTi ner Expl osi onsl d,
Enabl eMenul t ems [Next Pl ayerld]] ps
| not hi ng newboard
= seq [seqPl O [Di sabl eTi ner Expl osi onsl d,
Enabl eMenul t emrs [Next Pl ayerld]],
Set W ndow Expl odeW ndow d
[Enabl eControl s [Expl odeDi splayld]]],
next pl ayer] ps
= seq [seqPLoc [\l ->{] & board=boardl}],
showchanges Expl odeW ndowi d board boardl] ps

wher e
newboard = expl ode board
boar d1l = justis newboard

For an arbitrary board there are three alternatives doAnExpl osi on hasto consider:

a) The board is stable: all fields contain stones of the same player.
b) The board contains no explosive fields.
C) The board contains explosive fields.

Case aisawinning situation for the player who made the last move. In this case the
timer can be disabled, and the command to select a next player can be enabled. How-
ever, because thisisafinal situation for this game, the ExplodeControls remain dis-
abled. The only sensible choice for the playersis either to quit the application or start
anew game.

In case b the sequence of explosions was finite, and so the timer can also be
disabled, and the command to select a next player can be enabled. Because in this case
we want to continue playing, the ExplodeControls are also enabled and the turn is
given to the next player.

In case c there are still fields that can explode. The function explode detonates
each of these fields once. The new board is placed in the local state of the Explode

The GUI-fest challenges 18

process. The visual feedback of the new state of the board is displayed by the function
showchanges.

So each time the timer is evaluated it calculates one step in the sequence of
explosions that might be caused by a move. Inbetween each step thereis asmall delay
between subsequent timer evaluations to allow the program to respond to other
events, such as interrupting the computation of explosions.

4 Discussion and conclusions

In the counter challenge we have first defined a generally applicable framework for a
browser/editor on an arbitrary kind of model data. From the functional language
‘goodies’ we have applied are polymorphism, algebraic and abstract data types, and
higher-order functions. The ‘goodies’ of the Event I/O system we have applied are the
use of interactive processes to improve the module structure, polymorphic message
passing, and the dynamic creation of devices, and receiversin particular. The Explode
challenge being a single process application, did not depend on these extended fea-
tures of the Event 1/O system. However, it provided a good test-case for the suitability
of the new definitions of controls and windows.

References

Achten, P.M., van Groningen JH.G., and Plasmeijer, M.J. 1993.
High Level Specification of I/O in Functional Languages. In Launchbury, J.,
Sansom, P. eds., Proceedings Glasgow Workshop on Functional Program-
ming, Ayr, Scotland, 6-8 July 1992. Workshops in Computing, Springer-V er-
lag, Berlin, 1993, pp. 1-17.

Achten, P.M. and Plasmeijer, M.J. 1994.
A Framework for Deterministically Interleaved Interactive Programs in the
Functional Programming Language Clean. In Bakker, E. ed. Proceedings
Computing Science in the Netherlands, CSN’ 94, Jaarbeurs Utrecht, The
Netherlands, November 21-22, Stichting Mathematisch Centrum, Amsterdam,
1994, pp. 30-41.

Achten, P.M. and Plasmeijer, M.J. 1995.
The ins and outs of Clean 1/O. In Journal of Functional Programming 5(1) -
January 1995, Cambridge University Press, pp. 81-110.

Brus, T., Eekelen, M.C.J.D. van, Leer, M.O. van, and Plasmeijer, M.J. 1987.
Clean: A Language for Functional Graph Rewriting. In Kahn. G. ed. Proceed-
ings of the Third International Conference on Functional Programming Lan-
guages and Computer Architecture, Portland, Oregon, USA, LNCS 274,
Springer-Verlag, pp. 364-384.

Noble, R. and Runciman, C. 1995.
Gadgets: Lazy Functional Components for Graphical User Interfaces. To ap-
pear in Proceedings of Seventh International Symposium on Programming
Languages, |mplementations, Logics and Programs, The Netherlands, 19-23
September, 1995, LNCS ??, Springer-Verlag, pp. ?7?

References 19

Ndcker, E.G.J.M.H., Smetsers, J.EW., Eekelen, M.C.J.D. van, and Plasmeijer, M.J.
1991.
Concurrent Clean. In Aarts, E.H.L., Leeuwen, J. van, Rem, M., eds., Proceed-
ings of Parallel Architectures and Languages Europe, June, Eindhoven, The
Netherlands. LNCS 506, Springer-Verlag, pp. 202-219.

Plasmeijer, M.J. and van Eekelen, M.C.J.D. 1993.
Functional Programming and Parallel Graph Rewriting. Addison-Wesley
Publishing Company 1993.

Appendices

A Counter challenge

A.1 The browser/editor framework

definition nodul e browser

i mport StdEventl O StdReceiver

Browser m
= { bViews :: [ViewDef™ Void Void nj,
bModel Data :: m
}
Vi ewDef * E.l Epm
= H dden (ViewDef | p m
Vi ewDef Il pm
= { vRespond :: RespondF m(PState | p),
vinitState :: InitStateF | p m
vinitl O o Initl OF Il pm
}
RespondF mps :== ((mm, ps) -> ps
InitStateF | p m == m -> (1, p)
Initl OF Il pm == (Browselnfo m) ->1InitlOI p

openBrowser creates a browsing program, consisting of one control process, and an arbitrary number of view pro-
Cesses.

openBr owser c:(Browser m *World -> *Wrld

Browselnfo and its operations are needed for viewers to change the model data, create new viewers, and close their
administration.

