
High Level Specification of I/O
in Functional Languages

Peter Achten, John van Groningen, Rinus Plasmeijer
revised version, November 1992

University of Nijmegen, The Netherlands
peter88@cs.kun.nl, john@cs.kun.nl, rinus@cs.kun.nl

Abstract

The interface with the outside world has always been one of the
weakest points of functional languages. It is not easy to incorpo-
rate I/O without being allowed to do side-effects. Furthermore,
functional languages allow redexes to be evaluated in any order
while I/O generally has to be performed in a very specific order.
In this paper we present a new solution for the I/O problem
which we have incorporated in the language Concurrent Clean.
Concurrent Clean offers a linear type system called Unique
Types . It makes it possible to define functions with side-effects
without violating the functional semantics. Now it is possible to
change any object in the world in the way we wanted: e.g. arrays
can be updated in-situ, arbitrary file manipulation is possible.
We have used this powerful tool among others to create a library
for window based I/O. Using an explicit environment passing
scheme provides a high-level and elegant functional specifica-
tion method for I/O, called Event I/O. Now the specification of
I/O has become one of the strengths of functional languages: in-
teractive programs written in Concurrent Clean are concise, easy
to write and comprehend as well as efficient. The presented so-
lution can in principle be applied for any other functional lan-
guage as well provided that it actually uses graph rewriting se-
mantics in the implementation.

1 Introduction

A lot has been said in favour of functional programming [2],[12] but the fact is
that functional programming suffers from a paramount lack of appreciation in
the established programming society. For one reason this is caused by the fact
that only recently functional programs have gained execution speeds comparable
to their imperative rivals [13],[18],[8]. Another important reason is that func-
tional programming defected on performing input output (I/O hereafter) with the
outer world.

I/O and functional programming doesn’t seem to be unifiable: functional
languages don’t have the notion of side-effects and lack a precise control of the
evaluation order . These are precisely the important aspects for any I/O model.
There have been many proposals how to deal with I/O (see section 8) but none

of them are completely satisfactory. In particular it is very hard to deal with the
side-effect problem.

In this paper we present Clean's Event I/O , a new solution for the I/O prob-
lem that has been implemented in the lazy functional graph rewriting language
Concurrent Clean [5],[13],[17] developed at the University of Nijmegen. This
solution not only deals with the problems mentioned above but it also allows the
specification of complicated window based I/O on a very high-level of abstrac-
tion. Last but not least, the presented solution can be implemented efficiently
and is general enough to be applied for other functional languages as well.

The paper is organised as follows. In section 2 we first give a very short de-
scription of Concurrent Clean. In section 3 we briefly explain Clean's Unique
Types and explain how they can be used to define functions with side-effects.
Furthermore we explain how explicit environment passing is used to control the
evaluation order. Now we have the tools to change the world. In section 4 we
show the world we have created with the I/O library. In section 5 we present as
example the Game of Life to demonstrate the resulting high-level specification
of Clean's Event I/O. The implementation of the I/O library is discussed in sec-
tion 6. Section 7 discusses Clean Event I/O and it is compared with other solu-
tions in section 8. Conclusions and future work can be found in section 9.

2 Concurrent Clean

Concurrent Clean [5],[13],[17] is a lazy functional programming language based
on Term Graph Rewriting [4]. Here is an example of a Clean function defining
the well-known fibonacci function.

:: Fib INT -> INT;
 Fib 1 -> 1;
 Fib 2 -> 1;
 Fib n -> + (Fib (- n 1)) (Fib (- n 2)), IF > n 2
 -> ABORT "Fib called with argument less than one";

Term Graph Rewriting systems are very suited for efficient implementations
of functional languages [17]. Graph rewriting is actually used in many imple-
mentations. The main difference between Clean and other lazy functional lan-
guages is that in Clean graph rewriting is explicitly in the semantics of the lan-
guage. In Concurrent Clean, the function application to be evaluated is repre-
sented by a possibly cyclic graph. Function definitions are actually Term Graph
Rewriting rules. For instance, in the right-hand-side of the Fib definition above,
actually a graph structure is defined. Each node in the graph contains a symbol
(+, Fib , - , 1) and arguments pointing to other nodes. In Clean, reasoning about
programs is reasoning about graphs. It is straightforward to denote cyclic struc-
tures and shared computations. For instance, the argument node n is shared in
the graph constructed on the right-hand side of the example reflecting the call-
by-need evaluation of functional languages. Term graph rewriting obeys the
functional semantics: given a rewrite rule which left-hand side matches the
computation graph, a new graph is created for those nodes of the right-hand side
which are new to the computation graph. After this, redirection to the new nodes
takes place.

Concurrent Clean provides a type system based on the Milner/Mycroft
scheme. There are a number of predefined types: INT , REAL, etc. and type con-
structors: lists [] , n-tuples () and curried functions =>. Furthermore there are al-
gebraic types, synonym types and abstract types.

