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Abstract.

To compile the functional language Clean, first code is generated for an abstract machine, the ABC
machine. This ABC code is then translated to the concrete machine by a code generator. Such a code
generator, which generates code for the MC68020 processor, has been designed and implemented and is
described here.

To generate code first the ABC instructions are divided into basic blocks. Then is determined which values
are stored in registers at the start of such a basic block. Parameters and results of functions are passed in
registers. Then a graph is constructed for the basic block, which represents the computations performed by
this basic block. After that the code generator determines which values are stored in registers at the end of
the basic block.

Then the order in which this graph will be evaluated is determined using an adapted labeling algorithm.
This adapted labeling algorithm determines a better evaluation order than the original labeling algorithm if
some values are stored in registers at the beginning and/or end of the basic block, and can handle common
subexpressions.

Then intermediate code is generated from the graph. This intermediate code is very close to MC68020
machine code, but in this intermediate code an unlimited number of address and data registers may be used.

While constructing the graph and generating intermediate code several optimizations are performed. Then
the local register allocator changes the intermediate code of a basic block so that no more than 8 address
registers and 8 data registers (the MC68020 has 8 data registers and address registers) are used.

Then the intermediate code is optimized by using the postincrement and predecrement addressing modes of
the MC68020 and optimizing jumps.

And then from this intermediate code object code is generated for the linker. While generating this object
code many very simple MC68020 specific peephole optimizations are performed.

Compared to the previous (simpler) code generator computations on strict arguments and basic values
(integers, reals, etc.) are done a lot faster (about 1.3 - 2.9 times as fast for some benchmarks). But
computations on non strict arguments are executed only a bit faster (about 1.1 - 1.5 times as fast). Curried
function applications are also executed a lot faster (about 1.8 - 2.0 times as fast), but not so much due to
better code generation techniques.
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1 . Introduction.

The code generator which is described in this paper is part of the implementation of the graph rewriting
language Clean [Brus et al. 1987]. To compile Clean, first the language Clean is compiled to ABC code
[Koopman et al. 1990] by the Clean compiler [Smetsers 1989]. Then the ABC code is compiled to the
machine code of the target machine. So for every target machine a code generator has to be written, but
because the ABC code is machine independent, the same Clean compiler can be used for all target
machines. The ABC code can also be executed by an interpreter.

The languages Clean and ABC have also been extended to be able to make efficient implementations for
machines with more processors by concurrent execution, these languages are called Concurrent Clean
[Nöcker et al. 1991, Smetsers et al. 1991] and PABC [Nöcker 1989].

When I started to design this code generator, a Clean compiler [Smetsers 1989] had been implemented
which could be executed on  the Macintosh and the Sun, and a simple code generator for the Sun [Weijers
1990] and an interpreter for the Macintosh [Nöcker 1989] had been implemented. This Clean compiler
could also compile Concurrent Clean and the interpreter could simulate concurrent execution of PABC
code.

The ABC code generator described here generates code for the Motorola MC68020 processor [Motorola
1985] and the floating point coprocessor MC68881 for the Macintosh II and has been implemented. But
with some small changes the code generated by this code generator can be used for any machine with an
MC68020 or MC68030 processor. And because only a few MC68020 specific instructions are used, the
code generator can easily be changed to generate code for the MC68000 processor.

Briefly, this code generator generates code in the following way. First the ABC instructions are divided
into basic blocks. Basically, a basic block is a sequence of ABC instructions of which only the last
instruction may be an instruction with side effects. This last instruction of a basic block usually is a jump,
branch, return or subroutine call instruction.

Then the code generator determines which values are stored in registers at the start of the basic block.
Parameters and results of functions are passed in registers if enough registers are available.

And then a graph is constructed for such a basic block, which represents the computations performed by
this basic block.

Because the MC68020 processor has two types of registers, i.e. data registers and address registers, a
counter is maintained for every node during construction of the graph. These counters are used to determine
whether to use a data register or an address register if a register is used.

Then the code generator determines which values are stored in registers at the end of the basic block.
Because the graph is constructed so that no values are stored in registers, some parts of the graph have to
be changed so that values are stored in registers at the end of the basic block.

Then the order in which this graph will be evaluated is determined using an adapted labeling algorithm. The
three main differences between the original labeling algorithm and my adapted labeling algorithm are:

1. The original labeling algorithm assumes the graph is a tree. But my adapted labeling algorithm
assumes the graph is a directed acyclic graph. In this way nodes may be shared, and common
subexpressions can be represented in the graph.

2. The original labeling algorithm calculates for every node in the graph the number of registers
necessary to evaluate the subgraph with as root this node. My adapted labeling algorithm calculates
this number of registers as well, but also calculates by how many registers the number of used
registers increases (or decreases) when the subgraph with as root this node is evaluated. In this way
usually a better order to evaluate a graph is determined if some values are stored in registers at the
beginning and/or end of the basic block. And if the graph contains shared nodes a reasonable
evaluation order can be determined.
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3. Because the MC68020 processor has two types of registers, for every node for both the address and
the data registers the number of used registers and increase in the number of used registers are
calculated. So four number of registers are calculated for every node.

Then an evaluation order is determined using these four numbers of registers in the nodes and an
intermediate code is generated. This intermediate code is very close to MC68020 machine code. But in this
intermediate code an unlimited number of address and data registers may be used.

While constructing the graph and generating code from the graph the following optimizations are
performed: the creation of nodes by create instructions is optimized, use of booleans is optimized by using
condition codes instead of booleans and many unnecessary copies and stack manipulations are eliminated.

Then the local register allocator changes the intermediate code of a basic block so that no more than 8
address registers and data registers (the MC68020 has 8 data registers and address registers) are used. It
does this by changing the register numbers of the registers used by  the intermediate instructions and by
inserting instructions to load and store values in registers from/into memory.

Then accesses to the stacks are optimized by using the postincrement and predecrement addressing modes
of the MC68020 by changing the intermediate code. After that jumps are optimized by replacing a branch
instruction followed by a jump instruction by one branch instruction if possible.

And then from this intermediate code object code is generated for the linker. While generating this object
code many very simple MC68020 specific peephole optimizations are performed.

Finally the linker produces an executable file for the Macintosh II from this object file, the object files of the
other modules of this program (if any) and the library object files.

I will now briefly describe what is discussed in each chapter. In chapter 2 the languages and machines
which you have to know to understand the rest of this paper are briefly described. These languages and
machines are Clean, the ABC machine and the Motorola MC68020 processor. Also an example is given of
a small Clean program, the ABC code generated by the Clean compiler from this program and the
MC68020 code which is produced by my code generator from this ABC code. For the MC68020 also some
execution times are given and some conclusions concerning what instructions to generate are drawn from
these execution times.

In chapter 3 is described how the data structures (heaps, stack etc.) used by the ABC machine are
represented on the MC68020. It describes how nodes are represented in the heap, and why this
representation was chosen. Also the representation of strings is discussed.

Then, in chapter 4 the run time system is described. It explains how the garbage collector has been
implemented, and what other things have been implemented in the run time system.

In chapter 5 possible code optimizations are described. General optimizations of ABC code, optimizations
for register machines and MC68020 specific optimizations are discussed.

Then, in chapter 6 is described how the code generator generates code. First dividing the ABC instructions
into basic blocks and determining the evaluation order by the adapted labeling algorithm is discussed. Then
the graph representation is explained and how code is generated from this graph. Finally global register
allocation, local register allocation, optimizations on the intermediate code, calling the garbage collector and
generating MC68020 code from the intermediate code are discussed.

And finally in chapter 7 the code generator is evaluated and some possible improvements are described.

There are appendices with examples, instruction execution times, nodes in the graph, instructions of the
intermediate code and the object file format.



3

2 . Description of languages and machines.

In this chapter the languages and machines which you have to know to understand the rest of this paper are
briefly described. These languages and machines are Clean, the ABC machine and the Motorola MC68020
processor. Also an example is given of a small Clean program, the ABC code generated by the Clean
compiler from this program and the MC68020 code which is produced by my code generator from this
ABC code. For the MC68020 also some execution times are given and some conclusions concerning what
instructions to generate are drawn from these execution times.

2 .1 . Clean.

In this section I will briefly describe Clean. For this description of Clean I have used [Plasmeijer et al.
1989].

Clean [Brus et al. 1987] is an experimental language based on Functional Graph Rewriting Systems. Clean
programs are purely functional. Clean stands for: Clean Lean. Lean [Barendregt et al. 1987] is another
experimental language based on general Graph Rewriting Systems and stands for the Language of East
Anglia and Nijmegen.

Clean is used in two ways. First of all it is intended as an intermediate language between arbitrary (eager
and lazy) functional languages and arbitrary sequential machine architectures. In practise it is used as an
intermediate language between Miranda and sequential architectures like VAX and Motorola. Secondly,
Clean can also be seen as a simple functional programming language in which computations in terms of
graph rewriting can be expressed.

A Clean program basically consists of a number of graph rewriting rules and a default initial data graph
which can be rewritten to normal form according to these rules. The output of a Clean program is in
principle a depth-first representation of the normal form to which the initial data graph is reduced. Clean
supports run-time (pattern) matching. The notation used in Clean is the functional style. Variables begin
with a lower-case character, constants may not begin with a lower-case character.

An example Clean program which computes the factorial of 20: (see appendix A for more examples)

MODULE Fac;

FROM deltaI IMPORT --I,*I;

RULE
Fac 0 -> 1 |
Fac n -> *I n (Fac (--I n)) ;

Start -> Fac 20 ;

(--I and *I are predefined rewrite rules on integers, which respectively subtracts one from an integer and
multiplies two integers)

Clean is a typed language. The type system is based on the Milner-Mycroft type scheme [Milner 1978,
Mycroft 1984]. Types can by specified explicitly for rewrite rules. If a rule is not typed, the type can often
be derived by the Clean compiler. Basically, all types in Clean are algebraic types, which may be
polymorphic. Type synonyms and abstract data types can also be defined. The predefined basic types are:
INT (integer numbers), REAL (floating point numbers), CHAR (characters), BOOL (booleans), STRING
(strings) and FILE (files). Denotations for lists and tuples are also predefined.



4

In Clean all symbols have a fixed arity, but curried applications of functions can be used. Curried
applications are implemented using the predefined generic delta-rule AP. AP transforms a curried application
of a function F with arity n into an uncurried application, if the curried F is applied to all n arguments. For
AP the following rewrite rule is implicitly defined for every function F with arity n:
AP ( ... (AP (AP F a1) a2) ... ) an -> F a1 a2 ... an
These AP's are automatically introduced by the Clean compiler for every curried function application.

Clean performs graph rewriting, but graph rewriting is not very efficient. Therefore the Clean compiler tries
to do as little graph rewriting as possible by not always building a node representation. It does this by
storing evaluated integers, booleans, characters and reals on a stack and pass them to functions on the stack
instead of in a node in the heap as much as possible, and by evaluating nodes as soon as possible. In this
way the program is not only executed faster, but also uses less memory.

In order to perform these optimizations to obtain efficient code it is important to know whether or not a
function is strict in its arguments. A function is strict in a certain argument if the evaluation of that argument
is needed in the computation of the function result. Consequently, a strict argument can be evaluated in
advance since its evaluation can not change the termination properties of the program. Strictness is, in
general, an undecidable property. However, a good strictness analyser can find strict arguments in many
cases. The Clean compiler can find strict arguments in many cases. [Nöcker 1988]. Strict integer, boolean,
character and real arguments are passed to the function in evaluated form on a stack. And also strict tuple
arguments are passed in head normal form on a stack [Smetsers et al. 1989].

Another way to do as little graph rewriting as possible is by changing the reduction order. This is possible
in Clean by influencing the functional strategy by using annotations. With these annotations one can make
the evaluation partially eager instead of lazy. If an evaluation is made eager it can often be executed faster.
There are two types of annotations: global annotations and local annotations.

Global annotations change the reduction order for all applications of a particular function. These
annotations are specified in the left hand side of a type definition of a rewrite rule, by putting a ! before the
type of an argument. Such an annoted argument is always reduced to root normal form before the
corresponding rule is applied. Note that such an annoted argument is always strict, and can therefore often
be passed in evaluated form on a stack.

Local annotations change only the order of evaluation for a specific function application. Before the
evaluation of the right hand side of a rule is continued following the functional strategy, all ! annoted nodes
in the right hand side are evaluated. These annoted nodes are reduced in an arbitrary order.

A Clean program consists of modules. Modules can be compiled separately. There are two types of
modules: definition modules and implementation modules. In general, each definition module has a
corresponding implementation module. An exception is the main module, which consists of only an
implementation module. An alternative kind of definition module is the system module, which allows the
corresponding implementation module to be not a Clean program, and is used to implement delta-rules.

In a definition module graph rewrite rules can be specified in a so-called RULE-block. Types can be
defined in a so-called TYPE-block. Type and rule definitions have as scope the implementation modules in
which they are defined. They can also be exported if they are declared in the definition module, which
makes it possible to import them in other modules. An entire module can be imported, but it is also possible
to import only selected types and rules which were exported by the module.

2 .2 . The ABC machine.

In this section the ABC machine [Koopman et al. 1990] is described. First the ABC machine architecture is
described, then an example is given of ABC code generated from a Clean program and finally the
instruction set of the ABC machine is described.

The ABC machine is a sequential abstract machine designed to describe graph reduction. It is the target
language for the compiler which translates the language Clean. Using the ABC machine we can describe
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graph reduction on a level close to the level of a concrete machine. We can abstract from machine dependent
issues, like addressing modes and register use. It also allows us to ignore some problems, like garbage
collection and memory allocation, on the ABC machine level.

The ABC machine is a stack machine with 3 stacks, it does not have registers. The graph rewriting is
performed in a heap (or graph store) in which nodes can be created and overwritten. Nodes which are no
longer needed for the execution of the program are not explicitly deallocated. In an implementation on a
concrete machine this deallocating should be done by a garbage collector.

In general, nodes consist of a descriptor, a code address and arguments. The descriptor indicates what kind
of node it is. The code address (or evaluation address) is the address at which the code starts which reduces
the node to head normal form. The arguments are node-id's of other nodes. There are special nodes for
integers, characters, booleans, reals and strings. The argument of these nodes is not a node-id, but an
integer, character, boolean, real or string. There is also an empty node.

The ABC machine uses 3 different stacks: the A-stack stores pointers to nodes, the B-stack stores non-
pointers, like integers, booleans, characters and floating point values, and the C-stack pointers to code.
(return addresses) There is a separate stack for pointers to nodes (the A-stack) to make garbage collection
easier. The B-stack is used for computations using integers, booleans characters and floating point
numbers. These computations can be done a lot faster on the B-stack than in the graph. So by using the B-
stack as much as possible the program will execute much faster.

An ABC instruction consists of an instruction identifier and zero or more operands. The operands may be
indices of one of the stacks, labels, descriptors, integers, reals, characters or strings. Operands are
separated by spaces. An ABC program looks like an assembly language program, it is not block-structured.
Every line consists of an optional label followed by a colon and an instruction or directive and eventually
some comment, or just of a comment. Comment begins with '|| '.

For example, for the function fac  in the Clean program in section 2.1 the following ABC code is generated
by the Clean compiler [Smetsers 1989]: (see appendix A for more examples)

lFac: || apply entry : 'Fac' node, argument n
node and node to be overwritten by
result on the A-stack

pop_a 1 || pop 'Fac' node from the A-stack
jmp m.1 || jump to label m1

nFac: || node entry : 'Fac n' node on the A-
stack

push_args 0 1 1 || push argument n on the A-stack
m.1:

set_entry _cycle_in_spine 1 || store _cycle_in_spine as evaluation
address to detect cycles in the spine
of the graph

jsr_eval || evaluate argument n
pushI_a 0 || push argument n on the B-stack
pop_a 1 || pop node of argument n from the A-stack
jsr sFac.1 || call strict entry of Fac to compute

result on the B-stack
fillI_b 0 0 || fill the result node with the integer

result on the B-stack
pop_b 1 || pop the integer result from the B-stack
rtn || return

sFac.1: || strict entry : argument n (evaluated)
on the B-stack

eqI_b +0 0 || n equal 0 ?
jmp_true m.2 || yes, jump to label m.2
jmp sFac.2 || no, jump to label sFac.2

m.2:
pop_b 1 || pop argument n from the B-stack
pushI +1 || push 1 (result) on the B-stack
rtn || return

sFac.2:
push_b 0 || push argument n on the B-stack
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decI || subtract 1 from copy of n on the B-
stack

jsr sFac.1 || call strict entry of fac with argument
n-1 on the B-stack to compute Fac (--I
n)

push_b 1 || push argument n on the B-stack
update_b 1 2 || reorganize the B-stack
update_b 0 1
pop_b 1
mulI || compute *I n (Fac (--I n))
rtn || return

2 . 2 . 1 . ABC instructions for graph manipulation.

Below the instructions of the ABC machine are described. In these descriptions of the instructions I have
used to following convention: node A-offset means the node of which the corresponding node-id is at
position A-offset on the A-stack, to make the descriptions shorter and easier to understand.

Many ABC instructions refer to a elements on the stack using a position number or offset. The top element
of a stack has offset zero, the second element of a stack has offset one, the third element has offset two,
etc.

The instruction:
create

creates an empty node in the graph store, the node-id of this node is pushed on the A-stack.

The instruction:
fill descriptor arity code_label A-offset

fills or overwrites node A-offset . The node is filled with the descriptor , address of the code_label
and arguments. Arity  is the number of arguments. The arguments are popped from the A-stack. The node-
id on top of the A-stack is the first argument, the next node-id the second argument, etc.
There are also fill instructions to fill or overwrite nodes with integer, character, boolean, real and string
nodes.

fill_a A-offset1 A-offset2
fills or overwrites node A-offset2  by a copy of node A-offset1 .

set_entry code_label A-offset
replaces the code address of node A-offset  by the address of the code_label .

add_args A-offset1 number_of_arguments A-offset2
fills or overwrites node A-offset2  by a copy of node A-offset1 , and then pops number_of_arguments
arguments (node-id's) from the A-stack and adds these arguments to the node just filled or overwritten. The
argument which is popped first (on top of the stack) is added as the first new argument, the argument
which is popped second is added as the second new argument, etc.

del_args A-offset1 number_of_arguments A-offset2
fills or overwrites node A-offset2  by a copy of node A-offset1 , and then pushes the last
number_of_arguments  arguments of the node just filled or overwritten on the A-stack and deletes these
arguments from the node. The last argument of the node is pushed first, then the second last argument, etc.

2 . 2 . 2 . ABC instructions for information retrieval from nodes.

push_args A-offset arity number_of_arguments
pushes the first number_of_arguments  arguments of node A-offset  on the A-stack. Arity  is the number
of arguments of this node. The last argument to be pushed is pushed first, then the second last, etc.
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There are also push argument(s) instructions, which push only one argument, or take the argument number
or the number of arguments from the B-stack. And there are also replace arguments instructions, which
also push the argument(s), but also pop the node-id of the node from the A-stack.

pushI_a A-offset
pushes the integer which is stored in integer node A-offset  on the B-stack. There are also instructions to
push a boolean, character or real from a node on the B-stack.

get_node_arity A-offset
pushes the arity of node A-offset , i.e. the number of arguments of node A-offset , on the B-stack.

get_desc_arity A-offset
pushes the arity of the descriptor which is stored in node A-offset , i.e. the arity of the symbol which
corresponds to the descriptor stored in node A-offset , on the B-stack.

push_ap_entry A-offset
pushes the apply code address of the descriptor of node A-offset  on the C-stack. The apply code address
is the address of code which is used when evaluating curried functions. This address is stored in the
descriptor.

2 . 2 . 3 . ABC instructions for pattern matching.

eq_desc descriptor number_of_arguments A-offset
pushes TRUE on the B-stack if the descriptor  is equal to the descriptor of node A-offset  and the
number_of_arguments  is equal to the number of arguments of node A-offset , otherwise FALSE.

eqI_a integer_constant A-offset
compares the integer stored in node A-offset  to the integer_constant  and then pushes TRUE on the B-
stack if they are equal, otherwise FALSE. There are also instructions to compare a boolean, character, real
or string constant to a value in a node and then to push TRUE on the B-stack if they are equal, otherwise
FALSE.

eqI_b integer_constant B-offset
compares the integer at position B-offset on the B-stack to the integer_constant  and then pushes
TRUE on the B-stack if they are equal, otherwise FALSE. There are also instructions to compare a
boolean, character, or real constant to a value on the B-stack and then to push TRUE on the B-stack if they
are equal, otherwise FALSE.

2 . 2 . 4 . ABC instructions to manipulate the A- and B-stack.

pop_a number_of_elements
pops number_of_elements  elements from the A-stack.

push_a A-offset
pushes the element on the A-stack with offset A-offset  on the A-stack, i.e. it creates a copy on top of the
stack.

update_a A-offset1 A-offset2
overwrites the element on the A-stack with offset A-offset2  with the element on the A-stack with offset A-
offset1 .

The pop_b , push_b , and update_b  instructions do the same with the B-stack as the pop_a , push_a  and
update_a  instructions do with the A-stack.
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2 . 2 . 5 . ABC instructions to push constants on the B-stack.

pushI integer_constant
pushes the integer_constant  on the B-stack. There are also instructions to push character, boolean and
real constants on the B-stack.

2 . 2 . 6 . ABC instructions to change the flow of control.

jmp label
jumps to the address of label , i.e. continues execution at the address of label .

jsr label
calls the subroutine at the address of label , i.e. pushes the address of the instruction after this jsr
instruction on the C-stack and continues execution at the address of the label .

jmp_false label
pops a boolean from the B-stack, if this boolean is equal to FALSE execution continues at the address of
the label , otherwise does nothing. (continues execution at the address of the instruction after this
jmp_false  instruction)

jmp_true label
pops a boolean from the B-stack, if this boolean is equal to TRUE execution continues at the address of the
label , otherwise does nothing. (continues execution at the address of the instruction after this jmp_true
instruction)

rtn
returns from a subroutine, i.e. pops an address from the C-stack and continues execution at this address.

jsr_eval
pushes the address of the instruction after this jsr_eval  instruction on the C-stack and jumps to the code
address of the node of which the node-id is on top of the A-stack.

jmp_eval
jumps to the code address of the node of which the node-id is on top of the A-stack.

halt
ends the execution of the program.

dump string
prints the string  and ends the execution of the program.

2 . 2 . 7 . ABC instructions to generate output.

print string
prints the string .

print_symbol A-offset
prints a string representation of node A-offset .
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2 . 2 . 8 . ABC instructions to implement delta-rules.

Some examples are:

addI || pop two integers from the B-stack, add them, and push the
result on the B-stack.

mulI || pop two integers from the B-stack, multiply them, and push
the result on the B-stack.

subI || pop two integers from the B-stack, subtract the second
popped integer from the other integer, and push the result
on the B-stack.

incI || increment the integer on top of the B-stack.
ltI || pop two integers from the B-stack, compare them, if the

first popped integer is less then the other integer push
TRUE on the B-stack, otherwise FALSE.

There are many more instructions, also instructions which operate on booleans, characters, reals and
strings.

2 .3 . The MC68020 microprocessor.

To be able to construct a code generator it is necessary to know the target processor. In this section I will
describe the relevant parts of the architecture and instruction set of the Motorola MC68020 processor.
Interrupts, privileged instructions, etc. are not discussed. An example of MC68020 code generated for a
small Clean program by the Clean compiler and the code generator described in this paper is given.
Execution speed of instructions is also discussed. This information was taken from [Motorola 1985] and is
used to conclude what kind of code has to be generated.

2 . 3 . 1 . The MC68020 registers.

The MC68020 is a 32-bit register machine. It has:
- eight 32-bit data registers, called D0, D1, .., D7
- eight 32-bit address registers, called A0, A1, ..., A7.
- a 32-bit program counter, called PC.
- a 16-bit status register, called SR.

Registers D0-D7 are used as data registers for byte, word, long word and quad word operations. Registers
A0-A6 are address registers that may be used as software stackpointers and base address registers. Register
A7, also called SP, is the stack pointer. The address registers may also be used for word and long word
operations. All of the 16 (address and data) registers may be used as index registers.

The status register (SR) contains among other things the condition codes: extend (X), negative (N), zero
(Z), overflow (V), and carry (C).
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2 . 3 . 2 . The MC68020 data types.

Seven basic data types are supported:
- Byte integers (8 bits).
- Word integers (16 bits).
- Long word integers (32 bits).
- Quad word integers (64 bits).
- Bits.
- Bit fields (Field of 1-32 consecutive bits).
- Binary Coded Decimal (BCD) Digits (Packed: 2 digits/byte. Unpacked: 1 digit/byte).
In addition operations on memory addresses (32 bits) are supported.

The ABC machine uses bytes, words, long words and memory addresses. Elements of the B-stack are long
words, elements of the A-stack and C-stack are memory addresses, bytes are used in string and boolean
operations and descriptors are words. But the ABC machine does not have instructions using quad word
integers, bits, bit fields and BCD digits.

2 . 3 . 3 . The MC68020 addressing modes.

There are 18 addressing modes:

Name: Assembler syntax: Result (in C):
Data register direct Dn Dn
Address register direct An An
Address register indirect (An) *An
Address register indirect with postincrement(An)+ *An++
Address register indirect with predecrement-(An) *--An
Address register indirect with displacement (d16,An) or d16(An) *(d16+An)
Address register indirect with index (8-bit
displacement)

(d8,An,Xn) *(d8+An+Xn)

Address register indirect with index (base
displacement)

(bd,An,Xn) *(d16+An+Xn)

Memory indirect post-indexed ([bd,An],Xn,od) *(*(bd+An)+Xn+od)
Memory indirect pre-indexed ([bd,An,Xn],od) *(*(bd+An+Xn)+od)
Program counter indirect with displacement (d16,PC) *(d16+PC)
PC indirect with index (8-bit displacement) (d8,PC,Xn) *(d8+PC+Xn)
PC indirect with index (base displacement) (bd,PC,Xn) *(bd+PC+Xn)
PC memory indirect post-indexed ([bd,PC],Xn,od) *(*(bd+PC)+Xn+od)
PC memory indirect pre-indexed ([bd,PC,Xn],od) *(*(bd+PC+Xn)+od)
Absolute short a16.W *a16
Absolute long a32.L *a32
Immediate #data data

where:

Dn = Data register, D0-D7.
An = Address register, A0-A7.
d8 = 8 bit signed displacement.
d16 = 16 bit signed displacement.
Xn = address or data registers used as an index register, form is Xn.SIZE*SCALE, where:

SIZE is W or L (indicates that the index register is a signed word (W) or long word
(L)).

SCALE is 1, 2, 4 or 8 (the value in the index register is multiplied by SCALE).
bd = a signed 16 or 32 bit displacement.
od = a signed 16 or 32 bit displacement.
data = an 8, 16 or 32 bit integer.
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a16 = a signed 16 bit address.
a32 = a 32 bit address.

For the complicated addressing modes: (bd,An,Xn), ([bd,An],Xn,od), ([bd,An,Xn],od), (bd,PC,Xn),
([bd,PC],Xn,od) and ([bd,PC,Xn],od) all of the operands (bd, od, An and Xn) are optional, if an operand
is left out, the value of the operand is assumed to be zero.

Because the ABC machine does not have arrays, we will not use the indexing addressing modes. But
because the index registers are optional in some index addressing modes, they may still be useful without
index register. By leaving out the index registers we get two addressing modes: ([bd,An],od) and
([bd,PC],od). For both addressing modes the addressed value can also be addressed by two register
indirect addressing modes. For example, instead of:

ADD.L ([8,A0],4),D0

we can use:

MOVEA.L 8(A0),A1
ADD.L 4(A1),D0

Strangely enough the two register indirect with displacement instructions are executed faster than the one
memory indirect instruction. Therefore, and also because the length of both instruction sequences (the
number of instruction words) is the same, it is better not to use these addressing modes. Although
sometimes an additional address register (A1 in the example) is necessary.
For these addressing modes ( ([bd,An],od) and ([bd,PC],od) ) the displacements (bd and od) are optional.
If one or two of these displacements are left out, the execution times of two register indirect (possibly with
displacement) instructions are still better and the instruction lengths are still the same. So then it is also
better to use two register indirect (possibly with displacement) instructions.
But in the case of memory indirect addressing, the displacement(s) may be long words, and for the register
indirect with displacement addressing mode the displacements may not be a long word. But we will never
have to use long word displacements. So we will never use the memory indirect addressing mode.

We will also not use the absolute short and absolute long addressing modes, because on the Macintosh we
can only use them to access the Macintosh system variables, not to access application variables or code.
This is because the operating system may load a program anywhere in memory, but can not calculate the
absolute addresses. But on other machines the absolute addressing modes may be useful.

Therefore the addressing modes we will use in the code generator are:

Name: Assembler syntax: Result (in C):
Data register direct Dn Dn
Address register direct An An
Address register indirect (An) *An
Address register indirect with postincrement(An)+ *An++
Address register indirect with predecrement-(An) *--An
Address register indirect with displacement (d16,An) or d16(An) *(d16+An)
Program counter indirect with displacement (d16,PC) *(d16+PC)
Immediate #data data

2 . 3 . 4 . The MC68020 instruction set.

Below the instructions of the MC68020 are described which are useful for implementing the ABC machine.
If an operation can be performed in several ways using one MC68020 instruction, it is described which
instruction is the most efficient.
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The MOVE instruction.

MOVE <sea>,<dea>  moves (copies) <sea>  to <dea> . The source effective address (<sea> ) may be any
addressing mode. The destination effective address (<dea> ) may not be an immediate value or use the
program counter, for example (d16,PC) is not allowed. All operand sizes (byte, word and long) are
allowed. In MC68020 assembler these sizes are expressed with a .B  (byte), .W (word) or .L  (long) after
the instruction, thus MOVE.B, MOVE.W or MOVE.L. Without such an extension the operand(s) are assumed to
be words.
If the <dea>  is an address register, the instruction is called MOVEA <sea>,An . For MOVEA operand size byte
is not allowed. If the operand size is word, the word is sign extended to a long word and this long word is
stored in the address register.
Instead of using MOVE.L #i,Dn  it is better to use MOVEQ #i,Dn  if i  is between -128 and 127. This MOVEQ
instruction is faster and the instruction consists of only 1 word, instead of 3 words.
Also MOVE #0,<ea>  can be replaced by the faster and shorter CLR <ea> . For CLR all operand sizes are
allowed. CLR An is not possible, so this improvement is not possible for MOVEA, but instead we can
subtract An from itself, resulting in zero, with SUB.L An,An . (Instruction SUB is described below)

The other data movement instructions.

With MOVEM registerlist,<ea>  selected registers are stored at consecutive memory locations starting at
the location specified by <ea> . Address register indirect with postincrement, register direct, immediate, and
addressing modes using the program counter are not allowed for <ea> .
With MOVEM <ea>,registerlist  selected registers are loaded from consecutive memory locations starting
at the location specified by <ea> . Address register indirect with predecrement, register direct and immediate
addressing modes are not allowed for <ea> .
The registers are stored in memory in the order from D0 to D7, and then from A0 to A7. The operand size
may be word or long word.

The LEA <ea>,An  instruction loads the address of the object addressed by <ea>  (such an address is called
an effective address by Motorola) in register An. The operand size is always long and for <ea>  register
direct, immediate, postincrement and predecrement addressing modes are not allowed.

The PEA <ea>  instruction pushes the effective address <ea>  onto the stack. The operand size is always
long and the same addressing modes are allowed as for LEA.

The EXG Rn,Rm instruction exchanges the contents of registers Rn and Rm. For Rn and Rm data registers and
address registers are allowed. (exchanging an address register and a data register is possible) The operand
size is always long.

The ADD and SUB instructions.

ADD <sea>,<dea>  adds the <sea>  to the <dea> . The <sea>  or the <dea>  (at least one) has to be a data
register or an immediate value. Immediate and PC relative addressing modes are not allowed for the <dea> ,
if the <dea>  is an address register, the instruction is called ADDA. (see below) All operand sizes are allowed.
If the <sea>  is an immediate value, the instruction is called ADDI.
For all operand sizes ADD #n,Dn  can be replaced by the faster and shorter ADDQ #n,Dn  if n is between 1
and 8.

ADDA <sea>,An  adds the <sea>  to An. Operand sizes word and long are allowed, if the operand size is
word, the <sea>  word is sign extend to long and then added to the whole (long) address register.
Again ADDA #n,An  can be replaced by the faster and shorter ADDQ #n,An  if n is between 1 and 8.

To add a 16 bit signed immediate value n (not between 1 and 8) to an address register, it is faster and
shorter to use ADDA.W #n,An  or LEA n(An),An  than ADDA.L #n,An .
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For SUB, SUBI, SUBQ and SUBA the same addressing modes are allowed as for ADD, ADDI, ADDQ and ADDA,
but now the <sea>  is subtracted from the <dea> .

The CMP and TST instructions.

CMP <ea>,Dn  compares the <ea>  to Dn, i.e. it subtracts the <ea>  from the value in Dn, but does not store
the result in Dn. All operand sizes are allowed.

CMPA <ea>,An  compares the <ea>  to An. Operand sizes word and long word are allowed. If the operand
size is word, the <ea>  signed word is sign extended to long and compared to the whole (long) address
register An. To compare An with a signed 16 bit integer n, it is faster and shorter to use CMPA.W #n,An  then
CMPA.L #n,An .

CMPI #n,<ea>  compares the immediate value n with <ea> . For <ea>  immediate and address register direct
addressing modes are not allowed. All operand sizes are allowed.
For all operand sizes CMP #0,<ea>  can be replaced by the faster and shorter TST <ea> .

The MULS and DIVS instructions.

MULS.L <ea>,Dn  multiplies the signed long word in Dn by the signed long word <ea> .

DIVS.L <ea>,Dn  divides the signed long word in Dn by the signed long word <ea> .
DIVSL.L <ea>,Dr:Dq  divides the signed long word in Dq by the signed long word <ea> , the remainder is
stored in Dr . There is no instruction to calculate the remainder without also calculating the quotient.
For all three instructions <ea> can not be an address register. The MC68020 does have other multiplication
and division instructions, but we will not use them.

The EXT instruction.

EXT.W Dn sign extends the byte in Dn to a word. (bit 7 is copied to bits 8-15)
EXT.L Dn  sign extends the word in Dn to a long. (bit 15 is copied to bits 16-31)
EXTB.L  Dn sign extend the byte in Dn to a long. (bit 7 is copied to bits 8-31)

The NEG and NOT instructions.

NEG <ea> negates (subtracts from zero) the <ea> .
NOT <ea>  complements (changes all bits, or subtracts from -1) the <ea> .
For both instructions address register direct, immediate and PC relative addressing modes are not allowed
for <ea> , all operand sizes are allowed.

The AND and OR instructions.

AND <sea>,<dea>  ands the <sea>  to the <dea> . The <sea>  or the <dea>  (at least one) has to be a data
register or an immediate value. Both the <dea>  and the <sea>  may not be an address register, for the <dea>
immediate and PC relative addressing modes are also not allowed. All operand size are allowed. If the
<sea>  is an immediate value, the instruction is called ANDI.
For OR and ORI the same addressing modes are allowed as for AND and ANDI, but now the <sea>  is ored to
the <dea> .
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The EOR instruction.

EOR <sea>,<dea>  exclusive-ors the <sea>  to the <dea> . The <sea>  has to be a data register or an
immediate value. For the <dea>  address registers direct, immediate and PC relative addressing modes are
not allowed. All operand size are allowed. If the <sea>  is an immediate value, the instruction is called
EORI.

The shift instructions.

LSL #n,Dy shifts data register Dy n bits to the left, n must be between 1 and 8.

LSL Dx,Dy  shifts data register Dy Dx (modulo 64) bits to the left.
Zero bits are shifted in from the right. The operand size is always long. The MC68020 can also shift a
word in memory by one bit, but these instructions will not be used.

For LSR, ASL and ASR the same addressing modes are possible as for LSL.
ASL also shifts left, but does not clear the overflow flag, but sets it if the sign bit (most significant bit)
changes during the shift, otherwise clears it. Because LSL is faster than ASL and because we don't need to
know whether or not an overflow occurs, we will always use LSL.
LSR shifts to the right. Zero bits are shifted in from the left.
ASR shifts to the right. Sign bits (most significant bit) are shifted in from the left, so that the sign does not
change during the shift. LSR is faster than ASR, but the result is not the same for negative integers.

Unconditional branch instructions.

