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Abstract.

To compile the functional languageClean, first code is generatedfor an abstractmachine,the ABC
machine.This ABC codeis then translatedto the concretemachineby a code generator.Such a code
generatorwhich generategodefor the MC68020processorhasbeendesignedandimplementedand is
described here.

To generate code first the ABC instructions are divided into ldsaks. Thenis determinedvhich values
are storedn registersat the startof sucha basicblock. Parametersindresultsof functionsare passedn

registers. Then a graph is constructed for the basic block, wpcasentshe computationgperformedby
this basic block. After that the codeneratordeterminesvhich valuesare storedin registersat the end of

the basic block.

Thenthe orderin which this graphwill be evaluatedis determinedusing an adaptediabeling algorithm.
This adaptedabeling algorithm determines betterevaluationorderthanthe original labeling algorithmif

some values are stored in registers at the beginning amtorf the basicblock, and canhandlecommon
subexpressions.

Then intermediatecodeis generatedrom the graph. This intermediatecodeis very closeto MC68020
machine code, but in this intermediate code an unlimited number of address and data registers may |

While constructingthe graphand generatingntermediatecode severaloptimizationsare performed.Then
the local registerallocatorchangeshe intermediatecodeof a basicblock so thatno more than 8 address
registers and 8 data registers (the MC68020 has 8 data registers and address registers) are used.

Then the intermediate code is optimized by usingothgtincremenand predecremenaddressingnodesof
the MC68020 and optimizing jumps.

And thenfrom this intermediatecodeobjectcodeis generatedor the linker. While generatingthis object
code many very simple MC68020 specific peephole optimizations are performed.

Comparedto the previous(simpler) code generatorcomputationson strict argumentsand basic values
(integers,reals, etc.) are done a lot faster (about1.3 - 2.9 times as fast for some benchmarks) But
computations on non strict arguments are executed onlyfastet (aboutl.1 - 1.5 timesasfast). Curried
function applications aralso executedh lot faster(about1.8 - 2.0 timesasfast), but not so muchdueto
better code generation techniques.
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1. | ntroduction.

The codegeneratomwhich is describedn this paperis part of the implementationof the graph rewriting
languageClean[Brus et al. 1987]. To compile Clean,first the languageCleanis compiledto ABC code
[Koopmanet al. 1990] by the Clean compiler [Smetsers1989]. Thenthe ABC codeis compiledto the
machinecodeof the targetmachine.So for everytargetmachinea code generatorhasto be written, but
becausethe ABC code is machineindependentthe same Clean compiler can be usedfor all target
machines. The ABC code can also be executed by an interpreter.

The languageleanand ABC havealso beenextendedo be able to make efficient implementationgor
machineswith more processordyy concurrentexecution,theselanguagesare called ConcurrentClean
[Nocker et al. 1991, Smetsers et al. 1991] and PABC [Nocker 1989].

Whenl startedto designthis code generator,a Clean compiler [Smetsers1989] had beenimplemented
which could be executed on the Macintosh andSilne, and a simple codegeneratoifor the Sun [Weijers

1990] and an interpreterfor the Macintosh[Nocker 1989] had beenimplemented.This Clean compiler
could also compile ConcurrentClean and the interpretercould simulate concurrentexecutionof PABC

code.

The ABC codegeneratoidescribedheregenerategode for the Motorola MC68020 processof{Motorola
1985] andthe floating point coprocessoMC68881for the Macintoshll and has beenimplemented.But
with somesmall changeghe codegeneratedy this codegeneratoican be usedfor any machinewith an
MC680200r MC68030processorAnd becausenly a few MC68020specificinstructionsare used, the
code generator can easily be changed to generate code for the MC68000 processor.

Briefly, this codegeneratolgenerategodein the following way. First the ABC instructionsare divided
into basic blocks. Basically, a basicblock is a sequenceof ABC instructionsof which only the last
instruction may be ammstruction with side effects. This lastinstructionof a basicblock usuallyis a jump,
branch, return or subroutine call instruction.

Thenthe code generatordetermineswvhich valuesare storedin registersat the start of the basic block.
Parameters and results of functions are passed in registers if enough registers are available.

And thena graphis constructedor sucha basicblock, which representshe computationgperformedby
this basic block.

Becausdhe MC68020processothastwo typesof registers,i.e. dataregistersand addressregisters,a
counter is maintained for every node during construction of the graph. These counters areetsethitte
whether to use a data register or an address register if a register is used.

Then the code generatordetermineswhich valuesare storedin registersat the end of the basic block.
Because the graph is constructedisd no valuesare storedin registers,somepartsof the graphhaveto
be changed so that values are stored in registers at the end of the basic block.

Then the order in which this graph will be evaluated is determined using an adbagied algorithm. The
three main differences between the original labeling algorithm and my adapted labeling algorithm are:

1. The original labeling algorithm assumeghe graphis a tree. But my adaptedlabeling algorithm
assumeghe graphis a directedacyclic graph. In this way nodesmay be shared,and common
subexpressions can be represented in the graph.

2. The original labeling algorithm calculatesfor every node in the graph the number of registers
necessary to evaluate the subgraph witfoasthis node.My adaptedabelingalgorithm calculates
this numberof registersas well, but also calculatesby how many registersthe numberof used
registers increases (or decreases) when the subgraph with as root this node is evatha®dy
usually a better orddo evaluatea graphis determinedf somevaluesare storedin registersat the
beginningand/orend of the basicblock. And if the graph containssharednodesa reasonable
evaluation order can be determined.



3. Because the MC68020 processor has two types of registers, for every node for both theaddr
the dataregistersthe numberof usedregistersand increasein the numberof usedregistersare
calculated. So four number of registers are calculated for every node.

Then an evaluationorder is determinedusing thesefour numbersof registersin the nodes and an
intermediate code is generated. This intermediate code is very dio34C68020machinecode.But in this
intermediate code an unlimited number of address and data registers may be used.

While constructingthe graph and generatingcode from the graph the following optimizations are
performed: the creation of nodes by create instructiooptimized,useof booleangs optimizedby using
condition codes instead of booleans and many unnecessary copies and stack manipulations are elim

Thenthe local register allocator changeghe intermediatecode of a basic block so that no more than 8
addresgegistersand dataregisters(the MC68020has8 dataregistersand addresgegisters)are used. It
doesthis by changingthe registernumbersof the registersusedby the intermediateinstructionsand by
inserting instructions to load and store values in registers from/into memory.

Then accesses to tseacksare optimizedby usingthe postincrementand predecremenaddressingnodes
of the MC68020by changingthe intermediatecode. After that jumps are optimizedby replacinga branch
instruction followed by a jump instruction by one branch instruction if possible.

And thenfrom this intermediatecodeobjectcodeis generatedor the linker. While generatingthis object
code many very simple MC68020 specific peephole optimizations are performed.

Finally the linker produces an executable file for the Macintosh Il from this object file, the objeof fikes
other modules of this program (if any) and the library object files.

I will now briefly describewhatis discussedn eachchapter.In chapter2 the languagesand machines
which you haveto know to understandhe restof this paperare briefly described.Theselanguagesand
machines are Clean, the ABC machine and the Motorola MCg&@2@ssorAlso an exampleis given of

a small Clean program, the ABC code generatedby the Clean compiler from this program and the
MC68020 code which is produced by my code generator from this ABC code. For the MC68G20redsc
executiontimes are given and someconclusionsconcerningwhat instructionsto generateare drawnfrom
these execution times.

In chapter3 is describedhow the data structures(heaps, stack etc.) used by the ABC machineare
representedon the MC68020. It describeshow nodes are representedn the heap, and why this
representation was chosen. Also the representation of strings is discussed.

Then, in chapter4 the run time systemis described.It explains how the garbagecollector has been
implemented, and what other things have been implemented in the run time system.

In chapter 5 possibleodeoptimizationsare described Generaloptimizationsof ABC code,optimizations
for register machines and MC68020 specific optimizations are discussed.

Then, in chapter 6 is described how the code generator germvdee§irst dividing the ABC instructions
into basic blocks and determining the evaluation order by the adap&dihgalgorithmis discussedThen
the graphrepresentatioms explainedandhow code is generatedrom this graph. Finally global register
allocation, local register allocation, optimizations on the intermediate code, ¢aéiggrbagecollectorand
generating MC68020 code from the intermediate code are discussed.

And finally in chapter 7 the code generator is evaluated and some possible improvements are descrik

Thereare appendicesvith examplesjnstructionexecutiontimes, nodesin the graph, instructionsof the
intermediate code and the object file format.



2. Description of languages and machines.

In this chapter the languages and machines which you have to know to understastbftihis paperare
briefly described. These languages and machines are @eaBC machineandthe Motorola MC68020
processorAlso an exampleis given of a small Clean program,the ABC code generatedoy the Clean
compilerfrom this programandthe MC68020code which is producedby my code generatorfrom this
ABC code. For the MC68020 also some executiimes are given and someconclusionsconcerningwhat
instructions to generate are drawn from these execution times.

2.1. Clean.

In this sectionl will briefly describeClean.For this descriptionof Clean| have used[Plasmeijeret al.
1989].

Clean [Brus et al. 1987] is an experimental language based on FunGrapaiRewriting Systems Clean
programsare purely functional. Clean standsfor: CleanLean. Lean [Barendregtet al. 1987] is another
experimentalanguagebasedon generalGraph Rewriting Systemsand standsfor the Languageof East
Anglia and Nijmegen.

Clean isusedin two ways. First of all it is intendedas an intermediatdanguagebetweenarbitrary (eager
andlazy) functionallanguagesnd arbitrary sequentiamachinearchitecturesin practiseit is usedas an

intermediatelanguagebetweenMiranda and sequentialarchitecturedike VAX and Motorola. Secondly,
Cleancanalso be seenas a simple functional programminglanguagein which computationsn terms of

graph rewriting can be expressed.

A Cleanprogrambasicallyconsistsof a numberof graphrewriting rules and a defaultinitial datagraph
which can be rewritten to normal form accordingto theserules. The output of a Clean programis in
principle a depth-firstrepresentatiof the normalform to which the initial datagraphis reduced.Clean
supportsrun-time (pattern)matching.The notationusedin Cleanis the functional style. Variablesbegin
with a lower-case character, constants may not begin with a lower-case character.

An example Clean program which computes the factorial of 20: (see appendix A for more examples)

MODULE Fac;

FROM deltal IMPORT --1,*1;

RULE
Fac O -> 1
Facn -> *I n (Fac (--1 n))
Start -> Fac 20

(--I and*l arepredefinedrewrite rules on integers,which respectivelysubtractsone from an integerand
multiplies two integers)

Cleanis a typedlanguageThetype systemis basedon the Milner-Mycroft type scheme[Milner 1978,
Mycroft 1984]. Types can by specified explicitly for rewrite rules. ffile is not typed, the type canoften
be derived by the Clean compiler. Basically, all typesin Clean are algebraic types, which may be
polymorphic. Type synonyms and abstrdatatypescanalsobe defined.The predefinedbasictypesare:
INT (integer numbers), REAL (floatingoint numbers),CHAR (characters)BOOL (booleans) STRING
(strings) and FILE (files). Denotations for lists and tuples are also predefined.



In Clean all symbols have a fixed arity, but curried applicationsof functions can be used. Curried
applications are implemented using the predefined generic deltsPrale transformsa curried application
of a functionF with arity n into an uncurried applicatiom,the curriedF is appliedto all n argumentsFor
AP the following rewrite rule is implicitly defined for every functipnwith arity n:

AP (...(AP(APFal)a2)..)an->Fala2...an

TheseaPs are automatically introduced by the Clean compiler for every curried function application.

Clean performs graph rewriting, but graph rewriting is not very efficient. Therefore the Clean camegile
to do aslittle graphrewriting as possibleby not always building a node representationlt doesthis by
storing evaluated integers, booleans, characters and reals on a stack and pass them tofuthaistask
instead of in a node in the heapmuchas possible,and by evaluatingnodesas soonas possible.In this
way the program is not only executed faster, but also uses less memory.

In orderto performtheseoptimizationsto obtain efficient codeit is importantto know whetheror not a
function isstrict in its arguments. A function is strict in a certain argument if the evaluatihatargument
is neededn the computationof the function result. Consequentlya strict argumentcan be evaluatedin

advancesinceits evaluationcan not changethe terminationpropertiesof the program. Strictnessis, in

general,an undecidablgoroperty. However, a good strictnessanalysercanfind strict argumentsn many
cases. The Clean compiler can find strict arguments in many ffdéeker 1988]. Strict integer,boolean,
character and reargumentsare passedo the function in evaluatedorm on a stack.And also strict tuple
arguments are passed in head normal form on a stack [Smetsers et al. 1989].

Another way to do as little graph rewriting as possibley changingthe reductionorder. This is possible
in Clean by influencing the functionatrategyby using annotationsWith theseannotationsone canmake
the evaluation partially eager instead of lazyarfevaluationis madeeagerit canoften be executedaster.
There are two types of annotations: global annotations and local annotations.

Global annotationschangethe reduction order for all applications of a particular function. These
annotations are specified in the left hand side of a type definitionestréte rule, by puttinga! beforethe
type of an argument.Such an annotedargumentis always reducedto root normal form before the
corresponding rule is applied. Note that such an anrastpanentis alwaysstrict, and canthereforeoften
be passed in evaluated form on a stack.

Local annotationschangeonly the order of evaluationfor a specific function application. Before the
evaluation of the right hand side of a rule is continued following the functional strateggnnotednodes
in the right hand side are evaluated. These annoted nodes are reduced in an arbitrary order.

A Clean programconsistsof modules. Modules can be compiled separately.There are two types of
modules: definition modulesand implementationmodules.In general, each definition module has a
correspondingmplementationmodule. An exceptionis the main module, which consistsof only an
implementatiormodule.An alternativekind of definition moduleis the systemmodule,which allows the
corresponding implementation module to be not a Clean program, and is used to implement delta-rul

In a definition module graph rewrite rules can be specifiedin a so-called RULE-block. Types can be
defined in a so-called TYPE-block. Type and rule definitibage as scopethe implementatiormodulesin

which they are defined.They can also be exportedif they are declaredin the definition module, which

makes it possible to import them in other modules. An entire module can be imported, &lgbipassible
to import only selected types and rules which were exported by the module.

2.2. The ABC machine.

In this section the ABC machine [Koopman et al. 1990] is described. FiraBianachinearchitectures
described,then an exampleis given of ABC code generatedirom a Clean program and finally the
instruction set of the ABC machine is described.

The ABC machineis a sequentiabbstractimachinedesignedto describegraphreduction.It is the target
languagefor the compilerwhich translateghe languageClean.Using the ABC machinewe can describe



graph reduction on a level close to the level of a concrete machine. We can abstract fromadepehihent
issues,like addressingnodesandregisteruse. It alsoallows us to ignore someproblems,like garbage
collection and memory allocation, on the ABC machine level.

The ABC machineis a stack machinewith 3 stacks,it doesnot have registers.The graphrewriting is
performed in a heafor graphstore)in which nodescanbe createdand overwritten.Nodeswhich areno
longer neededor the executionof the programare not explicitly deallocatedln an implementationon a
concrete machine this deallocating should be done by a garbage collector.

In general, nodes consist of a descriptor, a code address and arguments. The dedmgiswhat kind
of node it is. The code address (or evaluation address) is the address at which the codecttaeiduces
the nodeto headnormalform. The argumentsare node-id'sof other nodes. There are specialnodesfor
integers,charactershbooleans reals and strings. The argumentof thesenodesis not a node-id, but an
integer, character, boolean, real or string. There is also an empty node.

The ABC machineuses3 different stacks:the A-stack storespointersto nodes,the B-stack storesnon-
pointers,like integers,booleanscharacterand floating point values,and the C-stackpointersto code.
(return addresses) Theisea separatestackfor pointersto nodes(the A-stack)to makegarbagecollection
easier.The B-stackis usedfor computationsusing integers, booleanscharactersand floating point
numbers. These computations can be done a lot faster on the B-stackttiesgraph. So by usingthe B-
stack as much as possible the program will execute much faster.

An ABC instruction consists an instructionidentifier and zeroor more operandsThe operandsnay be
indices of one of the stacks, labels, descriptors,integers,reals, charactersor strings. Operandsare
separated by spaces. An ABC program looks like an assembly language program pitoskastructured.
Every lineconsistsof an optionallabel followed by a colon and an instructionor directive and eventually
some comment, or just of a comment. Comment begins|with '

For example, for the functidac in the Clean program in section 2.1 the following AB&tleis generated
by the Clean compiler [Smetsers 1989]: (see appendix A for more examples)

IFac: || apply entry : ‘'Fac node, argument n
node and node to be overwritten by
result on the A-stack

pop_a 1 || pop 'Fac' node from the A-stack
jmp m.1 [| jump to label m1

nFac: || node entry : 'Fac n' node on the A-
stack

push_args 011 || push argument n on the A-stack
m.1:
set_entry _cycle_in_spine 1 || store _cycle_in_spine as evaluation

address to detect <cycles in the spine
of the graph

jsr_eval || evaluate argument n
pushl_a 0 [| push argument n on the B-stack
pop_a 1 || pop node of argument n from the A-stack
jsr sFac.1 [| call strict entry of Fac to compute
result on the B-stack
filll_b 00 [l fill the result node with the integer
result on the B-stack
pop_b 1 || pop the integer result from the B-stack
rtn [| return
sFac.1: || strict entry : argument n (evaluated)
on the B-stack
eql_b +00 [| nequal 0 ?
jmp_true m.2 || yes, jump to label m.2
jmp sFac.2 [| no, jump to label sFac.2
m.2:
pop_b 1 || pop argument n from the B-stack
pushl +1 [| push 1 (result) on the B-stack
rtn || return
sFac.2:
push_b 0 || push argument n on the B-stack

5



decl || subtract 1 from copy of n on the B-
stack

jsr sFac.1 [| call strict entry of fac with argument
n-1 on the B-stack to compute Fac (-l

n)

push_b 1 || push argument n on the B-stack
update_b 12 || reorganize the B-stack
update_b 01

pop_b 1

mull || compute *I n (Fac (-1 n))

rtn [| return

2.2.1. ABC instructions for graph manipulation.

Below theinstructionsof the ABC machineare describedIn thesedescriptionsof the instructionsl have
usedto following convention:node A-offset meansthe node of which the correspondinghode-idis at
position A-offset on the A-stack, to make the descriptions shorter and easier to understand.

Many ABC instructions refer to a elements on the stack uspagiéion numberor offset. The top element
of a stackhasoffset zero, the secondelementof a stackhasoffset one, the third elementhasoffset two,
etc.

The instruction:
create . . . .
creates an empty node in the graph store, the node-id of this node is pushed on the A-stack.

The instruction:

fill descriptor arity code_label A-offset
fills or overwritesnodeA-offset . The nodeis filled with the descriptor , addressof the code_label
and argumentsgyvrity  is the number of arguments. The arguments are popped from the Adstaciade-
id on top of the A-stack is the first argument, the next node-id the second argument, etc.
Therearealsofill instructionsto fill or overwrite nodeswith integer, characterboolean,real and string
nodes.

] fil_a A-offsetl A-offset2
fills or overwrites node-offset2 by a copy of node-offsetl

set_entry code_label A-offset
replaces the code address of nadgfset by the address of thede_label

add_args A-offsetl number_of arguments A-offset2
fills or overwrites node-offset2 by a copyof nodeA-offsetl , andthenpopsnumber_of_arguments
arguments (node-id's) from the A-stack and adds these arguments to the node just filled or ov@iveritt:
argumentwhich is poppedfirst (on top of the stack)is addedas the first new argument,the argument
which is popped second is added as the second new argument, etc.

del_args A-offsetl number_of arguments A-offset2
fills or overwrites node A-offset2 by a copy of node A-offsetl , and then pushes the last
number_of_arguments  argumentf the nodejust filled or overwrittenon the A-stack and deletesthese
arguments from the node. The last argument of the node is pushed first, then the second last argum

2.2.2. ABC instructions for information retrieval from nodes.

push_args A-offset arity number_of _arguments )
pushes the firstumber_of_arguments  arguments of node-offset  on the A-stackarity is the number
of arguments of this node. The last argument to be pushed is pushed first, then the second last, etc.



There are also push argument(s) instructions, which push only one arguntake tioe argumentnumber
or the numberof argumentdrom the B-stack.And there are also replaceargumentsnstructions,which
also push the argument(s), but also pop the node-id of the node from the A-stack.

pushl_a _ A-offset _ _ )
pushes the integer which is storedntegernodeA-offset  on the B-stack. Thereare alsoinstructionsto
push a boolean, character or real from a node on the B-stack.

get_node_arity A-offset
pushes the arity of nodeoffset , i.e. the number of arguments of nadeffset , on the B-stack.

get_desc_arity A-offset o . ) . .
pusheshe arity of the descriptorwhich is storedin node A-offset , i.e. the arity of the symbol which
corresponds to the descriptor stored in nodéset , on the B-stack.

push_ap_entry A-offset
pushes the apply code address of the descriptor ofmaitiet  on the C-stack.The apply codeaddress
is the addressof codewhich is usedwhen evaluatingcurried functions. This addresss storedin the
descriptor.

2.2.3. ABC instructions for pattern matching.

eq_desc descriptor number_of_arguments A-offset _
pushesTRUE on the B-stackif the descriptor ~ is equalto the descriptorof node A-offset  and the
number_of_arguments IS equal to the number of arguments of nadéset , otherwise FALSE.

eql_a integer_constant A-offset
compares the integer stored in n@dsfset  to theinteger_constant and then pushes TRU&h the B-
stack if they are equal, otherwise FALSE. Thereadse instructionsto comparea boolean,characteryeal
or string constant to a value a nodeandthento push TRUE on the B-stackif they areequal,otherwise
FALSE.

eql_b integer_constant B-offset
compareshe integer at position B-offset on the B-stackto the integer_constant and then pushes
TRUE on the B-stackif they are equal, otherwise FALSE. There are also instructionsto comparea
boolean, character, or real constant to a value on the B-stack and thenT&Rplisbn the B-stackif they
are equal, otherwise FALSE.

2.2.4. ABC instructions to manipulate the A- and B-stack.

pop_a number_of elements
popsnumber_of elements  elements from the A-stack.

push_a A-offset . . )
pushes the element on the A-stack with offseftset  on the A-stacki.e. it createsa copy on top of the
stack.

update_a A-offsetl A-offset2. . .
overwrites the element on the A-stack with offsetfset2  with the element on the A-stack with offget
offsetl

Thepop_b, push_b, andupdate_b instructionsdo the samewith the B-stackasthe pop_a, push_a and
update_a instructions do with the A-stack.



2.2.5. ABC instructions to push constants on the B-stack.

pushl integer_constant _ )
pushes thénteger_constant on the B-stack. Therearealsoinstructionsto pushcharacterpooleanand
real constants on the B-stack.

2.2.6. ABC instructions to change the flow of control.

jmp label
jumps to the address label , i.e. continues execution at the addredscef .

jsr . label ) . . ]
calls the subroutineat the addressof label , i.e. pushesthe addressof the instruction after this jsr
instruction on the C-stack and continues execution at the addressabéithe

jmp_false label
pops a booleafrom the B-stack,if this booleanis equalto FALSE executioncontinuesat the addressof
the label , otherwisedoes nothing. (continuesexecutionat the addressof the instruction after this
jmp_false  instruction)

jmp_true label o ) ) )
pops a boolean from the B-stack, if this boolean is equal to TRUE execution contithgesdalressof the
label , otherwisedoesnothing. (continuesexecutionat the addresof the instructionafter this jmp_true
instruction)

rtn
returns from a subroutine, i.e. pops an address from the C-stack and continues execution at this ad

jsr_eval
pushes the address of the instructater this jsr_eval  instructionon the C-stackandjumpsto the code
address of the node of which the node-id is on top of the A-stack.

jmp_eval
jumps to the code address of the node of which the node-id is on top of the A-stack.

halt
ends the execution of the program.

) dump string .
prints thestring and ends the execution of the program.

2.2.7. ABC instructions to generate output.

_ print string
prints thestring

_ print_symbol A-offset
prints a string representation of nodeffset



2.2.8. ABC instructions to implement delta-rules.

Some examples are:

addl [| pop two integers from the B-stack, add them, and push the
result on the B-stack.

mull [| pop two integers from the B-stack, multiply them, and push
the result on the B-stack.

subl || pop two integers from the B-stack, subtract the second
popped integer from the other integer, and push the result
on the B-stack.

incl || increment the integer on top of the B-stack.

It] [| pop two integers from the B-stack, compare them, if the
first popped integer is less then the other integer push

TRUE on the B-stack, otherwise FALSE.

There are many more instructions, also instructionswhich operateon booleans,charactersyeals and
strings.

2.3. The MC68020 microprocessor.

To be able to construct@degeneratoiit is necessaryo know the targetprocessorlin this sectionl will
describethe relevantparts of the architectureand instruction set of the Motorola MC68020 processor.
Interrupts,privilegedinstructions,etc. are not discussedAn exampleof MC68020 code generatedor a
small Clean programby the Clean compiler and the code generatordescribedin this paperis given.
Execution speed of instructions is also discussed. This information wadrakejMotorola 1985] andis
used to conclude what kind of code has to be generated.

2.3.1. The MC68020 registers.

The MC68020 is a 32-bit register machine. It has:
eight 32-bit data registers, called DO, D1, .., D7
- eight 32-bit address registers, called A0, Al oy AT,
- a 32-bit program counter, called PC.
- a 16-bit status register, called SR.

Registers DO-D7 are used as data registers for byte, word, longandbgiadword operationsRegisters
AO0-A6 are address registers that may be used as software stackpointers and basegidtieesRegister
A7, alsocalled SP, is the stackpointer. The addresgegistersmay also be usedfor word andlong word

operations. All of the 16 (address and data) registers may be used as index registers.

The statusregister(SR) containsamongotherthingsthe conditioncodes:extend(X), negative(N), zero
(2), overflow (V), and carry (C).



2.3.2. The MC68020 data types.

Seven basic data types are supported:
- Byte integers (8 bits).
- Word integers (16 bits).
- Long word integers (32 bits).
- Quad word integers (64 bits).
- Bits.
- Bit fields (Field of 1-32 consecutive bits).
Binary Coded Decimal (BCD) Digits (Packed: 2 digits/byte. Unpacked: 1 digit/byte).
In addition operations on memory addresses (32 bits) are supported.

The ABC machine uses bytes, words, long words and memory addresses. Elements of the Blstack
words, elementf the A-stackand C-stackare memoryaddressesyytesare usedin string and boolean

operationsand descriptorsarewords. But the ABC machinedoesnot haveinstructionsusing quad word
integers, bits, bit fields and BCD digits.

2.3.3. The MC68020 addressing modes.

There are 18 addressing modes:

Name: Assembler syntax: Result (in C):
Data register direct Dn Dn
Address register direct An An
Address register indirect (An) *An
Address register indirect with postincrement(An)+ *An++
Address register indirect with predecrement-(An) *--An
Address register indirect with displacement (d16,An) or d16(An) *(d16+An)
Address register indirect with index (8-bit (d8,An,Xn) *(d8+An+Xn)
displacement)
Address register indirect with index (base (bd,An,Xn) *(d16+An+Xn)
displacement)
Memory indirect post-indexed ([bd,An],Xn,o0d) *(*(bd+An)+Xn+od)
Memory indirect pre-indexed ([bd,An,Xn],od) *(*(bd+An+Xn)+od)
Program counter indirect with displacement (d16,PC) *(d16+PC)
PC indirect with index (8-bit displacement) (d8,PC,Xn) *(d8+PC+Xn)
PC indirect with index (base displacement) (bd,PC,Xn) *(bd+PC+Xn)
PC memory indirect post-indexed ([bd,PC],Xn,0d) *(*(bd+PC)+Xn+od)
PC memory indirect pre-indexed ([bd,PC,Xn],0d) *(*(bd+PC+Xn)+od)
Absolute short al6.w *al6
Absolute long a32.L *a32
Immediate #data data
where:
Dn = Data register, DO-D7.
An = Address register, AO-A7.
a8 = 8 bit signed displacement.
die = 16 bit signed displacement.
Xn = address or data registers used as an index register, form is Xn.SIZE*SCALE, where:
SIZE is W or L (indicates thahe index registeris a signedword (W) or long word
(L))
SCALE is 1, 2, 4 or 8 (the value in the index register is multiplied by SCALE).
bd = a signed 16 or 32 bit displacement.
od = a signed 16 or 32 bit displacement.
data = an 8, 16 or 32 bit integer.
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alé
a32

For the complicatedaddressingnodes: (bd,An,Xn), ([bd,An],Xn,od), ([bd,An,Xn],od), (bd,PC,Xn),
([bd,PC],Xn,0d) and ([bd,PC,Xn],od) all of the operands (bd, od, An and Xmpaieal,if anoperand
is left out, the value of the operand is assumed to be zero.

a signed 16 bit address.
a 32 bit address.

Becausethe ABC machinedoesnot have arrays,we will not use the indexing addressingnodes.But
because the index registen® optionalin someindex addressingnodes,they may still be usefulwithout
index register. By leaving out the index registerswe get two addressingmodes: ([bd,An],od) and
([bd,PC],0d). For both addressingnodesthe addressed/alue can also be addressediy two register
indirect addressing modes. For example, instead of:

ADD.L ([8,A0],4),D0
we can use:

MOVEA.L  8(A0)Al
ADD.L 4(A1),D0

Strangelyenoughthe two registerindirect with displacemeninstructionsare executedasterthan the one
memory indirect instruction. Therefore,and also becausethe length of both instruction sequencegthe
numberof instruction words) is the same, it is better not to use theseaddressingmodes. Although
sometimes an additional address register (Al in the example) is necessary.

For these addressing modes ( ([bd,An],od) and ([bd,PC],od)dishacement¢bd and od) are optional.
If one or two of these displacements are left out, the exedirtes of two registerindirect (possiblywith

displacement)nstructionsare still betterandthe instructionlengthsare still the same.So thenit is also
better to use two register indirect (possibly with displacement) instructions.

But in the case of memory indirect addressing, the displacement(s) may beolatsy andfor the register
indirect with displacement addressing modedisplacementsnay not be a long word. But we will never
have to use long word displacements. So we will never use the memory indirect addressing mode.

We will also not use the absolute short and absdiuig addressingnodes,becausen the Macintoshwe
canonly usethemto accesghe Macintoshsystemvariables,not to accessapplicationvariablesor code.
This is becausehe operatingsystemmay load a programanywherein memory,but cannot calculatethe
absolute addresses. But on other machines the absolute addressing modes may be useful.

Therefore the addressing modes we will use in the code generator are:

Name: Assembler syntax: Result (in C):
Data register direct Dn Dn

Address register direct An An

Address register indirect (An) *An

Address register indirect with postincrement(An)+ *An++
Address register indirect with predecrement-(An) *--An
Address register indirect with displacement (d16,An) or d16(An) *(d16+An)
Program counter indirect with displacement (d16,PC) *(d16+PC)
Immediate #data data

2.3.4. The MC68020 instruction set.

Below the instructions of the MC68020 are described which are useful for implementkigGhaachine.
If an operationcanbe performedin severalways usingone MC68020 instruction, it is describedwhich
instruction is the most efficient.
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The MOVE instruction.

MOVE <sea>,<dea> moves(copies)<sea> t0 <dea>. The sourceeffective address(<sea>) may be any
addressingnode. The destinationeffective addresg(<dea>) may not be an immediatevalue or usethe
programcounter,for example(d16,PC)is not allowed. All operandsizes (byte, word and long) are
allowed.In MC68020assemblethesesizesare expressedvith a.B (byte), .w (word) or .L (long) after
the instruction, thusiOVE.B MOVE.Wor MOVE.L Without such an extensidhe operand(sjre assumedo
be words.

If the <dea> is an address register, the instruction is calle’lEA <sea>,An . FOor MOVEAOperandsize byte
is not allowed. If the operand size is word, the word is sign extendeldrig &ord andthis long word is
stored in the address register.

Instead of uSINWIOVE.L #i,Dn it is better to us®OVEQ#i,Dn if i is between-128and127. This MOVEQ
instruction is faster and the instruction consists of only 1 word, instead of 3 words.

Also MOVE #0,<ea> canbe replacedby the fasterandshorterCLR <ea>. For CLR all operandsizesare
allowed. CLR An is not possible,so this improvementis not possiblefor MOVEA but insteadwe can
subtractan from itself, resulting in zero, witBUB.L An,An . (InstructionsuBis described below)

The other data movement instructions.

With MOVEM registerlist,<ea> selected registetare storedat consecutivanemorylocationsstartingat
the location specified byea>. Address register indirect with postincrement, regigdiesct,immediate,and
addressing modes using the program counter are not alloweshfor

With MOVEM <ea> registerlist selected registers are loaded from consecutive melmcagionsstarting
at the location specified Bya>. Address register indirect with predecrement, regditect andimmediate
addressing modes are not allowed<es>.

The registers are stored in memory in the order from MW/tcandthenfrom AO to A7. The operandsize
may be word or long word.

TheLEA <ea>,An instruction loads the address of thigectaddressedby <ea> (suchanaddresss called
an effective address by Motorola) in registerAn. The operandsize is alwayslong and for <ea> register
direct, immediate, postincrement and predecrement addressing modes are not allowed.

The PEA <ea> instructionpusheshe effective addresscea> onto the stack. The operandsize is always
long and the same addressing modes are allowed iesAfor

TheEXG Rn,Rm instruction exchanges the contents of registelmndrRm ForRn and Rmdataregistersand
address registers are allowed. (exchangingdaresgegisterand a dataregisteris possible)The operand
size is always long.

The ADD and SUB instructions.

ADD <sea><dea> addsthe<sea> to the <dea>. The <sea> or the <dea> (at leastone)hasto be a data
register or an immediate value. Immediate and PC relative addressing modes are notailtveediea>,
if the <dea> is an address register, the instruction is callzoa (see below) All operand sizes aidowed.
If the <sea> is an immediate value, the instruction is calew!.

For all operandasizesADD #n,Dn canbe replacedby the fasterand shorterADDQ #n,Dn if n is betweenl
and 8.

ADDA <sea>,An addsthe <sea> to An. Operandsizesword andlong areallowed, if the operandsize is
word, the<sea> word is sign extend to long and then added to the whole (long) address register.
Again ADDA #n,An can be replaced by the faster and shaeq #n,An if n is between 1 and 8.

To adda 16 bit signedimmediatevaluen (not betweenl and 8) to an addressregister, it is fasterand
shorter to US@DDA.W #n,An Of LEA n(An),An  thanADDA.L #n,An .
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For sup suBl, suBQandsuBAthe same addressing modesallowedasfor ADQ ADDI, ADDQand ADDA
but now the<sea> is subtracted from thelea>.

The CMP and TST instructions.

CMP <ea>Dn compares theea> toDn, i.e. it subtractghe <ea> from the valuein Dn, but doesnot store
the result irbn. All operand sizes are allowed.

CMPA <ea>,An compareshe <ea> to An. Operandsizesword andlong word are allowed. If the operand
sizeis word, the <ea> signedword is sign extendedo long and comparedto the whole (long) address
registeran. To compare An with a signed 16 bit integeit is faster and shorter to uSBIPA.W #n,An then
CMPA.L #n,An .

CMPI #n,<ea> compares the immediate valugith <ea>. For<ea> immediateand addresgegisterdirect
addressing modes are not allowed. All operand sizes are allowed.
For all operand sizesvpP #0,<ea> can be replaced by the faster and sha@r<ea> .

The MULS and DIVS instructions.

MULS.L <ea>,Dn multiplies the signed long word bn by the signed long worgka>.

DIVS.L <ea>,Dn divides the signed long word m by the signed long woreka>.

DIVSL.L <ea>,Dr:Dg  divides the signed long word by by thesignedlong word <ea>, the remainderis
stored inDr. There is no instruction to calculate the remainder without also calculating the quotient.

For all three instructions <ea> can not be an address registavi6@020doeshaveother multiplication
and division instructions, but we will not use them.

The EXT instruction.

EXT.W Dn sign extends the byte bn to a word. (bit 7 is copied to bits 8-15)
EXT.L Dn sign extends the word in to a long. (bit 15 is copied to bits 16-31)
EXTB.L Dn sign extend the byte bm to a long. (bit 7 is copied to bits 8-31)

The NEG and NOT instructions.

NEG <ea> negates (subtracts from zero) tea>.

NOT <ea> complements (changes all bits, or subtracts from -1Jete

For both instructions addressgisterdirect,immediateand PC relative addressingnodesare not allowed
for <ea>, all operand sizes are allowed.

The AND and OR instructions.

AND <sea><dea> andsthe<sea> to the <dea>. The <sea> or the <dea> (at leastone)hasto be a data
register or an immediate value. Both thlea> and the<sea> may not be an address register, for4ten>

immediateand PC relative addressingmodesare also not allowed. All operandsize are allowed. If the
<sea> IS an immediate value, the instruction is calieid!.

For OrRandORI the same addressing modes are allowed as\foandANDI, but now the <sea> is oredto
the<dea>.
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The EOR instruction.

EOR <sea><dea> exclusive-orsthe <sea> to the <dea>. The <sea> hasto be a dataregisteror an
immediate valuefor the <dea> addressegistersdirect,immediateand PC relative addressingnodesare
not allowed. All operandsize are allowed. If the <sea> is an immediatevalue, the instructionis called
EORI.

The shift instructions.

LSL #n,Dy  shifts data registawy n bits to the leftn must be between 1 and 8.

LSL Dx,Dy shifts data registayy Dx (modulo 64) bits to the left.
Zero bits are shiftedin from the right. The operandsize is alwayslong. The MC68020 can also shift a
word in memory by one bit, but these instructions will not be used.

ForLsR, ASL andAsSRthe same addressing modes are possible asifor

AsL alsoshifts left, but doesnot clearthe overflow flag, but setsit if the sign bit (most significant bit)
changes during the shift, otherwise clears it. Becasseas fasterthan ASL and becauseve don't needto
know whether or not an overflow occurs, we will always iLge

LSR shifts to the right. Zero bits are shifted in from the left.

ASRshifts to the right. Sign bits (most significant late shiftedin from the left, so thatthe sign doesnot
change during the shiftSris faster thamsr but the result is not the same for negative integers.

Unconditional branch instructions.