Clean has two types of modules: implementation modules and definition
modules. The types and functions specified in an implementation module only
have a meaning inside that module unless they are exported in the corresponding
definition module. For more information we refer to [17] and [6].

3 Managing Side-effects in Concurrent Clean

In this section we explain how to enforce a specific order of evaluation and how
to establish side-effects that are safe (i.e. retaining a pure functional language).
First we will shortly introduce the general ideas which underlie the solutions we
have found.

3.1 Basic Philosophy

Many of the proposed solutions (see section 8) to model I/O in functional lan-
guages have regarded I/O as something alien that in some way had to be incor-
porated. They all effectively do I/O ‘outside’ the program. Our starting point has
been to do I/O ‘inside’ the program. We wanted to have a function that reads a
character from a file, a function that writes a character to a file, a function that
draws a line into a window, etc. So, we wanted to have functions that could
change the state (and the contents) of some (abstract) object such as a file or a
window.

Such "functions" are very common in imperative languages. There are two
problems why this common solution cannot be applied in the functional
paradigm. First of all, these functions are not proper functions: they actually per-
form a side-effect (assignment) to obtain the wanted effect: to change the con-
tents of the abstract object. Assignments are not available in a functional lan-
guage. The second problem is that functions can be evaluated in any order while
functions that perform I/O have to be called in a very specific order.

3.2 Side-effects and Confluence

What kind of problems are caused by functions that perform side-effects? Take
for example file I/O. The most obvious and efficient way to perform file I/O is
by implementing functions that directly read and write to a file such as is com-
mon in imperative languages. However, a naive implementation of such func-
tions in a functional language would conflict with the referential transparency.
For instance, assume a function FWriteC that upon evaluation directly writes a
character to a given file. Assume that such a function is of type :: CHAR FILE ->

FILE . FWriteC takes a character and a file as an argument. However, the
character cannot be written into the given file and returned as result because the
original file can be shared and used in other function applications. Modification
of the argument as a side-effect of the evaluation of a function will therefore
also effect the outcome of other computations that share the same argument. The
result of a program will now depend on the evaluation order, the Church-Rosser

property is lost, the system is no longer confluent. This is illustrated in the fol-
lowing example:

:: F FILE -> (FILE, FILE);
 F file -> (FWriteC 'a' file, FWriteC 'b' file);

Assume that the function FWriteC would actually append, as a side-effect, the
given character to the file it receives as an argument. Now, since the file is
shared in the function body of F the result will be depending on the evaluation
order. It either will be (file++'a', file++"ab") or (file++"ba", file++'b') .
And, indeed, such a side-effect is not conform the standard graph rewriting se-
mantics that prescribes to construct a new file in the function body with the con-
tents of the given file and the given character. So, each time a character is writ-
ten a new file has to be constructed and the old ones have to remain intact. Now
the result of FWriteC are two new files and the result then becomes (file++'a',

file++'b') independent of the chosen evaluation order. Constructing new files
is of course very inefficient and it is not the intention either. One really wants to
have the possibility to modify (update) an existing file instantaneously. The
problem becomes even more obvious when one wants to write to a window on a
screen: one would like to be able to draw in an existing window. In the standard
semantics one would be obligated to construct a new window with each drawing
command.

3.3 Unique Types

Fortunately, side-effects can be allowed under certain conditions. If it can be
guaranteed that the offered argument is not used by (shared with) other function
applications it becomes garbage when it is not used in the function body. So, in
that case one can construct a new object by making use of the old one. This
means that one can destructively update such an argument to construct the func-
tion result. In Concurrent Clean, a type system is incorporated [6], [17] that
guarantees that certain objects (unique objects) can be reused safely.

A node n of a graph G is unique with respect to a node m of G if n is only
reachable from the root of G via m and there exists exactly one path from m to n.
A property of a unique node is the fact that it has a reference count (in-grade) of
one. A reference count of one is however not sufficient for uniqueness, the
whole path from m to n must have reference count one.

m: F a1 … an

n:

root of G

Assume that a node is passed as argument of a certain function application in
such a way that the node is unique with respect to that function application: if

such a node is accessed via a variable in a pattern of the corresponding rewrite
rule and that variable is not used on the right-hand side of that rule, it can be
considered as garbage after matching and reused for building the function result.
It would be nice if at compile time the uniqueness of arguments and results of
functions could be determined. Unfortunately, this is undecidable. In Clean a
decidable approximation has been incorporated using unique types . Unique
types, defined on graphs, have many similari ties with linear types, defined on
lambda terms [7],[22]. An important difference is that Clean's unique types give
information about the way a specific function has to be applied (e.g. this func-
tion has to be called with an argument that is used in a linear way) while other
linear type systems give information about the way expressions are being used
in the function body (e.g. this argument of the function is used linear in the
function body).

The type of a graph in a rewrite rule can have the unique type attribute, i.e.
the graph can be of type UNQ T. If a graph in a left-hand side or in the right-hand
side of a rewrite rule is of type UNQ T, it is guaranteed that at run-time the root of
the corresponding graph is unique with respect to the root of respectively the
function application or function result (see [6], [17]).