BRA <label>  branches to (continues execution at) the <label> , i.e. the address of the <label>  is loaded
into the PC (Program Counter). This address is specified by a displacement from the PC. And this address
is calculated by adding the PC+2 (i.e. the value in PC after fetching the first instruction word) and a
displacement. This displacement may be a signed byte, word or long. For small displacements the
instruction is shorter, but just as fast as for long displacements.

BSR <label>  calls the subroutine at <label> ,i.e. it does the same as BRA <label> , but first pushes the
address of the instruction after this (BSR) instruction onto the system stack by subtracting 4 from SP and
moving the address to (SP). Again the instruction is shorter for small displacements, but just as fast.

JMP <ea>  jumps (continues execution at) the address of <ea> , i.e. the address of <ea>  is loaded into PC.
For <ea>  the following addressing modes are not allowed: (data and address) register direct, address
register with post- or pre-increment and immediate. JMP d16(PC)  can be replaced by a BRA instruction, this
is faster and just as long, or shorter if the displacement is a signed byte.

JSR <ea>  calls the subroutine at address <ea> , i.e. it does the same as JMP <ea> , but first pushes the
address of the instruction after this (JSR) instruction onto the system stack by subtracting 4 from SP and
moving the address to (SP). The same addressing modes are allowed as for JMP. JSR d16(PC)  can be
replaced by a BSR instruction, this is faster and just as long, or shorter if the displacement is a signed byte.

RTS returns from subroutine, i.e. (SP) is moved to PC and 4 is added to SP.

Conditional instructions.

Bcc <label>  branches to the <label>  if the condition cc  is true. cc  can be any condition described
below. Just like for BRA the label is specified by a displacement which is added to PC, and the displacement
may be a signed byte, word or long. For small displacements the instruction is shorter.
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If the branch is taken (if the condition is true), the instruction is just as fast for short displacements as for
long displacements. But if the branch is not taken, the instruction is a little bit faster for shorter
displacements. For byte displacements a not taken branch is faster than a taken branch, for word
displacements the difference is small, and for long displacements there is no difference in speed.

DBcc Dn,<label>  tests the condition cc  and then if the condition is false, decrements (subtracts 1 from)
Dn and then if Dn is not equal to -1 branches to the <label> . The displacement which is added to PC must
be a word.

Scc <ea>  sets all bits of the <ea>  to one (the byte to -1) if the condition cc is true, otherwise to zero. The
operand size is always byte. Address register direct, immediate and PC-relative addressing modes are not
allowed for <ea> .

The condition codes.

The possible condition codes are:
EQ equal (=)
NE not equal (!=)
GT greater than (signed >)
GE greater or equal (signed ≥)
LE less or equal (signed ≤)
LT less than (signed <)
HI high (unsigned >)
CC or HS carry clear or high or same (unsigned ≥)
LS low or same (unsigned ≤)
CS or LO carry set or low (unsigned <)
PL plus (≥0)
MI minus (<0)
VC overflow clear
VS overflow set
T true
F false

Bcc  after CMP <sea>,<dea>  branches if <dea>  cc  <sea> , for example
CMP.L #1000,D0
BGT label

branches if D0 GT #1000  (D0 greater than 1000).

Of the instructions described above the following instructions set the condition codes: (some don't set the X
flag, which can be used for multiprecision and mixed size arithmetic, but none of the conditions and
instructions described above depends on this flag)
MOVE, MOVEQ, CLR, ADD, ADDI, SUB, SUBI, CMP,
CMPA, CMPI, TST, MULS, DIVS, DIVSL, EXT, EXTB,
NEG, NOT, AND, ANDI, OR, ORI, EOR, EORI,
LSL, ASL, LSR, ASR
and ADDQ and SUBQ to a data register.

Note that the following instructions don't set the condition codes:
MOVEA, ADDA, SUBA, MOVEM, LEA, PEA, EXG, Scc
and ADDQ and SUBQ to an address register.
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2 . 3 . 5 . Example of MC68020 code of a Clean function.

The MC68020 which is generated by the ABC compiler described in this paper from the ABC code in
section 2.2 for the function fac is: (see appendix A for more examples)

lFac: ; apply entry : 'Fac' node in register A2,
argument n node in register A1 and node
to be overwritten by result on the A-
stack in register A0

BRA m.1 ; jump to label m.1
nFac: ; node entry : 'Fac n' node in register A0

MOVEA.L 8(A0),A1 ; move pointer to argument part of node to
A1

MOVEA.L (A1),A1 ; move argument n to A1
m.1: LEA _cycle_in_spine,A2 ; load address of _cycle_in_spine code in

A2
MOVE.L A2,(A0) ; store _cycle_in_spine as evaluation

address to detect cycles in the spine of
the graph

MOVE.L (A1),D6 ; load reduction address of n
BEQ eval_0 ; branch if reduction address = _hnf (0)
MOVE.L A0,-(A3) ; save register A0
MOVEA.L A1,A0 ; move argument n node to A0
MOVEA.L D6,A1 ; move evaluation address of n to address

register
JSR (A1) ; evaluate argument n node
MOVEA.L A0,A1 ; move address of evaluated argument n

node to A1
MOVEA.L (A3)+,A0 ; load register A0

eval_0:
MOVE.L A0,-(A3) ; push node to be overwritten by result on

the A-stack
MOVE.L 8(A1),D0 ; load evaluated integer n in D0
BSR sFac.1 ; call strict entry of Fac to compute Fac

n in D0
MOVEA.L (A3)+,A0 ; load address of node to be overwritten

by result in A0
MOVE.L A0,D1 ; copy address of result node to D1
CLR.L (A0)+ ; overwrite node to store result, first

store evaluation address,
MOVE.L #!INT+0,(A0)+ ; then the descriptor of an integer node,
MOVE.L D0,(A0) ; and finally the integer in D0 (the

result of Fac n)
MOVEA.L D1,A0 ; return the address of the result node in

A0
RTS ; return, with result in A0

sFac.1:
TST.L D0 ; n equal 0 ?
BNE sFac.2 ; no, jump to label sFac.s

m.2:
MOVEQ #1,D0 ; return 1 in D0
RTS ; return

sFac.2:
MOVE.L D0,(A4)+ ; push n on the B-stack
SUBQ.L #1,D0 ; subtract one from n in D0
BSR sFac.1 ; call strict entry of Fac to compute Fac

(--I n) in D0
MULS.L -(A4),D0 ; multiply result by n to compute Fac n
RTS ; return, with result in D0
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2 . 3 . 6 . The MC68020 cache.

To improve the performance of the processor, the MC68020 has an instruction cache. During the execution
of an instruction the processor tries to prefetch the following words in the instruction stream. The cache is
used to store these prefetched words.

The cache contains a high speed memory of 64 long words. Every time an instruction fetch occurs, the
processor first checks if the word required is already in the cache. If it is, the word does not have to be
fetched from memory. Otherwise the long word, which contains this word, is fetched from memory and
stored in the cache.

This cache speeds up small loops and small recursive functions, because instructions in the loop have to be
fetched from memory only once.
Only instructions are stored in the cache, other memory accesses don't use the cache.

2 . 3 . 7 . MC68020 instruction execution timing.

The number of memory accesses to fetch or write a word or long word depends on the size of the data bus.
For the MC68020 the data bus can be 8, 16 or 32 bits wide, I will assume it is 32 bits wide, because it
usually is (also on the Mac II). Then the number of memory accesses to fetch or write:
- a byte is 1.
- a word is 1, if the word is word aligned (at an even address), otherwise 2.
- a long word is 1, if the long word is long word aligned (at an address which can be divided by 4),

otherwise 2.

If memory can be accessed without wait states, every memory access costs 3 clock cycles. Then accesses to
words which are not word aligned and long words which are not long word aligned cost 3 clock cycles
extra. Therefore it is important to align words and long words.

The number of memory accesses necessary to fetch an instruction depends on the length of the instruction,
whether or not the instruction is long word aligned, and on the contents of the cache. (see also section
2.3.6) Nearly all instructions consist of one word (some two words), and 0-4 effective address extension
words. The number of effective address extension words depends on the addressing modes which are used
in the instruction. (see table below)

Exact instruction timing calculations for the MC68020 are difficult because of:
- an instruction cache and instruction prefetch.
- operand misalignment.
- instruction execution overlap.

Therefore [Motorola 1985] only gives execution times for a machine with 32-bit databus, no wait state
memory and long word aligned operands and stack. For every instruction it gives 3 execution times: the
best case, the cache case and the worst case. Cache case assumes the instruction is already in the cache, so
that no extra clock cycles are necessary to fetch the instruction, and that no execution overlap occurs with
other instructions. Best case execution times are often better than cache case due to execution overlap with
other instructions. And worst case execution times are often worse than cache case because the instruction
has to be fetched. I will use these cache case instruction times because if the cache is effective, this will
usually be the most accurate time.

In the following table for the addressing modes used by the code generator the following is indicated:
- the fetch effective address (FEA) time in clock cycles.
- the calculate effective address (CEA) time in clock cycles.
- the fetch immediate word effective address (FIWEA) time in clock cycles.
- the fetch immediate long effective address (FILEA) time in clock cycles.
- the calculate immediate word effective address (CIWEA) time in clock cycle.
- the number of effective address extension words.
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These times can be used to calculate the cache case execution time together with the second table below.

Addressing
mode:

FEA time CEA time FIWEA time FILEA time CIWEA time extension
words

Dn 0 0 2 4 2 0
An 0 0 - - - 0
(An) 4 2 4 4 2 0
(An)+ 4 2 6 8 4 0
-(An) 5 2 5 7 ? 0
(d16,An) 5 2 5 7 4 1
(d16,PC) 5 2 - - - 1
#<data>.B 2 - - - - 1
#<data>.W 2 - - - - 1
#<data>.L 4 - - - - 2

The number of clock cycles needed to execute the following instruction are: (the number of clock cycles for
the other instructions can be found in appendix B)
(Rn means An or Dn, <mea> means memory effective address, not a register)

MOVEQ #<data>,Dn 2
ADDQ #<data>,Rn 2
SUBQ #<data>,Rn 2
EXG Ry,Rx 2
MOVEM <ea>,register list 8 + CIWEA time + 4 * number of registers
MOVEM register list,<ea> 4 + CIWEA time + 3 * number of registers
ADD <ea>,Dn 2 + FEA time
ADDA <ea>,An 2 + FEA time
SUB <ea>,Dn 2 + FEA time
SUBA <ea>,An 2 + FEA time
CMP <ea>,Dn 2 + FEA time
CMPA <ea>,An 4 + FEA time
LEA <ea>,An 2 + CEA time
MULS.L 43 + FIWEA time
DIVS.L 90 + FIWEA time
TST <ea> 2 + FEA time
CLR Dn 2
CLR <mea> 4 + CEA time.
BRA 6
BSR 7
JMP (d16,PC) ? (probably 8, same as JMP (d16,An) )
JSR (d16,PC) ? (probably 9, same as JMP (d16,An) )
LSL #n,Dy 4
LSL Dx,Dy 6
ASL #n,Dy 8
ASL Dx,Dy 8

The number of clock cycles needed to execute the MOVE and MOVEA instructions are:

Destination:
Source An or Dn (An)  or (An)+ -(An)  or (d16,An)
An or Dn 2 4 5
(An)  or (An)+ 6 7 7
-(An)  or (d16,An)  or (d16,PC) 7 8 8
#<data>.B , #<data>.W 4 6 7
#<data>.L 6 8 9
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Using these tables we can conclude that:

- Access to registers is a lot faster than memory access. For example to add a value in a register to
another register costs 2 clock cycles, while adding a value in memory using (An) to a register costs
6 clock cycles.

- Predecrementing (-(An)) or postincrementing ((An)+) an address register before addressing is not
much slower than without predecrement or postincrement. For example MOVE.L (A0)+,D0  is just
as fast as MOVE.L (A0),D0  and MOVE.L -(A0),D0  takes only 1 clock cycle more.

- Using a 16 bit displacement ((d16,An)) is often only 1 clock cycle more expensive than not using a
displacement ((An)). But because the instruction is one word longer, the difference is bigger when
the instruction is not yet in the cache.

- The MOVEQ, ADDQ and SUBQ to a register are three times as fast and short than the normal MOVE, ADD
and SUB instructions. ADDQ and SUBQ to a value in memory are also faster and shorter.

- For long word values between -128 and 127 it is often faster and shorter first to move the value in a
data register using MOVEQ and then do the operation, instead of doing the operation with an
immediate long addressing mode. For example instead of:
CMPI.L #100,D0
it is faster and shorter to use:
MOVEQ #100,D1
CMP.L D1,D0
The first instruction sequence costs 6 clock cycles, while the second costs 4 clock cycles.

- CLR <ea>  is faster than MOVE #0,<ea>  and TST <ea>  is faster than CMPI #0,<ea> .

- CMP <ea>,Dn  is faster than CMPA <ea>,An , but for MOVE, ADD and SUB there is no difference in
speed between data and address registers.

- BRA is faster than JMP (d16,PC) , and BSR is faster than JSR (d16,PC) .

- The multiply and division instructions are very slow compared to the other instructions. Multiplying
a data registers by another data register costs 45 clock cycles, such a division costs 92 clock cycles,
but such an an addition or subtraction costs just 2 clock cycles.

- LSL is faster than ASL.



20

3 . Representing the ABC machine.

In this chapter is described how the data structures (heap, stacks etc.) used by the ABC machine [Koopman
et al. 1990] are represented on a register machine, and then how they are represented on the MC68020
[Motorola 1985]. How nodes are represented in the heap, and why this representation was chosen, is
described. Also the representation of strings is discussed.

3 .1 . The stacks.

The A, B and C stack of the ABC machine have to be stored in memory on a register machine. The best
representation of these 3 stacks is a contiguous area of memory for each of them, with a pointer to the top
of the stack. (stackpointer)
Because these stacks are used very often these stackpointers should be stored in registers rather than in
memory. When pushing and popping values on and off a stack, the push and pop instructions of the
machine can be used, so that values can be pushed or popped with just one instruction.

3 .2 The heap.

The heap is a contiguous area of memory in which nodes are allocated. Because very often space is
allocated on the heap, the pointer to the top of the heap is stored in a register and the number of free cells in
the heap also in a register.

3 .3 . Representing nodes.

The representation of nodes should be so that:
- values stored in the node can be accessed fast.
- a node can be overwritten fast and by a larger node.
- garbage collection can be done fast.

Overwriting a small node by a large node causes problems, because no memory is available for the extra
arguments. This problem is usually solved by creating a new (large) node and overwriting the small node
by an indirection node, which points to the large node just created. But this makes access to nodes more
expensive, because sometimes a pointer chain has to be traversed. Also the overwriting is more expensive,
because not only the new node has to be created, but also an indirection node. Therefore this approach was
not chosen.

Instead, just as for the previous ABC compiler (for the Sun) [Weijers 1990], the node was split into two
parts: a fixed size part and a variable size part [Nöcker et al. 1991]. The fixed size part contains those fields
that must be present in every node and a pointer to the variable size part. The variable size part contains the
arguments of the node. Using this representation a small node can be overwritten by a large node by
creating a new variable size part containing the arguments and overwriting the fixed size part of the small
node with the other fields of the large node and a pointer to the variable size part just created.

The advantages of this representation are:
- It is never necessary to traverse a pointer chain to access a node.
- If a node is overwritten by a larger node, creating the node is less expensive in time, because it is

now not necessary to create an indirection node.
- No memory is used for indirection nodes.
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- Arguments can be shared between nodes, so that nodes with more than one argument can be copied
faster, because the arguments don't have to be copied, but just the fixed size part. But this has as
disadvantage that, if a node is overwritten by a node which is smaller or of the same size, the
arguments of the node may not be overwritten. So that a new variable size part has to be allocated in
the heap.

The disadvantaged of this representation are:
- One extra memory access is necessary to access the arguments of a node.
- Nodes are a little bit larger, because they now also contain a pointer to the variable size part.
- Because nodes are larger, creating a node is more expensive in time, except when a node is

overwritten by a larger node. (see above)

Basic value nodes, i.e. integer, character, boolean, real and string nodes, don't have arguments, so the
pointer to the variable size part doesn't have to be stored in the fixed size part. If the value to be stored in
the basic value node (e.g. 3 for an integer 3 node) can be stored in fewer or the same number of bytes than
a pointer, no variable size part is necessary. Because in that case the memory location(s) in the fixed size
part, normally occupied by the pointer to the variable size part, is used to store this value. This can usually
be done for integer, character and boolean values. Because there is no variable size part in such a case, the
disadvantages described above don't apply to these nodes. But if the value to be stored in the basic value
node can not be stored in the number of bytes necessary to store a pointer, then a variable size part is used
to store this value. And a pointer to this variable part is stored in the memory location(s) in the fixed size
part normally occupied by the pointer to the variable size part containing the arguments. Usually this is
necessary for real and string values.

The other information (beside the arguments) we have to be able to retrieve from a node is:

- the address of the reduction code.
If the node is not (yet) in head normal form, this location is usually accessed three times: first it is
used to reduce the node, then it is overwritten to detect cycles in the spine of the graph and then it is
overwritten to prevent reducing it again. After the node has been reduced this location may be
accessed many more times. So it is important that this location can be accessed very fast.

- the symbol of the node. (for example INT or CONS)
This symbol is used during pattern matching and access should therefore be very fast.

- the address of the apply reduction code.
This address is used to reduce an APply of a node. (for curried applications) It is not used often and
therefore access doesn't have to be fast.

- the number of arguments of the node.
This information is necessary for the garbage collector and some ABC instructions which are not
executed very often, for example add_args , del_args  and get_node_arity . Because the garbage
collector uses this information access has to be fast, but doesn't have to be as fast as access to the
address of the reduction code and the symbol of the node.

- the arity of the symbol.
This information is necessary for the ABC get_desc_arity  instruction, which is not used very
often. Access doesn't have to be fast.

- the string representation of the name of the symbol. (for example "INT" or "CONS")
This string is used to print nodes with the ABC print_symbol  instruction. Access doesn't have to
be fast.

Access to the address of the reduction code and the symbol of the node should be very fast, therefore they
should be stores in the (fixed size part of) the node.

The address of the apply reduction code, the arity of the symbol and the string representation of the name of
the symbol only depend on the symbol. For every symbol this information could be stored in a record.
Every node should then contain a pointer to the record of the symbol of the node. Then to access this
information an extra memory access is necessary, but this is no problem, because this information doesn't
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have to be accessed fast. Using such a pointer is faster than storing all the information in the node, because
the pointer is smaller than the record, and therefore the nodes will be smaller and can be created faster. This
record is called the symbol record.

Only the number of arguments has not yet been stored. We don't want to store this in the node, because the
number of arguments is not accessed very often and this would make the nodes larger. We can't store the
number of arguments in the symbol record, because nodes with the same symbol can have a different
number of arguments. To solve this we could make a record for every number of arguments, but this
would cost to much memory.

A better solution is to make (for every symbol) an array with an element for every number of arguments.
Every element of the array contains the number of arguments and a pointer to the start of the corresponding
symbol record. (the same for every element of an array) The first element of the array is for 0 arguments,
the second element for 1 argument, etc. The elements are called descriptor elements.

Now the pointer in the node which points to the symbol record should be replaced by a pointer to the array
element (the descriptor element) which contains the number of arguments of the node and a pointer to the
symbol record. This of course means that access to the symbol record now requires an additional memory
access, but this is not a problem, because the information in the symbol record doesn't have to be accessed
fast. The address of a descriptor element will be called a descriptor address. Note that when the number of
arguments of a node is changed, for example with add_args  or del_args , the address of the array element
can be calculated by adding the size of an element * (number of arguments - previous number of
arguments) to the old address.

The symbol of the node is only used during pattern matching. Because we always know the number of
arguments of a node during pattern matching, we can just as well use the address of the array element in the
node for pattern matching. Then we don't have to store the symbol of the node in the node.

Consequently, we use the following data structures:

1. The fixed size part of a node consists of:
- the address of the reduction code.
- the descriptor address.
- the address of the variable size part of the node, which contains the arguments, or a basic

value for a basic value node. For a basic value node for which the size of a basic value is
smaller than or the same as the size of a pointer, the basic value is stored in this location.

2. For every symbol there exists an array of [ 0 .. arity ] elements. Element number n consists of:
- the number of arguments. (n)
- a pointer to the symbol record of this symbol.

3. For every symbol there exists a symbol record consisting of:
- the arity of the symbol.
- the address of the apply reduction code.
- the string representation of the name of the symbol.
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a

Address of the reduction code Descriptor address Address of the variable size part

Argument 1 Argument n

Arity of the symbol Address of the apply code Name of the symbol

Number of arguments (0) Address of the symbol  record Number of arguments (n) Address of the symbol  record

If the register machine efficiently supports address arithmetic, the array can be represented more compact.
(see section 3.5)

3 .4 . Representing strings.

Possible string representations are:
- An array of characters which ends with a special character to indicate the end of the string.
- The length of the string and an array of characters.
- A list of characters.
- More complex representations, for example a list of arrays of characters.

A list of characters is not a good representation, because it uses too much memory. For every character of
the string not only memory has to be allocated for the character, but also for a pointer, which usually
occupies 4 times as much memory as a character.

More complex representations could result in faster execution than the other representations, but are
difficult to program and often use too much memory. It is probably not worth while to spend a lot of time
on designing and programming a complex string representation, because for most programs strings are not
very important.
The other two string representations don't use a lot of memory.

Using a special character to indicate the end of the string has several disadvantages compared to storing the
length:

- The length of the string can not be calculated very fast. To calculate the length of the string, the
whole string has to be scanned. This also causes problems when concatenating two strings.
Because if we first calculate the lengths of the strings, the concatenation will be slower. But if we
don't, we don't know in advance how much memory has to be allocated.

- A string can not be copied as fast, which makes the garbage collector slower. If we use a special
end character, we can only copy a string character by character. If we know the length of the string,
we can often copy many characters at once. If for example 4 characters are stored in one machine
word, we can copy 4 characters at once.

- The string may not contain this special end character.

The advantages of using an end character are:

- A few bytes less memory is used.
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- The last part of the string may be shared. If a new string has to be build which is the last part of a
string, the string does not have to be copied, but the last characters of the string and the end
character can be shared. For the ABC machine this is usually not useful. Although the ABC
instruction sliceS  could be executed faster if the slice is the last part of the string.

Because the only important advantage of using an end character is that it uses a few bytes less memory, we
will not use this representation, but use the representation which includes the length of the string.

Consequently, a string consists of:
- a word which contains the length of the string. (in characters)
- an array of the characters of the string.

This string representation has also been used for the ABC code generator for the Sun [Weijers 1990].

Strings are allocated in the heap. A string node consists of a normal fixed size part, except that the pointer
to the variable size part points to the string.

3 .5 . Representation on the MC68020.

In this section I will explain how the representations for register machines described above are represented
on the MC68020. And also how these representation can be improved by using MC68020 specific
properties, like efficient address arithmetic and efficient access to both words and long words.

The MC68020 has two sorts of registers: address registers and data registers. Only address registers can be
used to access memory (see section 2.3.3), therefore the stackpointers and heap pointer should be allocated
an address register. To implement the ABC instructions jsr , jsr_eval  and rtn  efficiently, the C-
stackpointer should be allocated register A7, because the MC68020 JSR, BSR and RTS instructions use A7
as stackpointer to push or pop the return address. For the A- and B-stackpointers and heap pointer any free
address register may be chosen.

The C-stack grows in the direction of low memory addresses, because the MC68020 system stack (A7)
grows in this direction. For the A-stack and B-stack both directions can be chosen just as well. But by
letting one stack start high in memory and grow in the direction of low memory addresses, and letting the
other stack start low in memory and grow in the direction of high memory addresses, one of the stacks can
become larger if the other one is small. Also a stack check can be implemented more efficiently, by testing
that the stackpointer which started high in memory is still higher than or the same as the other stackpointer.
In this implementation the A-stack starts high in memory and grows in the direction of low memory
addresses, and the B-stack starts low in memory and grows in the direction of high memory addresses, but
this could just as well have been the other way around.

The number of free long words in the heap can better be stored in a data register, because to allocate
memory in the heap, we subtract the number of long words we want to allocate from this register, and then
test if the garbage collector should be called by testing if the result became negative (see section 6.9). If we
would use an address register for the number of free long words, we would need an extra instruction to test
if the result became negative, because the MC68020 doesn't set the condition codes for a subtract from an
address register. Another reason to use a data register is that, because the stackpointers and heap pointer are
stored in address registers, there are not so many address registers left, but all data registers are still free.

Because this implementation is for the macintosh, register A5 can not be used, because it is used by the
Macintosh to access the jump table and data area. On other machines this is not necessary, but then it may
still be useful to let an address register point to the data area, because then values in the data area can be
accessed faster using the d16(An) address mode instead of using the absolute address, because a
displacement is only 16-bits and an address 32-bits. In that case the data area should not be larger than
64K. On the macintosh the data area can not be larger than 32K, but this is not a problem, because the data
area is only used for descriptor elements, symbol records and constant strings, not for the heap and stacks.
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In this implementation the following registers were used:

A3 A-stackpointer.
A4 B-stackpointer.
A5 data pointer, points to global data area.
A6 heap pointer, pointers to the top of the heap.
A7 C stackpointer.
D7 number of free long words in the heap.

The representation of nodes for register machines described in section 3.3 can be improved for the
MC68020. This is so because descriptor elements are located in the data area, so that the descriptor address
can also be represented by a 16-bit offset from the start of the data area instead of a 32-bit address. This
would reduce the size of the representation of a descriptor address from 32 bits to 16 bits.
Using this representation pattern matching can be done faster. Because if we now have to compare a
descriptor address, we can compare words (using CMPI.W) instead of comparing long words (using
CMPI.L ), which is faster (see 2.3.4 and 2.3.7). But using this representation would slow down access to
the descriptor element. Because after loading the offset of the descriptor address from a node, the start of
the data area has to be added to this offset to obtain the descriptor address (the start of the data area is
always stored in register A5 on the Macintosh) Because the descriptor addresses are mainly used for pattern
matching, and access to the descriptor element is not required very often, the representation using an offset
is better. The offset to the descriptor address (address of the descriptor element) will be called the
descriptor.

Consequently, a node is represented in the heap by: (in this order)

- 4 bytes: The address of the reduction code.
- 2 bytes: Not used. (filled with -1) Necessary to maintain long word alignment.
- 2 bytes: The descriptor.
- 4 bytes: If it is an integer, character or boolean node: an integer, character or boolean.

If it is a real or string node: a pointer to a real or string. The real or string is also
stored in the heap.
Otherwise : a pointer to the argument(s) of the node. The argument(s) are 4 byte
pointers to nodes and are also stored in the heap. If there are no arguments, this
value is undefined, but has to be allocated so that this node can be overwritten by a
node with arguments.

The representation of descriptor elements for register machines described in section 3.3 can also be
improved for the MC68020. This is so because the MC68020 supports address arithmetic efficiently.
Therefore the descriptor elements can be represented more compact. This can be done by storing the
symbol record just before the array of descriptor elements. Then the end of the symbol record can be found
using the number of arguments stored in the descriptor element, because the end of the symbol record =
address of the descriptor element - (number of arguments stored in the descriptor element * size of a
descriptor element). Now we no longer have to store the address of the symbol record in the descriptor
element.
But even this representation can be improved by not storing the number of arguments in the descriptor
element, but instead store the number of arguments * size of a descriptor element. Then the end address of
the symbol record can be found faster (because the end of the symbol record is calculated by: address of the
descriptor element - (number of arguments stored in the descriptor element * size of a descriptor element)).

During the evaluation of curried function applications it is necessary to compute: arity - 1 - number of
arguments, therefore this number was also stored in the descriptor element. So now a descriptor element
consists of the numbers: (array element number * size of a descriptor element) and (arity - 1 - array element
number). Both are stored in a word.

Finally, the string representation of the name of the symbol was not stored in the symbol record, before the
array of descriptor elements, but after this array. Otherwise a pointer to the string would have been
necessary. Now the address of the string can be calculated by: descriptor address + first two bytes of
descriptor element * 4 + second two bytes of descriptor element + 4.
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Consequently, the following representation was chosen for the symbol record and the array of descriptor
elements:

- Symbol record:
- 4 bytes: address of the apply code of the symbol.
- 4 bytes: arity of the symbol.

- Array [ 0 .. arity ] of descriptor elements of:
- 2 bytes: array element number (number of arguments of the node) * 4 (size of a

descriptor element).
- 2 bytes: arity - 1 - array element number (number of arguments of the node).

- String representation of the name of the symbol.

a

Address of the reduction code

Descriptor offset

Address of the variable size part

Argument 1

Argument n

Arity of the symbol

Address of the apply code

Length of the symbol name

arity-1

-1

-1

0

4*arity

arity-24

Argument 2

Characters of the symbol name

04*(arity-1)

Name of the symbol

Array of descriptor elements

Symbol record (without name of the symbol)
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4 . Run time system.

In this chapter the run time system is described. It explains how the garbage collector has been
implemented, and what other things have been implemented in the run time system.

4 .1 . Garbage collection.

Because the ABC machine assumes there is an infinite heap, but a concrete machine only has a limited
amount of memory, it is necessary to recycle memory. Memory which is no longer used should be reused
again. Collecting the parts of the heap which are no longer used is called garbage collection.

Garbage collection will be done by a copying garbage collector, just as for the previous implementation.
(on the SUN) [Weijers 1990]. The memory available for the heap is divided in two areas called semispaces.
The nodes are stored in one semispace. When the semispace is filled with nodes, all nodes which are still
needed for the execution of the program are copied to the other semispace, and this semispace becomes the
current semispace.

The advantages of this garbage collection method are:
- the garbage collection is fast.
- no overhead during execution of the program, like updating reference counters.
- garbage collection automatically performs compaction.
- all nodes which are no longer needed can be recovered.

The disadvantages of this method are:
- only half the memory can be used.
- garbage collection can cause long pauses during the main computation.
- when the heap becomes fuller, the garbage collection has to be done more often and will be slower.

4 .2 . Remainder of the run time system.

The remainder of the run time system consists of:

- Code to allocate and free memory for the stack and the heap. Both the stacks, including the system
stack, and the heap are long word aligned (see section 2.3.7).

- Code to perform output to a console. A simple console has been implemented, which consists of a
window in which text is displayed. The output produced by the ABC instructions print,
print_sc, print_symbol, print_symbol_sc  and dump is displayed in this window. Input
from a console and input from and output to files still has to be implemented.

- Code to compute the execution time and the time spend collecting garbage using a timer.

- Subroutines to implement string operations and conversions for the ABC instructions: catS ,
sliceS , updateS , cmpS, eqS_a  and fillS_symbol .

- A subroutine to perform the reduction of AP nodes.
In the previous implementation (for the Sun) [Weijers 1990] this was implemented using the ABC
instructions get_node_arity , get_desc_arity , push_ap_entry  and add_args . All these
instructions have to access the descriptor element, and two of these instructions have to access the
symbol record. But to perform the reduction of an AP node, all these accesses have to be done for
the same node, so the address of the descriptor element was computed four times and the address of
the symbol record was computed twice. The code generator can not detect this, because common



28

subexpression elimination (see section 5.1.6) has not (yet ?) been implemented, so some addresses
were calculated more than once. By writing this code in assembly, these recalculations were
eliminated, and the code for the reduction of AP nodes became faster.

- Subroutines to implement the ABC instructions: eq_symbol , randomI , entierR  and halt .

The code to perform input and output to the console is written in C. All other code, including the garbage
collector, has been written in MC68020 assembly language.
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5 . Possible code optimizations.

In this chapter possible code optimizations for the implementation of the ABC machine on the MC68020 are
described. This is done by describing how the code generated by a very simple code generator can be
optimized. With this very simple code generator I mean a code generator which translates every ABC
machine instruction one at a time to a fixed sequence of machine code instructions (a kind of macro
expansion). The code generated in this way is not very efficient, but we can use this code to examine how
the code can be improved.

First general optimizations of ABC code are discussed. These are optimizations which can be performed for
nearly all machines to which we want to translate ABC code. Then optimizations for register machines are
discussed and finally MC68020 specific optimizations are discussed.

For most optimizations short examples are given. In these examples the following registers are given the
following names:
A-stackpointer (A3) ASP
B-stackpointer (A4) BSP
C-stackpointer (A7) CSP
Heap pointer (A6) HP
Free long words counter (D7) FC

5 .1 . General code optimizations.

Optimizations which can be performed for implementations of the ABC machine on nearly all machines are:

5 . 1 . 1 . Optimizing the creation of nodes.

The ABC instruction create  creates an empty node, by allocating space for it on the heap and initializing
the allocated node. This initialization is necessary so that the garbage collector can determine that it is an
empty node.
But if an empty node is always filled by an ABC fill  instruction before a garbage collection can occur,
initializing the node during a create is not necessary.

For example, MC68020 code for first creating and initializing, and then filling an integer node with value 0:

* allocate 3 long words in the heap:
SUBQ.L #3,FC ; subtract 3 from the number of free long

words
BMI garbage_collect_1 ; if heap full, collect garbage

* create and initialize the node with empty:
MOVEA.L HP,A0 ; move start address of new empty node to

A0
LEA reduce_empty,A1 ; load empty node reduction address
MOVE.L A1,(HP)+ ; store reduction address, reserve long

word
MOVE.L #empty_descriptor*4,(HP)+ ; store descriptor * 4, reserve long word
ADDQ.L #4,HP ; reserve long word in the heap

* fill the node:
LEA _hnf,A1 ; load reduction address of integer node

(_hnf)
MOVE.L A1,(A0)+ ; store reduction address in node
MOVE.L #integer_descriptor*4,(A0)+ ; store descriptor * 4 in node
CLR.L (A0) ; store integer value (0) in node
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After the optimization, so without initializing:

* allocate 3 long words in the heap:
SUBQ.L #3,FC ; subtract 3 from the number of free long

words
BMI garbage_collect_1 ; if heap full, collect garbage

* create a node:
MOVEA.L HP,A0 ; move start address of new empty node to

A0
ADDA #12,HP ; reserve 12 bytes for empty node in the

heap
* fill the node:

LEA _hnf,A1 ; load reduction address of integer node
(_hnf)

MOVE.L A1,(A0)+ ; store reduction address in node
MOVE.L #integer_descriptor*4,(A0)+ ; store descriptor * 4 in node
CLR.L (A0) ; store integer value (0) in node

For this example the optimized code is about 40 percent faster (estimation calculated using the execution
times in section 2.3.7 or appendix B).

Very often even this can be improved by postponing the creation of the node to the fill  instruction, so that
creating and filling the node can be done at once, which is faster than first creating a node and later filling it.

For the same example as above, create and fill at the same time:

* allocate 3 long words in the heap:
SUBQ.L #3,FC ; subtract 3 from the number of free long

words
BMI garbage_collect_1 ; if heap full, collect garbage

* create and fill the node:
LEA _hnf,A1 ; load reduction address of integer node

(_hnf)
MOVE.L A1,(HP)+ ; store reduction address in heap, reserve

long word
MOVE.L #integer_descriptor*4,(HP)+ ; store descriptor * 4 in heap, reserve

long word
CLR.L (HP)+ ; store integer value (0) in heap, reserve

long word

For this example the optimized code is about 20 percent faster than without creating and filling at once, and
about 65 percent faster than the first example with creating, initializing and filling (estimations calculated
using the execution times in appendix B).

It is not always possible to fill and create a node at once if there is a reference to the address of the created
node before the node is filled. In such a case the initialization after the creation is usually still not necessary.
Sometimes the order of the instructions can be changed so that it is still possible to fill and create at once,
but this is not possible for all nodes if there are cycles in the graph. For the following example this is not
possible, because there is a cycle in the graph:

create || create node 1
create || create node 2
push_a 1 || copy node-id of node 1
fill descriptor_1 1 entry_1 1

|| fill node 2 with node 1 as argument
push_a 0 || copy node-id of node 2
fill descriptor_2 1 entry_2 2

|| fill node 1 with node 2 as argument

In this example one of the creates can not be postponed to the corresponding fill, because to create one of
the nodes it is necessary to know the address of the other node.
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If a node has to be created space has to be allocated for it on the heap by decrementing the number of free
cells in the heap and, if there are not enough free cells left, calling the garbage collector (see section 6.9). If
more than one node has to be created, this can be done faster by allocating space on the heap for all the
nodes at once.

5 . 1 . 2 . Jump optimization.

The Clean compiler often generates instruction sequences like:

jmp_false label1
jump label2

label1:

This can be replaced by:

jmp_true label2
label1:

If false was on the stack before the first jump instruction, the optimized code is usually not much faster, but
if true was on the stack, only one jump instruction has to be executed instead of 2 jump instructions, so this
is about twice as fast.