Browsel nfo m
changeMbdel Dat a: : (Browselnfo n) (m>n) (PState .| .p) -> PState .| .p

cl oseMbdel Data :: (Browselnfo m (PState .1 .p) -> PState .1 .p
openVi ewer ::(Browselnfo m (ViewDef® Void Void nm

The GUI-fest challenges 20

(PState .1 .p) -> PState .1 .p
cl oseVi ew ::(Browselnfo m (PState .1 .p) -> PState .1 .p
changeModel Data applies the action to the model data (asynchronously). The pair of old model data and
new model datais then applied to all vRespond functions of the other view processes.
closeModelData closes the control process. This action makes sense only at termination of the whole pro-
gram.
openViewer spawns anew view process that participatesin all viewing actions of the program.
closeView removes the view process from the program administration. As aresult the view process

is excluded from further updates of the model data. Note that the view processis not
terminated by this function! Thisisthe responsibility of the processitself. Note also that
view processes can be terminated without applying closeView.

i npl ement ati on nodul e browser

i nport StdBool, StdList, StdFunc
i nport StdEvent| O StdReceiver

The exported types and functions of browsers.

Browser m
= { bViews :: [ViewDef™ Void Void ni,
bMbdel Data :: m
}

ViewDef~ E.l E.p m
= H dden (ViewDef | p m

Vi ewDef Il pm
= { vRespond . RespondF m(PState | p),

vinitState :: InitStateF | p m

vinitl O o Initl OF Il pm

}

RespondF mps :== ((mm, ps) -> ps
InitStateF | p m == m -> (1, p)
Initl OF Il pm ;== (Browselnfo m ->1nitlOI p

openBrowser creates a browsing program, consisting of one control process, and an arbitrary number of view pro-
Cesses.

openBrowser :: (Browser m *World -> *Wrld
openBrowser browser world
= Qpenl O { ioDeflnit =[initControl GU browser],
i oDef About =" Br owse" }
(initLocal browser.bMdel Data, 0)
wor | d

Browselnfo and its operations are needed for viewers to change the model data, create new viewers, and close their
administration.

Browselnfo m
= { bView o Viewwd m

A Counter challenge 21

bControl :: Controlld m
}

changeMbdel Data :: (Browselnfo n) (m>n) (PState .l .p) -> PState .| .p
changeModel Data bl nfo action ps
= segPl O [ASyncSend bl nfo. bControl (Action blnfo.bView action)] ps

cl oseMbdel Data :: (Browselnfo m) (PState .| .p) -> PState .| .p
cl oseMbdel Data bl nfo ps
= seqPl O [ASyncSend bl nfo.bControl Qit] ps

openViewer :: (Browselnfo m (ViewDef® Void Void n) (PState .1 .p) -> PState .l .p
openVi ewer blnfo viewDef ps
= segPl O [ASyncSend bl nfo. bControl (Newi ew viewDef)] ps

closeView :: (Browselnfo m (PState .l .p) -> PState .l .p

cl oseVi ew bl nfo ps
= segPl O [ASyncSend bl nfo. bControl (C oseView blnfo.bView] ps

The types and functions of aview process:

Viewm m= RespondTo (m m
Viewld m:== Rd (ViewM m

The receiver viewer function:

viewR :: (ViewDef .1 .pm (Viewmm (PState .| .p) -> PState .|l .p
vi ewR vi ewDef (RespondTo nodel change) ps = vi ewDef.vRespond (nodel change, ps)

The types and functions of the control process:

ControlM m= Action (Viewld m (m>m
| NewVi ew (ViewDef*™ Void Void m
| Newiewd (Viewmd m
| CloseView (Viemd m
[Qit
Controlld m:== Rid (Control M m
Local C m = { views :: [Viemd n],
nodel oom
nyself :: Maybe (Controlld m
}
Maybe X = Not hi ng | Just x
*CSt at e m:== PState (LocalC nm) Int
Theinitial local state:
initLocal :: m-> LocalC m
initLocal initMbdelData = { views =[],
nodel = initMdel Dat a,
nysel f = Nothing }

The GUI-fest challenges 22

Theinitial actions:

initControlGJ :: (Browser m (CState m) -> CState m
initControl QU browser ps=:{pLocal ={nodel, views, nysel f}}
= seq (map openVi ew browser. bVi ews) psl

wher e
(me,iol) = OpenReceiver rDef ps.plCsState
r Def = Recei ver [ReceiverFunction control R]
psl = { ps & pLocal ={ nysel f = Just ne,
nodel = nodel ,
Vi ews = views 1},

pl CState = iol

The receiver control function:

controlR :: (ControlMm (CState m -> CState m
control R (Action sender act) ps=:{pLocal}
= {ps & pLocal = {pLocal & nodel =newibdel },
pl CSt at e= broadcast ot hers (RespondTo (nodel, newibdel)) ps. pl CSt at e}

wher e
newibdel = act plLocal . nodel
ot hers = filter (not o eqRId sender) pLocal.views

control R (Newi ew vi ewDef) ps
= openVi ew vi ewDef ps
control R (Newi ewi d sender) ps=:{pLocal}