The UNQ type attribute can be added by the programmer to any type to express
the restricted use of an object of that type. To verify the correctness of the use of
UNQ attributes the type system has been extended. This means that all applica-
tions on the right-hand side of a function are examined to check that when a pa-
rameter or a result of an UNQ type is demanded, a unique graph of the demanded
type is offered.

An illustrative example is the following. The type of the function FWriteC

that writes a character to a given file as a side-effect will be :: CHAR UNQ FILE

-> UNQ FILE . This type specification guarantees that the function will always be
called with an object of type FILE that is not used somewhere else. That is why
the dangerous example given above becomes illegal:

:: F UNQ FILE -> (UNQ FILE, UNQ FILE);
 F file -> (FWriteC 'a' file, FWriteC 'b' file);

In the function body of F, FWriteC is in both applications not called with an ob-
ject of type UNQ FILE , but an with an object of type FILE (because file is
shared) and therefore rejected by the type system. The following example is ap-
proved:

:: F UNQ FILE -> UNQ FILE;
 F file -> FWriteC 'a' file;

It is OK to share unique elements. It simply means that the object is not unique
anymore and therefore cannot be passed to functions that demand UNQ objects.
So, the following definition is also fine (although not very useful):

:: F UNQ FILE -> (FILE, FILE);
 F file -> (file, file);

The UNQ type predicate is a powerful tool to enforce programs to use objects in a
single threaded way. In Clean the UNQ type attribute can be assigned to any type,
hence also be used in a user defined algebraic type.

3.4 Controlling the Evaluation Order

So, how can functions be evaluated in a specific order? A well-known method is
environment passing . The state of the environment one wants to regard is
coded into an (abstract) object (e.g. a file in the case of file I/O) on which opera-
tions (functions) are defined for creation and manipulation.

Each function that modifies the environment needs the current state of the
environment as argument and yields the updated environment as result. In the
case of file I/O this means that all functions that perform file I/O need a file as
argument and return an updated file as result. So, the abstract object has to be
explicitly passed from one function to another.

When a function performs an update of an argument as a side-effect, it must
be guaranteed that all previous updates of that argument by other functions have
already taken place. So, a function that updates an argument must be hyper-
strict in this argument, i.e. it must be guaranteed that the argument is always in
normal form before the function is applied. This means that functions that per-
form side-effects on an object that is passed around will evaluate this object in a
fixed sequential order: innermost.

4 I/O

Existing environment passing schemes either pass the environment explicitly to
all functions (explicit environment passing schemes) or implicitly to all functions
(implicit environment passing schemes) as in the language FL [3]. In both
schemes the environment is monolithic: it is one single structure and all access
to parts of it must occur via the whole structure. The main disadvantages of us-
ing a monolithic environment are over specification of evaluation order and po-
tential loss of parallelism.

In Clean, the Unique Type attribute can be assigned to any object. This gives
us the possibility to create a "world" that is composed of disjunct sub-worlds.
Each of these sub-worlds is an abstract data structure that can be uniquely
passed around to those functions that need these sub-worlds to perform I/O. So,
we have improved the explicit environment passing scheme by partitioning the
monolithic environment in suitable sub-environments (FILE for file-I/O, IOState

for screen-I/O). This avoids over specification of evaluation order and loss of
parallelism. The Concurrent Clean I/O libraries offer the following environments
to perform I/O: WORLD, FILES , FILE and IOState . These environments have the
following hierarchic relationship:

WORLD

FILES

FILE ... FILE IOState

4.1 WORLD

The WORLD contains all relative information of the concrete environment to pro-
grams. In this version these are the concrete file system and the concrete event
stream used for screen-I/O.

The WORLD is the only monolithic environment in Concurrent Clean. Programs
specify their relationship to the world: pure computations ignore the world and
its sub-environments, whereas interactive programs need to access and change
the world. There are no rules creating WORLDs. The only way to get the world in
the program is as argument of its initial rule, the Start rule. So, the start rule
looks as follows:

ABSTYPE :: UNQ FILES;
RULE
:: Start WORLD -> any*type
 Start w -> any*computation*yielding*the*indicated*type;

Combined with the uniqueness of the WORLD it is guaranteed that there is at most
one world in every program. Contrary to world realisations using linear types the
UNQ typed world may become garbage during program evaluation. This does not
mean that the world has ceased to exist, but it means that the program no longer
performs operations on the WORLD. If the sub-environments have been retrieved
earlier, then these can still be accessed in the program.

4.2 FILES and FILEs

FILES is the unique sub-environment of the WORLD containing all the files (the file
system). It is a unique abstract type defined as follows:

ABSTYPE :: UNQ FILES;
RULE
:: OpenFILES WORLD -> (FILES, WORLD);
:: CloseFILES FILES WORLD -> WORLD;
:: FOpen STRING INT FILES -> (BOOL, UNQ FILE, FILES);
:: SFOpen STRING INT FILES -> (BOOL, FILE, FILES);
:: FWriteC CHAR UNQ FILE -> UNQ FILE;
:: SFReadC FILE -> (BOOL, CHAR, FILE);

So, the file system is retrieved from the WORLD by the rule OpenFILES and put
back again by the rule CloseFILES . Once the FILES has been retrieved from the
WORLD, it can’t be retrieved again without closing it first.