5 . 1 . 3 . Strength reduction.

Integer multiplications by constants which are powers of 2 can be optimized by replacing them by shift
instructions, because shift instructions usually are much faster. On the MC68020 a shift (LSL) instruction is
about 12 times as fast as a multiplication (MULS.L) instruction.
Integer multiplications by small constants can be optimized by using shifts and additions instead, for
example multiplying the value in machine register D0 by 10 could be done with:

MOVE.L D0,D1 ; copy the value to D1
LSL.L #2,D1 ; multiply D1 with 4, now D1 = 4 * D0
ADD.L D1,D0 ; add D1 to D0, now D0 has been multiplied

by 5
ADD.L D0,D0 ; multiply D0 by 2, now D0 has been

multiplied by 10

This is often faster than using the multiply instruction, but often also makes programs larger. On the
MC68020 this code is 1/3 longer, but about 4 times as fast. (Estimated using the execution times in
appendix B)

Integer divisions by constants which are powers of 2 can also be done faster by shifting. For positive
values a division by 2 ** n can be done with an arithmetic shift right by n bits. But for negative values we
first have to add 2 ** n - 1 before shifting, due to differences in rounding. For example to divide D0 by
four:

TST.L D0 ; test D0
BPL.S label1 ; branch if D0 is negative
ADDQ.L #4-1,D0 ; add 4-1 to D0 (if D0 is negative)

label1:
ASR.L #2,D0 ; shift right two bits

Again this is often faster, but often also makes programs larger. For the MC68020 the example is about 6
times as fast, but the code is also 1/3 longer.

Floating point multiplication and division by constants which are powers of 2 can sometimes be optimized.
On the MC68881 floating point coprocessor for example the FSCALE instruction, which performs a
multiplication by 2 ** n, can be used to optimize these multiplications and divisions. But for the MC68881



32

floating point multiplications by small constants, which are not powers of 2, can not be optimized by
replacing the floating point multiplications by additions and shifts (FSCALES). This is because on the
MC68881 additions and shifts on floating point values are not so much faster than multiplications as they
are on integers on the MC68020.

A floating point division by a constant c can be optimized to a multiplication by the constant (1/c), because
usually a multiplication is executed faster than a division. (of course 1/c has to be computed during code
generation) But the result may be slightly different due to rounding errors.

5 . 1 . 4 . Constant folding.

Computations on constants can sometimes be done compile-time instead of run-time. For example:

pushI 2
pushI 3
mulI

could be replaced by:

pushI 6

5 . 1 . 5 . Other algebraic optimizations.

(strength reduction and constant folding are also algebraic optimizations)
Sometimes computations can be optimized by using algebraic transformations.

For example: Can be replaced by:

x+0, 0+x, x-0, x*1, 1*x and x/1 x
x*0 and 0*x 0
0-x -x
a-a 0
a*b+a*c a*(b+c)

(a*b+a*c and a*(b+c) are not always the same when overflows or underflows occur)

5 . 1 . 6 . Common subexpression elimination.

Sometimes the same calculation is done more than once, for example in (a*b)+(a*b) the multiplication of a
by b is done twice. In such a case it is often faster to do the calculation only once and to remember the
result, for example: (c=a*b)+c. Because the Clean compiler does not eliminate such recalculations (usually
called common subexpressions), these recalculations can also occur in ABC code.

Another example is that when a node is created or filled, the address of the code, which evaluates the node
to head normal form, has to be stored in the node. If more nodes are created which have the same
evaluation address, the code can often be made faster, for example on a register machine by first loading the
address in a register.
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5 . 1 . 7 . Removal of unused code.

Sometimes code is generated which will never be executed, removal of this code does not make a program
faster, but does make it smaller. For example the node entry of the code generated for a Clean function is
sometimes not used. Then the code which is only used in case the function is called using the node entry
can be removed.

5 . 1 . 8 . In-line code substitution for small functions.

In-line code substitution is replacing a call to a function by the body (code) of the function. This is a very
useful optimization for small functions. Because then no instructions have to be executed to call the
function, return from the function and pass the parameters and results. And for register machines the code
often also becomes better because then no registers have to be saved before the function call and loaded
again after the function call, which is often necessary if a function is called.
For small functions the program doesn't become much larger, because only small pieces of code are
substituted. The program could even become smaller, because the instructions which pass the parameters
and call the function (and save and load registers for a register machine) are removed.
In-line substitution for large functions would make the program too large, and the speed improvement
would only be small. But if a large function is called only once (and is not recursive), in-line code
substitution could be used. Because after this substitution the code of the function is no longer used, and
can be removed.
When doing in-line code substitution we should be careful with recursive functions, because the code
generator will enter an infinite loop if recursive functions are substituted over and over again.

In-line code substitutions can probably better be done by the Clean compiler than by the code generator.
The Clean compiler already does code substitutions for delta-rules, which are the most important ones. But
doing more in-line code substitutions will often improve the efficiency of the code considerably. For
example if Clean functions are used which compute a constant, for example:  NumberOfElements -> 10;
.

5 . 1 . 9 . Removing pointers from the A-stack.

If a pointer to a node is on the A-stack and the pointer will never be used any more, the pointer could be
removed from the A-stack by reordering the values on the A-stack or by overwriting it with a nil value, for
which the garbage collector should now test.

Because now the garbage collector will remove more nodes from the heap, the garbage collector will be
called less frequently. Unfortunately the reordering or overwriting slows down the execution of the
program. Normally this will probably be more expensive than the gain in time spent garbage collecting, but
if the reordering can be done without cost or the pointer points to a large graph, it may be worthwhile.

For a register machine this optimization can sometimes improve the code. If a node-id on the A-stack is
stored in a register, and a function is called, it is often necessary to store the node-id in the register in
memory. But if this node-id will never be used any more, this store is not necessary. If we now can
remove this node-id from the A-stack without cost, by reordering the A-stack, the code will be faster,
because the store can be removed.

5 .2 . Possible code optimizations for register machines.

Optimizations which can be performed for implementations of the ABC machine on register machines are:
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5 . 2 . 1 . Better use of registers.

On a register machine it is more advantageous to store values in registers instead of in memory, because:

- A register machine can address values in registers a lot faster than values in memory. This also
applies to the MC68020 (see section 2.3.7).

- On values in registers all computations can usually be done directly, but if a value is in memory, it is
often necessary first to move the value into a register before the computation can be done. On the
MC68020 it is for example not possible to add two values in memory with an ADD instruction, but it
is possible to add two values in registers with an ADD instruction.

- Values in memory can usually not be used to address memory (used as a pointer) efficiently. On the
MC68020 this is only possible using the (slow) memory indirect addressing modes (e.g.
([10,An],20) ), but even in this case it is faster first to move the value (pointer) in memory to an
address register and then use an address register indirect addressing mode (see section 2.3.7). But
values in registers can usually be used to address memory. On the MC68020 address registers can
be used to address memory, even using a displacement, postincrement or predecrement is possible
(see section 2.3.3).

Therefore the quality of the generated code is determined for a great deal by how well use is made of
registers.

However, the code generated by a very simple code generator would only uses registers for the
stackpointers, the heap pointer and to hold values during the execution of one ABC instruction. Registers
are not used to pass the result from one ABC instruction to another ABC instruction.

But it is often possible to improve the code by keeping a value in a register, instead of pushing it on the
stack, for example the ABC code:

addI
addI

would on the MC68020 result in:

MOVE.L -(BSP),D0
ADD.L D0,-4(BSP)
MOVE.L -(BSP),D0
ADD.L D0,-4(BSP)

using a very simple code generator. If we would pass the result of the first addI to the second addI in a
register, the (more efficient) code would be:

MOVE.L -(BSP),D0
ADD.L -(BSP),D0
ADD.L D0,-4(BSP)

The optimized code of the example is about 40 percent faster on the MC68020 (estimated using the
execution times in appendix B).

5 . 2 . 2 . Passing parameters and results of functions in registers.

When a function is called, jumped to or left, using a jsr , jsr_eval , jmp , jmp_eval , or rtn  instruction,
the parameters for and/or result of this function have to be passed. The code generated by the Clean
compiler passes the parameters and results on top of the A-stack and B-stack. Because a function may be
called from several places in a program, even from an other module, a fixed parameter passing convention
is used. The simplest solution is to store all stack elements in memory on the stacks when a function is
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entered or left, and so to pass the parameters and results in memory on the stacks. But passing parameters
and results in registers is usually more efficient, because:

- Computing the parameters and results is usually more efficient, because computing a value in a
register can be done faster than computing a value in memory.

- Parameters and results can be accessed faster, because registers can be accessed faster than memory
locations.

- Parameters and results can often be popped from the stack without having to adjust stackpointers,
which is usually necessary when parameters and results are passed in memory.

5 . 2 . 3 . Eliminating unnecessary copies.

Sometimes the Clean compiler generates code which copies values on a stack, because the values are not on
top of the stack and an instructions expects its argument(s) on top of the stack. Sometimes values are
moved on a stack which are never used. Some examples are:

- Filling nodes:

push_a 1
push_a 3
fill descriptor 2 entry 5

The two values which are pushed on the A-stack don't have to be copied first, but could be stored
in the node by the fill instruction by copying from the original location of the two values on the A-
stack.

- Store the value in the right stack location immediately after computation of the value:

addI
update_b 0 3
pop_b 1

The value calculated by addI  should not be stored on top of the B-stack and later moved to location
2, but immediately at location 2 of the B-stack. (location 3 becomes location 2 after popping one
element off the stack)

- Pushing all the arguments of a node, but not using all of them:

push_args 0 2 2
pop_a 1

Only the second argument should be pushed on the A-stack.

5 . 2 . 4 . Optimizing booleans.

If a conditional jump has to be taken depending on a boolean which is the result of a comparison, it is not
necessary to calculate a boolean value, but the conditional jump can use the condition codes of the register
machine. For example for:

eqI_b +1000 0
jmp_false label1

the following code would be generated for the MC68020: (if the top of the stack is in register D0, and the
boolean is computed in register D1, and a boolean is represented by -1 for true and 0 for false)
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CMPI.L #1000,D0
SEQ D1
EXTB.L D1
TST.L D1
BEQ label1

but if the condition codes are used the following code is generated:

CMPI.L #1000,D0
BNE label1

On the MC68020 a conditional jump without creating a boolean is about 1.8 times as fast (estimated using
the execution times in appendix B).

The ABC machine doesn't have instructions to test for 'not equal', 'less than or equal' and for 'greater than
or equal'. These instructions are implemented by a test for 'equal', 'greater than' or 'less than' and a notB
instruction. But a register machine usually has instructions to test for 'not equal', 'less than or equal' and
for 'greater than or equal', so these tests can be optimized so that the not is not necessary. This optimization
is possible on the MC68020.

5 . 2 . 5 . Changing the evaluation order.

Because a register machine only has a limited number of registers, not all values can be stored in registers.
Sometimes we will want to store a value in a register, but will not be able to do so, because all registers
have been used. In such a case it is sometimes possible to change the order of the instructions so that it is
possible to store the value in a register after all.

Another improvement we may obtain by changing the order of instructions, is the elimination of some
move instructions. This could happen if a computation is done using values which will also be used later.
Then often a move is necessary to copy one of the values which are used by the computation, because
doing a computation often overwrites one of its arguments. For example an ADD instruction changes its
second argument, so that if the value (before the addition) of the second argument has to be used later, it
has to be copied before the addition is done. If the order of the instructions is changed so that a (later) use
of a value is moved before the computation, this move can often be removed.

I will now give an example which illustrates both improvements. Assume we want to compute D0+D1  and
D0+D2 in any register, and D1 is used after these computations, but D0 and D2 are not. We could first
compute D0+D1 and then D0+D2 using:

MOVE.L D0,D3 ; copy D0 to D3
ADD.L D1,D3 ; add D1 to D3, D3 now contains D0+D1
ADD.L D2,D0 ; add D2 to D0, D0 now contains (old)D0+D2

But it would be better first to compute D0+D2 and then D0+D1:

ADD.L D0,D2 ; add D0 to D2, D2 now contains D0+(old)D2
ADD.L D1,D0 ; add D1 to D0, D0 now contains (old)D0+D1

In the latter case we have used one register less (D3 is not used) and we have used one move instruction
less.

Consequently, the order of the instructions (the evaluation order) is important to generate efficient code.
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5 . 2 . 6 . Optimizing jsr_eval instructions.

The ABC instruction jsr_eval  evaluates a node to head normal form by calling the code at the reduction
address (reduction code) of the node. (see section 2.2.6) But often jsr_eval  is used to evaluate a node
which is already in head normal form. (although the Clean compiler tries to prevent this) In such a case,
nothing has to be done to evaluate the node, and so the reduction code consists of just a return instruction.

If this happens we unnecessarily perform a subroutine call (JSR for the MC68020) and a return from
subroutine instruction (RTS for the MC68020). But more importantly, for register machines often registers
have to be saved before the reduction code is called and loaded again after the call.

To prevent this, if we first test if the reduction address of the node is the reduction address of the reduction
code of a node in head normal form. And only save registers, call the reduction code and load registers if
this is not so.

So if the node is already in head normal form, we only have to test the reduction address of the node,
instead of saving registers, calling a subroutine, return from the subroutine and loading the registers again.
For most register machines, just testing the reduction address can be performed much faster.

If the node is not yet in head normal form, we only have to perform an extra test for the reduction address.
So in this case the code becomes only a little bit slower.

Because for many programs often nodes are 'evaluated' using jsr_eval  which are already in head normal
form, programs will often be executed faster. (sometimes 1.5 times as fast) Other programs will only be
executed slightly slower.

For many machines we can perform the test whether the reduction address is the reduction address of a
node in head normal form faster if we represent the reduction address of a node in head normal form by 0.
For example on the MC68020, we could then test for such a reduction address by loading the reduction
address in a data register (with MOVE.L), and then using a branch on equal (BEQ) instruction. Instead of
using a compare (CMP.L) instruction and a branch on equal instruction, which is slower. Then also filling a
node in head normal form can often be done faster, because storing zero in memory can usually be done
faster (for the MC68020 using a CLR.L  instruction) than storing an address in memory. If we use this
representation,  the jmp_eval  instruction also has to test for a zero reduction address. This makes
jmp_eval  slower, but this instruction is used seldom.

This optimization has been implemented, including representing the reduction address of a node in head
normal form by 0.

5 .3 . MC68020 specific code optimizations.

Optimizations which can be performed for implementations of the ABC machine on the MC68020 are:
(most of these optimizations have already been described in section 2.3.7)

- Using the postincrement ((An)+) and predecrement (-(An)) addressing modes for stack accesses,
filling and creating nodes and loading the arguments of a node.

- Using the MOVEQ, ADDQ and SUBQ instructions when possible, instead of the MOVE, ADD and SUB
instructions.

- Using the MOVEM instruction when many registers have to be moved to or from consecutive memory
locations.
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- Using:
MOVEQ #100,D1
CMP.L D1,D0
instead of:
CMPI.L #100,D0
to compare a long word to a constant between -128 and 127 (except for zero, use a TST instruction).

- Using CLR <ea>  instead of MOVE #0,<ea>  and using TST <ea>  instead of CMPI #0,<ea> .

- Trying to use CMP <ea>,Dn  instead of CMPA <ea>,An  to compare words and long words.

- Using BRA instead of JMP (d16,PC) , and using BSR instead of JSR (d16,PC) .

- Using LSL instead of ASL when possible.
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6 . Generating code.

In this chapter is described how the code generator generates code. Briefly, this is done in the following
way.

First the ABC instructions are divided into blocks, called basic blocks. And a directed acyclic graph is
constructed for such a basic block. Such a graph represents the computations performed by the basic block.
This is done so that the evaluation order can be determined. Why and how the ABC instructions are divided
into basic blocks, and why a graph is used, is explained in section 6.1.

Then the order in which such a graph will be evaluated is determined using an adapted labeling algorithm.
How this is done is explained in section 6.2.

Then in section 6.3 is explained how the ABC instructions are represented in the graph.

After that, in section 6.4, is explained how code intermediate code is generated from this graph. This
intermediate code is very close to MC68020 machine code. But in this intermediate code an unlimited
number of address and data registers may be used. How the code generator determines whether to use a
data register or an address register of the MC68020 if a register is used is described. Also is explained how
the following optimizations are performed: optimizations of the creation of nodes by create  instructions,
optimizing the use of booleans by using condition codes, optimizing the use of small constants and how
generating unnecessary store instructions is prevented.

Before the graph for a basic block is constructed, the code generator determines which values are stored in
registers at the start of the basic block. And after the graph has been constructed, the code generator
determines which values are stored in registers at the end of the basic block. This is called global register
allocation and is explained in section 6.5. How parameters and results of functions are passed is also
explained in this section.

Because the intermediate code may use an unlimited number of data and address registers, and the
MC68020 only has 8 data and address registers, the local register allocator  changes the intermediate code
of a basic block so that no more than 8 address registers and data registers are used. It does this by
changing the register numbers of the registers used by the intermediate instructions and by inserting
instructions to load and store values in registers from/into memory. This is explained in section 6.6.

After local register allocation has been performed, accesses to the stacks are optimized by using the
postincrement and predecrement addressing modes of the MC68020 by changing the intermediate code.
This is described in section 6.7.

After that jumps are optimized by replacing a branch instruction followed by a jump instruction by one
branch instruction if possible, which is described in section 6.8.

Then in section 6.9 is described how the garbage collector is called.

And finally, in section 6.10. is described how object code (for the linker) is generated from the intermediate
code. While generating this object code many very simple MC68020 specific peephole optimizations are
performed, which are also described.

6 .1 . Constructing a dag for every basic block.

In this section is explained how the order of the ABC instructions may be changed, so that the result of the
code remains the same. To be able to do this, graphs are build representing the computations performed by
a sequence of ABC instructions.
To build these graphs, first the ABC instructions are divided into blocks, called basic blocks. To construct
these basic blocks, the ABC instruction are divided into two classes: instructions without side effects and
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instructions with side effects. For every basic block a directed acyclic graph (dag) is constructed. Such a
graph represents the computations performed by the basic block. To build this graph the A and B stack of
the ABC machine are simulated by the code generator.

6 . 1 . 1 . Conditions for changing the evaluation order.

In section 5.2.5 we already saw that the evaluation order is important to generate efficient code. But by
changing the order of the instructions we may also change the meaning of the program. Of course, we do
not want this to happen.

In order not to change the meaning of the program by changing the evaluation order, we can not move an
instruction:
- Before an instruction of which the result may be used by the instruction to be moved.
- After an instruction which may use the result of the instruction to be moved.

These are the only requirements for instructions which:
- Only use the values of their arguments to compute a result.
- Store its result in a location which is never changed by an other instruction.
- Don't change or use anything else. For example, the instruction may not change a stackpointer or

jump to an other part of the program.

6 . 1 . 2 . Problems on a stack machine when changing the evaluation order.

Changing the evaluation order causes many problems on a stack machine like the ABC machine, because:

- It is difficult to move instructions, because:

- Many instructions change a stackpointer as side effect. If we want to move such an
instruction, we may have to adjust many instructions and add instructions to reorganize the
stack, because the stack layout changes. For example:

pushI 1 || push the integer 1
push_b 2 || push (copy) the third element of the B-

stack
push_b 2 || push (copy) the third element of the B-

stack
addI || pop two elements (integers) and then

push the sum of these integers
addI || pop two elements (integers) and then

push the sum of these integers

If we want to move the pushI 1 instruction before the last addI , we have to change the
push_b 2  instructions into push_b 1  instructions:

push_b 1 || push (copy) the second element of the
B-stack

push_b 1 || push (copy) the second element of the
B-stack

addI || pop two elements (integers) and then
push the sum of these integers

pushI 1 || push the integer 1
addI || pop two elements (integers) and then

push the sum of these integers

- Many instructions expect some (or all) of their arguments on top of a stack. If we want to
move such an instruction, we may have to insert instructions to move the argument(s) on top
of a stack and reorganize the stack(s) after the instruction.
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- It is difficult to determine where instructions may be moved. The result of most of the instructions
only depends on the arguments. These instructions may be moved to a location in the code where
the arguments have been computed and are on the stack, and where all instructions which use the
result of this instruction are after this instruction. But it is difficult to determine these locations,
because:

- To find where an argument is computed on a stack machine requires a backward search from
the instruction which uses the argument to the instruction which computes the argument.
While searching we have to keep track of where the argument is on the stack, so we have to
do a simple stack simulation.

- To find where the result of an instruction is used on a stack machine requires a forward
search from the instruction which computes the result to the instruction which uses this
result. Again we have to do a simple stack simulation while searching.

6 . 1 . 3 . Simulating the A- and B-stack.

A way to solve the problems described above is to give every element on the stack a name, i.e. treat each
stack element as a variable, and replace the ABC instructions by instructions which don't use a stack, but
which arguments are variables. Then changing the evaluation order becomes much easier.

The example in the previous section now becomes: (n1 , n2 , n3 , n4 and n5 are the variables for stack
locations 1, 0, -1, -2 and -3 at the beginning of the code)

n3 := 1 pushI 1
n4 := n1 push_b 2
n5 := n2 push_b 2
n4 := n5 + n4 addI
n3 := n4 + n3 addI

We can now move the n3 := 1 instruction before the last add instruction (n3 := n4 + n3) without
having to adjust other instructions:

n4 := n1
n5 := n2
n4 := n5 + n4
n3 := 1
n3 := n4 + n3

The advantages are:
- We can now move instructions without having to change other instructions.
- We can determine easier where an instruction may be moved, because we can easily determine

where an argument of an instruction is computed.

To construct this code using variables, the stacks have to be simulated during code generation. At the same
time we have to assign variables to stack locations and remember for every stack location which variable
has been assigned to it.
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6 . 1 . 4 . Local variables.

By using variables it is possible to move instructions without having to adjust other instructions, but
unfortunately there still are unnecessary restrictions for the way in which we can reorder the instructions.
For example: (n1, n2, n3, and n4 are the variables for stack locations 2 ,1, 0 and -1 at the beginning of the
code)

n4 := n1 push_b 2
n3 := n3 + n4 addI
n4 := n2 push_b 1

We can not move the n3 := n3 + n4 instruction after the n4 := n2 instruction, because the n4 := n2
instruction changes the value of variable n4 . If we would use a local variable l1  to hold the result of the
first instruction we can move the instruction after all. The example now becomes:

l1 := n1 push_b 2
n3 := n3 + l1 addI
n4 := n2 push_b 1

After moving the n3 := n3 + l1  instruction:

l1 := n1
n4 := n2
n3 := n3 + l1

By introducing a new local variable for every result, we obtain more freedom for determining the evaluation
order. But we can't simply replace all variables (what we called variables in section 6.1.3, from now on
called global variables) by local variables, because at the end of the code the global variables should have
the same value as they should have had without the introduction of the local variables. Therefore for every
global variable which was changed by the code, we add an instruction at the end of the code. This
instruction assigns a local variable, which contains the value which should be in the global variable at the
end of the code, to the global variable. For this local variable we use the last local variable which was
introduced by replacing this global variable.

Consequently, the example becomes: (before moving the instruction)

l1 := n1 push_b 2
l2 := n3 + l1 addI
l3 := n2 push_b 1
n3 := l2 ; extra assignment to n3
n4 := l3 ; extra assignment to n4

By introducing these extra assignment instructions, this code gets worse. But code is generated for the
MC68020 from these instructions in such a fashion that the MC68020 code doesn't get worse, because
most unnecessary assignments are eliminated.

6 . 1 . 5 . Dags (directed acyclic graphs).

In section 6.1.1 we have seen two simple conditions for changing the order of instructions which meet the
following requirements:
- Only use the values of their arguments to compute a result.
- Store its result in a location which is never changed by an other instruction.
- Don't change or use anything else.

We will now examine which ABC instructions meet these requirements. These ABC instructions will be
called instructions without side effects. For some ABC instructions, which do not meet these requirements,
we can use the same conditions for changing the evaluation order as for instructions without side effects.
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These instructions are also called instructions without side effects. They are described in section 6.1.6. The
other ABC instructions will be called instructions with side effects. They are described in section 6.1.7.

Most ABC instructions use only the values of their arguments and only change one element of a stack and
eventually change some stackpointers by a constant. By introducing global and local variables as described
in the previous sections, these instructions meet the requirements of instructions without side effects.
Because the result is always stored in a local variable, and a new local variable is introduced for every
result, the result is stored in a location which is never changed by an other instruction. The only other
things these instructions may change are stackpointers, but by using variables this is not a problem. So
these ABC instructions are instructions without side effects.

We will now assume all ABC instructions are like this. Then every instruction computes one result, and a
new local variable is created every time a value is calculated, so there is a one to one correspondence
between a local variable and the instruction which stores its result in that local variable. If we replace every
reference to a local variable by a reference to this instruction, we can remove all local variables.

Then every one of these instructions can be seen as a node in a graph. If we also make nodes for every
global variable and constant used as an argument, every argument would be a pointer to a node. Then all
the nodes together constitute a dag, i.e. a directed acyclic graph. For every global variable which is changed
by the code we now have a node in the dag, which represents the computation of the value which has to be
stored in that variable. This is because the extra assignment at the end of the code for every changed global
variable has now become a node. If we then label these nodes with the corresponding global variable, we
obtain a dag in which for every global variable there is exactly one node labeled with this global variable.

This dag is as follows:
- The leaves of the dag are global variables and constants which are used during the computations.
- The other nodes (the interior nodes) in the dag consist of a function (like add and sub) and the

arguments for this function. These arguments are pointers to nodes in the dag.
- A node is labeled by all global variables which should contain the value represented by the dag after

the code has been executed.

6 . 1 . 6 . Remaining ABC instructions without side effects.

At the end of the previous section we assumed that all ABC instructions only use the values of their
arguments and only change one element of a stack and eventually change some stackpointers by a constant.
For these instructions it is not difficult to determine where they may be moved to (see section 6.1.1), and
they can be moved within the code and represented in the dag without problems. But for the other ABC
instructions some of these things cause problems.

In this section I will describe the ABC for which we can easily solve these problems. These instructions
can then be treated just like instructions without side effects, and therefore we will also call these
instructions instructions without side effects. In the next section the ABC instructions for which we can not
easily solve these problems are described.

The ABC instructions for which we can easily solve the problems are:
- create , add_args  and del_args .
- all fill instructions and set_entry .
- push_args  and repl_args .
- instructions which compute a real.

The problems for these instructions are described below.

Create, add_args and del_args.

These instructions do not only change a value on the A-stack, but also change the heap, because they create
a new node in the heap. But this doesn't cause any problems, because these instructions don't change
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anything that is already in the heap, but only add a new node to the heap. So we can ignore the changes in
the heap. Then these instructions only change one element of the A-stack, because the node-id of the
created node is pushed on the A-stack.

All fill instructions and set_entry.

These instructions change the heap, because they overwrite a node (or part of a node in the case of
set_entry ) in the heap, but don't change any element of a stack. This causes the following problems:

1. Because no element of a stack is changed, we can't connect a node which represents such an
instruction to the dag, because there is no result on any stack. But this can easily be solved by
considering the node-id of the node which is filled as the result of the instruction, although this
node-id is not actually changed. This node-id is on the A-stack.

2. When changing the evaluation order we may in general not change the order of these instructions,
for example we may not exchange the following two instructions:

fillI 1 0 || fill (overwrite) the node of which the
node-id is at position 0 of the A-stack
by INT 1

fillI 2 1 || fill (overwrite) the node of which the
node-id is at position 1 of the A-stack
by INT 2

This reason for this is that if positions 0 and 1 of the A-stack contain the same node-id, the node
corresponding to this node will have been overwritten by a INT 2 node after executing the code if
the instruction have not been exchanged, but if the instructions have been exchanged the node will
have been overwritten by an INT 1 node. So exchanging instructions may change the result of the
code, and is therefore not allowed.

Fortunately the Clean compiler generates code in such a fashion that the situation described above
will never occur. Because we only have to generate code for ABC programs generated by the Clean
compiler, this is not a real problem.

3. Another problem is that if one of these instructions is represented in the graph by a node, this node
can be connected as described above (1.), but there may still not be a path from a node labeled by a
global variable to the node representing this fill or set_entry  instruction. If we would generate
code only for the nodes of the dag, to which there is a path from a node labeled by a global variable,
to prevent generating code for unnecessary computations, no code would be generated for this fill
or set_entry  instruction. For example:

create || create a node and push its node-id on
the A-stack

create || create a node and push its node-id on
the A-stack

push_a 0 || push (copy) the node-id on top of the
A-stack

fill descriptor 1 label 2 || fill (overwrite) the node created first
with the descriptor, label and only
argument the node-id of the node
created second and pop this node-id
from the A-stack

fillI 1 0 || overwrite the node created second by an
INT 1 node.

pop_a 1 || pop the node-id of the node created
second from the A-stack.

There is no path to the fillI 1 0 instruction from a node which is labeled by a global variable
because the node-id is popped from the A-stack by the last instruction. If we would generate code
only for the nodes of the dag, to which there is a path from a node labeled by a global variable, to
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prevent generating code for unnecessary computations, no code would be generated for this fill
instruction. But code should have been generated for this instruction, because the node which is to
be filled is connected to the graph which will be constructed run time by the code, because it is the
argument of the other node which is created by this code.

Fortunately the Clean compiler generates the create  and fill instructions in such an order, that the
situation described above will never occur. Because we only have to generate code for ABC
programs generated by the Clean compiler, this is not a real problem.

Push_args and repl_args.

These instructions don't always compute one result, but often compute many results (the arguments). This
makes representing these instructions by nodes in the graph more difficult, but not impossible. It doesn't
cause any problems for changing the evaluation order.

Instructions which compute a real.

The problem with these instructions is that they compute two elements on the B-stack, because a real
consists of two elements on the B-stack. This makes representing these instructions by nodes more
difficult, but not impossible.

6 . 1 . 7 . ABC instructions with side effects.

In this section the ABC instructions are described for which we can not easily solve the problems. These
ABC instructions will be called instructions with side effects. They are:

- catS , sliceS  and updateS .
- jmp , jmp_eval , jmp_false , jmp_true , rtn  and halt .
- jsr , jsr_eval , and ccall .
- push_args_b  and repl_args_b .
- print , print_sc , print_symbol  print_symbol_sc  and dump.
- fopen , fclose , fgetC , fgetS  and fputC .

The problems for these instructions are described below.

CatS, sliceS and updateS.

These instructions change the heap, because they overwrite a node in the heap, but don't change any
element of a stack. This causes the same problems as for the fill instructions and set_entry , but these
problems can be solved (see section 6.1.6).
But these instructions can only be implemented by many MC68020 instructions. Consequently these
instructions have to be implemented by using a subroutine. Representing subroutine calls in the graph
causes many problems and often does not allow us to generate better code.

Jmp, jmp_eval, jmp_false, jmp_true, rtn, and halt.

These instruction change (or may change for jmp_false  and jmp_true ) the flow of control. Therefore it is
usually not possible to move instructions from before such an instruction after that instruction, or from after
such an instruction before that instruction. For example in general we can't exchange the instructions: n1
:=1  and jmp label . In some rare cases an instruction could be moved, for example the n := 1 instruction



46

may be moved after the label  if no other instructions jump to label , but it is very difficult to determine
when this is possible and will seldom improve the code.

Jsr, jsr_eval and ccall.

These instructions call a subroutine. Because in general we don't know what the subroutine does, we can't
move instructions from before such a call instruction after that instruction, or from after such a call
instruction before that instruction. And we also can't change the order of the call instructions.

Push_args_b and repl_args_b.

These instructions don't change the A-stackpointer by a constant, but by a value which depends on a value
on the B-stack, so the change of the A-stackpointer is not known compile time. Therefore it is usually not
possible to move instructions, which access a value on the A-stack, from before a push_args_b  or
repl_args_b  instruction after that his instruction, or from after a push_args_b  or repl_args_b
instruction before that instruction. For example we can't exchange a n1 := 1  (with n1 on the A-stack) and
a push_args_b  instruction, because after the push_args_b  we can no longer determine where n1 is on the
A-stack, so we don't know where to store the 1.

Print, print_sc, print_symbol, print_symbol_sc and dump.

These print instructions don't compute a result on a stack. It is not possible to exchange print instructions,
because the output would not always be the same. But other instructions could be moved from before a
print instruction after that instruction, or from after a print instruction before that instruction. The dump
instruction is an exception, because it also changes the flow of control, because it stops the execution of the
program. And these instructions have to be implemented by calling a subroutine.

Fopen, fclose, fgetC, fgetS and fputC.

These instructions may cause problems when the order of these instructions is changed, for example
because some of them change the position where characters are written to and/or read from in a file. They
also have to be implemented by calling a subroutine.

6 . 1 . 8 . Division into basic blocks.

In the previous sections we divided the ABC instructions into instructions without side effects and
instructions with side effects. For the instructions without side effects the possible evaluation orders can
easily be determined using the two conditions in section 6.1.1 and these instructions can be represented in
the dag. For the instructions with side effects this is not possible.

Consequently we can rearrange the order of a sequence of instructions without side effects, but we can't
move an instruction from before an instruction with side effects after that instruction, or from after an
instruction with side effects before that instruction. So to determine the evaluation order for a code
sequence we can determine the evaluation order for every sequence of instructions without side effects,
which is as long as possible and which is part of the whole code sequence, separately.

Labels also restrict the possible evaluation orders, because in general we can't move an instruction from
before a label after that label, or from after a label before that label. So to determine the evaluation order of
an instruction sequence which contains labels, we can determine separately the evaluation order of the code
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sequences from the beginning of the code sequence to the first label, from the first label to the second, ... ,
from the second last label to the last label and from the last label to the end of the code sequence.

Consequently, to determine the evaluation order of a code sequence, we can divide the ABC code sequence
into basic blocks (basic blocks are also used by [Aho et al. 1986], but these are not exactly the same).
These basic blocks consist of a sequence of instructions of which only the first instruction may be labeled
(with any number of labels) and of which only the last instruction may be an instruction with side effects,
all other instructions should be instructions without side effects. These basic blocks should be made as long
as possible. To determine an evaluation order for the whole code sequence, we only have to determine an
evaluation order for every basic block separately. If the last instruction of the block is an instruction with
side effects, this will of course always remain the last instruction of the block.

Note that such a basic block can only be executed by starting with the first instruction of the block and can
only be left by the last instruction of the block, because a basic block can only have labels before the first
instruction and instructions which change the flow of control can only be the last instruction of a basic
block, because these are instructions with side effects.

6 . 1 . 9 . Constructing the dag.

To construct the dag from a basic block we can use an adapted version of algorithm 9.2 of [Aho et al.
1986]. The original algorithm also catches common subexpressions, but our algorithm does not.

We assume all instructions are of the form: x = f (a 1,a 2,..,a n) , where f  is a function with arguments
a1, a2, .., an.  This instruction computes f  with arguments a1, a2, .., an and assigns the result to x . A1,
a2, .., an and x  are variables.

Initially the dag is empty and the function node , which argument is a variable and returns a node, is
undefined for all variables. To construct the dag: do for every instruction in the basic block, starting with
the first instruction, the following:

1. Do for every argument ai  in { a1, a2, .., an }:
If node (a i )  is undefined, then create a node with variable ai  and let node (a i )  be this
node.

2. Construct a function f  node with arguments ( node (a 1) , node (a 2) , .., node (a n)  ).
3. Let node (x)  be this constructed node.

Finally do for all variables:
if node (variable)  is not undefined then label node (variable)  with this label.

To describe the dag we have build, I use the notion cdag. With a cdag (connected dag) I mean a subgraph
of a dag which consists of all the nodes to which there is a path from the root of the cdag.

After the construction using the algorithm above, for all variables which are referenced in the basic block a
cdag has been constructed. The root of this cdag is a node labeled with that variable. The cdag represents
the computation of the value which should be in the variable at the end of the basic block.

6 .2 . Determining the evaluation order of the dag.

In the previous section we have constructed a dag for every basic block. For such a dag an evaluation order
has to be determined. The labeling algorithm and dynamic programming algorithm [Aho et al. 1986], which
can determine an evaluation order, are described. Then the labeling algorithm is adapted so that a better
evaluation order can be determined when values are stored in registers at the beginning and end of a basic
block, and when the basic block contains common subexpressions.
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All these algorithms can not be directly applied to the MC68020, because it has two sorts of registers. How
we can change these algorithms so that this is still possible is explained.

6 . 2 . 1 . The evaluation order for trees.

