

Doing it yourself

Hofstadter's MU puzzle

Consider the alphabet $\Sigma = \{M, I, U\}$.

For a string $w \in \Sigma^*$ we define when it is *derivable*, notation $\vdash w$

axiom	MI	
rules	wI	$\Rightarrow wIU$
	Mw	$\Rightarrow Mww$
	$wIIIv$	$\Rightarrow wUv$
	$wUUv$	$\Rightarrow wv$

1. Give four examples of $w \in \Sigma^*$ such that $\vdash w$
2. Give four non-examples
3. Show that $\not\vdash MU$

Coding words

Define a map $\lceil \cdot \rceil : \Sigma^* \mapsto \mathbb{N}$ such that

1. There is a primitive recursive function f satisfying

$$\lceil wv \rceil = f(\lceil w \rceil, \lceil v \rceil)$$

2. There is a primitive recursive function g such that

$$\begin{aligned} g(\lceil w \rceil) &= 0, & \text{if } w = \lambda, \text{ the empty string} \\ &= 1, & \text{if } w \in \Sigma, \text{ a single letter} \\ &= 2, & \text{if } w = uv, \text{ for some } u, v \in \Sigma^*, \ u, v \neq \lambda \end{aligned}$$

3. There are primitive recursive functions h_1, h_2 such that for $s \in \Sigma$

$$h_1(\lceil sw \rceil) = \lceil s \rceil$$

$$h_2(\lceil sw \rceil) = \lceil w \rceil$$

Coding derivations and ‘theorems’

Show that there is a Σ_1 formula $B(x)$ of PA such that

$$\vdash w \Rightarrow \text{PA} \vdash B(\bar{w})$$

$$\text{PA} \vdash \neg U$$

$$\text{PA} \vdash \neg B(\overline{\text{MU}})$$

where $\bar{w} = \overline{\ulcorner w \urcorner}$

[Hint. Do what is stated on the first line]