= {ps & pLocal = {pLocal & views=[sender: pLocal.views]}}
control R (Cl oseVi ew sender) ps=:{plLocal}
= {ps & pLocal = {pLocal & views=filter (not o egRI d sender) pLocal.views}}

control R Quit ps
= segPIO [Quitl g ps

Creating anew view process:

openView :: (ViewDef® Void Void m) (CState m) -> CState m
openVi ew (Hi dden vi ewDef) ps=:{pLocal ={npdel, nysel f=Just ne}}
= seqPl O [Newm O i oDef initState] ps
wher e
i oDef { ioDeflnit = [initview me viewDef],
i oDef About = " Browse" }
initState = viewDef.vlnitState nodel

initview:(Controlld n) (Viewbef .1 .p n) (PState .1 .p) -> PState .l .p
initview controlld viewbef ps
= seq initlO {ps & pl Cst at e=i 02}

wher e
(view d,iol) = OpenReceiver rDef ps.plCState
r Def = Receiver [ReceiverFunction (viewR viewDef)]
i 02 = ASyncSend controlld (Newiewd viewd) iol

br owsel nfo ={ bView = viewd,
bControl = control 1d }
initloO = viewDef.vlnitl O browsel nfo

A Counter challenge

Asynchronous broadcast:

broadcast :: [RId ni m(ICState .| .p) -> 1COState .| .p
broadcast [id:ids] nmessage ioState

= br oadcast ids nessage (ASyncSend i d nmessage i oState)
broadcast _ _ioState = ioState

A.2 The counter as a special case

nodul e counter

i mport StdEnv, StdW ndow, StdControl, StdPicture, StdTimer
i mport browser

Model : == [Link]

Li nk = { link ;. Linkld,
count :: Int,
aut o :: Bool

}

Local = { nyLink :: Linkld,
links :: [Link],
binfo :: Mybe (Browsel nfo Mdel)

}

Li nkl d == Int

Maybe X = Nothing | Just X

Ni | = Nl

*State public :== PState Local public

Start :: *World -> *World
Start world = openBrowser browser world

wher e
br owser = { bViews =[vi ew i ni tLinknr],
bModel Dat a=[{| i nk=i ni t Li nknr, count =0, aut o=Fal se}]}
view | = Hi dden { vRespond = respond,
vinitState= initstate |,
vinitlO = initio }
initLinknr = 0

initstate :: Linkld Mdel -> (Local,Nl)
initstate | nodel
= ({ myLink I,
I'i nks if i_exist nodel [{link=l,count=0, auto=Fal se}: nodel],
bi nfo = Nothing},
Nil)
wher e
(i_exist,_) = selectLink | nodel

initio:: (Browselnfo Mbdel) -> InitlO Local .p
initiob =[initlO b]
wher e

initlO b ps=: {pLocal ={nyLink, i nks}}

The GUI-fest challenges 24

= seqgPl O [OpenW ndow wDef , QpenTi ner t Def]
{ps & pLocal ={ps. pLocal & bi nfo=Just b}}
wher e
t Def = Ti mer TicksPerSecond [Tinerld timerld,
Ti nmer Sel ect Unabl e,
Ti mer Function (_ ps->lncr ps)]
wDef = Di al ogW ndow (" Count er" +++toString nyLi nk) manual I d

[Text Control (toString nme.count) [Controlld textld,
Control Si ze (150, 20)
But t onControl "Manual " [Control Function Manual ,
Control Id manual | d,
left],
But t onControl "Auto" [Control Function Aut o,
Control Id aut ol d,
Control Sel ect St at e aut oAbl e
But t onControl " Copy" [Control Function Copy,
| eft
Butt onControl "Link" [Control Function Li nk
ButtonControl "C ose" [Control Function C ose,
| eft
ButtonControl "Quit" [Control Function Quit

]
[W ndow d wi ndowl d,
W ndowCOk manual | d

]

| eft = Control Pos (Left,(0,0))
manual Id = 3

(_,me) = sel ectLi nk nyLink |inks
autoAble = if me.auto Unable Able

Incr :: (State .p) -> State .p
I ncr ps=:{pLocal ={nyLi nk, | i nks, bi nf o=Just b}}
= seq [setLocal Links (newink |inks),
seqPl O [Set W ndow wi ndow d
[Set Text Control textld (toString newcount)]],
changeModel Data b new i nk] ps

wher e
(_,me) = sel ectLi nk nyLink |inks
newcount = l+ne. count
newink Is= map (\l->if (nyLink==l.link) {lI & count=newcount} 1|)
Manual :: (State .p) -> State .p
Manual ps=: {pLocal ={nyLi nk, | i nks, bi nfo=Just b}}
= seq [setLocal Links (set Auto nyLink Fal se |inks),

enabl eAut o,
changeModel Data b (set Auto nyLi nk Fal se),
Incr] ps

Auto :: (State .p) -> State .p

Aut o ps=: {pLocal ={nyLi nk, | i nks, bi nfo=Just b}}

= seq [setlLocal Links (setAuto nyLink True I|inks),
seqgPl O [Enabl eTimer tinerld],
di sabl eAut o,
changeModel Data b (set Auto nyLink True)] ps