We now have constructed a dag for every basic block, and have to determine the evaluation order from this
dag. But determining the evaluation order from a dag is very difficult. Therefore we first try to determine
the evaluation order for dags which happen to be trees. If a dag is a tree, determining the evaluation order is
much easier because:
- Only one result is computed by every subtree.
- There are no shared nodes in the graph. (no common subexpressions)

At first we will also assume that all variables are stored in memory (on a stack) and none of them in a
register at the beginning or end of a basic block.

We discuss two algorithms (both are described in [Aho et al. 1986]) which can determine an optimal
evaluation order from a tree in an amount of time that is a linear function to the size of the tree, but with
some assumptions on the instruction set of the target machine and without taking algebraic properties of
operators into account. These algorithms are the labeling algorithm and the dynamic programming
algorithm. Both have been used in a number of compilers. The requirements for the instruction set are
described below.

6 . 2 . 2 . The labeling algorithm.

The labeling algorithm [Aho et al. 1986] can determine an optimal evaluation order for a tree (without
taking algebraic properties of operators into account) for certain register machines, for example for the
following machine: (example from [Aho et al. 1986])
- n interchangeable registers.
- move, (dyadic) add and (dyadic) subtract instructions.
- absolute, register, register indirect and register indirect with displacement addressing modes.
- instruction costs are: 1 + the number of absolute and register indirect with displacement operands of

the instruction.

The labeling algorithm can be used for machines in which all computation is done in registers and in which
instructions consist of an operator applied to two registers or to a register and a memory location.

The algorithm consists of two phases.

During the first phase every node is labeled with a number. This number is the number of registers which
are necessary to evaluate the subtree with as root this node without storing intermediate results in memory.
(except for leaves which are not the leftmost child of its parent, see below) The nodes are labeled as
follows.

If the node is a leaf, the node is labeled 1 if it is the leftmost child of its parent, otherwise it is labeled 0.
This is because an operator can not compute its result (in a register) if the first argument is stored in
memory and the second argument is stored in a register. But the operator can compute its result if the first
argument is stored in a register and the second in memory. For commutative operators (like add) both
computations are possible, but we don't take algebraic properties of operators into account, so the first
computation is not allowed. Therefore the result of a leftmost child of its parent first has to be loaded into a
register, so 1 register has to be used and the node is labeled 1. But for other leafs the result does not have to
be loaded into a register first, so no registers have to be used and the node is labeled 0.

Otherwise, so if the node is an interior node, the node is labeled with the number of registers required to
evaluate the subtree with as root this node in a register without storing intermediate results in memory. This
can be done recursively by first calculating the label for every child, and than use these labels (numbers) to
calculate the number of registers required to evaluate the subtree with as root this node. Let n1, n2, .., nk
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be the children of the node ordered so that label (n 1)  ≥ label (n 2)  ≥ ... ≥ label (n k) . In the second
phase these children will be evaluated in the order n1, n2, .., nk (see below). After every evaluation of a
child one register is no longer available, because the result of the child is stored in it, so that label (n i ) +

i - 1  is the number of registers used after evaluating n1, n2, .., ni  (in that order). So the label of the node
should become the maximum of label (n i ) + i - 1  for 1 < i  ≤ k.

During the second phase we determine the evaluation order and generate code. To generate code for a tree,
first code is generated recursively for all the argument trees of the root. With an argument tree of a node I
mean a maximal subtree having as root a child of the node. The order in which the argument trees are
evaluated is determined by the labels of the roots of the argument trees.
First code is generated for the argument tree with the highest label (which requires the highest number of
registers for the evaluation), then for the argument tree with the second highest label (which requires the
second highest number of registers for the evaluation), .. , and finally for the argument tree with the lowest
label (which requires the fewest number of registers for the evaluation). If argument trees have the same
label, the argument trees may be evaluated in any order. Finally code is generated to evaluate the whole tree
using the results computed by the code for the argument trees. If the required number of registers for a
subtree is higher than the number of available registers, the subtree is evaluated in memory, otherwise in a
register.

For example to evaluate a-(b+c) , the nodes are labeled:
a 1
b 1
c 0
(b+c) max (1,1) = 1
a-(b+c) max (1,2) = 2

And the following code is generated:
MOVE.L a,D0
MOVE.L b,D1
ADD.L c,D1
SUB.L D1,D0

For example to evaluate a-((b+c)-(d+e)) , the nodes are labeled:
a 1
b 1
c 0
(b+c) max (1,0+1) = 1
d 1
e 0
(d+e) max (1,0+1) = 1
((b+c)-(d+e)) max (1,1+1) = 2
a-((b+c)-(d+e)) max (2,1+1) = 2

So only two registers are necessary, and when evaluating a-((b+c)-(d+e))  first ((b+c)-(d+e))  has to
be evaluated, and then a, because a-((b+c)-(d+e))  is labeled 2 and a is labeled 1.  The following code
can be generated:

MOVE.L b,D1
ADD.L c,D1
MOVE.L d,D0
ADD.L e,D0
SUB.L D0,D1
MOVE.L a,D0
SUB.L D1,D0

6 . 2 . 3 . The dynamic programming algorithm.

The requirements for the instruction set for the dynamic programming algorithm [Aho et al. 1986] to
determine an optimal evaluation order from a tree (without taking algebraic properties of operators into
account) are:
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- The machine has n interchangeable registers.
- The machine has load, store and register to register copy instructions. Other instructions are of the

form: register i = expression, where expression may contain operators, registers and memory
locations. If the expression uses registers, register i has to be one of these registers.

- Every instruction may have its own instruction cost, but these costs should be fixed, i.e. may only
depend on the instruction type and the addressing modes of its operands.

The dynamic programming algorithm results in a contiguous evaluation. A contiguous evaluation is an
evaluation which always first evaluates all the subtrees that need to be computed in memory and then
evaluates the remainder of the tree by evaluating the argument trees which need to be computed in a register
one at a time, and finally evaluates the root of the tree. An example of a non contiguous evaluation is an
evaluation which first partly evaluates subtree T1, then evaluates subtree T2 completely in a register and
then evaluates the remainder of T1 in a register.

For a machine which meets the requirements described above we can prove an optimal contiguous
evaluation always exists, i.e. a contiguous evaluation exists which is at least as fast as any not necessarily
contiguous evaluation. So to determine an optimal evaluation order we only have to determine an optimal
contiguous evaluation order.

The dynamic programming algorithm consists of three phases.

During the first phase for every node an array C of costs is calculated, where:
- C [0] is the minimal cost for evaluating the subtree with as root this node in memory without using

registers.
- C [i] for i>0 and i≤number of available registers, is the minimal cost of evaluating the subtree with

as root this node in a register, by using at most i registers.

The cost arrays are calculated recursively by first calculating the cost arrays for all children of a node, and
then use these cost arrays to calculate the cost array of the node.

During the second phase the cost arrays are used to determine which subtrees should be evaluated in
memory and which ones in a register.

During the third phase we traverse the tree, use the cost arrays to determine in what order the argument
trees of a node should be evaluated and generate the code. The code for subtrees which should be evaluated
into memory is generated first.

For example to evaluate a-((b+c)-(d+e))  (same example as for the labeling algorithm) on an MC68020
with 3 available data registers, and instruction costs as the instruction execution times in appendix B, and
access to variables using the address register indirect with displacement addressing mode are:
(evaluating an addition or subtraction node in memory without using registers is done by first storing a
register in memory, then performing the computation using this register, and then reloading this register
from memory, because the MC68020 can not compute the result of an addition or subtraction without using
a register)

a C = { 0, 7, 7, 7 }
b C = { 0, 7, 7, 7 }
c C = { 0, 7, 7, 7 }
(b+c) C = { 30, 14, 14, 14 }
d C = { 0, 7, 7, 7 }
e C = { 0, 7, 7, 7 }
(d+e) C = { 30, 14, 14, 14 }
((b+c)-(d+e)) C = { 68, 51, 30, 30 }
a-((b+c)-(d+e)) C = { 75, 58, 37, 37 }
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Again only two registers are necessary and the following code can be generated:
MOVE.L b,D1
ADD.L c,D1
MOVE.L d,D0
ADD.L e,D0
SUB.L D0,D1
MOVE.L a,D0
SUB.L D1,D0

6 . 2 . 4 . Using these algorithms to generate code for the MC68020.

Both algorithms described above can generate a good evaluation order in time linearly proportional to the
size of the tree. The dynamic programming algorithm can be applied to a broader class of register machines,
but is slower, specially when many registers are available.

Unfortunately the MC68020 machine model does not meet the requirements for these algorithms. The
biggest problem is that the MC68020 does not have n interchangeable registers, but two classes of
registers: address registers and data registers.

If we would ignore this problem, and deal with all registers in the same way, the code generated will not be
good, because many computations can only be done in one sort of register, for example memory can only
be addressed using address registers, and multiplications, divisions and shifts can only be done in data
registers. If for example a computation has to be done using an address registers, and only a data register is
available instead of an address register, we would have to move the value in an address register to the data
register, do the computation using that address register and then move the value in the data register back to
the address register.

To solve this problem we could adapt the labeling algorithm by calculating for every node:
- the number of data registers and the number of address registers required to evaluate the subtree

with as root this node in a data register.
- the number of data registers and the number of address registers required to evaluate the subtree

with as root this node in an address register.

By using this algorithm the code generator will be slower and more complicated, because now 4 numbers
have to be calculated for every node instead of 1. By using this algorithm a good evaluation order can
probably be determined, but the algorithm is not optimal, because if for example we can choose between
using 2 data registers and 0 address registers or 1 address register and 1 data register we can't determine
which choice is the best during the first phase.

The dynamic programming algorithm could also be adapted to solve the problems caused by the partitioning
of registers into two classes, by calculating for every node the cost for returning a result in a data register
for every possible combination of number of data registers and number of address registers and also the
same costs for returning the result in an address register. So for every node we would have to calculate the
costs to evaluate the subtree with as root this node:

- in memory without using registers.
- in a data register for every combination of at least one data register and any possible number of

address registers.
- in an address register for every combination of at least one address register and any possible number

of data registers.

By reserving the registers (A3-A7) and D7 as described in section 3.5, 3 address registers and 7 data
registers remain available. Then we would have to calculate 1 + 7*4 + 3*8 = 53 costs for every node. We
could leave out many of these costs for nodes which are the root of a small subtree, because then the costs
for large numbers of registers are the same, because for small subtrees it doesn't matter if we may use for
example 5, 6 or 7 registers. But even then would the number of costs per node be far too high, so that this
algorithm would be too slow, very complicated and use too much memory. So this doesn't seem a good
approach. But it would generate better code than the adapted labeling algorithm, because it doesn't have
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problems when it has to choose between using for example 2 address registers and 0 data registers or 1
address register and 1 data register, because it can return both costs.

Another possibility is to combine both algorithms. Because the number of available address registers (3) is
much lower that the number of available data registers (7), a good allocation of address registers is
probably more important than a good allocation of data registers. It may therefore be sensible to calculate
for every possible number of address registers the costs and the number of required data registers for every
node. So for every node the following should be calculated:

- the cost of evaluating the subtree of which this node is the root.
- for every number of address registers the cost and number of required data registers to evaluate the

subtree of which this node is the root in a data register.
- for every number of address registers greater than 0 the cost and number of required data registers

to evaluate the subtree of which this node is the root in an address register.

So we would have to calculate 1+4+3 = 8 costs and 4+3 = 7 numbers of data registers for every node.
Because 15 values have to be calculated for every node, this algorithm will probably be slow, complicated
and use a lot of memory. But his algorithm will determine a better evaluation order than the adapted labeling
algorithm. Although it is still not optimal, because we if we have to choose between using one data register
more or slightly slower code, we can't determine which choice is the best during the first phase.

Consequently, we will use the adapted labeling algorithm because it can probably determine a good
evaluation order and is faster, less complicated and uses less memory than the other two algorithms. But
this algorithm has to be further adapted, because there are more problems. This is discussed below.

6 . 2 . 5 . The evaluation order for dags with common subexpressions.

If a basic block contains common subexpressions, the dag constructed from this basic block will not be a
set of trees, because the dag will contain shared nodes. Then the labeling algorithm can no longer be used.
And determining the evaluation order becomes much more difficult. Generating optimal code from a dag for
a one-register machine is NP-complete [Bruno et al. 1976]. Even with an unlimited number of registers the
problem remains NP-complete [Aho et al. 1977].

According to [Aho et al. 1986] a reasonable solution can be obtained by partitioning the dag into a set of
trees by finding for every shared node the maximal subtree with this shared node as root that includes no
other shared nodes, except as leaves. This maximal subtree will be evaluated first, so that all common
subexpressions will be evaluated first. So from a dag we obtain a set of trees, which can all be evaluated
using an algorithm described in the previous section.

But if there are many small common subexpressions this solution results in a bad evaluation order. If for
example many variables occur more than once in a dag, these variables are all common subexpressions.
Using the solution of [Aho et al. 1986] we would first evaluate (load) all these variables in a register, so
that we would probably have too few variables available to evaluate the remainder of the dag efficiently. To
solve this we could evaluate some common subexpressions in memory, but it is not clear which common
subexpressions should be evaluated in memory, and this will often not result in the best possible code.

Consequently, I don't think this is a good solution. I have tried to find other solutions for this problem in
the literature, but I haven't found one.

Therefore I have tried to extend the labeling algorithm, so that it could determine a good evaluation order
for dags with common subexpressions. This extension is described below, it doesn't take into account that
there are data registers and address registers.

I will first explain what I mean with an argument cdag. An argument cdag of a node is a cdag (see section
6.1.9) with as root a child of the node. (compare argument tree of a node)

If we evaluate a shared node for the first time, we do not only have to compute the value of the expression
represented by the cdag with as root this shared node, but we also have to remember this value, so that we
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don't have to do the computation again if the shared node is used again. We will remember this value in a
register. If the shared node is evaluated (encountered) again, we return this register. This register can be
released after the last evaluation of this shared node.

So the number of used registers increases if a common subexpression is evaluated the first time and
decreases if a common subexpression is evaluated the last time. So if we evaluate a cdag containing shared
nodes (representing common subexpressions), the number of used registers may not only change because
the result is returned in a register, but also because a shared node is evaluated.

Because evaluating shared nodes may change the number of used registers, the labeling algorithm will not
always determine a good evaluation order. For example, if we want to compute the sum of expressions E1
and E2, and to evaluate E1 in a register requires 3 registers, and to evaluate E2 in a register requires 2
registers, then the labeling algorithm would generate code which first evaluates E1 and then E2. But if E1
contains common subexpressions so that the number of used registers increases by 3 if E1 is evaluated, and
E2 doesn't contain common subexpressions, then it is better first to evaluate E2 and then E1. Because if we
first evaluate E1 and then E2, then after evaluating E1 3 registers are no longer available and we need 2
registers for E2, so that we need 5 registers to compute the sum. But if we first evaluate E2 and then E1 we
only need 4 registers to compute the sum.

To solve this we could extend the labeling algorithm by not only calculating for every node the number of
registers required to evaluate the cdag with as root this node, but also by how many registers the number of
used registers increases if the cdag is evaluated.

To calculate this increase in the number of used registers of a node we could use the labels of the children
of the node and whether or not the node is a shared node. We could try to calculate this change in the
number of used registers by adding the increase in the number of used registers of all the children of the
node and by adding 1 if the node is a shared node.

Unfortunately this result will not be correct if the expression which is represented by the cdag with as root
this node contains some common subexpressions of which all occurrences are in this expression. If for
example the increase in the number of used registers is calculated for 'a+a' then 'a' is a common
subexpression, so for 'a' the increase in the number of used registers is 1, and for 'a+a' we would calculate
1 + 1 = 2 as the increase in the number of used registers. But if 'a' is only used in this expression, we can
release the register which contains the value of 'a' after having calculated 'a+a'. So the increase in the
number of used registers for 'a+a' is not 2, but 0.

To solve this we could maintain for every node how many times every shared node occurs in the cdag with
as root this node. This could be calculated during the first phase of the labeling algorithm. If we would also
calculate how many times every shared node occurs in the whole dag, we could determine for every node
the shared nodes of which all occurrences are in the cdag with as root this node, by comparing the number
of occurrences in the whole dag with the number of occurrences stored in the node.

But storing this information for every node uses a lot of memory if there are a lot of common
subexpressions, and makes the code generator slower and more complicated. The memory use is O (n*n)
where n is the number of nodes, but usually much less memory is used. If we would not maintain this
information, but simply use the sum of the increases in the number of used registers of all the children of
the node plus 1 if the node is a shared node as the increase in the number of used registers of the node, the
calculated increase will often be correct, but sometimes too high. For the implementation this approach was
used, so the implementation does not calculate for every node how many times every shared node occurs in
the cdag having as root this node. But the implementation does calculate how many times every shared
node occurs in the whole dag, because we need this information to determine when a shared node is
evaluated the last time. (see below)

After having calculated (an estimate of) the increases in the number of used registers and the required
numbers of registers during the first phase of this adapted labeling algorithm, we can begin with phase two
to determine an evaluation order by using these numbers. But after evaluating a shared node for the first
time, the calculated increase of the number of used registers of this node will often no longer be correct,
because the value of the expression which is represented by the cdag having as root this shared node is now
in a register and does not have to be computed again if the shared node will be evaluated again. So the
increase in the number of used registers when this shared node is evaluated is now 0. And also after
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evaluating a shared node for the second last time the calculated increase of the number of used registers will
often no longer be correct, because the value of the expression which is represented by the cdag having as
root this shared node is now in a register and this register may now be released after the next use, because it
is the last use. So then the increase is -1. (if the second last time is the same as the first time, the increase is
also -1)
In both cases, the calculated increase of the number of used registers when the cdag having as root this
node is evaluated is usually no longer correct. And usually the calculated number of required registers is no
longer correct as well. Consequently, the increase in the number of used registers and the required number
of registers for all nodes, for which the cdag with as root this node contains the shared node, may have
changed. So in both cases these numbers have to be recalculated.

To recalculate these numbers when a common subexpression has been evaluated, we have to recalculate the
numbers for the nodes for which the cdag with as root this node contains the shared node corresponding to
the common subexpression. These nodes are the nodes for which there is a path to the shared node
corresponding to the common subexpression. We could use the following algorithm:

PROCEDURE recalculate (NODE n)
recalculate_node (n);
IF increase in number of used registers after evaluating node n has changed
OR required number of registers for node n has changed THEN

FOR all parents p of node n DO
recalculate (p);

END_PROCEDURE recalculate.

Note that we have to be able to find the parents of a node, so we must store pointers to the parents of a
node. This recalculating would make the code generator a lot slower if there are common subexpressions,
but the evaluation order would be better. This has not (yet ?) been implemented in this implementation.

This extended labeling algorithm always completely evaluates the argument trees of a node one at a time.
But there does not always exist such an optimal evaluation order. For example, if D is a dyadic function and
T is a tryadic function and T ( D (T (a,b,c),D (d,e)), D (T (c,a,b),D (f,g)), D (T
(b,c,a),D (h,i)) )  has to be evaluated. Then a, b and c are common subexpressions which all occur
three times. If D and T are operands of the target machine, we require 6 registers to evaluate this expression
if we evaluate this expression by always completely evaluating the argument trees of a node one at a time.
Because after evaluating one of the arguments of the outer T function four registers are in use, and we need
an additional two registers to evaluate another argument. But if we first evaluate T (a,b,c) , T (c,a,b)
and T (b,c,a)  using five registers, we can evaluate the whole expression using only five registers. So this
evaluation order will be better for certain machines.

This algorithm will also not always find the best evaluation order which always completely evaluates the
argument trees of a node one at a time. This is not so strange, because I think this problem is also NP-
complete.

If there are no common subexpressions, the amount of time which the algorithm uses to determine an
evaluation order is O (n), where n is the size of the dag. But if there are many common subexpressions and
recalculating the increases of the number of used registers and the required number of registers is
performed, the amount of time which the algorithm uses is O (n*n).

6 . 2 . 6 . The evaluation order for dags with variables in registers.

Up to now we have assumed variables are stored in memory at the beginning and end of a basic block. But
if variables are stored in a register at the beginning or end of a basic block, the algorithm described above
will often not determine a good evaluation order.

Because if a cdag is evaluated which evaluates (uses) a variable which is stored in a register at the
beginning of the basic block for the last time, this register can be released, so the number of used registers
decreases if such a cdag is evaluated. And if a cdag is evaluated which stores a result in a variable which
has to be stored in a register at the end of the basic block, the number of used registers increases, because
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the register which contains the variable is no longer available after the evaluation. The algorithm does not
take these changes in the number of used registers into account.

But this can be solved easily, because these changes in the number of used registers resemble the changes
in the number of used registers for common subexpressions.

If a variable is stored in a register at the beginning of a basic block, we can treat this variable in the same
way as a common subexpression which has been evaluated once, because the value of a common
subexpression has been stored in a register after the first evaluation and this register can also be released
after the last evaluation. (use) This also means that if such a variable has been evaluated the second last
time, we may have to adjust the increase in the number of used registers and the required number of
registers for some nodes, just like when a common subexpression is evaluated the second last time,
because these numbers of the node which represents the variable will have changed. This can be done in the
same way as for common subexpressions as described in the previous section.

If a variable has to be stored in a register at the end of a basic block, we can treat this variable as a common
subexpression which has not yet been evaluated, because if a common subexpression is evaluated the first
time also a register has to be allocated to store the result. For a common subexpression this register can be
released after the last evaluation (use), but for a variable which has to be stored in a register at the end of a
basic block the register can not be released. We can solve this by pretending an extra use of such a variable
exists in the basic block, so that the register will never be released.

But usually the variable may not be stored in any register at the end of a basic block, but has to be stored in
a specific register. This causes problems if a cdag is evaluated which assigns a value to a variable which
has to be stored in a specific register at the end of a basic block and that register has already been allocated.
How this has been solved is described in section 6.4.7.

6 . 2 . 7 . Calculation of the evaluation order of the arguments for a machine with one type
of register.

After a dag has been constructed for a basic block, the dag consists of a set of cdags which may have
shared nodes. These cdags will be evaluated completely one at a time. The order in which these cdags have
to be evaluated has to be determined. And also the order in which the argument cdags of a node will be
evaluated has to be determined. These orders are determined using the required number of registers and the
increase in the number of used registers stored in the roots of the cdags.

Let n = the number of cdags to be evaluated. Assume the cdags are numbered from 1 to n, and that G (i) is
the cdag with number i for all i ∈ {1, 2, .., n}, so that a cdag can be identified by its number using G.

For all cdags g let:

I (g) = the increase in the number of used registers when the cdag g will be evaluated, i.e. the
number of registers in use after the evaluation of g - the number of registers in use before the
evaluation of g.

U (g) = the (additional) number of registers necessary to evaluate the cdag g, i.e. the maximum
number of registers in use during the evaluation of g - the number of registers in use before
the evaluation of g. (often also called required number of registers)

After the graph has been constructed these I (g) and U (g) are calculated for every node in the graph during
the first phase of the adapted labeling algorithm as has been partly described in sections 6.2.5 and 6.2.6.

The evaluation order of the cdags can be represented by a permutation P of {G (1), G (2), .., G (n)}, so
that the graph to be evaluated first is P (G(1)), the graph to be evaluated second is P (G(2)), etc.
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The maximum number of registers in use during the evaluation of P (G(i)), after evaluating  P (G(1)), P
(G(2)), .. ,P (G(i-1)) is:

       i-1
R (P,i) = [ Σ I (P (G(m))) ] + U (P (G(i)))

     m=1

For all cdags g let D (g) = U (g) - I (g). Then
       i-1      i

R (P,i) = [ Σ I (P (G(m))) ] + U (P (G(i))) = [ Σ I (P (G(m))) ] + D (P (G(i)))
     m=1   m=1

The number of registers necessary to evaluate all the graphs in the order P (G(1)), P (G(2)), .., P (G(n)) is:
R (P) = MAX { R (P,i) | i ∈ {1,2, .. ,n} }

To find the evaluation order which requires the minimum number of registers, we have to find a
permutation P for which R (P) is minimal. Then the number of registers required is:
R = MIN { R (Q) | Q a permutation of { G(1), G(2), .., G(n) } }

To find this evaluation order we could of course calculate R (P) for all permutations P, but this would cost
an amount of time O (n!). For large n this amount of time is too high, therefore we have to find a faster
method to determine this evaluation order. A method which can find the evaluation order by sorting is
described below. This method can be implemented to execute in an amount of time of O (n log n), by using
an O (n log n) sorting algorithm. For our implementation a simple sorting algorithm has been used, so that
determining the evaluation order of a set of cdags costs an amount of time of O (n*n).

To use as few registers as possible, we should start evaluating the cdags, which evaluation results in the
release of registers, because after evaluating such cdags, more registers will be available for the evaluation
of other cdags.
The cdags, which evaluation does not result in a change in the number of used registers, should be
evaluated when the highest number of registers is available, so after evaluating all the cdags which result in
the release of registers.
Finally the cdags, which evaluation results in an increase in the number of used registers, should be
evaluated, because all cdags which will be evaluated after this cdag will have fewer registers available, so
these cdags should be evaluated as late as possible.

More formal, to use as few registers as necessary during evaluation:
- First evaluate all cdags g for which I (g) < 0.
- Then evaluate all cdags g for which I (g) = 0.
- Finally evaluate all cdags g for which I (g) > 0.

The cdags g for which I (g) < 0 have to be evaluated in an order so that the cdags for which U (g) is low
are evaluated first. So the cdags for which I (g) < 0 have to be sorted from low to high using as ordering
criterion U (g).
The cdags g for which I (g) = 0 may be evaluated in any order.
The cdags g for which I (g) > 0 have to be evaluated in an order so that the cdags for which D (g) is high
are evaluated first. So the cdags for which I (g) > 0 have to be sorted from high to low using as ordering
criterion D (g). That this ordering uses as few as possible registers is proved below.

So to use as few registers as possible:
- First evaluate all cdags g for which I (g) < 0, ordered from low to high by U (g).
- Then evaluate all cdags g for which I (g) = 0.
- Finally evaluate all cdags g for which I (g) > 0, ordered from high to low by D (g).

That the cdags have to be ordered in this way to use as few registers as possible is not difficult to
understand, except that cdags for which I (g) > 0 have to be ordered from high to low by D (g). Therefore I
will prove this below.
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Theorem. Let E be a permutation of { G(1), G(2), .., G(n) } so that for all k ∈ {1,2, .. ,n-1} : D (E
(G(k))) ≥ D (E (G(k+1))).
If for all cdags g: I (g) > 0 then R = R (E), i.e. E (G(1)), E (G(2)), .., E (G(n)) is an
evaluation order which requires the minimal number of registers.

Proof. By definition: R (E) = MAX { R (E,i) | i ∈ {1, 2, .., n} }, so ∃ m ∈ N
�
N

�
 : R (E,m) = R (E).

Let H = { E (G(l)) | l ∈ {1, 2, .., m} } and let P be a permutation of {G(1), G(2), .., G(n)},
then there exists k ∈  N

�
N

�
 so that k≥m, P (G(k)) ∈ H and { P (G(l)) | l ∈ {1, 2, .., k} } ⊇ H.

Then R (P,k) = ( by definition : )
      k
= [ Σ I (P (G(l))) ] + D (P (G(k))) ( because { G(l) | l ∈ {1, 2, .., k} } ⊇ H and I (g)>0 : )
     l=1
≥ [ Σ I (g) ] + D (P (G(k))) ( because P (G(k)) ∈ H, ∃ l≤m : E (G(l)) = P (G(k)) : )
    g∈H

= [ Σ I (g) ] + D (E (G(l))) ( because E (G(l)) ≥ E (G(m)) : )
    g∈H

≥ [ Σ I (g) ] + D (E (G(m))) = R (E,m)
    g∈H

Then R (P) = MAX { R (P,i) | i ∈ {1,2, .. ,n} } ≥ R (P,k) ≥ R (E,m) = R (E), and thus R
(P) ≥ R (E).

Then for all permutations P: R (P) ≥ R (E), thus R = R (E).

For now we have assumed that I (g) and U (g) are fixed, i.e. evaluating a cdag does not change the I (g)
and U (g) of other cdags. But evaluating a cdag may change the I (g) and U (g) of other cdags if:
- a common subexpression is evaluated the first or second last time.
- a value is stored in a variable which should be stored in a register at the end of the basic block.
- a variable which is stored in a register is evaluated the second last time.

In all these cases I (g) and U (g) of other cdags may decrease, but will never increase. The I (g) and U (g)
can also be too high because during the first phase of the extended labeling algorithm the I (g) and U (g) are
sometimes estimated too high. Consequently the I (g) and U (g) could be too high, but never too low.

Therefore we can improve the evaluation order by:

- Ordering the cdags for which I (g) = 0 so that the cdags for which U (g) is small are evaluated first.
If for example a and b are cdags for which I (a) = I (b) = 0, U (a) = 2, U (b) = 3 and evaluating a
results in a decrease of U (b) by one and evaluating b results in a decrease of U (a) by one, it is
better first to evaluate a instead of b, because in that case we would need 2 registers instead of 3.

- Not only using D (g) as ordering criterion for cdags for which I (g) > 0, but also, if the D (g) of
cdags are the same, use U (g) as (second) ordering criterion, and first evaluate the cdags for which
U (g) is small. If for example a and b are cdags for which I (a) = 1, U (a) = 3, I (b) = 2, U (b) = 4
and evaluating a results in a decrease of U (b) by two and evaluating b results in a decrease of U (a)
by two, it is better first to evaluate a instead of b, because in this case we would need 3 registers
instead of 4.

For now we have only tried to determine an evaluation order for which the required number of registers is
as low as possible. But if the required number of registers is higher than the number of available registers,
some evaluation orders may be better than other evaluation orders which require the same number of
registers. Because if not enough registers are available some values have to be stored in memory, and extra
memory accesses are necessary, and for some evaluation orders the number of extra memory accesses
could be smaller than for other evaluation orders.
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Therefore we may improve the evaluation order by not only using U (g) as ordering criterion for cdags for
which I (g) < 0, but also, if the U (g) of cdags are the same, use I (g) as (second) ordering criterion, and
first evaluate the cdags for which I (g) is small ('more negative'). If for example U (a) = U (b) = 3, I (a) =
-2 and I (b) = -1, where a and b are cdags, and one register is available before the evaluation of a and b, it
is probably better first to evaluate a and then b, because then b can be evaluate without storing intermediate
results in memory, because 3 registers are available after evaluating a. If however b is evaluated first, both
a and b will have to store some intermediate results in memory.

After adding these extensions, to use as few registers as possible:

- First evaluate all cdags g for which I (g) < 0, ordered from low to high by U (g), and if the U (g)
are the same, ordered from low to high by I (g).

- Then evaluate all cdags g for which I (g) = 0, ordered from low to high by U (g).

- Finally evaluate all cdags g for which I (g) > 0, ordered from high to low by D (g), and if the D (g)
are the same, ordered from low to high by U (g).

6 . 2 . 8 . Calculation of the evaluation order of the arguments for the MC68020.

Because the MC68020 has two types of registers we can't directly use the algorithm of the previous
section. To still be able to use this algorithm for the MC68020 we could ignore the difference of data
registers and address registers, by using the increase in the number of used data registers + the increase in
the number of used address register as the increase in the number of registers for every node, and using the
required number of data registers + the required number of address registers as the required number of
registers for every node, and then apply the algorithm of the previous section to these numbers to determine
the evaluation order of a number of cdags.

In this way we would treat address registers as being just as important as data registers. But by reserving
the registers A3-A7 and D7 as described in section 3.5, 3 address registers and 7 data registers remain
available. So address registers are more rare than data registers, because there are only 3 address registers
available compared to 7 data registers. But both address and data registers are required often. Therefore,
how address registers are allocated is much more important than how data registers are allocated. We could
say an address register is 7/3 times as import as a data register. So we would like to treat an address register
as being 7/3 times more important than a data register when determining the evaluation order, because the
evaluation order determined in this way would probably be better.

We can adapt our algorithm to treat address and data registers in this way by using 3 * the increase in the
number of used data registers + 7 * the increase in the number of used address register as the increase in the
number of registers for every node, and using 3 * the required number of data registers + 7 * the required
number of address registers as the required number of registers for every node, and use these numbers to
determine the evaluation order.

The evaluation order determined in this way is not even optimal for the number of used registers if we don't
take into account that evaluating a cdag may change the required number of registers and the increase in the
number of used registers of other nodes. To obtain better results, we use a more accurate way of
determining the evaluation order if we have to determine the evaluation order of only two cdags. This
improves the evaluation order considerably because most nodes have only two argument cdags.

So assume the evaluation order of only two cdags has to be determined. Then there are only two possible
evaluation orders: first evaluate the first argument cdag and then the second argument cdag, or first evaluate
the second argument cdag and then the first argument cdag. For both evaluation orders we can determine
the number of used address registers (UA) and data registers (UD), and the increase in the number of used
address registers (IA) and data registers (ID). If l and r are the cdags to be evaluated, then:
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- The number of used address registers for evaluating l first is MAX (UA (l), IA (l) + UA (r)) and the
number of used data registers is MAX (UD (l), ID (l) + UD (r)).

- The number of used address registers for evaluating r first is MAX (UA (r), IA (r) + UA (l)) and the
number of used data registers is MAX (UD (r), ID (r) + UD (l)).

How the increases in the number of used registers can be calculated has already been described in section
6.2.5, but these numbers will be the same for both evaluation orders. Using the numbers of used address
registers and data registers we should determine in what order these two cdags have to be evaluated. But if
we have to choose between using more data registers or using more address registers we don't know which
choice is better. Again we can choose to treat address registers to be 7/3 times more important as data
registers. So we will choose the evaluate order for which 3 * number of used data registers + 7 * number
of used address registers is minimal.

The following examples illustrates that this may lead to a better evaluation order. Assume l and r are cdags
and IA (l)=-1, ID (l)=1, UA (l)=0, UD (l)=1 and IA (r)=0, ID (r)=1, UA (r)=0, UD (r)=2. Then the
improved way of determining the evaluation order would first evaluate r and then l, so that only 2 data
registers are used and no address registers. But the other algorithm would first evaluate l and then r, so that
3 data registers and no address registers are used.

If the results of both cdags have to be used to compute a new result, the calculation of the required number
of registers could be more complicated, but we can still use the same condition for choosing the evaluation
order of the two cdags.

6 . 2 . 9 . The evaluation order for dags with common subexpressions on the MC68020.

In the previous section we calculated the order of the arguments using for every argument cdag:
- the required number of data registers to evaluate the cdag. (UD)
- the required number of address registers to evaluate the cdag. (UA)
- the increase in the number of used data registers when the cdag is evaluated. (ID)
- the increase in the number of used address registers when the cdag is evaluated. (IA)

But in section 6.2.4 (before I introduced the problems with common subexpressions and variables in
registers) we computed for every root of a subtree:
- the number of data registers required to evaluate the subtree in a data register.
- the number of address registers required to evaluate the subtree in a data register.
- the number of data registers required to evaluate the subtree in an address register.
- the number address registers required to evaluate the subtree in an address register.

So we computed both the register costs for evaluating the result in a data register and for evaluating the
result in an address register. If we would also do this for our adapted labeling algorithm, we would have to
compute UD, UA, ID and IA for evaluating the result in a data register and also for evaluating the result in
an address register. So we would have to calculate 8 number of registers for every node. And we would no
longer be able to determine the evaluation order of a number of cdags as described in section 6.2.8. Maybe
both algorithms can be changed to handle this, but this would probably make them too complicated and the
code generator would be too slow.

Therefore the following solution was chosen. Before the evaluation order is determined is decided which
cdags should be evaluated in a data registers and which ones in an address register. How this is done is
described in section 6.4.2. Then the first phase of the adapted labeling algorithm calculates for every node
the register costs (UD, UA, ID and IA) for evaluating the cdag having as root this node in the required sort
of register.

But because it usually is not necessary to evaluate all arguments in registers before an operation can be
performed, for example for additions only one of the arguments has to be in a register, we can often not
compute the register costs of such an operation from the register costs of the argument cdags. Therefore for
some nodes we calculate the register costs to evaluate the cdag in memory, instead of the register costs to
evaluate a cdag in a data register or an address register.
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For the (original) labeling algorithm this was not a problem, because the labeling algorithm didn't take
algorithm properties of operations into account. Therefore it could solve this problem by assuming the
number of registers to evaluate a cdag, consisting of just a variable node, is one if it is a left leave and zero
otherwise. (explained in section 6.2.2) But this often results in inefficient code for commutative operations
like ADD. (commutativity is an algebraic property) For example, the labeling algorithm would evaluate
A+(B+C) by first loading A in a register, then loading B in a register, adding C and then adding this result
to the register containing A, instead of loading B in a register, then adding C and then adding A. This latter
evaluation uses one register less, and consists of only 3 instructions instead of 4.