A Concurrent Clean file has type FILE . To open a file (to read or write) one
needs the file system. Only write FILE s are opened as UNQ FILE ; read only FILE s
don’t require the unique attribute. The following example illustrates the use of
WORLD, FILES and FILE s:

RULE
:: Start WORLD -> UNQ FILE;
 Start w
 -> CopyF sf df,
 (fs, w’): OpenFILES w,
 (source_open, sf, fs’): SFOpen "Source" FReadData fs,
 (dest_open, df, fs’’): FOpen "Dest" FWriteData fs’;

:: CopyF FILE UNQ FILE -> UNQ FILE;

 CopyF sf df -> df, IF NOT read_ok
 -> CopyF sf’ (FWriteC char df),
 (read_ok, char, sf’): FReadC sf;

The program retrieves the FILES from the WORLD, after which the WORLD becomes
garbage. From the FILES first the file to be copied is opened followed by the
destination file. The resulting FILES also becomes garbage. The source file is
only being read, so it need not be unique. The destination file is being written
and must therefore be unique. After completion of copying, the source file be-
comes garbage, and the program yields the written file.

4.3 Event I/O

Event I/O is a different class of I/O than FILE I/O. In Event I/O the objects to be
manipulated are graphical interface objects as windows, menus and dialogs.
Graphical interface systems operate event driven: the user of a program com-
municates with that program via the interface objects: with the mouse one draws
pictures, selects menu items, activates windows or presses radio buttons in a dia-
log. One uses the keyboard to fill in text fields in a dialog or to type text in an
edit window, or to select menu items. These actions of the user generate events
to the program. The operating system also uses events to communicate with the
program to notify things have been changed. Finally, manipulations of the inter-
face objects by the program may generate events as well. In sequential systems,
these events are merged in one globally accessible event stream.

To program event driven applications one basically has to parse the events in
the event stream such that the appropriate event handler can be called. However,
this is very low level work which gives rise to rather ugly programs due to the
complexity of event handling. In the Concurrent Clean Event I/O all low level
event management is done in the library. The program reasons about interactions
on a high abstraction level. In this level the concept of Devices is introduced.
The aim of a Device is to capture the essence of its real life counterpart. A De-
vice is an object with a consistent behaviour on a precisely defined set of input
events. The semantics of the Device is partially fixed by the system, and can be
partially specified by the program. Currently there are five devices: the Win-
dowDevice, MenuDevice, DialogDevice, TimerDevice and NullDevice.

The WindowDevice is a real interactive device: its input domain is keyboard-
presses and releases and mouse-clicks and releases coupled with the mouse po-
sition. The WindowDevice manages all open windows of an interaction.
Interactions can have an arbitrary number of open windows. Of all these win-
dows at most one is active: all keyboard events are directed to that window. An
interaction can do screen output only by means of windows. A window gives a
view on a Picture (an UNQ abstract object on which a set of drawing functions are
defined). Pictures are finite objects: they have a range defined by the window’s
PictureDomain.

The MenuDevice conceptualises choosing commands from a set of available
commands. A MenuDevice contains a number of pull down menus each holding
a number of selectable menu items, sub-menus, menu item groups and menu
radio items. Menu items are selected via the mouse or keyboard.

The DialogDevice models structured communication between program and
user. The DialogDevice manages property and command dialogs, as well as no-

tices. Property dialogs are always modeless, and are used to set properties of the
interaction. Command dialogs can be modal or modeless. Property and com-
mand dialogs can contain editable, static and dynamic texts, radio buttons, check
boxes, buttons (of arbitrary or standard shape) and program defined controls.
Notices are very simple modal dialogs which are used to inform the user about
unusual or dangerous situations. The dialog components are accessed by the user
via the mouse or the keyboard.

The TimerDevice enables interactions to synchronise every specified time
interval. The TimerDevice only responds to timer events. The NullDevice re-
sponds only to null events, special events that are generated in case there is no
input.

Interactive programs can be regarded as specifications of state transition sys-
tems. One part of this state reflects the logical state of the interactive program,
the program state. Every interaction defines its own program state. The only
restriction on the program state is that it has an UNQ type. The other part of the
state transitions concerns all devices the interaction wants to manipulate,
grouped by the IOState. The IOState is the unique abstract sub-environment for
programs that do event I/O. All actual event I/O the program performs, happens
via the IOState: the devices themselves are never directly accessed.