BRA <label> branches to (continues executiontat) <label> , i.e. the addresf the <label> is loaded
into the PC (Program Counter). This address is specified by a displadeoneitite PC. And this address
is calculatedby addingthe PC+2 (i.e. the value in PC after fetching the first instruction word) and a
displacement.This displacementmay be a signed byte, word or long. For small displacementshe
instruction is shorter, but just as fast as for long displacements.

BSR <label> callsthe subroutineat <label> ,i.e. it doesthe sameasBRA <label> , but first pusheshe
addresof the instructionafter this (BSR instructiononto the systemstackby subtractingd from SP and
moving the address to (SP). Again the instruction is shorter for small displacements, but just as fast.

JMP <ea> jumps (continues execution at) the addi@ssea>, i.e. the addresf <ea> is loadedinto PC.
For <ea> the following addressingnodesare not allowed: (data and address)register direct, address
register with post- or pre-increment and immediaé®. d16(PC) can be replaced byBRAinstruction,this
is faster and just as long, or shorter if the displacement is a signed byte.

JSR <ea> callsthe subroutineat address<ea>, i.e. it doesthe sameas JMP <ea>, but first pushesthe
addresof the instructionafter this (JSR) instructiononto the systemstackby subtractingd from SP and
moving the addresgo (SP). The sameaddressingnodesare allowed as for JMP. JSR d16(PC) canbe
replaced by @&sRinstruction, this is faster and just as long, or shorter if the displacement is a signed t

RTSreturns from subroutine, i.e. (SP) is moved to PC and 4 is added to SP.

Conditional instructions.

Bee <label> branchedo the <label> if the conditioncc is true. cc canbe any condition described
below. Just like foBRAthe label is specified by a displacement which is added to PGhadplacement
may be a signed byte, word or long. For small displacements the instruction is shorter.
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If the branch is taken (the conditionis true), the instructionis just asfastfor shortdisplacementssfor
long displacementsBut if the branchis not taken, the instruction is a little bit faster for shorter
displacementsFor byte displacementsa not taken branch is faster than a taken branch, for word
displacements the difference is small, and for long displacements there is no difference in speed.

DBcc Dn,<label>

teststhe conditioncc andthenif the conditionis false, decrementgsubtractsl from)

Dn and then ibnis not equal to -1 branches to tiebel> . The displacementhich is addedto PC must

be a word.

Scc <ea> sets all bits of theea> to one (the byte to -1) if the conditien is true, otherwiseto zero. The
operand sizés alwaysbyte. Addressregisterdirect,immediateand PC-relativeaddressingnodesare not

allowed for<ea>.

The condition codes.

The possible condition codes are:

EQ equal (=)

NE not equal (=)

GT greater than (signed >)

GE greater or equal (signeqg

LE less or equal (signeg)

LT less than (signed <)

HI high (unsigned >)

CCOrHs carry clear or high or same (unsigred
LS low or same (unsignes)
CsorLo carry set or low (unsigned <)
PL plus &0)

MI minus (<0)

vC overflow clear

VS overflow set

T true

F false

Bcc afterCMP <sea>,<dea> branches ikdea> cc <sea>, for example

CMP.L #1000,D0
BGT label

branches ibo GT#1000 (DO greater than 1000).

Of the instructions described above the following instructions set the condition codes: (some dori se
flag, which can be usedfor multiprecisionand mixed size arithmetic, but none of the conditions and
instructions described above depends on this flag)

MOVE, MOVEQ, CLR, ADD,
CMPA, CMPI, TST, MULS,
NEG, NOT, AND, ANDI,
LSL, ASL, LSR, ASR

andADDQandSUBQto a data register.

ADDI, SUB, SUBI,
DIVS, DIVSL, EXT,
OR, ORI, EOR,

Note that the following instructions don't set the condition codes:

MOVEA, ADDA, SUBA, _
andADDQandsSUBQto an address register.

MOVEM,

LEA, PEA, EXG,
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2.3.5. Example of MC68020 code of a Clean function.

The MC68020which is generatedoy the ABC compiler describedin this paperfrom the ABC codein
section 2.2 for the function fac is: (see appendix A for more examples)

IFac:

BRA
nFac:
MOVEA.L

MOVEA.L
m.1: LEA

MOVE.L

MOVE.L
BEQ
MOVE.L
MOVEA.L
MOVEA.L

JSR
MOVEA.L

MOVEA.L
eval_0:
MOVE.L

MOVE.L
BSR

MOVEA.L

MOVE.L
CLR.L

MOVE.L
MOVE.L

MOVEA.L

RTS
sFac.1:

TST.L

BNE
m.2:

MOVEQ

RTS
sFac.2:

MOVE.L

SUBQ.L

BSR

MULS.L
RTS

m.1
8(A0),Al1

(A1),A1

_cycle_in_spine,A2

A2,(A0)

(A1),D6
eval 0
A0,-(A3)
Al1,A0
D6,Al

(A1)
AO0,AL

(A3)+,A0
AO,-(A3)

8(Al1),DO
sFac.1

(A3)+,A0

A0,D1
(AD)+

#INT+0,(A0)+
DO,(A0)

D1,A0

DO
sFac.2

#1,D0
DO,(Ad)+
#1,D0

sFac.1

-(A4),D0

; apply entry : 'Fac' node in register A2,
argument n node in register Al and node
to be overwritten by result on the A-

stack in register AO
; jump to label m.1
; hode entry : 'Fac n' node in register AO

; move pointer to argument part of node to
Al

; move argument n to Al

; load address of _cycle_in_spine code in
A2

; store _cycle_in_spine as evaluation
address to detect cycles in the spine of
the graph

; load reduction address of n

; branch if reduction address = _hnf (0)

; save register AO

; move argument n node to AO

; move evaluation address of n to address
register

; evaluate argument n node

;move address of evaluated argument n
node to Al

; load register AO

; push node to be overwritten by result on
the A-stack

; load evaluated integer n in DO

; call strict entry of Fac to compute Fac
nin DO

; load address of node to be overwritten
by result in AO

; copy address of result node to D1

; overwrite node to store result, first
store evaluation address,

; then the descriptor of an integer node,

; and finally the integer in DO (the
result of Fac n)

; return the address of the result node in
A0

; return, with result in AO

;nequal 07?
; no, jump to label sFac.s

; return 1 in DO
: return

; push n on the B-stack

; Subtract one from n in DO

; call strict entry of Fac to compute Fac
(--I'n) in DO

; multiply result by n to compute Fac n

; return, with result in DO
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2.3.6. The MC68020 cache.

To improve the performance of the processor, the MC68020 has an instaacieDuring the execution
of an instruction the processor tries to prefateifollowing words in the instructionstream.The cacheis
used to store these prefetched words.

The cachecontainsa high speedmemoryof 64 long words. Every time an instruction fetch occurs, the
processofirst checksif the word requiredis alreadyin the cache.lf it is, the word doesnot haveto be
fetchedfrom memory.Otherwisethe long word, which containsthis word, is fetchedfrom memoryand
stored in the cache.

This cache speeds up small loops and small recursive functions, because instrutti®le®mhaveto be
fetched from memory only once.
Only instructions are stored in the cache, other memory accesses don't use the cache.

2.3.7. MC68020 instruction execution timing.

The number of memory accesses to fetch or write a word or long word depends ondhéhenatabus.

For the MC68020the databus canbe 8, 16 or 32 bits wide, | will assumat is 32 bits wide, becauset

usually is (also on the Mac II). Then the number of memory accesses to fetch or write:

- a byte is 1.

- a word is 1, if the word is word aligned (at an even address), otherwise 2.

- a long word is 1, if the long word is lovgord aligned(at an addresswvhich canbe divided by 4),
otherwise 2.

If memory can be accessed without wait states, every memory access costs 3 clock cycles. Thetoac
words which are not word alignedandlong words which arenot long word aligned cost 3 clock cycles
extra. Therefore it is important to align words and long words.

The number of memory accesses necessary to fetch an instdepiendson the length of the instruction,
whetheror not the instructionis long word aligned, and on the contentsof the cache.(seealso section
2.3.6) Nearly all instructionsonsistof oneword (sometwo words), and 0-4 effective addressextension
words. The number of effective address extension words depends on the addressinghicbdes used
in the instruction. (see table below)

Exact instruction timing calculations for the MC68020 are difficult because of:
- an instruction cache and instruction prefetch.

- operand misalignment.

- instruction execution overlap.

Therefore[Motorola 1985] only gives executiontimes for a machinewith 32-bit databus,no wait state
memoryandlong word alignedoperandsand stack.For everyinstructionit gives 3 executiontimes: the
best case, the cache case and the worst case. Cache case tiesnstasctionis alreadyin the cache,so
that no extra clockyclesare necessaryo fetch the instruction,andthat no executionoverlapoccurswith
other instructions. Best case execution time®ésn betterthan cachecasedueto executionoverlapwith
other instructions. And worst case executiomes are often worsethan cachecasebecausehe instruction
hasto be fetched.l will usethesecachecaseinstructiontimesbecausef the cacheis effective, this will
usually be the most accurate time.

In the following table for the addressing modes used by the code generator the following is indicated:
- the fetch effective address (FEA) time in clock cycles.

- the calculate effective address (CEA) time in clock cycles.

- the fetch immediate word effective address (FIWEA) time in clock cycles.

- the fetch immediate long effective address (FILEA) time in clock cycles.

- the calculate immediate word effective address (CIWEA) time in clock cycle.

- the number of effective address extension words.
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These times can be used to calculate the cache case execution time together with the second table b

Addressing FEAtime

mode:
Dn

An

(An)

(An)+
-(An)
(d16,An)
(d16,PC)
#<data>.B
#<data>.W
#<data>.L

ANNOOIOIOIRMRMOO

The number of clock cycles needed to execute the following instruction are: (the rmiroloek cyclesfor

CEAtime

PNNNDNDNNOO

N

toroio b

FIWEA time FILEA time

CIWEA time extension

words
4 2 0
- - 0
4 2 0
8 4 0
7 ? 0
7 4 1
- - 1
- - 1
- - 1
- - 2

the other instructions can be found in appendix B)
(Rn meansAn or Dn, <mea> means memory effective address, not a register)

MOVEQ #<data>,Dn
ADDQ #<data>,Rn
SUBQ #<data>,Rn
EXG Ry,Rx

MOVEM <ea>,register list
MOVEM register list,<ea>
ADD <ea>,Dn
ADDA <ea>,An

SUB <ea>,Dn

SUBA <ea>,An
CMP <ea>,Dn
CMPA <ea>,An

LEA <ea>,An
MULS.L

DIVS.L

TST <ea>

CLR Dn

CLR <mea>

BRA

BSR

JMP (d16,PC)

JSR (d16,PC)

LSL #n,Dy

LSL Dx,Dy

ASL #n,Dy

ASL Dx,Dy

2

2

2

2

8 + CIWEA time + 4 * number of registers
4 + CIWEA time + 3 * number of registers
2 + FEA time

2 + FEA time

2 + FEA time

2 + FEA time

2 + FEA time

4 + FEA time

2 + CEA time

43 + FIWEA time

90 + FIWEA time

2 + FEA time

2

4 + CEA time.

6

7

? (probably 8, same asIP (d16,An) )
? (probably 9, same asIP (d16,An) )

[ocjoclNop NN

The number of clock cycles needed to executetheEandMOVEANStructions are:

Source

An Or Dn

(An) or (An)+
-(An) Or(d16,An)
#i<data>.B , #<data>.W
#<data>.L

or (d16,PC)

Destination:
An Or Dn

OEA~NON

(An) Or (An)+ An) or (d16,An)

(
4 5
7 7
8 8
6 7
8 9
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Using these tables we can conclude that:

Accessto registersis a lot fasterthanmemoryaccessFor exampleto adda valuein a registerto
another register costs 2 clock cycles, while adding a valogemoryusing (An) to a registercosts
6 clock cycles.

Predecrementin-(An)) or postincrementing(An)+) an addresgegisterbefore addressings not
much slower thanwithout predecrementr postincrementFor exampleMOVE.L (A0)+,D0 IS just
as fast asIOVE.L (A0),D0 andMOVE.L -(A0),D0 takes only 1 clock cycle more.

Using a 16 bit displacement ((d16,An)) is often only 1 clogtle more expensivehannot usinga
displacement ((An)). But because thetructionis oneword longer, the differenceis biggerwhen
the instruction is not yet in the cache.

The MOVEQADDQaNdSUBQto a register are three timesfast and shortthanthe normalMOVE ADD
andsuBinstructionsADDQaNndsSUBQto a value in memory are also faster and shorter.

For long word values between -128 and 127 it is often faster and shorter first tch@oatiein a
data register using MOVEQand then do the operation,insteadof doing the operationwith an
immediate long addressing mode. For example instead of:

CMPI.L #100,D0

it is faster and shorter to use:

MOVEQ #100,D1

CMP.L D1,D0

The first instruction sequence costs 6 clock cycles, while the second costs 4 clock cycles.

CLR <ea> is faster thamoOVE #0,<ea> andTST <ea> is faster thaltMPI #0,<ea> .

CMP <ea>Dn is fasterthanCMPA <ea>,An , but for MOVE ADD and suB thereis no differencein
speed between data and address registers.

BRAIs faster thanmp (d16,PC) , andBSRis faster thansRr (d16,PC)

The multiply and division instructions are very slow compared totherinstructions.Multiplying
a data registers by another data register costs 45 clock cycles,dividion costs92 clock cycles,
but such an an addition or subtraction costs just 2 clock cycles.

LSL is faster tha’SL.
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3. Representing the ABC machine.

In this chapter is described how the data structures (heap, stacks etc.) used by thachB€Koopman
etal. 1990] arerepresentewn a registermachine,and then how they are representedn the MC68020
[Motorola 1985]. How nodesare representedn the heap,and why this representatiorwas chosen,is
described. Also the representation of strings is discussed.

3.1. The stacks.

The A, B andC stackof the ABC machinehaveto be storedin memoryon a registermachine.The best
representation of these 3 stacks is a contiguouso&ne@moryfor eachof them, with a pointerto the top
of the stack. (stackpointer)

Becausdhesestacksare usedvery often thesestackpointersshould be storedin registersratherthan in
memory. When pushingand popping valueson and off a stack, the push and pop instructionsof the
machine can be used, so that values can be pushed or popped with just one instruction.

3.2 The heap.

The heapis a contiguousareaof memoryin which nodesare allocated.Becausevery often spaceis
allocated on the heap, the pointer to the top of the heap is stored in a registemamabib®f free cellsin
the heap also in a register.

3.3. Representing nodes.

The representation of nodes should be so that:

- values stored in the node can be accessed fast.

- a node can be overwritten fast and by a larger node.
- garbage collection can be done fast.

Overwriting a small nodeby a large node causegroblems,becauseno memoryis availablefor the extra
arguments. This problem issually solvedby creatinga new (large) nodeand overwriting the small node
by anindirectionnode,which pointsto the large nodejust created But this makesacces4o nhodesmore
expensive, because sometimes a pointer chain has to be tradsedtie overwriting is more expensive,
because not only the new node has to be created, but also an indimed&gomhereforethis approachwas
not chosen.

Instead, justsfor the previousABC compiler (for the Sun) [Weijers 1990], the nodewas split into two
parts: a fixed size part and a variable size part [Nocker et al. 1991]. The fixpasizentainsthosefields
that must be present in every node and a pointer to the variabpesgiz€he variablesize part containsthe
argumentsof the node. Using this representatiora small node can be overwrittenby a large node by
creating anew variablesize part containingthe argumentsand overwriting the fixed size part of the small
node with the other fields of the large node and a pointer to the variable size part just created.

The advantages of this representation are:

- It is never necessary to traverse a pointer chain to access a node.

- If a nodeis overwrittenby a largernode, creatingthe nodeis lessexpensivan time, becauset is
now not necessary to create an indirection node.

- No memory is used for indirection nodes.
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- Arguments can be shared between nodes, so that nodes with mosadlaagumentcanbe copied
faster,becausdhe argumentsion't haveto be copied,but just the fixed size part. But this hasas
disadvantagehat, if a nodeis overwrittenby a nodewhich is smalleror of the samesize, the
arguments of the node may not be overwritten. So that a new variable size patienaotmatedin
the heap.

The disadvantaged of this representation are:

- One extra memory access is necessary to access the arguments of a node.

- Nodes are a little bit larger, because they now also contain a pointer to the variable size part.

- Becausenodesare larger, creatinga node is more expensivein time, exceptwhen a node is
overwritten by a larger node. (see above)

Basicvaluenodes,i.e. integer,characterpoolean,real and string nodes,don't have argumentsso the
pointer to the variable size part does$wveto be storedin the fixed size part. If the valueto be storedin
the basic value node (e.g. 3 for an integer 3 node) can be stored irofdivesamenumberof bytesthan
a pointer,no variablesize partis necessaryBecausan that casethe memorylocation(s)in the fixed size
part, normally occupied by the pointer to the variable size parsadto storethis value. This canusually
be done for integer, character and boolean values. Because therargablesize partin sucha case,the
disadvantages described abalan't apply to thesenodes.But if the valueto be storedin the basicvalue
node can not be stored in the number of bytes necesssiyréa pointer, thena variablesize partis used
to store thisvalue. And a pointerto this variablepartis storedin the memorylocation(s)in the fixed size
part normally occupiedby the pointerto the variable size part containingthe argumentsUsually this is
necessary for real and string values.

The other information (beside the arguments) we have to be able to retrieve from a node is:

- the address of the reduction code.
If the node is notyet) in headnormalform, this locationis usually accessedhreetimes:first it is
used to reduce the node, then it is overwritten to detect cycles in the spingmafghandthenit is
overwrittento preventreducingit again. After the node has beenreducedthis location may be
accessed many more times. So it is important that this location can be accessed very fast.

- the symbol of the node. (for example INT or CONS)
This symbol is used during pattern matching and access should therefore be very fast.

- the address of the apply reduction code.
This address is used to reduce an APply of a node. (for curried applications) lisedotten and
therefore access doesn't have to be fast.

- the number of arguments of the node.
This informationis necessaryor the garbagecollectorandsomeABC instructionswhich are not
executed very often, for exampléd_args , del_args andget_node_arity . Becausdhe garbage
collector uses this information accdsssto be fast, but doesn'thaveto be asfastasaccesdo the
address of the reduction code and the symbol of the node.

- the arity of the symbol.
This informationis necessaryor the ABC get_desc_arity instruction, which is not usedvery
often. Access doesn't have to be fast.

- the string representation of the name of the symbol. (for example "INT" or "CONS")
This string is used to print nodes witle ABC print_symbol  instruction.Accessdoesn'thaveto
be fast.

Access to the address of the reduction code ansytihéol of the nodeshouldbe very fast, thereforethey
should be stores in the (fixed size part of) the node.

The address of the apply reduction code, the arity of the symbol and the string representation ofaffie i
the symbolonly dependon the symbol. For every symbol this information could be storedin a record.
Every nodeshouldthencontaina pointer to the record of the symbol of the node. Then to accesshis
information an extra memory access is necessamthis is no problem,becausehis informationdoesn't
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have to be accessed fast. Using such a pointer is faster than storingrddirthationin the node,because
the pointer is smaller than the record, and therefore the nodes will be smaller andreateokaster. This
record is called thsymbol record.

Only the number of arguments has not yet been stored. We don't want to store thioatetihecausahe
number of arguments is not accessedy often andthis would makethe nodeslarger. We can't storethe
numberof argumentsn the symbol record, becausenodeswith the samesymbol can have a different
numberof arguments.To solve this we could make a recordfor every numberof argumentsput this
would cost to much memory.

A better solutionis to make(for everysymbol) an arraywith an elementfor every numberof arguments.
Every element of the array contains the number of arguments and a poihesstaotof the corresponding
symbol record. (the same for eveslgmentof an array) The first elementof the arrayis for O arguments,
the second element for 1 argument, etc. The elements aredestigdtor el ements.

Now the pointer in the node which points to the symbol record shoukplseedby a pointerto the array
element (the descript@ement)which containsthe numberof argumentf the nodeanda pointerto the
symbol record. This of course means thetesgo the symbolrecordnow requiresan additionalmemory
access, but this is not a problem, because the information in the sgotildoesn’thaveto be accessed
fast. The address of a descriptor element will be calldesariptoraddressNote that whenthe numberof
arguments of a node is changed, for example adidhargs ordel_args , the address of therray element
can be calculatedby adding the size of an element* (numberof arguments- previous number of
arguments) to the old address.

The symbolof the nodeis only usedduring patternmatching.Becausewe always know the numberof
arguments of a node during pattern matching, we can just as well use the address of the arrap ¢heme
node for pattern matching. Then we don't have to store the symbol of the node in the node.

Consequently, we use the following data structures:

1. The fixed size part of a node consists of:

- the address of the reduction code.

- the descriptor address.

- the addressof the variablesize part of the node,which containsthe argumentsor a basic
valuefor a basicvaluenode.For a basicvalue nodefor which the size of a basicvalue is
smaller than or the same as the size of a pointer, the basic value is stored in this locatic

2. For every symbol there exists an array of [ O .. arity ] elements. Element number n consists of

- the number of arguments. (n)

- a pointer to the symbol record of this symbol.

3. For every symbol there exists a symbol record consisting of:

- the arity of the symbol.

- the address of the apply reduction code.

- the string representation of the name of the symbol.
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Address of the reduction code Descriptor address Address of the variable size plart

~_ 1

\ Argument 1 Argument n
Number of aguments (0) | Address of the symbol recor[d Number of aguments (n) | Address of the symbol reco
Arity of the symbol Address of the apply code Name of the symbol

If the register machinefficiently supportsaddressarithmetic,the array can be representeanore compact.
(see section 3.5)

3.4. Representing strings.

Possible string representations are:

- An array of characters which ends with a special character to indicate the end of the string.
- The length of the string and an array of characters.

- A list of characters.

- More complex representations, for example a list of arrays of characters.

A list of characters is not a goodpresentationpecauset usestoo muchmemory.For every characteiof
the string not only memoryhasto be allocatedfor the characterbut also for a pointer, which usually
occupies 4 times as much memory as a character.

More complex representationgould result in faster executionthan the other representationshut are
difficult to program and often use too much memdatrys probablynot worth while to spenda lot of time
on designing and programming a complex string representation, béoausest programsstringsare not
very important.

The other two string representations don't use a lot of memory.

Using a special character to indicate the end of the stringdvasaldisadvantagesomparedo storingthe
length:

- The length of the string cannot be calculatedvery fast. To calculatethe length of the string, the
whole string has to be scanned.This also causesproblemswhen concatenatingtwo strings.
Because if wdirst calculatethe lengthsof the strings, the concatenationvill be slower. But if we
don't, we don't know in advance how much memory has to be allocated.

- A string cannot be copiedasfast, which makesthe garbagecollectorslower. If we use a special
end character, we can only copy a string character by character. If we knengtmef the string,
we canoften copy many characterat once.If for example4 charactersre storedin one machine
word, we can copy 4 characters at once.

- The string may not contain this special end character.

The advantages of using an end character are:

- A few bytes less memory is used.
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- The last part of the string may bhared.If a new string hasto be build which is the last part of a
string, the string doesnot haveto be copied, but the last charactersof the string and the end
charactercan be shared.For the ABC machinethis is usually not useful. Although the ABC
instructionslices could be executed faster if the slice is the last part of the string.

Because the only important advantage of using an end character is that itevedy@slessmemory,we
will not use this representation, but use the representation which includes the length of the string.

Consequently, a string consists of:
- a word which contains the length of the string. (in characters)
- an array of the characters of the string.

This string representation has also been used for the ABC code generator for the Sun [Weijers 1990

Strings are allocated in the heap. A stimagle consistsof a normalfixed size part, exceptthat the pointer
to the variable size part points to the string.

3.5. Representation on the MC68020.

In this section | will explain how theepresentationfor registermachinesdescribedaboveare represented
on the MC68020. And also how theserepresentatiorcan be improved by using MC68020 specific
properties, like efficient address arithmetic and efficient access to both words and long words.

The MC68020 has two sorts of registers: address registers and data registers. Onlyegisterssan be
used to access memory (see section 2.3.3), therefore the stackpointers gradrtecghouldbe allocated
an addressregister. To implementthe ABC instructionsjsr , jsr_eval andrin efficiently, the C-
stackpointer should be allocated regit@; becausehe MC68020JSR, BSRandRTS instructionsuse A7
as stackpointer to push or pop the return address. For the A- and B-stackpmidtezappointerany free
address register may be chosen.

The C-stackgrows in the directionof low memoryaddressesbecause¢he MC68020 systemstack (A7)

grows in this direction. For the A-stackand B-stackboth directionscan be chosenjust as well. But by

letting one stack start high memoryandgrow in the directionof low memoryaddressesand letting the

other stack start low in memory and grow in the direction of high meadunlyessespne of the stackscan
become larger if the other one is small. Adsstackcheckcanbe implementednore efficiently, by testing
that the stackpointer which started high in memory is still higher thte@ameas the other stackpointer.
In this implementationthe A-stack startshigh in memory and grows in the direction of low memory
addresses, and the B-stack starts low in memory and grows in the diredtigh ofemoryaddressedyut

this could just as well have been the other way around.

The numberof free long words in the heapcan better be storedin a dataregister,becauseo allocate
memory in the heap, we subtract the number of long words we want to aftocatthis register,andthen
test if the garbage collector should be called by testing if the result beemgag/e(seesection6.9). If we
would use an address register for the number of free long words, we would need an extra instiestior
if the result became negative, becauseMi@68020doesn'tsetthe condition codesfor a subtractfrom an
address register. Another reason to use a data register is that, because the stackpointerganieireeap
stored in address registers, there are not so many address registers left, but all data registers are sti

Becausehis implementatioris for the macintoshregisterA5 cannot be used,becauset is usedby the
Macintosh to access the jump table and data.On othermachineghis is not necessarybut thenit may
still be usefulto let an addresgegisterpoint to the dataarea,becausdhenvaluesin the dataareacan be
accessedaster using the d16(An) addressmode instead of using the absolute address,becausea
displacements only 16-bitsandan address32-bits. In that casethe dataareashould not be larger than
64K. On the macintosh the data area can not be larger than 32K, bunthtia [sroblem,becausehe data
area is only used for descriptor elements, symbol records and constant strings, not for the heap and
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In this implementation the following registers were used:

A3  A-stackpointer.

A4 B-stackpointer.

A5  data pointer, points to global data area.

A6  heap pointer, pointers to the top of the heap.
A7  C stackpointer.

D7  number of free long words in the heap.

The representatiorof nodesfor register machinesdescribedin section 3.3 can be improved for the
MC68020. This is so because descriptor elements are located in the datathegghesdescriptoraddress
canalsobe representedby a 16-bit offset from the startof the dataareainsteadof a 32-bit address.This
would reduce the size of the representation of a descriptor address from 32 bits to 16 bits.

Using this representatiompatternmatchingcan be done faster. Becausef we now have to comparea
descriptoraddress,we can comparewords (using CMPL.W) insteadof comparinglong words (using
CMPI.L), which is faste(see2.3.4 and2.3.7). But usingthis representatiomnvould slow down accesgo
the descriptor elemenBecauseafter loadingthe offset of the descriptoraddresdrom a node, the startof
the dataareahasto be addedto this offset to obtain the descriptoraddress(the start of the dataareais
always stored in register A5 on the Macintosh) Because the descriptor addresses are mdorlypaterh
matching, and access to the descriptor element is not requiredfiemythe representatiomsing an offset
is better. The offset to the descriptoraddress(addressof the descriptorelement)will be called the
descriptor.

Consequently, a node is represented in the heap by: (in this order)

- 4 bytes: The address of the reduction code.

- 2 bytes: Not used. (filled with -1) Necessary to maintain long word alignment.

- 2 bytes: The descriptor.

- 4 bytes: If it is an integer, character or boolean node: an integer, character or boolean.

If it is arealor string node:a pointerto areal or string. The real or string is also
stored in the heap.

Otherwise: a pointer to the argument(s)of the node. The argument(s)re 4 byte
pointersto nodesand are also storedin the heap.If thereare no argumentsthis
value is undefined, butasto be allocatedso that this nodecanbe overwrittenby a
node with arguments.

The representatiorof descriptorelementsfor register machinesdescribedin section 3.3 can also be
improvedfor the MC68020. This is so becausethe MC68020 supportsaddressarithmetic efficiently.
Thereforethe descriptorelementscan be representednore compact. This can be done by storing the
symbol record just before the array of descriptor elements. Then the end of the iI®goimbdan be found
usingthe numberof argumentsstoredin the descriptorelement,becausehe end of the symbol record =
addressof the descriptorelement- (numberof argumentsstoredin the descriptorelement* size of a
descriptorelement).Now we no longerhaveto storethe addressof the symbol recordin the descriptor
element.

But eventhis representatiorcan be improved by not storing the numberof argumentsn the descriptor
element, but instead store the number of arguments * sedescriptorelement.Thenthe end addresof
the symbol record can be found faster (because the end of the symbol record is calculated byf dlelre
descriptor element - (number of arguments stored in the descriptor element * size of a descriptor eler

During the evaluationof curried function applicationsit is necessaryo compute:arity - 1 - numberof
argumentsthereforethis numberwas also storedin the descriptorelement.So now a descriptorelement
consists of the numbers: (array element number * size of a descriptor element) and (agtyay element
number). Both are stored in a word.

Finally, the string representation of the name of the symbol was not storedsymthel record, beforethe
array of descriptorelementsbut after this array. Otherwisea pointer to the string would have been
necessaryNow the addressof the string can be calculatedby: descriptoraddresst first two bytes of
descriptor element * 4 + second two bytes of descriptor element + 4.

25



Consequentlythe following representationvas chosenfor the symbolrecordandthe array of descriptor
elements:

- Symbol record:

- 4 bytes: address of the apply code of the symbol.
- 4 bytes: arity of the symbol.
- Array [ O .. arity ] of descriptor elements of:
- 2 bytes: array elementnumber(numberof argumentsof the node) * 4 (size of a
descriptor element).
- 2 bytes: arity - 1 - array element number (number of arguments of the node).

- String representation of the name of the symbol.

Address of the reduction code Address of the apply code
- - Symbol record (without name of the symb
-1 Descriptor ofsef Arity of the symbol
Address of the variable size plart 0 arity-1
4 arity-2
Array of descriptor elements
4*(arity-1) 0
4*arity -1
Argument 1 Length of the symbol name
Argument 2
Name of the symbol
Characters of the symbol narme
Argument n
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4. Run time system.

In this chapterthe run time systemis described.It explains how the garbagecollector has been
implemented, and what other things have been implemented in the run time system.

4.1. Garbage collection.

Becausdhe ABC machineassumeshereis an infinite heap,but a concretemachineonly hasa limited
amount of memory, it is necessary to recyolemory.Memory which is no longerusedshouldbe reused
again. Collecting the parts of the heap which are no longer used isgeatbade collection.

Garbagecollectionwill be doneby a copyinggarbagecollector,just as for the previousimplementation.
(on the SUN) [Weijers 1990]. The memory available for the heap is divided in two areaseallgces.
The nodes are stored ame semispaceWhenthe semispacés filled with nodes,all nodeswhich are still
needed for the execution of the program are copied totkiee semispaceandthis semispacdecomedhe
current semispace.

The advantages of this garbage collection method are:

- the garbage collection is fast.

- no overhead during execution of the program, like updating reference counters.
- garbage collection automatically performs compaction.

- all nodes which are no longer needed can be recovered.

The disadvantages of this method are:

- only half the memory can be used.

- garbage collection can cause long pauses during the main computation.

- when the heap becomes fuller, the garbage collection has to be done more often and will be s

4.2. Remainder of the run time system.

The remainder of the run time system consists of:

- Code to allocate and free memory for #tackandthe heap.Both the stacks,including the system
stack, and the heap are long word aligned (see section 2.3.7).

- Code to perform output to@nsole.A simple consolehasbeenimplementedwhich consistsof a
window in which text is displayed. The output producedby the ABC instructions print,
print_sc, print_symbol, print_symbol_sc and dump is displayedin this window. Input
from a console and input from and output to files still has to be implemented.

- Code to compute the execution time and the time spend collecting garbage using a timer.

- Subroutinesto implement string operationsand conversionsfor the ABC instructions: catS ,
sliceS , updateS , cmpS, eqS_a andfillS_symbol

- A subroutine to perform the reduction of AP nodes.
In the previousmplementation(for the Sun) [Weijers 1990] this was implementedusing the ABC
instructions get_node_arity , get desc_arity , push_ap_entry and add_args . All these
instructions have taccesghe descriptorelement,andtwo of theseinstructionshaveto accesshe
symbol record. But to perform the reductiohan AP node,all theseaccessebsaveto be donefor
the same node, so the address of the descriptor element was computed four timeaduréssof
the symbolrecordwas computediwice. The codegeneratoicannot detectthis, becausecommon
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subexpression elimination (see section 5.1.6) ha¢yro?) beenimplementedso someaddresses
were calculatedmore than once. By writing this code in assembly,these recalculationswere
eliminated, and the code for the reduction of AP nodes became faster.

- Subroutines to implement the ABC instructiogg:symbol , randoml , entierR  andhalt .

The code to perform input armitputto the consoleis written in C. All othercode,including the garbage
collector, has been written in MC68020 assembly language.
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5. Possible code optimizations.

In this chapter possible code optimizations for the implementation of the ABC machine on the Ma@80
describedThis is done by describinghow the code generatedoy a very simple code generatorcan be
optimized. With this very simple code generatorl meana code generatorwhich translatesevery ABC
machineinstruction one at a time to a fixed sequenceof machine code instructions(a kind of macro
expansion). The code generated in this way is note#igient, but we canusethis codeto examinehow
the code can be improved.

First general optimizations of ABC code are discussed. These are optimizations which can be pkrforr
nearly all machines to which we wabnttranslateABC code.Thenoptimizationsfor registermachinesare
discussed and finally MC68020 specific optimizations are discussed.

For mostoptimizationsshortexamplesare given. In theseexampleghe following registersare given the
following names:

A-stackpointer (A3) ASP
B-stackpointer (A4) BSP
C-stackpointer (A7) CSP
Heap pointer (A6) HP
Free long words counter (D7) FC

5.1. General code optimizations.
Optimizations which can be performed for implementations of the ABC machine on nearly all machine
5.1.1. Optimizing the creation of nodes.

The ABC instructiortreate  createsan empty node, by allocatingspacefor it on the heapandinitializing
the allocatednode. This initialization is necessarngo that the garbagecollector candeterminethat it is an
empty node.

But if anemptynodeis alwaysfilled by an ABC fill  instructionbeforea garbagecollectioncan occur,
initializing the node during a create is not necessary.

For example, MC68020 code for first creating and initializing, and then filling an integer node with val

* allocate 3 long words in the heap:

SUBQ.L #3,FC ; subtract 3 from the number of free long
words
BMI garbage_collect_1 ; if heap full, collect garbage
* create and initialize the node with empty:
MOVEA.L HP,AO ;move start address of new empty node to
A0
LEA reduce_empty,Al ; load empty node reduction address
MOVE.L Al,(HP)+ ; store  reduction address, reserve long
word
MOVE.L #empty _descriptor*4,(HP)+ ; store descriptor * 4, reserve long word
ADDQ.L #4,HP ; reserve long word in the heap
*fill the node:
LEA _hnf,Al ; load reduction address of integer node
(hnf)
MOVE.L Al,(AO)+ ; store reduction address in node
MOVE.L #integer_descriptor*4,(A0)+ ; store descriptor * 4 in node
CLR.L (A0) ; store integer value (0) in node
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After the optimization, so without initializing:

* allocate 3 long words in the heap:

SUBQ.L #3,FC
BMI garbage_collect 1
* create a node:
MOVEA.L HP,AQ
ADDA #12,HP
* fill the node:
LEA _hnf,Al
MOVE.L Al,(A0)+
MOVE.L #integer_descriptor*4,(A0)+
CLR.L (A0)

: subtract 3 from the number of free

words
; if heap full, collect garbage

long

;move start address of new empty node to
A0

reserve 12 bytes for empty node in the
heap

; load reduction address of integer node
(_hnf)

; store reduction address in node
; store descriptor * 4 in node
; store integer value (0) in node

For this examplethe optimizedcodeis about40 percentfaster (estimationcalculatedusing the execution

times in section 2.3.7 or appendix B).

Very often even this can be improved by postponing the creation of the nodéiito thestruction,so that
creating and filling the node can be done at once, which is faster than first creating a node and later f

For the same example as above, create and fill at the same time:

* allocate 3 long words in the heap:

SUBQ.L #3,FC
BMI garbage_collect_1
* create and fill the node:
LEA _hnf,Al
MOVE.L Al,(HP)+
MOVE.L #integer_descriptor*4,(HP)+
CLR.L (HP)+

; Subtract 3 from the number of free long
words

; if heap full, collect garbage

; load reduction address of integer node
(hnf)

; store reduction address in heap, reserve
long word

store  descriptor * 4 in heap, reserve

long word

; store integer value (0) in heap, reserve
long word

For this example the optimized code is about 20 percent faster than without ciedtifiopng at once,and
about65 percentfasterthanthe first examplewith creating,initializing and filling (estimationscalculated

using the execution times in appendix B).

It is not always possible to fill and create a noderaieif thereis a referenceo the addressof the created
node before the node is filled. In such a case the initialization after the creation is usuatly iséitessary.
Sometimes the order of the instructiara be changedso thatit is still possibleto fill andcreateat once,
but this is not possible fall nodesif therearecyclesin the graph.For the following examplethis is not

possible, because there is a cycle in the graph:

create

create

push_a 1

fill descriptor 1 1entry 11
push_a 0

fill descriptor_2 1 entry_2 2

|| create node 1
|| create node 2
|| copy node-id of node 1

[| fill node 2 with node 1 as argument
|| copy node-id of node 2

[| fill node 1 with node 2 as argument

In this example one of thereatescan not be postponedo the correspondindill, becausdo createone of
the nodes it is necessary to know the address of the other node.

30



If a node has to be created spacetbdse allocatedfor it on the heapby decrementinghe numberof free
cells in the heap and, if there are not enough free cells left, calling the garbage qeé=section6.9). If
morethanone nodehasto be createdthis canbe donefasterby allocatingspaceon the heapfor all the
nodes at once.

