
The GUI-fest challenges

In this report we present the solutions to two selected challenges that have been proposed in
the 1995 Glasgow GUI-fest. The solutions are defined in the pure, lazy, functional program-
ming language Clean. We have used the currently available version of the Event I/O library
version 1.0. The two selected challenges are an object oriented counter viewing program, the
‘counter challenge’ and a board game, the ‘Explode challenge’. One interesting aspect in the
way we have approached the counter challenge is to first define a very general framework for
browser/editors, inspired by a challenge proposed by Emden Gansner. The counter challenge
is then defined as an instance of this general browser/editor framework. The Explode chal-
lenge can be worked out as a straightforward Event I/O program. It demonstrates the ele-
gance and expressiveness of functional programming.

1 Introduction

The 1995 Glasgow GUI-fest was held in the week of 24-28 July, during the Glasgow
Research Festival. The main topic of interest of the GUI-fest was to investigate the
strengths and weaknesses of programming Graphical User Interfaces in functional
languages. A number of challenges have been proposed, and eventually it was decided
to present solutions to two of these challenges. The first challenge, the ‘counter chal-
lenge’ was created to see how the different languages and I/O models handle encapsu-
lated state in perhaps an object-oriented style. The second challenge is a modest board
game, ‘Explode’, and it was proposed by Rob Noble and Colin Runciman (introduced
earlier in Noble and Runciman (1995)).

In this report we present the solutions to these challenges using the lazy, pure,
functional programming language Clean (Brus et al., 1987; Nöcker et al., 1991;
Plasmeijer and van Eekelen, 1993). The I/O library that has been used in these exam-
ples is the current, experimental, Event I/O 1.0 version. This system is a successor of
the Event I/O 0.8 distribution version (Achten et al., 1993; Achten and Plasmeijer,
1995), extended with the concept of interactive processes and message passing
(Achten and Plasmijer, 1994). In Section 2 we describe the way we solved the counter
challenge. Section 3 discusses the approach to the Explode game. Section 4 discusses
and concludes. Appendix A contains the full code of the counter challenge, and Ap-
pendix B contains the full code of the Explode game. In this report we assume the
reader is familiar with functional programming and the Clean Event I/O system.

The GUI-fest challenges 2

2 The counter challenge

In this section we show how we have approached the counter challenge. First we give
the specification of the challenge. This rather informal specification describes what
the program should do seen from a user’s point of view. When starting the program, it
should present to the user a window as shown in Figure 1. We will call this window a
counter window.

Figure 1 The initial view of the counter program.

The window displays an integer value. There are six buttons, labelled Manual, Auto,
Copy, Link, Close, and Quit. Their behaviour, when selected, is as follows:

Manual simply increments the currently displayed value by one.

Auto sets this counter to auto-increment mode in which the count increases periodi-
cally until Manual is pressed. The auto-increment mode is undone by pressing
Manual.

Link creates a new counter window that gives a new view of the value displayed by
the window in which Link has been selected. In general, there can be an arbi-
trary number of windows, each displaying the same current value. Such a
group of windows is called a link.

Copy, like Link, also creates a new counter window, except that the new counter win-
dow has a completely new initial counter value which is also not shared with
any other counter window. So Copy creates a new set of link.

Close closes all windows that are linked to the counter window in which Close has
been selected. If it happens to be the last link, then this also terminates the
application.

Quit simply terminates the application, and thereby closes all links.

The auto-increment mode applies to all counter windows of the same link. The auto-
increment mode is turned off by selecting the Manual button of any of the counter
windows of that link. To inform the user which counter windows belong to the same

2 The counter challenge 3

counter value we number the links and display the link number in the name of the
counter window.

More generally, the program presents a dynamic number of views of a dynam-
ic number of states. The views are all counter windows, and the states are all counter
values and perhaps an auto-increment mode. This lead us to the idea to see if this
challenge could be solved as a special kind of browser/editor, a challenge proposed by
Emden Gansner. In this challenge, the task was to: “build a simple graph editor for
creating, viewing and editing directed acyclic graphs. The program should support at
least two different types of concrete representations of a graph. Representations can
be either textual or graphical. Changes to the graph should be propagated to all of the
views.” The directed acyclic graph is called the “model” data, and the representations
are called views.

It occurred to us that the counter challenge could be formulated nicely as a
special case of the browser/editor. So we first started out to build a general
browser/editor framework (Section 2.1), and then apply this framework to create the
counter challenge (Section 2.2).

2.1 A general browser/editor framework

The general structure of a browser/editor is some model data, which is a data struc-
ture, and a number of views that can write and read the model data. Each view can
have local data. Whenever a view changes the model data, the other views should be
informed about this change in order to propagate the changes throughout all views.
Figure 2 puts this general structure in a scheme.

Because the framework should be general, the model data should allow any
type of data structure. So the framework should be polymorphic in terms of the model
data. The views are defined as individual interactive processes. The model data is
globally accessible to all views. It will be managed by one special interactive process,
the control process. All access of the view processes to the model data will be done
via the control process. It will take care that manipulation propagation will be done
correctly to all view processes. Finally, the framework should be such that view pro-
cesses, which will be defined by a programmer, do not need to know how the access
and manipulation propagation is actually handled. To the view processes and the pro-
grammer this information is encapsulated. Figure 3 gives the scheme of our approach.

Figure 2 The general structure of the browser/editor.

Below we consider the following main components in sequence: the view processes
(Section 2.1.1), the control process (Section 2.1.2), and information encapsulation
(Section 2.1.3).

The GUI-fest challenges 4

2.1.1 View processes

A view process presents a view on the model data, which is some arbitrary type m.
The behaviour of a view process is defined by three functions:

a) The manipulation propagation: what should happen when the model data has
been changed.

b) The initial state of the view process: it depends on the current value of the
model data.

c) The initial actions of the view process: besides the common initial actions, this
function is parameterized with an abstract value without which the view pro-
cess has no proper access to the model data.

Figure 3 The structure of a general browser/editor using interactive processes.

The definition of these functions is collected in the record type ViewDef (Figure 4).

:: ViewDef … m
 = { vRespond :: RespondF m (PState …),

 vInitState:: InitStateF … m,

 vInitIO :: InitIOF … m

 }

:: RespondF m ps :== ((m,m), ps) -> ps

:: InitStateF … m :== m -> …

:: InitIOF … m :== (BrowseInfo m) -> (InitIO …)

Figure 4 The definition of a view process.

Given the definition of a view, it can be transformed into an interactive process. A
view process is an interactive process that has one special receiver device which ac-
cepts messages of type (ViewM m), which consists of the single alternative
(RespondTo (m,m)). Such a message always consists of a pair of the old model data
and the new model data. Given such a pair, the view process can respond appropri-
ately. This response is the RespondF function of the view’s definition. To accomplish

2 The counter challenge 5

this the receiver is parameterized with the ViewDef structure. Figure 5 gives the def-
inition of the receiver.

:: ViewM m = RespondTo (m,m)

viewR::(ViewDef … m) (ViewM m) (PState …) -> (PState …)

viewR viewDef (RespondTo modelChange) ps

 = viewDef.vRespond (modelChange, ps)

Figure 5 The structure of view processes. Alternative constructors of algebraic
data types are printed in boldface.

We defer the discussion on the creation of view processes until Section 2.1.3.

2.1.2 Control process

The control process manages all access by the view processes, and all manipulation
propagation that is required. It is a special interactive process, defined within the
framework, and is invisible to the programmer. The control process is a background
process, and consists of a receiver only. It is the process that sends (ViewM m) mes-
sages to the view processes, in reply to (ControlM m) messages that are sent by the
view processes. View processes, identified by a value id of type (ViewId m) can re-
quest the control processes to:

a) Change the current model data with a function f (Action id f).
b) Create a new view process (NewView def).
c) Participate in manipulation propagation (NewViewId id).
d) Refrain from manipulation propagation (CloseView id).
e) Terminate the control process (Quit).

Figure 6 gives the scheme and type definitions.

:: ControlM m
 = Action (ViewId m) (m->m)

 | NewView (ViewDef … m)

 | NewViewId (ViewId m)

 | CloseView (ViewId m)

 | Quit

The GUI-fest challenges 6

Figure 6 The structure of the control process.

The local state of the control process, the record type (LocalC m), contains of course
the model data, but also some further information: the identifications of the view pro-
cesses that have currently subscribed to be informed about changes of the model data,
and the identification of the control process itself.

:: LocalC m
 = { views :: [ViewId m],

 model :: m,

 myself :: Maybe (ControlId m)

 }

:: *CState m

:== PState (LocalC m) Int

Figure 7 The local and process state of the control process.