ABSTYPE :: UNQ IOState UNQ s;

RULE
:: OpenIOState WORLD -> (IOState s, WORLD);
:: CloseIOState (IOState s) WORLD -> WORLD;

IOState is a unique abstract type. Analogous to FILES it is retrieved from the
WORLD by the rule OpenIOState and put back again by the rule CloseIOState .
Once an IOState has been retrieved from the WORLD, it can’t be retrieved again
without closing it first. The type variable s in IOState s is the program state s of
the interaction. When retrieved from the WORLD the event stream is set into the
IOState which still has to be filled with the devices of an interaction.

Each new event triggers a response of the program: given the event, the pro-
gram state and the IOState, it is completely determined what the next program
state and IOState will be. This implies that in order to fully specify an interac-
tion, it is sufficient to define only the initial program state and the initial
IOState. IOSystem is a large predefined algebraic type by which a program spec-
ifies what Devices will engage in an interaction; how these Devices will be ini-
tialised (the look) and which event handler (Clean function) has to be called.

Starting and terminating interactions is handled by two special functions:
StartIO and QuitIO . StartIO takes the specification of the set-up of the I/O sys-
tem as described above, the initial program state s0 and an initial_io_state .
The initial I/O state can be obtained from the world by using the predefined
function OpenIOState . The function StartIO will create the devices as specified
and store the characteristics in an I/O state based on the initial I/O state. Then, it
starts to 'poll' recursively waiting for input (events). The input event is dis-
patched to the proper device which computes the next program state and IOState

by applying the proper event handler. In this way a sequence of pairs of program
state and IOState , starting from the program state s0 and I/O state IOState 0, is

computed (below the implementation of StartIO is given using internal library
functions).

StartIO io_system_specification program_state initial_io_state
-> DoIO (program_state, io_state),
 io_state: InitIO io_system_specification initial_io_state;

DoIO states:(program_state, ClosedIO_State) -> states;
DoIO (program_state, io_state)
-> DoIO new_states,
 new_states: event_handler event program_state io_state'',
 (event_handler, io_state''): GetHandler event io_state',
 (event, io_state'): GetEvent io_state;

The order of evaluation guarantees that the transition triggered by event en+1 is
only reduced after the transition triggered by en has yielded a complete
IOState n+1 . The interaction obtained in this way can only be terminated by
having any of the device functions apply QuitIO to their IOState argument.
QuitIO produces a special IOState, ClosedIO_State , in which all devices are
closed. StartIO matches on this special state and produces the final program
state.

The program defined Device functions are of type :: s (IOState s) -> (s,

IOState s) or :: Event s (IOState s) -> (s, IOState s) (with s the program
state). This implies that during an interaction it is straightforward to create
nested I/O of a completely different program state t by calling StartIO with an
IOSystem t , an initial new program state t and the current IOState s. The cur-
rently running interaction is disabled and replaced by the new one until that in-
teraction is terminated.

For the complete definition of the semantics of Clean File and Event I/O we
refer to [1].

5 An Example: the Game of Life

In this section we present an example to illustrate a typical interactive
Concurrent Clean program. The program describes the interface for a system
playing the game of life. This is a ‘game’ consisting of an infinite two dimen-
sional space (the universe). A cell is identified by a Cartesian position
(LifeCell) in the universe. A cell is either alive or dead. An initial generation
(Generation) of alive cells is sown. Each following generation is computed
given the current one by two rules: only if an alive cell has two or three alive
neighbour cells, it survives in the next generation, and only if a dead cell has
three alive neighbour cells, it becomes alive in the next generation.

The module Life contains the rules that are not part of the interface. The rule
LifeGame computes given a Generation ([LifeCell]) a triplet of the next
Generation , new-born cells and died cells. RemoveCell removes and AddCell

adds a LifeCell to a Generation .
The main module LifeGame describes the user interface. Apart from module

Life , it imports the necessary Clean I/O modules and the delta modules for ba-
sic type computations. In general an interactive program has a type-block in
which frequently occurring types are declared. In this program the program state

is the tuple UNQ State , keeping the current Generation and the Size in which
cells are displayed.

In the rule Star t IO the IOSystem is defined. The interaction uses a
WindowDevice , a NullDevice and a MenuDevice . The MenuDevice holds all com-
mands the user of the program has at disposal. The menu item Cell Size is a
sub-menu. Its elements n * n change the size of displayed cells into n. To war-
rant one size is valid at all times, the items are organised as MenuRadioItems . The
initial selected size is 8 * 8 . Note that the items use the same function SetSize

applied curried in its first argument. The WindowDevice manages only one win-
dow which ignores all input from the keyboard, but accepts all mouse events.
Using the mouse a user can add or remove cells to the current generation. The
NullDevice calculates the next generation when no action arises from the user.
Observe the close relationship between the definitions of the window and menus
and their visual appearance on screen.

The dynamics of the devices are in control by the MenuDevice : initially, the user
is allowed to place cells in the universe. This means that the mouse of the win-
dow is enabled and the NullDevice disabled. As soon as the user selects Play the
mouse is disabled and the NullDevice enabled. Halt ing the computations causes
the NullDevice to be disabled and the mouse enabled.