5.1.2. Jump optimization.

The Clean compiler often generates instruction sequences like:

jmp_false labell
jump label2
labell:

This can be replaced by:

jmp_true label2
labell:

If false was on the stack before the first jump instruction, the optimized code is usually ndasteckut
if true was on the stack, only one jump instruction has to be executed instead of 2 jump insteactioss,
is about twice as fast.

5.1.3. Strength reduction.

Integermultiplicationsby constantswvhich are powersof 2 can be optimized by replacingthem by shift
instructions, because shift instructions usually are much faster. On the MC68020LsIshiftstructionis
about 12 times as fast as a multiplicatimi(s.L) instruction.

Integer multiplications by small constantscan be optimized by using shifts and additions instead, for
example multiplying the value in machine regisieby 10 could be done with:

MOVE.L DO0,D1 ; copy the value to D1
LSL.L #2,D1 ; multiply D1 with 4, now D1 = 4 * DO
ADD.L D1,D0O ; add D1 to DO, now DO has been multiplied
by 5
ADD.L D0,DO ; multiply DO by 2, now DO has been

multiplied by 10

This is often fasterthan using the multiply instruction, but often also makesprogramslarger. On the
MC68020this codeis 1/3 longer, but about4 times as fast. (Estimatedusing the executiontimes in
appendix B)

Integerdivisions by constantswhich are powersof 2 can also be donefasterby shifting. For positive
values a division by 2 ** n can be done with an arithmghidt right by n bits. But for negativevalueswe
first haveto add2 ** n - 1 beforeshifting, dueto differencesin rounding.For exampleto divide DO by
four:

TST.L DO ; test DO

BPL.S labell ; branch if DO is negative

ADDQ.L #4-1,D0 ; add 4-1 to DO (if DO is negative)
labell:

ASR.L #2,D0 ; shift right two bits

Again this is often faster, but oftetlso makesprogramsglarger. For the MC68020the exampleis about6
times as fast, but the code is also 1/3 longer.

Floating point multiplication and division by constants which are powe2scah sometimese optimized.

On the MC68881 floating point coprocessoffor examplethe FSCALE instruction, which performs a
multiplication by 2 ** n, can be used to optimize these multiplicatenmgdivisions. But for the MC68881
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floating point multiplications by small constantswhich are not powersof 2, cannot be optimized by
replacingthe floating point multiplications by additions and shifts (FSCALES. This is becauseon the
MC68881 additions anghifts on floating point valuesare not so muchfasterthan multiplicationsas they
are on integers on the MC68020.

A floating point division by a constant ¢ candggimizedto a multiplication by the constant(1/c), because
usually a multiplication is executedasterthana division. (of coursel/c hasto be computedduring code
generation) But the result may be slightly different due to rounding errors.

5.1.4. Constant folding.

Computations on constants can sometimes be done compile-time instead of run-time. For example:

pushl 2
pushl 3
mull

could be replaced by:

pushl 6

5.1.5. Other algebraic optimizations.

(strength reduction and constant folding are also algebraic optimizations)
Sometimes computations can be optimized by using algebraic transformations.

For example: Can be replaced by:
x+0, 0+x, x-0, x*1, 1*x and x/1 X

x*0 and 0*x 0

0-x -X

a-a 0

a*b+a*c a*(b+c)

(a*b+a*c and a*(b+c) are not always the same when overflows or underflows occur)

5.1.6. Common subexpression elimination.

Sometimes the same calculation is done more than fmroexxamplein (a*b)+(a*b) the multiplication of a
by b is donetwice. In sucha caseit is often fasterto do the calculationonly once and to rememberthe
result, for example: (c=a*b)+c. Because the Cleampilerdoesnot eliminatesuchrecalculationgusually
called common subexpressions), these recalculations can also occur in ABC code.

Another example is that when a node is created or fillecdhdldees=f the code,which evaluateshe node
to headnormal form, hasto be storedin the node. If more nodesare createdwhich have the same
evaluation address, the code can often be made faster, for example on a register machine by fitkeloz
address in a register.
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5.1.7. Removal of unused code.

Sometimes code is generated which will never be executed, reafdi codedoesnot makea program
faster, but does makegstnaller.For examplethe nodeentry of the codegeneratedor a Cleanfunctionis
sometimes not used@henthe codewhich is only usedin casethe functionis called using the nodeentry
can be removed.

5.1.8. In-line code substitution for small functions.

In-line code substitution is replacing a callo a function by the body (code)of the function. This is a very

useful optimizationfor small functions. Becausethen no instructionshave to be executedto call the

function, return from the function and pdbks parameterandresults.And for registermachineghe code

often also becomesetterbecausehenno registershaveto be savedbefore the function call and loaded

again after the function call, which is often necessary if a function is called.

For small functionsthe programdoesn'tbecomemuch larger, becauseonly small piecesof code are

substituted The programcould evenbecomesmaller,becausehe instructionswhich passthe parameters
and call the function (and save and load registers for a register machine) are removed.

In-line substitutionfor large functions would make the programtoo large, and the speedimprovement
would only be small. But if a large function is called only once (and is not recursive),in-line code

substitution coulde used.Becauseafter this substitutionthe codeof the functionis no longerused,and

can be removed.

When doing in-line code substitutionwe should be careful with recursivefunctions, becausethe code

generator will enter an infinite loop if recursive functions are substituted over and over again.

In-line codesubstitutionscan probablybetterbe doneby the Cleancompilerthan by the code generator.
The Clean compiler already does code substitutions for delta-rules, whitle avestimportantones.But

doing more in-line code substitutionswill often improve the efficiency of the code considerably.For

example if Clean functions are used which compute a con&tamgtxample: NumberOfElements  ->  10;

5.1.9. Removing pointers from the A-stack.

If a pointerto a nodeis on the A-stackandthe pointerwill neverbe usedany more,the pointercould be
removed from the A-stack by reordering the values on the A-stackardowriting it with a nil value, for
which the garbage collector should now test.

Becausenow the garbagecollectorwill removemore nodesfrom the heap,the garbagecollector will be
called less frequently. Unfortunately the reorderingor overwriting slows down the execution of the
program. Normally this will probably be more expensive than the gain insp@etgarbagecollecting, but
if the reordering can be done without cost or the pointer points to a large graph, it may be worthwhile

For a registermachinethis optimizationcansometimesmprovethe code.If a node-idon the A-stackis
storedin aregister,anda function is called, it is often necessaryto storethe node-idin the registerin
memory. But if this node-idwill neverbe usedany more, this storeis not necessarylf we now can

removethis node-id from the A-stack without cost, by reorderingthe A-stack, the code will be faster,
because the store can be removed.

5.2. Possible code optimizations for register machines.

Optimizations which can be performed for implementations of the ABC machine on register machines
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5.2.1. Better use of registers.

On a register machine it is more advantageous to store values in registers instead of in memory, bec

- A registermachinecanaddressvaluesin registersa lot fasterthan valuesin memory. This also
applies to the MC68020 (see section 2.3.7).

- On values in registers all computations can usually be done directly, but if a value is in meisor
often necessaryirst to movethe valueinto a registerbeforethe computationcanbe done.On the
MC68020 it is for example not possible to add two values in memory widlbamstruction,but it
is possible to add two values in registers witabinstruction.

- Values in memory can usually not be used to address memory (uspdiateg efficiently. On the
MC68020 this is only possible using the (slow) memory indirect addressingmodes (e.g.
(110,An],20) ), but even irthis caseit is fasterfirst to movethe value (pointer)in memoryto an
address register and thesean addresgegisterindirect addressingnode (seesection2.3.7). But
values in registers can usuablg usedto addressmemory.On the MC68020addresgegisterscan
be used to addressemory,evenusing a displacementpostincremenbr predecremenis possible
(see section 2.3.3).

Thereforethe quality of the generateccodeis determinedfor a greatdeal by how well useis madeof
registers.

However, the code generatedby a very simple code generatorwould only uses registersfor the
stackpointers, the hegminterandto hold valuesduring the executionof one ABC instruction.Registers
are not used to pass the result from one ABC instruction to another ABC instruction.

But it is often possibleto improvethe codeby keepinga valuein aregister,insteadof pushingit on the
stack, for example the ABC code:

addl
addl

would on the MC68020 result in:

MOVE.L  -(BSP),DO

ADD.L DO,-4(BSP)
MOVE.L  -(BSP),DO
ADD.L DO,-4(BSP)

usinga very simple codegeneratorlf we would passthe resultof the first addl to the secondaddl in a
register, the (more efficient) code would be:

MOVE.L  -(BSP),DO
ADD.L -(BSP),DO
ADD.L DO,-4(BSP)

The optimized code of the exampleis about 40 percentfaster on the MC68020 (estimatedusing the
execution times in appendix B).

5.2.2. Passing parameters and results of functions in registers.

When a function is callegumpedto or left, usingajsr , jsr_eval , jmp, jmp_eval , Or rtn instruction,
the parameterdor and/orresult of this function haveto be passed.The code generatedby the Clean
compiler passes thearameterandresultson top of the A-stackand B-stack.Becausea function may be
called from several places in a program, efrem an othermodule,a fixed parametepassingconvention
is used.The simplestsolutionis to storeall stackelementan memory on the stackswhen a function is
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entered or left, and so to pass the parameatgisesultsin memoryon the stacks.But passingparameters
and results in registers is usually more efficient, because:

- Computingthe parametersand resultsis usually more efficient, becausecomputinga value in a
register can be done faster than computing a value in memory.

- Parameters and results can be accessed faster, because registeascassbdasterthan memory
locations.

- Parametersind resultscan often be poppedfrom the stackwithout havingto adjuststackpointers,
which is usually necessary when parameters and results are passed in memory.

5.2.3. Eliminating unnecessary copies.

Sometimes the Clean compiler generates code which copies values on a stack, because thenadloes ¢
top of the stackand an instructionsexpectsits argument(s)on top of the stack. Sometimesvaluesare
moved on a stack which are never used. Some examples are:

- Filling nodes:
push_a 1
push_a 3
fill descriptor 2 entry 5

The two values which are pushed the A-stackdon't haveto be copiedfirst, but could be stored
in the node by the fill instruction byopyingfrom the original location of the two valueson the A-
stack.

- Store the value in the right stack location immediately after computation of the value:

addl
update_b 03
pop_b 1

The value calculated agdl should not be stored on top of tBestackand later movedto location
2, butimmediatelyat location 2 of the B-stack.(location3 becomedocation 2 after popping one
element off the stack)

- Pushing all the arguments of a node, but not using all of them:

push_args 022
pop_a 1

Only the second argument should be pushed on the A-stack.

5.2.4. Optimizing booleans.

If a conditional jump has to be taken dependinga booleanwhich is the resultof a comparisonijt is not
necessary to calculate a boolean valuethmitonditionaljump canusethe condition codesof the register
machine. For example for:

eql b +10000
jmp_false labell

the following code would be generated for MEG8020: (if the top of the stackis in registerDO, andthe
boolean is computed in register D1, and a boolean is represented by -1 for true and O for false)
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CMPIL.L #1000,D0

SEQ D1
EXTB.L D1
TST.L D1
BEQ labell

but if the condition codes are used the following code is generated:

CMPI.L #1000,D0
BNE labell

On the MC68020 a conditional jump without creatigooleanis aboutl1.8 timesasfast (estimatedusing
the execution times in appendix B).

The ABC machine doesn't have instructions to test for 'not equal’, 'less than or eqgioal"gredterthan
or equal'. These instructions are implemented by dde&qual’, 'greaterthan’ or 'less than'anda notB
instruction. But a registanachineusually hasinstructionsto testfor 'not equal’, 'less thanor equal'and
for 'greater than or equal’, so these tests can be optimized so that the not is not neceseptynizaimn
is possible on the MC68020.

5.2.5. Changing the evaluation order.

Because a register machine only has a limited number of registéead], valuescanbe storedin registers.
Sometimesve will wantto storea valuein a register,but will not be ableto do so, becausall registers
have been used. In such a case gometimegossibleto changethe order of the instructionsso thatit is
possible to store the value in a register after all.

Anotherimprovementwe may obtain by changingthe order of instructions,is the elimination of some
move instructions. This could happerai€omputationis doneusing valueswhich will alsobe usedlater.
Thenoften a moveis necessaryo copy one of the valueswhich are usedby the computation,because
doing a computationoften overwritesone of its argumentsFor examplean ADD instruction changests
second argumenso thatif the value (beforethe addition) of the secondargumenthasto be usedlater, it
has to be copied before the addition is donthdforder of the instructionsis changedso that a (later) use
of a value is moved before the computation, this move can often be removed.

| will now give an example which illustrates both improvements. Assuewantto computeDo+D1 and
DO+D2 in anyregister,and D1 is usedafter thesecomputationsput Do and D2 are not. We could first
computeD0o+D1 and therbo+D2 using:

MOVE.L D0,D3 ; copy DO to D3
ADD.L D1,D3 ; add D1 to D3, D3 now contains DO+D1
ADD.L D2,D0 ; add D2 to DO, DO now contains (old)D0+D2

But it would be better first to compube+D2 and therpo+D1:

ADD.L D0,D2 ; add DO to D2, D2 now contains DO+(old)D2
ADD.L D1,D0 ; add D1 to DO, DO now contains (old)D0+D1

In the latter casewe haveusedoneregisterless(D3 is not used)andwe haveusedone move instruction
less.

Consequently, the order of the instructions (the evaluation order) is important to generate efficient co
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5.2.6. Optimizing jsr_eval instructions.

The ABC instructiorjsr_eval  evaluatesa nodeto headnormalform by calling the codeat the reduction
addresgreductioncode)of the node.(seesection2.2.6) But oftenjsr_eval  is usedto evaluatea node
which is alreadyin headnormalform. (althoughthe Cleancompilertries to preventthis) In sucha case,
nothing has to be done to evaluate the node, and so the reduction code consists of just a return instr

If this happenswve unnecessarilyperform a subroutinecall (JSR for the MC68020) and a return from
subroutine instructiorrRs for the MC68020)But moreimportantly, for registermachinesoften registers
have to be saved before the reduction code is called and loaded again after the call.

To prevent this, if we first test if the reduction address of the ndtie reductionaddressof the reduction
code of a node iheadnormalform. And only saveregisterscall the reductioncodeandload registersif
this is not so.

Soif the nodeis alreadyin headnormal form, we only haveto testthe reductionaddressof the node,
instead of saving registers, calling a subroutine, return froraubeutineandloading the registersagain.
For most register machines, just testing the reduction address can be performed much faster.

If the node is not yet in head normal form, we only have to peréorextratestfor the reductionaddress.
So in this case the code becomes only a little bit slower.

Because for many programs often nodes are 'evaluatedijsrsivgl  which arealreadyin headnormal
form, programswill often be executedaster.(sometimesl.5 timesasfast) Otherprogramswill only be
executed slightly slower.

For many machineswve canperformthe testwhetherthe reductionaddresss the reductionaddressof a
node in head normal form faster if we represent the reduction addiessdéin headnormalform by 0.
For exampleon the MC68020,we could thentestfor sucha reductionaddressby loading the reduction
addressn a dataregister(with MOVE.L), andthenusinga branchon equal (BEQ) instruction. Insteadof
using a comparec(p.L) instruction and a branch on equal instruction, whigiasver. Thenalsofilling a
nodein headnormalform canoften be donefaster,becausestoringzeroin memorycanusuallybe done
faster(for the MC68020using a CLR.L instruction)than storing an addressn memory.If we use this
representation, the jmp_eval instruction also has to test for a zero reduction address.This makes
jmp_eval slower, but this instruction is used seldom.

This optimizationhasbeenimplementedjncluding representinghe reductionaddressof a node in head
normal form by O.

5.3. MC68020 specific code optimizations.
Optimizationswhich can be performedfor implementationsof the ABC machineon the MC68020 are:
(most of these optimizations have already been described in section 2.3.7)

- Using the postincremen{(An)+) and predecremen(-(An)) addressingnodesfor stackaccesses,
filling and creating nodes and loading the arguments of a node.

- Using theMOVEQADDQandsuBQinstructions when possible, instead of M®VE, ADD andSUB
instructions.

- Using theMOVENNSstruction when many registers have to be moved foom consecutivanemory
locations.
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Using:
MOVEQ #100,D1

CMP.L D1,D0
instead of:
CMPI.L #100,D0

to compare a long word to a constant between -128 and 127 (except for zercs uses@uction).
UsingCLR <ea> instead oMOVE #0,<ea> and usingrST <ea> instead ofCMPI #0,<ea> .

Trying to useCMP <ea>,Dn instead ofCMPA <ea>,An to compare words and long words.
UsingBRAinstead ofiMP (d16,PC) , and usinggSRinstead ofiSR (d16,PC)

UsingLsSL instead ofAsL when possible.
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6. Generating code.

In this chapteris describedhow the codegeneratoigeneratesode. Briefly, this is donein the following
way.

First the ABC instructionsare divided into blocks, called basic blocks. And a directedacyclic graphis
constructed for such a basic block. Such a graph represents the computations performeadbiloek.
This is done so that the evaluation order can be determined. Why and how the ABC instanetionded
into basic blocks, and why a graph is used, is explained in section 6.1.

Then the order in which suchgaaphwill be evaluateds determinedusing an adaptedabeling algorithm.
How this is done is explained in section 6.2.

Then in section 6.3 is explained how the ABC instructions are represented in the graph.

After that, in section6.4, is explainedhow codeintermediate code is generatedrom this graph. This
intermediatecode is very closeto MC68020 machinecode. But in this intermediatecode an unlimited
numberof addressand dataregistersmay be used.How the codegeneratodeterminesvhetherto usea
data register or an address register of the MC68020 if a register is used is deAtsthisdexplainedhow
the following optimizationsare performed:optimizationsof the creationof nodesby create instructions,
optimizing the useof booleansby using condition codes,optimizing the useof small constantsand how
generating unnecessary store instructions is prevented.

Before the graph for a basic block is constructed¢titke generatordeterminesvhich valuesare storedin
registersat the start of the basicblock. And after the graph has been constructed the code generator
determines which valuesre storedin registersat the end of the basicblock. This is calledglobal register
allocation and is explainedin section6.5. How parametersaand resultsof functions are passedis also
explained in this section.

Becausethe intermediatecode may use an unlimited number of data and addressregisters,and the
MC68020 only has 8 da@ndaddresgegistersthe local register allocator changeghe intermediatecode
of a basicblock so that no more than 8 addressregistersand dataregistersare used. It does this by
changingthe register numbersof the registersused by the intermediateinstructionsand by inserting
instructions to load and store values in registers from/into memory. This is explained in section 6.6.

After local register allocation has been performed,accessedo the stacksare optimized by using the
postincremenand predecremenéiddressingnodesof the MC68020 by changingthe intermediatecode.
This is described in section 6.7.

After thatjumpsare optimizedby replacinga branchinstruction followed by a jump instructionby one
branch instruction if possible, which is described in section 6.8.

Then in section 6.9 is described how the garbage collector is called.

And finally, in section 6.10. is described how object code (for the linker) is generateth&otermediate
code.While generatinghis objectcodemanyvery simple MC68020 specific peepholeoptimizationsare
performed, which are also described.

6.1. Constructing a dag for every basic block.

In this section is explained how the order of the ABC instructions mahdeged so that the resultof the
code remains the same. To be able to do this, graptsiddeepresentinghe computationgperformedby
a sequence of ABC instructions.

To build these graphs, first the ABC instructions dikeéded into blocks, calledbasic blocks. To construct
these basiblocks, the ABC instructionare divided into two classesinstructions without side effects and
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instructions with side effects. For everybasicblock a directedacyclic graph(dag) is constructedSuch a
graph represents the computations performed bipdakeblock. To build this graphthe A andB stackof
the ABC machine are simulated by the code generator.

6.1.1. Conditions for changing the evaluation order.

In section5.2.5 we alreadysaw that the evaluationorderis importantto generateefficient code. But by
changing the order of the instructionge may also changethe meaningof the program.Of course,we do
not want this to happen.

In order not to change thmeaningof the programby changingthe evaluationorder, we cannot move an
instruction:

- Before an instruction of which the result may be used by the instruction to be moved.

- After an instruction which may use the result of the instruction to be moved.

These are the only requirements for instructions which:

- Only use the values of their arguments to compute a result.

- Store its result in a location which is never changed by an other instruction.

- Don't changeor useanythingelse.For example the instructionmay not changea stackpointeror
jump to an other part of the program.

6.1.2. Problems on a stack machine when changing the evaluation order.

Changing the evaluation order causes many problems on a stack machine like the ABC machine, be«
- It is difficult to move instructions, because:
- Many instructionschangea stackpointeras side effect. If we want to move such an

instruction, we may havi® adjustmanyinstructionsand addinstructionsto reorganizethe
stack, because the stack layout changes. For example:

pushl 1 || push the integer 1

push_b 2 || push (copy) the third element of the B-
stack

push_b 2 [| push (copy) the third element of the B-
stack

addl || pop two elements  (integers) and then
push the sum of these integers

addl || pop two elements  (integers) and then

push the sum of these integers

If we wantto movethe pushl 1 instructionbeforethe last addl , we haveto changethe
push_b 2 instructions intush_b 1 instructions:

push_b 1 [| push (copy) the second element of the
B-stack

push_b 1 [| push (copy) the second element of the
B-stack

addl || pop two elements  (integers) and then
push the sum of these integers

pushl 1 || push the integer 1

addl || pop two elements  (integers) and then

push the sum of these integers

- Many instructionsexpectsome(or all) of their argumentson top of a stack.If we want to
move such an instruction, we may have to insert instructions to move the argumetys) «
of a stack and reorganize the stack(s) after the instruction.
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- It is difficult to determinewhereinstructionsmay be moved. The resultof mostof the instructions
only dependson the argumentsTheseinstructionsmay be movedto a locationin the codewhere
the argumentdhavebeencomputedand are on the stack,and whereall instructionswhich use the
resultof this instruction are after this instruction.But it is difficult to determinetheselocations,
because:

- To find where an argument is computed on a stack machine requires a basdavahtrom
the instructionwhich usesthe argumentto the instruction which computesthe argument.
While searching we have to keep track of where the argumenthi® stack,so we haveto
do a simple stack simulation.

- To find wherethe result of an instructionis usedon a stack machinerequiresa forward
searchfrom the instruction which computesthe result to the instructionwhich usesthis
result. Again we have to do a simple stack simulation while searching.

6.1.3. Simulating the A- and B-stack.

A way to solve theproblemsdescribedaboveis to give every elementon the stacka name,i.e. treateach
stack element as\ariable,andreplacethe ABC instructionsby instructionswhich don't usea stack,but
which arguments are variables. Then changing the evaluation order becomes much easier.

The examplein the previoussectionnow becomesi(ni, n2, n3, n4 andn5 are the variablesfor stack
locations 1, 0, -1, -2 and -3 at the beginning of the code)

n3:=1 pushl 1
n4 :=nl push_b 2
n5 :=n2 push_b 2
n4d:=n5+n4 addl
n3:=n4 +n3 addl
We cannow movethen3 := 1 instructionbeforethe last add instruction(n3 := n4 + n3) without
having to adjust other instructions:
n4 :=nl
n5 :=n2
n4d:=n5+n4
n3:=1
n3 :=n4 +n3

The advantages are:

- We can now move instructions without having to change other instructions.

- We can determineeasierwhere an instruction may be moved, becausewne can easily determine
where an argument of an instruction is computed.

To construct this code using variables, the stacks have to be sinuuaitegicodegenerationAt the same

time we haveto assignvariablesto stacklocationsandremembeifor every stacklocation which variable
has been assigned to it.
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6.1.4. Local variables.

By using variablesit is possibleto move instructionswithout having to adjust other instructions, but
unfortunately therestill are unnecessaryestrictionsfor the way in which we canreorderthe instructions.
For example:r(1, n2, n3, andn4 are the variables for stack locations 2 ,and-1 at the beginningof the
code)

n4 :=nl push_b 2
n3:=n3+n4 addl
n4 :=n2 push_b 1
We can not move th&8 := n3 + n4 instructionafterthen4 := n2 instruction,becauseéhen4 = n2

instructionchangeghe value of variablen4. If we would usea local variablel1 to hold the resultof the
first instruction we can move the instruction after all. The example now becomes:

1:=n1 push_b 2

n3:=n3+I1 addl

n4 :=n2 push_b 1
After moving then3 :=n3 + 11 instruction:

1:=n1

n4 :=n2

n3:=n3+I1

By introducing a new local variable for every result, we obtain more freedom for determinenghination
order. But we can't simply replaceall variables(what we calledvariablesin section6.1.3, from now on
called global variabled)y local variables becauseat the end of the codethe global variablesshouldhave
the same value as they should have had wittihaihtroductionof the local variables.Thereforefor every
global variable which was changedby the code, we add an instruction at the end of the code. This
instruction assigns Bcal variable,which containsthe value which shouldbe in the global variableat the
end of the code,to the global variable. For this local variable we use the last local variable which was
introduced by replacing this global variable.

Consequently, the example becomes: (before moving the instruction)

1:=n1 push_b 2

2:=n3+11 addl

I3:=n2 push b1

n3:=12 ; extra assignment to n3
n4 =13 ; extra assignment to n4

By introducingtheseextraassignmeninstructions,this code getsworse. But codeis generatedor the
MC68020from theseinstructionsin sucha fashionthat the MC68020 code doesn'tget worse, because
Most unnecessary assignments are eliminated.

6.1.5. Dags (directed acyclic graphs).

In section 6.1.1 we have seen two simple conditionsiHangingthe order of instructionswhich meetthe
following requirements:

- Only use the values of their arguments to compute a result.

- Store its result in a location which is never changed by an other instruction.

- Don't change or use anything else.

We will now examinewhich ABC instructionsmeettheserequirementsTheseABC instructionswill be

calledinstructions without side effects. For some ABC instructions, which do moeettheserequirements,
we canusethe sameconditionsfor changingthe evaluationorderasfor instructionswithout side effects.
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These instructions are also called instructions without side effects. They are descsdnG.1.6. The
other ABC instructions will be calladstructions with side effects. They are described in section 6.1.7.

Most ABC instructions use only the valuestio¢ir argumentsand only changeone elementof a stackand
eventually change some stackpointers by a constant. By introdylolveg) and local variablesas described
in the previoussections,theseinstructionsmeet the requirementsof instructionswithout side effects.
Becausdhe resultis alwaysstoredin a local variable,and a new local variableis introducedfor every
result, the resultis storedin a location which is neverchangedby an other instruction. The only other
thingstheseinstructionsmay changeare stackpointersbut by using variablesthis is not a problem. So
these ABC instructions are instructions without side effects.

We will now assume all AB@nstructionsarelike this. Theneveryinstructioncomputesoneresult,anda
new local variableis createdevery time a value is calculated,so thereis a one to one correspondence
between a local variable and the instruction which stores its resiéitilocal variable.If we replaceevery
reference to a local variable by a reference to this instruction, we can remove all local variables.

Theneveryone of theseinstructionscanbe seenasa nodein a graph.If we also make nodesfor every
global variableand constantusedas an argumentgvery argumentwould be a pointerto a node. Thenall
the nodes together constitutdam, i.e. a directed acyclic graph. For every global variable whichasged
by the code we now have a node in the dag, which represents the computttgvrabfe which hasto be
stored in that variable. This is because the extra assignment at thieteedodefor every changedglobal
variable has now becomenade.If we thenlabel thesenodeswith the correspondingglobal variable,we
obtain a dag in which for every global variable there is exactly one node labeled with this global varial

This dag is as follows:

- The leaves of the dag are global variables and constants which are used during the computati

- The othernodes(the interior nodes)in the dag consistof a function (like add and sub) and the
arguments for this function. These arguments are pointers to nodes in the dag.

- A node is labeled by all global variables which should contain the vafwesentedby the dag after
the code has been executed.

6.1.6. Remaining ABC instructions without side effects.

At the end of the previoussectionwe assumedhat all ABC instructionsonly use the valuesof their
arguments and only change one element of a stack and eventually changes&p@nterdy a constant.
For these instructions it isot difficult to determinewherethey may be movedto (seesection6.1.1), and
they canbe movedwithin the codeandrepresentedh the dagwithout problems.But for the other ABC

instructions some of these things cause problems.

In this sectionl will describethe ABC for which we caneasily solve theseproblems.Theseinstructions
can then be treatedjust like instructionswithout side effects, and therefore we will also call these
instructions instructions without side effects. In the next section the ABC instructions forwmenazmn not
easily solve these problems are described.

The ABC instructions for which we can easily solve the problems are:
- create ,add_args anddel_args

- all fill instructions andset_entry

- push_args andrepl_args

- instructions which compute a real.

The problems for these instructions are described below.

Create, add_args and del_args.

These instructions do not only change a value on the A-stack, but also changegliecausehey create
anewnodein the heap.But this doesn'tcauseany problems,becauseheseinstructionsdon't change

43



anything that is already in the heap, but only add a new toatée heap.So we canignore the changesn
the heap. Then theseinstructionsonly changeone elementof the A-stack, becausethe node-id of the
created node is pushed on the A-stack.

All fill instructions and set_entry.

Theseinstructionschangethe heap, becausehey overwrite a node (or part of a node in the caseof
set_entry ) in the heap, but don't change any element of a stack. This causes the following problem:

1. Becauseno elementof a stackis changedwe can't connecta node which representssuch an
instructionto the dag, becauseahereis no result on any stack. But this can easily be solved by
consideringthe node-idof the node which is filled as the result of the instruction, althoughthis
node-id is not actually changed. This node-id is on the A-stack.

2. When changinghe evaluationorderwe may in generalnot changethe order of theseinstructions,

for example we may not exchange the following two instructions:

filll 10 [ fill (overwrite) the node of which the
node-id is at position O of the A-stack
by INT 1

filll 21 [| fill (overwrite) the node of which the
node-id is at position 1 of the A-stack
by INT 2

This reasonfor this is thatif positionsO and1 of the A-stack containthe samenode-id, the node
corresponding to thisodewill havebeenoverwrittenby a INT 2 nodeafter executingthe codeif

the instruction have ndieenexchangedbut if the instructionshavebeenexchangedhe nodewill

have been overwritten 3N INT 1 node.So exchangingnstructionsmay changethe resultof the
code, and is therefore not allowed.

Fortunatelythe Cleancompilergeneratesodein sucha fashionthat the situationdescribedabove
will never occur. Because we only have to generate code forgkBg@amsgeneratedy the Clean
compiler, this is not a real problem.

3. Another problem is that if one of these instructiong@esentedh the graphby a node, this node
can be connected as described above (1.), but there may stillapatiefrom a nodelabeledby a
global variableto the noderepresentinghis fill or set_entry  instruction.If we would generate
code only for the nodes of the dag, to which there is a path from a node labelgidlgl gariable,
to preventgeneratingcodefor unnecessargomputationsnpo codewould be generatedor this fill
orset_entry instruction. For example:

create || create a node and push its node-id on
the A-stack

create || create a node and push its node-id on
the A-stack

push_a 0 [| push (copy) the node-id on top of the
A-stack

fill descriptor 1 label 2 || fill (overwrite) the node created first
with  the  descriptor, label and only
argument the node-id of  the node

created second and pop this node-id
from the A-stack

filll 10 || overwrite the node created second by an
INT 1 node.
pop_a 1 || pop the  node-id of the node created

second from the A-stack.

Thereis no pathto thefill 1 0 instructionfrom a nodewhich is labeledby a global variable
because the node-id poppedfrom the A-stack by the lastinstruction.If we would generatecode
only for the nodes of the datp which thereis a pathfrom a nodelabeledby a global variable,to
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preventgeneratingcode for unnecessargomputationsno code would be generatedor this fill

instruction. But code should have begameratedor this instruction,becausehe nodewhich is to
be filled is connected to the graph whieill be constructedun time by the code,becausat is the
argument of the other node which is created by this code.

Fortunately the Clean compilgenerateshe create andfill instructionsin suchan order, thatthe
situation describedabove will never occur. Becausewe only have to generatecode for ABC
programs generated by the Clean compiler, this is not a real problem.

Push_args and repl_args.

These instructions don't always compute one resulpftern computemany results(the arguments)This
makesrepresentingheseinstructionsby nodesin the graphmore difficult, but notimpossible.lt doesn't
cause any problems for changing the evaluation order.

Instructions which compute a real.

The problemwith theseinstructionsis that they computetwo elementson the B-stack, becausea real
consistsof two elementson the B-stack. This makesrepresentingtheseinstructionsby nodesmore
difficult, but not impossible.

6.1.7. ABC instructions with side effects.

In this sectionthe ABC instructionsare describedor which we cannot easily solve the problems.These
ABC instructions will be called instructions with side effects. They are:

- catS , sliceS andupdatesS .

- jmp, jmp_eval ,jmp_false ,jmp_true ,rtn andhalt .

- jsr ,jsr_eval , andccall

- push_args_b andrepl_args_b

- print , print_sc , print_symbol print_symbol_sc anddump.
- fopen , fclose , fgetC , fgetS andfputC .

The problems for these instructions are described below.
CatS, sliceS and updateS.

Theseinstructionschangethe heap,becausehey overwrite a node in the heap, but don't changeany
elementof a stack.This causeghe sameproblemsas for the fill instructionsand set_entry , but these
problems can be solved (see section 6.1.6).

But theseinstructionscan only be implementedby many MC68020 instructions. Consequentlythese
instructionshaveto be implementedby using a subroutine.Representingubroutinecalls in the graph
causes many problems and often does not allow us to generate better code.

Jmp, jmp_eval, jmp_false, jmp_true, rtn, and halt.

These instruction change (or may changeniprfalse andjmp_true ) the flow of control.Thereforeit is
usually not possible to move instructions from before such an instruction after that instruction, afteron
suchan instructionbeforethat instruction.For examplein generalwe can't exchangehe instructions:n1
=1 andjmp label . In some rare cases an instruction could be moved, for examplethel instruction
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may be movedfterthelabel if no otherinstructionsjump to label , butit is very difficult to determine
when this is possible and will seldom improve the code.

Jsr, jsr_eval and ccall.

These instructions call a subroutine. Because in general we don't knowhe/balbroutinedoes,we can't
move instructionsfrom before such a call instruction after that instruction, or from after such a call
instruction before that instruction. And we also can't change the order of the call instructions.

Push_args b and repl_args b.

These instructions don't change the A-stackpointer by a constant, dwale which dependn a value
on the B-stack, so the changetio¢ A-stackpointeris not known compiletime. Thereforeit is usually not
possibleto move instructions,which accessa value on the A-stack, from before a push_args_b or
repl_args b instruction after that his instruction, or from after a push_args b  or repl_args_b
instruction before that instruction. For example we can't exchamge a (with n1 on the A-stack)and
apush_args_b instruction, because after thesh_args_b we can no longer determingherenl is on the
A-stack, so we don't know where to store the

Print, print_sc, print_symbol, print_symbol_sc and dump.

These print instructions don't compute a result staak.lIt is not possibleto exchangeprint instructions,
becausehe outputwould not alwaysbe the same.But otherinstructionscould be movedfrom beforea
print instructionafter that instruction, or from after a print instruction before that instruction. The dump
instruction is an exception, because it also changes the flow of control, because it #gpstitienof the
program. And these instructions have to be implemented by calling a subroutine.

Fopen, fclose, fgetC, fgetS and fputC.

Theseinstructionsmay causeproblemswhen the order of theseinstructionsis changed,for example
because some of them changepbsitionwherecharactersare written to and/orreadfrom in afile. They
also have to be implemented by calling a subroutine.

6.1.8. Division into basic blocks.

In the previous sectionswe divided the ABC instructionsinto instructions without side effects and
instructionswith side effects.For the instructionswithout side effectsthe possibleevaluationorderscan
easily be determined using the two conditionsection6.1.1 andtheseinstructionscan be representedh
the dag. For the instructions with side effects this is not possible.

Consequentlyve canrearrangehe order of a sequencef instructionswithout side effects,but we can't
move an instructionfrom before an instructionwith side effects after that instruction, or from after an
instruction with side effects before that instruction. So to determinethe evaluationorder for a code
sequenceave candeterminethe evaluationorder for every sequenceof instructionswithout side effects,
which is as long as possible and which is part of the whole code sequence, separately.

Labelsalsorestrictthe possibleevaluationorders,becausen generalwe can't move an instruction from

before a label after that label, or from after a label bef@atabel. So to determinethe evaluationorder of
an instruction sequence which contains labels, we can determine separategiubsonorder of the code
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sequences from the beginning of the code sequence to the first label, from thbditstthe second,... ,
from the second last label to the last label and from the last label to the end of the code sequence.

Consequently, to determine the evaluation order of a code sequence, we cathel&BIE codesequence
into basic blocks (basicblocksarealsousedby [Aho et al. 1986], but theseare not exactly the same).
These basic blocks consist of@quenc®f instructionsof which only thefirst instructionmay be labeled
(with any number of labels) and which only the lastinstructionmay be an instructionwith side effects,
all other instructions should be instructions without side effects. These basic blocks should belomagde
as possible. To determine amaluationorderfor the whole codesequencewe only haveto determinean
evaluation ordefor everybasicblock separatelylf the lastinstructionof the block is aninstructionwith
side effects, this will of course always remain the last instruction of the block.

Note that such a basic block can only be executed by staritinghe first instructionof the block andcan
only be left by the laghstructionof the block, because basicblock canonly havelabelsbeforethe first
instructionand instructionswhich changethe flow of control can only be the last instruction of a basic
block, because these are instructions with side effects.

6.1.9. Constructing the dag.

To constructthe dagfrom a basicblock we can use an adaptedversion of algorithm 9.2 of [Aho et al.
1986]. The original algorithm also catches common subexpressions, but our algorithm does not.

We assume all instructions are of the foxmf (aj,a2,...a p), wheref is afunctionwith arguments
ai,ap, ..,an. Thisinstruction computgswith argumentsq, as, .., ay andassigngheresultto x. Aq,
an, ..,ap andx are variables.

Initially the dagis empty and the function node, which argumentis a variable and returns a node, is
undefined for allvariables.To constructthe dag: do for everyinstructionin the basicblock, startingwith
the first instruction, the following:

1. Do for every argumerndi in{aq,as, ..,an }:
If node (aj) is undefinedthencreatea nodewith variablea; andlet node (aj) bethis
node.

2. Construct a function node with argumentsnpde (a 1), node (@ 2), ..,node (& ) ).

3. Letnode (x) be this constructed node.

Finally do for all variables:
if node (variable) is not undefined then labedde (variable) with this label.