Because the control process consists of one receiver only, its behaviour is defined
completely by the definition of the receiver function controlR of the control pro-
cess which has type:

controlR:: (ControlM m) (CState m) -> (CState m)

For every (Action sender act) message, compute the new value of the model data, and
send to every other view process the pair of the old and new model data values:

controlR (Action sender act) ps=:{pLocal=local}

 = {ps & pLocal ={local & model=newmodel},

 pIOState=broadcast others mess ps.pIOState}

where

 newmodel = act local.model

 others = filter (not o eqRId sender) local.views

 mess = RespondTo (local.model,newmodel)

For every (NewView viewDef) message, create a new view process.

controlR (NewView viewDef) ps = openView viewDef ps

For every (NewViewId id) message, add the view process to the administration of
view processes that have subscribed for manipulation propagation.

controlR (NewViewId id) ps=:{pLocal=local}

 = {ps & pLocal={local & views=[id:local.views]}}

2 The counter challenge 7

For every (CloseView id) message, remove the view process from the administration
of view processes that have subscribed for manipulation propagation (so this is basi-
cally the reverse operation of the previous alternative).

controlR (CloseView id) ps=:{pLocal=local}

 = {ps & pLocal={local & views=filter (not o eqRId id)

 local.views}}

For every Quit message, quit the control process.

controlR Quit ps = seqPIO [QuitIO] ps

2.1.3 Information encapsulation

In the previous two sections we have defined the view and control processes, and the
communication protocol. To get things cooperating properly, the programmer must
know in what order messages should be sent. For instance, opening a new view pro-
cess (by sending NewView) should be followed by registering the identification of the
new view process (by sending NewViewId). These kind of requirements are likely to
go wrong. In this section we discuss how we can circumvent these problems and ob-
tain a safe system. We show how we can encapsulate the communication protocol and
the view process creation.

First we introduce an abstract data type, BrowseInfo m, that will be the sole
interface to the programmer to access the model data. The creation of the view pro-
cesses will guarantee that the bControl field of a BrowseInfo value always is the
identification of the receiver of the control process (which is of type RId
(ControlM m) because it receives messages of type (ControlM m)). For each view
process, the bView field of a BrowseInfo value is always the identification of its re-
ceiver that receives the messages of type (ViewM m), and thus is of type
RId (ViewM m). The signature of BrowseInfo, containing the view management op-
erations, is given in Figure 8.

:: BrowseInfo m
 = { bView :: ViewId m,

 bControl :: ControlId m

 }

:: ViewId m :== RId (ViewM m)

:: ControlId m :== RId (ControlM m)

changeModelData::(BrowseInfo m) (m->m)

 (PState .l .p) -> PState .l .p

closeModelData ::(BrowseInfo m)

 (PState .l .p) -> PState .l .p

openViewer ::(BrowseInfo m) (ViewDef` Void Void m)

 (PState .l .p) -> PState .l .p

closeView ::(BrowseInfo m) (PState .l .p) -> PState .l .p

Figure 8 The signature of the abstract data type BrowseInfo.

As we saw in Section 2.1.1., view processes are defined by values of type
ViewDef m. In general, a browser/editor can consist of several initial views. Each
view can have its private data, which types can be different. For this reason, the exis-
tentially quantified type ViewDef` is introduced which hides the type information of

The GUI-fest challenges 8

the private data of the initial views (see Figure 9). Furthermore, an initial value for the
model data has to be supplied. The only function available to create a browser/editor
is the function openBrowser. When applied to a browser/editor definition, open-
Browser creates the control process, and then applies for each view definition the
function openView. Recall that openView was also applied by controlR when a view
process requested a new view to be created (Section 2.1.2.).

:: Browser m
 = { bViews :: [ViewDef` Void Void m],

 bModelData :: m

 }

:: ViewDef` E.l E.p m

 = Hidden (ViewDef l p m)

openBrowser :: (Browser m) *World -> *World

openBrowser browser world

= OpenIO [initControlGUI browser]

 (initLocal browser.bModelData,0)

 world

initControlGUI :: (Browser m) (CState m) -> (CState m)

initControlGUI browser ps=:{pLocal=local}

= seq (map openView browser.bViews) ps1

where

 (me,io1) = OpenReceiver receiver ps.pIOState

 receiver = Receiver [ReceiverFunction controlR]

 ps1 = {ps & pLocal = {local & myself = Just me},

 pIOState= io1}

Figure 9 The creation of a browser/editor, defined by an initial set of view pro-
cess definitions.

When a new view is created, the control process evaluates the function openView.
Given a view definition, openView spawns a new interactive process. This process,
before evaluating the initial actions of the view process, first creates the receiver that
will communicate with the control process, sends the identification of the receiver to
the control process, and generates the appropriate BrowseInfo value for this view pro-
cess.

openView::(ViewDef` Void Void m) (CState m) -> (CState m)
openView (Hidden viewDef) ps=:{pLocal=local}

= … NewIO [initView me viewDef]

 (viewDef.vInitState local.model) …

where

 Just me = local.myself

 initView :: (ControlId m) (ViewDef .l .p m)

 (PState .l .p) -> (PState .l .p)

 initView controlId viewDef ps

 = seq initIO {ps & pIOState=io2}

 where

 (id,io1) = OpenReceiver rDef ps.pIOState

 rDef = Receiver …(viewR viewDef)…

 io2 = ASyncSend controlId (NewViewId id) io1

 initIO = viewDef.vInitIO { bView =id,

2 The counter challenge 9

 bControl=controlId }

Figure 10 The creation of a new view process.

Finally, we can consider the implementation of the abstract operations of BrowseInfo.
These are give in Figure 11. They should be self-explanatory by now.

changeModelData::(BrowseInfo m) (m->m)
 (PState .l .p) -> PState .l .p

changeModelData bInfo f ps

= seqPIO [ASyncSend bInfo.bControl (Action bInfo.bView f)] ps

closeModelData ::(BrowseInfo m) (PState .l .p) -> PState .l .p

closeModelData bInfo ps

= seqPIO [ASyncSend bInfo.bControl Quit] ps

openViewer ::(BrowseInfo m) (ViewDef` Void Void m)

 (PState .l .p) -> PState .l .p

openViewer bInfo viewDef ps

= seqPIO [ASyncSend bInfo.bControl (NewView viewDef)] ps

closeView ::(BrowseInfo m) (PState .l .p) -> PState .l .p

closeView bInfo ps

= seqPIO [ASyncSend bInfo.bControl (CloseView bInfo.bView)] ps

Figure 11 The implementation of the abstract operations on BrowseInfo.

2.2 The challenge as a special instance

In this section we show how the counter challenge can be defined as a special case of
the browser/editor framework. To do this, we need to settle the model data and a def-
inition of views.

Figure 12 gives the model data type, named Model, which consists of a list of
links. A link is identified by a number (the synonym type LinkId), and it contains the
current count value, and a flag stating whether the link is running in auto-increment
mode. The private state of each view process, of type Local, consists of the identifica-
tion of the link to which it presents a view, the most recent ‘up-to-date’ value of the
model data, and an optional abstract BrowseInfo value.

:: Model :== [Link]
:: Link = { link :: LinkId,

 count :: Int,

 auto :: Bool

 }

:: Local = { myLink:: LinkId,

 links :: [Link],

 binfo :: Maybe (BrowseInfo Model)

 }

Figure 12 The model data type.

All view processes are equal except for the link to which they present a view. So the
definition of a view process can be suitably defined as a function parameterized with

The GUI-fest challenges 10

the link identification. As we have discussed in Section 2.1.1., view processes are de-
fined as ViewDef values, by an initial state creation, initial action, and response func-
tion.

2.2.1 The initial state

The function initstate, which is parameterized with a link identification, deter-
mines the initial state of a view process. When applied to the current value of the
model data, initstate determines whether there are already views open to this
link. In that case the model data does not need to be changed. If not, then a new entry
to the links field should be added, stating that the initial count value is zero, and that
the link is initially running in manual mode. The binfo field is Nothing, because the
proper BrowseInfo structure has not been created yet.

initstate :: LinkId Model -> (Local,Nil)

initstate l model

= ({ myLink = l,

 links = if i_exist model [{link=l,count=0,auto=False}:

 model],

 binfo = Nothing},

 Nil)

where

 (i_exist,_) = selectLink l model

2.2.2 The initial actions

The initial actions of a view process are given by the function initio (see Ap-
pendix A.2). Because the initial actions of all view processes are equal, initio is
not parameterized with the link identification. The proper BrowseInfo structure is put
in the local state of the view process. Each view process has one dialogue window and
one timer (which is initially disabled). Their definitions are straightforward. Below
we will first discuss the timer function Incr, and then the control functions that are as-
sociated with the buttons Manual, Auto, Copy, Link, Close, and Quit respectively.
(The library function seq is defined as seq [f1…fn] x = fn ο…ο f 1 x. The function seq-
PIO applies seq to the list of IOState transition functions and updates the pIOState
field of its process state argument correspondingly. The function setLocalLinks re-
places the links field of the pLocal field of the process state argument with its first ar-
gument.)