But even then we do not always have enough information to compute the register costs. Therefore for every
node a flag is computed. This flag is true if a register may be released after accessing the result, otherwise
false. If this flag is true, then:
- If the cdag is evaluated in a data register, this data register may be released after use.
- If the cdag is evaluated in an address register, this address register may be released after used.
- If the cdag is evaluated in memory, an address register may be released after use.

So for every cdag we compute:
- There the result of the cdag is computed, in an address register, in a data register or in memory.
- The required number of data registers to evaluate the cdag. (UD)
- The required number of address registers to evaluate a cdag. (UA)
- The increase in the number of used data registers when the cdag is evaluated. (ID)
- The increase in the number of used address registers when the cdag is evaluated. (IA)
- A flag indicating whether a register may be released after the result computed by the cdag has been

used.

An example of such a calculation can be found in appendix A. (A.1.5)

6 .3 . The dag representation of the ABC instructions.

In the previous sections a dag was constructed for every basic block of ABC instructions and was
explained how we could determine an efficient evaluation order of this dag. But how exactly this dag looks
like has not yet been explained. This is done in this section.
So, for the ABC instructions is explained how they are represented in the dag and why this representation
has been chosen. Also the nodes which are used for this representation are explained. These nodes can also
be found in appendix C. Examples of these dags can be found in appendix A.

6 . 3 . 1 . The sort of dag representation.

To be able to use the extended labeling algorithm described in 6.2 we first have to construct a dag from the
ABC instructions. I already described how a dag could be constructed by representing every ABC
instruction by a node in the graph in section 6.1.9. But such a representation has considerable
disadvantages:

- Many different nodes for a similar operation. For example the following 13 ABC instructions test
whether two values are equal: eqB, eqB_a , eqB_b , eqC, eqC_a, eqC_b, eqI , eqI_a , eqI_b , eqR,
eqR_a, eqR_b and eq_desc . If we would like to optimize an operation, we would have to test for
many different nodes. For example:

- If we would like to optimize comparing to zero by using a TST instruction instead of a CMP
#0 instruction, for all 13 nodes the code generator would have to test for #0 and have to be
able to generate an extra code sequence which uses a TST instead of a CMP #0.

- If we would like to optimize the not of a test for equality by using a NE (not equal) condition
code after the CMP instruction instead of EQ (equal), the code generator would have to test for
14 different nodes when generating code for not.
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- There are many complex nodes. For these nodes large codes sequences have to be generated, many
code sequences are possible and complicated calculations are necessary to calculate the number of
required registers of such a node.

Consequently it is better to use one node for similar operations, use nodes which represent simple
computations, and can be implemented with only a few MC68020 instructions. So we would obtain a
lower level representation, closer to the MC68020. Then performing optimizations is simpler, code
sequences for nodes are shorter and calculations of the number of required registers are simpler. But the
dag will be larger and translating the ABC instructions to a dag is more difficult.

For example, we would like to have only one node representing the operation which tests whether two
values are equal, but the values to be compared are not always of the same type. Therefore two different
nodes are necessary for this compare operation: CMP_EQ to compare integers and FCMP_EQ to compare
floating point numbers.

These CMP_EQ and FCMP_EQ nodes have two arguments. Arguments could be the result of another
computation, stored in memory, stored in a register or a constant. If an argument is the result of a
computation the argument is represented by a cdag. If we would make nodes representing values stored in
memory, values stored in a register and constants, these arguments can also be represented by cdags. Then
all the arguments are cdags.

6 . 3 . 2 . The dag representation for arguments.

An integer constant i is represented by a 'LOAD_I i' node, an address constant (label) l by a 'LEA l' node
and a descriptor of symbol s and number of arguments a by a 'LOAD_DES_I s a' node.

The contents of an address or data register r is represented by a 'REGISTER r' node for registers which
contain an intermediate result, or by a 'GREGISTER r' node for global registers, i.e. registers ASP, BSP,
CSP, HP and FC, which may not be released after all uses in the basic block.
An integer on the B-stack in memory or an address on the A-stack in memory is represented by a 'LOAD d
r' node. The value represented by this node is the contents before the execution of this basic block of the
long word at the address computed by adding (integer constant) d to the address in stackpointer r at the
beginning of the basic block.

Other integers and addresses stored in memory, i.e. the integers and addresses stored in the heap, in a
descriptor element or in a symbol record, also have to be accessed. These integers and addresses are always
accessed indirectly through a pointer and are represented by a 'LOAD_ID d g' node. The value represented
by this node is the contents of the long word at the address computed by adding d to the value represented
by cdag g.
We also have to be able to access bytes in memory, because the characters in a string are bytes. Bytes in
memory are represented by 'LOAD_B_ID d g'. The value represented by this node is the zero extended
contents of the byte at the address computed by adding d to the value represented by cdag g.
And we also have to be able to access words in memory, because the descriptors are words and the
descriptor elements contains words. Words in memory are represented by 'LOAD_DES_ID d g'. The value
represented by this node is the sign extended contents of the word at the address computed by adding d to
the value represented by cdag g.

Using the nodes described above we can represent the arguments of all the instructions we want to
represent in the dag, except for the instructions using floating point numbers.

6 . 3 . 3 . The dag representation for operations.

Binary operations which don't use floating point numbers which can be represented in the dag by one node
are: ADD, SUB, CMP_EQ, CMP_GT, CMP_LT, MUL, DIV, MOD, LSL, LSR, ASR, AND, OR and
EOR. All these instructions can usually be implemented by one MC68020 instruction, but sometimes extra
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MOVE instructions are necessary, and for the compare instructions sometimes extra instructions are
necessary to convert a condition code to a boolean. The unairy CNOT node represents the not of a boolean.

Using the nodes we can represent the computation of the ABC instructions which we want to represent in
the dag and don't use floating point values and don't access the heap.

6 . 3 . 4 . The dag representation for floating point arguments.

In section 6.1.6 I already mentioned that representing instructions, which compute a floating point number,
in a dag is more difficult because a floating point number consists of two long words. We can't always treat
these two long words as one floating point number, because sometimes these two long words are
manipulated separately, for example a floating point number is copied on the B-stack by two push_b
instructions which each copy one long word.

To be able to represent the high and low long word of which a floating point number consists in the dag we
use two nodes which point to a cdag which represents a floating point number. The 'FHIGH g' node
represents the high long word of the floating point number represented by cdag g. And the 'FLOW g' node
represents the low long word of the floating point number represented by cdag g.

If an instruction has a floating point number as argument, we could treat this floating point argument as two
long words, so that for example a node representing a floating point addition would have four arguments.
But if we would compute the two long words, of which a floating point argument consists, one at a time,
the generated code would be inefficient. Because then, before we can perform the floating point operation,
we would first have to make a floating point number out of the two long words. But usually the two long
words are the high and low long word of the same floating point number. So we would not have to
compute the high and low long word separately, but could compute the floating point argument at once and
use this number for the floating point operation. But to do this the code generator would have to test for
every floating point argument whether the two long words are represented by a FHIGH and a FLOW node
having the same cdag as argument.

Consequently, a better representation can be obtained by representing a floating point argument by one
cdag, so that for example a node representing a floating point addition would have two arguments. Then the
FHIGH and FLOW are not necessary if the high and low long word of the floating point number are
computed by the same cdag. To be able to still represent a floating point argument for which the high and
low long word are computed by different cdags, we use a 'FJOIN g1 g2' node. A 'FJOIN g1 g2' node
represents the floating point number consisting of the high long word represented by cdag g1 and the low
long word represented by cdag g2.

Floating point arguments can now be represented just like integers and addresses. A floating point constant
f is represented by a 'FLOAD_I f' node.

The contents of a floating point register fr is represented by a 'FREGISTER fr' node. And a floating point
number stored in memory on the B-stack is represented by a 'FLOAD d r' node. The value represented by
this node is the floating point number stored before the execution of the basic block in the two long words
at the address computed by adding (integer constant) d to the address in stackpointer r at the beginning of
the basic block.

Other floating point numbers stored in memory, i.e. floating point numbers stored in the heap, also have to
be accessed. These floating point numbers are always accessed indirectly through a pointer and are
represented by a 'FLOAD_ID d g' node. The floating point number represented by this node is the floating
point number stored in the two long words at the address computed by adding d to the value represented by
cdag g.

Using the nodes described above we can represent all the floating point arguments of all the instructions we
want to represent in the dag.
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6 . 3 . 5 . The dag representation for floating point operations.

Binary operations using floating point numbers which can be represented in the dag by one node are:
FADD, FSUB, FCMP_EQ, FCMP_GT, FCMP_LT, FMUL, FDIV and FREM. Unairy operations using
floating point numbers which can be represented in the dag by one node are: FACOS, FASIN, FATAN,
FCOS, FEXP, FITOR, FLN, FLOG10, FRTOI, FSIN, FSQRT and FTAN. All these instructions can
usually be implemented by one MC68881 instruction, but sometimes extra FMOVE instructions are
necessary.

Using these nodes we can represent the computation of the ABC instructions which we want to represent in
the dag and which use floating point values and don't access the heap.

6 . 3 . 6 . The dag representation for storing values on the stack and in registers.

To represent a store of an integer or address in memory we use a 'STORE d r g1 g2' node. This node
represents that the long word at the address computed by adding (integer constant) d to the address in
stackpointer r at the beginning of the basic block should contain the integer or address represented by cdag
g1 after execution of the basic block. What cdag g2 is used for is explained in section 6.4.7.

To represent a store of an integer or address in a register we use a 'STORE_R r g' node. This node
represents that register r should contain the integer or address represented by cdag g after execution of the
basic block.

To represent a store of a floating point number in memory we use a 'FSTORE d r g1 g2 g3' node. This
node represents that the two long words at the address computed by adding (integer constant) d to the
address in stackpointer r at the beginning of the basic block should contain the floating point number
represented by cdag g1 after execution of the basic block. What cdags g2 and g3 are used for is explained
in section 6.4.7.

There is no representation for storing a floating point number in a register, because in the current
implementation floating point numbers are always stored in memory at the beginning and end of a basic
block.

6 . 3 . 7 . The dag representation for push_args and repl_args.

As I already explained in section 6.1.6, representing the push_args  and repl_args  ABC instruction in the
dag causes problems, because the result of these instructions is not one value on the A-stack or B-stack, but
multiple values on the A-stack. To represent these instructions we could construct a node in the dag for
every value on the A-stack. A possibility is to represent each argument using a 'LOAD_ID' node.

For example a push_args which pushes the first four arguments of the node represented by cdag g1 on the
A-stack will then be represented by:

'LOAD_ID 0 g2' for the first argument,
'LOAD_ID 4 g2' for the second argument,
'LOAD_ID 8 g2' for the third argument,
'LOAD_ID 12 g2' for the fourth argument and

g2: 'LOAD_ID 8 g1' for the variable size part of the node containing the arguments.

But if we would generate code for a push_args instruction represented in this way, we would not be able to
use an MC68020 MOVEM instruction to move all four arguments to registers with one instruction, or use the
address register indirect with postincrement addressing mode to address the arguments, (except the last
one) but have to use the address register indirect with displacement addressing mode to address the
arguments (except the last one), which results in less efficient code.
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For example if code is generated for a push_args  with four arguments, and the address of the node is in
address register A0, the generated code could be:

MOVEA.L 8(A0),A1 ; load pointer to variable size part of
the node containing the arguments.

MOVE.L (A1),D0 ; load first argument in D0
MOVE.L 4(A1),D1 ; load second argument in D1
MOVE.L 8(A1),D2 ; load third argument in D2
MOVE.L 12(A1),D3 ; load fourth argument in D3

But if we would use the MOVEM instruction, we could generate the following code:

MOVEA.L 8(A0),A1 ; load pointer to variable size part of
the node containing the arguments.

MOVEM.L (A1),D0-D3 ; load four arguments in registers D0, D1,
D2 and D3

According to the cache case execution times in appendix B this code is 3 percent faster, and 4 words long
instead of 9 words, so this code is better.

If we would use the address register indirect with postincrement addressing mode, we could generate the
following code:

MOVEA.L 8(A0),A1 ; load pointer to variable size part of
the node containing the arguments.

MOVE.L (A1)+,D0 ; load first argument in D0
MOVE.L (A1)+,D1 ; load second argument in D1
MOVE.L (A1)+,D2 ; load third argument in D2
MOVE.L (A1),D3 ; load fourth argument in D3

According to the cache case execution times in appendix B this code is 10 percent faster than the first
example, and 6 words long instead of 9 words, so this code is better than the first example.

To be able to use a MOVEM instruction or the address register indirect with postincrement addressing mode, a
different representation was chosen. Every value pushed on the A-stack by a push_args  or repl_args
instruction is represented by a 'MOVEMI g1' node. For every value argument cdag g1 of the 'MOVEMI
g1' node is the (same) cdag with as root a 'MOVEM d1 g g1 .. gn' node. This 'MOVEM d1 g g1 .. gn'
node represents n values stored at n consecutive long words at the address computed by adding (integer
constant) d1 and the address represented by cdag g. Cdags g1, .., gn are the cdags with as root a MOVEMI
node, i.e. g1 is the cdag with as root the MOVEMI node representing the first argument, g2 is the cdag
with as root the MOVEMI node representing the second argument, etc. Although this introduces cycles in
the dag, we do not change out terminology.

For example a push_args which pushes the first four arguments of the node represented by cdag g1 on the
A-stack will be represented by:

g4: 'MOVEMI g3' for the first argument,
g5: 'MOVEMI g3' for the second argument,
g6: 'MOVEMI g3' for the third argument,
g7: 'MOVEMI g3' for the fourth argument,
g3: 'MOVEM 8 g2 g4 g5 g6 g7' representing all 4 arguments and
g2: 'LOAD_ID 8 g1' for the variable size part of the node containing the arguments

Using this representation the code generator can use a MOVEM instruction or the address register indirect with
postincrement addressing mode. How this is done is explained in section 6.4.9.
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6 . 3 . 8 . The dag representation for create and del_args.

To create a new node in the heap, the following actions have to be taken:
- subtract the size of an empty node (3 long words) from register FC and if the value in this register is

less than zero after this subtraction call the garbage collector.
- compute the address of the new node.
- fill the new node with the descriptor and the address of the reduction code, and add the size of the

new node to register HP.

Subtracting the size of an empty node from register FC and eventually calling the garbage collector is not
represented in the dag. How this is done is explained in section 6.9.

Two possible representations for a create  instruction are:
- Use several cdags, each representing a part of creating a new node. One cdag to represent the

address of the new node, one to store the descriptor in the heap, and one to store the address of the
reduction code in the heap.

- Use one cdag, which represents the address of the new node, and storing the descriptor and the
address of the reduction code in the heap, and adding the size of the node to HP.

If we would use the representation with several cdags, we would use the heap pointer HP just like the A
and B-stack pointers. We would have to do a simple heap simulation just like the stack simulations for the
A and B-stack and we would need a STORE node to store a value in the heap just like for storing a value on
the A-stack or B-stack. Then creating a node would be represented by the following three cdags:

1: STORE -4 ASP g1 ; store the address of the new node on the A-stack
g1: GREGISTER HP ; the address of the new node is in HP

2: STORE 0 HP g2 ; store the address of the reduction code in the heap
g2: LEA cycle_in_spine ; the address of the reduction code of an empty node

3: STORE 4 HP g3 ; store the descriptor in the heap
g3: LOAD_DES_I empty 0 ; the descriptor of an empty node

But this representation has the following disadvantages:
- We can't use the address register indirect with postincrement addressing mode or a MOVEM

instruction to store the values in the heap, which is more efficient than using an address register
indirect with displacement addressing mode, just like for the push_args  and repl_args  instruction
(see section 6.3.7)

- We can't change the location of nodes in the heap created by create instructions. If for example two
nodes are created using two create instructions, and it is more efficient to do the second create first,
a node is created at address 12+HP instead of at the address in HP, which means we first have to
add 12 to HP before we can use the postincrement addressing mode using HP to store the values of
the node in the heap. If we would be able to reverse the location of these two nodes, this addition is
not necessary.

The representation using one large cdag does not have these disadvantages. Therefore a create is
represented in this way by a cdag having as root a 'CREATE g1 g2 g3' node. A 'CREATE g1 g2 g3' node
represents the address of a new node in the heap which consists of the three long words represented by
cdags g1, g2 and g3. If code is generated for such a CREATE node, the new node is stored at the address
currently in HP and the size of the new node is added to HP.

So creating a node is represented by the following cdag:

( STORE -4 ASP g1 ; store the address of the new node on the A-stack)
g1: CREATE g2 g3 g4 ; the address of a new empty node
g2: LEA cycle_in_spine ; the address of the reduction code of an empty node
g3: LOAD_DES_I empty 0 ; the descriptor of an empty node

g4: ; don't care value, third long word of an empty node is not used
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The ABC instruction del_args  also creates a new node, but this is not an empty node, but a copy of
another node with some arguments deleted. Because nodes may share arguments in this implementation,
the arguments do not have to be copied. We can therefore represent a del_args  with a 'CREATE g1 g2
g3' node, where cdags g1 and g2 represent the address of the reduction code and descriptor just as for the
create  instruction, and cdag g3 represents the address of the variable size part containing the arguments of
the node from which this node is a copy with some arguments deleted.

6 . 3 . 9 . The dag representation for fill instructions and set_entry.

Two possible representations for a fill instruction are:
- Use several cdags, each representing a store of one long word in the heap, for example by

representing each store by a 'STORE_ID d r g' node.
- Use one cdag, which represents the address of the node, and filling the whole node.

Using several cdags, each representing a store of one long word, has the same disadvantages as using
several cdags for a create  instruction (see 6.3.8). Therefore we use one cdag to represent a fill instruction.
A fill is represented by a 'FILL g g1 .. gn' node, where cdags g1, .., gn represent the long words which
have to be stored in this order in n consecutive long words at the address represented by cdag g. The result
of a 'FILL g g1 .. gn' node is the address represented by cdag g.

Using this FILL node we can fill integer, character, boolean and string nodes and nodes without
arguments. To fill a node having arguments we also have to create a new variable size part in the heap
containing the arguments, which can not be done with a FILL node. We already have a node to represent
the creation of a new empty node, a CREATE node. But this CREATE node can only represent the creation
of a node consisting of three long words. But if we allow a CREATE node to have any number of
arguments, we can use this node to represent both the creation of a variable size part of a node containing
arguments and the creation of a new node. Then a fill of a node having arguments can be represented by a
FILL node, of which the fourth argument cdag (the third long word to be filled, the argument pointer) has
as root a CREATE node which represents the arguments.

The same representation could also be used to fill floating point nodes, then the CREATE would have two
argument cdags with a FHIGH and FLOW as root. But during code generation for a CREATE node we
would then have to test for this case, because it is more efficient to move a floating point number to the
heap at once, in stead of moving the two long words of which the floating point number consists
separately. Therefore we use a special node for creating the variable size part of a floating point node in the
heap, a 'CREATE_R g' node, so that we don't have to test for this case. A 'CREATE_R g' node
represents the address of a new variable size part of a floating point node in the heap which consists of the
floating point number represented by cdag g. If code is generated for a CREATE_R node, the floating point
number is stored at the address currently in HP and the size of the variable size part of a floating point node
is added to HP.

6 . 3 . 1 0 . The dag representation for add_args.

The instruction add_args  copies a node and adds some arguments to this copy. Because we don't know
the size of the variable size part of the node at compile time, we can't represent this variable size part with a
CREATE node, so we need a new node, the ALLOCATE node, to be able to represent add_args .

An 'ALLOCATE gc ga g1 .. gn' node represents the address of a new variable size part consisting of a
number of long words from another node, represented by cdag gc and ga, where cdag gc represents the
number of long words and ga represents the address of the variable size part of the other node, and the long
words represented by cdags g1, .., gn. If code is generated for an ALLOCATE node, the long words are
stored at the address currently in HP and the size of the long words is added to HP.
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6 .4 . Generating intermediate code from the dag.

We now have represented the ABC instructions in the dag and have determined the evaluation order using
the first phase of the adapted labeling algorithm. So we can now generate code from this dag using the
second phase of the adapted labeling algorithm.
In this section is explained how intermediate code is generated from this graph. This intermediate code is
very close to MC68020 machine code. But in this intermediate code an unlimited number of address and
data registers may be used. How the code generator determines whether to use a data register or an address
register of the MC68020, if a register is used, is described. Also is explained how the following
optimizations are performed: optimizations of the creation of nodes by create  instructions, optimizing the
use of booleans by using condition codes, optimizing the use of small constants and how generating
unnecessary store instructions is prevented.

6 . 4 . 1 . Calculating reference counts.

To generate code from the dag the code generator has to know how many times a node is referenced, i.e.
how many pointers point to it. This information is necessary because:

- For REGISTER nodes we have to know when we may release the register, so that it can be used for
other purposes. This can be done by maintaining a counter, which counts the number of uses. After
every use the counter is decremented and if it becomes zero the register may be released. To
initialize these counters, we have to know how often this REGISTER node is referenced.

- Shared nodes have to be recognized. These are the nodes which are referenced more than once.
Because if such a shared node is evaluated the first time, the result of the evaluation of the cdag has
to be remembered, so that when this value is referenced again, it does not have to be recomputed.
Such a value is remembered in a register. Therefore the shared node is overwritten by a REGISTER
node the first time it is evaluated. And to initialize the counter of this new REGISTER node, we
have to know how often the shared node is referenced.

Two ways in which we can calculate these counters are:
- Maintain the counters during dag construction.
- Construct the dag and then calculate the reference counters.

To maintain the counters during dag construction, we first have to initialize all counters with zero.
Then if a pointer to a node is added, do:

PROCEDURE adjust counters after adding a pointer (pointer)
Increment the counter of the node to which the pointer points.
IF the counter = 1 THEN

FOR all arguments, of the node to which the pointer points, which
are pointers DO

adjust counters after adding a pointer (argument).
END.

But also sometimes pointers are deleted. If for example a value is popped from a stack using a pop_a  or
pop_b  instruction, the pointer to the cdag representing a value which is popped, has to be deleted. If a
pointer is deleted, some reference counts have to be adjusted. This can be done by:

PROCEDURE adjust counters after deleting a pointer (pointer)
Decrement the counter of the node to which the pointer points.
IF the counter = 0 THEN

FOR all arguments, of the node to which the pointer points, which
are pointers DO

adjust counters after deleting a pointer (argument).
/* Delete the node */

END.
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To calculate the counters after dag construction, we first have to initialize the counters with zero. And then
call the PROCEDURE adjust counters after adding a pointer  for every cdag on the A-stack and B-
stack. Every such cdag represents the computation of one value on the A-stack or B-stack.

Our implementation calculates the counters after dag construction, because:
- the counters are not needed during dag construction.
- it is faster than maintaining the counters, because now the counters never have to be decremented

because a pointer is deleted.
- the PROCEDURE adjust counters after deleting a pointer  does not have to be

implemented.

A disadvantage of this method is that we can not delete nodes which are no longer referenced during dag
construction.

6 . 4 . 2 . Choosing between address registers and data registers.

When generating code for an operation we sometimes can choose between using an address register or a
data register. For example if we have to add two values which are stored in memory, we can compute the
result in an address register or in a data register, and both computations of the sum are equally efficient. If
this sum has to be multiplied later, we should compute the sum in a data register, because the MC68020
multiply instruction can multiply a value in a data register, but not in an address register. But if this sum is
the address of a value, and the value is referenced later, we should compute the value in an address register,
because we can address the value using an address register indirect addressing mode, but we can't address
the value if the address is stored in a data register. (If not enough registers are available this could be false)

To be able to make a good choice when we can choose between an address register and a data register, a
counter is added to every node. This counter is initialized with zero. If a node is added to the dag, and
better code can be generated for the operation represented by this node if the argument is computed in an
address register instead of a data register, the counter in the root of this argument cdag is incremented. This
is for example done for the second argument of a LOAD_ID node. But if better code can be generated if the
argument is computed in a data register instead of an address register, the counter in the root of this
argument cdag is decremented. This is for example done for both arguments of MUL and DIV nodes.

If we can choose between using an address register or a data register when generating code for a node, we
use the counter in the node. If the counter in the node is greater than zero we use an address register, and if
the counter is less than zero we use a data register. If the counter is zero, we prefer a data register, because
after reserving the registers as described in section 3.5 7 data registers remain available, but only 3 address
registers.

This method will usually give good results, but is not optimal, because:

- A counter is only incremented or decremented if the value needs to be in a specific sort of register to
generate efficient code for a parent node, but not if the value needs to be in a specific sort of register
to generate efficient node for some other node, for example a grand-parent node. For example for
the cdag LOAD_ID 0 (ADD (ADD (LOAD 0 BSP) (LOAD 4 BSP)) (LOAD 8 BSP)) the cdag ADD
(LOAD 0 BSP) (LOAD 4 BSP) will be computed in a data register, but should be computed in an
address register, because after adding 8(BSP) the value will still be in a data register, but should be
in an address register for LOAD_ID.

- If not enough registers are available, choosing a different sort of register is sometimes better. If for
example not enough address registers are available, but enough data registers are available, it is
sometimes better to do a computation which can be done more efficiently using address registers if
enough address registers are available, by using data registers.

- A value is always stored in only one sort of register. If a value is needed more than once in both an
address register and a data register, it is sometimes better to store the value both in an address
register and a data register.
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6 . 4 . 3 . Register allocation during code generation from the graph.

During code generation from the dag we assume an unlimited number of address registers and an unlimited
number of data registers are available. Why this is done will be explained in section 6.6 on local register
allocation. Later the intermediate code will be changed so that only 8 address and 8 data registers are used,
this is also explained in section 6.6.

But because we know the MC68020 doesn't have an unlimited number of registers, we try to generate code
which uses as few registers as possible during code generation from the dag.

If during code generation a new register of a specific sort (address or data register) is required, the free
register of that sort having the lowest number is allocated. If a register contains a value which is no longer
used, the register is released, so that it can be allocated again. The registers A3-A7 and D7 are never
allocated or released, because they contain stackpointers, etc. , as described in section 3.5.

6 . 4 . 4 . The intermediate code.

The intermediate code is very similar to MC68020 code. The instructions of the intermediate code can be
found in appendix D. I already said that in the intermediate code an unlimited number of address and data
registers may be used. The other differences are:

- The address register indirect addressing mode does not exist. Instead the address register indirect
with displacement addressing mode with displacement zero is used.

- The MOVEA, ADDA, SUBA, ADDI, SUBI, CMPA and CMPI instructions are simply called MOVE, ADD, SUB
or CMP instructions.

- There are no MOVEQ, ADDQ and SUBQ instructions.
- There are no BRA and BSR instructions. Instead JMP and JSR are used.
- There is no CLR instruction.
- The SEQ, SGE, SGT, SLE, SLT, SNE, FSEQ, FSGE, FSGT, FSLE, FSLT and FSNE instructions of the

intermediate code compute a long word, but the Scc instructions of the MC68020 compute a byte.
- The BMOVE instruction moves a block of long words. There is no such MC68020 instruction.
- MOVE.L, ADD.L, SUB.L , etc. are simply called MOVE, ADD, SUB, etc. MOVE.B and MOVE.W are called

MOVEB and MOVEW.

The address register indirect addressing mode, the MOVEQ, ADDQ, SUBQ, BRA, BSR and CLR instructions are
used by the final MC68020 code, because some instructions of the intermediate code are later optimized,
for example a MOVE #1,D0 instruction is optimized to a MOVEQ #1,D0. These optimizations are described in
section 6.10.

6 . 4 . 5 . Generating intermediate code from the dag.

After the reference counts have been computed, we can start generating intermediate code. For every
element on the A-stack and B-stack for which a cdag has been constructed code has to be generated. The
order in which these cdags are evaluated is determined as described in sections 6.2.7 and 6.2.8.

Then code is generated for these cdags by the following algorithm:
- First evaluate all the argument cdags of the root by recursively executing this algorithm. The

argument cdags are evaluated in the order as described in sections 6.2.7 and 6.2.8.
- Generate code for the operation in the node using the values computed by the argument cdags.
- Return how the result can be addressed, and a counter which counts how many times the result will

be used.



70

Which code is generated depends on:
- How the values computed by the argument cdags have to be addressed and how many times they

will be used. This information is returned when code is generated for an argument cdag.
- Whether the node is shared. If it is, the result of the computation specified by this node is always

stored in a register.
- Whether it is more efficient to return the computed value in a data register or an address register.

The value computed by a cdag can be returned:
- in a data register. (Dn)
- in an address register. (An)
- in a floating point register. (FPn)
- as an integer constant. (#n)
- as a descriptor. (#n)
- as a floating point constant. (#n)
- in a memory location of which the address is the sum of a signed 16 bit integer constant and an

address in an address register. (d(An) )

6 . 4 . 6 . Generating code for arithmetic dyadic operation nodes.

The result of arithmetic dyadic operations is always computed in a register, because computing the result in
memory and later using this result in memory is always more expensive than computing the result in a
register and later using the result in this register.

For example, assume we have to add one to a value in memory, and this value in memory will no longer be
used after this addition, then we can compute the result in memory using:

ADD #1,d(An)

And we can compute the result in a register using:

MOVE d(An),Dr
ADD #1,Dr

If we later use the value in memory, for example for another addition, we will use:

ADD d(An),Dn

And if we later use the value in a register:

ADD Dr,Dn

According to the cache case execution times in appendix B computing and using the value in a register is 45
percent faster for this example than computing and using the value in memory.

Only if the result has to be stored in the same memory location as one of the arguments has to be loaded
from, computing the value in memory is often faster. For example if we have to generate code for the cdag
STORE 4 BSP (ADD (LOAD 4 BSP) (LOAD 1)) we could generate:

ADD #1,4(BSP)

instead of:

MOVE 4(BSP),Dr
ADD #1,Dr
MOVE Dr,4(BSP)

According to the cache case execution times in appendix B the first instruction sequence is executed 55
percent faster. But computing a result, which has to be stored in the same memory location as one of the
arguments has to be loaded from, happens seldom, because values are often stored in registers. So the code
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will usually be only slightly less efficient if we never compute the result in memory. Therefore we will
always compute the result in a register.

To compute the result in a register, first the arguments are evaluated. For an arithmetic operation like ADD
we then test if one (or both) of the arguments has been computed in a register of the right sort, i.e. the sort
(address or data) of register the result of this ADD has to be computed in, and if this is the last use of this
register, we generate an instruction which adds the other argument to this register. Otherwise we allocate a
new register of the right sort, generate an instruction which moves one of the arguments to this register,
and an instruction which adds the other argument to this register.

For other arithmetic dyadic operations code is generated in a similar fashion, but is sometimes more
difficult. For example for non commutative operations, like SUB, and instructions for which the operands
may not be stored in an address register, like MUL.

6 . 4 . 7 . Generating code for STORE and FSTORE nodes.

To generate code for a 'STORE d1 r1 g1 g2' node, first code is generated for the argument cdag g1 which
computes the value to be stored. Then the value can usually be stored in memory on the A-stack or B-stack
using one MOVE instruction to d1(r1). But sometimes this causes problems, because storing the value in
memory on the A or B-stack overwrites the value of d1(r1), and if this value will be used later, we will no
longer be able to compute it.

Assume this value will be used later. We can solve the problem by allocating a register r2 and moving the
value in memory location d1(r1) to this register using a MOVE instruction, before we move the value
computed by the code for argument cdag g1 into this memory location, and for the later uses use the value
in this register.

If the value of d1(r1) will be used later, a LOAD or FLOAD node exists, with a reference count greater than
zero, which loads this value. To be able to test for this when generating code for a STORE node, argument
cdag g2 of a STORE node points to this LOAD or FLOAD node if it exists. If such a LOAD node exists,
the LOAD node is overwritten by a 'REGISTER r2' node, so that the later uses will use the previous value
of d1(r1) stored in register r2, instead of the value which is now stored in this memory location. And also if
such a FLOAD node exists, the FLOAD node is overwritten by a FREGISTER node, for the same reason.

Code for FSTORE is generated in a similar fashion, but because a floating point number consists of two
long words, the FSTORE node contains two pointers which could point to a LOAD or FLOAD node, and it
may be necessary to move two values to registers.

6 . 4 . 8 . Generating code for STORE_R nodes.

To generate code for a 'STORE_R r1 g1' node, first code is generated for the argument cdag g1 which
computes the value to be stored. If this value has been computed in register r1 no code has to be generated
for the STORE_R node. Otherwise this value can usually be moved to register r1 using one MOVE
instruction. But just as for the STORE node, this sometimes causes problems, because storing the value in
a register overwrites the current value of the register, and if this value will be used later, we will no longer
be able to compute it.

Assume the value in register r1 will be used later. To solve the problem, we can use a similar solution as
for the STORE node, and allocate a register r2, and move the contents of register r1 to register r2 using a
MOVE instruction, before we move the value computed by the argument of the STORE_R node into register
r1.

If the value in register r1 will be used later, a 'REGISTER r1' node exists, with a reference count greater
than zero. To be able to test for this when generating code for a STORE_R node, we can't use a similar
solution as for the STORE node and store a pointer to this REGISTER node in the STORE_R node,
because during code generation from the dag sometimes new REGISTER nodes are created. Therefore for
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every register a pointer is maintained during construction of the dag and code generation from the dag,
which points to the REGISTER node for this register if it exists. If a 'REGISTER r1' node exists with a
reference count greater than zero, the register number of this node is overwritten by register r2, so that the
later uses will use the previous value of register r1, instead of the value which is now stored in register r1.

If the value to be stored was computed in a register r3 when generating code for argument cdag g1, and
register r1 contains a value which will be used later, then we would generate two MOVE instructions which
move a value from one register to another. But if the value which is stored in register r1 may also be stored
in an other register, we can generate more efficient code by using an EXG instruction. Because if we store
the value, which register r1 contains before the store, in register r3, then what is currently stored in r1 has
to be moved to r3, and what is currently stored in r3 has to be moved to r1. So we can generate code for the
STORE_R node by exchanging the values in register r3 and register r1 by one EXG instruction, which is
faster than two MOVE instructions, and changing the register number in the 'REGISTER r1' node into
register r3.

6 . 4 . 9 . Generating code for MOVEM and MOVEMI nodes.

Three possible ways to generate code for MOVEM and MOVEMI nodes are:
- address every long word using an address register indirect with displacement addressing mode.
- address every long word using an address register indirect with postincrement addressing mode.
- use a MOVEM instruction to move multiple long words to registers with one instruction.

Using the address register indirect with postincrement addressing mode is usually better than using the
address register indirect with displacement addressing mode, because a postincrement addressing mode is
executed faster and uses less memory than a displacement addressing mode. But a disadvantage of using
the postincrement addressing mode is that the long words have to be moved starting with the first long
word, then the second, then the third, etc. ,while for the displacement addressing mode we can move the
long words in any order. Another disadvantage of the postincrement addressing mode is that it changes the
address register, so that if the value has to be used later, we first have to copy the address in another
register before we can move the long words.

If n long words have to be moved from memory, the cache case execution time (see appendix B) of the
MOVEM instructions is 10+4*n clock cycles, and for using the postincrement addressing mode 6*n clock
cycles. So when moving more than 5 long words MOVEM is faster, and when moving 5 long words, both
instruction sequences are equally fast. But the MOVEM instruction always occupies 2 words and the
instructions using the postincrement addressing mode occupy n words. So to move 5 long words it is better
to use the MOVEM instruction.

But the MOVEM instruction can only move long words to registers in the order D0, D1, .., D7, A0, A1, . . ,
A7, so that for example we can not move the first long word to an address register and the second long
word to a data register using one MOVEM instruction.

Code is generated for a 'MOVEMI g1' node by first generating code for the argument cdag g1, which has a
MOVEM node as root. After this code has been generated, the MOVEMI node will have been overwritten
by a 'REGISTER r' node, and register r contains the result of this MOVEMI node and is returned.

For a 'MOVEM d1 g g1 .. gn' node code is generated by first generating code to compute the argument
cdag g in an address register. Let Am be this address register. Then n registers are allocated and the long
words in consecutive memory locations at the address d1(Am)  are moved to these registers. If only one
long word has to be moved, a MOVE from d1(Am)  is used to move this long word into a register. If two
long words have to be moved, and d1 is not equal to zero or this is not the last use of the address in address
register Am, two MOVE from d(Am)  instructions are used. If at least 5 long words have to be moved, a MOVEM
from d1(Am)  instruction is used if possible. Otherwise, if this is the last use of the address in address
register Am, d1 is added to Am, else the address d1(Am)  is loaded into a free address register, let Am now be
this address register. And then n-1 MOVE from (Am)+  instructions and a MOVE from (Am)  instruction is used
to move the long words from memory into the registers. Then all the MOVEMI nodes, which are the roots
of the cdags g1, .., gn, are overwritten by 'REGISTER r' nodes, where r is the register in which the value
represented by the MOVEMI node was stored.
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6 . 4 . 1 0 . Generating code for FILL nodes.