Copy :: (State .p) -> State .p
Copy ps=:{pLocal ={1i nks, bi nfo=Just b}}
= seq [changeMbdel Data b (newi ews new i nknr),

A Counter challenge

25

timerld

wi ndowl d
[textld,

respond ::

openVi ewer
wher e

b (view newlinknr)] ps

new i nknr = 1+(foldr (\x y->max x y) 0 (map (\x->x.link) links))
newiews | nmodel = [{link=l, count =0, aut o=Fal se}: nodel]

Link :: (State .p) -> State .p

Li nk ps=:{pLocal ={nyLi nk, bi nfo=Just b}} = openVi ewner

Close :: (State .p) -> State .p

Cl ose ps=:{pLocal ={links=[_]}} = Qit ps

Cl ose ps=:{pLocal ={nyLi nk, bi nf o=Just b}}

= seq [changeMdel Data b (renmoveli nk nyLi nk),
cl oseVi ew b

seqPl O [Quit1a] ps

Qit :: (State .p) -> State .p
Quit ps=:{pLocal ={nmyLi nk, bi nfo=Just b}}
= seq [changeMbdel Data b (\ _->[]),

cl oseMbdel Data b,

seqPl O [Quitl] ps
=1
=1
autold:] =11..]

((Model , Model), State .p) -> State .p

b (view nyLink) ps

respond ((_, newnodel), ps=: {pLocal ={nyLi nk, | i nks, bi nfo=Just b}})

| not

psi

i _exist

segPIO [Quitl O (closeView b ps)
ol dcount ==newcount

segPl O [Set W ndow wi ndowi d

[Set Text Control textld (toString newcount)]] psl

wher e
(i _exist, newre) = sel ect Li nk nyLi nk newnodel
newcount = newne. count
(_, ol dne) = sel ectLi nk nyLink Iinks
ol dcount = ol dne. count
psl = control Change (setLocal Li nks newnpdel ps)

cont r ol Change

enabl eAuto ps
di sabl eAuto ps = seq
sel ectLink ::

sel ectLink i
link = (True,)

sel ectLink i

renoveli nk ::
renoveli nk i
.link = 1s

renoveli nk i

if (autoOn ol dne newne) disabl eAuto

(if (autoOFf ol dne newre) enabl eAuto |)

seqPl O [Set W ndow
Di sabl eTi ner tinerld] ps
[Set W ndow

Li nkld [Link] -> (Bool, Link)
[1:1s]

= selectLink i Is
(Fal se, {1ink=0, count =0, aut o=Fal se})

—
—
1

Linkld [Link] -> [Link]
[1:1s]

[1:removeLink i 1s]

[]

—
—
1

wi ndowl d [Enabl eControls [autold]],

wi ndowl d [Di sabl eControls [autold]] ps

The GUI-fest challenges 26

setAuto :: Linkld Bool [Link] -> [Link]
setAuto i a [I:1s]
| i == 1l.link = [{l & auto=a}:|Is]

= [l:setAuto i a Is]

[]

setAuto i a []

autoOn :: Link Link -> Bool
autoOn old new = not old.auto && new. auto

autoOf :: Link Link -> Bool
autoO'f old new = old.auto & not new. auto

setLocal Links :: [Link] (State .p) -> State .p
setLocal Links |'s ps = {ps & pLocal ={ps. pLocal & links=ls}}

B The Explode game

B.1 The board data structure

definition nodul e board

from St dl OConmon i nport Size

Boar d
Pl ayer == Int
Position :== (Int,Int) /I (row,col) of board.
/I Rows range from left to right (1-width),
/I Colsrange from top to bottom (1-height).
Move :== (Player, Position)
Content :== Maybe (Pl ayer, Int) /I'1f stones>0 then (Just (player,stones)) otherwise Nothing.
Maybe x = Just x | Nothing

convenient operations on Maybe:

j ust ;. (Maybe x) -> Bool /l'just (Just) =True; just Nothing =Fase
not hing :: (Maybe x) -> Bool /I nothing Nothing = True; nothing (Just () =Fase
justis :: (Maybe x) -> x /ljustis(Just X) =Xx; justis Nothing = undef

creation of boards:

newRect Board:: Size -> Maybe Board /I Create a new rectangular, empty board of size (w,h).
/1'1f (w<3 || h<3) then (newRectBoard @1) = Nothing.

checks on boards:

stabl e .. Board -> Bool /I All positions are filled with stone of same player

| egal Move :: Move Board -> Bool /I A move (player,pos) is legal if:
I posisinrange &&

B The Explode game 27

I content pos @2=Nothing ||
I content pos @2=Just (player,_)

generating new boards:

expl ode :: Board -> Maybe Board // Explodeapositionif available.

/' nothing exploded then (explode @1) = Nothing.

addSt one:: Move Board -> Board I/ Place the stone on the given position.

access on boards:

/I'1f (not (legaMove @1 @2)) then (addStone @1 @2)=@2.

di mensi on :: Board -> Size /I The size of the board.
nmaxboar dl oad: : Board -> Int /I The maximum of al maximal possible stone loads.
cont ent 1. Position Board -> Content // Thecontent of @2 at @1.