The timer, when enabled, should increment the counter value by one. So it up-
dates its local state, takes care of the proper visual feedback, and applies the abstract
BrowseInfo operation changeModelData to change the current model data.

Incr :: (State .p) -> State .p

Incr ps=:{pLocal={myLink,links,binfo=Just b}}

= seq [setLocalLinks (newlink links),

 seqPIO [SetWindow windowId

 [SetTextControl textId (toString newcount)]],

 changeModelData b newlink] ps

where

 (_,me) = selectLink myLink links

 newcount = 1+me.count

 newlink ls= map (\l->if (myLink==l.link) {l&count=newcount}

 l) ls

2 The counter challenge 11

The manual button should increment the count value by one. So its meaning is very
similar to that of the timer. However, it should turn to manual mode if the link is cur-
rently running in auto-increment mode. So, to do this, Manual first sets the auto-in-
crement flag to False, and enables the Auto button and disables the timer. Note that
these operations have no effect in case the button and the timer are already enabled
and disabled respectively. Finally, Manual applies Incr.

Manual :: (State .p) -> State .p

Manual ps=:{pLocal={myLink,links,binfo=Just b}}

= seq [setLocalLinks (setAuto myLink False links),

 enableAuto,

 changeModelData b (setAuto myLink False),

 Incr] ps

enableAuto ps

= seqPIO [SetWindow windowId [EnableControls [autoId]],

 DisableTimer timerId] ps

The auto button should turn the link to auto-increment mode. Therefore Auto sets the
auto-increment flag to True and enables its timer. Furthermore, the auto button itself
is disabled. Note that the auto-increment mode is undone by pressing Manual.

Auto :: (State .p) -> State .p

Auto ps=:{pLocal={myLink,links,binfo=Just b}}

= seq [setLocalLinks (setAuto myLink True links),

 seqPIO [EnableTimer timerId],

 disableAuto,

 changeModelData b (setAuto myLink True)] ps

disableAuto ps

= seqPIO [SetWindow windowId [DisableControls [autoId]]] ps

Copy creates a new set of linked counter windows. It generates a new link identifica-
tion (newlinknr), and adds a new link element to the model data. Then it applies the
abstract BrowseInfo operation openViewer to create the new view process.

Copy :: (State .p) -> State .p

Copy ps=:{pLocal={links,binfo=Just b}}

= seq [changeModelData b (newviews newlinknr),

 openViewer b (view newlinknr)] ps

where

 newlinknr = 1+(foldr max 0 (map (\x->x.link) links))

 newviews l model = [{link=l,count=0,auto=False}:model]

Link creates a new counter window that gives a new view of the value displayed by
the window in which Link has been selected. So it is sufficient to apply the abstract
BrowseInfo operation openViewer, parameterized with its link identification, to create
the new view process.

Link :: (State .p) -> State .p

Link ps=:{pLocal={myLink,binfo=Just b}}

= openViewer b (view myLink) ps

Close closes all windows that are linked to the counter window in which Close has
been selected. This is done by removing the entry identified by its linkid from the

The GUI-fest challenges 12

model data. As we will see in Section 2.2.3, the response function will then close all
further linked view processes. If the link happens to be the last link, then Close also
terminates the application (the first alternative of Close).

Close :: (State .p) -> State .p

Close ps=:{pLocal={links=[_]}} = Quit ps

Close ps=:{pLocal={myLink,binfo=Just b}}

= seq [changeModelData b (removeLink myLink),

 closeView b,

 seqPIO [QuitIO]] ps

Quit terminates the application. This is done by setting the model data to the empty
list which will cause the response functions of the view processes to terminate their
processes. It furthermore also terminates the control process by applying the abstract
BrowseInfo operation closeModelData.

Quit :: (State .p) -> State .p

Quit ps=:{pLocal={myLink,binfo=Just b}}

= seq [changeModelData b (_->[]),

 closeModelData b,

 seqPIO [QuitIO]] ps

2.2.3 The response function

The response function respond is the function that handles the manipulation propa-
gation of a view process whenever the model data has changed. There are three cases:

a) The model data does not contain an entry to the link anymore.
b) The count value of the link has not changed.
c) The count value of the link has changed.

In case a the view should be removed from the model data, and the view process
terminated. In case b and c, the running mode of the link should be reflected (enabling
or disabling the Auto button) and the new model data should be stored in the local
state of the view process. In case c the text field of the dialogue window should also
display the new counter value.

respond :: ((Model,Model),State .p) -> State .p

respond ((_,newmodel),ps=:{pLocal={myLink,links,binfo=Just b}})

| not i_exist

 = seqPIO [QuitIO] (closeView b ps)

| oldcount==newcount

 = ps1

 = seqPIO [SetWindow windowId

 [SetTextControl textId (toString newcount)]] ps1

where

 (i_exist,newme) = selectLink myLink newmodel

 newcount = newme.count

 (_,oldme) = selectLink myLink links

 oldcount = oldme.count

 ps1 = controlChange (setLocalLinks newmodel ps)

 controlChange = if (autoOn oldme newme) disableAuto

 (if (autoOff oldme newme) enableAuto I)

2 The counter challenge 13

3 The Explode game

The specification of the Explode challenge is as follows. The Explode game challenge
concerns a program that provides a purely graphical interface to a game of Explode,
which is a game for two or more players, in which each player has an inexhaustible
supply of stones of their own distinctive colour. The game is played by placing the
stones on the vertices of a finite connected graph, according to the rules below (in
which we say a vertex is ‘full’ when it holds as many stones as it has incident edges).
For this challenge, the program should support a game for a rectangular board, which
dimensions can be set before playing.

Initially there are no stones on the graph. Players take it in turns to make a
move. Each move increases the number of stones on the graph by one. A player takes
a stone from their supply and places it on any vertex v not already containing stones
of another colour. If this does not make v full, the move finishes. If it does make v
full, then v ‘explodes’: each adjacent vertex is invaded by one of the stones. The
colour of any stones already in the invaded vertex turns to that of the invaders. Any of
the invaded vertices that is now full also explodes in turn, and so on until the graph is
stable. The aim of the game for each player is to make it impossible for their oppo-
nents to move. A winning move for player P is either (a) one that causes an endless
sequence of explosions, or (b) one that results in a stable graph in which every vertex
contains at least one stone of P’s colour (and hence no other stones).

The Explode challenge can be written as a simple single interactive process
application in the Clean I/O library. So the explanation of its code gives a good ex-
ample of one way to write such an application.

In the Clean Event I/O system, interactive processes are state transition sys-
tems. Their state, the process state, is a record consisting of a private state (completely
local to the process), a public state (shared between a group of processes), a file sys-
tem environment (shared between all processes), and the IOState environment (par-
tially local to the process, and containing amongst other things its Graphical User
Interface elements). Because the challenge is a single process application, we need to
consider the private state only. The private (and public) state of an interactive process
represent the ‘logical’ state the process is in. The crucial component of the logical
state of the Explode process is the state of the board. For this reason, this component
is defined as an abstract data type (see Appendix B.1). Its implementation is straight-
forward.

The user interface is defined in a separate module (see Appendix B.2). In the
design of the program we need consider the following topics:

a) What is the logical state of the Explode process?
b) How is the board graphically represented to the user?
c) How can infinite sequences of explosions be handled without making the pro-

gram mute to user interrupts?

These subjects are handled in the following sub sections.

3.1 The logical state

The logical state of the Explode process is a record type Explode consisting of the
current state of the board, the number of players that are currently playing, who’s turn

The GUI-fest challenges 14

it is to play, and a colour table used to identify players visually. The initial value of
the Explode record consists of a board of size 5×5, 2 players, starting with player 1,
and the basic colours provided by the I/O library (so the maximum number of players
is eight).

:: Explode = { board :: Board,

 nrplayers :: Int,

 turn :: Int,

 colours :: ColourTable }

:: ColourTable :== [Colour]

initExplode = { board = initBoard,

 nrplayers = initPlayers,

 turn = 1,

 colours = initColours }

where

 initBoard = justis (newRectBoard initSize)

 initSize = (initCols,initRows)

 initCols = 5

 initRows = 5

 initPlayers = 2

 initColours = [BlackColour,WhiteColour, RedColour,

 GreenColour,BlueColour, YellowColour,

 CyanColour, MagentaColour]

3.2 The user interface of the board

The program presents a window, showing the state of the board, the players, and an
indication of who is currently playing. Figure 13 gives a snapshot of the window. This
window is opened by the function OpenExplodeWindow, given in Figure 14. The
window is a dialogue window, so the size of the window is determined completely by
the controls it contains. There are two top-level compound controls, both centered
below each other. The first compound control contains a text control with the text
“Player:”, and a custom control defined by the function PlayerControl. The second
compound control contains a list of custom button controls, defined by the function
ExplodeControl. One ExplodeControl corresponds exactly with one field of the board.
Each ExplodeControl is therefore parameterized with the element of the board it rep-
resents. The window itself is identified by the identification value ExplodeWindowId,
and the compound control displaying the board is identified by ExplodeDisplayId.
These values are defined globally.