Just like for MOVEM nodes, three possible ways to generate code for FILL nodes are:
- address every long word using an address register indirect with displacement addressing mode.
- address every long word using an address register indirect with postincrement addressing mode.
- use a MOVEM instruction to move multiple long words from registers with one instruction.

Using the address register indirect with postincrement addressing mode is usually better than using the
address register indirect with displacement addressing mode. The reasons for this have already been
discussed in the previous section on the MOVEM node.

If n long words have to be moved to memory, the cache case execution time (see appendix B) of the MOVEM
instructions is 6+3*n clock cycles, and for using the postincrement addressing mode 4*n clock cycles. So
when moving more than 6 long words MOVEM is faster, and when moving 6 long words, both instruction
sequences are equally fast. But the MOVEM instruction always occupies 2 words and the instructions using
the postincrement addressing mode occupy n words. So to move 6 long words it is better to use the MOVEM
instruction.

But the MOVEM instruction can only move long words from registers in the order D0, D1, .., D7, A0, A1,
.., A7. Because the values to be moved are computed in an arbitrary register, in memory or are constants, it
is unlikely that 6 or more consecutive values are computed in registers in such an order that they can be
moved to memory using one MOVEM instruction, therefore we will never use the MOVEM instruction.

Code is generated for a 'FILL g g1 .. gn' node by first generating code for all argument cdags. Then the
results computed by cdags g1, .., gn are moved to consecutive long words at the address computed by
cdag g. If only one long word has to be moved, the address computed by cdag g is loaded into an address
register Am and a MOVE to (Am)  is used to move this long word into memory. If two long words have to be
moved and cdag g has computed the address in an address register Am and this is not the last use of the
address in Am, a MOVE to (Am)  and a MOVE to 4(Am)  instruction are used. Otherwise, if cdag g has not
computed the address in an address register or this is not the last use of this address, an address register is
allocated and the address is loaded into this address register. Let Am be the address register which contains
the address computed by cdag g, then n-1 MOVE to (Am)+  instructions and a MOVE to (Am)  instruction are
used to move the long words into memory. For the argument cdags g1, g2, .., gn which are empty cdags
no long word has to be stored in memory.

The result computed by a FILL node is the address of the node which is to be filled, which is the address
computed by arguments cdag g. If the node is filled using the postincrement addressing mode, the address
is changed during filling the node. So that if the address computed by the FILL has to be used later, this
address has to be copied before filling the node. Usually this address is copied into a register. But often this
address is only used later by a STORE node to store the address in memory on the A-stack. In such a case
the address is first moved to a register, and then moved from this register to memory, but this address
could have been moved to memory immediately, which is more efficient. In this case the reference count of
such a FILL node is 1 and the parent is a STORE node, so we can implement this by testing if argument
cdag g1 of a 'STORE d1 r1 g1 g2' node has a FILL node as root with a reference count 1 when generating
code for a STORE node.

6 . 4 . 1 1 . Generating code for CREATE nodes.

The code for a CREATE node has to fill consecutive long words in memory in the heap (a node), at the
address in register HP, add the size of this node to register HP and return the address of this node. How a
node should be filled has already been discussed for the FILL node in the previous section. For the
CREATE node this is done in a similar way using the address register indirect with postincrement
addressing mode. If this is performed using register HP, we don't have to use an extra instruction to add
the size of the node to HP after the fill. To compute the address of the node, we could use a LEA -
d(HP),An  instruction after the fill, where d is the size of the node. But this can be done more efficient with
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a MOVE from HP to a register before the fill, because such a MOVE is faster than a LEA instruction, and the
address of the node could be stored using any addressing mode and not only in an address register.

So code is generated for a CREATE node by first generating code for all the arguments cdags, then
allocating a register and generating a MOVE from HP to this register, and finally instructions are generated
which move the long words computed by the argument cdags to memory using MOVE to (HP)+  instructions.
For the argument cdags of the CREATE node which are empty cdags no long word has to be stored in
memory, but only the size of a long word has to be added to HP.

Just like for the FILL node, storing the address of the node in a register is not very efficient if the address is
only used later by a STORE node to store the address on the A-stack, which happens often. Because in
such a case the address is first moved from HP to a register, and then moved from this register to memory,
but could have been moved from HP to memory immediately. Just like for the FILL node we can
implement this by testing if argument cdag g1 of a 'STORE d1 r1 g1 g2' node has a CREATE node as root
with a reference count 1 when generating code for a STORE node.

6 . 4 . 1 2 . Optimizing the creation of nodes.

In section 5.1.1 I already mentioned that initialization of a node by a create instruction is not necessary if
this node will always be filled before a garbage collection could occur. Many of these initializations are
removed in the following way. Every time a FILL node is created the code generator tests if the first
argument cdag of this FILL node, which computes the address of the node (or part of the node) which is to
be filled, has a CREATE node as root and if the number of long words which are created by this CREATE
node in the heap equals the number of long words which are filled by the FILL node. If this is so, all the
argument cdags of the CREATE node are replaced by empty cdags. Because no value is stored in memory
for empty argument cdags of a CREATE node, no initialization takes place for a CREATE node with only
empty argument cdags.

Another optimization which was described in section 5.1.1, creating and filling a node at the same time, can
be implemented in the following way . When code is generated for a FILL node, the code generator tests if
the first argument cdag of the FILL node has a CREATE node as root, and if the reference count of this
CREATE node is one, and if the number of long words which are created by this CREATE node in the
heap equals the number of long words which are filled by the FILL node. It this is so, then the create and
fill are done at the same time by not generating code for the 'FILL g g1 .. gn' node and the CREATE node,
but generating code for a 'CREATE g1 .. gn' node.

6 . 4 . 1 3 . Using the condition codes of the MC68020.

In section 5.2.4 I already mentioned that a conditional jump which has to be taken depending on a boolean
which is the result of a comparison can be optimized. This can be done by using the condition codes of the
MC68020 for the conditional jump, instead of first computing a boolean value and using this boolean value
as condition for the jump. I also mentioned that computing the not of a comparison can often be optimized
into a comparison (without not) by using the reverse condition code, for example by using 'NE' instead of
'EQ'.

This has been implemented by using a procedure which generates code for a cdag which computes the
boolean represented by this cdag in a condition code and a procedure which generates code for a cdag
which computes the not of the boolean represented by this cdag in a condition code. These two procedures
are used to generate code for the conditional jump instructions, i.e. the ABC instructions jmp_true  and
jmp_false , and the CNOT node.

These two procedures generate a CMP or FCMP instruction for CMP_EQ, CMP_LT, CMP_GT, FCMP_EQ,
FCMP_LT and FCMP_GT nodes. For a CNOT node they call the other procedure to generate code of the
argument cdag of the CNOT node, and then return the reverse condition. For the remaining nodes code is
generated which computes the result in a register, in memory or as constant as usual, and then this result is
compared with zero using a TST or CMP instruction to obtain a (NE or EQ) condition code.
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6 . 4 . 1 4 . Preventing unnecessary stores.

Because a cdag, with usually as root a STORE node, is constructed for every value on the A-stack or B-
stack which is referenced in the basic block, often cdags are constructed which just load a value in memory
on the A-stack or B-stack and then store the value at the same address, i.e. 'STORE d1 r1 (LOAD d1 r1)
g2' cdags. If for example an integer on the B-stack in memory is added to the top of the B-stack (using a
push_b  and an addI  instruction), then for this integer such a cdag would be constructed. But no code has
to be generated to store this integer in memory, because the integer has not been changed and was already
stored in this memory location.

So for such a cdag an unnecessary MOVE d1(r1),d1(r1)  would be generated. To prevent this we could
test if argument cdag g1 of a 'STORE d1 r1 g1 g2' node consists of a 'LOAD d1 r1' node when generating
code for a STORE node, and not generate any code in such a case.

But this would not prevent all unnecessary stores, because the result of a cdag having a FILL node as root
is the same as the result of the first argument cdag of this FILL node. Consequently for cdag 'STORE d1 r1
(FILL (LOAD d1 r1) g1 g2 g3) g4' the address in d1(r1) would be loaded into a register, and then this
address in this register would be stored in d1(r1), but d1(r1) already contains this address, so this store is
not necessary.

To prevent these unnecessary stores and the ones described above, the following algorithm is used to
generate code for a 'STORE d1 r1 g1 g2' node:

g := g1
WHILE the root of cdag g is a 'FILL g3 g4 .. gn' node DO

g := g3
IF the root of cdag g is a 'LOAD d2 r2' node AND d2=d1 AND r2=r1 THEN

an unnecessary store has been found, don't generate code for this STORE
node, but generate code for argument cdag g1 of this STORE node

ELSE
generate code for this STORE node as usual

6 . 4 . 1 5 . Optimizing the use of small constants.

In section 2.3.7 I mentioned that instead of doing an operation (like for example CMP or ADD) with a long
word constant  between -128 and 127 as operand using an instruction with an immediate long addressing
mode, it is usually faster and shorter first to move the value in a data register using MOVEQ and then do the
operation. For example instead of:

CMP #100,D0

it is faster and shorter to use:

MOVE #100,D1
CMP D1,D0

This could be implemented by testing for an immediate operand between -128 and 127 when generating
intermediate code for nodes like CMP and ADD and then allocating a new register Dn, generate a MOVE #i,Dn
instruction (which will later be optimized to a MOVEQ instruction), generate an instruction which performs
the operation using register Dn instead of the immediate value and then release register Dn.

But this instruction sequence has as disadvantage that it uses an extra register. So that if not enough
registers are available, using such an instruction sequence could result in extra load and store instructions
during local register allocation (explained later in section 6.6). Then the code would be far less efficient
then when this 'optimization' had not been done. Therefore this optimization should only be done if it
doesn't result in extra load and store instructions.
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This has been implemented by only performing this optimization if a parameter data register (one of the
registers D0-D7, see section 6.6) is available to store the immediate value. If such a register is available,
usually no extra load and stores are necessary during local register allocation (but not always). And if such
a register is not available, then the number of registers in use is higher than the number of available
registers, so in that case it is very likely that extra loads and stores will be generated during local register
allocation. In the current implementation this has only been implemented for the CMP instruction, because
comparing to small constants happens very often during pattern matching.

This optimization is also used when allocating memory in the heap (see section 6.9).

6 .5 . Global register allocation.

Before the dag for a basic block is constructed, the code generator determines which values are stored in
registers at the beginning of the basic block. And after the dag has been constructed, which values are
stored in registers at the end of the basic block. This is called global register allocation. Conditions for
global register allocation are described. And a straightforward global register allocation algorithm which
was used for this implementation is described. Also is explained how parameters and results of functions
are passed.

6 . 5 . 1 . Directives describing the parameters and results for the code generator.

In section 5.2.2 we concluded that it is usually better to pass parameters and results of functions in registers
instead of in memory. But to be able to pass parameters and results in registers, the code generator has to
know what kind of parameters a function has and what kind of result it computes. This information can not
always be derived from the ABC code. Therefore the Clean compiler inserts directives in the ABC code,
which describe the parameters and results when entering and leaving a function.

Because the parameters and results are passed on the top of the A-stack and B-stack, the parameters and
results can be described by describing the stack layout of the top elements of the A-stack and B-stack which
are parameters or results at certain locations in the program.

If a function is called using an ABC jsr  instruction, the stack layout before and after the jsr  instruction is
described using a .d(emanded)  directive before the jsr  instruction and a .o(ffered)  directive after the
jsr  instruction:

.d #A_entries #B_entries B_types
jsr function
.o #A_entries #B_entries B_types

where:

#A_entries = The number of A-stack entries.
#B_entries = The number of B-stack entries. Floating point numbers are considered to be

two entries, because they consist of two stack elements.
B_types = For every entry on the B-stack, starting with the entry on top of the stack, a

character indicating the type of the entry:
i = integer
b = boolean
c = character
r = real (floating point number) (only one r for a floating point

number, not two)

If a function is called using an ABC jsr_eval  instruction, always only one parameter is passed on the A-
stack and only one result is returned on the A-stack. So no directives are necessary to described the stack
layout for a jsr_eval  instruction, because the stack layouts are always the same.
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If a function is jumped to using an ABC jmp  instruction, the stack layout before the jmp  instruction is
described using a .d  directive before the jmp  instruction:

.d #A_entries #B_entries B_types
jmp function

If a function is jumped to using an ABC jmp_eval  instruction, always only one parameter is passed on the
A-stack. So no directives are necessary for a jmp_eval  instruction, because the stack layout is always the
same.

If a function is left using an ABC rtn  instruction, the stack layout before the rtn  instruction is described
using a .d  directive before the rtn  instruction:

.d #A_entries #B_entries B_types
rtn

And finally for every label, which is the entry point of a function, the stack layout is described using a .o
instruction before the label:

.o #A_entries #B_entries B_types
label: no_op

6 . 5 . 2 . Function calling convention.

Because passing parameters in registers is usually more efficient (see section 5.2.2), we will try to pass
parameters in registers. But the MC68020 has two sorts of registers, so we also have to determine which
parameters should be passed in which sort of register.

Parameters and results which are passed on the A-stack are addresses of nodes. Because only address
registers can address memory, and therefore address the values in a node, these parameters and results can
best be passed in address registers.

Parameters and results which are passed on the B-stack are integers, booleans, characters and floating point
numbers. Integers, booleans and characters can best be passed in data registers, because the operations on
these types can often be performed faster if the operands are in data registers than if they are in address
registers.

Floating point numbers can probably best be passed in the floating point registers of the MC68881
coprocessor, because floating point operations can only be performed in these registers, but this has not yet
been implemented. Currently they are passed in memory, which is better than passing them in address or
data registers. This is because a floating point number has to be stored in two MC68020 registers, and the
MC68881 can not perform a floating point operation using a floating point number stored in two MC68020
registers, but can perform a floating point operation using one operand which is stored in two consecutive
long words in memory.

When registers have been reserved for stackpointers etc. as described in section 3.5, registers D0-D6 and
A0-A2 can be used to pass parameters and results of functions. So only 3 address registers, 7 data registers
and 8 floating point registers are available for passing parameters and results. Sometimes we will not have
enough registers available to pass all parameters and results in a register. If not enough registers of a
specific sort are available, only (as many as possible) parameters or results which are closest to the top of
the stack are allocated a register of the required sort, the other parameters or results are passed in memory.

If some parameters or results can not be passed in data registers, and some address registers are still
available, it may be more efficient to pass as many of these parameters or results in these address registers.
And if some parameters or results can not be passed in address registers, and some data registers are still
available, it may be more efficient to pass as many of these parameters or results in these data registers.
This has not been implemented.
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If n parameters or results are passed in registers of a specific sort, registers 0, 1, .., n-1 are used, and the
parameter or result closest to the top of the stack is passed in register n-1, the parameter or result second
closest to the top of the stack is passed in register n-2, etc. Why this order has been chosen will be
explained in section 6.5.5.

If a function is called, jumped to or left, the stackpointers should point to the top of the stack. But if some
elements on top of a stack are passed in registers, the stackpointer can not point to the top of the stack,
because the top element of the stack is not stored in memory. Therefore the stackpointers point to the stack
element closest to the top of the stack which is not passed in a register.

If we don't take precautions, the code for a function could change the values in registers, so that a register
may no longer contain the same value after a jsr  or jsr_eval  as it contained before the jsr  or jsr_eval .
Consequently we should either:
- not assume a register contains the same value after a function call, or
- save all registers which may be changed by a function at the start of the code for a function and

restore these registers before the function is left, or
- a combination of both methods, i.e. assume some registers may be changed by a function and some

registers may not be changed by a function.

The convention I have used in this implementation is that a function may change the values of all registers,
because:

- If we would assume a function may not change the value of registers, then at the beginning of a
function we wouldn't know which registers contain values. This causes problems for the garbage
collector, because the garbage collector has to be able to find all pointers to nodes. Because these
pointers may be stored in address registers, the garbage collector has to know which address
registers contain pointers to nodes, but the garbage collector can not derive this information. This
could be solved by storing zero in an address register if it doesn't contain a value, but this would
make the code slower.

- A Clean function has three entry points, but often only one exit point. If we would assume a
function may not change the value of registers, then at all three entry points the same registers
would have to be saved. This is inefficient for entry points for which only a few registers have to be
saved.

6 . 5 . 3 . Conditions for global register allocation.

As I already said, the global register allocator determines which values should be located in registers at the
beginning and end of a basic block. The beginning of a basic block is the location immediately before the
first instruction of the basic block. The end of a basic block is the location immediately after the last
instruction of the basic block if this last instruction is an instruction without side effects, otherwise, so if
last instruction of the basic block is an instruction with side effects, the end of the basic block is the location
immediately before this instruction.

Which values are located in registers at the beginning or end of a basic block is called the (global) register
allocation. But in order to obtain correct code, the global register allocation has to meet certain conditions.

Because if control may flow directly from basic block A to basic block B, the global register allocation at
the end of basic block A should be the same as the global register allocation at the beginning of basic block
B. So the A-stack and B-stack elements which are located in a register at the end of basic block A should be
the same as the A-stack and B-stack elements which are located in a register at the beginning of basic block
B, and the elements should also be located in the same registers. (This condition is a bit too severe. If basic
block B pops a stack element from the stack and does not use this element, the register allocation for this
stack element does not have to meet the condition. But because the implemented code generator can not
detect this, we will ignore this.)
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If the jsr_eval  instruction is optimized as described in section 5.2.6, doing global register allocation is
different than when this optimization is not performed. Because the implemented code generator performs
this optimization, I assume this optimization is performed when describing global register allocation.

Consequently, for the ABC code the global register allocation has to meet the following conditions:
1. If control may flow directly from basic block A to the next basic block B, i.e. if the last instruction

of basic block A is not an rtn , jsr , jmp  , jsr_eval  or jmp_eval  instruction, the register
allocation at the end of basic block A has to be the same as the register allocation at the beginning of
basic block B.

2. If the last instruction of a basic block A is a jmp label , jsr label , jmp_false label  or
jmp_true label  instruction, the register allocation at the beginning of the basic block which is
labeled with label label  should be the same as the register allocation at the end of basic block A.

3. If the last instruction of a basic block is a rtn  instruction, the register allocation at the end of this
basic block has to be the same as the register allocation:
- At every location just after a MC68020 JSR instruction generated for a jsr_eval  instruction

which may call the function from which this rtn  returns.
- At the beginning of every basic block to which the rtn  instruction may return to. These

beginnings of basic blocks to which a rtn  instruction may return to usually are all the basic
blocks of which the previous basic block has as last instruction a jsr  instruction.

4. If the last instruction of a basic block is a jsr_eval  instruction, the register allocation at the end of
this basic block has to be the same as the register allocation at the beginning of the next basic block,
and the register allocation at the location just before the MC68020 JSR instruction generated for this
jsr_eval  instruction should be the same as the register allocation at the beginning of every basic
block which may be jumped to by this jsr_eval  instruction.

5. If the last instruction of a basic block is a jmp_eval  instruction, the register allocation at the end of
this basic block has to be the same as the register allocation at the beginning of every basic block
which may be jumped to by this jmp_eval  instruction.

6 . 5 . 4 . Consequences of the function calling convention for global register allocation.

By defining the parameters and result by the function calling convention described in section 6.5.2, we
have already defined (fixed) which values should be stored in memory and which values in registers at
several locations in the program. Because at every location where a .d  or .o  directive is placed, the global
register allocation should be as defined by the function calling convention.

So, we have already defined the global register allocation for:

- The beginning of every basic block which is labeled with a label which is an entry point of a
function. Because there is a .o  directive before such a label.

- The end of every basic block of which the last instruction is a jsr , rtn  or jmp  to a label, which is
the label of a function entry point, instruction. Because there is a .d  directive before these
instructions.

- The beginning of every basic block of which the previous basic block has as last instruction a jsr
instruction. Because there is a .o  directive after this instruction.

And because of the conditions for global register allocation described in the previous section, we have also
defined the global register allocation for:

- The end of every basic block of which the last instruction is an instruction without side effects of
which the next basic block is labeled with an entry point of a function. Because of condition 1.

- Every location just before a MC68020 JSR instruction generated for a jsr_eval  instruction.
Because jsr_eval  always calls an entry point of a function, and the register allocation of all entry
points has been defined and because of condition 4.
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- Every location just after a MC68020 JSR instruction generated for a jsr_eval  instruction. Because
the register allocation just before a rtn  instruction has been defined for all rtn  instructions, and
because of the first case of condition 3.

- The end of every basic block having a jmp_eval  as last instruction. Because jmp_eval  always
jumps to an entry point of a function, and the register allocation of all entry points has been defined
and because of condition 5.

6 . 5 . 5 . Straightforward global register allocation.

So by defining the function calling convention, we have defined the global register allocation at many
locations in the program. But for the other beginnings and ends of basic blocks we still have to determine a
global register allocation. For example at local labels and at jmp_false  and jmp_true  instructions. With a
local label I mean a label which does not label a location which is the entry point of a function.

Because implementing an advanced global register assignment algorithm costs a lot of time, a
straightforward global register assignment algorithm has been implemented, which gives reasonable
results.

This straightforward global register allocation algorithm allocates registers at the locations described in the
previous section as defined by the function calling convention and the conditions of section 6.5.3.

And to be able to determine register allocations for the other locations, so that the register allocations meet
the conditions of section 6.5.3, the algorithm saves (defines) the global register allocation for a local label
the first time the label is used. If a local label is encountered again, it uses this saved register allocation.

The global register allocation for the beginning of a basic block (except for the locations described in 6.5.4)
is determined with the following rules:

- If the basic block is labeled by a local label for which a global register allocation has already been
defined, registers are allocated according to this definition. In such a case this is not the first use of
this label, and usually the label has already been used by a jmp , jmp_true  or jmp_false
instruction. Then this register allocation has to be chosen, because of condition 2 of section 6.5.3.

- Otherwise, if the previous basic block exists and the last instruction of the previous basic block is:
- A jmp , jmp_eval  or rtn  instruction, then no registers are allocated, i.e. all stack elements

are stored in memory. This will usually not happen.
- An instruction without side effects, then registers are allocated in the same way as they were

allocated at the end of the previous basic block. This is necessary because of condition 1 of
section 6.5.3.

- An instruction with side effects (but not jmp , jmp_eval  or rtn ), then registers are allocated
as they are allocated after execution of the instruction with side effects.

- Otherwise, no registers are allocated. This will usually not happen.

If a register allocation at the beginning of a basic block is determined using any of these rules, the global
register allocation of all the labels which label this basic block are defined to be this global register
allocation.

Then the global register allocation for the end of a basic block (except for the locations described in 6.5.4)
is determined with the following rules:

If the last instruction of the basic block is:
- A jmp , jmp_true  or jmp_false  instruction:

- If the global register allocation of the label to which these instructions (may) jump has
already been defined, then registers are allocated according to this definition. This is
necessary because of condition 2 of section 6.5.3.
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- Otherwise, we allocate registers for the top A and B-stack elements for which a register was
allocated at the beginning of the basic block, or which are used or computed by this basic
block. The registers are allocated in the same way as when passing parameters for functions
and results of functions.
The reasons for this allocation are:
- If a register is allocated for a stack element at the beginning of the basic block, and

no register would be allocated for the stack element at the end of the basic block,
then an extra instruction would be necessary to store the value of the stack element in
memory.

- If a value is computed by this basic block, it can be computed faster in a register than
in memory.

- If a value is used by this basic block, it has to be loaded from memory. We load it
into a register, because it is likely that the next basic block uses this value again.
Then the next basic block doesn't have to load it from memory again, but can use the
register.

And then the global register allocation of the label to which the jmp , jmp_true  or
jmp_false  instruction (may) jump is defined to be this global register allocation.

- An instruction with side effects (but not jmp , jmp_true  or jmp_false) , registers are allocated in
such a way that the instruction with side effects can be executed.

- An instruction without side effects, then:
- If the next basic block exists and the next basic block is labeled by a label for which a global

register allocation has been defined, registers are allocated according to this definition. This
is necessary because of conditions 1 and 2 of section 6.5.3.

- Otherwise, we allocate registers just as for a jmp , jmp_true  or jmp_false  to a label of
which the global register allocation has not yet been defined. So we allocate registers for the
top A and B-stack elements for which a register was allocated at the beginning of the basic
block, or which are used or computed by this basic block. The registers are allocated in the
same way as when passing parameters for functions and results of functions.

If we would allocate the element on top of the stack to register 0, the second element of the stack to register
1, etc., we would often have to move values in registers to other registers. If for example 6 data registers
have been allocated at the beginning of the basic block and code has to be generated for the following basic
block:

pushI 10
eqI_b 1000 1
jmp_true l1

and no global register allocation has been defined for label l1 , then we would allocate 7 stack elements in
data registers at the end of this basic block, and the code generator could generate the following
intermediate code:

MOVE D5,D6
MOVE D4,D5
MOVE D3,D4
MOVE D2,D3
MOVE D1,D2
MOVE D0,D1
MOVE #10,D0
CMP #1000,D1
BEQ l1

But if we would allocate the element on top of the stack to the register with the highest register number
which contains a value of a stack element, and the second element of the stack to the register with the
second highest register number which contains a value of a stack element, etc., as described in section
6.5.2, then the code generator would generate the following (much better) code:

MOVE #10,D6
CMP #1000,D5
BEQ l1
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Therefore this way of allocating registers has been used.

6 .6 . Local register allocation.

Because the intermediate code generated from the dag may use an unlimited number of data and address
registers, and the MC68020 only has 8 data and address registers, a local register allocator  changes the
intermediate code of a basic block so that no more than 8 address registers and data registers are used. It
does this by changing the register numbers of the registers used by the intermediate instructions and by
inserting instructions to load and store values in registers from/into memory. This is explained below.

6 . 6 . 1 . Local register allocation strategy.

Because the MC68020 has only 8 address registers and 8 data registers, we will sometimes not be able to
retain all intermediate results in a register and therefore we will sometimes have to store intermediate results
in memory by storing registers in memory and loading registers from memory.

The normal labeling algorithm (see section 6.2.2) determines when to store registers in memory and load
registers from memory during code generation from the tree. (phase 2) Suppose code has to be generated
for a tree having an 'OP g1 g2' node as root, where OP is the dyadic operation represented by this node
and g1 and g2 are the argument subtrees which represent the computations of the operands. If the required
number of registers for the evaluation for both g1 and g2 are higher than the number of available registers,
then g2 is evaluated first, then the register in which the result of g2 has been computed is stored in
memory, then g1 is evaluated and finally the result of OP is computed using the result of g2 in memory and
the result of g1 in a register. This method gives very good results, often optimal.

Unfortunately using this method for cdags which contain shared nodes does not give good results, because:

- The calculated required number of registers to evaluate a cdag is often too high if the cdag contains
common subexpressions. Consequently, a register may be stored in memory and loaded from
memory, although enough registers are available to evaluate the cdag without storing intermediate
results in memory.

- This method can not determine whether the result of a shared node after the first evaluation, i.e. the
result of a common subexpression, should be stored in a register or in memory. We can't store all
results of shared nodes in registers, because there is a limited number of registers, and storing all
results of shared nodes in memory would result in inefficient code. We could try to store the results
of shared node in registers, and if later not enough registers are available, move one of the registers
containing the result of a shared node to memory. But then we would not be able to make a good
choice between these registers, because to determine which register should be stored in memory,
we would have to know when these registers will be used again, which we do not yet know at that
time.

Therefore register allocation was not done during code generation from the dag, but was postponed till after
the code for a basic block had been generated by assuming an unlimited number of address registers and
data registers are available. Because then we would be able to determine when a register will be used again
in this basic block, which was one of the reasons why we could not determine a good register allocation
during code generation from the dag.

To describe the strategy we have used, we will call the (possibly too many) registers which have been
allocated during the code generation from the dag virtual registers, and call the registers of the target
processor real registers. If a virtual register is used, a real register is allocated and this real register is used
as this virtual register. The strategy we have used allocates the real register containing the value which will
not be used for the longest time and stores this register in memory if a real register has to be allocated and
all real registers are in use, i.e. contain values which will be used later. And if a virtual register is used of
which the value has been stored in memory, a real register is allocated and the value is loaded from memory
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and this real register is used as this virtual register. This strategy was shown to be optimal in a page
swapping context in [Belady 1966].

Because the MC68020 has two sorts (data and address) of registers, we have to adapt this strategy. The
value of a virtual register always has to be stored in a real register of the same sort, because otherwise we
may obtain instructions with invalid operands, for example a MULS.L A1,A0  instruction. Therefore, if a
real register has to be allocated for a virtual register of a specific sort and all real registers of this sort are in
use, the real register of this sort which will not be used for the longest time will be allocated, and the value
in this real register is stored in memory. So that the value of the virtual register which was previously
stored in this real register can be loaded again from this memory location if this virtual register is used again
later.

But, if a real register is allocated when all registers of a specific sort are in use, it is not necessary to store
the register in memory if this register contains a value which has not been changed since the last time the
register was loaded from memory, because the memory location where the register was loaded from
contains the same value as the register, so the next time this value is used, it can still be loaded from this
memory location.

The strategy described above may assign a virtual register to any real register of the same sort, but this
causes problems in two cases:

- The virtual registers for which a STORE_R node exists have to be assigned to the real register of the
same sort (address or data) and with the same number at the end of a basic block. (the number of
register An is n, the number of register Dm is m)

- For a MOVEM instruction the registers to which the values are moved to or moved from have to be
allocated in a specific order, i.e. data registers before address registers and registers with low
numbers before registers with high numbers.

To solve this problem virtual registers for which a real register exists of the same sort and with the same
number are always assigned to this real register, these registers will be called parameter registers. At the
end of the basic block all values of these virtual parameter registers which are stored in memory are loaded
in the real parameter registers. And a MOVEM instruction may only move values to or from virtual parameter
registers. This adapted strategy is not optimal.

Now the next time a real register will be used again does not only depend on when the value stored in this
register will be used again, but also on when the virtual register of the same sort and with the same number
will be used again, because this virtual register has to be stored in this real register when it is used. So
instead of allocating the real register which contains the value which will not be used for the longest time
when all registers of the required sort are in use, the real register, of which the value and for which the
virtual register of the same sort and with the same number will not be used for the longest time will be
allocated.

6 . 6 . 2 . Local register allocation algorithm.

The algorithm consists of two phases. During the first phase for every operand of the intermediate code,
which uses a virtual register, the following is computed:
- The next use instruction. For an operand which uses a non parameter register, this is the instruction

with the first operand after this operand which uses the value of this virtual register, if it exists. For
an operand which uses a parameter register, this is the instruction with the first operand after this
operand which uses this virtual register, if it exists.

- The value use flag. This flag is true if the value in the virtual register used by this operand will be
used after this operand, otherwise it is false.
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To compute the next use instructions the operands are divided into two classes:
- Operands which use a virtual register, i.e. operands which use the value of the virtual register to

compute the result. For example both operands of an ADD D1,D0  instruction.
- Operands which define a virtual register, i.e. operands which do not use the value of the virtual

register to compute the result, but store the result (or part of the result) in this virtual register. For
example the second operand of a MOVE to D0 instruction.

To be able to determine which real register of a specific sort will not be used for the longest time during
phase two of the algorithm, we have to be able to determine the order of the instructions with the next use,
therefore the instructions are numbered. The last instruction of a basic block is numbered 2, the second last
instruction is numbered 3, the third last 4, etc. By starting to number with 2, we can use 0 to indicate that
no next use instruction exists and that the value of the virtual register will not be used any more, and 1 to
indicate that no next use instruction exists in this basic block and that the value of the virtual register could
be used after this basic block. The virtual registers which could be used after this basic block are the virtual
registers for which a STORE_R node exists.

The first phase of the algorithm stores the next_use instruction and value_use flag for every operand which
uses a virtual register by walking the instructions from the last instruction to the first instruction of the basic
block. The instructions are walked backwards, because then the information can be computed faster.
During this walk the arrays first_use and first_value_use remember for every virtual register:
- The first use instruction. For a non parameter register, this is the instruction with the first operand

after the current operand which uses the value of this virtual register, if it exists. For a parameter
register, this is the instruction with the first operand after the current operand which uses this virtual
register, if it exists.

- The first value use flag. This flag is true if the value in the virtual register will be used after the
current operand, otherwise it is false.

The first phase of the algorithm is:

PROCEDURE compute_next_uses
FOR all virtual registers v DO

IF a STORE_R node exists for v THEN
first_use [v] := 1
first_value_use [v] := TRUE

ELSE
first_use [v] := 0
first_value_use [v] := FALSE

instruction_number := 2
FOR all instructions i from the last instruction to the first instruction of

this basic block DO
FOR all operands p of instruction i from the last operand to the first

operand DO
IF p uses virtual register v THEN

next_use [p] := first_use [v]
value_use [p] := first_value_use [v]
first_use [v] := instruction_number
first_value_use [v] := TRUE

ELSE IF p defines virtual register v THEN
next_use [p] := first_use [v]
value_use [p] := first_value_use [v]
IF v is a parameter register THEN

first_use [v] := instruction_number
ELSE

first_use [v] := 0
first_value_use [v] := FALSE

instruction_number := instruction_number + 1
END

During the second phase of the algorithm the real registers are allocated, instructions to store real registers
in memory and to load real registers from memory are inserted, and the virtual registers are replaced by real
registers.



85

To do this the operands are divided into three classes:
- Operands which use a virtual register, i.e. operands which use the value of the virtual register to

compute the result, but don't change the value of the virtual register. For example the first operand
of an ADD D1,D0  instruction.

- Operands which define a virtual register, i.e. operands which do not use the value of the virtual
register to compute the result, but store the result (or part of the result) in this virtual register. For
example the second operand of a MOVE to D0 instruction.

- Operand which use and define a virtual register, i.e. operands which use the value of the virtual
register to compute the result, and may change the value of the virtual register. For example the
second operand of an ADD D1,D0  instruction.

The second phase of the algorithm is:

PROCEDURE allocate_registers
FOR all virtual registers v DO

real_register [v] := NO_REGISTER
FOR all real registers r DO

virtual_reg [r] := NO_REGISTER
reg_changed [r] := FALSE
real_first_use [r] := 0

FOR all parameter registers v DO
IF first_value_use [v] THEN

real_register [v] := v
virtual_reg [v] := v
real_first_use [v] := first_use [v]

FOR all instructions i from the first instruction to the last instruction of
this basic block DO

pset := all operands p of instruction i using registers
IF pset is empty THEN

/* instruction i has no operands using registers, do nothing */
ELSE IF pset contains one operand p using virtual register v THEN

/* get real register which has been allocated for v */
real_reg := real_register [v]
/* no real register allocated ? */
IF real_reg = NO_REGISTER THEN

/* allocate a real register */
IF v is a parameter register THEN

real_reg := v
ELSE

real_reg := real register r of the same sort as v for
which real_first_use [r] is minimal

/* free this allocated register */
old_reg = virtual_reg [real_reg]
IF old_reg <> NO_REGISTER THEN

IF first_value_use [old_reg] THEN
IF reg_changed [real_reg] OR old_reg has never

been stored THEN
store register old_reg

real_register [old_reg] := NO_REGISTER

virtual_reg [real_reg] := v
real_register [v] := real_reg

/* load the real register if necessary */
IF p uses virtual register v OR p uses and defines virtual

register v THEN
load register real_reg
reg_changed [real_reg] := FALSE

first_use [v] := next_use [p]
first_value_use [v] := value_use [p]
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real_first_use [real_reg] :=
MAX (first_use [real_reg],first_use [v])

IF p defines virtual register v OR p uses and defines virtual
register v THEN

reg_changed [real_reg] := TRUE

/* replace virtual register of operand by real register */
replace register v of operand p by real_reg

ELSE
similar to when pset contains one element, but more complex
because all virtual registers used by operands in pset have to be
in real registers at the same time

END

If an instruction has more than one operand which uses registers, we can not simply allocate the real
registers one by one. If for example real registers have to be allocated for an ADD D10,D3  instruction and
virtual register D10 has been allocated to register D3 before this ADD instruction, then for the first operand
real register D3 would be allocated, but for the second operand D3 would also be allocated and an
instruction would be generated to store the value of virtual register D10 from real register D3 in memory,
then an instruction would be generated to load the value of virtual register D3 in real register D3 from
memory and then an ADD D3,D3  instruction would be generated, which would compute D3+D3 instead of
D10+D3.