To describe the dag we have build, | tisenotion cdag. With a cdag(connectediag)| meana subgraph
of a dag which consists of all the nodes to which there is a path from the root of the cdag.

After the construction using the algorithm above, for all varialesh arereferencedn the basicblock a
cdag has been constructdthe root of this cdagis a nodelabeledwith that variable. The cdagrepresents
the computation of the value which should be in the variable at the end of the basic block.

6.2. Determining the evaluation order of the dag.

In the previous section we have constructed a dag for every basic block. For suamnawgationorder
has to be determined. Thabeling algorithm anddynamic programming algorithm [Aho et al. 1986]which
candeterminean evaluationorder, are described.Then the labeling algorithm is adaptedso that a better
evaluation order can be determined whkatuesare storedin registersat the beginningand end of a basic
block, and when the basic block contains common subexpressions.
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All these algorithms can not be directly applied to the MC68020, because it has tvad segisters. How
we can change these algorithms so that this is still possible is explained.

6.2.1. The evaluation order for trees.

We now have constructed a dag for every basic block, and have to detéweremaluationorderfrom this
dag. But determininghe evaluationorderfrom a dagis very difficult. Thereforewe first try to determine
the evaluation order for dags which happen to be trees. If a dag is a tree, determining the evaleaiton
much easier because:

- Only one result is computed by every subtree.

- There are no shared nodes in the graph. (no common subexpressions)

At first we will alsoassumehatall variablesare storedin memory (on a stack) and none of themin a
register at the beginning or end of a basic block.

We discusstwo algorithms(both are describedin [Aho et al. 1986]) which can determinean optimal
evaluationorderfrom a treein an amountof time thatis a linear function to the size of the tree, but with
someassumption®n the instructionsetof the targetmachineand without taking algebraicpropertiesof
operatorsinto account. These algorithms are the labdling algorithm and the dynamic programming
algorithm. Both havebeenusedin a numberof compilers. The requirementdor the instruction set are
described below.

6.2.2. The labeling algorithm.

The labeling algorithm [Aho et al. 1986] can determinean optimal evaluationorder for a tree (without

taking algebraicpropertiesof operatorsinto account)for certainregistermachines for examplefor the

following machine: (example from [Aho et al. 1986])

- n interchangeable registers.

- move, (dyadic) add and (dyadic) subtract instructions.

- absolute, register, register indirect and register indirect with displacement addressing modes.

- instruction costs are: 1 + the number of absolute and register ingiteaisplacemenbperandof
the instruction.

The labeling algorithm can be used for machines in which all computatiomésn registersandin which
instructions consist of an operator applied to two registers or to a register and a memory location.

The algorithm consists of two phases.

During the first phase every noddabeed with a number.This numberis the numberof registerswhich
are necessary to evaluate the subtree with as rostatewithout storingintermediateresultsin memory.
(exceptfor leaveswhich are not the leftmost child of its parent,seebelow) The nodesare labeled as
follows.

If the node isa leaf, the nodeis labeledl if it is the leftmostchild of its parent,otherwiseit is labeledO.
This is becausean operatorcan not computeits result (in a register)if the first argumentis storedin
memory and the second argument is storedrggister.But the operatorcan computeits resultif the first
arguments storedin a registerand the secondin memory. For commutativeoperators(like add) both
computationsare possible,but we don't take algebraicpropertiesof operatorsinto account,so the first
computation is not allowed. Therefore the result of a leftmost child of its paremia#ti be loadedinto a
register, so 1 register has to be used and the node is labeled 1. But for other leafs the result dode nc
be loaded into a register first, so no registers have to be used and the node is labeled 0.

Otherwise, saof the nodeis an interior node, the nodeis labeledwith the numberof registersrequiredto
evaluate the subtree with as root this node in a register without storing intermediatér@seaitsory. This
can be done recursively by first calculating the label for every dmidihanusetheselabels(numbers)to
calculate the number of registers requiredvaluatethe subtreewith asroot this node.Letnq, no, .., ng
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be the children of the node ordered so &t (n 1) =label(n ) = ... 2 label (ny) . In thesecond
phase these childremill be evaluatedn the ordernq, no, .., ni (Seebelow). After everyevaluationof a
child one register is no longer available, because the result of the child is stored in itasel thah ;) +

i-1 isthe number of registers used after evaluating,, ..,n; (in that order). So the label gfe node
should become the maximumiafel (n ) +i-1 for1<i <k.

During the second phase we determine the evaluation ordgeartatecode. To generatecodefor atree,
first code is generated recursively for thik argument trees of the root. With an argumentree of a nodel

meana maximal subtreehaving as root a child of the node. The orderin which the argumenttreesare
evaluated is determined by the labels of the roots of the argument trees.

First codeis generatedor the argumentree with the highestlabel (which requiresthe highestnumberof

registersfor the evaluation) thenfor the argumentree with the secondhighestlabel (which requiresthe
second highest number of registers for the evaluation), .. , and finally for the ardgreeenth the lowest
label (which requiresthe fewestnumberof registersfor the evaluation).If argumentireeshave the same
label, the argument trees may be evaluated in any order. Finally code is generaédubtethe whole tree
usingthe resultscomputedby the codefor the argumentrees.If the requirednumberof registersfor a
subtree is higher than the number of available regigtersubtreeis evaluatedn memory,otherwisein a
register.

For example to evaluate(b+c) , the nodes are labeled:

a 1
b 1
c 0
(b+c) max (1,1) =1
a-(b+c) max (1,2) = 2

And the following code is generated:
MOVE.L a,Do
MOVE.L b,D1

ADD.L c,D1
SUB.L D1,D0
For example to evaluate((b+c)-(d+e)) , the nodes are labeled:
a 1
b 1
c 0
(b+c) max (1,0+1) =1
d 1
e 0
(d+e) max (1,0+1) =1
((b+c)-(d+e)) max (1,1+1) =2
a-((b+c)-(d+e)) max (2,1+1) =2
So only tworegistersare necessaryand when evaluatinga-((b+c)-(d+e)) first ((b+c)-(d+e)) hasto
be evaluated, and theanbecause-((b+c)-(d+e)) is labeled2 and a is labeledl. The following code

can be generated:
MOVE.L b,D1

ADD.L c,D1
MOVE.L d,DO
ADD.L e,DO
SUB.L DO,D1
MOVE.L a,D0
SUB.L D1,D0

6.2.3. The dynamic programming algorithm.

The requirementdor the instruction set for the dynamic programmingalgorithm [Aho et al. 1986] to
determinean optimal evaluationorder from a tree (without taking algebraicpropertiesof operatorsinto
account) are:
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- The machine has n interchangeable registers.

- The machine has loadioreandregisterto registercopy instructions.Otherinstructionsare of the
form: registeri = expression,where expressionmay contain operators,registersand memory
locations. If the expression uses registers, register i has to be one of these registers.

- Every instruction may have its own instructioost, but thesecostsshouldbe fixed, i.e. may only
depend on the instruction type and the addressing modes of its operands.

The dynamic programmingalgorithm resultsin a contiguous evaluation. A contiguousevaluationis an
evaluationwhich alwaysfirst evaluatesall the subtreeghat needto be computedin memory and then
evaluates the remainder of the tree by evaluating the argument trees which nemzhtplitedn a register
oneat a time, andfinally evaluateghe root of the tree. An exampleof a non contiguousevaluationis an
evaluationwhich first partly evaluatesubtreeTl, thenevaluatesubtreeT2 completelyin a registerand
then evaluates the remainder of T1 in a register.

For a machinewhich meetsthe requirementsdescribedabove we can prove an optimal contiguous
evaluation always exists, i.e. a contiguous evaluatastswhich is at leastasfast asany not necessarily
contiguousevaluation.So to determinean optimal evaluationorderwe only haveto determinean optimal
contiguous evaluation order.

The dynamic programming algorithm consists of three phases.

During the first phase for every node an array C of costs is calculated, where:

- C [0] is the minimal cost for evaluating the subtvath asroot this nodein memorywithout using
registers.

- C [i] for i>0 and gEnumber of availableegisters,s the minimal costof evaluatingthe subtreewith
as root this node in a register, by using at most i registers.

The cost arrays are calculated recursivelyitsg calculatingthe costarraysfor all childrenof a node,and
then use these cost arrays to calculate the cost array of the node.

During the secondphasethe cost arraysare usedto determinewhich subtreesshould be evaluatedin
memory and which ones in a register.

During the third phasewe traversethe tree, usethe costarraysto determinein what order the argument
trees of a node should be evaluated and generate the code. The code for subtrest®uldich evaluated
into memory is generated first.

For example tevaluatea-((b+c)-(d+e)) (sameexampleasfor the labelingalgorithm)on an MC68020
with 3 availabledataregistersandinstructioncostsas the instructionexecutiontimesin appendixB, and
access to variables using the address register indirect with displacement addressing mode are:
(evaluatingan additionor subtractionnodein memory without using registersis done by first storing a
registerin memory,then performingthe computationusingthis register,and then reloadingthis register
from memory, because the MC68020 can not compute the result of an addition or subtitadioinusing
a register)

a c={0,7,7,7}
b c={0,7,7,7}
c c={0,7,7,7}
(b+c) C={30,14, 14,14}
d c={0,7,7,7}
e c={0,7,7,7}
(d+e) C={30,14, 14,14}
((b+c)-(d+e)) C={68,51,30,30}
a-((b+c)-(d+e)) C={75,58,37,37}
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Again only two registers are necessary and the following code can be generated:
MOVE.L b,D1

ADD.L c,D1
MOVE.L d,DO
ADD.L e,DO0
SUB.L DO,D1
MOVE.L a,D0
SUB.L D1,D0

6.2.4. Using these algorithms to generate code for the M C68020.

Both algorithmsdescribedabovecan generatea good evaluationorderin time linearly proportionalto the
size of the tree. The dynamic programming algorithm can be applied to a broader class ofagistess,
but is slower, specially when many registers are available.

Unfortunatelythe MC68020 machinemodel doesnot meetthe requirementsfor thesealgorithms. The
biggest problem is that the MC68020 does not have n interchangeableegisters,but two classesof
registers: address registers and data registers.

If we would ignore this problem, and deal with all registers in the same way, the code genidiratetbe
good, because many computations can onlgtddyein one sort of register,for examplememorycanonly
be addressedising addresgegisters,and multiplications, divisions and shifts can only be donein data
registers. If for example a computation has to be done using an address registers, addtardgiateris
available instead of an address register, we would have to tm®valuein an addresgegisterto the data
register, do the computation using that address register and therthmeakiein the dataregisterbackto
the address register.

To solve this problem we could adapt the labeling algorithm by calculating for every node:

- the numberof dataregistersandthe numberof addressregistersrequiredto evaluatethe subtree
with as root this node in a data register.

- the numberof dataregistersandthe numberof addressregistersrequiredto evaluatethe subtree
with as root this node in an address register.

By using this algorithm theodegeneratomwill be slowerandmore complicated becausenow 4 numbers
haveto be calculatedfor every node insteadof 1. By using this algorithm a good evaluationorder can
probablybe determinedput the algorithmis not optimal, becausef for examplewe canchoosebetween
using 2 dataregistersand 0 addresgegistersor 1 addresgegisterand 1 dataregisterwe can'tdetermine
which choice is the best during the first phase.

The dynamic programming algorithm could also be adapted to solve the problems causguhtiiitimng
of registers into two classesy calculatingfor everynodethe costfor returninga resultin a dataregister
for everypossiblecombinationof numberof dataregistersand numberof addressregistersand also the
same costs for returning the result in an address register. So fomedemwe would haveto calculatethe
costs to evaluate the subtree with as root this node:

- in memory without using registers.

- in a dataregisterfor everycombinationof at leastone dataregisterand any possiblenumber of
address registers.

- in an address register for every combination of at least one address register and anynposisdyle
of data registers.

By reservingthe registers(A3-A7) and D7 as describedin section3.5, 3 addressregistersand 7 data
registers remain available. Then we would have to calculatg*¥ + 3*8 = 53 costsfor everynode.We
could leave out many of these costs for nodes which aredhef a small subtree becauseghenthe costs
for large numbers of registers are the sdmeeausdor small subtreest doesn'tmatterif we may usefor
example 5, 6 or 7 registers. But even then would the number of costsdedye far too high, so that this
algorithmwould be too slow, very complicatedand usetoo muchmemory.So this doesn'tseema good
approachBut it would generatebettercodethanthe adaptedabeling algorithm, becauseat doesn'thave
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problemswhenit hasto choosebetweenusing for example2 addresgegistersand O dataregistersor 1
address register and 1 data register, because it can return both costs.

Another possibility is to combine both algorithms. Becausatimberof availableaddresgegisters(3) is
much lower that the number of available data registers(7), a good allocation of addressregistersis
probablymore importantthan a good allocationof dataregisters.t may thereforebe sensibleto calculate
for every possible number of address registers the costs and the number of cedanesgistersfor every
node. So for every node the following should be calculated:

- the cost of evaluating the subtree of which this node is the root.

- for every number of address registers the aasinumberof requireddataregistersto evaluatethe
subtree of which this node is the root in a data register.

- for every number of addressgistersgreaterthan0 the costand numberof requireddataregisters
to evaluate the subtree of which this node is the root in an address register.

So we would haveto calculatel+4+3 = 8 costsand4+3 = 7 numbersof dataregistersfor every node.
Because 15 values have to be calculate@very node, this algorithmwill probablybe slow, complicated
and use a lot of memory. But his algorithm will determine a better evaluation order than the latfepied
algorithm. Although it is still not optimal, because we if we have to chbetseeenusing one dataregister
more or slightly slower code, we can't determine which choice is the best during the first phase.

Consequentlywe will use the adaptedlabeling algorithm becauseit can probably determinea good
evaluationorderandis faster,lesscomplicatedand useslessmemorythanthe othertwo algorithms. But
this algorithm has to be further adapted, because there are more problems. This is discussed below

6.2.5. The evaluation order for dags with common subexpressions.

If a basic blockcontainscommonsubexpressionghe dag constructedrom this basicblock will not be a
set of trees, because the dag will contain shared nodesthiélabelingalgorithmcanno longerbe used.
And determining the evaluation order becomes much more difficult. Generating optimal code frofara ¢
a one-register machine is NP-complete [Bruno et al. 1976]. Even withliamted numberof registersthe
problem remains NP-complete [Aho et al. 1977].

Accordingto [Aho et al. 1986] a reasonablesolution canbe obtainedby partitioningthe daginto a setof
trees by findingor everysharednodethe maximalsubtreewith this sharednodeasroot thatincludesno
othersharednodes,exceptas leaves.This maximal subtreewill be evaluatedfirst, so that all common
subexpressions will bevaluatedirst. So from a dagwe obtaina setof trees,which canall be evaluated
using an algorithm described in the previous section.

But if thereare many small commonsubexpressionthis solutionresultsin a bad evaluationorder. If for
examplemany variablesoccur morethanoncein a dag, thesevariablesare all commonsubexpressions.
Using the solutionof [Aho et al. 1986] we would first evaluate(load) all thesevariablesin a register,so
that we would probably have too few variables available to evaluate the remaitidedad efficiently. To
solve this wecould evaluatesomecommonsubexpressionst memory,but it is not clearwhich common
subexpressions should be evaluated in memory, and this will often not result in the best possible coc

Consequently, | don't think this isgod solution.| havetried to find othersolutionsfor this problemin
the literature, but I haven't found one.

Thereforel havetried to extendthe labelingalgorithm, so thatit could determinea good evaluationorder
for dags with common subexpressions. This extension is described hedowsn'ttakeinto accountthat
there are data registers and address registers.

I will first explain what | mean with aargument cdag. An argumentcdagof a nodeis a cdag(seesection
6.1.9) with as root a child of the node. (compare argument tree of a node)

If we evaluate a shared node for the first time, we d@niyt haveto computethe value of the expression
represented by the cdag with as root this shared node, but weastto remembetthis value, so that we
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don't have to do the computation agaithé sharednodeis usedagain.We will remembetthis valuein a
register.If the sharednodeis evaluatedencounteredagain,we returnthis register.This registercan be
released after the last evaluation of this shared node.

So the numberof usedregistersincreasesf a common subexpressions evaluatedthe first time and

decreases if a common subexpression is evaluated the last tifheveSevaluatea cdagcontainingshared
nodes (representing common subexpressidnsumberof usedregistersmay not only changebecause
the result is returned in a register, but also because a shared node is evaluated.

Because evaluating shared nodes may chdmegeumberof usedregisters the labelingalgorithmwill not
always determine a good evaluation order. For example, if wetawanmputethe sum of expression&l
andE2, andto evaluateEl in aregisterrequires3 registers,and to evaluateE2 in a registerrequires2
registers, then the labeling algorithm wogleheratecodewhich first evaluate€£1 andthenE2. But if E1
contains common subexpressions so that the number of used registers increases by 3 if E1 is avdlu
E2 doesn't contain common subexpressions, then it is better first to evaluate E2 and then E1lif Beeat
first evaluateE1l andthenE2, thenafter evaluatingEl 3 registersare no longer availableand we need?2
registers for E2, so that we need 5 registers to compute the sum. But if we first evaluat¢hed Bhave
only need 4 registers to compute the sum.

To solve this we could extend thabeling algorithm by not only calculatingfor every nodethe numberof
registers required to evaluate the cdag with as root this node, but also by how many tegistenberof
used registers increases if the cdag is evaluated.

To calculate this increase in the numbeusédregistersof a nodewe could usethe labelsof the children
of the nodeandwhetheror not the nodeis a sharednode. We could try to calculatethis changein the
numberof usedregistersby addingthe increasdan the numberof usedregistersof all the childrenof the
node and by adding 1 if the node is a shared node.

Unfortunately this result will not be correct if the expressidrich is representedby the cdagwith asroot
this node containssomecommonsubexpressionsf which all occurrencesre in this expressionlIf for
examplethe increasein the numberof used registersis calculatedfor 'a+a' then 'a’ is a common
subexpression, so for 'a’ the increase in the number of used registers is 1, and for 'a+a’ walcutaidd
1+ 1 =2 as the increase in the number of used registers.'Butsfonly usedin this expressionywe can
releasethe registerwhich containsthe value of 'a' after having calculated'a+a’. So the increasein the
number of used registers for ‘a+a’ is not 2, but O.

To solve this we could maintain for every node how many times every sharedawonisin the cdagwith

as root this node. This could be calculated during the first phase of the labeling algontlerndéild also
calculate how many times evespriarednodeoccursin the whole dag, we could determinefor everynode
the shared nodes of which all occurrences are in the cdagsvwitiot this node, by comparingthe number
of occurrences in the whole dag with the number of occurrences stored in the node.

But storing this information for every node uses a lot of memory if there are a lot of common
subexpressions, and makes toele generatoislower and more complicated.The memoryuseis O (n*n)

wheren is the numberof nodes,but usually muchlessmemoryis used.If we would not maintainthis
information, but simply use theum of the increasesn the numberof usedregistersof all the children of

the node plus 1 if the node is a shared node as the increaseumtherof usedregistersof the node,the
calculated increase will often be correct, but sometimes too high. Fongteenentatiorthis approachwas
used, so the implementation does not calculate for every node how many times evemyateoedursin

the cdaghavingasroot this node. But the implementationdoes calculatehow many times every shared
node occursin the whole dag, becauseve needthis information to determinewhen a sharednode is

evaluated the last time. (see below)

After having calculated(an estimateof) the increasedn the numberof usedregistersand the required
numbers of registers during the first phase of this adapted labeling algoritrcantvegin with phasetwo
to determinean evaluationorder by usingthesenumbers But after evaluatinga sharednode for the first
time, the calculatedncreaseof the numberof usedregistersof this nodewill often no longer be correct,
because the value of the expression which is represented by the cdag having as root this sharemanoc
in aregisterand doesnot haveto be computedagainif the sharednodewill be evaluatedagain. So the
increasein the numberof usedregisterswhen this sharednodeis evaluatedis now 0. And also after
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evaluating a shared node for the second last time the calculated increase of the nusdzregfsterswill
often no longer be correct, because the valubeéxpressiorwhich is representedby the cdaghavingas
root this shared node is now in a register and this register may now be released after the next usi, b
is the last use. So then the increase is -1. (if the second last time is the sanfiesasithe, the increasds
also -1)

In both casesthe calculatedncreaseof the numberof usedregisterswhen the cdag having as root this
node is evaluated is usually no longer correct. And usually the calculated numdgigddregistersis no
longer correct as well. Consequently, the increase in the nwhibisedregistersand the requirednumber
of registersfor all nodes,for which the cdagwith asroot this nodecontainsthe sharednode, may have
changed. So in both cases these numbers have to be recalculated.

To recalculate these numbers when a common subexpression has been evaluatedpwedadudatethe
numbers for the nodes for which the cdag with as root this node cotitasisarednodecorrespondingo
the commonsubexpressionThesenodesare the nodesfor which thereis a path to the sharednode
corresponding to the common subexpression. We could use the following algorithm:

PROCEDURE recalculate (NODE n)
recalculate_node (n);
IF increase in number of used registers after evaluating node n has changed
OR required number of registers for node n has changed THEN
FOR all parents p of node n DO
recalculate (p);
END_PROCEDURE recalculate.

Note that we haveto be ableto find the parentsof a node,so we muststorepointersto the parentsof a
node. This recalculating would maktee codegeneratoma lot slowerif therearecommonsubexpressions,
but the evaluation order would be better. This has not (yet ?) been implemented in this implementatio

This extendedabeling algorithmalwayscompletelyevaluategshe argumentreesof a nodeoneat a time.
But there does not always exist such an optimal evaluation order. For examey dyadidunction and

T is a tryadic functonand T ( D (T (ab,)D (d,e)), D (T (cab)D (f,9)), D (T
(b,c,a),D (h,i)) hasto be evaluatedThena, b andc arecommonsubexpressionghich all occur
three times. Ib andT are operands of the target machine, we requisgBtersto evaluatethis expression
if we evaluate this expression by alwaysnpletelyevaluatingthe argumentreesof a nodeoneat atime.
Because after evaluating one of the arguments of theofutection four registers ana use,andwe need
an additionakwo registersto evaluateanotherargumentBut if we first evaluater (a,b,c) , T (c,ab)
andT (b,c,a)  using five registers, we can evaluate the whole expression using only five registérs. £
evaluation order will be better for certain machines.

This algorithmwill alsonot alwaysfind the bestevaluationorderwhich always completelyevaluateshe
argumentreesof a nodeoneat atime. This is not so strange becausé think this problemis also NP-
complete.

If thereare no commonsubexpressionghe amountof time which the algorithm usesto determinean
evaluation order is O (n), where n is the size of the dag. But if thereaamgcommonsubexpressionand
recalculatingthe increasesof the number of usedregistersand the required number of registersis
performed, the amount of time which the algorithm uses is O (n*n).

6.2.6. The evaluation order for dags with variables in registers.

Up to now we have assumed variables are stored in memory at the beginning ahd kasicblock. But
if variables are stored inragisterat the beginningor end of a basicblock, the algorithmdescribedabove
will often not determine a good evaluation order.

Becausef a cdagis evaluatedwhich evaluates(uses)a variable which is storedin a register at the
beginning of the basic block for the last time, this regiséerbe releasedso the numberof usedregisters
decreases if suchcdagis evaluatedAnd if a cdagis evaluatedvhich storesa resultin a variablewhich
has to be stored in a register at &mel of the basicblock, the numberof usedregistersincreasesbecause
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the registemwhich containsthe variableis no longeravailableafter the evaluation.The algorithmdoesnot
take these changes in the number of used registers into account.

But this can be solved easily, becatlsesechangesn the numberof usedregistersresemblehe changes
in the number of used registers for common subexpressions.

If a variable is storeth aregisterat the beginningof a basicblock, we cantreatthis variablein the same
way as a common subexpressiorwhich has been evaluatedonce, becausethe value of a common
subexpressiohasbeenstoredin a registerafter the first evaluationandthis registercanalso be released
after the last evaluation.(use) This also meansthat if sucha variable has beenevaluatedthe secondlast
time, we may haveto adjustthe increasein the numberof usedregistersand the required number of
registersfor somenodes,just like when a common subexpressions evaluatedthe secondlast time,
because these numbers of the node which represents the variable will have changed. This can the dc
same way as for common subexpressions as described in the previous section.

If a variable has to be stored in a register at the end of a basic block, we ctmstreatableasa common
subexpression which has not yet been evaluaiesthusaef a commonsubexpressiors evaluatedhe first
time also a register has to be allocated to stereesult. For a commonsubexpressiothis registercanbe
released after the last evaluation (use), but for a variable which baestredin a registerat the endof a
basic block the register can not be released. We can solve this by pretenehtrgase of sucha variable
exists in the basic block, so that the register will never be released.

But usually the variable may not be stored in any register at the end of a basic blbelstbude storedin

a specificregister.This causegroblemsif a cdagis evaluatedvhich assignsa valueto a variable which

has to be stored in a specific register at the end of a basic blothketrehisternasalreadybeenallocated.
How this has been solved is described in section 6.4.7.

6.2.7. Calculation of the evaluation order of the arguments for a machine with one type
of register.

After a daghasbeenconstructedor a basic block, the dag consistsof a setof cdagswhich may have
shared nodes. These cdags will be evaluated completely one at a time. The wideh thesecdagshave
to be evaluatedhasto be determined And alsothe orderin which the argumentcdagsof a nodewill be
evaluated has to be determined. These orders are determined using the neguitedf registersandthe
increase in the number of used registers stored in the roots of the cdags.

Let n = the number of cdags to be evaluated. Assume the cdags are numberetb fnpartthat G (i) is
the cdag with number i for alli {1, 2, .., n}, so that a cdag can be identified by its number using G.

For all cdags g let:

I (g) = the increasein the numberof usedregisterswhen the cdagg will be evaluated,.e. the
number of registers in use after the evaluation of g - the number of registerbefars¢he
evaluation of g.

U(g) = the (additional) numberof registersnecessaryto evaluatethe cdag g, i.e. the maximum
number of registers in use during the evaluatiog ethe numberof registersin usebefore
the evaluation of g. (often also called required number of registers)

After the graph has been constructed these | (g) and U (g) are calculagedrfarodein the graphduring
the first phase of the adapted labeling algorithm as has been partly described in sections 6.2.5 and (

The evaluation order of thedagscan be representedby a permutationP of {G (1), G (2), .., G (n)}, so
that the graph to be evaluated first is P (G(1)), the graph to be evaluated second is P (G(2)), etc.
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The maximumnumberof registersin useduring the evaluationof P (G(i)), after evaluating P (G(1)), P
(G(2)), .. P (G(i-1)) is:
i-1

RP.)=[21(P(Gm)]+U (P G®H))

m=1

For all cdags g let D (g) =U (g) - 1 (g). Then
i-1 [

I
RP.)=[Z1(P(GMm))]+U(PG®D))=kIP(Gm)]+D (P (G)
m=1 m=1

The number of registers necessary to evaluate all the graphs in the order P (G(1)), P (G(2)), .., P (C
R (P) = MAX{R (P,)|iD{1,2,..,n}}

To find the evaluationorder which requiresthe minimum number of registers,we have to find a
permutation P for which R (P) is minimal. Then the number of registers required is:
R=MIN { R (Q) | Q a permutation of { G(1), G(2), .., G(n) } }

To find this evaluation order we could of course calculate RofPall permutationd?, but this would cost
an amountof time O (n!). For largen this amountof time is too high, thereforewe haveto find a faster
methodto determinethis evaluationorder. A methodwhich canfind the evaluationorder by sorting is
described below. This method can be implemented to execute in an amount of timdaj @)(rby using
an O (n log n) sorting algorithm. For our implementati@maple sorting algorithm hasbeenused, so that
determining the evaluation order of a set of cdags costs an amount of time of O (n*n).

To useasfew registersas possible,we shouldstartevaluatingthe cdags,which evaluationresultsin the
release of registers, because after evaluating sietps,moreregisterswill be availablefor the evaluation
of other cdags.

The cdags,which evaluationdoesnot resultin a changein the number of used registers,should be
evaluated when the highest number of registers is available, so after evaludhiegadigswhich resultin

the release of registers.

Finally the cdags,which evaluationresultsin an increasein the number of used registers,should be
evaluated, because all cdaglich will be evaluatedafter this cdagwill havefewer registersavailable,so
these cdags should be evaluated as late as possible.

More formal, to use as few registers as necessary during evaluation:
- First evaluate all cdags g for which | (g) < 0.

- Then evaluate all cdags g for which | (g) = 0.

- Finally evaluate all cdags g for which | (g) > O.

The cdags g for which | (g) <I@aveto be evaluatedn an order so that the cdagsfor which U (g) is low
are evaluated first. So the cdagswdrich | (g) < O haveto be sortedfrom low to high usingasordering
criterion U (g).

The cdags g for which | (g) = 0 may be evaluated in any order.

The cdags g for which | (g) > 0 havelie evaluatedn an order so thatthe cdagsfor which D (g) is high
are evaluated first. So the cdagsydrich | (g) > 0 haveto be sortedfrom high to low usingasordering
criterion D (g). That this ordering uses as few as possible registers is proved below.

So to use as few registers as possible:

- First evaluate all cdags g for which I (g) < 0, ordered from low to high by U (g).

- Then evaluate all cdags g for which 1 (g) = 0.

- Finally evaluate all cdags g for which | (g) > 0, ordered from high to low by D (g).

That the cdagshaveto be orderedin this way to use as few registersas possibleis not difficult to

understand, except that cdags for which 1 (g) > 0 have to be ordered from high to low by ie(gjorel
will prove this below.
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Theorem. Let E be a permutation of&(1), G(2), .., G(n) } sothatfor allk 0 {1,2, .. ,n-1} : D (E
(G(K)) 2 D (E (G(k+1))). _ _
If for all cdagsg: | (g) > 0 thenrR = R (E), i.e. E (G(1)), E (G(2)), .., E (G(n)) is an
evaluation order which requires the minimal number of registers.

Proof. By definition: R (E) = MAX {R (E,i) | iI0D{1, 2, .., n} }, soOmON : R (E;m) =R (E).

LetH={E (G() |I0{1, 2, .., m}}and let P be a permutation of {G(1), G(2).G(n)},
then there exists K N so that km, P (G(k))D Hand { P (G(l)) | D {1, 2, .., k} } O H.

Thel? R (P.k) = ( by definition :)
= [|Z I(P(GMD)]+D(P(GK)) (because{G()|b{1,2,.,k}}oHandl(g)>0:)
=1
>[21(g)]+ D (P (G(k))) (because P (G(k) H,Olsm : E (G(I)) = P (G(k)) :)
gH
=[21(g)]+ D (E (G())) ( because E (G(Ip E (G(m)) :)
gH

2[21(g)]+ D (E (G(m))) =R (E,m)
gH

Then R (P) = MAX {R (P,i) | 1 {1,2, .. ,n}} = R (P,k) = R (E;m) = R (E), andthusR
(P)= R (E).

Then for all permutations P: R (BR (E), thuR= R (E).

For now we have assumduht| (g) andU (g) arefixed, i.e. evaluatinga cdagdoesnot changethe | (g)
and U (g) of other cdags. But evaluating a cdag may change the | (g) and U (g) of other cdags if:

- a common subexpression is evaluated the first or second last time.

- a value is stored in a variable which should be stored in a register at the end of the basic blocl
- a variable which is stored in a register is evaluated the second last time.

In all these cases | (g) and U (g) of other cdags may dectadse]l neverincreaseThel (g) andU (g)
can also be too high because during the first phase of the extended labeling algorithm the | (gj) anel U
sometimes estimated too high. Consequently the I (g) and U (g) could be too high, but never too low

Therefore we can improve the evaluation order by:

- Ordering the cdags for which | (g) = 0 so that the cdags for which 19 ég)all are evaluatedirst.
If for examplea andb are cdags for which b =1 (b) =0, U (a) = 2, U (b) = 3 andevaluatinga
resultsin a decreasef U (b) by oneandevaluatingb resultsin a decreasef U (a) by one, it is
better first to evaluate instead ob, because in that case we would need 2 registers instead of &

- Not only using D (g) asorderingcriterion for cdagsfor which | (g) > 0, but also, if the D (g) of
cdags are the same, use U (g) as (secorttdringcriterion, andfirst evaluatethe cdagsfor which
U (g) is small. If for example andb are cdags for which k=1, U &) =3,1(b) =2, U (b) =4
and evaluating results in a decrease of b) py two and evaluating results in a decreasd U (a)
by two, it is betterfirst to evaluatea insteadof b, becausen this casewe would need3 registers
instead of 4.

For now we have only tried to determinearmluationorderfor which the requirednumberof registersis
as low as possible. But if the required number of registdrggherthanthe numberof availableregisters,
someevaluationordersmay be betterthan other evaluationorders which require the same number of
registers. Because if not enough registers are available some values hastotedde memory,andextra
memory accessesire necessaryand for someevaluationordersthe numberof extra memory accesses
could be smaller than for other evaluation orders.
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Therefore we may improve the evaluation order by not only usig) asorderingcriterion for cdagsfor

which I (g) <0, but also, ithe U (g) of cdagsarethe same,usel (g) as(second)orderingcriterion,and
first evaluate the cdags for which | (g) is small (‘'more negative"). If for example3{(b) = 3, | (a) =

-2 and | ) = -1, wherea andb are cdags, and one registeaisilablebeforethe evaluationof a andb, it

is probably better first to evaluadeand therb, because thet can be evaluatewithout storingintermediate
results in memory, because 3 registers are available after evatudfingpweverb is evaluatedirst, both

a andb will have to store some intermediate results in memory.

After adding these extensions, to use as few registers as possible:

- First evaluate all cdags g for whiclid) < 0, orderedfrom low to high by U (g), andif theU (g)
are the same, ordered from low to high by I (g).

- Then evaluate all cdags g for which | (g) = O, ordered from low to high by U (g).

- Finally evaluate all cdags g for which | (g) > 0, ordered from high to lo® Kg), andif the D (g)
are the same, ordered from low to high by U (g).

6.2.8. Calculation of the evaluation order of the arguments for the M C68020.

Becausethe MC68020 hastwo types of registerswe can't directly use the algorithm of the previous
section.To still be able to use this algorithm for the MC68020we could ignore the differenceof data
registers and address registers, by using the increfflsnomberof useddataregisterst+ the increasan

the number of used address register as the increase in the number of registers fardeyand using the
requirednumberof dataregisters+ the requirednumberof addressregistersas the requirednumberof

registers for every node, and then apply the algorithm of the previous section to these taddtersiine
the evaluation order of a number of cdags.

In this way we wouldreataddresgegistersas beingjust asimportantas dataregisters But by reserving
the registersA3-A7 and D7 asdescribedin section3.5, 3 addressregistersand 7 dataregistersremain
available. So address registers are marethandataregisters becausehereareonly 3 addresgegisters
availablecomparedo 7 dataregisters.But both addressand dataregistersare requiredoften. Therefore,
how address registers are allocated is much more important than haoedistiersare allocated.We could
say an address register is 7/3 times as import as a data register. So we would like to treat argisignes
as being 7/3 timemoreimportantthana dataregisterwhen determiningthe evaluationorder, becausehe
evaluation order determined in this way would probably be better.

We can adapt our algorithm teeataddressand dataregistersin this way by using3 * the increasan the
number of used data registers + 7 * the increase in the number of used address register as the tinere
number of registers for every node, and usingif®*requirednumberof dataregisters+ 7 * the required
number of address registersths requirednumberof registersfor everynode,andusethesenumbersto
determine the evaluation order.

The evaluation order determined in this way is not even optimal for the number of used registei@nftwe
take into account that evaluating a cdag may change the required nundggstefrsand the increasean the
number of used registersof other nodes. To obtain better results, we use a more accurateway of
determiningthe evaluationorder if we haveto determinethe evaluationorder of only two cdags.This
improves the evaluation order considerably because most nodes have only two argument cdags.

So assume the evaluation ordeoafy two cdagshasto be determinedThenthereare only two possible
evaluation orders: first evaluate the first argument cdag and then the second argumentficstagyaluate
the secondargumentcdagandthenthe first argumentcdag. For both evaluationorderswe candetermine
the number of used address registers (UA) and data registers (UGh)eamcteasen the numberof used
address registers (IA) and data registers (ID). If | and r are the cdags to be evaluated, then:
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- The number of used address registers for evaluating | first is MAX (UA (1), 1A (1) ¥)Aandthe
number of used data registers is MAX (UD (I), ID (I) + UD (r)).

- The number of used address registers for evaluating r first is MAX (UA (r), IA (r) + UA (I)ihend
number of used data registers is MAX (UD (r), ID (r) + UD (I)).

How the increases ithe numberof usedregisterscanbe calculatechasalreadybeendescribedn section
6.2.5, but these numbers will tiee samefor both evaluationorders.Using the numbersof usedaddress
registers and data registers we should determine in what order thes#atygbaveto be evaluatedBut if
we have to choose between using more data registers or using more address registers we admtthknc
choiceis better.Again we can chooseto treat addressregistersto be 7/3 times more importantas data
registers. So we will choose the evaluate ofdewhich 3 * numberof useddataregisterst+ 7 * number
of used address registers is minimal.

The following examples illustrates that this may lead beterevaluationorder. Assumel andr arecdags
andIA (I)=-1, ID (I)=1, UA (I)=0, UD (I)=1 andIA (r)=0, ID (r)=1, UA (r)=0, UD (r)=2. Thenthe
improvedway of determiningthe evaluationorderwould first evaluater and then|, so that only 2 data
registers are used and no address registers. But the other algorithm would first evalugten rarsb that
3 data registers and no address registers are used.

If the results of both cdags have to be used to compute aaseNt, the calculationof the requirednumber
of registers could be more complicated, but we canustdkthe sameconditionfor choosingthe evaluation
order of the two cdags.

6.2.9. The evaluation order for dags with common subexpressions on the MC68020.

In the previous section we calculated the order of the arguments using for every argument cdag:
- the required number of data registers to evaluate the cdag. (UD)

- the required number of address registers to evaluate the cdag. (UA)

- the increase in the number of used data registers when the cdag is evaluated. (ID)

- the increase in the number of used address registers when the cdag is evaluated. (IA)

But in section6.2.4 (beforel introducedthe problemswith common subexpressionsind variablesin
registers) we computed for every root of a subtree:

- the number of data registers required to evaluate the subtree in a data register.

- the number of address registers required to evaluate the subtree in a data register.

- the number of data registers required to evaluate the subtree in an address register.