/I'1f @1 out of range then (content @1 @2) = Nothing.
conpare :: Board Board -> [(Position, Content)]

/I The differences between @1 and @2.
//'1f dimension @1<>dimension @2: result is[].

i npl ement ati on nodul e board

i nport St dEnv, StdLi st
from Stdl OConmon inport Size

Board
Pl ayer

Posi ti on

Move
Cont ent
Maybe x

== [[Content]] /I Board = [column], column = [row].
== Int
== (Int,Int) /I (row,col) of board.

/l Rows range from left to right (1-width),

/I Colsrange from top to bottom (1-height).
:== (Pl ayer, Position)
: == Maybe (Pl ayer, Int) /I 1f stones>0 then (Just (player,stones)) else Nothing.
= Just x | Nothing

convenient operations on Maybe:

j ust ;. (Maybe x) -> Bool
j ust (Just) = True
j ust = Fal se

nothing :: (Maybe x) -> Bool

not hi ng Not hi ng = True
not hing _ = Fal se
justis :: (Maybe x) -> x
justis (Just x) =X

convenient operations on where (corner,interior,side,board) a position is:

The GUI-fest challenges 28

cor ner 1. Size Position -> Bool
corner (w, h) (x,y) = x==1&&y==1 || x==1&&y==h || Xx==wW&&y==1 || X==w&&y==h

interior :: Size Position -> Bool
interior (wh) (x,y) = between 2 (w1) x & between 2 (h-1) y

edge :: Size Position -> Bool
edge si ze pos = not (interior size pos || corner size pos)
i nboar d :: Size Position -> Bool

inboard (wh) (x,y) = between 1 w x & between 1 h vy

bet ween o Int Int Int -> Bool
bet ween mn max x = m n<=x && x<=max
maxstones :: Size Position -> Int

naxst ones si ze pos

| cor ner size pos = 2

| interior size pos = 4
=3

creation of boards:

/* newRect Boar d:
Create a new rectangul ar, enpty board of size (wh).
If (w3 || h<3) then (newRectBoard @) = Not hing.

*/

newRect Board :: Size -> Maybe Board

newRect Board (w, h)

| w<3 || h<3 = Nothing

Just (repeatn w (repeatn h enptyContent))

wher e
enpt yCont ent

Not hi ng

checks on boards:

/* stable:
Al'l positions are filled with stone of same player
*/
stable :: Board -> Bool
stabl e board
| nothing ¢ = Fal se
= all (\row>all (posstable p) row) board

wher e
c = content (1,1) board
(p,) = justis ¢

posstable p (Just (p°,_)) = p==p
posstable p _ Fal se

/* expl osive:

Al'l elenments that can expl ode.
*/
expl osive :: Board -> [Position]

B The Explode game

29

expl osive board = flatten (map (expl osivecol (dinension board)) (zip2 [1..] board))

wher e
expl osivecol :: Size (Int,[Content]) -> [Position]

expl osi vecol size (colnr,col) = explosivefields size (colnr,1) co

expl osivefields :: Size Position [Content] -> [Position]
expl osi vefields size position=:(col,row [c:cs]

| canexpl ode size position ¢ = [position:positions]
positions

wher e
positions

canexpl ode size pos (Just (_, stones))
canexplode _ _ _
expl osivefields _ _ _ =[]

Fal se

/* | egal Move
The nove (pl ayer,pos) is legal if:
pos is in range &&

content pos @ = Nothing || content pos @ = Just (player,_)

*/
| egal Move :: Mve Board -> Boo
| egal Move (pl ayer, pos) board
| i nboard size pos = nothing ¢ || player==p
= Fal se
wher e
size = dinension board
c = content pos board
(p,_) =justis ¢

generating new boards:

/* expl ode:

Expl ode all positions.

If (explosive @=[]) then (explode @) = Nothing
*/
expl ode :: Board -> Maybe Board
expl ode board
| expl s==[] = Not hi ng

= Just (seq (clear++fill) board)

wher e
expl s = expl osi ve board
(player,_) = justis (content (hd expls) board)
cl ear = map (\pos->changeContent pos (_->Nothing)) expls

fill

addSt one (pl ayer, (col
addSt one (pl ayer, (col

expl osi vefields size (col,rowl) cs

st ones==nmaxst ones si ze pos

flatten (map (\(col, row ->[addStone (player,(col-1,row)),

row1)),
rowtl)),

addSt one (player, (col+1,row))]) expls)

/* addSt one:

Pl ace the stone of the player on the given position, and set the

position to be owned by this player.
If position is not in range then (addStone @ @) = @.
*/

The GUI-fest challenges 30

addStone :: Myve Board -> Board
addSt one (pl ayer, pos) board

= changeContent pos (addStone” (nmaxstones size pos) player) board
wher e

size = di mensi on board

addStone®™ :: Int Player Content -> Content
addSt one® nmax pl ayer Nothing = Just (player,1)
addStone® max player (Just (_,stones)) = Just (player,mn (stones+1l) nax)

/* changeContent:
If position is not in range then changeContent @ @ @ = @.
*
/
changeContent :: Position (Content->Content) Board -> Board
changeCont ent pos=:(col,row) f board
| i nboard size pos cbefore++[rbefore++[f c]++rafter]++cafter
boar d

wher e
si ze di nensi on board
(cbefore,[colum:cafter]) = split (col-1) board

(rbefore,[c :rafter]) = split (row1) colum
split :: Int [x] -> ([x],[x])
split 0 xs = ([1,xs)
split i [x:xs] = ([x:xs1], xs2)
wher e
(xs1, xs2) =split (i-1) xs

access on boards:

/* dinmension:
The size of the board.
*/
di rension :: Board -> Size
di nension board=:[col:_] = (#board, #col)

/* maxboar dl oad:
The maxi mum of all maxi nal possi bl e stone | oads.