To prevent this, a parameter register used by an operand of the instruction or a real register which has
already been allocated for a parameter register used by an operand of this instruction is never allocated for a
non parameter register. Then for the example of the ADD D10,D3  instruction, for the first operand register
D3 may not be allocated, so  another register is allocated, for example D4, and a MOVE D3,D4  instruction is
generated, then D3 is allocated for the second operand and an instruction is generated which loads the value
of virtual register D3 from memory into real register D3 and then an ADD D4,D3  instruction is generated.

Note that because for virtual parameter registers always the real register of the same sort and with the same
number as the virtual register is allocated, this register allocation algorithm does not have to executed if all
virtual registers used by a basic block are parameter registers, which happens very often, but only have to
replace the virtual registers by the real registers of the same sort and with the same number.

6 . 6 . 3 . Preserving condition codes during local register allocation.

Many load, store and register to register move instructions inserted in the code during local register
allocation change the condition codes of the MC68020, so that sometimes the code will not be correct.
Therefore different instructions are generated for loads, stores and register to register moves if the condition
codes may not be altered:

- For a load a MOVE or MOVEA instruction is generated. If the destination of the move instruction is an
address register (MOVEA), the condition codes are not affected, so we don't have to use an other
instruction. But if the destination of the move instructions is a data register (MOVE), the condition
codes are effected. Therefore a MOVEM to this data register is generated instead, which is slower than
a MOVE, but doesn't affect the condition codes.

- For a store a MOVE instruction is generated, which always affects the condition codes. Therefore a
MOVEM instruction is used instead, which is slower than a MOVE, but doesn't affect the condition
codes.

- For a register to register move a MOVE or MOVEA instruction is generated. If the destination of the
move is an address register (MOVEA), the condition codes are not affected, so we don't have to use
an other instruction. But if the destination is a data register (MOVE), the condition codes are affected.
Therefore an EXG instruction is generated instead, which doesn't affect the condition codes.
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6 .7 . Optimizing stack accesses.

We have represented accesses to the stack using LOAD, FLOAD, STORE and FSTORE nodes in the dag.
These nodes represent an element on a stack by a displacement and a stackpointer, so that the address of the
stack element is the sum of this displacement and the address in this stackpointer at the beginning of the
basic block. And from these nodes we have generated code which accesses the stack elements using an
address register indirect with displacement addressing mode. (also called indirect with displacement
addressing mode for short)

But  the MC68020 has two addressing modes to push and pop elements on and off a stack, i.e. the address
register indirect with postincrement and address register indirect with predecrement addressing modes.
Addressing stack elements using these addressing modes is usually more efficient than addressing stack
elements using the address register indirect with displacement addressing mode, because:

- Using an indirect with displacement addressing mode instead of a postincrement or predecrement
addressing mode makes the machine code of an instruction one word longer, because the
displacement is one word long and is part of the instruction. (see section 2.3.7 or appendix B)

- The indirect with displacement addressing mode is usually a bit slower than the predecrement
addressing mode and as fast as the postincrement addressing mode, when executing from the cache.
But if the instruction is not in the cache, the address register with displacement addressing mode
will usually be slower, because the machine code of the instruction is longer, and so it may take
more time to fetch the instruction from memory.

- If the indirect with displacement addressing mode is used, usually a constant has to be added to a
stackpointer at the end of the basic block to adjust it, but if the postincrement and predecrement
addressing modes are used, this is often not necessary.

If the displacement of the indirect with displacement addressing mode is zero, the address register indirect
addressing mode can better be used, because this addressing mode is usually faster and uses less memory.

All A and B-stack elements are accessed using an address register indirect with displacement addressing
mode, where the address register is the A or B-stackpointer. The A and B-stackpointers are never changed
in a basic block, but only at the end eventually a constant is added to them. This makes optimizing these
accesses to address register indirect, postincrement and predecrement addressing modes very easy.

For all A and B-stack accesses, except the last A or B-stack access of a basic block, the following
optimizations are performed:

- If the displacement of the stack access is zero and the size of the element which is accessed by this
stack access is equal to the displacement of the next stack access, then the addressing mode of this
stack access is changed to a postincrement addressing mode. Then for the next stack access an
indirect or a postincrement addressing mode can be used.

- If the displacement of the stack access is zero and the size of the element which is accessed by this
stack access - the size of the element which is accessed by the next stack access is equal to the
displacement of the next stack access and not zero, then the addressing mode is changed to a
postincrement addressing mode. Then for the next stack access a predecrement addressing mode
can be used.

- If the displacement of the stack access is equal to 0 - the size of the element which is accessed by
this stack access and the displacement of the next stack access is not zero, then the addressing mode
of this stack access is changed to a predecrement addressing mode.
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And for the last A and B-stack accesses of a basic block the following optimizations are performed:

- If the displacement of the stack access is zero and the size of the element which is accessed by this
stack access is equal to the constant which has to be added to the stackpointer at the end of the basic
block, then the addressing mode of this stack access is changed to a postincrement addressing
mode.

- If the displacement of the stack access is equal to 0 - the size of the element which is accessed by
this stack access and the constant which has to be added to the stackpointer at the end of the basic
block is not zero, then the addressing mode of this stack access is changed to a predecrement
addressing mode.

If the addressing mode of a stack access is changed to a postincrement addressing mode, the size of the
element which is accessed by this stack access has to be subtracted from the displacements of all the
following stack accesses and from the constant which has to be added to the stackpointer at the end of the
basic block. And if the addressing mode of a stack access is changed to a predecrement addressing mode,
the size of the element which is accessed by this stack access has to be added to the displacements of all the
following stack accesses and to the constant which has to be added to the stackpointer at the end of the
basic block.

If the constant, which has to be added to a stackpointer at the end of the basic block is zero, then of course
no add instruction is necessary to adjust the stackpointer. The stack accesses using an address register
indirect with displacement addressing mode for which the displacement is zero are optimized to an address
register indirect addressing mode (without displacement) when generating MC68020 machine code from
the intermediate code. (see section 6.10)

Examples of stack access optimizations can be found in appendix A, for example A.1.6 and A.1.7.

The stack access optimizations described above only look one stack access ahead, by looking more stack
accesses ahead sometimes better results can be obtained. For example the basic block: (all the examples
below are of intermediate code, except that address register indirect with displacement addressing modes
for which the displacement is zero are optimized to address register indirect addressing modes)

MOVE (BSP),D0
ADD 4(BSP),D0
MOVE D0,-4(BSP)
SUB #4,BSP

would be optimized to:

MOVE (BSP)+,D0
MOVE (BSP),D0
MOVE D0,-8(BSP)
SUB #8,BSP

but could better have been optimized to:

MOVE (BSP),D0
MOVE 4(BSP),D0
MOVE D0,-(BSP)

The constant which has to be added to a stackpointer is currently always added (or subtracted) at the end of
the basic block, but sometimes it is more efficient to do this sooner. For example the basic block:

MOVE 8(BSP),D0
ADD #8,BSP

could be optimized, by moving the addition to the stackpointer, to:

ADD #8,BSP
MOVE (BSP),D0
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Also the stack accesses can sometimes be made more efficient by changing the order of a few instructions.
For example the basic block:

MOVE 4(BSP),D0
MOVE (BSP),D1
ADD #8,BSP

would be optimized to:

MOVE 4(BSP),D0
MOVE (BSP),D1
ADDQ.L #8,BSP

but could better have been optimized, by changing the order of the first two instructions, to:

MOVE.L (BSP)+,D1
MOVE.L (BSP)+,D0

6 .8 . Optimizing jumps.

To optimize branches and jumps as described in section 5.1.2, the code generator searches for three
successive basic blocks A, B and C, for which the following conditions are true:
- Basic block B consist of just one JMP instruction to a label within this module.
- Basic block B is not labeled by a label.
- Basic block A has as last instruction a branch instruction (BEQ, BGE, BGT, BLE, BLT, BNE, FBEQ,

FBGE, FBGT, FBLE, FBLT or FBNE) which branches to a label which labels basic block C.

If such a basic block is found, the branch instruction is changed to a branch instruction with the reverse
condition code (i.e. EQ -> NE, GE -> LT, GT -> LE, LE -> GT, LT -> GE and NE -> EQ) and with as operand
the label which is the operand of the JMP instruction, and the JMP instruction is removed.

For example: (basic block 6,7 and 8 of appendix A.1.7 and A.1.8)

Basic block A:
sFac.1: CMP #0,D0

BEQ m.2

Basic block B:
JMP sFac.2

Basic block C:
m.2: MOVE #1,D0

RTS

is optimized to:

Basic block A:
sFac.1: CMP #0,D0

BNE sFac.2

Basic block B:

Basic block C:
m.2: MOVE #1,D0

RTS
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6 .9 . Calling the garbage collector.

If space has to be allocated in the heap for new nodes or arguments, this can be done by subtracting the
number of long words, which have to be allocated, from FC and calling the garbage collector if FC
becomes less than zero. But in section 5.1.1 we saw this can be done faster by allocating space in the heap
for more nodes at once. This has been implemented by allocating space in the heap for all nodes which are
created of filled in the basic block at once at the beginning of the basic block.

The number of long words which is allocated in the heap by a create or fill instruction is a constant. So the
number of long words which are allocated by all the create and fill instructions of a basic block is a constant
as well.

But the add_args  instruction allocates a number of long words which is not a constant. Therefore we
allocate the maximum number of long words which an add_args  instruction would allocate. Then the
number of long words to be allocated by a basic block is always a constant.

This number of long words to be allocated can be computed by calculating the sum of the number of long
words which the CREATE and ALLOCATE nodes in the dag of this basic block allocate.

Then for every basic block for which the number of long words is not zero, the following code is generated
at the start of the basic block:

SUB.L #number_of_long_words,FC
BMI jmp_gc_1

continue_from_gc_1:

and at the end of this module:

jump_gc_1:
JSR collect_n
BRA continue_from_gc_1

If the number of long words to be subtracted from FC is less than 8, a SUBQ.L instruction is used.
Otherwise if the number of long words to be allocated is less than 128 and a data register is available, the
number of long words is first moved to a free data register Dn using MOVEQ and then subtracted using a SUB
Dn,FC . Otherwise a SUB.L #number_of_long_words,FC  instruction is used.

The garbage collector has to be able to find all pointers to nodes in the graph including the ones in address
registers. Because after global register allocation we know which address registers contain elements of the
A-stack, and because all elements of the A-stack contain pointers to nodes, we know that the address
registers which contain A-stack elements are the only registers containing pointers to nodes. At the start of a
basic block there are only four possible address register allocations: no address registers used, A0 used, A0
and A1 used, and A0, A1 and A2 used. By making an entry in the garbage collector for each of these four
allocations, the garbage collector can be called by  just a JSR instruction.

Maybe you wonder why the garbage collector is not called by:

SUB.L #number_of_long_words,FC
BPL.S continue_from_gc_1
JSR collect_n

continue_from_gc_1:

The reason is that this instruction sequence is longer than the part of the other  instruction sequence which
has to be stored at the start of a basic block. This would probably result in a less efficient use of the
instruction cache of the MC68020, because the JSR collect_n  instruction would sometimes be stored in
the cache, but will usually not be executed.
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6.10. Generating MC68020 code from the intermediate code.

After local register allocation (and also after optimizing stack accesses) the intermediate code is very similar
to MC68020 code. Nearly all instructions of the intermediate code can be translated directly to an MC68020
instruction, except:

- The SEQ, SGE, SGT, SLE, SLT, SNE, FSEQ, FSGE, FSGT, FSLE, FSLT and FSNE compute a long word,
but the Scc instructions of the MC68020 compute a byte, therefore an extra EXTB.L  instruction is
necessary to sign-extend the byte to a long word.

- The BMOVE instruction moves a block of long words. But the MC68020 doesn't have a block move
instruction, therefore the block move is performed using a loop. For example a:

BMOVE (A0)+,(A1)+,D0

instruction is translated to:

BRA.S label_1
label_2:

MOVE.L (A0)+,(A1)+
label_1:

DBRA D0,label_2

While generating this code, the following simple optimizations are performed: (most of these optimizations
can be performed by assemblers, but because object code (see appendix E) is generated by this code
generator, the code generator has to do these optimizations)

- An address register indirect with displacement addressing mode of which the displacement is zero is
optimized to an address register indirect addressing mode. (without displacement).

- MOVE.L #i,Dn  for which -128 ≤ i  ≤ 127 is optimized to MOVEQ #i,Dn .
- ADD.L #i,Rn  (Rn is Dn or An) for which 1 ≤ i  ≤ 8 is optimized to ADDQ.L #i,Rn .
- ADD.L #i,Rn  for which -8 ≤ i  ≤ -1 is optimized to SUBQ.L #-i,Rn .
- ADD.L #i,An  for which -32768 ≤ i   ≤ 32767  is optimized to LEA i(An),An . (except for -8 ≤ i  ≤

-1 or 1 ≤ i  ≤ 8)
- SUB.L #i,Rn  for which 1 ≤ i  ≤8 is optimized to SUBQ.L #i,Rn .
- SUB.L #i,Rn  for which -8 ≤ i  ≤-1 is optimized to ADDQ.L #-i,Rn .
- SUB.L #i,An  for which -32767 ≤ i  ≤ 32768 is optimized to LEA -i(An),An . (except for -8 ≤ i  ≤

-1 or 1 ≤ i  ≤ 8)
- CMP.L #0,<ea>  or CMP.W #0,<ea>  is optimized to TST.L <ea>  or TST.W <ea> , except if <ea>  is

address register direct.
- MOVE.L #0,<ea>  is optimized to CLR.L <ea> , except if <ea>  is data register direct or address

register direct.
- JMP label  for which the label  is in the same module as the JMP is optimized to BRA label .
- JSR label  for which the label  is in the same module as the JSR is optimized to BSR label .
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7 . Evaluation.

In this chapter I will first describe which optimizations have been implemented and how the code generator
can be improved further. Then this code generator is compared to the previous code generator, to determine
by how much the generated code has been improved by the implemented optimizations.

7 .1 . Implemented optimizations.

By generating code as described in section 6 the following optimizations have been implemented:

- Use of registers within basic blocks is usually good, but can be improved further. (see 7.2)

- Parameters and results of functions are passed in registers. (see 5.2.2)

- The evaluation order determined by the labeling algorithm results in better use of registers, because
fewer registers are used, and making fewer copies. (see 5.2.5)

- The jsr_eval  optimization described in section 5.2.6 has been implemented.

- Nearly all create s of nodes are changed into a create and fill at once (see 5.1.1). The most
important exception is a create  in the following situation.
If the result of a function is a node, the code generated by the Clean compiler for this function
returns this node by overwriting a node. If such a function is called, and there is no node which can
be overwritten, a node is created. Such creates are never optimized to a create and fill at once by the
code generator.

- Unnecessary copies and stack manipulations are eliminated within basic blocks. (see 5.2.3) These
are automatically eliminated by constructing a dag for a basic block.

- Optimization of booleans as described in section 5.2.3 is always performed.

- Jump optimization as described in section 5.1.2 is always performed.

- All MC68020 specific code optimizations described in 5.3 are performed.

- All the space which has to be allocated in the heap for a basic block is allocated at once (see 5.1.1).

7 .2 . Possible improvements.

The code generated by the code generator can be further improved in the following ways:

- If a value is computed by a basic block, and this value has to be stored in a register at the end of the
basic block, the value is not always computed in this register by the code generated by this code
generator. But the value is computed in an other register, so that an extra move instruction is
necessary. By computing the value in the required register, this move can be removed.

- Allocating floating point registers of the MC68881 coprocessor at the beginnings and ends of basic
blocks for floating point numbers. And passing floating point arguments and results of functions in
these registers.

- The code for a fill_a  instruction can be improved, by not first loading the fixed size part of the
node to be copied in registers.
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- Performing in-line code substitution for small functions (see 5.1.8). But this can better be done by
the Clean compiler.

- Improving global register allocation.

- Removing unused stack elements from the stack, if such a value is stored in a register and a function
is called using jsr , so that it doesn't have to be saved before the function call. (see 5.19) Often this
save is necessary because an unnecessary copy is made. (see 5.2.3)

- Extending the local register allocator, so that it can save address registers in free data registers
instead of in memory if enough data registers are available, and can save data registers in address
registers.

- Implementing strength reductions (see 5.1.3).

- Implementing constant folding (see 5.1.4).

- Improving the optimizations of stack accesses. (see 6.7)

- Implementing algebraic optimizations. (see 5.1.5)

- Implementing common subexpression elimination. (see 5.1.6)

- Removing unused code. (see 5.1.7)

Other possible improvements are:

- Making the representation of nodes in the heap smaller. For example by combining the evaluation
address and the descriptor so that these can be stored in one long word (and not two). Or by using
special representations for integers and lists. Then nodes can be created faster, and the garbage
collector has to be called less often.

- Implementing a garbage collector which doesn't need half the heap as workspace. So that we can
use the whole heap to store nodes, and not only half of it.

7 .3 . Comparing this code generator with the previous code generator.

Before I started to design and implement this code generator, a code generator [Weijers 1990] which
translated ABC code to MC68020 code already existed. But this compiler generated code for the Sun
instead of for the Mac II, and the code generated by this compiler was often not very efficient. This
compiler generated for every instruction ABC instruction a fixed sequence of MC68020 instructions (a kind
of macro substitution), but with the following optimizations:

- The top element of the B-stack is often stored in a data register or, if the top element is a boolean, in
the condition codes of the MC68020.

- The code generator could detect some cases, but not as many as my code generator, in which it is
not necessary to initialize a node when a node is created, because it would be filled before a garbage
collection could occur. For example, for the instruction sequence: create , fillI +1 0 the node is
not initialized by the create  instruction.

- Conditional jumps followed by a (unconditional) jump (e.g. jmp_false label_1 , jmp label_2 ,
label_1: ) are optimized to one conditional jump, just like my compiler does.
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To determine how much more efficient my code generator is, I have compared it to this 'old' code generator
for the Sun. To do this, I have used some of the benchmarks and execution times of these benchmarks of
the 'old' code generator on the Sun described in [Heerink 1990].

To determine how much faster the Sun is than the Mac II, the code generated by my code generator for the
nfib, tak and r_plus benchmarks was executed on both the Sun and the Mac II. The nfib benchmark was
executed 1.67 times as fast (execution time on the Mac II / execution time on the Sun) on the Sun, the tak
benchmark 1.63 times as fast and the r_plus benchmark only 1.09 times as fast. I also executed a simple
loop, which was executed 1.56 times as fast, and a loop with two MOVE.L (A0),(A1)  instructions, which
was executed 1.92 times as fast.

To compare my code generator to the old code generator, I have assumed the Sun is 1.65 times as fast for
programs not using reals. The results for nfib and tak will then be accurate, but of course the results
obtained in this way for the other benchmarks are not accurate, because the benchmarks were executed
between 1.56 and 1.92 times as fast.

Because on both machines computations on reals are not performed by the MC68020, but by the MC68881
coprocessor, I have assumed the Sun is 1.09 times as fast for programs using reals, (r_plus and r_verm)
because the r_plus benchmark was executed only 1.09 times as fast. The results for r_plus will then be
accurate, but the results obtained in this way for r_verm will not be accurate.

In the following table the execution times of the benchmarks (first two columns), the execution time of the
old code on the Mac II (third column), and the speed up factor (last column) are given for the benchmarks.
(assuming the Sun is 1.65 or 1.09 times as fast) The execution times are including the time for garbage
collections and for a heap size of two mega bytes. (two semi-spaces of one mega byte)

benchmark: execution time (s)
Mac II
my code

execution time (s)
Sun
'old' code

execution time (s)
Sun * (1.65 | 1.09)
' old' code

speed up factor
'old' code / new
code

nfib 0.81 0.66 1.1 1.3
tak 0.22 0.26 0.4 1.9
i_plus 0.39 0.68 1.1 2.9
i_verm 1.79 1.36 2.2 1.3
r_plus 3.02 5.42 5.9 2.0
r_verm 2.74 4.17 4.6 1.7
spine 2.19 2.70 4.5 2.0
twice 2.21 2.46 4.1 1.8
match 12.8 9.89 16 1.3
reverse 10.5 9.38 16 1.5
nfiblist 2.43 1.66 2.7 1.1

From these results we can conclude:

- Computations on strict basic values are a lot faster. Specially for simple operations like adding and
subtracting, because i_plus (integer additions and subtractions) is executed about 2.9 times as fast
and r_plus (real additions and subtractions) is executed 1.9 times as fast. For more complex
operations like multiplying and dividing the improvement is smaller, but still i_verm (integer
multiplications and divisions) is about 1.3 times as fast and r_verm (real additions and subtractions)
is about 1.7 times as fast. The reasons for the faster execution of these benchmarks are that values
are kept in registers during the computations and integer parameters are passed in registers.

- Parameter passing of strict arguments is faster, because tak is 1.9 times as fast, and nfib is 1.3 times
as fast. This is largely because now parameters are passed and stored in registers.

- Curried function applications are executed faster, because spine is executed 2.0 times as fast and
twice is executed 1.8 times as fast. But this is largely due to writing the code for AP in assembly,
instead of generating this code with the code generator, and by using a better parameter passing
convention for apply entries of functions. But also because of the jsr_eval  optimization described
in section 5.2.6 and passing parameters in registers.
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- Functions which manipulate lists are a bit faster, because reverse is about 1.5 times as fast and
nfiblist is about 1.1 times as fast. Reverse is faster largely due to the jsr_eval  optimization
described in section 5.2.6 and better use of registers. Nfiblist is not much faster, because many
nodes are created and filled by this benchmark.

- Pattern matching on non strict arguments is faster, because match is executed about 1.3 times as
fast. This is because parameters are passed in registers and the jsr_eval  optimization described in
section 5.2.6.

So, briefly we can conclude that computations on strict arguments and basic values (integers, reals, etc.)
are done a lot faster (about 1.3 - 2.9 times as fast) by the code generated by my code generator, but that
computations on non strict arguments are only a bit faster (about 1.1 - 1.5 times as fast). Curried function
applications are also executed a lot faster (about 1.8 - 2.0 times as fast), but not so much due to better code
generation techniques.
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APPENDIX A: Examples.

A.1 . Fac.

A . 1 . 1 . Fac in Clean.

Fac 0 -> 1 |
Fac n -> *I n (Fac (--I n)) ;

A . 1 . 2 . ABC code of fac.

.o 3 0
lFac: || apply entry : 'Fac' node, argument n

node and node to be overwritten by
result on the A-stack

pop_a 1 || pop 'Fac' node from the A-stack
jmp m.1 || jump to label m1
.o 1 0

nFac: || node entry : 'Fac n' node on the A-
stack

push_args 0 1 1 || push argument n on the A-stack
m.1:

set_entry _cycle_in_spine 1 || store _cycle_in_spine as evaluation
address to detect cycles in the spine
of the graph

jsr_eval || evaluate argument n
pushI_a 0 || push argument n on the B-stack
pop_a 1 || pop node of argument n from the A-stack
.d 0 1 i
jsr sFac.1 || call strict entry of Fac to compute

result on the B-stack
.o 0 1 i
fillI_b 0 0 || fill the result node with the integer

result on the B-stack
pop_b 1 || pop the integer result from the B-stack
.d 1 0
rtn || return
.o 0 1 i

sFac.1: || strict entry : argument n (evaluated)
on the B-stack

eqI_b +0 0 || n equal 0 ?
jmp_true m.2 || yes, jump to label m.2
jmp sFac.2 || no, jump to label sFac.2

m.2:
pop_b 1 || pop argument n from the B-stack
pushI +1 || push 1 (result) on the B-stack
.d 0 1 i
rtn || return

sFac.2:
push_b 0 || push argument n on the B-stack
decI || subtract 1 from copy of n on the B-

stack
.d 0 1 i
jsr sFac.1 || call strict entry of fac with argument

n-1 on the B-stack to compute Fac (--I
n)

.o 0 1 i
push_b 1 || push argument n on the B-stack
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update_b 1 2 || reorganize the B-stack
update_b 0 1
pop_b 1
mulI || compute *I n (Fac (--I n))
.d 0 1 i
rtn || return

A . 1 . 3 . Basic blocks of the ABC code of fac.

Basic block 1:
.o 3 0

lFac: pop_a 1
jmp m.1

Basic block 2:
.o 1 0

nFac: push_args 0 1 1

Basic block 3:
m.1: set_entry _cycle_in_spine 1

jsr_eval

Basic block 4:
pushI_a 0
pop_a 1
.d 0 1 i
jsr sFac.1

Basic block 5:
.o 0 1 i
fillI_b 0 0
pop_b 1
.d 1 0
rtn

Basic block 6:
.o 0 1 i

sFac.1: eqI_b +0 0
jmp_true m.2

Basic block 7:
jmp sFac.2

Basic block 8:
m.2: pop_b 1

pushI +1
.d 0 1 i
rtn

Basic block 9:
sFac.2:

push_b 0
decI
.d 0 1 i
jsr sFac.1

Basic block 10:
.o 0 1 i
push_b 1
update_b 1 2
update_b 0 1
pop_b 1
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mulI
.d 0 1 i
rtn

A . 1 . 4 . Dag representation and global register allocation of fac.

Basic block 1:
lFac: || registers A0-A2 allocated

a

STORE_R A1 STORE_R

A0REGISTER A1 REGISTER

A0

|| registers A0-A1 allocated
jmp m.1

Basic block 2:
nFac: || register A0 allocated

a

STORE_R A1 STORE_R A0

LOAD_ID 8

A0REGISTER

|| registers A0-A1 allocated

Basic block 3:
m.1: || registers A0-A1 allocated

a

STORE_R A1

FILL

A0REGISTER

_cycle_in_spineLEA

REGISTER A1

STORE_R A0

|| registers A0-A1 allocated
jsr_eval

Basic block 4:
|| registers A0-A1 allocated

a

-4 ASPSTORE_R D0

LOAD_ID 8

A1REGISTER

STORE

REGISTER A0
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|| register D0 allocated, add -4 to A-
stackpointer at end of basic block

jsr sFac.1

Basic block 5:
|| register D0 allocated

a

STORE_R A0

FILL

LOAD 0 ASP D0REGISTER

LOAD_DES_I INT 0

LOAD_I 0

|| register A0 allocated, add 4 to A-
stackpointer at end of basic block

rtn

Basic block 6:
sFac.1: || register D0 allocated

a

STORE_R D0

D0REGISTER

CMP_EQ

LOAD_I 0

|| register D0 allocated
jmp_true m.2

Basic block 7:
|| register D0 allocated

jmp sFac.2

Basic block 8:
m.2: || register D0 allocated

a

STORE_R D0

LOAD_I 1

|| register D0 allocated
rtn

Basic block 9:
sFac.2: || register D0 allocated
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a

STORE_R D0

D0REGISTER

STORE 0 BSP

SUB

LOAD_I 1

|| register D0 allocated, add 4 to B-
stackpointer at end of basic block

jsr sFac.1

Basic block 10:
|| register D0 allocated

a

LOAD -4

STORE_R D0

MUL

D0REGISTER

BSP

|| register D0 allocated, add -4 to B-
stackpointer at end of basic block

rtn

A . 1 . 5 . Dag representation of fac after computing the increases and uses of the number
of registers and global register allocation.

In the boxes to the right of the box containing the name of the node 4 numbers are given:
- The number above left is the (additional) number of address registers which are used when the cdag

with as root this node is evaluated.
- The number above right is the (additional) number of data registers which are used when the cdag

with as root this node is evaluated.
- The number below left is the increase in the number of used address registers when the cdag with as

root this node is evaluated.
- The number below right is the increase in the number of used data registers when the cdag with as

root this node is evaluated.

The result of a node can be evaluated in a data register, address register or in memory. Evaluating in
memory is evaluating so that the value can be accessed using an address register indirect, postincrement,
predecrement or immediate addressing mode. In the graphs below this is indicated by a D (data register), A
(address register) or M (memory) near the arrow. Such a D, A or M can be followed by a + to indicate that
the register may be released after the value has been accessed. For an M+ this means that an address
register may be released after the value has been accessed. This may happen if  the memory location is
accessed with an address register indirect, postincrement or predecrement addressing mode.

Basic block 1:
lFac: || registers A0-A2 allocated
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a

STORE_R A1 STORE_R

A0REGISTER A1 REGISTER

A00 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

A+ A+

|| registers A0-A1 allocated
jmp m.1

Basic block 2:
nFac: || register A0 allocated

a

STORE_R A1 STORE_R A0

LOAD_ID 8

A0REGISTER 0 0
0 0

1 0
1 0

0 0
0 0

1 0
1 0

A

A

M

|| registers A0-A1 allocated

Basic block 3:
m.1: || registers A0-A1 allocated

a

STORE_R A1

FILL

A0REGISTER

_cycle_in_spineLEA

REGISTER A1

0 0
0 0

1 0
1 0

0 0
0 0 A+

A+

1 1
-1 1

D+A+

0 0
0 0

STORE_R A01 1
0 0

|| registers A0-A1 allocated
jsr_eval

Basic block 4:
|| registers A0-A1 allocated

a

-4 ASPSTORE_R D0

LOAD_ID 8

A1REGISTER

STORE

0 0
0 0

0 0
-1 0

A+

M+

0 0
0 0

0 1
-1 1

A0REGISTER 0 0
0 0

A+

|| register D0 allocated, add -4 to A-
stackpointer at end of basic block

jsr sFac.1

Basic block 5:
|| register D0 allocated
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a

STORE_R A0

FILL

LOAD 0 ASP D0REGISTER

LOAD_DES_I INT 0

0 0
0 0

D+

0 0
0 0

M

M
0 0
0 0

M

1 1
0 0

D+

1 1
1 -1

LOAD_I 00 0
0 0

|| register A0 allocated, add 4 to A-
stackpointer at end of basic block

rtn

Basic block 6:
sFac.1: || register D0 allocated

a

STORE_R D0

D0REGISTER

CMP_EQ

LOAD_I 0

M

D+

0 0
0 0

D
D

0 0
0 0

0 1
0 1

0 1
0 1

|| register D0 allocated
jmp_true m.2

Basic block 7:
|| register D0 allocated

jmp sFac.2

Basic block 8:
m.2: || register D0 allocated

a

STORE_R D0

LOAD_I 10 0
0 0

M

0 1
0 1

|| register D0 allocated
rtn

Basic block 9:
sFac.2: || register D0 allocated

a

STORE_R D0

D0REGISTER

STORE 0 BSP

SUB

LOAD_I 10 0
0 0

M

0 0
0 0

D D

0 0
0 0

0 1
0 1

D+

0 1
0 1
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|| register D0 allocated, add 4 to B-
stackpointer at end of basic block

jsr sFac.1

Basic block 10:
|| register D0 allocated

a

LOAD -4

STORE_R D0

MUL

D0REGISTER

BSP

0 0
0 0

D+

0 0
0 0

M

0 0
0 0

D+

0 0
0 0

|| register D0 allocated, add -4 to B-
stackpointer at end of basic block

rtn

A . 1 . 6 . Intermediate code of fac generated from the dag.

Basic block 1:
lFac: JMP m.1

Basic block 2:
nFac: MOVE 8(A0),A1

MOVE 0(A1),A1

Basic block 3:
m.1: LEA _cycle_in_spine,A2

MOVE A2,0(A0)
MOVE 0(A1),D6
BEQ eval_0
MOVE A0,-(A3)
MOVE A1,A0
MOVE D6,A1
JSR 0(A1)
MOVE A0,A1
MOVE (A3)+,A0

Basic block 4:
eval_0: MOVE A0,-4(A3)

MOVE 8(A1),D0
ADD #-4,A3
JSR sFac.1

Basic block 5:
MOVE 0(A3),A0
MOVE A0,D1
MOVE #0,(A0)+
MOVE #!INT+0,(A0)+
MOVE D0,0(A0)
MOVE D1,A0
ADD #4,A3
RTS
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Basic block 6:
sFac.1: CMP #0,D0

BEQ m.2

Basic block 7:
JMP sFac.2

Basic block 8:
m.2: MOVE #1,D0

RTS

Basic block 9:
sFac.2: MOVE D0,0(A4)

SUB #1,D0
ADD #4,A4
JSR sFac.1

Basic block 10:
MUL -4(A4),D0
SUB #4,A4
RTS

A . 1 . 7 . Intermediate code of fac after stack access optimization.

Basic block 1:
lFac: JMP m.1

Basic block 2:

nFac: MOVE 8(A0),A1
MOVE 0(A1),A1

Basic block 3:
m.1: LEA _cycle_in_spine,A2

MOVE A2,0(A0)
MOVE 0(A1),D6
BEQ eval_0
MOVE A0,-(A3)
MOVE A1,A0
MOVE D6,A1
JSR 0(A1)
MOVE A0,A1
MOVE (A3)+,A0

Basic block 4:
eval_0: MOVE A0,-(A3)

MOVE 8(A1),D0
JSR sFac.1

Basic block 5:
MOVE (A3)+,A0
MOVE A0,D1
MOVE #0,(A0)+
MOVE #!INT+0,(A0)+
MOVE D0,0(A0)
MOVE D1,A0
RTS

Basic block 6:
sFac.1: CMP #0,D0

BEQ m.2
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Basic block 7:
JMP sFac.2

Basic block 8:
m.2: MOVE #1,D0

RTS

Basic block 9:
sFac.2: MOVE D0,(A4)+

SUB #1,D0
JSR sFac.1

Basic block 10:
MUL -(A4),D0
RTS

A . 1 . 8 . Intermediate code of fac after stack access optimization and jump optimization.

Basic block 1:
lFac: JMP m.1

Basic block 2:

nFac: MOVE 8(A0),A1
MOVE 0(A1),A1

Basic block 3:
m.1: LEA _cycle_in_spine,A2

MOVE A2,0(A0)
MOVE 0(A1),D6
BEQ eval_0
MOVE A0,-(A3)
MOVE A1,A0
MOVE D6,A1
JSR 0(A1)
MOVE A0,A1
MOVE (A3)+,A0

Basic block 4:
eval_0: MOVE A0,-(A3)

MOVE 8(A1),D0
JSR sFac.1

Basic block 5:
MOVE (A3)+,A0
MOVE A0,D1
MOVE #0,(A0)+
MOVE #!INT+0,(A0)+
MOVE D0,0(A0)
MOVE D1,A0
RTS

Basic block 6:
sFac.1: CMP #0,D0

BNE sFac.2

Basic block 7:

Basic block 8:
m.2: MOVE #1,D0
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RTS

Basic block 9:
sFac.2: MOVE D0,(A4)+

SUB #1,D0
JSR sFac.1

Basic block 10:
MUL -(A4),D0
RTS

A . 1 . 9 . MC68020 code of fac.

Basic block 1:

lFac: ; apply entry : 'Fac' node in register A2,
argument n node in register A1 and node
to be overwritten by result on the A-
stack in register A0

BRA m.1 ; jump to label m.1

Basic block 2:

nFac: ; node entry : 'Fac n' node in register A0
MOVEA.L 8(A0),A1 ; move pointer to argument part of node to

A1
MOVEA.L (A1),A1 ; move argument n to A1

Basic block 3:

m.1: LEA _cycle_in_spine,A2 ; load address of _cycle_in_spine code in
A2

MOVE.L A2,(A0) ; store _cycle_in_spine as evaluation
address to detect cycles in the spine of
the graph

MOVE.L (A1),D6 ; load reduction address of n
BEQ eval_0 ; branch if reduction address = _hnf (0)
MOVE.L A0,-(A3) ; save register A0
MOVEA.L A1,A0 ; move argument n node to A0
MOVEA.L D6,A1 ; move evaluation address of n to address

register
JSR (A1) ; evaluate argument n node
MOVEA.L A0,A1 ; move address of evaluated argument n

node to A1
MOVEA.L (A3)+,A0 ; load register A0

Basic block 4:

eval_0:
MOVE.L A0,-(A3) ; push node to be overwritten by result on

the A-stack
MOVE.L 8(A1),D0 ; load evaluated integer n in D0
BSR sFac.1 ; call strict entry of Fac to compute Fac

n in D0

Basic block 5:

MOVEA.L (A3)+,A0 ; load address of node to be overwritten
by result in A0

MOVE.L A0,D1 ; copy address of result node to D1
CLR.L (A0)+ ; overwrite node to store result, first

store evaluation address,
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MOVE.L #!INT+0,(A0)+ ; then the descriptor of an integer node,
MOVE.L D0,(A0) ; and finally the integer in D0 (the

result of Fac n)
MOVEA.L D1,A0 ; return the address of the result node in

A0
RTS ; return, with result in A0

Basic block 6:

sFac.1:
TST.L D0 ; n equal 0 ?
BNE sFac.2 ; no, jump to label sFac.s

Basic block 7:

Basic block 8:

m.2:
MOVEQ #1,D0 ; return 1 in D0
RTS ; return

Basic block 9:

sFac.2:
MOVE.L D0,(A4)+ ; push n on the B-stack
SUBQ.L #1,D0 ; subtract one from n in D0
BSR sFac.1 ; call strict entry of Fac to compute Fac

(--I n) in D0

Basic block 10:

MULS.L -(A4),D0 ; multiply result by n to compute Fac n
RTS ; return, with result in D0

A.2 . Append.