- the number address registers required to evaluate the subtree in an address register.

So we computedboth the registercostsfor evaluatingthe resultin a dataregisterand for evaluatingthe
result in an address register. If we would also do this for our adapted labeling algeetiwrauld haveto
compute UD, UA, ID and IA for evaluating the result idataregisterand alsofor evaluatingthe resultin
an address register. So we would have to calculate 8 number of registers for every nedewindt no
longer be able to determine the evaluation order of a number of @sldgscribedn section6.2.8. Maybe
both algorithms can be changed to handle this, but this would prambaklthemtoo complicatedandthe
code generator would be too slow.

Thereforethe following solutionwas chosen.Beforethe evaluationorderis determineds decidedwhich
cdagsshouldbe evaluatedn a dataregistersandwhich onesin anaddresgegister.How this is doneis
described in section 6.4.2. Then the fpbseof the adaptedabeling algorithm calculatesor everynode
the register costs (UD, UA, ID and IA) for evaluating the cdag having ashisetodein the requiredsort
of register.

But becausat usuallyis not necessaryo evaluateall argumentsn registersbefore an operationcan be
performed,for examplefor additionsonly one of the argumentasto bein aregister,we canoften not
compute the register costs of such an operation from the register costs of the acglageiiihereforefor
some nodes we calculatee registercoststo evaluatethe cdagin memory,insteadof the registercoststo
evaluate a cdag in a data register or an address register.
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For the (original) labeling algorithm this was not a problem, becausehe labeling algorithm didn't take
algorithm propertiesof operationsinto account.Thereforeit could solve this problem by assumingthe
number of registers to evaluate a cdag, consisting of just a variable nodeif ig aha left leaveandzero
otherwise. (explained in section 6.2.2) But this often regulitsefficient codefor commutativeoperations
like ADD. (commutativityis an algebraicproperty) For example,the labeling algorithm would evaluate
A+(B+C) by first loading A in a register, then loading B iregjister,addingC andthenaddingthis result
to the register containing A, instead of loading B in a register, then addind@enaddingA. This latter
evaluation uses one register less, and consists of only 3 instructions instead of 4.

But even then we do not always have enough information to compute the register costs. Themferg fc
node a flag is computed. This flag is titi@ registermay be releasedafter accessinghe result, otherwise
false. If this flag is true, then:

- If the cdag is evaluated in a data register, this data register may be released after use.

- If the cdag is evaluated in an address register, this address register may be released after use
- If the cdag is evaluated in memory, an address register may be released after use.

So for every cdag we compute:
There the result of the cdag is computed, in an address register, in a data register or in memo

- The required number of data registers to evaluate the cdag. (UD)

- The required number of address registers to evaluate a cdag. (UA)

- The increase in the number of used data registers when the cdag is evaluated. (ID)

- The increase in the number of used address registers when the cdag is evaluated. (1A)

- A flag indicating whether a register mhg releasedafter the resultcomputedby the cdaghasbeen
used.

An example of such a calculation can be found in appendix A. (A.1.5)

6.3. The dag representation of the ABC instructions.

In the previous sectionsa dag was constructedfor every basic block of ABC instructionsand was
explained how we could determine an efficient evaluation order of this dabgo@ugxactly this daglooks
like has not yet been explained. This is done in this section.

So, for the ABC instructions is explainédw they arerepresentedh the dagandwhy this representation
has been chosen. Also the nodes which are used for this representation are explainedd€besealso
be found in appendix C. Examples of these dags can be found in appendix A.

6.3.1. The sort of dag representation.

To be able to use the extended labeling algorithm described in 6.2 wefietb constructa dagfrom the

ABC instructions.| already describedhow a dag could be constructedby representingevery ABC

instruction by a node in the graph in section 6.1.9. But such a representationhas considerable
disadvantages:

- Many different nodesfor a similar operation.For examplethe following 13 ABC instructionstest
whether two valueareequal:eqB, eqB_a, eqB_b, eqC, eqC_a, eqC_b, eql , eql_a , eql_b , eqR,
eqR_a, eqR_b andeq_desc . If we would like to optimize an operation,we would haveto testfor
many different nodes. For example:

- If we would like to optimize comparingto zeroby usinga TST instructioninsteadof a cCMP
#0 instruction, for all 13 nodes the codeneratomould haveto testfor #0 andhaveto be
able to generate an extra code sequence which asasrestead of a&MP #0.

- If we would like to optimize the not of a test for equalityusing a NE (not equal)condition

code after thempinstruction instead &Q(equal), the code generator would haveegifor
14 different nodes when generating code for not.
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- There are many complex nodes. For these nodes large seglesncebaveto be generatedmany
codesequenceare possibleand complicatedcalculationsare necessaryo calculatethe numberof
required registers of such a node.

Consequentlyit is better to use one node for similar operations,use nodes which representsimple
computationsand can be implementedwith only a few MC68020 instructions.So we would obtain a
lower level representationgloser to the MC68020. Then performing optimizationsis simpler, code
sequence$or nodesare shorterand calculationsof the numberof requiredregistersare simpler. But the
dag will be larger and translating the ABC instructions to a dag is more difficult.

For example we would like to have only one node representinghe operationwhich testswhethertwo

valuesare equal,but the valuesto be comparedare not alwaysof the sametype. Thereforetwo different
nodes are necessary for tekmmpareoperation:CMP_EQto compareintegersand FCMP_EQto compare
floating point numbers.

TheseCMP_EQand FCMP_EQnodeshavetwo arguments Argumentscould be the result of another
computation,storedin memory, storedin a registeror a constant.If an argumentis the result of a
computation the argument is represented by a dtlage would makenodesrepresentingaluesstoredin

memory, values stored in a register and constants, these arguments tanrepsesentedy cdags.Then
all the arguments are cdags.

6.3.2. The dag representation for arguments.

An integer constant i is represented by a '‘LOADnNbtle,an addressonstant(label) | by a‘'LEA I' node
and a descriptor of symbol s and number of arguments a by a 'LOAD_DES | s a' node.

The contentsof an addressor dataregisterr is representedy a 'REGISTERTr" nodefor registerswhich
contain an intermediate result, or by a 'GREGISTER r' nodglébal registers;.e. registersASP, BSP,
CSP, HP and FC, which may not be released after all uses in the basic block.

An integer on the B-stack in memory or an address on the A-stack in memepyesentedby a 'LOAD d
r' node. Thevaluerepresentedby this nodeis the contentsbeforethe executionof this basicblock of the
long word at the addresscomputedby adding(integerconstant)d to the addressin stackpointerr at the
beginning of the basic block.

Otherintegersand addressestoredin memory,i.e. the integersand addressestoredin the heap,in a
descriptor element or in a symbol record, also have to be accessed. These integers and addiesgess ¢
accessed indirectly through a pointer and are represented by a 'LOARY' IBode. The valuerepresented
by this node is the contents of the long worthataddresscomputedby addingd to the valuerepresented
by cdag g.

We alsohaveto be ableto accesdytesin memory,becausehe charactersn a string are bytes. Bytesin
memoryarerepresentedy 'LOAD_B_ID d g'. The valuerepresentedby this nodeis the zero extended
contents of the byte at the address computed by adding d to the value represented by cdag g.

And we also haveto be able to accesswords in memory, becausethe descriptorsare words and the
descriptor elements contains words. Words in memory are represented by 'LOAD_DES Tbed/glue
represented by this node is the sign extended cordgétite word at the addresscomputedoy addingd to
the value represented by cdag g.

Using the nodesdescribedabove we can representthe argumentsof all the instructionswe want to
represent in the dag, except for the instructions using floating point numbers.

6.3.3. The dag representation for operations.

Binary operations which don't use floating point numbers which can be representedag blyeone node
are:ADD, SUB, CMP_EQ,CMP_GT,CMP_LT, MUL, DIV, MOD, LSL, LSR, ASR, AND, OR and
EOR. All these instructions can usually be implemegedne MC68020instruction,but sometimesextra

61



MOVE instructions are necessary,and for the compareinstructions sometimesextra instructions are
necessary to convert a condition code to a boolean. The unairy CNOT node represents the not of a t

Using the nodes we can represtm@computationof the ABC instructionswhich we wantto representn
the dag and don't use floating point values and don't access the heap.

6.3.4. The dag representation for floating point arguments.

In section 6.1.6 | already mentioned that representing instructions, which confipaténg point number,
in a dag is more difficult because a floating point number consists of two long words. We can'traatay
thesetwo long words as one floating point number, becausesometimesthese two long words are
manipulatedseparatelyfor examplea floating point numberis copiedon the B-stack by two push_b
instructions which each copy one long word.

To be able to represent the high and low long word of which a floating point number corthisgagwe
usetwo nodeswhich point to a cdagwhich representsa floating point number.The 'FHIGH g' node
represents the high long word of the floating point number represented by cdagthe A\dOW g' node
represents the low long word of the floating point number represented by cdag g.

If an instruction has a floating point number as argument, we could treat this floating point argsitvwent
long words, so that for exampéenoderepresenting floating point additionwould havefour arguments.
But if we would compute the twiong words, of which a floating point argumentconsists,oneat a time,
the generated code would be inefficient. Because thefnrewe canperformthe floating point operation,
we would first have to make a floatipgint numberout of the two long words. But usuallythe two long
words are the high and low long word of the samefloating point number.So we would not have to
compute the high and low long word separately, but could compute the flpatmgrgumentat onceand
usethis numberfor the floating point operation.But to do this the codegeneratomwould haveto test for
every floating point argument whether the two long words are represenégeHiysH anda FLOW node
having the same cdag as argument.

Consequentlya better representatiortan be obtainedby representinga floating point argumentby one
cdag, so that for example a node representing a floating point addition would have two argumetthe. T
FHIGH and FLOW are not necessaryf the high and low long word of the floating point numberare
computed by the same cdag. B@ableto still represent floating point argumentfor which the high and
low long word are computedby different cdags,we usea 'FJOIN g1 g2' node.A 'FJOIN gl g2' node
represents the floating point number consisohghe high long word representedby cdaggl andthe low
long word represented by cdag g2.

Floating point arguments can now be represented just like integeesldressesA floating point constant
fis represented by a 'FLOAD_I f' node.

The contents of a floating point register fr is represehted 'FREGISTERfr' node.And a floating point
number stored in memory on the B-stack is representedflyOAD d r' node. The valuerepresentedby
this node is the floating point number stored beforesttezutionof the basicblock in the two long words
at the address computed agiding (integerconstant)d to the addressn stackpointer at the beginningof
the basic block.

Other floating point numbers stored in memory, i.e. floating point numbers stdrezhieap,also haveto
be accessedThesefloating point numbersare always accessedndirectly through a pointer and are
represented by a 'FLOAD _ID d g' node. The floating point number repressnties nodeis the floating
point number stored in the two long words at the address computed by adding daloginepresentedby
cdag g.

Using the nodes described above we can represent all the floating point argumertite ofsthuctionswe
want to represent in the dag.
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6.3.5. The dag representation for floating point operations.

Binary operationsusing floating point numberswhich can be representedn the dag by one node are:
FADD, FSUB,FCMP_EQ,FCMP_GT,FCMP_LT, FMUL, FDIV and FREM. Unairy operationsusing
floatlng point numberswhich canbe representemh the dag by onenodeare:FACOS, FASIN, FATAN,
FCOS,FEXP, FITOR, FLN, FLOG10, FRTOI, FSIN, FSQRTand FTAN. All theselnstructlonscan
usually be implementedby one MC68881 instruction, but sometimesextra FMOVE instructions are
necessary.

Using these nodes we can represent the computation of the ABC instructions which werggmestnin
the dag and which use floating point values and don't access the heap.

6.3.6. The dag representation for storing values on the stack and in registers.

To represent storeof anintegeror addressn memorywe usea 'STOREd r g1 g2' node. This node
representshat the long word at the addresscomputedby adding (integer constant)d to the addressin
stackpointer r at the beginning of the basic block shoofdainthe integeror addressepresentedy cdag
g1 after execution of the basic block. What cdag g2 is used for is explained in section 6.4.7.

To representa store of an integeror addressn a registerwe usea 'STORE_Rr g' node. This node
represents that register r should contamintegeror addresgepresentedby cdagg after executionof the
basic block.

To represent storeof a floating point numberin memorywe usea'FSTOREd r g1 g2 g3' node. This
noderepresentshatthe two long words at the addresscomputedby adding (integer constant)d to the
addressn stackpointerr at the beginningof the basic block should contain the floating point number
represented by cdag g1 after execution otscblock. What cdagsg2 and g3 are usedfor is explained
in section 6.4.7.

There is no representatiorfor storing a floating point numberin a register, becausein the current
implementatiorfloating point numbersare alwaysstoredin memoryat the beginningand end of a basic
block.

6.3.7. The dag representation for push_args and repl_args.

As | already explained in section 6.1.6, representingute args andrepl_args ABC instructionin the
dag causes problems, because the result of these instructions is not one value on the A-stack buB-s<
multiple valueson the A-stack. To representheseinstructionswe could constructa nodein the dag for
every value on the A-stack. A possibility is to represent each argument using a 'LOAD_ID' node.

For example a push_args which pushes the first four argumehisradderepresentedby cdaggl on the
A-stack will then be represented by:

'‘LOAD_ID 0 g2' for the first argument,
'LOAD_ID 4 g2' for the second argument,
'LOAD_ID 8 g2' for the third argument,
'LOAD_ID 12 g2' for the fourth argument and
g2: 'LOAD_ID 8 g1 for the variable size part of the node containing the arguments

But if we would generate code for a push_args instruction represented in this way, we wbeldbieto
use an MC68020VvENNStruction to move all four argumentsregisterswith oneinstruction,or usethe
addresgegisterindirect with postincrementiddressingnode to addressthe arguments (exceptthe last
one) but have to use the addressregisterindirect with displacementaddressingmode to addressthe
arguments (except the last one), which results in less efficient code.
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For example if codés generatedor a push_args with four argumentsandthe addresof the nodeis in
address registeno, the generated code could be:

MOVEA.L  8(A0),Al ; load pointer to variable size part of
the node containing the arguments.

MOVE.L (A1),DO ; load first argument in DO

MOVE.L 4(Al1),D1 ; load second argument in D1

MOVE.L 8(Al1),D2 ; load third argument in D2

MOVE.L 12(A1),D3 ; load fourth argument in D3

But if we would use th®ovENNstruction, we could generate the following code:

MOVEA.L  8(A0),Al ; load pointer to variable size part of
the node containing the arguments.

MOVEM.L  (A1),D0-D3 ; load four arguments in registers DO, D1,
D2 and D3

According to the cache case execution tiineappendixB this codeis 3 percentfaster,and4 words long
instead of 9 words, so this code is better.

If we would usethe addresgegisterindirect with postincremenaddressingnode,we could generatehe
following code:

MOVEA.L  8(A0),Al ; load pointer to variable size part of
the node containing the arguments.

MOVE.L (A1)+,DO ; load first argument in DO

MOVE.L (A1)+,D1 ; load second argument in D1

MOVE.L (A1)+,D2 ; load third argument in D2

MOVE.L (A1),D3 ; load fourth argument in D3

Accordingto the cachecaseexecutiontimes in appendixB this codeis 10 percentfasterthan the first
example, and 6 words long instead of 9 words, so this code is better than the first example.

To be able to useNOVENNStruction or the address register indirect with postincrement addressaey a
different representationvas chosen.Every value pushedon the A-stack by a push_args or repl_args
instructionis representetby a'MOVEMI g1' node.For everyvalueargumentcdaggl of the 'MOVEMI
g1’ node is thésame)cdagwith asroota'MOVEM d1ggl.. gn' node.This'™MOVEM dl1ggl.. gn'
noderepresents valuesstoredat n consecutivdong words at the addresscomputedby adding (integer
constant) d1 and the address represented by cdag g. Cdags g1, .., gn are the cdags vatMayEdok
node,i.e. gl is the cdagwith asroot the MOVEMI noderepresentinghe first argument,g2 is the cdag
with as root theVlOVEMI noderepresentinghe secondargumentgetc. Although this introducescyclesin
the dag, we do not change out terminology.

For example a push_args which pushes the first four argumehisradderepresentedby cdaggl on the
A-stack will be represented by:

g4:. 'MOVEMI g3 for the first argument,

g5 'MOVEMI g3' for the second argument,

g6: 'MOVEMI g3' for the third argument,

g7: 'MOVEMI g3' for the fourth argument,

g3: 'MOVEM 8 g2 g4 g5 g6 g7 representing all 4 arguments and

g2: 'LOAD_ID 8 g1 for the variable size part of the node containing the argumen

Using this representation the code generator can Me&E\nstruction or the address register indinegh
postincrement addressing mode. How this is done is explained in section 6.4.9.
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6.3.8. The dag representation for create and del_args.

To create a new node in the heap, the following actions have to be taken:

- subtract the size of an empty node (3 long words) from register FC and if the valueegigieyis
less than zero after this subtraction call the garbage collector.

- compute the address of the new node.

- fill the new node with the&lescriptorandthe addressof the reductioncode,and addthe size of the
new node to register HP.

Subtracting thesize of an empty nodefrom registerFC and eventuallycalling the garbagecollectoris not
represented in the dag. How this is done is explained in section 6.9.

Two possible representations fotreate instruction are:
Use severalcdags,eachrepresentinga part of creatinga new node. One cdagto representthe
address of the new node, one to store the descriptor in theamebgme to storethe addresof the
reduction code in the heap.

- Use one cdag,which representshe addresof the new node, and storing the descriptorand the
address of the reduction code in the heap, and adding the size of the node to HP.

If we would usethe representationvith severalcdags,we would usethe heappointer HP just like the A
and B-stack pointers. We would have to deiraple heapsimulationjust like the stacksimulationsfor the

A and B-stack and we would need a STORE node to store a value in the heap just like for storingra v
the A-stack or B-stack. Then creating a node would be represented by the following three cdags:

1: STORE -4 ASP g1 ; store the address of the new node on the A-stack
gl: GREGISTER HP ; the address of the new node is in HP

2: STORE O HP g2 ; store the address of the reduction code in the heap
g2: LEA cycle_in_spine ; the address of the reduction code of an empty node

3: STORE 4 HP g3 ; store the descriptor in the heap

g3: LOAD_DES lempty 0 ;the descriptor of an empty node

But this representation has the following disadvantages:

- We can't use the addressregister indirect with postincrementaddressingmode or a MOVEM
instructionto storethe valuesin the heap,which is more efficient than using an addressregister
indirect with displacement addressing mode, just like fopiikie args andrepl_args  instruction
(see section 6.3.7)

- We can't change the location of nodes in the heap crbgteetateinstructions.If for exampletwo
nodes are created using two create instructions, and it isefiicient to do the secondcreatefirst,
a node is createat addressl2+HP insteadof at the addressn HP, which meanswe first haveto
add 12 to HP before we can use the postincrement addressing mode usingfdti€the valuesof
the node in the heap. If we would be able to reverse the location otweesedes,this additionis
not necessary.

The representatiorusing one large cdag does not have these disadvantagesTherefore a create is

represented in this way by a cdag having as root a 'CREATE g1 g2 g3' n@REATE g1 g2 g3' node
representshe addressof a new nodein the heapwhich consistsof the threelong words representedy

cdags g1, g2 and g3. If code is generated for SUCREATE node,the new nodeis storedat the address
currently in HP and the size of the new node is added to HP.

So creating a node is represented by the following cdag:

( STORE -4 ASP g1 ; store the address of the new node on the A-stack)

gl: CREATEQg29g3g4 ; the address of a new empty node

g2: LEA cycle_in_spine ; the address of the reduction code of an empty node

g3: LOAD_DES Iempty O ; the descriptor of an empty node

g4: ; don't care value, third long word of an empty node is not used
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The ABC instructiondel_args  also createsa new node, but this is not an empty node, but a copy of

anothemodewith someargumentseleted.Becausenodesmay shareargumentsn this implementation,
the argumentsio not haveto be copied.We canthereforerepresentidel_args with a'CREATE gl g2

g3' node, where cdags gl and g2 represent the addrétesreductioncodeand descriptorjust asfor the

create instruction, and cdag g3 represents the address of the variable size part cotfasriggmentof

the node from which this node is a copy with some arguments deleted.

6.3.9. The dag representation for fill instructions and set_entry.

Two possible representations for a fill instruction are:

- Use severalcdags, eachrepresentinga store of one long word in the heap, for example by
representing each store by a 'STORE_ID d r g' node.

- Use one cdag, which represents the address of the node, and filling the whole node.

Using severalcdags,eachrepresentinga store of one long word, hasthe samedisadvantagesas using
several cdags for@eate instruction (see 6.3.8). Therefore we use one cdag to represemstrilttion.
Afill is represented by a 'FILIg g1 .. gn' node,wherecdagsgl, .., gn representhe long words which
have to be stored in this order in n consecutive long words at the adgnesssentedby cdagg. The result
of a 'FILL g g1 .. gn' node is the address represented by cdag g.

Using this FILL node we can fill integer, character,boolean and string nodes and nodes without
argumentsTo fill a nodehavingargumentsve also haveto createa new variable size part in the heap
containing the arguments, whichnnot be donewith a FILL node.We alreadyhavea nodeto represent
the creation of a new empty node, a CREATE node. But this CREATE node cappelsenthe creation
of a node consistingof threelong words. But if we allow a CREATE node to have any number of
arguments, we can use this nddeepresenboth the creationof a variablesize part of a nodecontaining
arguments and the creation of a new node. THéinaf a node havingargumentscanbe representedby a
FILL node, of which the fourth argument cdag (thied long word to be filled, the argumentpointer) has
as root a CREATE node which represents the arguments.

The same representation could also be used finéling point nodes,thenthe CREATE would havetwo
argumentcdagswith a FHIGH and FLOW asroot. But during codegeneratiorfor a CREATE node we
would thenhaveto testfor this case,becauset is more efficient to move a floating point numberto the
heap at once, in steadof moving the two long words of which the floating point humber consists
separately. Therefore we use a special node for creating the variable sizeypatofg point nodein the
heap,a 'CREATE_RQ' node, so that we don't have to test for this case.A 'CREATE_R g' node
represents the address of a new variable size part of a flpaiintghodein the heapwhich consistsof the
floating point number represented by cdag g. If code is generated for a CREATE_R niidatitiggpoint
number is stored at the address currently in HP and the size of the variable siza fladtiofy point node
is added to HP.

6.3.10. The dag representation for add_args.

The instructionadd_args copiesa nodeandaddssomeargumentdo this copy. Becausave don't know
the size of the variable size part of the node at compile time, we can't represemidbiesize part with a
CREATE node, so we need a new node, the ALLOCATE node, to be able to repiesans .

An 'ALLOCATE gcgagl.. gn' noderepresentshe addressof a new variable size part consistingof a
numberof long words from anothemode, representedby cdaggc andga, where cdaggc representghe
number of long words and ga represents the address of the variable size part of the other tielengnd
words represented by cdags g1,gn. If codeis generatedor an ALLOCATE node,the long words are
stored at the address currently in HP and the size of the long words is added to HP.
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6.4. Generating intermediate code from the dag.

We now have represented the ABGtructionsin the dagand havedeterminedhe evaluationorder using
the first phaseof the adaptedabelingalgorithm.So we can now generatecode from this dag using the
second phase of the adapted labeling algorithm.

In this sectionis explainedhow intermediate code is generatedrom this graph. This intermediatecodeis
very closeto MC68020machinecode.But in this intermediatecodean unlimited numberof addressand
data registers may be used. How the code generator determines whetherdatassgesteror an address
register of the MC68020, if a registeris used, is described.Also is explained how the following
optimizations are performed: optimizations of tneationof nodesby create instructions,optimizing the
use of booleansby using condition codes,optimizing the use of small constantsand how generating
unnecessary store instructions is prevented.

6.4.1. Calculating reference counts.

To generate code from thiag the codegeneratohasto know how manytimesa nodeis referencedi.e.
how many pointers point to it. This information is necessary because:

- For REGISTER nodes we have to know when we may release the register, so that it caridre L
other purposes. This can be done by maintaining a counter, which coumtsrtherof uses.After
every use the counteris decrementednd if it becomeszero the register may be released.To
initialize these counters, we have to know how often this REGISTER node is referenced.

- Sharednodeshaveto be recognized.Theseare the nodeswhich are referencedmore than once.
Because if such a shared node is evaluated the first time, theofethaevaluationof the cdaghas
to be rememberedo that whenthis valueis referencedagain,it doesnot haveto be recomputed.
Such a value is remembered in a register. Therefore the shared node is ovdswaAtRBGISTER
nodethe first time it is evaluated And to initialize the counterof this new REGISTERnNnode, we
have to know how often the shared node is referenced.

Two ways in which we can calculate these counters are:
- Maintain the counters during dag construction.
- Construct the dag and then calculate the reference counters.

To maintain the counters during dag construction, we first have to initialize all counters with zero.
Then if a pointer to a node is added, do:

PROCEDURE adjust counters after adding a pointer (pointer)
Increment the counter of the node to which the pointer points.
IF the counter =1 THEN
FOR all arguments, of the node to which the pointer points, which
are pointers DO
adjust counters after adding a pointer (argument).
END.

But also sometimegointersaredeleted.If for examplea valueis poppedfrom a stackusinga pop_a or
pop_b instruction,the pointerto the cdagrepresentinga value which is popped,hasto be deleted.If a
pointer is deleted, some reference counts have to be adjusted. This can be done by:

PROCEDURE adjust counters after deleting a pointer (pointer)
Decrement the counter of the node to which the pointer points.
IF the counter = 0 THEN
FOR all arguments, of the node to which the pointer points, which
are pointers DO
adjust counters after deleting a pointer (argument).
[* Delete the node */
END.
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To calculate the counters after dag construction, welfageto initialize the counterswith zero. And then
call thePROCEDURE adjust counters after adding a pointer for everycdagon the A-stackand B-
stack. Every such cdag represents the computation of one value on the A-stack or B-stack.

Our implementation calculates the counters after dag construction, because:
the counters are not needed during dag construction.

- it is fasterthan maintainingthe counters becausenow the countersneverhaveto be decremented
because a pointer is deleted.

- the PROCEDUREadjust  counters  after  deleting a pointer does not have to be
implemented.

A disadvantagef this methodis thatwe cannot deletenodeswhich areno longerreferencedluring dag
construction.

6.4.2. Choosing between address registers and data registers.

Whengeneratingcodefor an operationwe sometimescan choosebetweenusing an addresgegisteror a
data register. For example if we haweaddtwo valueswhich are storedin memory,we cancomputethe
result in an address register or in a data regiatetboth computationf the sumare equally efficient. If
this sumhasto be multiplied later, we shouldcomputethe sumin a dataregister,becausehe MC68020
multiply instruction can multiply a value in a data register, buimai addresgegister.But if this sumis
the address of a value, and the value is referenced later, we should compute the value in apgdtiress
because we can address the value using an address liedistet addressingnode, but we can'taddress
the value if the address is stored in a data register. (If not enough registers are available this could bt

To be ablego makea good choicewhenwe canchoosebetweenan addresgegisterand a dataregister,a
counteris addedto everynode. This counteris initialized with zero. If a nodeis addedto the dag, and
bettercodecanbe generatedor the operationrepresentedby this nodeif the argumentis computedn an
address register instead of a data register, the counter in the root of this arguagenincrementedThis
is for example done for the second argument of a LOAD_ID node. But if better coble gameratedf the
argumentis computedin a dataregisterinsteadof an addressregister,the counterin the root of this
argument cdag is decremented. This is for example done for both arguments of MUL and DIV nodes

If we can choose between using an address register or eedsterwhen generatingcodefor a node,we
use the counter in the node. If the counter in the node is greater than zercanaddeesgegister,and if
the counter is less than zero we use a data register. If the cowrery, we prefera dataregister,because
after reserving the registers as described in section 3.5 7 data regisigrsavailable,but only 3 address
registers.

This method will usually give good results, but is not optimal, because:

- A counter is only incremented or decremented if the value needs to be in a spettffaegisterto
generate efficient code for a parent node, but not if the value needs todyerifie sort of register
to generate=fficient nodefor someothernode,for examplea grand-parenhode. For examplefor
the cdag LOAD_ID 0 (ADD (ADD (LOAD 0 BSP) (LOAD BSP)) (LOAD 8 BSP)) the cdagADD
(LOAD 0 BSP) (LOAD4 BSP) will be computedn a dataregister,but shouldbe computedn an
address register, because after adding 8(BSP) the value will stilld#ataregister,but shouldbe
in an address register for LOAD_ID.

- If not enough registers are available, choosing a differeniof registeris sometimedetter.If for
examplenot enoughaddressregistersare available,but enoughdataregistersare available, it is
sometimes better to do a computatwinich canbe donemore efficiently usingaddressegistersif
enough address registers are available, by using data registers.

- A value is always stored in only one sort of register. If a velueededmnorethanoncein both an

addressregisterand a dataregister,it is sometimesbetterto storethe value both in an address
register and a data register.
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6.4.3. Register allocation during code generation from the graph.

During code generation from the dag we assume an unlimited numigdrelssegistersand an unlimited
numberof dataregistersare available.Why this is donewill be explainedin section6.6 on local register
allocation. Later the intermediate code will be changed so thaBamdgiressand 8 dataregistersareused,
this is also explained in section 6.6.

But because we know the MC68020 doesn't have an unlimited number of registers, vgertsrabecode
which uses as few registers as possible during code generation from the dag.

If during codegeneratiora new registerof a specificsort (addressor dataregister)is required,the free
register of that sort having the lowest number is allocédtealregistercontainsa value which is no longer
used, the registeris releasedso that it can be allocatedagain. The registersA3-A7 and D7 are never
allocated or released, because they contain stackpointers, etc. , as described in section 3.5.

6.4.4. The intermediate code.

The intermediatecodeis very similar to MC68020code. The instructionsof the intermediatecodecan be
found in appendix D. &lreadysaidthatin the intermediatecodean unlimited numberof addressand data
registers may be used. The other differences are:

- The addresgegisterindirect addressingnodedoesnot exist. Insteadthe addressregisterindirect
with displacement addressing mode with displacement zero is used.

- The MOVEAADDA SUBA ADDI, SUBI, CMPAandCMPI instructions are simplgalled MOVE ADD SUB
or CMPinstructions.

- There are nMOVEQADDQandSUBQ instructions.

- There are nBRAandBsSRinstructions. InsteagMP andJSR are used.

- There is naCLRinstruction.

- The SEQ SGE SGT, SLE, SLT, SNE FSEQ FSGE FSGT, FSLE, FSLT and FSNE instructionsof the
intermediate code compute a long word, but the Scc instructions of the MC68020 compute a k

- TheBMOVHNSstruction moves a block of long words. There is no such MC68020 instruction.

- MOVE.L, ADD.L, SUB.L, etc.aresimply calledMOVE ADDQ SUB etc. MOVE.Band MOVE.Ware called
MOVEBANdMOVEW

The address register indirect addressimgyle,the MOVEQADDQ SUBQ BRA BSRandCLR instructionsare
usedby the final MC68020code,becausesomeinstructionsof the intermediatecodeare later optimized,
for example aMOVE #1,D0 instruction is optimized to MOVEQ #1,D0. These optimizations adescribedn
section 6.10.

6.4.5. Generating intermediate code from the dag.

After the referencecountshave beencomputed,we can start generatingintermediatecode. For every
element orthe A-stackand B-stackfor which a cdaghasbeenconstructeccodehasto be generatedThe
order in which these cdags are evaluated is determined as described in sections 6.2.7 and 6.2.8.

Then code is generated for these cdags by the following algorithm:

- First evaluateall the argumentcdagsof the root by recursively executingthis algorithm. The
argument cdags are evaluated in the order as described in sections 6.2.7 and 6.2.8.

- Generate code for the operation in the node using the values computed by the argument cdag

- Return how the result can be addressed, and a counter which countahgamesthe resultwill
be used.
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Which code is generated depends on:

- How the valuescomputedby the argumentcdagshaveto be addresse@nd how manytimes they
will be used. This information is returned when code is generated for an argument cdag.

- Whether thenodeis shared.If it is, the resultof the computationspecifiedby this nodeis always
stored in a register.

- Whether it is more efficient to return the computed value in a data register or an address regist

The value computed by a cdag can be returned:

- in a data registerb()

- in an address registean|

- in a floating point registerren)

- as an integer constangn

- as a descriptor#g)

- as a floating point constanin()

- in a memorylocationof which the addresss the sumof a signed16 bit integer constantand an
address in an address registear) )

6.4.6. Generating code for arithmetic dyadic operation nodes.

The result of arithmetic dyadic operations is always computed in a regstaysecomputingthe resultin
memoryand later usingthis resultin memoryis always more expensivethan computingthe resultin a
register and later using the result in this register.

For example, assume we have to add one to a value in memory, and this value in memorpmgir be
used after this addition, then we can compute the result in memory using:

ADD #1,d(An)

And we can compute the result in a register using:

MOVE d(An),Dr
ADD #1,Dr

If we later use the value in memory, for example for another addition, we will use:
ADD d(An),Dn

And if we later use the value in a register:
ADD Dr,Dn

According to the cache case execution times in appendix B computing and using the vedggsterss 45
percent faster for this example than computing and using the value in memory.

Only if theresulthasto be storedin the samememorylocationas one of the argumentdasto be loaded
from, computing the value in memory is often faster. For example faveto generatecodefor the cdag
STORE 4 BSP (ADD (LOAD 4 BSP) (LOAD 1)) we could generate:

ADD #1,4(BSP)
instead of:

MOVE 4(BSP),Dr

ADD #1,Dr

MOVE Dr,4(BSP)

Accordingto the cachecaseexecutiontimes in appendixB the first instruction sequencas executeds5
percent fasterBut computinga result, which hasto be storedin the samememorylocationasone of the
arguments has to be loaded from, happens seldom, because values are often stored in rethistEyde Sc
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will usuallybe only slightly lessefficient if we nevercomputethe resultin memory. Thereforewe will
always compute the result in a register.

To compute the result in a register, first ftigumentsare evaluatedFor an arithmeticoperationlike ADD
we then test if one (or both) of the arguments has been computeegistarof the right sort, i.e. the sort
(address or data) eégisterthe resultof this ADDhasto be computedin, andif this is the last useof this
register, we generate an instruction which adds the atgemento this register.Otherwisewe allocatea
new registerof the right sort, generatean instructionwhich movesone of the argumentso this register,
and an instruction which adds the other argument to this register.

For other arithmetic dyadic operationscode is generatedn a similar fashion, but is sometimesmore
difficult. For examplefor non commutativeoperationslike sug andinstructionsfor which the operands
may not be stored in an address register Mike

6.4.7. Generating code for STORE and FSTORE nodes.

To generate code for a 'STORE d1 r1 g1 g2' node codéis generatedor the argumentcdaggl which
computes the value to be stored. Then the value can usually be storehanyon the A-stackor B-stack
using one MoVENstructionto d1(rl). But sometimeshis causesproblems,becausestoring the value in
memory on the A or B-stack overwrites the value of d1(rl), atidsivaluewill be usedlater, we will no
longer be able to compute it.

Assume this value will be used lat®Ve cansolve the problemby allocatinga registerr2 and moving the
value in memory location d1(rl) to this register using a MOVEinstruction, before we move the value
computed by the code for argument cdag g1 intortf@morylocation,andfor the later usesusethe value
in this register.

If the value of d1(rl) will be used later, a LOAD or FLOAD node exists, with a referencegreaterthan
zero, which loads this value. To be able to test for this when generatinfpc@8TOREnNnode,argument
cdag g2 of a STORE nogmintsto this LOAD or FLOAD nodeif it exists.If sucha LOAD nodeexists,
the LOAD node is overwritten by a 'REGISTER r2' node, so that theus¢swill usethe previousvalue
of d1(rl) stored in register r2, instead of the value which is now stored in this memory location. Ahd :
such a FLOAD node exists, the FLOAD node is overwritten by a FREGISTER node, for the same re

Codefor FSTOREIs generatedn a similar fashion,but because floating point numberconsistsof two
long words, the FSTORE node contains two pointers which could point to a LOAD or FLOADanddte,
may be necessary to move two values to registers.

6.4.8. Generating code for STORE_R nodes.

To generatecodefor a'STORE_Rr1 g1' node,first codeis generatedor the argumentcdaggl which
computes the value to be stored. If this value has been computsgisterrl no codehasto be generated
for the STORE_Rnode. Otherwisethis value can usually be moved to registerrl using one MOVE
instruction. But just as for the STORE node, this sometiraasegproblems,becausestoringthe valuein
a register overwrites the current value of the register, and wahise will be usedlater, we will no longer
be able to compute it.

Assume the value iregisterrl will be usedlater. To solvethe problem,we canusea similar solutionas
for the STORE node, and allocateegisterr2, and movethe contentsof registerrl to registerr2 usinga
MOVEHnNstruction, before we move the value computed byatgementof the STORE_Rnodeinto register
rl.

If the value in registerl will be usedlater,a'REGISTERr1' nodeexists,with a referencecountgreater
thanzero. To be ableto testfor this whengeneratingcodefor a STORE_Rnode,we can'tuse a similar
solution as for the STORE node and store a pointer to this REGISTERnodein the STORE_Rnode,
because during code generation from the stagetimesniew REGISTERnodesare created.Thereforefor
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everyregistera pointeris maintainedduring constructionof the dag and code generationfrom the dag,
which points tothe REGISTERnNodefor this registerif it exists.If a'REGISTERr1' nodeexistswith a
reference count greater than zero, the register numiteisafodeis overwrittenby registerr2, so thatthe
later uses will use the previous value of register rl, instead of the value which is now stored in regist

If the valueto be storedwas computedn aregisterr3 whengeneratingcodefor argumentcdaggl, and
register r1 contains a value which vk usedlater, thenwe would generatdwo MOVENSstructionswhich
move a value from one register to another. But if the value which is stored in registay also be stored
in an other registenye cangenerateanore efficient codeby usingan EXGinstruction.Becausef we store
the value, which register rl contains before the stonegisterr3, thenwhatis currently storedin rl1 has
to be moved to r3, and what is currently stored in r3 has to be moved to r1. So we can generat¢éheod
STORE_Rnodeby exchanginghe valuesin registerr3 andregisterrl by one EXG instruction, which is
fasterthan two MOVEinstructions,and changingthe registernumberin the 'REGISTER r1' node into
register r3.