*/
maxboardl oad :: Board -> Int
nmaxboardl cad _ = 4

/* content:
The content of @ at @l.
If @ out of range then (content @ @) = Nothing
*/
content :: Position Board -> Content
content pos=:(col,row board
| i nboard (di mensi on board) pos

board! (col -1)! (row 1)
Not hi ng

B The Explode game 31

/* conpare:
The di fferences between @ and @.
If dinmension @ <> dinension @ then conpare @ @ = [].
*/
conpare :: Board Board -> [(Position, Content)]
conpare boardl board2
| x1==x2 && yl==y2

conparecols 1 (zip2 boardl board2)
[]

wher e
(x1,y1) = di mensi on boardl
(x2,y2) = di mensi on board2
conparecols :: Int [([Content],[Content])] -> [(Position, Content)]

conparecol s col [zipcol:zipcols]
= conpar epos (col,1) zipcol ++conparecols (col +1) zipcols
wher e
conparepos :: Position ([Content],[Content]) -> [(Position, Content)]
conpar epos position=:(col,row) ([cl:csl],[c2:cs2])
| cl==c2 = conpar epos (col,rowtl) (csl,cs2)
= [(position,c2):conparepos (col,rowtl) (csi,cs2)]
conpar epos _ [1
conparecols _ []

[

[a—

i nstance == (Maybe x) | Eq x

(==) :: !'(Maybe x) !(Maybe x) -> Bool | Eq x
(==) Not hing Not hing = True

(==) (Just x1) (Just x2) = x1==x2

(==) _ _ Fal se

B.2 The user interface

nodul e Expl ode
i mport St dEnv
i mport StdEvent! O, StdControl, StdWndow, StdMenu, StdTiner

i mport StdPicture, StdFont, StdlCState, StdSystem
i mport board

The major type definitions of the Explode game:

Expl ode = { board ;. Board, // The board to play on
nrplayers :: Int, // The nr. of players (2-#colours)
turn ooInt, /l Who is playing
col ours 1 Col our Tabl e // The available colours (#colours>=2)

}

Col our Tabl e :== [Col our]

*State public :== PState Expl ode public

Ni | = Nl

Starting the Explode game:

Start :: *World -> *World
Start world

The GUI-fest challenges 32

= Qpenl O {ioDeflnit=initlQ i oDef About ="Expl ode"} (initExplode,Nl) world
wher e

i ni t Expl ode = { board = initBoard,
nrplayers = initPl ayers,
turn =1,
col ours = initCol ours }

wher e

i ni t Board = justis (newRectBoard initSize)

initSize = (initCols,initRows)

initCols =5

i ni t Rows =5

initPlayers = 2

i ni tColours = [Bl ackCol our, Wi t eCol our, RedCol our, GreenCol our,

Bl ueCol our, Yel | owCol our, CyanCol our, Magent aCol our]

initlO = [OpenExpl odeW ndow, seqPl O [OpenMenu O nenuDef, QpenTiner timerDef]]

nenuDef = Menu " Expl ode"
[Menultem "New. .." [MenuFunction new,
MenuShor t Key 'n' 1,
Menul t em " Next " [Menul d Next Pl ayer | d,
MenuFuncti on next pl ayer 1,
Menultem "Hal t" [Menul d Hal t1d,
MenuShor t Key LY
MenuFuncti on hal t,
MenuSel ect St at e Unabl e 1,
Menultem "Quit" [MenuShor t Key 'q',
MenuFuncti on (segqPIO[QuitIO)]1]
[]
wher e

halt :: (State .p) -> State .p
halt ps = seqPl O [Di sabl eTi mer Expl osi onsld, DisableMenultens [Haltld]] ps

new :: (State .p) -> State .p
new ps=: { pLocal ={board, nrpl ayers, col ours}}

= seqPl O [Di sabl eTi mer Expl osi onsld, OpenW ndow newganmeDef] ps
wher e

newgarneDef

= Di al ogW ndow " New Gane"

[Edi t Control (toString nrplayers) 100 1 [Controlld nrid],
Text Contr ol ("nr.of players (2.."+++(toString nmaxpl ayers) +++")")

[1.
Edi t Contr ol (toString w) 100 1 [Controlld wid, left],

Text Contr ol "width (3..)" [1,
Edi t Contr ol (toString h) 100 1 [Controlld hid, left],
Text Cont r ol "height (3..)" [1,
But t onControl "Cancel" [Control Functi on
(cancel NewGanel d),
left],
Butt onControl "Ck" [Control Id oki d,

Control Function ok 1]]
[W ndowl d NewGanel d,

W ndowCk oki d]
| eft = Control Pos (Left, (0,0))
(w, h) = di nensi on board
nmaxpl ayers = #col ours

[okid, nrid,wid, hid:] =[1..]