A . 2 . 1 . Append in Clean.

:: Append ![x] [x] -> [x] ;
Append [h | t] list -> [h | Append t list]  |
Append [] list -> list ;

A . 2 . 2 . ABC code of append.

.o 3 0
lAppend: || apply entry : 'Append l1' node, (l1 is

the first argument) argument list node
and node to be overwritten by result on
the A-stack

repl_args 1 1 || replace 'Append l1' node by l1 node on
the A-stack

jmp m.7 || jump to label m.7
.o 1 0

nAppend: || node entry: 'Append l1 list' node on
the A-stack.

push_args 0 2 2 || push arguments l1 and list of the
'Append l1 list' node on the A-stack
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m.7:
set_entry _cycle_in_spine 2 || overwrite evaluation address of the

node to be overwritten by result to
detects cycles in the spine of the
graph

jsr_eval || evaluate l1 node
.o 3 0

sAppend.1: || strict entry : evaluated l1 node, list
node and node to be overwritten by
result on the A-stack.

eq_desc _Cons 2 0 || test if l1 node is a Cons node
jmp_true m.8 || yet, jump to label m.8
jmp sAppend.2 || no, jump to label sAppend.2

m.8:
push_args 0 2 2 || push h(ead) and t(ail) of l1 node on

the A-stack
create || create an empty node
push_a 4 || fill the created empty node with

'Append t list'
push_a 3
fill Append 2 nAppend 2
push_a 1 || fill the node which has to be

overwritten by the
fill _Cons 2 _hnf 6 || result with a 'Cons h (Append t list)'

node
pop_a 4 || pop h, t, l1 and list from the stack
.d 1 0
rtn || return with 'Cons h (Append t list)'

node on the A-stack
sAppend.2:

eq_desc _Nil 0 0 || test if l1 node is a Nill node
jmp_true m.9 || yes, jump to label m.9
jmp sAppend.3 || no, jump to label sAppend.3

m.9:
pop_a 1 || pop l1 node from the A-stack
jsr_eval || evaluate list node
fill_a 0 1 || overwrite node to be overwritten by

result by evaluated list node
pop_a 1 || pop list node
.d 1 0
rtn || return with evaluated argument list on

the A-stack
sAppend.3:

print "Runtime Error: Rule Append of Module nfiblist does not
match\n"

halt

A . 2 . 3 . Basic blocks of the ABC code of append.

Basic block 1:
.o 3 0

lAppend: repl_args 1 1
jmp m.7

Basic block 2:
.o 1 0

nAppend:
push_args 0 2 2

Basic block 3:
m.7: set_entry _cycle_in_spine 2

jsr_eval
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Basic block 4:
.o 3 0

sAppend.1:
eq_desc _Cons 2 0
jmp_true m.8

Basic block 5:
jmp sAppend.2

Basic block 6:
m.8: push_args 0 2 2

create
push_a 4
push_a 3
fill Append 2 nAppend 2
push_a 1
fill _Cons 2 _hnf 6
pop_a 4
.d 1 0
rtn

Basic block 7:
sAppend.2:

eq_desc _Nil 0 0
jmp_true m.9

Basic block 8:
jmp sAppend.3

Basic block 9:
m.9: pop_a 1

jsr_eval
fill_a 0 1
pop_a 1
.d 1 0
rtn

Basic block 10:
sAppend.3:

print "Runtime Error: Rule Append of Module nfiblist
does not match\n"

Basic block 11:
halt

A . 2 . 4 . Intermediate code of append after stack access optimization and jump
optimization.

Basic block 1:
lAppend: MOVE 8(A2),A2

MOVE 0(A2),A2
JMP m.7

Basic block 2:
nAppend: MOVE 8(A0),A1

MOVE (A1)+,D0
MOVE 0(A1),D1
MOVE D1,A1
MOVE D0,A2

Basic block 3:
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m.7: MOVE A1,0(A4)
LEA _cycle_in_spine,A1
MOVE A1,(A0)
MOVE 0(A4),A1
MOVE 0(A2),D6
BEQ eval_3
MOVE A1,-(A3)
MOVE A0,-(A3)
MOVE A2,A0
MOVE D6,A1
JSR 0(A1)
MOVE A0,A2
MOVE (A3)+,A0
MOVE (A3)+,A1

Basic block 4:
sAppend.1:
eval_3: CMPW #!_Cons+2,6(A2)

BNE sAppend.2

Basic block 5:
m.8: MOVE 8(A2),A2

MOVE (A2)+,D0
MOVE 0(A2),D1
MOVE A6,D2
MOVE D1,(A6)+
MOVE A1,(A6)+
LEA nAppend,A1
MOVE A6,D1
MOVE A1,(A6)+
MOVE #!Append+2,(A6)+
MOVE D2,(A6)+
MOVE A6,D2
MOVE D0,(A6)+
MOVE D1,(A6)+
MOVE A0,D0
MOVE #0,(A0)+
MOVE #!_Cons+2,(A0)+
MOVE D2,0(A0)
MOVE D0,A0
RTS

Basic block 6:
sAppend.2: CMPW #!_Nil+0,6(A2)

BNE sAppend.3

Basic block 7:
m.9: MOVE 0(A1),D6

BEQ eval_4
MOVE A0,-(A3)
MOVE A1,A0
MOVE D6,A1
JSR 0(A1)
MOVE A0,A1
MOVE (A3)+,A0

Basic block 8:
eval_4: MOVE (A1)+,D0

MOVE (A1)+,D1
MOVE 0(A1),D2
MOVE A0,D3
MOVE D0,(A0)+
MOVE D1,(A0)+
MOVE D2,0(A0)
MOVE D3,A0
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RTS

Basic block 9:
sAppend.3: MOVE A0,-(A3)

MOVE A1,-(A3)
MOVE A2,-(A3)
LEA address_of_the_string,A0
JSR print

Basic block 10:
JMP halt

A . 2 . 5 . MC68020 code of append.

Basic block 1:
lAppend: MOVEA.L 8(A2),A2

MOVEA.L (A2),A2
BRA m.7

Basic block 2:
nAppend: MOVEA.L 8(A0),A1

MOVE.L (A1)+,D0
MOVE.L (A1),D1
MOVEA.L D1,A1
MOVEA.L D0,A2

Basic block 3:
m.7: MOVE.L A1,(A4)

LEA _cycle_in_spine,A1
MOVE.L A1,(A0)
MOVEA.L (A4),A1
MOVE.L (A2),D6
BEQ eval_3
MOVE.L A1,-(A3)
MOVE.L A0,-(A3)
MOVEA.L A2,A0
MOVEA.L D6,A1
JSR (A1)
MOVEA.L A0,A2
MOVEA.L (A3)+,A0
MOVEA.L (A3)+,A1

Basic block 4:
sAppend.1:
eval_3: CMP.W #!_Cons+2,6(A2)

BNE sAppend.2

Basic block 5:
m.8: SUBQ.L #7,D7

BMI c_gc_1
r_gc_1: MOVEA.L 8(A2),A2

MOVE.L (A2)+,D0
MOVE.L (A2),D1
MOVE.L A6,D2
MOVE.L D1,(A6)+
MOVE.L A1,(A6)+
LEA nAppend,A1
MOVE.L A6,D1
MOVE.L A1,(A6)+
MOVE.L #!Append+2,(A6)+
MOVE.L D2,(A6)+
MOVE.L A6,D2
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MOVE.L D0,(A6)+
MOVE.L D1,(A6)+
MOVE.L A0,D0
CLR.L (A0)+
MOVE.L #!_Cons+2,(A0)+
MOVE.L D2,(A0)
MOVEA.L D0,A0
RTS

Basic block 6:
sAppend.2: CMP.W #!_Nil+0,6(A2)

BNE sAppend.3

Basic block 7:
m.9: MOVE.L (A1),D6

BEQ eval_4
MOVE.L A0,-(A3)
MOVEA.L A1,A0
MOVEA.L D6,A1
JSR (A1)
MOVEA.L A0,A1
MOVEA.L (A3)+,A0

Basic block 8:
eval_4: MOVE.L (A1)+,D0

MOVE.L (A1)+,D1
MOVE.L (A1),D2
MOVE.L A0,D3
MOVE.L D0,(A0)+
MOVE.L D1,(A0)+
MOVE.L D2,(A0)
MOVEA.L D3,A0
RTS

Basic block 9:
sAppend.3: MOVE.L A0,-(A3)

MOVE.L A1,-(A3)
MOVE.L A2,-(A3)
LEA address_of_the_string,A0
JSR print

Basic block 10:
JMP halt

c_gc_1: JSR collect_3
BRA r_gc_1

A.3 . Inc.

A . 3 . 1 . Inc in Clean.

:: Inc ! (!INT,!INT,!INT,!INT) -> (!INT, !INT, !INT, !INT) ;
Inc (a, 9, 9, 9) -> (++I a, 0, 0, 0) |
Inc (a, b, 9, 9) -> (a, ++I b, 0, 0) |
Inc (a, b, c, 9) -> (a, b, ++I c, 0) |
Inc (a, b, c, d) -> (a, b, c, ++I d)

;

A . 3 . 2 . Basic blocks of the ABC code of inc.
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Basic block 1:
.o 3 0

lInc: pop_a 1
jmp m.34

Basic block 2:
.o 1 0

nInc: push_args 0 1 1

Basic block 3:
m.34: set_entry _cycle_in_spine 1

jsr_eval

Basic block 4:
push_args 0 4 4
push_a 3
jsr_eval

Basic block 5:
pop_a 1
push_a 2
jsr_eval

Basic block 6
pop_a 1
push_a 1
jsr_eval

Basic block 7:
pop_a 1
jsr_eval

Basic block 8:
pushI_a 3
pushI_a 2
pushI_a 1
pushI_a 0
pop_a 5
.d 0 4 i i i i
jsr sInc.1

Basic block 9:
.o 0 4 i i i i
create
fillI_b 3 0
create
fillI_b 2 0
create
fillI_b 1 0
create
fillI_b 0 0
fill _Tuple 4 _hnf 4
pop_b 4
.d 1 0
rtn

Basic block 10:
.o 0 4 i i i i

sInc.1:
eqI_b +9 1
jmp_true m.35
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Basic block 11:
jmp sInc.2

Basic block 12:
m.35: eqI_b +9 2

jmp_true m.36

Basic block 13:
jmp sInc.2

Basic block 14:
m.36: eqI_b +9 3

jmp_true m.37

Basic block 15:
jmp sInc.2

Basic block 16:
m.37: pushI +0

pushI +0
pushI +0
push_b 3
incI
update_b 3 7
update_b 2 6
update_b 1 5
update_b 0 4
pop_b 4
.d 0 4 i i i i
rtn

Basic block 17:
sInc.2: eqI_b +9 2

jmp_true m.38

Basic block 18:
jmp sInc.3

Basic block 19:
m.38: eqI_b +9 3

jmp_true m.39

Basic block 20:
jmp sInc.3

Basic block 21:
m.39: pushI +0

pushI +0
push_b 3
incI
update_b 2 6
update_b 1 5
update_b 0 4
pop_b 3
.d 0 4 i i i i
rtn

Basic block 22:
sInc.3: eqI_b +9 3

jmp_true m.40

Basic block 23:
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jmp sInc.4

Basic block 24:
m.40: pushI +0

push_b 3
incI
update_b 1 5
update_b 0 4
pop_b 2
.d 0 4 i i i i
rtn

Basic block 25:
sInc.4:

push_b 3
incI
update_b 0 4
pop_b 1
.d 0 4 i i i i
rtn

Basic block 26:
sInc.5: print "Runtime Error: Rule Inc of Module masmind

does not match\n"

Basic block 27:
halt

A . 3 . 3 . Intermediate code of inc after stack access optimization and jump optimization.

Basic block 1:
lInc: JMP m.34

Basic block 2:
nInc: MOVE 8(A0),A1

MOVE 0(A1),A1

Basic block 3:
m.34: LEA _cycle_in_spine,A2

MOVE A2,0(A0)
MOVE 0(A1),D6
BEQ eval_107
MOVE A0,-(A3)
MOVE A1,A0
MOVE D6,A1
JSR 0(A1)
MOVE A0,A1
MOVE (A3)+,A0

Basic block 4:
eval_107: MOVE A0,-(A3)

MOVE A1,-(A3)
MOVE 8(A1),A0
MOVE (A0)+,D0
MOVE (A0)+,D1
MOVE (A0)+,D2
MOVE 0(A0),D3
MOVE D3,-(A3)
MOVE D2,-(A3)
MOVE D3,A2
MOVE D1,A0
MOVE D0,A1
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MOVE 0(A2),D6
BEQ eval_108
MOVE A1,-(A3)
MOVE A0,-(A3)
MOVE A2,A0
MOVE D6,A1
JSR 0(A1)
MOVE A0,A2
MOVE (A3)+,A0
MOVE (A3)+,A1

Basic block 5:
eval_108: MOVE 0(A3),A2

MOVE 0(A2),D6
BEQ eval_109
MOVE A1,-(A3)
MOVE A0,-(A3)
MOVE A2,A0
MOVE D6,A1
JSR 0(A1)
MOVE A0,A2
MOVE (A3)+,A0
MOVE (A3)+,A1

Basic block 6:
eval_109: MOVE A0,A2

MOVE 0(A2),D6
BEQ eval_110
MOVE A1,-(A3)
MOVE A0,-(A3)
MOVE A2,A0
MOVE D6,A1
JSR 0(A1)
MOVE A0,A2
MOVE (A3)+,A0
MOVE (A3)+,A1

Basic block 7:
eval_110: MOVE 0(A1),D6

BEQ eval_111
MOVE A0,-(A3)
MOVE A1,A0
MOVE D6,A1
JSR 0(A1)
MOVE A0,A1
MOVE (A3)+,A0

Basic block 8:
eval_111: MOVE 8(A0),D2

MOVE 8(A1),D3
MOVE 4(A3),A0
MOVE 8(A0),D0
MOVE (A3),A0
MOVE 8(A0),D1
ADD #12,A3
JSR sInc.1

Basic block 9:
MOVE A6,D4
MOVE #0,(A6)+
MOVE #!INT+0,(A6)+
MOVE D3,(A6)+
MOVE A6,D3
MOVE #0,(A6)+
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MOVE #!INT+0,(A6)+
MOVE D2,(A6)+
MOVE A6,D2
MOVE #0,(A6)+
MOVE #!INT+0,(A6)+
MOVE D1,(A6)+
MOVE A6,D1
MOVE #0,(A6)+
MOVE #!INT+0,(A6)+
MOVE D0,(A6)+
MOVE A6,D0
MOVE D4,(A6)+
MOVE D3,(A6)+
MOVE D2,(A6)+
MOVE D1,(A6)+
MOVE (A3)+,A0
MOVE A0,D1
MOVE #0,(A0)+
MOVE #!_Tuple+4,(A0)+
MOVE D0,0(A1)
MOVE D1,A0
RTS

Basic block 10:
sInc.1: MOVE #9,D4

CMP D2,D4
BNE sInc.2

Basic block 11:

Basic block 12:
m.35: MOVE #9,D4

CMP D1,D4
BNE sInc.2

Basic block 13:

Basic block 14:
m.36: MOVE #9,D4

CMP D0,D4
BNE sInc.2

Basic block 15:

Basic block 16:
m.37: MOVE #0,D0

MOVE #0,D1
MOVE #0,D2
ADD #1,D3
RTS

Basic block 17:
sInc.2: MOVE #9,D4

CMP D1,D4
BNE sInc.3

Basic block 18:

Basic block 19:
m.38: MOVE #9,D4

CMP D0,D4
BNE sInc.3

Basic block 20:
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Basic block 21:
m.39: MOVE #0,D0

MOVE #0,D1
ADD #1,D2
RTS

Basic block 22:
sInc.3: MOVE #9,D4

CMP D0,D4
BNE sInc.4

Basic block 23:

Basic block 24:
m.40: MOVE #0,D0

ADD #1,D1
RTS

Basic block 25:
sInc.4: ADD #1,D0

RTS

Basic block 26:
sInc.5: LEA L29,A0

JSR print

Basic block 27:
JMP halt

A . 3 . 4 . MC68020 code of inc.

Basic block 1:
lInc: BRA m.34

Basic block 2:
nInc: MOVEA.L 8(A0),A1

MOVEA.L (A1),A1

Basic block 3:
m.34: LEA _cycle_in_spine,A2

MOVE.L A2,(A0)
MOVE.L (A1),D6
BEQ eval_107
MOVE.L A0,-(A3)
MOVEA.L A1,A0
MOVEA.L D6,A1
JSR (A1)
MOVEA.L A0,A1
MOVEA.L (A3)+,A0

Basic block 4:
eval_107: MOVE.L A0,-(A3)

MOVE.L A1,-(A3)
MOVEA.L 8(A1),A0
MOVE.L (A0)+,D0
MOVE.L (A0)+,D1
MOVE.L (A0)+,D2
MOVE.L (A0),D3
MOVE.L D3,-(A3)
MOVE.L D2,-(A3)
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MOVEA.L D3,A2
MOVEA.L D1,A0
MOVEA.L D0,A1
MOVE.L (A2),D6
BEQ eval_108
MOVE.L A1,-(A3)
MOVE.L A0,-(A3)
MOVEA.L A2,A0
MOVEA.L D6,A1
JSR (A1)
MOVEA.L A0,A2
MOVEA.L (A3)+,A0
MOVEA.L (A3)+,A1

Basic block 5:
eval_108: MOVEA.L (A3),A2

MOVE.L (A2),D6
BEQ eval_109
MOVE.L A1,-(A3)
MOVE.L A0,-(A3)
MOVEA.L A2,A0
MOVEA.L D6,A1
JSR (A1)
MOVEA.L A0,A2
MOVEA.L (A3)+,A0
MOVEA.L (A3)+,A1

Basic block 6:
eval_109: MOVEA.L A0,A2

MOVE.L (A2),D6
BEQ eval_110
MOVE.L A1,-(A3)
MOVE.L A0,-(A3)
MOVEA.L A2,A0
MOVEA.L D6,A1
JSR (A1)
MOVEA.L A0,A2
MOVEA.L (A3)+,A0
MOVEA.L (A3)+,A1

Basic block 7:
eval_110: MOVE.L (A1),D6

BEQ eval_111
MOVE.L A0,-(A3)
MOVEA.L A1,A0
MOVEA.L D6,A1
JSR (A1)
MOVEA.L A0,A1
MOVEA.L (A3)+,A0

Basic block 8:
eval_111: MOVE.L 8(A0),D2

MOVE.L 8(A1),D3
MOVEA.L 4(A3),A0
MOVE.L 8(A0),D0
MOVEA.L (A3),A0
MOVE.L 8(A0),D1
LEA 12(A3),A3
BSR sInc.1

Basic block 9:
MOVEQ #16,D6
SUB.L D6,D7
BMI c_gc_1

r_gc_1: MOVE.L A6,D4
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CLR.L (A6)+
MOVE.L #!INT+0,(A6)+
MOVE.L D3,(A6)+
MOVE.L A6,D3
CLR.L (A6)+
MOVE.L #!INT+0,(A6)+
MOVE.L D2,(A6)+
MOVE.L A6,D2
CLR.L (A6)+
MOVE.L #!INT+0,(A6)+
MOVE.L D1,(A6)+
MOVE.L A6,D1
CLR.L (A6)+
MOVE.L #!INT+0,(A6)+
MOVE.L D0,(A6)+
MOVE.L A6,D0
MOVE.L D4,(A6)+
MOVE.L D3,(A6)+
MOVE.L D2,(A6)+
MOVE.L D1,(A6)+
MOVEA.L (A3)+,A0
MOVE.L A0,D1
CLR.L (A0)+
MOVE.L #!_Tuple+4,(A0)+
MOVE.L D0,(A0)
MOVEA.L D1,A0
RTS

Basic block 10:
sInc.1: MOVEQ #9,D4

CMP.L D2,D4
BNE sInc.2

Basic block 11:

Basic block 12:
m.35: MOVEQ #9,D4

CMP.L D1,D4
BNE sInc.2

Basic block 13:

Basic block 14:
m.36: MOVEQ #9,D4

CMP.L D0,D4
BNE sInc.2

Basic block 15:

Basic block 16:
m.37: MOVEQ #0,D0

MOVEQ #0,D1
MOVEQ #0,D2
ADDQ.L #1,D3
RTS

Basic block 17:
sInc.2: MOVEQ #9,D4

CMP.L D1,D4
BNE sInc.3

Basic block 18:

Basic block 19:
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m.38: MOVEQ #9,D4
CMP.L D0,D4
BNE sInc.3

Basic block 20:

Basic block 21:
m.39: MOVEQ #0,D0

MOVEQ #0,D1
ADDQ.L #1,D2
RTS

Basic block 22:
sInc.3: MOVEQ #9,D4

CMP.L D0,D4
BNE sInc.4

Basic block 23:

Basic block 24:
m.40: MOVEQ #0,D0

ADDQ.L #1,D1
RTS

Basic block 25:
sInc.4: ADDQ.L #1,D0

RTS

Basic block 26:
sInc.5: LEA L29,A0

JSR print

Basic block 27:
JMP halt

c_gc_1: JSR collect_0
BRA r_gc_1
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APPENDIX B: MC68020 cache case execution times.

In the following table for the addressing modes used by the code generator the following is indicated:
- the fetch effective address (FEA) time in clock cycles.
- the calculate effective address (CEA) time in clock cycles.
- the fetch immediate word effective address (FIWEA) time in clock cycles.
- the fetch immediate long effective address (FILEA) time in clock cycles.
- the calculate immediate word effective address (CIWEA) time in clock cycle.
- the number of effective address extension words.

These times can be used to calculate the cache case execution time together with the second table below.

Addressing
mode:

FEA time CEA time FIWEA time FILEA time CIWEA time extension
words

Dn 0 0 2 4 2 0
An 0 0 - - - 0
(An) 4 2 4 4 2 0
(An)+ 4 2 6 8 4 0
-(An) 5 2 5 7 ? 0
(d16,An) 5 2 5 7 4 1
(d16,PC) 5 2 - - - 1
#<data>.B 2 - - - - 1
#<data>.W 2 - - - - 1
#<data>.L 4 - - - - 2

The number of clock cycles needed to execute the instruction are:
(Rn means An or Dn, <mea> means memory effective address, not a register)

MOVEQ #<data>,Dn 2
ADDQ #<data>,Rn 2
SUBQ #<data>,Rn 2
EXG Ry,Rx 2
MOVEM <ea>,register list 8 + CIWEA time + 4 * number of registers
MOVEM register list,<ea> 4 + CIWEA time + 3 * number of registers
ADD <ea>,Dn 2 + FEA time
ADDA <ea>,An 2 + FEA time
SUB <ea>,Dn 2 + FEA time
SUBA <ea>,An 2 + FEA time
CMP <ea>,Dn 2 + FEA time
CMPA <ea>,An 4 + FEA time
AND <ea>,Dn 2 + FEA time
OR <ea>,Dn 2 + FEA time
TST <ea> 2 + FEA time
ADD Dn,<mea> 4 + FEA time
SUB Dn,<mea> 4 + FEA time
AND Dn,<mea> 4 + FEA time
OR Dn,<mea> 4 + FEA time
ADDQ #<data>,<mea> 4 + FEA time
SUBQ #<data>,<mea> 4 + FEA time
ADDI #<data>,<mea> 4 + FILEA time for .L otherwise 4 + FIWEA time
ADDI #<data>,<mea> 4 + FILEA time for .L otherwise 4 + FIWEA time.
SUBI #<data>,<mea> 4 + FILEA time for .L otherwise 4 + FIWEA time.
CMPI #<data>,<mea> 2 + FILEA time for .L otherwise 4 + FIWEA time.
ANDI #<data>,<mea> 4 + FILEA time for .L otherwise 4 + FIWEA time.
ORI #<data>,<mea> 4 + FILEA time for .L otherwise 4 + FIWEA time.
EORI #<data>,<mea> 4 + FILEA time for .L otherwise 4 + FIWEA time.
EOR Dn,Dn 2
CLR Dn 2
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NEG Dn 2
NOT Dn 2
EOR Dn,<mea> 4 + FEA time
CLR <mea> 4 + CEA time.
NEG <mea> 4 + FEA time
NOT <mea> 4 + FEA time
LEA <ea>,An 2 + CEA time
PEA <ea> 5 + CEA time
EXT Dn 4
EXTB Dn 4
Scc Dn 4
Scc <mea> 6 + CEA time
MULS.L 43 + FIWEA time
DIVS.L 90 + FIWEA time
LSL #n,Dy 4
LSR #n,Dy 4
LSL Dx,Dy 6
LSR Dx,Dy 6
ASL #n,Dy 8
ASL Dx,Dy 8
ASR #n,Dy 6
ASR Dx,Dy 6
JMP (An) 6
JMP (d16,An) 8
JMP (d16,PC) ? (probably 8)
JSR (An) 7
JSR (d16,An) 9
JSR (d16,PC) ? (probably 9)
RTS 10
BSR 7
BRA 6
Bcc (taken) 6
Bcc.B (not taken) 4
Bcc.W (not taken) 6
Bcc.L (not taken) 6
DBcc (cc false, count not expired) 6
DBcc (cc false, count expired) 10
DBcc (cc true) 6

The number of clock cycles needed to execute the MOVE and MOVEA instructions are:

Destination:
Source: An or Dn (An)  or (An)+ -(An)  or (d16,An)
An or Dn 2 4 5
(An)  or (An)+ 6 7 7
-(An)  or (d16,An)  or (d16,PC) 7 8 8
#<data>.B , #<data>.W 4 6 7
#<data>.L 6 8 9
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APPENDIX C: The nodes in the graph.

g = graph
l = label
r = register
fr = floating point register
d = displacement (offset)
i = integer constant
f = floating point constant
a = arity
n = number

Integer and address access nodes:

GREGISTER r1 global register, for example a stack pointer.
LEA l1 address of l1.
LOAD d1 r1 d1(r1), long word stored at address d1 + contents of register r1.
LOAD_I i1 #i1.
LOAD_ID d1 g1 d1(g1).
LOAD_B_ID d1 g1 zero extended byte of d1(g1).
LOAD_DES_ID d1 g1 sign extended word of d1(g1).
LOAD_DES_I l1 a1 descriptor offset. (offset of &l1 + 4 * a1)
REGISTER r1 r1.
STORE d1 r1 g1 g2 store g1 in d1(r1), g2 points to a LOAD or FLOAD node or is nil.
STORE_R r1 g1 store g1 in r1.

Integer arithmetic nodes:

ADD g1 g2 g1 + g2
AND g1 g2 g1 AND g2
ASR g1 g2 g2 >> g1 (signed)
CMP_EQ g1 g2 g2 == g1 ? -1 : 0
CMP_GT g1 g2 g2 > g1 ? -1 : 0
CMP_LT g1 g2 g2 < g1 ? -1 : 0
CNOT g1 g1 == 0 ? -1 : 0
DIV g1 g2 g2 / g1
EOR g1 g2 g1 EOR g2
LSL g1 g2 g2 << g1
LSR g1 g2 g2 >> g1 (unsigned)
MOD g1 g2 g2 % g1
MUL g1 g2 g2 * g1
OR g1 g2 g1 OR g2
SUB g1 g2 g2 - g1

Floating point access nodes:

FLOAD d1 r1 d1(r1), floating point value stored at address d1 + contents of register
r1.

FLOAD_I f1 #f1.
FLOAD_ID d1 g1 d1(g1).
FREGISTER fr1 fr1.
FSTORE d1 r1 g1 g2 g3 store g1 in d1(r1), g2 points to a LOAD or FLOAD node or is nil, g3

points to a LOAD or FLOAD node is nil.
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Floating point arithmetic nodes:

FACOS g1 acos (g1).
FADD g1 g2 g2 + ,g1.
FASIN g1 asin (g1).
FATAN g1 atan (g1).
FCMP_EQ g1 g2 g2 == g1 ? -1 : 0.
FCMP_GT g1 g2 g2 > g1 ? -1 : 0.
FCMP_LT g1 g2 g2 < g1 ? -1 : 0.
FCOS g1 cos (g1).
FDIV g1 g2 g2 / g1.
FEXP g1 exp (g1).
FHIGH g1 high long word of floating point number g1.
FITOR g1 floating point value of integer g1.
FJOIN g1 g2 floating point value with high long word g1 and low long word g2.
FLN g1 ln (g1).
FLOW g1 low long word of floating point number g1.
FMUL g1 g2 g2 * g1.
FLOG10 g1. log10 (g1).
FREM g1 g2 g2 % g1.
FRTOI g1 integer value of rounded floating point number g1.
FSIN g1 sin (g1).
FSQRT g1 sqrt (g1).
FSUB g1 g2 g2 - g1.
FTAN g1 tan (g1).

Graph manipulation nodes:

ALLOCATE gc ga g1 .. gn create a node containing the gc long words at address ga and g1, . . ,
gn

CREATE g1 .. gn create a node containing g1, .., gn.
CREATE_R g1 create a node containing floating point number g1.
FILL g g1 .. gn overwrite node (or first part of node) g with g1, .., gn.
MOVEM d1 g g1 .. gn n values starting at d1(g), g1 .. gn point to the MOVEMI nodes.
MOVEMI g1 one of the values represented by cdag g1 with as root a MOVEM

node.
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APPENDIX D: The instructions of the intermediate code.

ADD a1 a1
AND a1 a1
ASR a1 a1
BMOVE a1 a2 a3
CMP a1 a2
CMPW a1 a2
DIV a1 a2
EOR a1 a2
EXG r1 r2
EXT a1
LEA a1 a2
LSL a1 a2
LSR a1 a2
MOD a1 a2 a3
MOVE a1 a2
MOVEB a1 a2
MOVEM a1 r1 .. rn
MOVEM r1 .. rn a1
MOVEW a1 a2
MUL a1 a2
OR a1 a2
SUB a1 a2
TST a1

FACOS f1 f2
FADD f1 f2
FASIN f1 f2
FATAN f1 f2
FCMP f1 f2
FCOS f1 f2
FDIV f1 f2
FEXP f1 f2
FLN f1 f2
FLOG10 f1 f2
FMUL f1 f2
FREM f1 f2
FSIN f1 f2

FSQRT f1 f2
FSUB f1 f2
FTAN f1 f2
FTST f1 f2
FMOVE f1 f2
FMOVEL a1 f1
FMOVEL f1 a1

JMP a1
JSR a1
RTS

BEQ l1
BGE l1
BGT l1
BLE l1
BLT l1
BNE l1
FBEQ l1
FBGE l1
FBGT l1
FBLE l1
FBLT l1
FBNE l1

SEQ r1
SGE r1
SGT r1
SLE r1
SLT r1
SNE r1
FSEQ r1
FSGE r1
FSGT r1
FSLE r1
FSLT r1
FSNE r1
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APPENDIX E: Object file format.

An object file generated by the code generator for the Macintosh consists of a sequence of object file
records. These records are in the data fork of the object file. Records can be recognized by the first byte. If
a record consists of an odd number of bytes, a 0 byte is added to maintain word alignment.

A module is a contiguous region of memory that contains code or static data. A label is a location (offset)
within a module. A segment is a collection of modules. There are two sections: a code section and a data
section, code is stored in the code section, data in the data section.

All labels are given a unique, positive, 16-bit IDs. An ID is file-relative and identifies a label within one
object file. IDs may be local or external. External IDs have a name.

At any given point in an object file there is one current module. New modules begin at the begin of an
object file and after new module records.

A string consists of a length byte and the characters in the string.

The object file records are:

BEGIN RECORD:

Byte 1
Byte 0
Word number of IDs

The first record in an object file must be a begin record.
The number of IDs field contains the highest ID number + 1 which occurs in this object file.

END RECORD:

Byte 2

The last record in an object file must be an end record.

IMPORT RECORD:

Byte 3
Byte 0
Word ID
String name

An import record associates a name with an ID. The ID may not appear in another import or label
record. The import record need not appear before the ID is referenced in a reference or difference
reference record.

LABEL RECORD:

Byte 4
Byte flags
Word ID
<Word offset>
<String name>

bit 0 of flags = 1 the label appears in the data section.
= 0 the label appears in the code section.

bit 1 of flags = 1 an external label (with a name)
= 0 a local label (without a name)
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bit 2 of flags = 1 the offset is specified in the record
= 0 the offset is the current offset

A label record defines an ID. (label) The offset is relative to the start of the module and may be
outside the module. The ID may not appear in another label or import record. The label record need
not appear before the ID is referenced in a reference or difference reference record.

CODE RECORD

Byte 5
Byte size
Bytes code

Code records specify the contents of code sections. The code consists of size bytes. The code bytes
are stored in the code section at the current code offset in the current module. Size is added to the
current code offset.

DATA RECORD

Byte 6
Byte size
Bytes data

Data records specify the contents of data sections. The data consists of size bytes. The data bytes
are stored in the data section at the current offset in the current module. Size is added to the current
data offset.

REFERENCE RECORD

Byte 7
Byte flags
Word ID
<Word offset>

Bit 0 of flags = 1 the reference is from the data section.
= 0 the reference is from the code section.

Bit 1 of flags = 1 the location modified is a long word.
= 0 the location modified is a word.

Bit 2 of flags = 1 the reference is A5-relative.
= 0 the reference is not A5-relative.

Bit 3 of flags = 1 the offset is specified in the record.
= 0 the offset is the current offset.

A reference record specifies a reference to an ID. (label) The reference is from the current module.
The ID field specifies the ID being referenced.

References fall into four categories:

- Code-to-code references:

If the A5-relative flag is 1, the A5-relative offset of a jump-table entry associated with the
specified label is added to the specified location.

If the A5-relative flag is 0, the linker selects either PC-relative or A5-relative addressing.
The immediately preceding word is assumed to contain a JSR, JMP, LEA or PEA
instruction, and is modified to indicate either PC-relative or A5-relative addressing. If the
referenced label and the current module are in the same segment, the PC-relative offset of the
label is added to the contents of the specified location. If they are in different segments, the
A5-relative offset of a jump-table entry associated with the specified label is added to the
specified location.
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- Code-to-data references:

The A5-relative flag must be 1 for code-to-data-references. The A5-relative offset of the
specified label is added to the contents of the specified location.

- Data-to-code references:

If the A5-relative flag is 1, the A5-relative offset of a jump-table entry is added to the
specified location.
If the A5-relative flag is 0, the memory address of a jump-table entry associated with the
specified label is added to the contents of the specified location, which must be a long word.

- Data-to-data references:

If the A5-relative flag is 1, the A5-relative offset of the label is added to the specified
location.
If the A5-relative flag is 0, the memory address of the specified label is added to the contents
of the specified location, which must be a long word.

UNINITIALIZED DATA

Byte 8
Byte size

Uninitialized data records specify uninitialized data. Size is added to the current data offset.

DIFFERENCE REFERENCE RECORD

Byte 9
Byte flags
Word ID1
Word ID2
<Word offset>

Bit 0 of flags = 1 the reference appears in the data section.
= 0 the reference appears in the code section.

Bit 2 of flags = 1 and bit 1 of flags = 0 the location modified is a long word.
Bit 2 of flags = 0 and bit 1 of flags = 1 the location modified is a word.
Bit 2 of flags = 0 and bit 1 of flags = 0 the location modified is a byte.
Bit 3 of flags = 1 the offset is specified in the record

= 0 the offset is the current offset

A difference reference record specifies a reference which is the difference of two IDs. (labels)
If ID1 specifies a code reference, ID2 must also be a code reference in the same module. If ID1 is a
data reference, ID2 must also be a data reference.
The value of the address of ID1 minus the address of ID2 is added to the contents of the specified
location. Multiple references to the same or overlapping locations are permitted.

NEW MODULE

Byte 10

A new module record defines the start of a new module. New modules are also started at the begin
of a new object file. (Not yet implemented)
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