MODULE LifeGame;

IMPORT delta, Life, deltaPicture;
IMPORT deltaEventIO, deltaMenu, deltaNull, deltaWindow;

This type-block defines the program state and a shorthand for the IOState.
TYPE
:: UNQ State -> (Generation, Size);
:: Size -> INT;
:: UNQ IO -> IOState State;

RULE

The execution of the program starts here. StartIO initialises the NullDevice, MenuDe-
vice and WindowDevice. Italic rules in the device definitions are the program defined
event handlers.
:: Start World -> (State, IO);
 Start world
 -> StartIO
 [WindowSystem windows,NullSystem null,MenuSystem menus]
 ([], 8) io_state,
 (io_state, world’): OpenIOState world,
 windows: [DocumentWindow LifeWindowId WindowPos "Life"
 ScrollBarH&V ScrollBarH&V PictureRange
 InitialSizeOfWindow MinimumSizeOfWindow
 UpdateWindow [Mouse Able Track]],
 null : Null Unable Step,
 menus : [file, options, commands],
 file : PullDownMenu FileMenuId "File" Able [
 MenuItem QuitId "Quit" (Key 'Q') Able Quit],
 options: PullDownMenu OptionsMenuId "Options" Able [
 MenuItem EraseId "Erase All Cells" (Key 'E')
 Able Erase,
 SubMenuItem CellSizeId "Cell Size" Able [
 MenuRadioItems Size8Id sizes]],
 sizes: [MenuRadioItem Size1Id "1*1" NoKey Able (SetSize 1),
 MenuRadioItem Size2Id "2*2" NoKey Able (SetSize 2),
 MenuRadioItem Size4Id "4*4" NoKey Able (SetSize 4),
 MenuRadioItem Size8Id "8*8" NoKey Able (SetSize 8)],
 commands: PullDownMenu CommandsMenuId "Commands" Able [
 MenuItem PlayId "Play" (Key 'P') Able Play,
 MenuItem HaltId "Halt" (Key 'H') Unable Halt];

Now all device functions are going to be defined. We start with the menu functions.
:: Quit State IO -> (State, IO);
 Quit state io -> (state, QuitIO io);

:: Play State IO -> (State, IO);
 Play state io
 -> (state, ChangeIOState [DisableMenuItems [PlayId, EraseId],
 EnableMenuItems [HaltId],
 DisableActiveMouse,
 EnableNullDevice] io);

:: Halt State IO -> (State, IO);
 Halt state io
 -> (state,
 ChangeIOState [DisableNullDevice,
 EnableActiveMouse,
 DisableMenuItems [HaltId],
 EnableMenuItems [PlayId, EraseId]] io);

:: Erase State IO -> (State, IO);
 Erase (gen, size) io
 -> (([],size),
 DrawInActiveWindow [EraseRectangle PictureRange] io);

SetSize draws the cells in the new size and changes the State accordingly.
:: SetSize Size State IO -> (State, IO);
 SetSize new (gen, cur_size) io

 -> ((gen, new),
 DrawInActiveWindow [EraseRectangle PictureRange |
 Map (DrawCell new) gen] io);

The NullDevice computes the next generation and draws it.
:: Step State IO -> (State, IO);
 Step (gen,size) io
 -> ((next,size), ChangeIOState [DrawInActiveWindow erase,
 DrawInActiveWindow draw] io),
 erase: Map (EraseCell size) died,
 draw : Map (DrawCell size) new,
 (next,new,died): LifeGame gen;

UpdateWindow draws all cells of the current generation regardless of their visibility.
:: UpdateWindow UpdateArea State -> (State, [DrawFunction]);
 UpdateWindow update_area state:(gen,size)
 -> (state,
 [EraseRectangle PictureRange | Map (DrawCell size) gen]);

Track is evaluated for all mouse-activities in the window.
:: Track MouseState State IO -> (State, IO);
 Track (pos, ButtonUp, modifiers) state io -> (state, io);
 Track ((x,y), down, modifiers) (gen,size) io,
 modifiers:(shift,option,command,control)
 -> ((remove,size), DrawInActiveWindow erase io), IF command
 -> ((add ,size), DrawInActiveWindow draw io),
 remove: RemoveCell cell gen, erase: [EraseCell size cell],
 add : AddCell cell gen, draw : [DrawCell size cell],
 cell : (/ (- x (% x size)) size, / (- y (% y size)) size);

Drawing or erasing a cell in a given cell size.
:: DrawCell Size Cell -> DrawFunction;
 DrawCell size (x,y)
 -> FillRectangle ((px: * x size, py: * y size),
 (+ px size, + py size));

:: EraseCell Size Cell -> DrawFunction;
 EraseCell size (x,y)
 -> EraseRectangle ((px: * x size, py: * y size),
 (+ px size, + py size));

The program constants to enhance comprehension and maintenance.
MACRO
FileMenuId -> 1; OptionsMenuId -> 2; CommandsMenuId -> 3;
 QuitId -> 11; EraseId -> 21; PlayId -> 31;
 CellSizeId -> 22; HaltId -> 32;
 Size1Id -> 221;
 Size2Id -> 222;
 Size4Id -> 223;
 Size8Id -> 224;
LifeWindowId -> 1; MinimumSizeOfWindow -> (50, 50);
WindowPos -> (0,0); InitialSizeOfWindow -> (1000, 1000);
PictureRange -> ((0,0), (1000,1000));
ScrollBarH&V -> ScrollBar (Thumb 400) (Scroll 8);

6 Implementation on Macintosh and X Windows

A few remarks are worth mentioning about the implementation of Concurrent
Clean event I/O on Macintosh and X Windows systems.