3 The Explode game 15

Figure 13 The Explode game running with two players, indicating who’s playing.

OpenExplodeWindow :: (State .p) -> State .p
OpenExplodeWindow ps=:{pLocal={board,nrplayers,turn,colours}}

= seqPIO [OpenWindow explodeDef] ps

where

 explodeDef

 = DialogWindow "Explode"

 [CompoundControl

 [TextControl "Player:" [],

 PlayerControl nrplayers turn colours]

 (_ _ -> []) [ControlPos (Center,(0,0))],

 CompoundControl

 [ExplodeControl board colours ExplodeWindowId

 (col,row)

 \\ row<-[1..initRows],

 col<-[1..initCols]]

 (_ size -> background [SetPenColour backColour,

 FillRectangle ((0,0),size),

 SetPenColour BlackColour])

 [ControlPos (Center,(0,10)),

 ControlId ExplodeDisplayId]

]

 [WindowId ExplodeWindowId,

 WindowItemSpace (hmm 2.5,vmm 2.5),

 WindowUpdate background]

 (initCols,initRows) = dimension board

Figure 14 The definition of the Explode window. PlayerControl and Explode-
Control are program defined controls. Observe the use of a list com-
prehension to summarize the ExplodeControls concisely.

An ExplodeControl is a CustomButtonControl. Its definition is given below. The two
most important aspects of its definition are the function ExplodeLook that defines the
way it looks, and the abstract event handler placeStone that should be evaluated in
case the control has actually been selected.

The GUI-fest challenges 16

ExplodeControl :: Board ColourTable Id Position

 -> ControlDef (State .p)

ExplodeControl board colours wid position=:(col,row)

= CustomButtonControl …

 (ExplodeLook position board colours)

 (if (col>1) controlAtts

 [ControlPos (Left,(0,0)):controlAtts])

where

 myid = ExplodeId position (snd (dimension board))

 controlAtts = [ControlId myid,

 ControlFunction (placeStone position)]

The function ExplodeLook is defined as a global function. The reason for this is that it
is now easy to define a function that compares two boards, and performs the visual
feedback of the changes between the two boards:

showchanges :: Id Board Board (State .p) -> State .p

showchanges wid oldboard newboard ps=:{pLocal={board,colours}}

= seqPIO [SetWindow wid (map look differences)] ps

where

 differences = compare oldboard newboard

 look (pos,_) = SetControlLook

 (ExplodeId pos (snd (dimension board)))

 (ExplodeLook pos board colours)

The function compare yields a list of positions in which the two argument boards have
a different content. ExplodeLook is mapped over this list, parameterized properly
with the position that should be updated visually. These updates are process state tran-
sition functions. This list of functions can suitably be sequenced over the process state
argument of showchanges.

The function placeStone, parameterized with the position of the board element
that it represents, places a stone on that position. Its definition is as follows:

placeStone :: Position (State .p) -> State .p

placeStone position=:(col,row) ps=:{pLocal={board,turn}}

| legalMove move board

= seq [seqPLoc [\l->{l & board=board1}],

 showchanges wid board board1,

 seqPIO [SetWindow ExplodeWindowId

 [DisableControls [ExplodeDisplayId]],

 EnableTimer ExplosionsId,

 DisableMenuItems [NextPlayerId],

 EnableMenuItems [HaltId]]] ps

= seqPIO [Beep] ps

where

 move = (turn,position)

 board1 = addStone move board

If the move is not legal, then placeStone simply emits a Beep sound and the move had
no further effect. If the move is legal then placeStone sets the local state of the Ex-
plode process to the new board obtained by adding a stone to the board. It provides
the proper visual feedback using the function showchanges discussed above. Then it
disables the compound control that contains all ExplodeControls, because other play-
ers have to wait to play until a stable situation has been reached. The computation of

3 The Explode game 17

this stable situation is done by a timer, explained in the next section, and so the timer
is enabled. To be able to interrupt this computation the halt command is enabled.

3.3 Interruptable infinite explosions

Placing a stone on a field that thereby becomes full causes an explosion as explained
in Section 3. In general it is possible that such an explosion causes a sequence of ex-
plosions. This sequence can be infinite. In the Clean Event I/O system, abstract event
handlers are evaluated atomically. So, if one would evaluate the full sequence of ex-
plosions triggered by a move within one abstract event handler, then the evaluation of
this function may possible not terminate and lock the program. One way to circum-
vent this problem is to have the abstract event handler analyse whether this sequence
is infinite. However, also in this case, if the sequence happens to be very long, the
program can not be interrupted by the user.

The solution we have taken is to use a timer that evaluates the moves. This
timer is opened during the initial actions of the Explode process. Initially, the timer is
disabled. In the previous sub section we saw that whenever a legal move has been
made, the timer is enabled. In that case the timer’s abstract event handler, doAnEx-
plosion, is being evaluated.

doAnExplosion :: NrOfIntervals (State .p) -> State .p

doAnExplosion _ ps=:{pLocal={board}}

| stable board

= seqPIO [DisableTimer ExplosionsId,

 EnableMenuItems [NextPlayerId]] ps

| nothing newboard

= seq [seqPIO [DisableTimer ExplosionsId,

 EnableMenuItems [NextPlayerId]],

 SetWindow ExplodeWindowId

 [EnableControls [ExplodeDisplayId]]],

 nextplayer] ps

= seq [seqPLoc [\l->{l & board=board1}],

 showchanges ExplodeWindowId board board1] ps

where

 newboard = explode board

 board1 = justis newboard

For an arbitrary board there are three alternatives doAnExplosion has to consider:

a) The board is stable: all fields contain stones of the same player.
b) The board contains no explosive fields.
c) The board contains explosive fields.

Case a is a winning situation for the player who made the last move. In this case the
timer can be disabled, and the command to select a next player can be enabled. How-
ever, because this is a final situation for this game, the ExplodeControls remain dis-
abled. The only sensible choice for the players is either to quit the application or start
a new game.

In case b the sequence of explosions was finite, and so the timer can also be
disabled, and the command to select a next player can be enabled. Because in this case
we want to continue playing, the ExplodeControls are also enabled and the turn is
given to the next player.

In case c there are still fields that can explode. The function explode detonates
each of these fields once. The new board is placed in the local state of the Explode

The GUI-fest challenges 18

process. The visual feedback of the new state of the board is displayed by the function
showchanges.

So each time the timer is evaluated it calculates one step in the sequence of
explosions that might be caused by a move. Inbetween each step there is a small delay
between subsequent timer evaluations to allow the program to respond to other
events, such as interrupting the computation of explosions.

4 Discussion and conclusions

In the counter challenge we have first defined a generally applicable framework for a
browser/editor on an arbitrary kind of model data. From the functional language
‘goodies’ we have applied are polymorphism, algebraic and abstract data types, and
higher-order functions. The ‘goodies’ of the Event I/O system we have applied are the
use of interactive processes to improve the module structure, polymorphic message
passing, and the dynamic creation of devices, and receivers in particular. The Explode
challenge being a single process application, did not depend on these extended fea-
tures of the Event I/O system. However, it provided a good test-case for the suitability
of the new definitions of controls and windows.

References

Achten, P.M., van Groningen J.H.G., and Plasmeijer, M.J. 1993.
High Level Specification of I/O in Functional Languages. In Launchbury, J.,
Sansom, P. eds., Proceedings Glasgow Workshop on Functional Program-
ming, Ayr, Scotland, 6-8 July 1992. Workshops in Computing, Springer-Ver-
lag, Berlin, 1993, pp. 1-17.

Achten, P.M. and Plasmeijer, M.J. 1994.
A Framework for Deterministically Interleaved Interactive Programs in the
Functional Programming Language Clean. In Bakker, E. ed. Proceedings
Computing Science in the Netherlands, CSN’94, Jaarbeurs Utrecht, The
Netherlands, November 21-22, Stichting Mathematisch Centrum, Amsterdam,
1994, pp. 30-41.

Achten, P.M. and Plasmeijer, M.J. 1995.
The ins and outs of Clean I/O. In Journal of Functional Programming 5(1) -
January 1995, Cambridge University Press, pp. 81-110.

Brus, T., Eekelen, M.C.J.D. van, Leer, M.O. van, and Plasmeijer, M.J. 1987.
Clean: A Language for Functional Graph Rewriting. In Kahn. G. ed. Proceed-
ings of the Third International Conference on Functional Programming Lan-
guages and Computer Architecture, Portland, Oregon, USA, LNCS 274,
Springer-Verlag, pp. 364-384.