The Explode game 33

cancel :: Id (State .p) -> State .p
cancel wid ps = seqPl O[O oseW ndow wi d] ps

ok :: (State .p) -> State .p

ok ps

| pl ayers<2 || players> nmaxpl ayers

= notice ("Nr.of players between 2 and "+++toString naxpl ayers) psl
| wi dt h<3 || height<3

notice ("Wdth and height should be larger than 3") psl
seq [cancel NewGanel d,

seqPLoc [new ocal players (w dth, height)],

NewExpl odeW ndow] ps1l

wher e
(_,info,io) = Get Wndow NewGanel d ps. pl CState
psl = {ps & pl Cst at e=i 0}
pl ayers = tolnt (snd (GetEditTextControl nrid info))
wi dt h = tolnt (snd (GetEditTextControl wid info))
hei ght = tolnt (snd (GetEditTextControl hid info))

new ocal players size |ocal

= {local & board = justis (newRectBoard size),
nrpl ayers= pl ayers,
turn = 1}

notice text ps
= OpenModal W ndow noti ceDef ps
wher e
noti ceDef
= Di al ogW ndow "I ncorrect input”
[Text Contr ol text [],
ButtonControl "Aha!" [Controlld confirmd,
Control Function (cancel Noticeld)]]
[W ndow d Noticeld,
W ndowCk confirmd]
wher e
confirmd =1

timerDef = Tiner O [Tinmerld Expl osi onsl d,
Ti nmer Sel ect Unabl e,
Ti mer Functi on doAnExpl osi on]
wher e
doAnExpl osion :: NrOfIntervals (State .p) -> State .p
doAnExpl osi on _ ps=:{pLocal ={boar d}}
| stable board = seqgPl O [Di sabl eTi ner Expl osi onsl d,
Enabl eMenul t ems [Next Pl ayerld]] ps
| not hi ng newboard = seq [seqPl O [Di sabl eTi ner Expl osi onsl d,
Enabl eMenul t ens [Next Pl ayer|d],
Set W ndow Expl odeW ndowl d
[Enabl eControl s [Expl odeDi splayld]]],
next pl ayer] ps
seq [seqPLoc [\I->{] & board=boardi}],
showchanges Expl odeW ndowl d board boardl] ps

wher e
newboard
boardl

expl ode board
justis newboard

The GUI-fest challenges 34

/* OpenExpl odeW ndow.
The expl ode wi ndow in which the gane is played.
*/
OpenExpl odeW ndow :: (State .p) -> State .p
OpenExpl odeW ndow ps=: { pLocal ={ board, nrpl ayers, turn, col ours}}
= seqPl O [OpenW ndow expl odeDef] ps

wher e
expl odeDef = Di al ogW ndow " Expl ode"
[ConpoundCont rol [Text Contr ol "Player:" [],
Pl ayer Control nrplayers turn col ours]
(_ _->11) [Control Pos (Center,(0,0))],

ConpoundControl [
Expl odeControl board col ours Expl odeW ndow d (col, row)
\\ rows-[1..initRows],
col<-[1..initCols]]
(_ size -> background [Set PenCol our backCol our,
Fill Rectangle ((0,0),size),
Set PenCol our Bl ackCol our])
[Control Pos (Center, (0,10)),
Controlld Expl odeDi splayld]
]
[W ndowi d Expl odeW ndow d,
W ndowl t enSpace (hmm 2.5, vim 2.5),
W ndowUpdat e backgr ound]
(initCols,initRows) = dinension board

background upd ps seqPl O [Drawi nW ndow Expl odeW ndowl d dr awfs] ps

wher e
drawfs = [SetPenCol our backCol our
: map FillRectangle upd]
++
[SetPenCol our Bl ackCol our]
backCol our = RGB 0.5 0.5 0.5

/* NewExpl odeW ndow:
Cl ose the current expl ode wi ndow and open a new one, depending on the new
| ocal state.

*/

NewExpl odeW ndow :: (State .p) -> State .p

NewExpl odeW ndow ps

= seq [seqPl O [O oseW ndow Expl odeW ndowi d] , OQpenExpl odeW ndow] ps

/* Expl odeControl :
The expl ode control, in control of one field of the expl ode gane:
*/
Expl odeControl :: Board Col ourTable Id Position -> Control Def (State .p)
Expl odeControl board colours wid position=:(col,row)
= Cust onButt onControl (buttonW1, buttonH+1)
(Expl odeLook position board col ours)
(if (col>1) control Atts
[Control Pos (Left,(0,0)):control Atts])
wher e
nyi d
control Atts

Expl odel d position (snd (dinensi on board))
[ControlId nyi d,
Cont rol Function (pl aceStone position)]