The I/O system has been designed in such a way that the program only speci-
fies what interaction has to be done, never how . Interactions are specified in
terms of the algebraic data structure IOSystem. All event handling and device
handling has been carefully hidden from the program. This approach has made it
possible to implement the Concurrent Clean event I/O system on Macintosh and
X Windows systems, two quite different systems. Both implementations have
been done from the specification down to the respective interfaces. This con-
firms the suitability of the chosen abstraction level of the Clean devices.

Because interactions are specified in terms of Clean objects, it was possible
to write major parts of the library code in Clean, making extensive use of higher
order functions (approximately 50% Clean code for the X Windows implemen-
tation and 90% for the Macintosh implementation). All device definitions,
IOState and Picture are defined in Concurrent Clean as (abstract) algebraic
types. The implementation on the Macintosh uses a thin interface layer which
contains Clean rules for most procedures of the Macintosh toolbox. The imple-
mentation on X Windows [16] uses an interface layer to the Open Look™
Interface Toolkit (olit) and the general X Windows libraries.

The advantages of this approach are that using algebraic types for all objects
of the I/O system allows the use of higher-order functions in the object defini-
tions. Device definitions are ordinary functional objects and can be manipulated
the same way as other functional objects. It is easy to experiment with various
kinds of devices and system maintenance has become easier.

7 Discussion

We have experienced that Clean's Unique Type system is a very useful tool. We
did not have any problems writing the library in Clean itself (5000-7000 lines of
code) with the restrictions imposed by the use of unique objects.

With this library many interactive applications have been written in Clean
among which some very large ones (a complete Mac-style copy-paste editor and
a DBase-like relational database). Due to the high-level of abstraction offered by
the I/O-library, it is possible to write compact reliable device independent inter-
active functional programs in a relatively short time period. The libraries main-
tain the different look-and-feel of the specific machines.

Of course, not every thinkable bell and whistle has been predefined in the li-
brary. But, most of the commonly used I/O gadgets are available and there is a
possibility to specify user-defined controls. Furthermore, the library is well
structured such that new facilities and devices can be added relatively easy.

Also the large applications written in Clean (together with the library over
10.000 lines of Clean code) still run efficient enough to be used in practice (even
on small machines). They behave as good as (or sometimes even better than)
their imperative counterparts. It reveals something about the code generated by
the Clean compiler as well as about the quality of the libraries of present day
object oriented languages.

There are two negative things to be mentioned. Clean programs consume
more memory than the imperative programs (typically four times as much).
Furthermore, there are some classical and non-classical language features miss-
ing in the present version of Concurrent Clean (Clean was designed as interme-
diate language, not as a full flavoured functional language). We want to solve
both problems in the future.

8 Related Work

Other solutions to deal with I/O in functional languages can be divided in a
number of categories, each having typical advantages and disadvantages. The
(implicit) environment passing approach as taken in the language FL [3] has as
main disadvantage that the order of evaluation is fixed. This is problematic for
program transformations, introducing sharing of computations and exploitation
of parallelism.

The token stream approaches [21],[9],[10],[14] suffer from inefficiency, be-
cause programs are obliged to get input by outputting tokens (doing requests).
The input can be handled synchronously or asynchronously. When it is handled
asynchronously one has to parse the input to determine the corresponding re-
sponse. When it is handled synchronously an additional synchronisation over-
head is introduced. The advantage of synchronised token streams is the control
over the domain of input tokens because the program has specified from which
devices the input will originate.

With the interaction type of solutions [20],[11] one has to take care that out-
put and input occurs in the right order. The solution to this problem as given by
[20] is a predefined set of functions which behave correctly in this respect.

A nice solution is the use of a predefined monad [15] which guarantees the
single threaded use of predefined functions with side-effects. A disadvantage is
that all functions with side-effects have to be applied on one and the same
(hidden) monad. So, for instance it is not possible to define a hierarchy of sub-
environments.

9 Conclusions and Future Work

Concurrent Clean's Event I/O provides programmers with a very high-level
declarative specification method for writing complex interactive applications in
a pure high-order functional language. All low-level I/O handling is done auto-
matically. The library offers most of the commonly used I/O facilities and can
easily be extended with new devices and facilities. The device oriented approach
yields concise and elegant programs which are easy to understand and maintain.