6.4.9. Generating code for MOVEM and MOVEMI nodes.

Three possible ways to generate code for MOVEM and MOVEMI nodes are:

- address every long word using an address register indirect with displacement addressing moc«
- address every long word using an address register indirect with postincrement addressing mc
- use avOVENNSstruction to move multiple long words to registers with one instruction.

Using the addressregisterindirect with postincrementddressingnode is usually better than using the
address registendirect with displacemenaddressingnode, because postincremenaddressingnodeis

executedasterand useslessmemorythana displacemenaddressingnode.But a disadvantagef using
the postincremenaddressingnodeis thatthe long words haveto be moved startingwith the first long

word, then thesecond thenthe third, etc. ,while for the displacemenaddressingnodewe canmovethe
long words in any order. Another disadvantage of the postincrement addressias thatit changeghe
addresgegister,sothat if the value hasto be usedlater, we first haveto copy the addressin another
register before we can move the long words.

If nlong words haveto be movedfrom memory,the cachecaseexecutiontime (seeappendixB) of the
MOVENMNSstructionsis 10+4*n clock cycles,and for using the postincrementddressingnode 6*n clock
cycles. Sovhenmoving morethan5 long words MOVEMs faster,andwhenmoving 5 long words, both
instruction sequencesre equally fast. But the MOVEMNSstruction always occupies2 words and the
instructions using the postincrement addressing mode occupy n words. So to move 5 long woetterit i
to use theMOVENNStruction.

But theMOVENNSstruction can only move longords to registersin the orderDO, D1, .., D7, AQ, Al, ..,
A7, sothatfor examplewe cannot movethe first long word to an addresgegisterand the secondlong
word to a data register using aneVvENNstruction.

Code is generated for a 'MOVEMI g1' node by first generating code for the argument cdagghasa
MOVEM node as root. Aftethis codehasbeengeneratedthe MOVEMI nodewill havebeenoverwritten
by a 'REGISTER r' node, and register r contains the result of this MOVEMI node and is returned.

Fora'MOVEM d1g gl.. gn' nodecodeis generatedy first generatingcodeto computethe argument
cdag g inan addresgegister.Let Am be this addresgegister.Thenn registersare allocatedandthe long

wordsin consecutivamemorylocationsat the addressi1(Am) are movedto theseregisters.If only one

long word hasto be moved,a MOVEfrom d1(Am) is usedto movethis long word into a register.If two

long words have to be moved, afidis not equal to zero or this is not the last use of the addreslirss
registeram two MOVEromd(Am) instructions are used. If at least 5 long words have to be mowenlyEm
from d1(Am) instructionis usedif possible.Otherwise,if this is the last use of the addressn address
registeram d1 is added ta\m else the addresida(Am) is loaded intca free addresgegister,let Amnow be

this address register. And then maverom (Am)+ instructions and ®OVEfrom (Am) instructionis used
to move the long words from memory into the registers. Eiiehe MOVEMI nodes,which arethe roots

of the cdags g1, .., gn, are overwritten by 'REGISTER r' nodes, whetleeregisterin which the value

represented by the MOVEMI node was stored.
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6.4.10. Generating code for FILL nodes.

Just like for MOVEM nodes, three possible ways to generate code for FILL nodes are:

- address every long word using an address register indirect with displacement addressing moc«
- address every long word using an address register indirect with postincrement addressing mc
- use avOVENNSstruction to move multiple long words from registers with one instruction.

Using the addressregisterindirect with postincrementddressingnode is usually better than using the
addresgsregisterindirect with displacementaddressingmode. The reasonsfor this have already been
discussed in the previous section on the MOVEM node.

If n long words have to be moved to memory, the cache case execution tirapdeedixB) of the MOVEM
instructions is 6+3*n clock cycles, and fesing the postincremenaddressingnode4*n clock cycles.So
when movingmorethan 6 long words MOVEMs faster,andwhen moving 6 long words, both instruction
sequences amrequallyfast. But the MOVEMNSstructionalwaysoccupies?2 words and the instructionsusing
the postincrement addressing mode occupy n words. So to move 6 longtwsitukstterto usethe MOVEM
instruction.

But theMOVENNSstruction can onlynove long words from registersin the orderDO, D1, .., D7, A0, A1,
.., A7. Because the values to be moved are computed in an arbitrary register, in memaocpmstardsit
is unlikely that6 or more consecutiveraluesare computedn registersin suchan order that they can be
moved to memory using omeVENNSstruction, therefore we will never use the MOVEM instruction.

Code is generatefdr a'FILL g g1 .. gn' nodeby first generatingcodefor all argumentcdags.Thenthe

resultscomputedby cdagsgl, .., gn aremovedto consecutivdong words at the addresscomputedby

cdag g. If only one long word has to be moved,atidresscomputedoy cdagg is loadedinto an address
registeramand aviOVEO (Am) is used to move this long wonadto memory.If two long words haveto be

movedand cdagg hascomputedthe addressn an addressegisteramandthis is not the last use of the

addressn Am a MOVEO (Am) and a MOVEto 4(Am) instructionare used. Otherwise,if cdagg hasnot

computed the address in an address register or this is Hastheeof this addressan addresgegisteris

allocated and the address is loaded intodddresgegister.Let Ambe the addresgegisterwhich contains
the addresscomputedby cdagg, thenn-1 MOVEO (Am)+ instructionsanda MOVEO (Am) instructionare

used to move the long words into memdfgr the argumentcdagsgl, g2, .., gn which areemptycdags
no long word has to be stored in memory.

The result computed by a FILL nodetlee addressof the nodewhich is to befilled, which is the address
computed by arguments cdag g. If the nodélesl usingthe postincremenaddressingnode,the address
is changedduringfilling the node.So thatif the addresscomputedby the FILL hasto be usedlater, this
address has to be copied before filling the node. Usually this address is copied into a register. tBig of
address is only used later by a STORE node to store the aoidresmsoryon the A-stack.In sucha case
the addresss first movedto a register,and then moved from this registerto memory, but this address
could have been moved to memory immediately, which is more efficient. In thitheaséerencecountof
such a FILLnodeis 1 andthe parentis a STOREnode, so we canimplementthis by testingif argument
cdag gl of a'STORE d1 rl g1 g2' node has a FILL node as roch vatrencecount1 when generating
code for a STORE node.

6.4.11. Generating code for CREATE nodes.

The codefor a CREATE nodehasto fill consecutivdong words in memoryin the heap(a node), at the
address in register HP, add the size of this node to registanéifeturnthe addresof this node.How a
node should be filled hasalreadybeendiscussedor the FILL node in the previous section. For the
CREATE node this is donein a similar way using the addressregister indirect with postincrement
addressing mode. If this performedusingregisterHP, we don't haveto usean extrainstructionto add
the size of the nodeto HP after the fill. To computethe addressof the node, we could usea LEA -
d(HP),An instruction after the fill, where d is the size of the node. Butcdude donemore efficient with
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a MOVE from HP to a register before the fill, because sugb\aEs fasterthana LEA instruction,andthe
address of the node could be stored using any addressing mode and not only in an address register

So codeis generatedor a CREATE node by first generatingcode for all the argumentscdags, then
allocatinga registerand generatinga MOVEfrom HP to this register,andfinally instructionsare generated
which move the long words computed by the argument cdags to memorwasigg (HP)+ instructions.
For the argumentcdagsof the CREATE nodewhich are empty cdagsno long word hasto be storedin
memory, but only the size of a long word has to be added to HP.

Just like for the FILL node, storing the address of the node in a register is not very efficient if theiadd
only usedlater by a STOREnNodeto storethe addresson the A-stack, which happensoften. Becausen
such a case the address is first moved from HP to a register, and thenfroowv#ds registerto memory,
but could have been moved from HP to memory immediately. Just like for the FILL node we can
implement this by testing if argument cdag g1 of a 'STORE d1 rl g1 g2' nod€RESATE nodeasroot
with a reference count 1 when generating code for a STORE node.

6.4.12. Optimizing the creation of nodes.

In section5.1.1 | alreadymentionedthat initialization of a nodeby a createinstructionis not necessaryf

this nodewill alwaysbe filled beforea garbagecollection could occur. Many of theseinitializations are
removedin the following way. Every time a FILL nodeis createdthe code generatortestsif the first

argument cdag of this FILL node, which computes the address of the node (or partaafajwhich is to
be filled, has a CREATE node as root and if the number ofwmrgs which are createdby this CREATE
node in the heap equals the numbklong words which arefilled by the FILL node.If thisis so, all the
argument cdags of the CREATE node are replaceshipty cdags.Becauseno valueis storedin memory
for empty argument cdags of a CREAREde, no initialization takesplacefor a CREATE nodewith only
empty argument cdags.

Another optimization which was described in section 5.1.1, creating and filling a node at the sacantin
be implemented in the following way . When code is generated for arkitle, the codegeneratotestsif
the first argumentcdagof the FILL nodehasa CREATE nodeasroot, andif the referencecount of this
CREATE nodeis one, andif the numberof long words which are createdby this CREATE nodein the
heap equals the number of long words whichfileel by the FILL node.lt this is so, thenthe createand
fill are done at the same time by not generating code for the 'FILL g g1 .. gramdthe CREATE node,
but generating code for a 'CREATE g1 .. gn' node.

6.4.13. Using the condition codes of the M C68020.

In section 5.2.4 | already mentioned that a conditional jump whasho be takendependingon a boolean
which is the result of a comparison can be optimized. This can bebglarsng the condition codesof the
MC68020 for the conditional jump, instead of first computing a boolean valuesamgithis booleanvalue
as condition for the jump. | also mentioned tbatnputingthe not of a comparisorcan often be optimized
into a comparison (without not) by using the reverse condition éodexampleby using'NE' insteadof

'EQ".

This hasbeenimplementedby using a procedurewhich generatesode for a cdagwhich computesthe

booleanrepresentedby this cdagin a condition code and a procedurewhich generatesode for a cdag

which computes the not of the boolean represented by thisrcdagpnditioncode. Thesetwo procedures
areusedto generatecodefor the conditionaljump instructions,i.e. the ABC instructionsjmp_true and

jmp_false , and the CNOT node.

These two procedures generatevor FCMPinstructionfor CMP_EQ,CMP_LT, CMP_GT,FCMP_EQ,
FCMP_LT and FCMP_GT nodes. For a CN@ddethey call the otherprocedureo generatecodeof the
argument cdag of the CNOT nodmdthenreturnthe reversecondition. For the remainingnodescodeis
generated which computes the result in a register, in memory or as constsunlagnd thenthis resultis
compared with zero usingTaT or CMPinstruction to obtain a (NE or EQ) condition code.
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6.4.14. Preventing unnecessary stores.

Because &dag,with usuallyasroot a STORENode,is constructedor everyvalue on the A-stackor B-

stack which is referenced in the basic block, often cdags are constructed whizghdastaluein memory
on the A-stack or B-stachndthenstorethe value at the sameaddressj.e. 'STOREd1 r1 (LOAD d1rl)

g2' cdags. If for example antegeron the B-stackin memoryis addedto the top of the B-stack(usinga
push_b and araddl instruction), then for thigategersucha cdagwould be constructedBut no codehas
to be generated to store this integememory,becausehe integerhasnot beenchangedandwas already
stored in this memory location.

So for sucha cdagan unnecessarylOVE d1(r1),d1(r1) would be generatedTo preventthis we could
test if argument cdag g1 of a 'STORE d1 r1 g1 g2' node consists of a 'LOAD ntidewhen generating
code for a STORE node, and not generate any code in such a case.

But this would not prevent all unnecessary stores, because theofesotiaghavinga FILL nodeasroot
is the same as the result of the first argument cdag of this FILL node. Consequently for cdag 'STOR
(FILL (LOAD d1rl) g1 g2g3)g4' theaddressn d1(rl) would be loadedinto a register,and then this
address in this register would be storedrfrl), but d1(rl) alreadycontainsthis addressso this storeis
not necessary.

To preventtheseunnecessargtoresand the onesdescribedabove, the following algorithmis usedto
generate code for a 'STORE d1 rl1 g1 g2' node:
g:=9g1
WHILE the root of cdag g is a 'FILL g3 g4 .. gn' node DO
g:=93
IF the root of cdag g is a 'LOAD d2 r2' node AND d2=d1 AND r2=r1 THEN
an unnecessary store has been found, don't generate code for this STORE
node, but generate code for argument cdag g1 of this STORE node
ELSE
generate code for this STORE node as usual

6.4.15. Optimizing the use of small constants.

In section 2.3.1 mentionedthat insteadof doing an operation(like for examplecMmpPor ADD with a long
word constantbetween-128 and 127 as operandusing an instructionwith an immediatelong addressing
mode, it is usually faster and shorter first to mthwevaluein a dataregisterusing MOVE@ndthendo the
operation. For example instead of:

CMP #100,D0

it is faster and shorter to use:

MOVE #100,D1
CMP D1,D0

This could be implementedby testingfor animmediateoperandbetween-128 and 127 when generating
intermediate code for nodes lik@PandADDand then allocating a new register, generatea MOVE #i,Dn
instruction(which will later be optimizedto a MOVEQnstruction),generatean instructionwhich performs
the operation using register Dn instead of the immediate value and then releasebregister

But this instruction sequencéhas as disadvantagehat it usesan extra register. So that if not enough
registers aravailable,using suchaninstructionsequenceould resultin extraload and storeinstructions
during local registerallocation(explainediater in section6.6). Then the code would be far less efficient
thenwhenthis 'optimization' had not beendone. Thereforethis optimization should only be doneif it

doesn't result in extra load and store instructions.
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This hasbeenimplementedoy only performingthis optimizationif a parameterdataregister(one of the

registersD0-D7, seesection6.6) is availableto storethe immediatevalue.If sucharegisteris available,
usually no extra load and stores are necessary during local redjstation(but not always).And if such

a registeris not available,then the numberof registersin use is higher than the number of available
registers, son thatcaseit is very likely thatextraloadsandstoreswill be generatediuring local register
allocation.In the currentimplementatiorthis hasonly beenimplementedor the CMPinstruction, because
comparing to small constants happens very often during pattern matching.

This optimization is also used when allocating memory in the heap (see section 6.9).

6.5. Global register allocation.

Beforethe dagfor a basicblock is constructedthe codegeneratordeterminesvhich valuesare storedin
registersat the beginningof the basic block. And after the dag has beenconstructedwhich valuesare
storedin registersat the end of the basicblock. This is called global register allocation. Conditionsfor
global registerallocationare described And a straightforwardglobal registerallocation algorithm which
was usedor this implementationis describedAlso is explainedhow parameterand resultsof functions
are passed.

6.5.1. Directives describing the parameters and results for the code generator.

In section 5.2.2 we concluded that it is usually better to pass parameters and results of funretjisteris
instead of in memory. But tbe ableto passparameterandresultsin registersthe codegeneratothasto

know what kind of parameters a function has and what kind of result it comphieformation cannot

alwaysbe derivedfrom the ABC code. Thereforethe Cleancompilerinsertsdirectivesin the ABC code,

which describe the parameters and results when entering and leaving a function.

Becausdhe parametersand resultsare passedn the top of the A-stackand B-stack, the parametersaand
results can be described by describing the stack layout of the top elements of the A-sBskaakavhich
are parameters or results at certain locations in the program.

If a function is called using an ABj& instruction, the stack layobeforeand afterthejsr instructionis
describedusinga .d(emanded) directive beforethejsr instructionanda .o(ffered) directive after the
jsr instruction:

d #A_entries #B_entries B_types
jsr function
.0 #A_entries #B_entries B_types
where:
#A_entries = The number of A-stack entries.
#B_entries = Thenumberof B-stackentries.Floating point numbersare consideredo be
two entries, because they consist of two stack elements.
B_types = For everyentry on the B-stack, startingwith the entry on top of the stack, a
character indicating the type of the entry:
I = integer
b = boolean
c = character

r real (floating point number) (only one r for a floating point

number, not two)
If a function is called using an ABj& _eval instruction,alwaysonly one parameteis passecdn the A-

stack and only oneesultis returnedon the A-stack.So no directivesare necessaryo describedhe stack
layout for gjsr_eval  instruction, because the stack layouts are always the same.
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If afunctionis jumpedto using an ABC jmp instruction,the stacklayout before the jmp instructionis
described using @ directive before thgnp instruction:

d #A_entries #B_entries B_types
jmp function

If a function is jumped to using an ABf@p_eval instruction, always only ongarameteis passedn the
A-stack. So no directives are necesdarya jmp_eval instruction,becausehe stacklayoutis alwaysthe
same.

If a function isleft usingan ABC rtn instruction,the stacklayout beforethe rtn instructionis described
using ad directive before then instruction:

d #A_entries #B_entries B_types

rtn
And finally for every label, which is thentry point of a function, the stacklayoutis describedusinga .o
instruction before the label:

.0 #A_entries #B_entries B_types
label: no_op

6.5.2. Function calling convention.

Becausepassingparametersn registersis usually more efficient (seesection5.2.2), we will try to pass
parameters in registers. Bilie MC68020hastwo sortsof registers so we alsohaveto determinewhich
parameters should be passed in which sort of register.

Parametersind resultswhich are passedon the A-stack are addresse®f nodes.Becauseonly address
registers can address memory, and therefore address the vauesde, theseparameteraindresultscan
best be passed in address registers.

Parameters and results which are passed on the B-stack are integers, booleans, charféuérs gt
numbers. Integers, booleans and characters cabdpassedn dataregisters becausehe operationson
thesetypescan often be performedfasterif the operandsarein dataregistersthanif they arein address
registers.

Floating point numberscan probably best be passedin the floating point registersof the MC68881
coprocessor, because floating point operations can only be performed in these registerd)dandhyset

been implementedCurrently they are passedn memory,which is betterthanpassingthemin addressor

data registers. This is because a floating point nuiméeto be storedin two MC68020registers,andthe

MC68881 can not perform a floating point operation using a floating point nustdredin two MC68020
registers, but can perform a floating paiperationusing one operandwhich is storedin two consecutive
long words in memory.

When registers havieeenreservedor stackpointeretc. asdescribedn section3.5, registersD0-D6 and
AO0-A2 can be used to pass parameters and results of functions. So only 3 address redpséeegjisters
and 8 floating point registers are availablegassingparameterandresults.Sometimesve will not have
enoughregistersavailableto passall parametersand resultsin a register.If not enoughregistersof a
specific sort are available, only (asny as possible)parameter®r resultswhich are closestto the top of
the stack are allocated a register of the required sort, the other parameters or results are passed in n

If someparameteror resultscan not be passedn dataregisters,and some addressregistersare still
available, it may be more efficient to pass as many of these paraoretessiltsin theseaddresgegisters.
And if someparameter®r resultscannot be passedn addresgegisters,and somedataregistersare still
available,it may be more efficient to passas many of theseparametersr resultsin thesedataregisters.
This has not been implemented.
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If n parameters or results are passed in regisfeaspecificsort, registers0, 1, .., n-1 areused,andthe
parameter resultclosestto the top of the stackis passedn registern-1, the parameteor resultsecond
closestto the top of the stackis passedn registern-2, etc. Why this order has been chosenwill be
explained in section 6.5.5.

If a function is called, jumped to or left, the stackpointdrsuldpoint to the top of the stack.But if some
elementson top of a stackare passedn registers the stackpointeicannot point to the top of the stack,
because the top element of the stack is not storemory. Thereforethe stackpointergoint to the stack
element closest to the top of the stack which is not passed in a register.

If we don't take precautions, the code for a functionld changethe valuesin registers so thata register

may no longer contain the same value after aorjsr_eval as itcontainedbeforethejsr or jsr_eval

Consequently we should either:

- not assume a register contains the same value after a function call, or

- saveall registerswhich may be changedby a function at the start of the codefor a function and
restore these registers before the function is left, or

- a combination of both methods, i.e. assume some registers may be chaadeddiipn and some
registers may not be changed by a function.

The convention | have used in this implementation is tabetion may changethe valuesof all registers,
because:

- If we would assumea function may not changethe value of registers,then at the beginningof a
function we wouldn't know which registerscontainvalues.This causegroblemsfor the garbage
collector, becauseahe garbagecollectorhasto be ableto find all pointersto nodes. Becausethese
pointersmay be storedin addressregisters,the garbagecollector has to know which address
registerscontainpointersto nodes,but the garbagecollector cannot derive this information. This
could be solvedby storingzeroin an addresgegisterif it doesn'tcontaina value, but this would
make the code slower.

- A Cleanfunction hasthree entry points, but often only one exit point. If we would assumea
function may not changethe value of registers,then at all three entry points the sameregisters
would have to be saved. This is inefficient for entry points for which only a few registertohzve
saved.

6.5.3. Conditions for global register allocation.

As | already said, the global register allocator determwigsh valuesshouldbe locatedin registersat the
beginning and end af basicblock. The beginning of a basic block is the locationimmediatelybeforethe
first instructionof the basicblock. The end of a basic block is the location immediately after the last
instructionof the basicblock if this lastinstructionis an instructionwithout side effects,otherwise,so if

last instruction of the basic block is an instruction with side effects, the end of the basic blodtaatibwe
immediately before this instruction.

Which values are located in registersregbeginningor end of a basicblock is calledthe (global) register
allocation. But in order to obtain correct code, the global register allocation has to meet certain conditi

Because if contraiay flow directly from basicblock A to basicblock B, the global registerallocationat
the end of basic block A should be the same as the global reglistationat the beginningof basicblock
B. So the A-stack and B-stack elements which are located in a register at the end of basisbtondk Be
the same as the A-stack and B-stack elements which are located in a aétgistbeginningof basicblock
B, and the elements should also be located in the same registers. (This conditiotois sebiere If basic
block B popsa stackelementfrom the stackand doesnot usethis element,the registerallocationfor this
stackelementdoesnot haveto meetthe condition. But becausehe implementedcode generatorcan not
detect this, we will ignore this.)
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If thejsr_eval instructionis optimizedas describedn section5.2.6, doing global registerallocationis
different than wherthis optimizationis not performed.Becausdhe implementedcodegeneratoperforms
this optimization, | assume this optimization is performed when describing global register allocation.

Consequently, for the ABC code the global register allocation has to meet the following conditions:

1. If control may flow directly from basic block A tine next basicblock B, i.e. if the lastinstruction
of basic block A is not anrtn , jsr , jmp , jsr_eval oOr jmp_eval instruction, the register
allocation at the end of basic block A has to be the same as the ralipsteronat the beginningof
basic block B.

2. If the last instructionof a basicblock A is a jmp label , jsr label , jmp_false label oOr
jmp_true  label instruction,the registerallocation at the beginningof the basic block which is
labeled with labelbel should be the same as the register allocation at the end of basic block /

3. If the lastinstructionof a basicblockis artn instruction,the registerallocationat the end of this
basic block has to be the same as the register allocation:
- At every location just after a MC68026R instructiongeneratedor ajsr_eval  instruction
which may call the function from which thia returns.
- At the beginningof every basic block to which the rtn  instruction may return to. These
beginnings of basic blocks to whicht@ instructionmay returnto usuallyareall the basic
blocks of which the previous basic block has as last instructsn mstruction.

4, If the last instruction of a basic block igsa eval  instruction,the registerallocationat the end of
this basic block has to be the same as the register allocation at the begirthegext basicblock,
and the register allocation at the location just beforét868020JSR instructiongeneratedor this
jsr_eval instructionshouldbe the sameasthe registerallocationat the beginningof every basic
block which may be jumped to by thés eval  instruction.

5. If the last instruction of a basic block igng_eval instruction,the registerallocationat the end of
this basicblock hasto be the sameasthe registerallocationat the beginningof every basic block
which may be jumped to by thisp_eval instruction.

6.5.4. Consequences of the function calling convention for global register allocation.

By defining the parameterandresultby the function calling conventiondescribedin section6.5.2, we
havealreadydefined(fixed) which valuesshould be storedin memory and which valuesin registersat
several locations in the program. Because at every looatierea .d or .o directiveis placed,the global
register allocation should be as defined by the function calling convention.

So, we have already defined the global register allocation for:

- The beginningof every basic block which is labeledwith a label which is an entry point of a
function. Because there isaa directive before such a label.

- The end of every basic block of which tastinstructionis ajsr , rtn or jmp to alabel, which is
the label of a function entry point, instruction. Becausethere is a .d directive before these
instructions.

- The beginning of every basi@ock of which the previousbasicblock hasaslastinstructiona jsr
instruction. Because there isoadirective after this instruction.

And because of the conditions for global register allocation desdnlibd previoussection,we havealso
defined the global register allocation for:

- The end of everybasicblock of which the lastinstructionis an instructionwithout side effects of
which the next basic block is labeled with an entry point of a function. Because of condition 1.

- Every location just before a MC68020 JSR instruction generatedfor a jsr_eval  instruction.
Becausgsr_eval  always calls amntry point of a function, andthe registerallocationof all entry
points has been defined and because of condition 4.
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- Every location just after a MC680286R instructiongeneratedor ajsr_eval  instruction.Because
the registerallocationjust beforeartn  instruction has beendefinedfor all rtn  instructions,and
because of the first case of condition 3.

- The endof every basicblock having a jmp_eval as last instruction. Becausgmp_eval always
jumps to an entry point of a function, and the register allocatiail entry pointshasbeendefined
and because of condition 5.

6.5.5. Straightforward global register allocation.

So by defining the function calling convention,we have defined the global registerallocation at many
locations in the program. But for the other beginnings and ends of basic blosk# heaveto determinea
global register allocation. For exampldatal labels andat jmp_false  andjmp_true instructions.With a
local label | mean a label which does not label a location which is the entry point of a function.

Becauseimplementing an advancedglobal register assignmentalgorithm costs a lot of time, a
straightforwardglobal register assignmentalgorithm has been implemented,which gives reasonable
results.

This straightforward global registaflocationalgorithmallocatesregistersat the locationsdescribedn the
previous section as defined by the function calling convention and the conditions of section 6.5.3.

And to be able to determimegisterallocationsfor the otherlocations,so that the registerallocationsmeet
the conditions of section 6.5.8e algorithm saves(defines)the global registerallocationfor a local label
the first time the label is used. If a local label is encountered again, it uses this saved register allocati

The global register allocation for the beginning of a basic block (except for the locksm®edn 6.5.4)
is determined with the following rules:

- If the basicblock is labeledby a local label for which a global registerallocationhasalreadybeen
defined, registers are allocated according to this definition. Inauaakethis is not the first useof
this label, and usually the label has already been used by a jmp, jmp_true or jmp_false
instruction. Then this register allocation has to be chosen, because of condition 2 of section €

- Otherwise, if the previous basic block exists and the last instruction of the previous basic blocl

- A jmp, jmp_eval oOr rtn instruction,thenno registersareallocated,i.e. all stackelements
are stored in memory. This will usually not happen.

- An instruction without side effects, then registers are allocated satheway asthey were
allocated at the end of the previous bddark. This is necessarypecausef condition1 of
section 6.5.3.

- An instruction with side effects (but netp, jmp_eval or rtn ), thenregistersare allocated
as they are allocated after execution of the instruction with side effects.

- Otherwise, no registers are allocated. This will usually not happen.

If a registerallocationat the beginningof a basicblock is determinedusing any of theserules, the global
registerallocationof all the labels which label this basic block are defined to be this global register
allocation.

Then the global register allocation for the ena@ bisicblock (exceptfor the locationsdescribedn 6.5.4)
is determined with the following rules:

If the last instruction of the basic block is:
- A jmp, jmp_true Orjmp_false instruction:
- If the global registerallocation of the label to which theseinstructions (may) jump has
already been defined, then registersare allocated according to this definition. This is
necessary because of condition 2 of section 6.5.3.
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Otherwise, we allocate registers for the top A and B-stéerkentdor which a registerwas
allocatedat the beginningof the basicblock, or which areusedor computedby this basic
block. The registers are allocated in the same wayhas passingparametergor functions
and results of functions.

The reasons for this allocation are:

- If a registeris allocatedfor a stackelementat the beginningof the basicblock, and
no registerwould be allocatedfor the stack elementat the end of the basic block,
then an extra instruction would be necessary to store the valuesththelementin
memory.

- If a value is computed by this basic block, it can be computed fasteegisterthan
in memory.

- If a valueis usedby this basicblock, it hasto be loadedfrom memory.We load it
into aregister,becauset is likely that the next basicblock usesthis value again.
Then the next basic block doesn't have to load it from memory agaicarusethe
register.

And then the global register allocation of the label to which the jmp, jmp_true or

jmp_false  instruction (may) jump is defined to be this global register allocation.

- An instructionwith side effects(but notjmp, jmp_true or jmp_false) , registersareallocatedin
such a way that the instruction with side effects can be executed.

- An instruction without side effects, then:

If the next basic block exists and the next basic block is labeleddlgldor which a global
register allocation has been defineghistersare allocatedaccordingto this definition. This
is necessary because of conditions 1 and 2 of section 6.5.3.

Otherwise we allocateregistersjust as for a jmp, jmp_true oOr jmp_false to a label of
which the global register allocation has not yet been definedieSlocateregistersfor the
top A and B-staclelementdor which a registerwas allocatedat the beginningof the basic
block, or which are used or computey this basicblock. The registersare allocatedin the
same way as when passing parameters for functions and results of functions.

If we would allocate the element on top of the stack to register 0, the second @étherstackto register
1, etc., we would often hawe move valuesin registersto otherregisters.f for example6 dataregisters
have been allocated at the beginning of the basic block and codebeagetweratedor the following basic

block:
pushl 10
eql_b 1000 1
jmp_true 11

and no global register allocation hasendefinedfor labeli1 , thenwe would allocate7 stackelementsn
data registersat the end of this basic block, and the code generatorcould generatethe following
intermediate code:

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
CMP

BEQ

D5,D6
D4,D5
D3,D4
D2,D3
D1,D2
Do,D1
#10,D0
#1000,D1
11

But if we would allocatethe elementon top of the stackto the registerwith the highestregisternumber
which containsa value of a stack element,and the secondelementof the stackto the registerwith the
secondhighestregisternumberwhich containsa value of a stackelement,etc., as describedin section
6.5.2, then the code generator would generate the following (much better) code:

MOVE
CMP
BEQ

#10,D6
#1000,D5
11
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Therefore this way of allocating registers has been used.

6.6. Local register allocation.

Becausdhe intermediatecode generatedrom the dag may usean unlimited numberof dataand address
registers,andthe MC680200nly has8 dataand addresgegistersa local register allocator changeghe
intermediatecodeof a basicblock so that no morethan 8 addresgegistersand dataregistersare used. It
doesthis by changingthe registernumbersof the registersusedby the intermediateinstructionsand by
inserting instructions to load and store values in registers from/into memory. This is explained below

6.6.1. Local register allocation strategy.

Because the MC68020 has onha@&dresgegistersand 8 dataregisterswe will sometimesiot be ableto
retain all intermediate results in a register and therefore we will sometimetlsgesintermediateresults
in memory by storing registers in memory and loading registers from memory.

The normallabeling algorithm (seesection6.2.2) determinesvhento storeregistersin memoryandload
registers from memorguring codegeneratiorfrom the tree. (phase2) Supposecodehasto be generated
for atreehavingan'OP g1 g2' nodeasroot, whereOP is the dyadic operationrepresentedby this node
and gl and g2 are the argument subtrees which repthsaamputationf the operandslf the required
number of registers for the evaluation for both g1 andrghigherthanthe numberof availableregisters,
then g2 is evaluatedfirst, then the registerin which the result of g2 has beencomputedis storedin
memory, then g1 is evaluated and finally the result of OP is computed using the resutt ofegRoryand
the result of g1 in a register. This method gives very good results, often optimal.

Unfortunately using this method for cdags which contain shared nodes does not give good results, b

- The calculated required number of registers to evalatiagis oftentoo high if the cdagcontains
commonsubexpressionsgConsequentlya register may be storedin memory and loaded from
memory,althoughenoughregistersare availableto evaluatethe cdag without storing intermediate
results in memory.

- This method can not determine whether the result of a shadehfter the first evaluation,i.e. the
result of a common subexpressishpuldbe storedin a registeror in memory.We can't storeall
resultsof sharednodesin registers becausehereis a limited numberof registers,and storing all
results of shared nodes in memory would result in inefficient code. We trputiistorethe results
of shared node in registers, and if later not enough registeasaitable, move one of the registers
containing theresultof a sharednodeto memory.But thenwe would not be ableto makea good
choicebetweentheseregisters becausdo determinewhich registershould be storedin memory,
we would have to know when these registers will be aggin,which we do not yet know at that
time.

Therefore register allocation was not done during code generation from the dag, but was ptktpfieed
the codefor a basicblock had beengeneratedy assumingan unlimited numberof addresgegistersand
data registers are available. Because then we would be able to detghmimeregisterwill be usedagain
in this basicblock, which was one of the reasonsvhy we could not determinea good registerallocation
during code generation from the dag.

To describethe strategywe have used, we will call the (possibly too many) registerswhich have been
allocatedduring the code generationfrom the dag virtual registers, and call the registersof the target
processoreal registers. If a virtual register is use@, real registeris allocatedand this real registeris used
as this virtual register. The strategy we have used allotteesal registercontainingthe value which will

not be used for the longest time and stanesregisterin memoryif areal registerhasto be allocatedand
all real registers are in use, i.e. conta@tueswhich will be usedlater. And if a virtual registeris usedof
which the value has been stored in memory, a real register is allocated and the value fsolmadtesnory
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and this real registeris usedas this virtual register.This strategywas shownto be optimal in a page
swapping context in [Belady 1966].

Becausdhe MC68020hastwo sorts(dataand addresspf registerswe haveto adaptthis strategy.The
value of a virtual register always hada@storedin a real registerof the samesort, becausetherwisewe
may obtaininstructionswith invalid operandsfor examplea MULS.L A1,A0 instruction. Therefore,if a
real register has to be allocated for a virtual register of a specific saatl aedl registersof this sortarein
use, the real register of this sort which will not be used folothgesttime will be allocated,andthe value
in this real registeris storedin memory. So that the value of the virtual registerwhich was previously
stored in this real register can be loaded again from this memory location if this virtual regiséztagain
later.

But, if a real register is allocated when all registdra specificsortarein use, it is not necessaryo store
the registein memoryif this registercontainsa value which hasnot beenchangedsincethe lasttime the
registerwas loadedfrom memory, becausethe memory location where the register was loaded from
contains the samealue asthe register,so the nexttime this valueis used,it canstill be loadedfrom this
memory location.

The strategydescribedabovemay assigna virtual registerto any real registerof the samesort, but this
causes problems in two cases:

- The virtual registers for which a STORE_R node exists have to be assigned to the real regeste
same sor{addresor data)and with the samenumberat the end of a basicblock. (the numberof
register An is n, the number of register Dm is m)

- For a MOVENINnstructionthe registersto which the valuesare movedto or movedfrom haveto be
allocatedin a specific order, i.e. dataregistersbefore addressregistersand registerswith low
numbers before registers with high numbers.

To solvethis problemvirtual registersfor which a real registerexistsof the samesort andwith the same
numberare alwaysassignedo this real register,theseregisterswill be called parameteregisters.At the

end of the basic block all values of these virtual parameggsterswhich are storedin memoryareloaded
in the real parameter registers. And@vENNnstruction mayonly move valuesto or from virtual parameter
registers. This adapted strategy is not optimal.

Now the next time a real register will be used agliasnot only dependon whenthe value storedin this
register will be used again, but also on when the virtual register of the sarapdseith the samenumber
will be usedagain,becausehis virtual registerhasto be storedin this real registerwhenit is used. So
instead ofallocatingthe real registerwhich containsthe value which will not be usedfor the longesttime
whenall registersof the requiredsort arein use,the real register,of which the value and for which the
virtual registerof the samesort andwith the samenumberwill not be usedfor the longesttime will be
allocated.

6.6.2. Local register allocation algorithm.

The algorithm consistsof two phasesDuring the first phasefor every operandof the intermediatecode,

which uses a virtual register, the following is computed:

- Thenext use instruction. For an operand which uses a non parametgster,this is the instruction
with the first operand after this operand which uses the value ofittual register,if it exists.For
an operandwhich usesa parameteregister,this is the instructionwith the first operandafter this
operand which uses this virtual register, if it exists.

- Thevalue useflag. Thisflag is trueif the valuein the virtual registerusedby this operandwill be
used after this operand, otherwise it is false.
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To compute the next use instructions the operands are divided into two classes:

- Operandswhich use a virtual register,i.e. operandsvhich usethe value of the virtual registerto
compute the result. For example both operands abarb1,Do instruction.

- Operandswhich define a virtual register,i.e. operandswhich do not use the value of the virtual
register to computéhe result, but storethe result (or part of the result)in this virtual register.For
example the second operand of@vEo DO instruction.

To be ableto determinewhich real registerof a specificsortwill not be usedfor the longesttime during
phase two of the algorithm, we have to be able to determirerdieeof the instructionswith the nextuse,
therefore the instructions are numbered. The last instruction of a basic hhockbsred?, the secondast
instruction is numbered 3, the third last 4, &g.startingto numberwith 2, we canuseO0 to indicatethat
no next use instruction exists athdt the value of the virtual registerwill not be usedany more,and1 to
indicate that no next use instruction exists in this balsick and that the value of the virtual registercould
be used after this basic block. The virtual registers which could be used aftesibisiock are the virtual
registers for which a STORE_R node exists.

The first phase of the algorithm stores the next_use instruction and valtlaguse every operandwhich

uses a virtual register by walking the instructions from the last instruction to the first instrudtierbasic

block. The instructionsare walked backwards,becausethen the information can be computedfaster.

Durlng this walk the arrays first_use and first_value_use remember for every virtual register:
Thefirst useinstruction. For a non parameteregister,this is the instructionwith the first operand
after the currentoperandwhich usesthe value of this virtual register,if it exists. For a parameter
register, this is the instruction with the first operand after the current operandusbkithis virtual
register, if it exists.

- Thefirst value use flag. This flag is trueif the value in the virtual registerwill be usedafter the
current operand, otherwise it is false.