Noble, R. and Runciman, C. 1995.
Gadgets: Lazy Functional Components for Graphical User Interfaces. To ap-
pear in Proceedings of Seventh International Symposium on Programming
Languages, Implementations, Logics and Programs, The Netherlands, 19-23
September, 1995, LNCS ??, Springer-Verlag, pp. ??

References 19

Nöcker, E.G.J.M.H., Smetsers, J.E.W., Eekelen, M.C.J.D. van, and Plasmeijer, M.J.
1991.
Concurrent Clean. In Aarts, E.H.L., Leeuwen, J. van, Rem, M., eds., Proceed-
ings of Parallel Architectures and Languages Europe, June, Eindhoven, The
Netherlands. LNCS 506, Springer-Verlag, pp. 202-219.

Plasmeijer, M.J. and van Eekelen, M.C.J.D. 1993.
Functional Programming and Parallel Graph Rewriting. Addison-Wesley
Publishing Company 1993.

Appendices

A Counter challenge

A.1 The browser/editor framework

definition module browser

import StdEventIO, StdReceiver

:: Browser m

 = { bViews :: [ViewDef` Void Void m],

 bModelData :: m

 }

:: ViewDef` E.l E.p m

 = Hidden (ViewDef l p m)

:: ViewDef l p m

 = { vRespond :: RespondF m (PState l p),

 vInitState :: InitStateF l p m,

 vInitIO :: InitIOF l p m

 }

:: RespondF m ps :== ((m,m),ps) -> ps

:: InitStateF l p m :== m -> (l,p)

:: InitIOF l p m :== (BrowseInfo m) -> InitIO l p

openBrowser creates a browsing program, consisting of one control process, and an arbitrary number of view pro-

cesses.

openBrowser ::(Browser m) *World -> *World

BrowseInfo and its operations are needed for viewers to change the model data, create new viewers, and close their

administration.

:: BrowseInfo m

changeModelData::(BrowseInfo m) (m->m) (PState .l .p) -> PState .l .p

closeModelData ::(BrowseInfo m) (PState .l .p) -> PState .l .p

openViewer ::(BrowseInfo m) (ViewDef` Void Void m)

The GUI-fest challenges 20

 (PState .l .p) -> PState .l .p

closeView ::(BrowseInfo m) (PState .l .p) -> PState .l .p

changeModelData applies the action to the model data (asynchronously). The pair of old model data and
new model data is then applied to all vRespond functions of the other view processes.

closeModelData closes the control process. This action makes sense only at termination of the whole pro-
gram.

openViewer spawns a new view process that participates in all viewing actions of the program.
closeView removes the view process from the program administration. As a result the view process

is excluded from further updates of the model data. Note that the view process is not
terminated by this function! This is the responsibility of the process itself. Note also that
view processes can be terminated without applying closeView.

implementation module browser

import StdBool, StdList, StdFunc

import StdEventIO, StdReceiver

The exported types and functions of browsers.

:: Browser m

 = { bViews :: [ViewDef` Void Void m],

 bModelData :: m

 }

:: ViewDef` E.l E.p m

 = Hidden (ViewDef l p m)

:: ViewDef l p m

 = { vRespond :: RespondF m (PState l p),

 vInitState :: InitStateF l p m,

 vInitIO :: InitIOF l p m

 }

:: RespondF m ps :== ((m,m),ps) -> ps

:: InitStateF l p m :== m -> (l,p)

:: InitIOF l p m :== (BrowseInfo m) -> InitIO l p

openBrowser creates a browsing program, consisting of one control process, and an arbitrary number of view pro-

cesses.

openBrowser :: (Browser m) *World -> *World

openBrowser browser world

 = OpenIO { ioDefInit =[initControlGUI browser],

 ioDefAbout="Browse" }

 (initLocal browser.bModelData, 0)

 world

BrowseInfo and its operations are needed for viewers to change the model data, create new viewers, and close their

administration.

:: BrowseInfo m

 = { bView :: ViewId m,

A Counter challenge 21

 bControl :: ControlId m

 }

changeModelData :: (BrowseInfo m) (m->m) (PState .l .p) -> PState .l .p

changeModelData bInfo action ps

= seqPIO [ASyncSend bInfo.bControl (Action bInfo.bView action)] ps

closeModelData :: (BrowseInfo m) (PState .l .p) -> PState .l .p

closeModelData bInfo ps

= seqPIO [ASyncSend bInfo.bControl Quit] ps

openViewer :: (BrowseInfo m) (ViewDef` Void Void m) (PState .l .p) -> PState .l .p

openViewer bInfo viewDef ps

= seqPIO [ASyncSend bInfo.bControl (NewView viewDef)] ps

closeView :: (BrowseInfo m) (PState .l .p) -> PState .l .p

closeView bInfo ps

= seqPIO [ASyncSend bInfo.bControl (CloseView bInfo.bView)] ps

The types and functions of a view process:

:: ViewM m = RespondTo (m,m)

:: ViewId m :== RId (ViewM m)

The receiver viewer function:

viewR :: (ViewDef .l .p m) (ViewM m) (PState .l .p) -> PState .l .p

viewR viewDef (RespondTo modelchange) ps = viewDef.vRespond (modelchange, ps)

The types and functions of the control process:

:: ControlM m = Action (ViewId m) (m->m)

 | NewView (ViewDef` Void Void m)

 | NewViewId (ViewId m)

 | CloseView (ViewId m)

 | Quit

:: ControlId m :== RId (ControlM m)

:: LocalC m = { views :: [ViewId m],

 model :: m,

 myself :: Maybe (ControlId m)

 }

:: Maybe x = Nothing | Just x

:: *CState m :== PState (LocalC m) Int

The initial local state:

initLocal :: m -> LocalC m

initLocal initModelData = { views = [],

 model = initModelData,

 myself = Nothing }

The GUI-fest challenges 22

The initial actions:

initControlGUI :: (Browser m) (CState m) -> CState m

initControlGUI browser ps=:{pLocal={model,views,myself}}

= seq (map openView browser.bViews) ps1

where

 (me,io1) = OpenReceiver rDef ps.pIOState

 rDef = Receiver [ReceiverFunction controlR]

 ps1 = { ps & pLocal={ myself = Just me,

 model = model,

 views = views },

 pIOState = io1

 }

The receiver control function:

controlR :: (ControlM m) (CState m) -> CState m

controlR (Action sender act) ps=:{pLocal}

= {ps & pLocal = {pLocal & model=newModel},

 pIOState= broadcast others (RespondTo (model,newModel)) ps.pIOState}

where

 newModel = act pLocal.model

 others = filter (not o eqRId sender) pLocal.views

controlR (NewView viewDef) ps

= openView viewDef ps

controlR (NewViewId sender) ps=:{pLocal}

= {ps & pLocal = {pLocal & views=[sender:pLocal.views]}}

controlR (CloseView sender) ps=:{pLocal}

= {ps & pLocal = {pLocal & views=filter (not o eqRId sender) pLocal.views}}

controlR Quit ps

= seqPIO [QuitIO] ps

Creating a new view process:

openView :: (ViewDef` Void Void m) (CState m) -> CState m

openView (Hidden viewDef) ps=:{pLocal={model,myself=Just me}}

= seqPIO [NewIO ioDef initState] ps

where

 ioDef = { ioDefInit = [initview me viewDef],

 ioDefAbout= "Browse" }

 initState = viewDef.vInitState model

 initview::(ControlId m) (ViewDef .l .p m) (PState .l .p) -> PState .l .p

 initview controlId viewDef ps

 = seq initIO {ps & pIOState=io2}

 where

 (viewId,io1) = OpenReceiver rDef ps.pIOState

 rDef = Receiver [ReceiverFunction (viewR viewDef)]

 io2 = ASyncSend controlId (NewViewId viewId) io1

 browseInfo = { bView = viewId,

 bControl= controlId }

 initIO = viewDef.vInitIO browseInfo

A Counter challenge 23

Asynchronous broadcast:

broadcast :: [RId m] m (IOState .l .p) -> IOState .l .p

broadcast [id:ids] message ioState

= broadcast ids message (ASyncSend id message ioState)

broadcast _ _ ioState = ioState

A.2 The counter as a special case

module counter

import StdEnv, StdWindow, StdControl, StdPicture, StdTimer

import browser

:: Model :== [Link]

:: Link = { link :: LinkId,

 count :: Int,

 auto :: Bool

 }

:: Local = { myLink :: LinkId,

 links :: [Link],

 binfo :: Maybe (BrowseInfo Model)