Currently there is a version of the I/O library for the Sun under X-
Windows/Open Look and a version for the Macintosh. These libraries provide
the same interface such that a Clean program can run on either of these systems
without any modification. Still, the resulting applications will obey the different
look-and-feel which is typical for these machines. The library has been used to
write several applications. We obtain very good runtime performances even
compared with imperative programs.

In the future we want to extend the I/O model for distributed environments.
The Unique Type system as well as Clean itself will be refined further to in-
crease flexibility and user-friendliness. Except for type checking, the current
Clean system does not yet exploit the full potential of the UNQ type predicate,
which is a very interesting research for improving the efficiency of Clean pro-
grams in both time and space [19].

References

1. Achten PM. Operational Semantics of Clean Event I/O. Technical report -
in preparation University of Nijmegen.

2. Backus J. Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs.In: Communications of the
ACM, Vol.21 Nr.8, 1978.

3. Backus J, Williams J, Wimmers E. An introduction to the programming
language FL. In: Turner A (ed) Research topics in Functional
Programming, Addison-Wesley Publishing Company, 1990.

4. Barendregt HP, Eekelen van MCJD, Glauwert JRW et al. ‘Term Graph
Reduction'. In: Proceedings of Parallel Architectures and Languages
Europe, Eindhoven, The Netherlands, LNCS 259, Vol.II. Springer-Verlag,
Berlin, 1990, pp. 141-158.

5. Brus T, Eekelen van MCJD, Plasmeijer MJ and Barendregt HP. Clean - A
Language for Functional Graph Rewriting. In: Proc. of Conference on
Functional Programming Languages and Computer Architecture, Portland,
Oregon, USA, Springer Verlag, LNCS 274, 1987, pp. 364-384.

6. Eekelen van MCJD, Huitema HS, Nöcker EGJMH, Smetsers JEW and
Plasmeijer MJ. Concurrent Clean Language Manual - version 0.8.
Technical report No.92-18 Department of Informatics, Faculty of
Mathematics and Informatics, University of Nijmegen 1992.

7. Girard J-Y. Linear Logic. In: Theoretical Computer Science 50. 1987, pp.
1-102.

8. Groningen van JHG, Nöcker EGJMH and Smetsers JEW. Efficient Heap
Management in the Concrete ABC Machine. In: Proc. of Third
International Workshop on Implementation of Functional Languages on
Parallel Architectures. University of Southampton, UK 1991. Technical
Report Series CSTR91-07.

9. Hudak P. et al (ed) Report on the Programming Language Haskell, - A
Non-strict, Purely Functional Language -, Version 1.1 (as made public
available in August 1991).

10. Darlington P. Purely Functional Operating Systems. In: Darlington,
Henderson, Turner (ed) Functional programming and its applications.

11. Dwelly A. Functions and Dynamic User Interfaces. In: Proc. of ACM 1989.
pp. 371-381.

12. Hughes J. Why Functional Programming Matters. In: Turner DA (ed)
Research topics in Functional Programming. Addison-Wesley Publishing
Company, 1990.

13. Nöcker EGJMH, Smetsers JEW, Eekelen van MCJD and Plasmeijer MJ.
Concurrent Clean. In: Proc. of Parallel Architectures and Languages

Europe, Eindhoven, The Netherlands. Springer Verlag, LNCS 505, 1990,
pp. 202-219.

14. Perry N. Functional I/O - a solution. Department of Computing, Imperial
College, London, Draft version, July 1988.

15. Peyton Jones SL, Wadler Ph. Imperative Functional Programming.
Extended Abstract, to appear in POPL 1993, University of Glasgow.

16. Pillich L. Portable Clean Event I/O. Department of informatics, Faculty of
Mathematics and Informatics, University of Nijmegen. Master Thesis 230,
July 1992.

17. Plasmeijer MJ, Eekelen van MCJD. Functional Programming and Parallel
Graph Rewriting. Lecture notes. University of Nijmegen 1991/1992. To
appear: Addison Wesley 1993.

18. Smetsers JEW, Nöcker EGJMH, Groningen van JHG and Plasmeijer MJ.
Generating Efficient Code for Lazy Functional Languages. In: Proc. of
Conference on Functional Programming Languages and Computer
Architecture Cambridge, MA, USA, Springer Verlag, LNCS 523, 1991, pp.
592-617.

19. Smetsers JEW, Achten PM, Eekelen van MCJD and Plasmeijer MJ. An
Unique Type Predicate and its Application for Efficient Code Generation
for Functional Languages. Technical report - in preparation. University of
Nijmegen.

20. Thompson S. Interactive Functional Programs. A Method and a Formal
Semantics. In: Turner DA (ed) Research topics in Functional Programming,
Addison-Wesley Publishing Company, University of Kent, 1990.

21. Turner DA. An Approach to Functional Operating Systems. In: Turner DA
(ed) Research topics in Functional Programming, Addison-Wesley
Publishing Company, University of Kent, 1990.

22. Wadler Ph. Linear types can change the world! In: Broy M, Jones CB (ed)
Programming Concepts and Methods, North-Holland, 1990.