The first phase of the algorithm is:

PROCEDURE compute_next_uses
FOR all virtual registers v DO
IF a STORE_R node exists for v THEN
first_use [v] :=1
first_value use [v] := TRUE
ELSE
first_use [v] :=0
first_value_use [v] := FALSE
instruction_number := 2

FOR all instructions i from the last instruction to the first instruction of
this basic block DO

FOR all operands p of instruction i from the last operand to the first
operand DO

IF p uses virtual register v THEN
next_use [p] := first_use [v]
value_use [p] := first_value_use [V]
first_use [v] := instruction_number
first_value use [v] := TRUE
ELSE IF p defines virtual register v THEN
next_use [p] := first_use [v]
value_use [p] := first_value_use [v]
IF v is a parameter register THEN
first_use [v] := instruction_number
ELSE
first_use [v] :=0
first_value_use [v] := FALSE
instruction_number := instruction_number + 1
END

During the second phase of thlgorithmthe real registersare allocated,instructionsto storereal registers
in memory and to load real registers from memory are inserted, and the virtual regesteptacedby real
registers.
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To do this the operands are divided into three classes:

- Operandswhich use a virtual register,i.e. operandsvhich usethe value of the virtual registerto
compute the result, but don't change takie of the virtual register.For examplethe first operand
of anADD D1,D0 instruction.

- Operandswhich define a virtual register,i.e. operandswhich do not use the value of the virtual
register to computéhe result, but storethe result (or part of the result)in this virtual register.For
example the second operand of@vEo DO instruction.

- Operandwhich use and define a virtual register,i.e. operandswhich use the value of the virtual

registerto computethe result,and may changethe value of the virtual register.For examplethe
second operand of aoD D1,D0 instruction.

The second phase of the algorithm is:

PROCEDURE allocate_registers
FOR all virtual registers v DO
real_register [v] := NO_REGISTER
FOR all real registers r DO
virtual_reg [r] := NO_REGISTER
reg_changed [r] := FALSE
real_first_use [r] :==0

FOR all parameter registers v DO
IF first_value_use [v] THEN
real_register [v] :=v
virtual_reg [v] := Vv
real_first_use [v] := first_use [v]

FOR all instructions i from the first instruction to the last instruction of
this basic block DO
pset ;= all operands p of instruction i using registers
IF pset is empty THEN
[* instruction i has no operands using registers, do nothing */
ELSE IF pset contains one operand p using virtual register v THEN
[* get real register which has been allocated for v */
real_reg :=real_register [V]
/* no real register allocated ? */
IF real_reg = NO_REGISTER THEN
/* allocate a real register */
IF v is a parameter register THEN
real_reg :=v
ELSE
real_reg .= real register r of the same sort as v for
which real_first_use [r] is minimal

[* free this allocated register */
old_reg = virtual_reg [real_req]
IF old_reg <> NO_REGISTER THEN
IF first_value_use [old_reg] THEN
IF  reg_changed [real_req] OR old_reg has never
been stored THEN
store register old_reg
real_register [old_reg] := NO_REGISTER

virtual_reg [real_req] := v
real_register [v] := real_reg

/* load the real register if necessary */
IF p uses virtual register v OR p uses and defines virtual
register v THEN
load register real_reg
reg_changed [real_req] ;= FALSE

first_use [v] := next_use [p]
first_value_use [v] := value_use [p]
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real_first_use [real_req] :=
MAX (first_use [real_reg],first_use [v])

IF p defines virtual register v OR p uses and defines virtual
register v THEN
reg_changed [real_reg] := TRUE

[* replace virtual register of operand by real register */
replace register v of operand p by real_reg
ELSE
similar to when pset contains one element, but more complex
because all virtual registers used by operands in pset have to be
in real registers at the same time
END

If an instruction has more than one operandwhich usesregisters,we can not simply allocate the real
registers one by ond. for examplereal registershaveto be allocatedfor an ADD D10,D3 instructionand
virtual registerb10 hasbeenallocatedto registerd3 beforethis ADDinstruction,thenfor the first operand
real register D3 would be allocated,but for the secondoperandb3 would also be allocated and an
instructionwould be generatedo storethe value of virtual registerd10 from real registerd3 in memory,
then an instructionwould be generatedo load the value of virtual registerD3 in real registerb3 from
memory and thean ADD D3,D3 instructionwould be generatedyhich would computeD3+D3 insteadof
D10+D3.

To preventthis, a parameteregisterusedby an operandof the instructionor a real registerwhich has
already been allocated for a parameter register used by an operand of this instroetienalfocatedfor a
non parameter register. Then tbe exampleof the ADD D10,D3 instruction,for the first operandregister
D3 may not be allocated, so another register is alloctde@xampleD4, anda MOVE D3,D4 instructionis
generated, theb3 is allocated for the second operand and an instructigeneratedvhich loadsthe value
of virtual registeiD3 from memory into real registes and then anDD D4,D3 instruction is generated.

Note that because for virtual parameter registers always the real regtbesamesort and with the same
number as the virtual register is allocattils registerallocationalgorithm doesnot haveto executedf all

virtual registers used by a basic blaule parameteregisters which happensrery often, but only haveto

replace the virtual registers by the real registers of the same sort and with the same number.

6.6.3. Preserving condition codes during local register allocation.

Many load, store and registerto register move instructionsinsertedin the code during local register
allocationchangethe conditioncodesof the MC68020, so that sometimeghe code will not be correct.
Therefore different instructions are generated for loads, stores and register to register mogesditibe
codes may not be altered:

- For a load anovEOor MOVEANStruction isgeneratedlf the destinationof the move instructionis an
addresgegister(MOVEA the conditioncodesare not affected,so we don't haveto use an other
instruction.But if the destinationof the moveinstructionsis a dataregister(MOVE, the condition
codes are effected. Thereforsi@vEMO this data register is generated insteduch is slowerthan
aMOVEbut doesn't affect the condition codes.

- For a storea MOVENSstructionis generatedwhich alwaysaffectsthe condition codes.Thereforea
MOVENMNstructionis usedinstead,which is slower than a MOVE but doesn'taffect the condition
codes.

- For a registerto registermove a MOVEOr MOVEAINstructionis generatedlf the destinationof the
move is an address regis{@rovE) the conditioncodesare not affected,so we don't haveto use
an other instruction. But if the destination is a data regigtey§, the condition codesare affected.
Therefore arExGinstruction is generated instead, which doesn't affect the condition codes.
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6.7. Optimizing stack accesses.

We have represented accesses to the stack LGIAD, FLOAD, STOREand FSTOREnodesin the dag.
These nodes represent an element on a stack by a displacement and a stackpointer, so that ¢fieredd
stackelementis the sumof this displacemenandthe addressn this stackpointerat the beginningof the
basicblock. And from thesenodeswe havegeneratedcode which accesseshe stack elementsusing an
addressregister indirect with displacementaddressingmode. (also called indirect with displacement
addressing mode for short)

But the MC68020 has two addressing modes to push and pop elements on astdabffi@. the address
registerindirect with postincrementind addressregisterindirect with predecrementidddressingmodes.
Addressingstackelementsusing theseaddressingnodesis usually more efficient than addressingstack
elements using the address register indirect with displacement addressing mode, because:

- Using anindirect with displacemenaddressingnodeinsteadof a postincremenbr predecrement
addressingmode makes the machine code of an instruction one word longer, becausethe
displacement is one word long and is part of the instruction. (see section 2.3.7 or appendix B

- The indirect with displacementaddressingmode is usually a bit slower than the predecrement
addressing mode and as fast as the postincrement addressing mode, when executiegéae.
But if the instructionis not in the cache the addressregisterwith displacementaddressingnode
will usually be slower, becausehe machinecodeof the instructionis longer, and so it may take
more time to fetch the instruction from memory.

- If theindirectwith displacemenaddressingnodeis used,usuallya constanthasto be addedto a
stackpointerat the end of the basic block to adjustit, but if the postincrementind predecrement
addressing modes are used, this is often not necessary.

If the displacement of thiedirect with displacemenaddressingnodeis zero, the addresgegisterindirect
addressing mode can better be used, because this addressing mode is usually faster and uses less

All A and B-stackelementsare accessedising an addressregisterindirect with displacementaddressing
mode, where the address register is the B-stackpointerThe A and B-stackpointersare neverchanged
in a basicblock, but only at the end eventuallya constantis addedto them. This makesoptimizing these
accesses to address register indirect, postincrement and predecrement addressing modes very eas)

For all A and B-stack accessesexceptthe last A or B-stack accessof a basic block, the following
optimizations are performed:

- If the displacement of the stack accesge andthe size of the elementwhich is accessedby this
stack access is equal to ttisplacemenbf the next stackaccessthenthe addressingnodeof this
stack accesss changedto a postincrementddressingnode. Then for the next stack accessan
indirect or a postincrement addressing mode can be used.

- If the displacement of the stack accesge andthe size of the elementwhich is accessedby this
stackaccess the sizeof the elementwhich is accessedy the next stackaccesss equalto the
displacemenbf the next stack accessand not zero, then the addressingmode is changedto a
postincremenaddressingnode. Thenfor the next stack accessa predecremenaddressingnode
can be used.

- If the displacemenbf the stackaccesss equalto O - the size of the elementwhich is accessedby

this stack access and the displacement of the next stack access is riberdine,addressingnode
of this stack access is changed to a predecrement addressing mode.
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And for the last A and B-stack accesses of a basic block the following optimizations are performed:

- If the displacement of the stack accesgea andthe size of the elementwhich is accessedby this
stack access is equal to the constant which has to be added to the stackpgbaésroadf the basic
block, then the addressingnode of this stackaccesss changedto a postincrementaddressing
mode.

- If the displacemenbf the stackaccesss equalto O - the size of the elementwhich is accessedby
this stack access artide constantwhich hasto be addedto the stackpointeiat the end of the basic
block is not zero, then the addressingnode of this stackaccessis changedto a predecrement
addressing mode.

If the addressingnodeof a stackaccesss changedo a postincremenaddressingnode, the size of the
elementwhich is accessedy this stackaccesshasto be subtractedrom the displacementf all the
following stack accesses and from the constdnth hasto be addedto the stackpointerat the end of the
basic block. And if the addressimgodeof a stackaccesss changedo a predecremenaddressingnode,
the size of the element which is accessed by this stack access has to be thedlispgiacementsf all the
following stackaccesseandto the constantwhich hasto be addedto the stackpointerat the end of the
basic block.

If the constant, which has to be added to a stackpointer at the #mabasicblock is zero, thenof course
no add instructionis necessaryto adjustthe stackpointer.The stack accessesising an addressregister
indirect with displacement addressing mode for whichdibplacements zeroare optimizedto an address
registerindirect addressingnode (without displacementivhen generatingMC68020 machinecode from
the intermediate code. (see section 6.10)

Examples of stack access optimizations can be found in appendix A, for example A.1.6 and A.1.7.

The stackaccesptimizationsdescribedaboveonly look one stackaccessahead by looking more stack
accessesheadsometimedetterresultscan be obtained.For examplethe basic block: (all the examples
below are of intermediatecode, exceptthat addresgegisterindirect with displacementddressingnodes
for which the displacement is zero are optimized to address register indirect addressing modes)

MOVE (BSP),DO
ADD 4(BSP),DO
MOVE DO,-4(BSP)
SUB #4,BSP

would be optimized to:

MOVE (BSP)+,D0
MOVE (BSP),DO
MOVE DO,-8(BSP)
SUB #8,BSP

but could better have been optimized to:

MOVE (BSP),DO
MOVE 4(BSP),DO
MOVE DO,-(BSP)

The constant which has to be added to a stackpointer is currently always adslddrémtedpt the end of
the basic block, but sometimes it is more efficient to do this sooner. For example the basic block:

MOVE 8(BSP),DO
ADD #8,BSP

could be optimized, by moving the addition to the stackpointer, to:

ADD #8,BSP
MOVE (BSP),DO
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Also the stack accesses can sometimes be made more elicigmingingthe order of a few instructions.
For example the basic block:

MOVE 4(BSP),DO
MOVE (BSP),D1
ADD #8,BSP

would be optimized to:

MOVE 4(BSP),DO
MOVE (BSP),D1
ADDQ.L  #8,BSP

but could better have been optimized, by changing the order of the first two instructions, to:

MOVE.L  (BSP)+D1
MOVE.L  (BSP)+,D0

6.8. Optimizing jumps.

To optimize branchesand jumps as describedin section5.1.2, the code generatorsearchedor three

successive basic blocks A, B and C, for which the following conditions are true:

- Basic block B consist of just oasiPinstruction to a label within this module.

- Basic block B is not labeled by a label.

- Basicblock A hasaslastinstructiona branchinstruction (BEQ BGE BGT, BLE, BLT, BNE FBEQ
FBGE FBGT, FBLE, FBLT or FBNE) which branches to a label which labels basic block C.

If sucha basicblock is found, the branchinstructionis changedo a branchinstructionwith the reverse
condition code (i.eEQ->NE, GE-> LT, GT-> LE, LE -> GT, LT -> GEandNE -> EQ andwith asoperand
the label which is the operand of thep instruction, and thaévpinstruction is removed.

For example: (basic block 6,7 and 8 of appendix A.1.7 and A.1.8)

Basic block A:
sFac.1: CMP #0,D0
BEQ m.2
Basic block B:
JMP sFac.2
Basic block C:
m.2: MOVE #1,D0
RTS
is optimized to:
Basic block A:
sFac.1: CMP #0,D0
BNE sFac.2
Basic block B:
Basic block C:
m.2: MOVE #1,D0
RTS
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6.9. Calling the garbage collector.

If spacehasto be allocatedin the heapfor new nodesor argumentsthis canbe done by subtractingthe
numberof long words, which haveto be allocated,from FC and calling the garbagecollector if FC
becomes less than zero. But in section 5.1.1 we saw this can bfasienby allocatingspacein the heap
for more nodes at once. This has been implemented by allosptiegin the heapfor all nodeswhich are
created of filled in the basic block at once at the beginning of the basic block.

The number of long words which is allocated in the heap by a @eélleinstructionis a constant.So the
number of long words which are allocated by all the create and fill instructions of a basic blookstant
as well.

But the add_args instruction allocatesa numberof long words which is not a constant.Thereforewe
allocatethe maximumnumberof long words which an add_args instructionwould allocate.Then the
number of long words to be allocated by a basic block is always a constant.

This number of long words to alocatedcan be computedby calculatingthe sum of the numberof long
words which the CREATE and ALLOCATE nodes in the dag of this basic block allocate.

Then for every basic block for which the number of long words is not zero, the followingsageteerated
at the start of the basic block:

SUB.L #number_of long_words,FC
BMI jmp_gc 1
continue_from_gc_1:

and at the end of this module:

jump_gc_1:
JSR collect_n
BRA continue_from_gc 1

If the numberof long words to be subtractedfrom FC is lessthan 8, a SUBQ.L instructionis used.
Otherwise if the number of longords to be allocatedis lessthan 128 and a dataregisteris available,the
number of long words is first moved to a free data register Dn ueg@nd then subtractadsinga SUB
Dn,FC. Otherwise &UB.L #number_of_long_words,FC instruction is used.

The garbage collector has to be able to find all poitter®desin the graphincluding the onesin address
registers. Because after global register allocatierknow which addresgegisterscontainelementsof the
A-stack, and becauseall elementsof the A-stack contain pointersto nodes,we know that the address
registers which contain A-stack elements are the only registers containing pointers to nodes. At thee s
basic block there are only four possible address register allocations: no address registersusssj AS0
and Al used, and AO, Al and A2 used. By makingany in the garbagecollectorfor eachof thesefour
allocations, the garbage collector can be called by jigt astruction.

Maybe you wonder why the garbage collector is not called by:

SUB.L #number_of long_words,FC
BPL.S continue_from_gc_1
JSR collect_n

continue_from_gc_1:

The reason is that this instruction sequendengerthanthe part of the other instructionsequencevhich
hasto be storedat the start of a basicblock. This would probablyresultin a less efficient use of the
instruction cache of the MC68020ecausahe JSR collect_ n  instructionwould sometimese storedin
the cache, but will usually not be executed.

90



6.10. Generating MC68020 code from the intermediate code.

After local register allocation (and also after optimizing stack accessas)dimediatecodeis very similar
to MC68020 code. Nearly all instructions of the intermediate code can be translated disati§d68020
instruction, except:

- The SEQ SGE SGT, SLE, SLT, SNE FSEQ FSGE FSGT, FSLE, FSLT andrFSNEcompute a longvord,
but the Sccinstructionsof the MC68020computea byte, thereforean extraEXTB.L instructionis
necessary to sign-extend the byte to a long word.

- TheBMOVHNSstruction moves a block of long worddut the MC68020doesn'thavea block move
instruction, therefore the block move is performed using a loop. For example a:

BMOVE (A0)+,(A1)+,D0
instruction is translated to:

BRA.S label_1
label_2:

MOVE.L (A0)+,(AL)+
label_1:

DBRA DO,label_2

While generating this code, the following simple optimizatiareperformed:(mostof theseoptimizations
can be performedby assemblersbut becauseobject code (seeappendixE) is generatedby this code
generator, the code generator has to do these optimizations)

- An address register indirect with displacement addressing mode of which the displaseraeris
optimized to an address register indirect addressing mode. (without displacement).

- MOVE.L #,Dn  for which -128<i < 127 is optimized tMOVEQ #i,Dn .

- ADD.L #,Rn  (Rnis Dn or An) for which Xi < 8 is optimized t&ADDQ.L #i,Rn

- ADD.L #i,Rn  for which -8<i < -1 is optimized t®UBQ.L #-i,Rn .

- ADD.L #i,An  for which -3276& i < 32767 is optimized toEA i(An),An . (exceptfor -8 < i
-lorl<i <£8)

- SUB.L #,Rn  for which 1<i <8 is optimized t®UBQ.L #i,Rn

- SUB.L #,Rn  for which -8<i <-1 is optimized t®ADDQ.L #-i,Rn

- SUB.L #i,An  for which -3276%i < 32768 is optimized toEA -i(An),An . (exceptfor -8 <i <
-lorl<i <£8)

- CMP.L #0,<ea> Or CMP.W #0,<ea> IS optimized tOorST.L <ea> oOr TST.W <ea>, exceptif <ea> is
address register direct.

- MOVE.L #0,<ea> iS optimizedto CLR.L <ea>, exceptif <ea> is dataregisterdirect or address
register direct.

- JMP label  for which thelabel is in the same module as theris optimized t@BRA label

- JSR label  for which thelabel is in the same module as U8R is optimized t@BSR label

IN
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7. Evaluation.

In this chapter | will first describe which optimizations have hiegrlementedand how the codegenerator
can be improved further. Then this code generator is compared to the previogsmeddorio determine
by how much the generated code has been improved by the implemented optimizations.

7.1. Implemented optimizations.

By generating code as described in section 6 the following optimizations have been implemented:
- Use of registers within basic blocks is usually good, but can be improved further. (see 7.2)
- Parameters and results of functions are passed in registers. (see 5.2.2)

- The evaluation order determined by the labeligprithmresultsin betteruseof registers because
fewer registers are used, and making fewer copies. (see 5.2.5)

- Thejsr_eval  optimization described in section 5.2.6 has been implemented.

- Nearly all create s of nodesare changedinto a createand fill at once (see5.1.1). The most
important exception is@eate in the following situation.
If theresultof a function is a node, the code generatedby the Clean compiler for this function
returns this node by overwriting a node. If such a function is called, and tmeredslewhich can
be overwritten, a node is created. Such creates are never optimized to araéltat onceby the
code generator.

- Unnecessargopiesand stackmanipulationsare eliminatedwithin basicblocks. (see5.2.3) These
are automatically eliminated by constructing a dag for a basic block.

- Optimization of booleans as described in section 5.2.3 is always performed.
- Jump optimization as described in section 5.1.2 is always performed.
- All MC68020 specific code optimizations described in 5.3 are performed.

- All the space which has to be allocated in the heap for a basic block is allocated at once (see !

7.2. Possible improvements.

The code generated by the code generator can be further improved in the following ways:

- If a value is computed by a basic block, and this value has to be storesjjistarat the end of the
basicblock, the valueis not alwayscomputedn this registerby the code generatedoy this code
generator But the value is computedin an other register, so that an extra move instruction is
necessary. By computing the value in the required register, this move can be removed.

- Allocating floating point registers of the MC6888&processoat the beginningsand endsof basic
blocks for floating point numbers. And passing floating pangumentsand resultsof functionsin
these registers.

- The codefor afil_a instructioncanbeimproved,by not first loadingthe fixed size part of the
node to be copied in registers.
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Performing in-line code substitution for smialhctions(see5.1.8). But this canbetterbe doneby
the Clean compiler.

Improving global register allocation.

Removing unused stack elements from the stack, if such a value is stored in a registenetrzha
is called usingsr , so that it doesn't have to be saved before the funcitbr(see5.19) Often this
save is necessary because an unnecessary copy is made. (see 5.2.3)

Extendingthe local registerallocator, so that it can saveaddressegistersin free data registers
insteadof in memoryif enoughdataregistersare available,and cansavedataregistersin address
registers.

Implementing strength reductions (see 5.1.3).

Implementing constant folding (see 5.1.4).

Improving the optimizations of stack accesses. (see 6.7)

Implementing algebraic optimizations. (see 5.1.5)

Implementing common subexpression elimination. (see 5.1.6)

Removing unused code. (see 5.1.7)

Other possible improvements are:

7.3.

Making the representatiomf nodesin the heapsmaller.For exampleby combiningthe evaluation
address and the descriptor so that these catobedin onelong word (and not two). Or by using
specialrepresentation$or integersand lists. Then nodescan be createdfaster, and the garbage
collector has to be called less often.

Implementinga garbagecollectorwhich doesn'tneedhalf the heapasworkspace So that we can
use the whole heap to store nodes, and not only half of it.

Comparing this code generator with the previous code generator.

Before | startedto designand implementthis code generator,a code generator[Weijers 1990] which
translatedABC codeto MC68020 code alreadyexisted.But this compiler generatedcode for the Sun
insteadof for the Mac Il, and the code generatedy this compiler was often not very efficient. This
compiler generated for every instruction ABC instruction a fixed sequence of MC68020 instr(ackoms
of macro substitution), but with the following optimizations:

The top element of the B-stack is often stored in a data register or, if the top eealeablean,in
the condition codes of the MC68020.

The code generatmould detectsomecasesbut not as manyas my codegeneratorjn whichit is
not necessary to initialize a node when a node is created, because it willdd beforea garbage
collection could occur. For example, for the instruction sequereea: | fill +1 0 thenodeis
not initialized by thereate instruction.

Conditional jumps followedby a (unconditional)jump (e.g. jmp_false  label_1 , jmp label_2
label_1: ) are optimized to one conditional jump, just like my compiler does.
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To determine how much more efficient my code generator is, | have compared it to this 'otptreeddor
for the Sun. To do this,haveusedsomeof the benchmarksnd executiontimes of thesebenchmarkof
the 'old’' code generator on the Sun described in [Heerink 1990].

To determine how much faster the Sun is than the Mac Itdtegeneratedy my codegeneratoffor the
nfib, tak andr_plus benchmarksvas executedon both the Sunandthe Mac Il. The nfib benchmarkwas
executed 1.67 times as fast (execution tim¢herMac Il / executiontime on the Sun) on the Sun, the tak
benchmark 1.63mesasfastandther_plusbenchmarkonly 1.09 timesasfast. | alsoexecuteda simple
loop, which was executed 1.56 times as fast, and avabptwo MOVE.L (A0),(A1) instructions,which
was executed 1.92 times as fast.

To compare my code generator to the old code generdtaveassumedhe Sunis 1.65 timesasfastfor
programsnot using reals. The resultsfor nfib and tak will then be accurate but of coursethe results
obtainedin this way for the other benchmarksare not accurate becausehe benchmarksvere executed
between 1.56 and 1.92 times as fast.

Because on both machines computations on reals are not performed by the MC6802théeMC68881
coprocessor, | havassumedhe Sunis 1.09 timesasfastfor programsusingreals, (r_plusandr_verm)
becausdher_plusbenchmarkwvas executedonly 1.09 timesasfast. The resultsfor r_plus will then be
accurate, but the results obtained in this way for r_verm will not be accurate.

In the following table the execution times of thenchmarkgfirst two columns),the executiontime of the
old code on the Mac Il (third column), and the speed up f@etsircolumn) are given for the benchmarks.
(assuminghe Sunis 1.65 or 1.09 timesasfast) The executiontimes are including the time for garbage
collections and for a heap size of two mega bytes. (two semi-spaces of one mega byte)

benchmark: execution time (s) execution time (s) execution time (s) speed up factor
Mac Il Sun Sun * (1.65 | 1.09 'old' code / new
my code ‘'old" code ' old' code code

nfib 0.81 0.66 1.1 1.3

tak 0.22 0.26 0.4 1.9

i_plus 0.39 0.68 1.1 2.9

i_verm 1.79 1.36 2.2 1.3

r_plus 3.02 5.42 5.9 2.0

r_verm 2.74 4.17 4.6 1.7

spine 2.19 2.70 4.5 2.0

twice 2.21 2.46 4.1 1.8

match 12.8 9.89 16 1.3

reverse 10.5 9.38 16 1.5

nfiblist 2.43 1.66 2.7 1.1

From these results we can conclude:

- Computations on strict basic values atet faster.Speciallyfor simple operationdike addingand
subtractingbecause_plus (integeradditionsand subtractions)s executedabout2.9 timesasfast
andr_plus (real additions and subtractions)is executed1.9 times as fast. For more complex
operationslike multiplying and dividing the improvementis smaller, but still i_verm (integer
multiplications and divisions) is about 1.3 times as fast and r_{reahadditionsand subtractions)
is about 1.7 times as fagthe reasondor the fasterexecutionof thesebenchmarksre that values
are kept in registers during the computations and integer parameters are passed in registers.

- Parameter passing of strict arguments is faster, because tak is 1.9 times as fast, and tifiiess 1
as fast. This is largely because now parameters are passed and stored in registers.

- Curriedfunction applicationsare executedaster,becausespineis executed2.0 times as fast and
twice is executed 1.8 timess fast. But this is largely dueto writing the codefor AP in assembly,
insteadof generatinghis codewith the code generator,and by using a better parametempassing
convention for apply entries of functions. But alsrausef thejsr_eval  optimizationdescribed
in section 5.2.6 and passing parameters in registers.
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- Functionswhich manipulatélists are a bit faster, becausereverseis about 1.5 times as fast and
nfiblist is aboutl1.1 times as fast. Reverseis faster largely due to the jsr_eval  optimization
describedn section5.2.6 andbetter use of registers.Nfiblist is not much faster, becauseamany
nodes are created and filled by this benchmark.

- Patternmatchingon non strict argumentss faster,becausamatchis executedabout1.3 times as
fast. This is because parameters are passespistersandthejsr_eval  optimizationdescribedn
section 5.2.6.

So, briefly we canconcludethat computationon strict argumentsand basicvalues(integers,reals, etc.)
aredonea lot faster(aboutl1.3 - 2.9 timesasfast) by the codegeneratecy my codegeneratorput that
computations on non strict arguments are oriijt éaster(aboutl.1 - 1.5 timesasfast). Curriedfunction
applications are also executed a lot faster (about 1.8 - 2.0 times as fast),dJoutnocth due to bettercode
generation techniques.
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APPENDIX A: Examples.

A.1. Fac.
A.1.1. Fac in Clean.
Fac O -> 1

Facn -> *I n (Fac (--1 n))

A.1.2. ABC code of fac.

.0 30
IFac:

pop_a 1

jmp m.1

0 10
nFac:

push_args 011
m.1:

set_entry _cycle_in_spine 1

jsr_eval

pushl_a 0

pop_a 1

.d O1li

jsr sFac.1

.0 01i

filll_b 00

pop_b 1

.d 10

rtn

.0 01i
sFac.1:

eql b +00

jmp_true m.2

jmp sFac.2
m.2:

pop_b 1

pushl +1

.d O1li

rtn
sFac.2:

push_b 0

decl

.d O1li

jsr sFac.1

.0 O1li

push_b 1

|| apply entry : 'Fac node, argument n
node and node to be overwritten by
result on the A-stack

|| pop 'Fac' node from the A-stack

[| jump to label m1

|| node entry : 'Fac n' node on the A-
stack

|| push argument n on the A-stack

|| store _cycle_in_spine as evaluation
address to detect cycles in the spine
of the graph

|| evaluate argument n

[| push argument n on the B-stack

|| pop node of argument n from the A-stack

[| call strict entry of Fac to compute
result on the B-stack

[| il the result node with the integer
result on the B-stack
|| pop the integer result from the B-stack

[| return

|| strict entry : argument n (evaluated)
on the B-stack

[| nequal O ?

[| yes, jump to label m.2

[| no, jump to label sFac.2

|| pop argument n from the B-stack
[| push 1 (result) on the B-stack

[| return

|| push argument n on the B-stack

|| subtract 1 from copy of n on the B-
stack

[| call strict entry of fac with argument
n-1 on the B-stack to compute Fac (-
n)

|| push argument n on the B-stack
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update_b 12 || reorganize the B-stack

update_b 01

pop_b 1

mull || compute *I n (Fac (-1 n))
d 01i

rtn || return

A.1.3. Basic blocks of the ABC code of fac.

Basic block 1:
.0 30
IFac: pop_a 1
jmp m.1
Basic block 2:
.0 10
nFac: push_args 011
Basic block 3:
m.1: set_entry _cycle_in_spine 1
jsr_eval
Basic block 4:
pushl_a 0
pop_a 1
.d 01i
jsr sFac.1
Basic block 5:
.0 01i
filll_b 00
pop_b 1
d 10
rtn
Basic block 6:
.0 01i
sFac.1: eql b +00
jmp_true m.2
Basic block 7:
jmp sFac.2
Basic block 8:
m.2: pop_b 1
pushl +1
d 01i
rtn
Basic block 9:
sFac.2:
push_b 0
decl
.d 01i
jsr sFac.1
Basic block 10:
.0 01i
push_b 1
update_b 12
update_b 01
pop_b 1
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mull

.d
rn

O1i

A.1.4. Dag representation and global register allocation of fac.

Basic block 1:

Basic block 2:

Basic block 3:

Basic block 4:

|| registers AO-A2 allocated

STORE_R

A0

REGISTER

Al

m.1

v

LOAD_ID

REGISTER | AO
|| registers AO-A1 allocated
|| register AO allocated
STORE_R A0 |
8 \\
REGISTER A0

|| registers AO-Al allocated

|| registers AO-Al allocated

REGISTER

Al

IFac:
STORE_R Al I
jmp
nFac:
STORE_R Al |
STORE_R Al |
jsr_eval
STORE_R DO I

v

LOAD_ID

STORE_R A0 |
FILL
\]I, |
REGISTER A0
LEA _cycle_in_spine
|| registers AO-Al allocated
|| registers AO-A1 allocated
STORE -4 | ASP |
8 | REGISTER AO
REGISTER Al
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Basic block 5:

Basic block 6:

Basic block 7:

Basic block 8:

Basic block 9:

jsr

|| register

DO allocated,

stackpointer at end of basic block

sFac.1l

|| register DO allocated

STORE_R AO

FILL |

LOAD

0 [ASP

rn

sFac.1:

l

v

add -4 to

REGISTER

DO

LOAD_|

|| register

LOAD_DES_|

INT

A0 allocated,

stackpointer at end of basic block

|| register DO allocated

CMP_EQ I

STORE_R DO

LOAD_| 0

jmp_true

jmp

™~

~

REGISTER

DO

|| register DO allocated

m.2

|| register DO allocated

sFac.2

| register DO allocated

STORE_R | DO

LOAD _|

rtn

sFac.2:

| register DO allocated

|| register DO allocated
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STORE_R DO | STORE 0 |BSP /

SUB | \\
LOAD | 1 REGISTER DO
|| register DO allocated, add 4 to B-
stackpointer at end of basic block
jsr sFac.1

Basic block 10:
|| register DO allocated

STORER | DO | |

MUL
| ‘lll
REGISTER DO
LOAD -4 | BSP

|| register DO allocated, add -4 to B-
stackpointer at end of basic block
rn

A.1.5. Dag representation of fac after computing the increases and uses of the number
of registers and global register allocation.

In the boxes to the right of the box containing the name of the node 4 numbers are given:

- The number above left is the (additional) number of address registers whigedrehenthe cdag
with as root this node is evaluated.

- The number aboveght is the (additional)numberof dataregisterswhich areusedwhenthe cdag
with as root this node is evaluated.

- The number below left is the increase in the number of used address registers wheniilith @ag
root this node is evaluated.

- The number below right is the increasehe numberof useddataregisterswhenthe cdagwith as
root this node is evaluated.

The result of a node can be evaluatedin a dataregister,addressregisteror in memory. Evaluatingin
memoryis evaluatingso that the value canbe accessedising an addresgegisterindirect, postincrement,
predecrement or immediate addressing mode. In the graphs below this is indicateddataregister),A
(address register) or M (memory) near the arrow. Such a D, A or M daiidyeed by a + to indicatethat
the registermay be releasedafter the value has beenaccessediFor an M+ this meansthat an address
registermay be releasedfter the value hasbeenaccessedThis may happenif the memorylocation is
accessed with an address register indirect, postincrement or predecrement addressing mode.

Basic block 1:
IFac: || registers AO-A2 allocated
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00 00
STORER |gq | AL | | STORER |gq | A0 | |
v At v At
00 00
REGISTER 00 Al REGISTER 00 AO
|| registers AO-Al allocated
jmp m.1
Basic block 2:
nFac: || register AO allocated
10 10
STORE_R 10 Al | STORE_R 10 A0 |
\]/ M
00 A
LOAD_ID ool 8] ~
~
REGISTER |50 | A0
|| registers AO-Al allocated
Basic block 3:
m.1: || registers AO-A1 allocated
00 11
STORE_R 00 Al | STORE_R 00 A0 |
VAT >
00 11
REGISTER 00 Al FILL 11 | |
A+ \l/
ReGISTER | 00| Ao
00 A+
LEA i 8 _cycle_in_spine
|| registers AO-Al allocated
jsr_eval
Basic block 4:
|| registers AO-A1 allocated
01 00
STORE_R 11 DO | STORE 10 -4 | ASP |
v M VAT
00 00
LOAD_ID 00 8 | REGISTER 00 AO
\]/ A+
00
REGISTER 00 Al
|| register DO allocated, add -4 to A-
stackpointer at end of basic block
jsr sFac.1
Basic block 5:

|| register DO allocated
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Basic block 6:

Basic block 7:

Basic block 8:

Basic block 9:

11

STORE R [7.3| A0 |
v+
11
FILL 00 | | |
MV v D+
00 00
LOAD 00 0 [ASP M REGISTER 00 DO
00 M
LOAD _| 00| ©
00
LOAD_DES_| | oo | INT 0
|| register A0 allocated, add 4 to
stackpointer at end of basic block
rtn
sFac.1: || register DO allocated
D+ 01
\l/ STORE_R 01 DO,/
01
CMP_EQ 01| | ~ 5
\l/ M \ b
00 00
LOAD_| 00 0 REGISTER 00 DO
|| register DO allocated
jmp_true m.2
|| register DO allocated
jmp sFac.2
m.2: || register DO allocated
01
STORE_R 01| D0 |
M
00
LOAD _| ool 1
|| register DO allocated
rtn
sFac.2: || register DO allocated
01 00
STORE_R 01 DO | STORE 00 0 |BSP /
Vo
01
SuB 01| | ~, 5
\l/ M \
00 00
LOAD_| 00 1 REGISTER 00 DO




|| register DO allocated, add
stackpointer at end of basic block
jsr sFac.1

Basic block 10:
|| register DO allocated

00
STORE_R 00| D0 |
v+

00

MUL 00 | |

v+
M 00
REGISTER 00 DO

00

LOAD 00 -4 | BSP

|| register DO allocated, add

stackpointer at end of basic block
rtn

A.1.6. Intermediate code of fac generated from the dag.

Basic block 1:
IFac: IJMP m.1
Basic block 2:
nFac: MOVE 8(A0),A1
MOVE 0(A1),Al
Basic block 3:
m.1: LEA _cycle_in_spine,A2
MOVE A2,0(A0)
MOVE 0(A1),D6
BEQ eval 0
MOVE A0,-(A3)
MOVE Al1,A0
MOVE D6,Al
JSR 0(A1)
MOVE A0,A1
MOVE (A3)+,A0
Basic block 4:
eval_O: MOVE A0,-4(A3)
MOVE 8(A1),D0
ADD #-4,A3
JSR sFac.1
Basic block 5:
MOVE 0(A3),A0
MOVE A0,D1
MOVE #0,(A0)+
MOVE #IINT+0,(A0)+
MOVE DO0,0(A0)
MOVE D1,A0
ADD #4,A3
RTS
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Basic block 6:

sFac.1: CMP #0,D0
BEQ m.2
Basic block 7:
JMP sFac.2
Basic block 8:
m.2: MOVE #1,D0
RTS
Basic block 9:
sFac.2: MOVE DO0,0(A4)
SUB #1,D0
ADD #4,A4
JSR sFac.1
Basic block 10:
MUL -4(A4),D0
SUB #4,A4
RTS

A.1.7. Intermediate code of fac after stack access optimization.

Basic block 1:
IFac: IJMP m.1
Basic block 2:
nFac: MOVE 8(A0),A1
MOVE 0(A1),Al
Basic block 3:
m.1: LEA _cycle_in_spine,A2
MOVE A2,0(A0)
MOVE 0(A1),D6
BEQ eval 0
MOVE A0,-(A3)
MOVE Al1,A0
MOVE D6,Al
JSR 0(A1)
MOVE A0,A1
MOVE (A3)+,A0
Basic block 4:
eval_O: MOVE A0,-(A3)
MOVE 8(A1),D0
JSR sFac.1
Basic block 5:
MOVE (A3)+,A0
MOVE A0,D1
MOVE #0,(A0)+
MOVE #IINT+0,(A0)+
MOVE DO0,0(A0)
MOVE D1,A0
RTS
Basic block 6:
sFac.1: CMP #0,D0
BEQ m.2
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Basic block 7:

JMP sFac.2
Basic block 8:
m.2: MOVE #1,D0
RTS
Basic block 9:
sFac.2: MOVE DO,(A4)+
SuUB #1,D0
JSR sFac.1
Basic block 10:
MUL -(A4),D0
RTS

A.1.8. Intermediate code of fac after stack access optimization and jump optimization.