 }

:: LinkId :== Int

:: Maybe x = Nothing | Just x

:: Nil = Nil

:: *State public :== PState Local public

Start :: *World -> *World

Start world = openBrowser browser world

where

 browser = { bViews =[view initLinknr],

 bModelData=[{link=initLinknr,count=0,auto=False}]}

 view l = Hidden { vRespond = respond,

 vInitState= initstate l,

 vInitIO = initio }

 initLinknr = 0

 initstate :: LinkId Model -> (Local,Nil)

 initstate l model

 = ({ myLink = l,

 links = if i_exist model [{link=l,count=0,auto=False}:model],

 binfo = Nothing},

 Nil)

 where

 (i_exist,_) = selectLink l model

 initio :: (BrowseInfo Model) -> InitIO Local .p

 initio b = [initIO` b]

 where

 initIO` b ps=:{pLocal={myLink,links}}

The GUI-fest challenges 24

 = seqPIO [OpenWindow wDef,OpenTimer tDef]

 {ps & pLocal={ps.pLocal & binfo=Just b}}

 where

 tDef= Timer TicksPerSecond [TimerId timerId,

 TimerSelect Unable,

 TimerFunction (_ ps->Incr ps)]

 wDef= DialogWindow ("Counter"+++toString myLink) manualId

 [TextControl (toString me.count) [ControlId textId,

 ControlSize (150,20)],

 ButtonControl "Manual" [ControlFunction Manual,

 ControlId manualId,

 left],

 ButtonControl "Auto" [ControlFunction Auto,

 ControlId autoId,

 ControlSelectState autoAble],

 ButtonControl "Copy" [ControlFunction Copy,

 left],

 ButtonControl "Link" [ControlFunction Link],

 ButtonControl "Close" [ControlFunction Close,

 left],

 ButtonControl "Quit" [ControlFunction Quit]

]

 [WindowId windowId,

 WindowOk manualId

]

 left = ControlPos (Left,(0,0))

 manualId = 3

 (_,me) = selectLink myLink links

 autoAble = if me.auto Unable Able

 Incr :: (State .p) -> State .p

 Incr ps=:{pLocal={myLink,links,binfo=Just b}}

 = seq [setLocalLinks (newlink links),

 seqPIO [SetWindow windowId

 [SetTextControl textId (toString newcount)]],

 changeModelData b newlink] ps

 where

 (_,me) = selectLink myLink links

 newcount = 1+me.count

 newlink ls= map (\l->if (myLink==l.link) {l & count=newcount} l) ls

 Manual :: (State .p) -> State .p

 Manual ps=:{pLocal={myLink,links,binfo=Just b}}

 = seq [setLocalLinks (setAuto myLink False links),

 enableAuto,

 changeModelData b (setAuto myLink False),

 Incr] ps

 Auto :: (State .p) -> State .p

 Auto ps=:{pLocal={myLink,links,binfo=Just b}}

 = seq [setLocalLinks (setAuto myLink True links),

 seqPIO [EnableTimer timerId],

 disableAuto,

 changeModelData b (setAuto myLink True)] ps

 Copy :: (State .p) -> State .p

 Copy ps=:{pLocal={links,binfo=Just b}}

 = seq [changeModelData b (newviews newlinknr),

A Counter challenge 25

 openViewer b (view newlinknr)] ps

 where

 newlinknr = 1+(foldr (\x y->max x y) 0 (map (\x->x.link) links))

 newviews l model = [{link=l,count=0,auto=False}:model]

 Link :: (State .p) -> State .p

 Link ps=:{pLocal={myLink,binfo=Just b}} = openViewer b (view myLink) ps

 Close :: (State .p) -> State .p

 Close ps=:{pLocal={links=[_]}} = Quit ps

 Close ps=:{pLocal={myLink,binfo=Just b}}

 = seq [changeModelData b (removeLink myLink),

 closeView b,

 seqPIO [QuitIO]] ps

 Quit :: (State .p) -> State .p

 Quit ps=:{pLocal={myLink,binfo=Just b}}

 = seq [changeModelData b (_->[]),

 closeModelData b,

 seqPIO [QuitIO]] ps

 timerId = 1

 windowId = 1

 [textId,autoId:_] = [1..]

 respond :: ((Model,Model), State .p) -> State .p

 respond ((_,newmodel),ps=:{pLocal={myLink,links,binfo=Just b}})

 | not i_exist

 = seqPIO [QuitIO] (closeView b ps)

 | oldcount==newcount

 = ps1

 = seqPIO [SetWindow windowId

 [SetTextControl textId (toString newcount)]] ps1

 where

 (i_exist,newme) = selectLink myLink newmodel

 newcount = newme.count

 (_,oldme) = selectLink myLink links

 oldcount = oldme.count

 ps1 = controlChange (setLocalLinks newmodel ps)

 controlChange = if (autoOn oldme newme) disableAuto

 (if (autoOff oldme newme) enableAuto I)

 enableAuto ps = seqPIO [SetWindow windowId [EnableControls [autoId]],

 DisableTimer timerId] ps

 disableAuto ps = seq [SetWindow windowId [DisableControls [autoId]] ps

selectLink :: LinkId [Link] -> (Bool,Link)

selectLink i [l:ls]

| i == l.link = (True,l)

 = selectLink i ls

selectLink i [] = (False,{link=0,count=0,auto=False})

removeLink :: LinkId [Link] -> [Link]

removeLink i [l:ls]

| i == l.link = ls

 = [l:removeLink i ls]

removeLink i [] = []

The GUI-fest challenges 26

setAuto :: LinkId Bool [Link] -> [Link]

setAuto i a [l:ls]

| i == l.link = [{l & auto=a}:ls]

 = [l:setAuto i a ls]

setAuto i a [] = []

autoOn :: Link Link -> Bool

autoOn old new = not old.auto && new.auto

autoOff :: Link Link -> Bool

autoOff old new = old.auto && not new.auto

setLocalLinks :: [Link] (State .p) -> State .p

setLocalLinks ls ps = {ps & pLocal={ps.pLocal & links=ls}}

B The Explode game

B.1 The board data structure

definition module board

from StdIOCommon import Size

:: Board

:: Player :== Int

:: Position :== (Int,Int) // (row,col) of board.
 // Rows range from left to right (1-width),
 // Cols range from top to bottom (1-height).
:: Move :== (Player, Position)

:: Content :== Maybe (Player, Int) // If stones>0 then (Just (player,stones)) otherwise Nothing.
:: Maybe x = Just x | Nothing

convenient operations on Maybe:

just :: (Maybe x) -> Bool // just (Just _) = True; just Nothing = False
nothing :: (Maybe x) -> Bool // nothing Nothing = True; nothing (Just _) = False
justis :: (Maybe x) -> x // justis (Just x) = x; justis Nothing = undef

creation of boards:

newRectBoard:: Size -> Maybe Board // Create a new rectangular, empty board of size (w,h).
// If (w<3 || h<3) then (newRectBoard @1) = Nothing.

checks on boards:

stable :: Board -> Bool // All positions are filled with stone of same player
legalMove :: Move Board -> Bool // A move (player,pos) is legal if:

// pos is in range &&

B The Explode game 27

// content pos @2=Nothing ||
// content pos @2=Just (player,_)

generating new boards:

explode :: Board -> Maybe Board // Explode a position if available.
// If nothing exploded then (explode @1) = Nothing.

addStone:: Move Board -> Board // Place the stone on the given position.
// If (not (legalMove @1 @2)) then (addStone @1 @2)=@2.

access on boards:

dimension ::Board -> Size // The size of the board.
maxboardload::Board -> Int // The maximum of all maximal possible stone loads.
content ::Position Board -> Content // The content of @2 at @1.

// If @1 out of range then (content @1 @2) = Nothing.
compare ::Board Board -> [(Position, Content)]

// The differences between @1 and @2.
// If dimension @1<>dimension @2: result is [].

implementation module board

import StdEnv,StdList

from StdIOCommon import Size

:: Board :== [[Content]] // Board = [column], column = [row].
:: Player :== Int

:: Position :== (Int,Int) // (row,col) of board.
// Rows range from left to right (1-width),
// Cols range from top to bottom (1-height).

:: Move :== (Player, Position)

:: Content :== Maybe (Player, Int) // If stones>0 then (Just (player,stones)) else Nothing.
:: Maybe x = Just x | Nothing

convenient operations on Maybe:

just :: (Maybe x) -> Bool

just (Just _) = True

just _ = False

nothing :: (Maybe x) -> Bool

nothing Nothing = True

nothing _ = False

justis :: (Maybe x) -> x

justis (Just x) = x

convenient operations on where (corner,interior,side,board) a position is:

The GUI-fest challenges 28

corner :: Size Position -> Bool

corner (w,h) (x,y) = x==1&&y==1 || x==1&&y==h || x==w&&y==1 || x==w&&y==h

interior :: Size Position -> Bool

interior (w,h) (x,y) = between 2 (w-1) x && between 2 (h-1) y

edge :: Size Position -> Bool

edge size pos = not (interior size pos || corner size pos)

inboard :: Size Position -> Bool

inboard (w,h) (x,y) = between 1 w x && between 1 h y

between :: Int Int Int -> Bool

between min max x = min<=x && x<=max

maxstones :: Size Position -> Int

maxstones size pos

| corner size pos = 2

| interior size pos = 4

 = 3

creation of boards:

/* newRectBoard:

 Create a new rectangular, empty board of size (w,h).