B The Explode game 35

(buttonW buttonH) = Expl odeSi ze board

pl aceStone :: Position (State .p) -> State .p
pl aceStone position=:(col,row) ps=:{pLocal ={board,turn}}
| | egal Move nove board = seq [seqPLoc [\I->{] & board=boardl}],
showchanges wi d board boardl,
segPl O [Set W ndow Expl odeW ndowl d
[D sabl eControls [Expl odeDi splayld]],
Enabl eTi ner Expl osi onsl d,
Di sabl eMenul t ens [Next Pl ayerld],
Enabl eMenultens [Haltld]]] ps
= seqPl O [Beep] ps

wher e
nove = (turn, position)
boardl = addStone nove board
StoneSi ze == (4,4)

Expl odeSi ze :: Board -> Size
Expl odeSi ze board
= (wrspace, h*space)

wher e
max| oad = maxboar dl oad board
d_real = sqgrt (toReal maxl oad)
d_int = tolnt d_real
cols rows = if ((d_real*d real)<(toReal maxload)) (d_int+1) d_int
space = 2*col s_rows+1
(w, h) = StoneSi ze

Expl odeLook :: Position Board Col ourTabl e Sel ect State Size -> [DrawkFunction]
Expl odeLook position board colours _ (buttonW buttonH)
= [SetPenColour (RGB 0.8 0.8 0.8),
Fi | | Rect angl e expl odebox,
Dr awRect angl e expl odebox]

++
dr awl oad
++
[SetPenCol our Bl ackCol our]
wher e
c = content position board
has_st ones = just ¢
col our = if has_stones (col ours! (player-1)) WhiteCol our
(pl ayer, stones) = justis ¢
dr awl oad = if has_stones
(take stones (map (drawstone colour) stone_rects))
[
expl odebox = ((0,0), (buttonW buttonH))
(w, h) = StoneSi ze
(col, row) = ((buttonWw)/w, (buttonH h)/h)

stone_rects [((x*w, y*h), ((x+1)*w, (y+1)*h))
\W\oy<-[1,3..row, x<-[1,3..col]]
drawstone col rect=:(It,(r,b)) picture
= Fil | Rectangl e rect (
Set PenCol our col (
Fill Rectangle (It, (r+1,b+1)) (
Set PenCol our Bl ackCol our picture)))

The GUI-fest challenges 36

/* PlayerControl:
The player control, show ng who's playing:
*/
Pl ayerControl :: Int Col ourTable -> Control Def (State .p)
Pl ayer Control nrplayers turn col ours
= Cust onControl (pcWnrplayers, pcH)
(Pl ayerLook nrplayers turn colours) (ListCS[])
[Control Sel ect State Unabl e,
Control Id nmyid]
wher e
(pcW pcH) = Pl ayerSi ze

Pl ayerLook :: Int Int ColourTable SelectState Size -> [DrawFunction]
Pl ayer Look nrplayers turn colours _ (w h)
= [EraseRectangl e ((0,0), (pcWnrpl ayers, pcH)] ++ drawcol ours ++ drawturn
wher e
turnW

2

drawcol ours = map drawcol our (zip2 [O..nrplayers-1] (take nrplayers colours))
drawcol our (i,col) picture
= seq [Set PenCol our col,
Fi I | Rect angl e col our box,
Set PenCol our Bl ackCol our,
Dr awRect angl e col ourbox] picture
wher e
col ourbox = ((i*pcWturnWturnW, ((i+1)*pcWturnWpcHturnW1l))

drawt urn = [Set PenSi ze (turnWturnW,
Set PenCol our Bl ackCol our,
DrawRectangle (((turn-1)*pcWO0), (turn*pcWpcH (turnWl))),
Set PenSi ze (1,1]
(pcW pcH) = Pl ayer Si ze
Pl ayer Si ze :: Size

Pl ayer Si ze = (20, 20)

showchanges :: Id Board Board (State .p) -> State .p
showchanges wi d ol dboard newboard ps=:{pLocal ={board, col ours}}
= seqPl O [Set Wndow wid (nap | ook (conpare ol dboard newboard))] ps
wher e
| ook (pos,_) = SetControl Look (Explodeld pos (snd (di nmension board)))
(Expl odeLook pos board col ours)

nextplayer :: (State .p) -> State .p
next pl ayer ps=:{pLocal ={nrpl ayers, turn, col ours}}
= seq [seqPLoc [\I->{l & turn=turn'}],
seqPl O [Set Wndow Expl odeW ndowl d [Set Control Look Playerld I ook]]] ps

wher e

turn = 1+(turn nod nrpl ayers)

| ook = Pl ayerLook nrplayers turn® colours
global lds:
Expl odeWndowd =1 /I The Id of the explode window

Pl ayerld =1 /l The Id of the PlayerControl

B The Explode game

37

Expl odeDi splayld = 2 /I The Id of the explode display (a compound)

Expl odel d ;. Position Int ->1d

Expl odel d (col,row) nrRows = col *10~(nrdi gits nrRows) +r ow
NewGanel d =2 /I The Id of the New Game dialogue

Noticeld =3 /I The Id of the notice dialogue

Expl osi onsl d =1 /I The Id of the timer

Next Pl ayer|d =1 /I The Id of the Next command

Halt1d =2 /I Theld of the Halt command

convenience operations:

nrdigits :: Int -> Int

nrdigits x = if (x<0) (1+(nrdigits® (0-x))) (nrdigits® x)
wher e
nrdigits® x = if (x<10) 1 (1+(nrdigits® (x/10)))