Basic block 1:
IFac: JMP m.1
Basic block 2:
nFac: MOVE 8(A0),Al
MOVE 0(A1),Al
Basic block 3:
m.1: LEA _cycle_in_spine,A2
MOVE A2,0(A0)
MOVE 0(A1),D6
BEQ eval 0
MOVE A0,-(A3)
MOVE A1,A0
MOVE D6,Al
JSR 0(A1)
MOVE A0,A1
MOVE (A3)+,A0
Basic block 4:
eval_0: MOVE AO,-(A3)
MOVE 8(A1),DO
JSR sFac.1
Basic block 5:
MOVE (A3)+,A0
MOVE A0,D1
MOVE #0,(A0)+
MOVE #IINT+0,(A0)+
MOVE D0,0(A0)
MOVE D1,A0
RTS
Basic block 6:
sFac.1: CMP #0,D0
BNE sFac.2
Basic block 7:
Basic block 8:
m.2: MOVE #1,D0
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RTS

Basic block 9:
sFac.2: MOVE
SUB
JSR
Basic block 10:
MUL
RTS

A.1.9. MC68020 code of fac.

Basic block 1:

IFac:

BRA m.1

Basic block 2:

nFac:
MOVEA.L 8(A0),A1

MOVEA.L  (Al),Al
Basic block 3:
m.1: LEA _cycle_in_spine,A2
MOVE.L A2,(A0)
MOVE.L (A1),D6
BEQ eval 0
MOVE.L AO0,-(A3)
MOVEA.L Al1,A0
MOVEA.L D6,Al

JSR (A1)
MOVEA.L A0,Al

MOVEAL  (A3)+A0

Basic block 4:

eval_0:
MOVE.L AO0,-(A3)

MOVE.L 8(A1),DO
BSR sFac.1
Basic block 5:

MOVEAL  (A3)+A0

MOVE.L  A0D1
CLR.L (AO)+

DO,(A4)+
#1,D0
sFac.1

-(A4),D0

; apply entry : 'Fac' node in register A2,
argument n node in register Al and node
to be overwritten by result on the A-

stack in register AO
; jump to label m.1

; node entry : 'Fac n' node in register AO

; move pointer to argument part of node to
Al

; move argument n to Al

; load address of _cycle_in_spine code in
A2

; store _cycle_in_spine as evaluation
address to detect cycles in the spine of
the graph

; load reduction address of n

; branch if reduction address = _hnf (0)

; save register AO

; move argument n node to AO

; move evaluation address of n to address
register

; evaluate argument n node

;move address of evaluated argument n
node to A1

; load register AO

; push node to be overwritten by result on
the A-stack

; load evaluated integer n in DO

; call strict entry of Fac to compute Fac
nin DO

; load address of node to be overwritten
by result in AO

; copy address of result node to D1

; overwrite node to store result, first
store evaluation address,
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MOVE.L  #INT+0,(A0)+
MOVE.L  DO,(A0)

MOVEA.L D1,A0
RTS

Basic block 6:

sFac.1:
TST.L DO
BNE sFac.2
Basic block 7:
Basic block 8:

m.2:
MOVEQ #1,D0
RTS

Basic block 9:

sFac.2:
MOVE.L DO,(A4)+
SUBQ.L #1,D0
BSR sFac.1

Basic block 10:

MULS.L -(A4),D0
RTS

A.2. Append.
A.2.1. Append in Clean.

Append ![x] [x] > [x];
Append [h | t] list
Append [] list -> list ;

A.2.2. ABC code of append.

.030

[Append:
repl_args 11
jmp m.7
010

nAppend:
push_args 022

; then the descriptor of an integer node,

; and finally the integer in DO (the
result of Fac n)

; return the address of the result node in
A0

; return, with result in AO

;nequal 07?
; no, jump to label sFac.s

; return 1 in DO
; return

; push n on the B-stack

; subtract one from n in DO

; call strict entry of Fac to compute Fac
(--I'n) in DO

; multiply result by n to compute Fac n
; return, with result in DO

->[h | Append t list] |

|| apply entry : ‘'Append I1' node, (I1 s
the first argument) argument list node
and node to be overwritten by result on
the A-stack

|| replace ‘Append 11' node by 11 node on
the A-stack

[| jump to label m.7

|| node entry: ‘Append 11 list' node on
the A-stack.

[| push arguments 1 and list of the

‘Append I1 list' node on the A-stack
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m.7:

set_entry _cycle_in_spine 2
jsr_eval
.030
sAppend.1:
eq_desc _Cons20
jmp_true m.8
jmp sAppend.2
m.8:
push_args 022
create
push_a 4
push_a 3
fill Append 2 nAppend 2
push_a 1
fill _Cons2 _hnf6
pop_a 4
d10
rtn
sAppend.2:
eq_desc _Nil0O
jmp_true m.9
jmp sAppend.3
m.9:
pop_a 1
jsr_eval
fill_a 01
pop_a 1
d10
rtn
sAppend.3:
print "Runtime Error:
halt

evaluation address of
be overwritten by result
cycles in the spine of

|| overwrite
node to
detects
graph

|| evaluate 11 node

|| strict entry evaluated 11
node and node to be
result on the A-stack.

|| test if I1 node is a Cons node

|| yet, jump to label m.8

[| no, jump to label sAppend.2

node,
overwritten

|| push h(ead)
the A-stack

|| create an empty node

[| fill the  created
‘Append t list'

and t(ail) of I1

empty  node

[| fill the node  which has to
overwritten by the

|| result with a 'Cons
node

|| pop h, t, 11 and list from the stack

h (Append t

|| return with  'Cons
node on the A-stack

h (Append t

|| test if I1 node is a Nill node
|| yes, jump to label m.9
[| no, jump to label sAppend.3

|| pop I1 node from the A-stack

|| evaluate list node

|| overwrite node to
result by evaluated list node

|| pop list node

be overwritten

[| return with  evaluated

the A-stack

argument  list

Rule  Append of Module nfiblist does

match\n"

A.2.3. Basic blocks of the ABC code of append.

Basic block 1:
.0
IAppend:
jmp
Basic block 2:
.0
nAppend:
push_args
Basic block 3:
m.7: set_entry
jsr_eval

30
repl_args
m.7

11

10

022

_cycle_in_spine 2
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Basic block 4:

.0 30
sAppend.1:
eq_desc _Cons 20
jmp_true m.8
Basic block 5:
jmp sAppend.2
Basic block 6:
m.8: push_args 022
create
push_a 4
push_a 3
fill Append 2 nAppend 2
push_a 1
fill _Cons2 _hnf6
pop_a 4
.d 10
rtn
Basic block 7:
sAppend.2:
eq_desc _Nil0O
jmp_true m.9
Basic block 8:
jmp sAppend.3
Basic block 9:
m.9: pop_a 1
jsr_eval
fill_a 01
pop_a 1
d 10
rtn
Basic block 10:
sAppend.3:
print "Runtime Error: Rule Append of Module nfiblist

does not match\n"

Basic block 11:
halt

A.2.4. Intermediate code of append after stack access optimization and jump
optimization.

Basic block 1:
[Append: MOVE 8(A2),A2
MOVE 0(A2),A2
JMP m.7
Basic block 2:
nAppend: MOVE 8(A0),Al1
MOVE (A1)+,DO
MOVE 0(A1),D1
MOVE D1,Al
MOVE DO0,A2
Basic block 3:
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Basic block 4:

Basic block 5:

Basic block 6:

Basic block 7:

Basic block 8:

m.7:

sAppend.1:
eval_3:

m.8:

sAppend.2:

m.9:

eval_4:

MOVE
LEA
MOVE
MOVE
MOVE
BEQ
MOVE
MOVE
MOVE
MOVE
JSR
MOVE
MOVE
MOVE

CMPW
BNE

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
LEA

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
RTS

CMPW
BNE

MOVE
BEQ
MOVE
MOVE
MOVE
JSR
MOVE
MOVE

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

Al1,0(A4)
_cycle_in_spine,Al1
A1,(A0)
0(A4),Al1
0(A2),D6
eval_3
Al,-(A3)
AO0,-(A3)
A2,A0
D6,Al
0(A1)
AO0,A2
(A3)+,A0
(A3)+,Al

#!_Cons+2,6(A2)
sAppend.2

8(A2),A2
(A2)+,D0
0(A2),D1

A6,D2

D1,(A6)+
Al,(AB)+
nAppend,Al
A6,D1

Al,(AB6)+
#!Append+2,(A6)+
D2,(A6)+

A6,D2

DO,(A6)+
D1,(A6)+

A0,DO

#0,(A0)+
#!_Cons+2,(A0)+
D2,0(A0)

DO,A0

#!_Nil+0,6(A2)
sAppend.3

0(Al1),D6
eval 4
A0,-(A3)
A1,A0
D6,A1
0(Al1)
A0,Al
(A3)+,A0

(A1)+,D0
(A1)+D1
0(A1),D2
A0,D3

DO,(A0)+
D1,(A0)+
D2,0(A0)
D3,A0
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RTS

Basic block 9:
sAppend.3: MOVE AO,-(A3)
MOVE Al,-(A3)
MOVE A2,-(A3)
LEA address_of the_string,A0
JSR print
Basic block 10:
JMP halt

A.2.5. MC68020 code of append.

Basic block 1:
[Append: MOVEA.L 8(A2),A2
MOVEA.L (A2),A2
BRA m.7
Basic block 2:
nAppend: MOVEA.L 8(A0),Al
MOVE.L (A1)+,DO
MOVE.L (A1),D1
MOVEA.L D1,Al1
MOVEA.L DO0,A2
Basic block 3:
m.7: MOVE.L Al,(A4)
LEA _cycle_in_spine,Al
MOVE.L A1,(A0)
MOVEA.L (A4),Al
MOVE.L (A2),D6
BEQ eval_3
MOVE.L Al,-(A3)
MOVE.L AO0,-(A3)
MOVEA.L A2,A0
MOVEA.L D6,A1
JSR (A1)
MOVEA.L AO0,A2
MOVEA.L (A3)+,A0
MOVEA.L (A3)+,Al
Basic block 4:
sAppend.1:
eval_3: CMP.W #!_Cons+2,6(A2)
BNE sAppend.2
Basic block 5:
m.8: SUBQ.L #7,D7
BMI cgc 1
r gc 1. MOVEA.L 8(A2),A2
MOVE.L (A2)+,D0
MOVE.L (A2),D1
MOVE.L A6,D2
MOVE.L D1,(A6)+
MOVE.L Al,(A6)+
LEA nAppend,Al
MOVE.L A6,D1
MOVE.L AL,(A6)+
MOVE.L #Append+2,(A6)+
MOVE.L D2,(A6)+
MOVE.L A6,D2
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MOVE.L DO,(A6)+

MOVE.L D1,(A6)+
MOVE.L AO0,DO
CLR.L (A0)+
MOVE.L #!_Cons+2,(A0)+
MOVE.L D2,(A0)
MOVEA.L DO,A0
RTS
Basic block 6:
sAppend.2: CMP.W #1_Nil+0,6(A2)
BNE sAppend.3
Basic block 7:
m.9: MOVE.L (A1),D6
BEQ eval_4
MOVE.L A0,-(A3)
MOVEA.L Al1,A0
MOVEA.L D6,A1
JSR (A1)
MOVEA.L AQ,A1
MOVEA.L (A3)+,A0
Basic block 8:
eval_4: MOVE.L (A1)+,D0
MOVE.L (A1l)+,D1
MOVE.L (A1),D2
MOVE.L A0,D3
MOVE.L DO, (A0)+
MOVE.L D1,(A0)+
MOVE.L D2,(A0)
MOVEA.L D3,A0
RTS
Basic block 9:
sAppend.3: MOVE.L A0,-(A3)
MOVE.L Al,-(A3)
MOVE.L A2,-(A3)
LEA address_of _the_string,A0
JSR print
Basic block 10:
JMP halt
c gc 1. JSR collect_3
BRA r gc_1
A.3. Inc.
A.3.1. Inc in Clean.
Inc ! ('INT,INT,HINT,IINT) > ('INT, HNT, HINT, HINT) :
Inc(a, 9,9,9) -> (++l a, 0, 0, 0) |
Inc(a, b, 9,9) -> (a, ++l b, 0, 0) |
Inc (a, b, c, 9) -> (a, b, ++l ¢, 0) |
Inc (a, b, c, d) -> (a, b, c, ++ d)

A.3.2. Basic blocks of the ABC code of inc.
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Basic block 1:

.0 30
lInc: pop_a 1
jmp m.34
Basic block 2:
.0 10
ninc: push_args 011
Basic block 3:
m.34: set_entry _cycle_in_spine 1
jsr_eval
Basic block 4:
push_args 044
push_a 3
jsr_eval
Basic block 5:
pop_a 1
push_a 2
jsr_eval
Basic block 6
pop_a 1
push_a 1
jsr_eval
Basic block 7:
pop_a 1
jsr_eval
Basic block 8:
pushl_a 3
pushl_a 2
pushl_a 1
pushl_a 0
pop_a 5
d 04iiii
jsr sinc.1
Basic block 9:
.0 O4iiii
create
filll_b 30
create
filll_b 20
create
filll_b 10
create
filll_b 00
fill _Tuple4 hnf4
pop_b 4
.d 10
rtn
Basic block 10:
.0 O4iiii
sinc.1:
eql b +91
jmp_true m.35
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Basic block 11:

Basic block 12:
m.35:

Basic block 13:

Basic block 14:
m.36:

Basic block 15:

Basic block 16:
m.37:

Basic block 17:
sinc.2:

Basic block 18:

Basic block 19:
m.38:

Basic block 20:

Basic block 21:
m.39:

Basic block 22:
sinc.3:

Basic block 23:

jmp

eql b
jmp_true

jmp

eql b
jmp_true

jmp

pushl
pushl
pushl
push_b
incl
update_b
update_b
update_b
update_b
pop_b

.d

rtn

eql b
jmp_true

jmp

eql b
jmp_true

jmp

pushl
pushl
push_b
incl
update_b
update_b
update_b
pop_b

d

rn

eql b
jmp_true

sInc.2

+92
m.36

sInc.2

+93
m.37

sInc.2

+0
+0
+0
3

37
26
15
04

4
O4iiii

+92
m.38

sinc.3

+93
m.39

sinc.3

+0
+0

26
15
04

04iiii

+93
m.40
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jmp sinc.4

Basic block 24:

m.40: pushl +0
push_b 3
incl
update_b 15
update_b 04
pop_b 2
d O4iiii

rtn

Basic block 25:

sinc.4:
push_b 3
incl
update_b 04
pop_b 1
d O4iiii

rtn
Basic block 26:

sinc.5: print "Runtime  Error: Rule Inc of Module masmind
does not match\n"

Basic block 27:
halt

A.3.3. Intermediate code of inc after stack access optimization and jump optimization.

Basic block 1:
lInc: IJMP m.34
Basic block 2:
ninc: MOVE 8(A0),A1
MOVE 0(A1),Al
Basic block 3:
m.34: LEA _cycle_in_spine,A2
MOVE A2,0(A0)
MOVE 0(A1),D6
BEQ eval_107
MOVE A0,-(A3)
MOVE Al1,A0
MOVE D6,Al
JSR 0(A1)
MOVE AO0,A1
MOVE (A3)+,A0
Basic block 4:
eval_107: MOVE A0,-(A3)
MOVE Al,-(A3)
MOVE 8(A1),A0
MOVE (A0)+,DO
MOVE (A0)+,D1
MOVE (AO)+,D2
MOVE 0(A0),D3
MOVE D3,-(A3)
MOVE D2,-(A3)
MOVE D3,A2
MOVE D1,A0
MOVE D0,Al
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Basic block 5:

Basic block 6:

Basic block 7:

Basic block 8:

Basic block 9:

eval_108:

eval_109:

eval_110:

eval_111:

MOVE
BEQ
MOVE
MOVE
MOVE
MOVE
JSR
MOVE
MOVE
MOVE

MOVE
MOVE
BEQ
MOVE
MOVE
MOVE
MOVE
JSR
MOVE
MOVE
MOVE

MOVE
MOVE
BEQ
MOVE
MOVE
MOVE
MOVE
JSR
MOVE
MOVE
MOVE

MOVE
BEQ
MOVE
MOVE
MOVE
JSR
MOVE
MOVE

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
ADD

JSR

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

0(A2),D6
eval_108
Al,-(A3)
AO0,-(A3)
A2,A0
D6,A1
0(A1)
AO0,A2
(A3)+,A0
(A3)+,Al

0(A3),A2
0(A2),D6
eval_109
Al,-(A3)
A0,-(A3)
A2,A0
D6,A1
0(A1)
AO0,A2
(A3)+,A0
(A3)+,Al

A0,A2
0(A2),D6
eval_110
Al,-(A3)
A0,-(A3)
A2,A0
D6,A1
0(A1)
AO0,A2
(A3)+,A0
(A3)+,Al

0(Al1),D6
eval 111
A0,-(A3)
A1,A0
D6,A1
0(Al1)
A0,Al
(A3)+,A0

8(A0),D2
8(Al1),D3
4(A3),A0
8(A0),D0O
(A3),A0
8(A0),D1
#12 A3
sinc.1

A6,D4
#0,(AB)+
#INT+0,(AB)+
D3,(A6)+
A6,D3
#0,(AB)+
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Basic block 10:

Basic block 11:
Basic block 12:

Basic block 13:
Basic block 14:

Basic block 15:
Basic block 16:

Basic block 17:

Basic block 18:
Basic block 19:

Basic block 20:

sinc.1:

m.36:

slnc.2:

m.38:

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
RTS

MOVE
CMP
BNE

MOVE
CMP
BNE

MOVE
CMP
BNE

MOVE
MOVE
MOVE
ADD
RTS

MOVE
CMP
BNE

MOVE
CMP
BNE

#INT+0,(A6)+
D2,(A6)+
A6,D2
#0,(A6)+
#IINT+0,(A6)+
D1,(A6)+
A6,D1
#0,(A6)+
#IINT+0,(A6)+
DO,(A6)+
A6,DO
D4,(A6)+
D3,(A6)+
D2,(A6)+
D1,(A6)+
(A3)+,A0
A0,D1
#0,(A0)+
#!_Tuple+4,(A0)+
DO0,0(A1)
D1,A0

#9,D4
D2,D4
slnc.2

#9,D4
D1,D4
sinc.2

#9,D4
DO0,D4
slnc.2

#0,D0
#0,D1
#0,D2
#1,D3

#9,D4
D1,D4
sinc.3

#9,D4
D0,D4
sinc.3
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Basic block 21:
m.39:

Basic block 22:
sInc.3:

Basic block 23:

Basic block 24:
m.40:

Basic block 25:
sinc.4:

Basic block 26:
sinc.5:

Basic block 27:

MOVE
MOVE
ADD
RTS

MOVE
CMP
BNE

MOVE
ADD
RTS

ADD
RTS

LEA
JSR

JMP

A.3.4. MC68020 code of inc.

Basic block 1:

lInc:
Basic block 2:

ninc:
Basic block 3:

m.34:
Basic block 4:

eval_107:

BRA

MOVEA.L
MOVEA.L

LEA
MOVE.L
MOVE.L
BEQ
MOVE.L
MOVEA.L
MOVEA.L
JSR
MOVEA.L
MOVEA.L

MOVE.L
MOVE.L
MOVEA.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L

#0,D0
#0,D1
#1,D2

#9,D4
D0,D4
sinc.4

#0,D0
#1,D1

#1,D0

L29,A0
print

halt

m.34

8(A0),Al
(A1),Al

_cycle_in_spine,A2
A2,(A0)

(Al1),D6

eval_107

AO0,-(A3)

Al1,A0

D6,A1

(A1)

A0,Al

(A3)+,A0

AO,-(A3)
A1,-(A3)
8(A1),A0
(A0)+,D0
(A0)+,D1
(AQ)+,D2
(A0),D3
D3,-(A3)
D2,-(A3)
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Basic block 5:

Basic block 6:

Basic block 7:

Basic block 8:

Basic block 9:

eval_108:

eval_109:

eval_110:

eval _111:

r gc_1:

MOVEA.L
MOVEA.L
MOVEA.L
MOVE.L
BEQ
MOVE.L
MOVE.L
MOVEA.L
MOVEA.L
JSR
MOVEA.L
MOVEA.L
MOVEA.L

MOVEA.L
MOVE.L
BEQ
MOVE.L
MOVE.L
MOVEA.L
MOVEA.L
JSR
MOVEA.L
MOVEA.L
MOVEA.L

MOVEA.L
MOVE.L
BEQ
MOVE.L
MOVE.L
MOVEA.L
MOVEA.L
JSR
MOVEA.L
MOVEA.L
MOVEA.L

MOVE.L
BEQ
MOVE.L
MOVEA.L
MOVEA.L
JSR
MOVEA.L
MOVEA.L

MOVE.L
MOVE.L
MOVEA.L
MOVE.L
MOVEA.L
MOVE.L
LEA
BSR

MOVEQ
SUB.L
BMI
MOVE.L

D3,A2
D1,A0
D0,Al1
(A2),D6
eval_108
Al,-(A3)
A0,-(A3)
A2,A0
D6,A1
(A1)
A0,A2
(A3)+,A0
(A3)+,A1

(A3),A2
(A2),D6
eval_109
Al,-(A3)
A0,-(A3)
A2,A0
D6,Al
(A1)
AO0,A2
(A3)+,A0
(A3)+,Al

AO0,A2
(A2),D6
eval_110
Al,-(A3)
AO0,-(A3)
A2,A0
D6,A1
(A1)
AO0,A2
(A3)+,A0
(A3)+,Al

(A1),D6
eval_111
A0,-(A3)
A1,A0
D6,A1
(A1)
AO0,Al
(A3)+,A0

8(A0),D2
8(Al1),D3
4(A3),A0
8(A0),D0
(A3),A0
8(A0),D1
12(A3),A3
sinc.1

#16,D6
D6,D7
cgc 1
A6,D4
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CLR.L (AB)+

MOVE.L #IINT+0,(A6)+
MOVE.L D3,(A6)+
MOVE.L A6,D3
CLR.L (AB)+
MOVE.L #INT+0,(A6)+
MOVE.L D2,(A6)+
MOVE.L A6,D2
CLR.L (AB)+
MOVE.L #IINT+0,(A6)+
MOVE.L D1,(A6)+
MOVE.L A6,D1
CLR.L (AB)+
MOVE.L #IINT+0,(A6)+
MOVE.L DO,(A6)+
MOVE.L A6,D0
MOVE.L D4,(A6)+
MOVE.L D3,(A6)+
MOVE.L D2,(A6)+
MOVE.L D1,(A6)+
MOVEA.L (A3)+,A0
MOVE.L A0,D1
CLR.L (A0)+
MOVE.L #!_Tuple+4,(A0)+
MOVE.L DO,(A0)
MOVEA.L D1,A0
RTS
Basic block 10:
sinc.1: MOVEQ #9,D4
CMP.L D2,D4
BNE sinc.2
Basic block 11:
Basic block 12:
m.35: MOVEQ #9,D4
CMP.L D1,D4
BNE sinc.2
Basic block 13:
Basic block 14:
m.36: MOVEQ #9,D4
CMP.L DO0,D4
BNE sinc.2
Basic block 15:
Basic block 16:
m.37: MOVEQ #0,D0
MOVEQ #0,D1
MOVEQ #0,D2
ADDQ.L #1,D3
RTS
Basic block 17:
sinc.2: MOVEQ #9,D4
CMP.L D1,D4
BNE sinc.3

Basic block 18:
Basic block 19:
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Basic block 20:
Basic block 21:

Basic block 22:

Basic block 23:
Basic block 24:

Basic block 25:

Basic block 26:

Basic block 27:

m.38:

m.39:

sInc.3:

m.40:

sinc.4:

sinc.5:

c_gc_1:

MOVEQ
CMP.L
BNE

MOVEQ
MOVEQ
ADDQ.L
RTS

MOVEQ
CMP.L
BNE

MOVEQ
ADDQ.L
RTS

ADDQ.L
RTS

LEA
JSR

JMP

JSR
BRA

#9,D4
DO0,D4
sinc.3

#0,D0
#0,D1
#1,D2

#9,D4
DO0,D4
sinc.4

#0,D0
#1,D1

#1,D0

L29,A0
print

halt

collect 0
rgcl
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APPENDIX B: MC68020 cache case execution times.

In the following table for the addressing modes used by the code generator the following is indicated:

- the fetch effective address (FEA) time in clock cycles.

- the calculate effective address (CEA) time in clock cycles.
- the fetch immediate word effective address (FIWEA) time in clock cycles.

- the fetch immediate long effective address (FILEA) time in clock cycles.

- the calculate immediate word effective address (CIWEA) time in clock cycle.
- the number of effective address extension words.

These times can be used to calculate the cache case execution time together with the second table b

Addressing FEAtime

mode:
Dn

An

(An)

(An)+
-(An)
(d16,An)
(d16,PC)
#<data>.B
#<data>.W
#<data>.L

ANNOOIOIOIRMARMOO

CEA time

PNNNDNDNNOO

FIWEA time FILEA time

N

toroio b

N

ENENTC N

The number of clock cycles needed to execute the instruction are:
(Rn meansAn or Dn, <mea> means memory effective address, not a register)

MOVEQ #<data>,Dn
ADDQ #<data>,Rn
SUBQ #<data>,Rn
EXG Ry,Rx

MOVEM <ea> register list
MOVEM register list,<ea>
ADD <ea>,Dn

ADDA <ea>,An

SUB <ea>,Dn

SUBA <ea>,An

CMP <ea>,Dn

CMPA <ea>,An

AND <ea>,Dn

OR <ea>,Dn

TST <ea>

ADD Dn,<mea>

SUB Dn,<mea>

AND Dn,<mea>

OR Dn,<mea>

ADDQ #<data>,<mea>
SUBQ #<data>,<mea>
ADDI #<data>,<mea>
ADDI #<data>,<mea>
SUBI #<data>,<mea>
CMPI #<data>,<mea>
ANDI #<data>,<mea>
ORI #<data>,<mea>
EORI #<data>,<mea>
EOR Dn,Dn

CLR Dn

2
2
2
2

CIWEA time extension
words

N

RSO BRDNY

NFRPRFRPRRPRLROOOOO

8 + CIWEA time + 4 * number of registers
4 + CIWEA time + 3 * number of registers

2 + FEA time

2 + FEA time

2 + FEA time

2 + FEA time

2 + FEA time

4 + FEA time

2 + FEA time

2 + FEA time

2 + FEA time

4 + FEA time

4 + FEA time

4 + FEA time

4 + FEA time

4 + FEA time

4 + FEA time

4 + FILEA time for
4 + FILEA time for
4 + FILEA time for
2 + FILEA time for
4 + FILEA time for
4 + FILEA time for
4 + FILEA time for
2

2
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.L otherwise 4 + FIWEA time
.L otherwise 4 + FIWEA time
.L otherwise 4 + FIWEA time
.L otherwise 4 + FIWEA time
.L otherwise 4 + FIWEA time
.L otherwise 4 + FIWEA time



NEG Dn

NOT Dn

EOR Dn,<mea>
CLR <mea>
NEG <mea>
NOT <mea>
LEA <ea>,An
PEA <ea>

EXT Dn

EXTB Dn

Scc Dn

Scc <mea>
MULS.L

DIVS.L

LSL #n,Dy

LSR #n,Dy

LSL Dx,Dy

LSR Dx,Dy

ASL #n,Dy

ASL Dx,Dy

ASR #n,Dy

ASR Dx,Dy

JMP (An)

JMP (d16,An)
JMP (d16,PC)
JSR (An)

JSR (d16,An)
JSR (d16,PC)
RTS

BSR

BRA

Bcc (taken)
Bcc.B (not taken)
Bcc.W (not taken)
Bcc.L (not taken)
DBcc (cc false, count not expired)
DBcc (cc false, count expired)
DBcc (cc true)

2

2

4 + FEA time

4 + CEA time.

4 + FEA time

4 + FEA time

2 + CEAtime
5+ CEAtime

4

4

4

6 + CEAtime

43 + FIWEA time
90 + FIWEA time

N0 O~ M

? (probably 8)

N O~

probably 9)

(
0

CDSCDCDCD-PCDCD\IH

The number of clock cycles needed to executetheEandMOVEANStructions are:

Destination:
Source: An OrDn
An Or Dn 2
(An) Of (An)+ 6
-(An) oOr(di16,An) or(diePC) 7
#<data>.B , #<data>.W 4
#<data>.L 6

(An) Of (An)+ An) Or (d16,An)

(
4 5
7 7
8 8
6 7
8 9
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APPENDIX C: The nodes in the graph.

graph
label
register

arity

number

S o= —Q
TR TR TR TR TR TR TR TR

floating point register
displacement (offset)
integer constant
floating point constant

Integer and address access nodes:

GREGISTER r1
LEA L1

LOAD d1r1
LOAD_lil
LOAD_IDd1g1l
LOAD B_IDd1gl
LOAD _DES IDdl1gl
LOAD DES |11 al
REGISTER r1
STORE d1rlglg2
STORE_Rrl1gl

Integer arithmetic nodes:

ADD gl g2
AND g1 g2
ASR g1 g2
CMP_EQgl9g2
CMP_GT gl g2
CMP_LTgl92
CNOT g1

DIV glg2

EOR gl g2
LSL gl g2

LSR gl g2
MOD g1 g2
MUL g1 g2
ORglg2

SUB gl g2

Floating point access nodes:

FLOAD d1rl

FLOAD_If1

FLOAD_ID d1 g1
FREGISTER frl1
FSTORE d1r1 gl g2g3

global register, for example a stack pointer.

address of I1.

d1(rl), long word stored at address d1 + contents of register r1.
#il.

d1(gl).

zero extended byte of d1(gl).

sign extended word of d1(gl).

descriptor offset. (offset of &1 + 4 * al)

rl.

store g1 in d1(rl), g2 points to a LOAD or FLOAD node or is nil.
store g1 in rl.

gl +g2

gl AND g2

g2 >> g1 (signed)
g2==917?7-1:0
0g2>9gl1?-1:0
02<gl?-1:0
gl1==07?7-1:0
g2/9g1l

gl EOR g2

g2 <<g1l

g2 >> g1 (unsigned)
02 % gl

92*gl

g1 OR g2

g2-91

d1(rl), floating point value stored at address+ddontentsof register
rl.

#f1.

d1(gl).

frl.

store g1 in d1(rl), g2 points to a LOAD BEOAD nodeor is nil, g3
points to a LOAD or FLOAD node is nil.
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Floating point arithmetic nodes:

FACOS g1
FADD g1 g2
FASIN g1
FATAN g1
FCMP_EQ gl g2
FCMP_GT gl g2
FCMP_LT g1 g2
FCOS g1

FDIV gl g2
FEXP g1
FHIGH g1
FITOR g1
FJOIN g1 g2
FLN g1

FLOW g1

FMUL g1 g2
FLOG10 g1.
FREM g1 g2
FRTOI g1

FSIN g1
FSQRT g1
FSUB g1 g2
FTAN g1

Graph manipulation nodes:
ALLOCATE gcgagl..gn

CREATE g1 ..gn
CREATE_R gl
FILLggl..gn
MOVEM dlggl..gn
MOVEMI g1

acos (gl).

g2 + ,9l.

asin (gl).

atan (g1).

g2==917-1:0.

g2>9gl1?-1:0.

g2<gl?-1:0.

cos (gl).

g2/ g1.

exp (g1). o

high long word of floating point number g1.
floating point value of integer g1.

floating point value with high long word g1 and low long word g2.
In (gl).

low long word of floating point number g1.
g2 * gl.

log10 (g1).

02 % g1.

integer value of rounded floating point number g1.
sin (g1).

sqrt (g1).

g2 - gl.

tan (g1).

createa nodecontainingthe gc long words at addresggaandgl, ..,
gn

create a node containing g1, .., gn.

create a node containing floating point number g1.

overwrite node (or first part of node) g with g1, .., gn.

n values starting at d1(g), g1 .. gn point to the MOVEMI nodes.
one of the values representedby cdaggl with as root a MOVEM
node.
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APPENDI X D: The instructions of the intermediate code.

ADD al al

AND al al

ASR al al
BMOVE al a2 a3
CMP al a2
CMPW al a2
DIV al a2

EOR al a2
EXGrlr2

EXT al

LEA al a2

LSL al a2

LSR al a2

MOD al a2 a3
MOVE al a2
MOVEB al a2
MOVEM alrl ..rn
MOVEMTrl ..mal
MOVEW al a2
MUL al a2

OR al a2

SUB al a2

TST al

FACOS f1 2
FADD f1 f2
FASIN f1 f2
FATAN f1 f2
FCMP f1 f2
FCOS f1 2
FDIV f1 f2
FEXP f1 f2
FLN f1 f2
FLOG10 f1 f2
FMUL f1 f2
FREM f1 2
FSIN f1 f2

FSQRT f1 12
FSUB f1 2
FTAN f1 f2
FTST f1 2
FMOVE f1 12
FMOVEL al fi
FMOVEL f1 al

JMP al
JSR al
RTS

BEQ I1
BGE I1
BGT I1
BLE I1
BLT I1
BNE I1
FBEQ I1
FBGE I1
FBGT I1
FBLE I11
FBLT I1
FBNE I1

SEQr1
SGE 11
SGTrl
SLEr1
SLT r1
SNE r1
FSEQ r1
FSGE r1
FSGT rl
FSLE r1
FSLT r1
FSNE r1
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APPENDIX E: Object file format.

An objectfile generatedby the code generatorfor the Macintoshconsistsof a sequenceof object file

records. These records are in the data fork of the object file. Records remodpaizedoy thefirst byte. If

a record consists of an odd number of bytes, a 0 byte is added to maintain word alignment.

A module is a contiguouggionof memorythat containscodeor staticdata.A labelis a location (offset)
within amodule.A segmenis a collectionof modules.Therearetwo sections:a codesectionand a data
section, code is stored in the code section, data in the data section.

All labelsaregiven a unique,positive, 16-bit IDs. An ID is file-relative andidentifies a label within one
object file. IDs may be local or external. External IDs have a name.

At any given point in an objectfile thereis one currentmodule. New modulesbegin at the begin of an
object file and after new module records.

A string consists of a length byte and the characters in the string.
The object file records are:

BEGIN RECORD:

Byte 1
Byte 0
Word number of IDs

The first record in an object file must be a begin record.
The number of IDs field contains the highest ID number + 1 which occurs in this object file.

END RECORD:
Byte 2

The last record in an object file must be an end record.

IMPORT RECORD:
Byte 3
Byte 0
Word ID
String name

An import recordassociates namewith anID. The ID may not appeailin anotherimport or label
record. The import recordneednot appearbeforethe ID is referencedn a referenceor difference
reference record.

LABEL RECORD:
Byte 4
Byte flags
Word ID
<Word offset>
<String name>

bit 0 of flags =1  the label appears in the data section.
the label appears in the code section.
an external label (with a name)

a local label (without a name)

bit 1 of flags

I n
or o

127



bit 2 of flags =1  the offset is specified in the record
=0 the offset is the current offset

A labelrecorddefinesan ID. (label) The offsetis relative to the start of the module and may be
outside the module. The ID may not appear in another tabeiport record. The label recordneed
not appear before the ID is referenced in a reference or difference reference record.

CODE RECORD

Byte 5
Byte size
Bytes code

Code records specify the contents of code sections. The code consizehgtes. The codebytes
are storedn the codesectionat the currentcodeoffsetin the currentmodule.Sizeis addedto the
current code offset.

DATA RECORD
Byte 6
Byte size
Bytes data

Datarecordsspecify the contentsof datasections.The dataconsistsof size bytes. The databytes
are stored in the data section at the current afisgiie currentmodule.Sizeis addedto the current
data offset.

REFERENCE RECORD

Byte 7

Byte flags

Word ID

<Word offset>

BitOofflags=1  the reference is from the data section.
=0 the reference is from the code section.

Bit 1 offlags=1 the location modified is a long word.
=0 the location modified is a word.

Bit2 offlags=1 the reference is A5-relative.
=0 the reference is not A5-relative.

Bit3offlags=1 the offset is specified in the record.
=0 the offset is the current offset.

A reference record specifies a reference to an ID. (label) The reference is from the current moc
The ID field specifies the ID being referenced.

References fall into four categories:
- Code-to-code references:

If the A5-relativeflag is 1, the A5-relative offset of a jump-tableentry associatedvith the
specified label is added to the specified location.

If the A5-relativeflag is O, the linker selectseither PC-relativeor A5-relative addressing.
The immediately precedingword is assumedto contain a JSR, JMP, LEA or PEA
instruction,andis modified to indicateeither PC-relativeor A5-relative addressinglf the
referenced label and the current module are in the same segment, the PC-relativetbéfse
label is added to the contentstbé specifiedlocation.If they arein different segmentsthe
Ab-relative offset of a jump-tableentry associatedvith the specifiedlabel is addedto the
specified location.
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- Code-to-data references:

The A5-relative flag must be 1 for code-to-data-reference$he A5-relative offset of the
specified label is added to the contents of the specified location.

- Data-to-code references:

If the AS-relative flag is 1, the A5-relative offset of a jump-table entry is addedto the
specified location.

If the A5-relativeflag is O, the memoryaddressof a jump-tableentry associatedvith the
specified label is added to the contents of the specified location, which must be a long

- Data-to-data references:
If the A5-relative flag is 1, the AS-relative offset of the label is addedto the specified
Il?gr?g?é\né-relative flag is 0, the memory address of the specified label is adthexctmntents
of the specified location, which must be a long word.
UNINITIALIZED DATA

Byte 8
Byte size

Uninitialized data records specify uninitialized data. Size is added to the current data offset.

DIFFERENCE REFERENCE RECORD

Byte 9

Byte flags

Word ID1

Word ID2

<Word offset>

Bit 0 of flags =1 the reference appears in the data section.

=0 the reference appears in the code section.
Bit 2 of flags = 1 and bit 1 of flags = 0 the location modified is a long word.
Bit 2 of flags = 0 and bit 1 of flags = 1 the location modified is a word.
Bit 2 of flags = 0 and bit 1 of flags = 0 the location modified is a byte.
Bit3offlags =1 the offset is specified in the record

=0 the offset is the current offset

A difference reference record specifies a reference which is the difference of two IDs. (labels)
If ID1 specifies a code reference, ID2 must also be a code refereihessamemodule.If ID1 is a
data reference, ID2 must also be a data reference.

The value of the addresd ID1 minusthe addressf ID2 is addedto the contentsof the specified
location. Multiple references to the same or overlapping locations are permitted.

NEW MODULE
Byte 10

A new module record defines the start afew module.New modulesare also startedat the begin
of a new object file. (Not yet implemented)
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