 If (w<3 || h<3) then (newRectBoard @1) = Nothing.

*/

newRectBoard :: Size -> Maybe Board

newRectBoard (w,h)

| w<3 || h<3 = Nothing

 = Just (repeatn w (repeatn h emptyContent))

where

 emptyContent = Nothing

checks on boards:

/* stable:

 All positions are filled with stone of same player

*/

stable :: Board -> Bool

stable board

| nothing c = False

 = all (\row->all (posstable p) row) board

where

 c = content (1,1) board

 (p,_) = justis c

 posstable p (Just (p`,_)) = p==p`

 posstable p _ = False

/* explosive:

 All elements that can explode.

*/

explosive :: Board -> [Position]

B The Explode game 29

explosive board = flatten (map (explosivecol (dimension board)) (zip2 [1..] board))

where

 explosivecol :: Size (Int,[Content]) -> [Position]

 explosivecol size (colnr,col) = explosivefields size (colnr,1) col

 explosivefields :: Size Position [Content] -> [Position]

 explosivefields size position=:(col,row) [c:cs]

 | canexplode size position c = [position:positions]

 = positions

 where

 positions = explosivefields size (col,row+1) cs

 canexplode size pos (Just (_,stones)) = stones==maxstones size pos

 canexplode _ _ _ = False

 explosivefields _ _ _ = []

/* legalMove:

 The move (player,pos) is legal if:

 pos is in range &&

 content pos @2 = Nothing || content pos @2 = Just (player,_)

*/

legalMove :: Move Board -> Bool

legalMove (player,pos) board

| inboard size pos = nothing c || player==p

 = False

where

 size = dimension board

 c = content pos board

 (p,_) = justis c

generating new boards:

/* explode:

 Explode all positions.

 If (explosive @1=[]) then (explode @1) = Nothing.

*/

explode :: Board -> Maybe Board

explode board

| expls==[] = Nothing

 = Just (seq (clear++fill) board)

where

 expls = explosive board

 (player,_) = justis (content (hd expls) board)

 clear = map (\pos->changeContent pos (_->Nothing)) expls

 fill = flatten (map (\(col,row)->[addStone (player,(col-1,row)),

 addStone (player,(col, row-1)),

 addStone (player,(col, row+1)),

 addStone (player,(col+1,row))]) expls)

/* addStone:

 Place the stone of the player on the given position, and set the

 position to be owned by this player.

 If position is not in range then (addStone @1 @2) = @2.

*/

The GUI-fest challenges 30

addStone :: Move Board -> Board

addStone (player,pos) board

 = changeContent pos (addStone` (maxstones size pos) player) board

where

 size = dimension board

 addStone` :: Int Player Content -> Content

 addStone` max player Nothing = Just (player,1)

 addStone` max player (Just (_,stones)) = Just (player,min (stones+1) max)

/* changeContent:

 If position is not in range then changeContent @1 @2 @3 = @3.

*/

changeContent :: Position (Content->Content) Board -> Board

changeContent pos=:(col,row) f board

| inboard size pos = cbefore++[rbefore++[f c]++rafter]++cafter

 = board

where

 size = dimension board

 (cbefore,[column:cafter]) = split (col-1) board

 (rbefore,[c :rafter]) = split (row-1) column

 split :: Int [x] -> ([x],[x])

 split 0 xs = ([],xs)

 split i [x:xs] = ([x:xs1],xs2)

 where

 (xs1,xs2) = split (i-1) xs

access on boards:

/* dimension:

 The size of the board.

*/

dimension :: Board -> Size

dimension board=:[col:_] = (#board,#col)

/* maxboardload:

 The maximum of all maximal possible stone loads.

*/

maxboardload :: Board -> Int

maxboardload _ = 4

/* content:

 The content of @2 at @1.

 If @1 out of range then (content @1 @2) = Nothing.

*/

content :: Position Board -> Content

content pos=:(col,row) board

| inboard (dimension board) pos = board!(col-1)!(row-1)

 = Nothing

B The Explode game 31

/* compare:

 The differences between @1 and @2.

 If dimension @1 <> dimension @2 then compare @1 @2 = [].

*/

compare :: Board Board -> [(Position, Content)]

compare board1 board2

| x1==x2 && y1==y2 = comparecols 1 (zip2 board1 board2)

 = []

where

 (x1,y1) = dimension board1

 (x2,y2) = dimension board2

 comparecols :: Int [([Content],[Content])] -> [(Position, Content)]

 comparecols col [zipcol:zipcols]

 = comparepos (col,1) zipcol++comparecols (col+1) zipcols

 where

 comparepos :: Position ([Content],[Content]) -> [(Position, Content)]

 comparepos position=:(col,row) ([c1:cs1],[c2:cs2])

 | c1==c2 = comparepos (col,row+1) (cs1,cs2)

 = [(position,c2):comparepos (col,row+1) (cs1,cs2)]

 comparepos _ _ = []

 comparecols _ [] = []

instance == (Maybe x) | Eq x

(==) :: !(Maybe x) !(Maybe x) -> Bool | Eq x

(==) Nothing Nothing = True

(==) (Just x1) (Just x2) = x1==x2

(==) _ _ = False

B.2 The user interface

module Explode

import StdEnv

import StdEventIO, StdControl, StdWindow, StdMenu, StdTimer

import StdPicture, StdFont, StdIOState, StdSystem

import board

The major type definitions of the Explode game:

:: Explode = { board :: Board, // The board to play on
 nrplayers :: Int, // The nr. of players (2-#colours)
 turn :: Int, // Who is playing
 colours :: ColourTable // The available colours (#colours>=2)
 }

:: ColourTable :== [Colour]

:: *State public :== PState Explode public

:: Nil = Nil

Starting the Explode game:

Start :: *World -> *World

Start world

The GUI-fest challenges 32

= OpenIO {ioDefInit=initIO,ioDefAbout="Explode"} (initExplode,Nil) world

where

 initExplode = { board = initBoard,

 nrplayers = initPlayers,

 turn = 1,

 colours = initColours }

 where

 initBoard = justis (newRectBoard initSize)

 initSize = (initCols,initRows)

 initCols = 5

 initRows = 5

 initPlayers = 2

 initColours = [BlackColour,WhiteColour, RedColour, GreenColour,

 BlueColour, YellowColour,CyanColour,MagentaColour]

 initIO = [OpenExplodeWindow, seqPIO [OpenMenu 0 menuDef, OpenTimer timerDef]]

 menuDef = Menu "Explode"

 [MenuItem "New..." [MenuFunction new,

 MenuShortKey 'n'],

 MenuItem "Next" [MenuId NextPlayerId,

 MenuFunction nextplayer],

 MenuItem "Halt" [MenuId HaltId,

 MenuShortKey '.',

 MenuFunction halt,

 MenuSelectState Unable],

 MenuItem "Quit" [MenuShortKey 'q',

 MenuFunction (seqPIO [QuitIO])]]

 []

 where

 halt :: (State .p) -> State .p

 halt ps = seqPIO [DisableTimer ExplosionsId, DisableMenuItems [HaltId]] ps

 new :: (State .p) -> State .p

 new ps=:{pLocal={board,nrplayers,colours}}

 = seqPIO [DisableTimer ExplosionsId, OpenWindow newgameDef] ps

 where

 newgameDef

 = DialogWindow "New Game"

 [EditControl (toString nrplayers) 100 1 [ControlId nrid],

 TextControl ("nr.of players (2.."+++(toString maxplayers)+++")")

 [],

 EditControl (toString w) 100 1 [ControlId wid, left],

 TextControl "width (3..)" [],

 EditControl (toString h) 100 1 [ControlId hid, left],

 TextControl "height (3..)" [],

 ButtonControl "Cancel" [ControlFunction

 (cancel NewGameId),

 left],

 ButtonControl "Ok" [ControlId okid,

 ControlFunction ok]]

 [WindowId NewGameId,

 WindowOk okid]

 left = ControlPos (Left,(0,0))

 (w,h) = dimension board

 maxplayers = #colours

 [okid,nrid,wid,hid:_] = [1..]

