

Exercises Lambda Calculus (week 7, 08.01.2014)

1. Define $\mathbf{true} \triangleq \lambda xy.x(\equiv K)$ and $\mathbf{false} \triangleq \lambda xy.y(= KI)$.

(a) Given λ -terms P, Q , construct a λ -term $F_{P,Q}$ such that

$$\begin{aligned} F_{P,Q}\mathbf{true} &= P; \\ F_{P,Q}\mathbf{false} &= Q. \end{aligned}$$

(b) Construct a λ -term F_{neg} such that

$$F_{\text{neg}}\mathbf{true} = \mathbf{false} \text{ & } F_{\text{neg}}\mathbf{false} = \mathbf{true}.$$

(c) Construct a term F_{and} such that

$$\begin{aligned} F_{\text{and}}\mathbf{true}\mathbf{true} &= \mathbf{true}; \\ F_{\text{and}}\mathbf{true}\mathbf{false} &= \mathbf{false}; \\ F_{\text{and}}\mathbf{false}\mathbf{true} &= \mathbf{false}; \\ F_{\text{and}}\mathbf{false}\mathbf{false} &= \mathbf{false}. \end{aligned}$$

2. (a) Construct a λ -term G such that

$$\begin{aligned} G^\lceil x^\rceil &= \mathbf{true} \\ G^\lceil PQ^\rceil &= \mathbf{false} \\ G^\lceil \lambda x.P^\rceil &= \mathbf{false}. \end{aligned}$$

(b) Construct a λ -term V such that

$$\begin{aligned} V^\lceil x^\rceil &= \mathbf{true} \\ V^\lceil PQ^\rceil &= V^\lceil P^\rceil \\ V^\lceil \lambda x.P^\rceil &= \mathbf{false}. \end{aligned}$$

(c) Construct a λ -term H such that

$$\begin{aligned} H^\lceil x^\rceil &= \mathbf{true} \\ H^\lceil PQ^\rceil &= V^\lceil P^\rceil \\ H^\lceil \lambda x.P^\rceil &= H^\lceil P^\rceil. \end{aligned}$$

(d) Compute $H^\lceil S^\rceil$, $H^\lceil Y^\rceil$, where $Y \triangleq \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$.

(e) Note that $Y = \lambda f.f((\lambda x.f(xx))(\lambda x.f(xx)))$. Compute

$$H^\lceil \lambda f.f((\lambda x.f(xx))(\lambda x.f(xx)))^\rceil.$$

3.* (a) Every λ -term M is either of the form $M \equiv \lambda x_1 \dots x_n.yQ_1 \dots Q_m$ (with *head variable* y) or $M \equiv \lambda x_1 \dots x_n.(\lambda y.P)Q_0Q_1 \dots Q_m$ (with *head redex* $(\lambda y.P)Q$). Show this. In the first case M is a *head normal form*.

(b) Show that in the first respectively second case one has $H^\lceil M^\rceil = \mathbf{true}$ and $H^\lceil M^\rceil = \mathbf{false}$.