B The Explode game 33

 cancel :: Id (State .p) -> State .p

 cancel wid ps = seqPIO [CloseWindow wid] ps

 ok :: (State .p) -> State .p

 ok ps

 | players<2 || players> maxplayers

 = notice ("Nr.of players between 2 and "+++toString maxplayers) ps1

 | width<3 || height<3

 = notice ("Width and height should be larger than 3") ps1

 = seq [cancel NewGameId,

 seqPLoc [newlocal players (width,height)],

 NewExplodeWindow] ps1

 where

 (_,info,io) = GetWindow NewGameId ps.pIOState

 ps1 = {ps & pIOState=io}

 players = toInt (snd (GetEditTextControl nrid info))

 width = toInt (snd (GetEditTextControl wid info))

 height = toInt (snd (GetEditTextControl hid info))

 newlocal players size local

 = {local & board = justis (newRectBoard size),

 nrplayers= players,

 turn = 1}

 notice text ps

 = OpenModalWindow noticeDef ps

 where

 noticeDef

 = DialogWindow "Incorrect input"

 [TextControl text [],

 ButtonControl "Aha!" [ControlId confirmid,

 ControlFunction (cancel NoticeId)]]

 [WindowId NoticeId,

 WindowOk confirmid]

 where

 confirmid = 1

 timerDef = Timer 0 [TimerId ExplosionsId,

 TimerSelect Unable,

 TimerFunction doAnExplosion]

 where

 doAnExplosion :: NrOfIntervals (State .p) -> State .p

 doAnExplosion _ ps=:{pLocal={board}}

 | stable board = seqPIO [DisableTimer ExplosionsId,

 EnableMenuItems [NextPlayerId]] ps

 | nothing newboard = seq [seqPIO [DisableTimer ExplosionsId,

 EnableMenuItems [NextPlayerId],

 SetWindow ExplodeWindowId

 [EnableControls [ExplodeDisplayId]]],

 nextplayer] ps

 = seq [seqPLoc [\l->{l & board=board1}],

 showchanges ExplodeWindowId board board1] ps

 where

 newboard = explode board

 board1 = justis newboard

The GUI-fest challenges 34

/* OpenExplodeWindow:

 The explode window in which the game is played.

*/

OpenExplodeWindow :: (State .p) -> State .p

OpenExplodeWindow ps=:{pLocal={board,nrplayers,turn,colours}}

= seqPIO [OpenWindow explodeDef] ps

where

 explodeDef = DialogWindow "Explode"

 [CompoundControl [TextControl "Player:" [],

 PlayerControl nrplayers turn colours]

 (_ _ -> []) [ControlPos (Center,(0,0))],

 CompoundControl [

 ExplodeControl board colours ExplodeWindowId (col,row)

 \\ row<-[1..initRows],

 col<-[1..initCols]]

 (_ size -> background [SetPenColour backColour,

 FillRectangle ((0,0),size),

 SetPenColour BlackColour])

 [ControlPos (Center,(0,10)),

 ControlId ExplodeDisplayId]

]

 [WindowId ExplodeWindowId,

 WindowItemSpace (hmm 2.5,vmm 2.5),

 WindowUpdate background]

 (initCols,initRows) = dimension board

 background upd ps = seqPIO [DrawInWindow ExplodeWindowId drawfs] ps

 where

 drawfs = [SetPenColour backColour

 : map FillRectangle upd]

 ++

 [SetPenColour BlackColour]

 backColour = RGB 0.5 0.5 0.5

/* NewExplodeWindow:

 Close the current explode window and open a new one, depending on the new

 local state.

*/

NewExplodeWindow :: (State .p) -> State .p

NewExplodeWindow ps

= seq [seqPIO [CloseWindow ExplodeWindowId],OpenExplodeWindow] ps

/* ExplodeControl:

 The explode control, in control of one field of the explode game:

*/

ExplodeControl :: Board ColourTable Id Position -> ControlDef (State .p)

ExplodeControl board colours wid position=:(col,row)

= CustomButtonControl (buttonW+1,buttonH+1)

 (ExplodeLook position board colours)

 (if (col>1) controlAtts

 [ControlPos (Left,(0,0)):controlAtts])

where

 myid = ExplodeId position (snd (dimension board))

 controlAtts = [ControlId myid,

 ControlFunction (placeStone position)]

B The Explode game 35

 (buttonW, buttonH) = ExplodeSize board

 placeStone :: Position (State .p) -> State .p

 placeStone position=:(col,row) ps=:{pLocal={board,turn}}

 | legalMove move board = seq [seqPLoc [\l->{l & board=board1}],

 showchanges wid board board1,

 seqPIO [SetWindow ExplodeWindowId

 [DisableControls [ExplodeDisplayId]],

 EnableTimer ExplosionsId,

 DisableMenuItems [NextPlayerId],

 EnableMenuItems [HaltId]]] ps

 = seqPIO [Beep] ps

 where

 move = (turn,position)

 board1 = addStone move board

StoneSize :== (4,4)

ExplodeSize :: Board -> Size

ExplodeSize board

= (w*space,h*space)

where

 maxload = maxboardload board

 d_real = sqrt (toReal maxload)

 d_int = toInt d_real

 cols_rows = if ((d_real*d_real)<(toReal maxload)) (d_int+1) d_int

 space = 2*cols_rows+1

 (w,h) = StoneSize

ExplodeLook :: Position Board ColourTable SelectState Size -> [DrawFunction]

ExplodeLook position board colours _ (buttonW,buttonH)

 = [SetPenColour (RGB 0.8 0.8 0.8),

 FillRectangle explodebox,

 DrawRectangle explodebox]

 ++

 drawload

 ++

 [SetPenColour BlackColour]

where

 c = content position board

 has_stones = just c

 colour = if has_stones (colours!(player-1)) WhiteColour

 (player,stones) = justis c

 drawload = if has_stones

 (take stones (map (drawstone colour) stone_rects))

 []

 explodebox = ((0,0),(buttonW,buttonH))

 (w, h) = StoneSize

 (col, row) = ((buttonW-w)/w, (buttonH-h)/h)

 stone_rects = [((x*w,y*h),((x+1)*w,(y+1)*h))

 \\ y<-[1,3..row],x<-[1,3..col]]

 drawstone col rect=:(lt,(r,b)) picture

 = FillRectangle rect (

 SetPenColour col (

 FillRectangle (lt,(r+1,b+1)) (

 SetPenColour BlackColour picture)))

The GUI-fest challenges 36

/* PlayerControl:

 The player control, showing who's playing:

*/

PlayerControl :: Int ColourTable -> ControlDef (State .p)

PlayerControl nrplayers turn colours

= CustomControl (pcW*nrplayers,pcH)

 (PlayerLook nrplayers turn colours) (ListCS [])

 [ControlSelectState Unable,

 ControlId myid]

where

 (pcW,pcH) = PlayerSize

PlayerLook :: Int Int ColourTable SelectState Size -> [DrawFunction]

PlayerLook nrplayers turn colours _ (w,h)

 = [EraseRectangle ((0,0),(pcW*nrplayers,pcH))] ++ drawcolours ++ drawturn

where

 turnW = 2

 drawcolours = map drawcolour (zip2 [0..nrplayers-1] (take nrplayers colours))

 drawcolour (i,col) picture

 = seq [SetPenColour col,

 FillRectangle colourbox,

 SetPenColour BlackColour,

 DrawRectangle colourbox] picture

 where

 colourbox = ((i*pcW+turnW,turnW),((i+1)*pcW-turnW,pcH-turnW-1))

 drawturn = [SetPenSize (turnW,turnW),

 SetPenColour BlackColour,

 DrawRectangle (((turn-1)*pcW,0),(turn*pcW,pcH-(turnW-1))),

 SetPenSize (1,1)]

 (pcW,pcH) = PlayerSize

PlayerSize :: Size

PlayerSize = (20,20)

showchanges :: Id Board Board (State .p) -> State .p

showchanges wid oldboard newboard ps=:{pLocal={board,colours}}

 = seqPIO [SetWindow wid (map look (compare oldboard newboard))] ps

where

 look (pos,_) = SetControlLook (ExplodeId pos (snd (dimension board)))

 (ExplodeLook pos board colours)

nextplayer :: (State .p) -> State .p

nextplayer ps=:{pLocal={nrplayers,turn,colours}}

= seq [seqPLoc [\l->{l & turn=turn`}],

 seqPIO [SetWindow ExplodeWindowId [SetControlLook PlayerId look]]] ps

where

 turn`= 1+(turn mod nrplayers)

 look = PlayerLook nrplayers turn` colours

global Ids:

ExplodeWindowId = 1 // The Id of the explode window
PlayerId = 1 // The Id of the PlayerControl

B The Explode game 37

ExplodeDisplayId = 2 // The Id of the explode display (a compound)

ExplodeId :: Position Int -> Id

ExplodeId (col,row) nrRows = col*10^(nrdigits nrRows)+row

NewGameId = 2 // The Id of the New Game dialogue
NoticeId = 3 // The Id of the notice dialogue

ExplosionsId = 1 // The Id of the timer

NextPlayerId = 1 // The Id of the Next command
HaltId = 2 // The Id of the Halt command

convenience operations:

nrdigits :: Int -> Int

nrdigits x = if (x<0) (1+(nrdigits` (0-x))) (nrdigits` x)

where

 nrdigits` x = if (x<10) 1 (1+(nrdigits` (x/10)))

